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One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense dis-

play of data can result. To ensure the overview and readability of the increasing volumes of data, some special

features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of

analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events).

This paper addresses the problem of improving the integration of the visual and analytical methods applied

to medical monitoring systems. We present a knowledge- and machine learning-based approach to support

the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the

development of user interfaces for intelligent monitors that can assist with the detection and explanation of

new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an inter-

active graphical user interface to adjust the parameters of the analytical methods based on the users' task at

hand. The action sequences performed on the graphical user interface by the user are consolidated in a dy-

namic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches.

These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emer-

gence during a similar experience and positively impact the monitoring of critical situations. The provided

graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural

and effective representation of clinical information for patient care.

1. Introduction

The dynamic environment sets special requirements for context-

aware hospital applications to provide users with appropriate ser-

vices and to offer a suitable interface to users [9]. The medical domain

is particularly interesting for the application of techniques for visual-

izing time-oriented data that is essential for analysis activities in

many application scenarios. A better integration of visual, analytical,

and user-centered methods is key to adapting visual and analytical

methods to the user's task at hand. The goal of model visualization

is to allow the user to form clear mental images of a model's structure

and function [56]. The hybrid connectionist-symbolic approach to

drive user-centered visual analysis seems to be promising for the

field. It eases the implementation of a task-orientation specification

to suggest and parameterize the visual, analytical, and interaction

methods. The user interface of the proposed hybrid reasoning

architecture gives a physician a discrete overview of a patient's status

(through clinical phases or “scenes”) and detects clinically meaning-

ful abnormalities. In fact, the progression of different degrees of pa-

rameter abnormalities is represented by a sequence of clinical

phases, which reflects the involved predominant physiologic process

(e.g., increased blood gas pressures, vasodilatation, and hypotension).

To do so, conceptualizing/representing the knowledge of someunderly-

ing reasoning that paves the way for specialized problem-solving ex-

pertise is important [5]. A formal conceptualization of the implicit

knowledge emerging during concrete actions can be exploited to not

only have accurate and effective knowledge bases but also dynamically

adapt to changes [53]. In the user interface management, a knowledge

capitalization process can offer the user a way to reuse the cumulative

experiences in browsing through patient records [27], which requires

expert interface to capture domain knowledge in the form of a physio-

logical/process model.

In Intensive Care Units (ICUs), there exists a crucial need for intel-

ligent monitoring systems that can help the physician to deal with the

massive information flux. ICUs present intrinsic characteristics that
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make the reasoning and decision-making problem totally different

from other clinical areas [59]. To improve medical care management,

more innovative tools are required [21]. These tools will help physi-

cians to interpret clinical parameters more quickly and to choose

the appropriate treatment for the patient among many different

options [30]. In such circumstances, User Interface Engineering can

be a valuable tool in the medical domain because it is a think tank

that explores user experience, design, and the usability of technology

[54]. Unlike the traditional design in which the goal is to make the ob-

ject or application physically attractive, the goal of user interface

design is to make the users' interaction experience as simple and

intuitive as possible [63]. A review of intelligent human-machine

interfaces in light of the ARCH model [40] has shown that the devel-

opment of interface architectures based on artificial intelligence

techniques (using the knowledge of the user's cognition) can be in-

corporated into a user interface to ease the task of the human user.

The need for intelligent patient monitoring systems is continuous-

ly reinforced by the necessity to automatically build a concise view of

the patient's evolution to work “in understanding” with the user.

Some studies try to capture automatically the way the user interacts

with the system [41,71]. Yen and Acay demonstrated that through

monitoring the user's actions, the system can determine the user's

intentions and transform the deduced intentions into system actions

[41]. Understanding the user's implicit actions allows the effective-

ness of the user interface enhancements to be assessed with a reduc-

tion in the number of operations performed by the user to achieve a

specific goal while using the GUI. Kumar and Sekmen showed how

Intelligent User Interfaces (IUIs) improve the communication be-

tween humans and machines when the interface technology makes

the leap from a passive tool-set to a proactive assistant [71]. In fact,

the studied User Interfaces use machine learning to improve their in-

teractions with humans (information filtering, data value production

and command generation). For example, by inducing suggested data

values based on previously observed values, the system reduces the

data entry time for a human operator and improves the human's

performance at a task with the quality of the data.

Studying interactive techniques for the visual analysis of time-

oriented data is essential for building targeted user interfaces. The

information gained by these techniques can support the analysis

and visualization process to provide additional guidance to users.

For example, during their respective reasoning (e.g., to detect events

of temporal data abstractions [11,64], practitioners would filter, map,

and render information from data objects with the aim of taking

advantage of the visual analysis methods capabilities to do the follow-

ing [36]: i) diagnose the pathology of the patient according to the

symptoms expressed by the patient, the observations or analysis of

the doctor and the already known health problems of this pattern;

and ii) determine the best possible therapeutic procedures. This

method fits with knowledge-assisted visualization that provides

some opportunities to update and share knowledge through visuali-

zation [70]. Studying tighter combinations of analysis steps and

event-based visualization could at least result in new, powerful

means for the visual analysis of time-oriented data. The user interface

must provide different specification methods to allow the system to

give relevant visual information based on the physician's experience

and interaction (e.g., expert, common and less-experienced visualiza-

tion users).

The rest of this paper is organized as follows. We discuss in

Section 2 the state of the art, including the user interface issue in

the medical domain and information visualization with user-

centered visual analysis. Then, in Section 3, we highlight the impor-

tance of the Connectionist-Symbolic Integration used for generating

contextualized visual representations in the user interfaces. A de-

scription of its reasoning mechanisms, useful for extracting and auto-

matically highlighting the relevant information from time-oriented

data, is also presented in the Aiddiag's software architecture. In

Section 4, the impact of such architecture is illustrated for the intelli-

gent or knowledge-based visualization of medical data. In Section 5,

we provide some information about the effective use of the system

in the intensive care unit at a University Hospital. We outline in

Section 6 the lessons learned on the implementation of our approach

and note our findings and future works in the interactive information

visualization.

2. State of the art

2.1. Related works: user interfaces within intensive care units

In the last few years, the user interface has proved to be a valuable

tool in the medical sector for assisting medical doctors and various

physicians (e.g., anesthetists [44] and neonatologists [49]) in many

applications (e.g., oncological, cardiovascular [7], and respiratory as-

pects [22]). In the Intensive Care Unit (ICU) domain in particular,

the applications range from software to supervise patients through

quality scenario controllers to integrated strategic decisions.

Boaz and Shahar developed IDAN/KNAVE-II [7], a conceptual and

practical architecture that fully implements the temporal-abstraction

mediation approach. The KNAVE architecture comprises three types of

modules: the temporal-abstraction module, knowledge-acquisition

tools, and the information visualization module. The KNAVE-II intelli-

gent (knowledge based) interactive interface is used to monitor and

explore time-oriented clinical data and their abstractions. An early

description of the KNAVE-II interactive visualization module and

conceptual interface was made by Shahar and Cheng [60,61], and the

interface itself and its semantics was described in detail later [62] and

evaluated for its functionality, completeness, correctness, and usability

[45]. The IDAN/KNAVE-II combined architecture supports multiple

applications, such as in a project focused on the assessment of the qual-

ity of guideline-based care (mainly in the domains of oncology and an-

tihypertensive therapy). Some knowledge-acquisition enhancements

are needed, both for the display of the definition of existing periodic

and linear patterns and for the specification of new patterns.

The systems described here illustrate that choosing between spec-

ificity and generality is not easy. Many systems are typically devel-

oped for a very narrow, specific application that lends itself to

rule-based approaches (e.g., VIE-VENT [49] or SENTINEL [44]) or

connectionist and statistical approaches (e.g., RESPAID [12]). Howev-

er, the lessons learned and their success is limited to their domain of

expertise. Meanwhile, generic architectures endeavor to support sev-

eral application domains and strive for flexibility, modularity, and

ease of expansion (e.g. SIMON [20], Aiddiag [12] and IDAN/KNAVE-II

[7]). This generality is often at the expense of expertise and perfor-

mance in specific domains [25]. In this study, we have adopted the

second approach with a focus on connectionist-symbolic integration,

which combines machine learning and structured background knowl-

edge representation.

We follow this later approach and adopt a general framework of

knowledge representation and reasoning (namely the Think!-based

Aiddiag framework [12,69]), and we aim to build an IUI considering

traces of computer use as experience knowledge containers to sup-

port a comprehensive visual analysis. Furthermore, this general

framework allows, using heterogeneous computing techniques, shar-

ing and exchanging information between two or more medical com-

puter systems (but designed and implemented independently).

Within the ISIS (Intelligent Survey for Information Systems) program

[48], we make some extensions in the Aiddiag framework by develop-

ing new modules for medical research at the bedside in critical care

units. The position exposed in this paper is clearly a user-centered ap-

proach [6] in which the system can offer visualization assistance

based on its knowledge of the user's aims. The main conclusive idea

that we can draw from this part is that most of the user interfaces

used in the healthcare domain are traditional (contrary to these



approaches, our objective is to propose something new: an intelligent

approach).

2.2. Integration of visual, analytical, and user-centered methods

The explicit representation of reasoning methods is an essential

feature for building a flexible system that offers various methods to

support visual analysis and decision making. Interactive exploration

and browsing information are means for a successful visual analysis.

Displaying the relevant information on the screen according to this

context is useful as a medicine schema or patient record, for example,

to enable the physician to access medical records and x-ray images

using IUIs while performing the diagnosis. More generally, the

temporal context is essential to decide which properties are initiated

or terminated by the occurrence of an event [34]. Furthermore, the

physicians could check if their action or decision is carrying the

right medicine for the right patient. A typical example is the follow-

ing: in the case of a patient with a respiratory health problem (e.g.,

respiratory insufficiency or pulmonary edema), certain diagnoses

should not be overlooked before the patient can receive artificial

ventilation [67].

In general, information visualization is a strategic component to

achieve several goals (intuitive data formats, emphasizing subtle

aspects of reasoning and information overload prevention). Chittaro's

classification of such goals [14] may also be used to describe the

systems in the table along with some other criteria (e.g., expert

knowledge adaptation [51], completely static vs. dynamic, complexi-

ty, hospital-tested). We note some works in IUIs in medicine that

were applied to patient populations, such as the IPBC (Interactive Par-

allel Bar Charts) system [16]. The main feature of IPBC is a visual data

mining (VDM) system devoted to the interactively analysis of collec-

tions of time-series, and its application to the real clinical context of

hemodialysis was shown. There are recent works regarding the intel-

ligent (knowledge-based) visualization of clinical data and the inter-

pretation of those data of patient groups, such as those described by

Klimov et al. [37–39].

In fact, a typical survey of intelligent information visualization

methods was performed by Aigner et al. [2], and they performed

another work involving visual analytical methods [3]. They have

elaborated on a categorization schema (based on time, data, and

representation criteria, such as 2D vs. 3D and static vs. dynamic)

that is intended to help clarify a variety of concepts and methods

for analyzing time-oriented data [2]. The concepts of temporal data

abstraction, principal component analysis, and clustering are detailed

to illustrate the usefulness of a tighter integration of visual and

analytical methods:

• Temporal data abstraction reduces value ranges from quantitative

values to qualitative values, which are much easier to understand.

• Principal component analysis reduces the number of variables by

switching the focus to major trends in the data.

• Clustering methods reduce the number of data tuples by finding

expressive representatives for groups of tuples.

To emphasize relevant information according to the users' needs, they

proposed a task-driven approach called event-based visualization [3].

Combining event-based methodology with visualization approaches

eases the integration of the user into the visual analysis process. The op-

erational model of event-based visualization consists of three major

steps (Fig. 1): event specification (i.e., describing user interests), event

detection (i.e., finding relevant data portions), and event representation

(i.e., considering user interests in visual representations). The description

of user interests as formal event types can be specifiedwith event formu-

las directly, by parameterizing event type templates, or by selecting from

a predefined application-specific collection of event types. The basic idea

is to find events in the data and then trigger automatic parameter adjust-

ments aimed at generating better targeted visual representations of the

clinical information. Additionally, there are other research studies on

the knowledge-based, or ontology-based, visualization of clinical data,

such as the classic theoretical and practical work by Cousins and Kahn

[18] and Chittaro et al. [15,16].

The logic of use can be attached to the visualization process to give

future users a simple and adapted means to their work objectives

within a mixed perspective synthesizing theoretical and empirical

knowledge on clinical reasoning [13]. For example, the change in

the level of artificial ventilation control makes translating the inten-

tion of a physician to modify the volume of oxygen taken in by the

body possible. This scenario refers to a sequence of user operations:

to place the cursor on the level, to erase the old level, to keyboard

the new level, then to validate or position the cursor on the level, to

select another level in a list, and then to validate. To perform this

scenario, key domain concepts are useful for knowledge clarification,

and they allow one to get lessons with learned descriptions that are

significant [35]. These lessons would enable the practitioner to

interact in a natural manner with adequate assistance in the monitor-

ing tasks.

3. A connectionist-symbolic approach to support knowledge-
assisted visualization

Because no single knowledge formalism can model all the possible

patterns in the medical knowledge, we suggest that a combination of

formalisms and pattern-specific reasoning methods could achieve

better results [28]. There are both technical and philosophical reasons

for this suggestion. First, each separate knowledge formalism offers a

different set of expressive capabilities appropriate for specifying a

different set of properties clearly and concisely [50]. Furthermore,

the complexity of the medical domain requires the use of multiple

applications of artificial intelligence technologies (e.g., medical plan-

ning, diagnosis and treatment) and implementing several knowledge

representation schemes (e.g., rule-based reasoning, artificial neural net-

works) that do not overlap [52]. Therefore, the proposed methodology

Fig. 1. The model of event-based visualization [3].



is based on the use of a neuro-symbolic formalism called Think! [69],

which takes inspiration from the cognitive and neural mechanisms

but also allows symbolic interpretation or interaction with symbolic

components. In the Think!-based Aiddiag framework, we have devel-

oped a visually driven analysis support system for medical knowledge

management, aimed at helping the patient's healthcare team (doctors,

physicians, biologists, etc.)

3.1. Connectionist-symbolic integration

Traditional symbolic Knowledge-based Systems (KBSs) are well-

designed to handle expert knowledge represented by symbolic

rules. Connectionist systems are powerful tools used to learn and

generalize knowledge obtained from practical cases (including uncer-

tain and imprecise data). NéoGanesh [22] and VIE-VENT [49] are

examples of rule-based systems that determine the optimal treat-

ments for patients based on clinical and experimental guidelines

and protocols. In contrast, the works of Stacey and McGregor are

concerned with the applications of results from machine learning

processes to data streams to detect adverse clinical conditions [64].

Thus, combining these two approaches will explore their comple-

mentarities to improve overall system performance with integrated

reasoning and learning capabilities. Neural-Symbolic Learning Sys-

tems contain six main phases [19]: (1) symbolic knowledge insertion,

(2) inductive learning with examples, (3) massively parallel deduc-

tion, (4) theory fine-tuning, (5) symbolic knowledge extraction, and

(6) feedback (see Fig. 2). The major hypothesis of our proposed

approach is to use a hybrid connectionist system for building intelli-

gent interfaces. This approach could help to suggest recommenda-

tions for the elaboration of adapted information visualization and

analysis to ease further decision making. Hybrid connectionist sys-

tems are computational systems that are based mainly on artificial

connectionist networks but also allow symbolic interpretation or in-

teraction with symbolic components [65].

The motivation for examining hybrid connectionist models is to

provide different processing mechanisms that can bridge the wide

gap between, for example, data acquired from biomedical equipment

and knowledge resulting from medical expertise. First, different cog-

nitive processes are not homogeneous, and as expected, they are

based on different representations. Therefore, there is evidence

from cognitive science and neuroscience that multiple architectural

representations are involved in human processing. Second, from the

point of view of KBSs, hybrid symbolic and connectionist representa-

tions have some advantages. Even different, mutually complementary

properties can be combined. Symbolic representations have the

advantages of easy interpretation, explicit control, fast initial coding,

dynamic variable binding and knowledge abstraction. Connectionist

representations, however, show the advantages of gradual analog

plausibility, learning, robust fault-tolerant processing, and generaliza-

tion. Because these advantages are mutually complementary, a hybrid

symbolic connectionist architecture can be useful if different process-

ing strategies have to be supported [50].

The use of techniques from the field of Connectionist-Symbolic

Integration and autonomous widgets provides a new complementary

style of human-computer interaction, in which the computer

becomes an intelligent, active and personalized collaborator. Autono-

mous interface widgets are computer programs that employ Artificial

Intelligence methods to provide active assistance to a user of a partic-

ular computer application. The metaphor used is from a personal

assistant collaborating with the user in the same work environment.

The assistant becomes gradually more effective as it learns the user's

interests, habits and preferences. To summarize, instead of the user

adapting to an interface, an IUI can adapt to the user and its environ-

ment. The IUI tries to determine the needs of an individual user and

attempts to maximize the efficiency of the communication. This

approach is similar to an agent development toolkit according to

specifications for interoperable agent-based systems [68].

3.2. Think! formalism: a connectionist-symbolic representation scheme

Building a complete diagnosis support tool would require the use

of several techniques, including decision trees, first-order logic expert

systems, and a trained neural network. All these techniques have

their own preferred field of application, and they do not overlap.

Requiring a user (developer, physician or biologist) to employ a single

technique for a task may force undesirable restrictions on the expres-

sion, analysis or production of a solution.

Introduced by C. Vilhelm, the Think! formalism is a unified

connectionist-symbolic representation scheme that tries to subsume

several formalisms currently used in the ICU [69]. Vilhelm suggested

that the addition of a pattern recognition capability using Connectionist-

Symbolic Integration would allow the development of systems that

wouldmeet the stringent and complex requirements of themedical envi-

ronment. The Think! formalism can be more easily updated than

rule-based systems, and it is useful in discovering knowledge from

physiological data and their correlation with clinical events [69]. Being

able to integrate these knowledge representation schemes in a single

model enables us to use existing knowledge bases and existing knowl-

edge extraction techniques tomake themcommunicate andwork togeth-

er. Think! is based on a connectionist structure but is sparsely connected

to have explicit paths. We have introduced symbolic representation

objects into this network, together with the concept of propagating

truth values associated with these symbols. Adding weights (data as

Fig. 2. Neural-symbolic learning systems [19].



weights to either side of a balance) helps to strengthen or to weaken the

identified conclusions.

The Think! formalism is based on three structure elements:

containers, processes, and tubes. Containers hold the information

(excitations), processes make calculations, and tubes transport the

information. The structure elements define a network representing

the knowledge base. Reasoning is achieved by propagating excita-

tions through the network from one element to another and making

calculations based on these excitations. The information obtained

with the calculations help fine-tune the network to better character-

ize the knowledge domain. The symbolic knowledge extracted is

analyzed to enable the essential interaction between the network

and the external environment. The role of each of these elements is

described explicitly above (Fig. 3):

• Containers are named data holders. They have only one input re-

ceiving new values that change the internal state of the container

and one or more outputs transmitting the container's state to

other elements of the network. The containers are the elements

by which an external system can communicate with the network.

They are represented by rectangles.

• Processes are the active elements of the network. They perform

calculations on their inputs and produce a result that is transmitted

through one or more output tubes. They are represented by circles.

• Tubes are oriented links propagating the information from one element

to the other elements of the network. Tubes have characteristics such as

weight, which attenuates or amplifies the propagated information, and

length, which conditions and respects a given delay of the propagations

at a given speed.

The structure elements define a network representing the knowl-

edge base. The information circulating in the network is called an excita-

tion, which is the association of a numerical value with its truth value.

Reasoning is achieved by propagating these excitations through the

network from one element to another and by making calculations on

these excitations. All numerical truth values are represented with fuzzy

intervals.

In Fig. 3, the window “3D visualization of a Think! Network” con-

sists of two parts:

• The left frame contains a display of a 3Dmovie of the Think! network

for the interactive visualization of information processing. The 3D

movie facilitates the task of the user by connecting the networks

to his/her domain objects and attracts the user's attention on

knowledge processing.

• In the right frame, the settings of the different manipulation options

are shown. The action ‘visualization’ allows the parameters of the

3D objects to be seen; the action ‘creation’ allows a new Think!

Internal knowledge representation and processing 

Container

Fig. 3. The 3D visualization of a Think! network.



network to be built and the action ‘optimization’ allow the current

progression of the information processing to be optimized. Driving

the knowledge discovery with appropriate navigation operators is

also possible by visualizing the sequential pattern analysis de-

scribed by Think! networks.

When an excitation is in transit inside a tube, it is called a propa-

gation. Each container and process has a function (called an activation

function) that will be activated whenever a propagation reaches the

element. An activation function computes the output excitation

from the input excitations and can also create or modify any element

of the network. The input process tubes are ordered, and input excita-

tions are dated upon arrival. The movement of each propagation is

ensured by a specific rate-regulator with a basic time unit called a

tick. At each tick, all the propagations are moved, and if some reach

a container or a process input, the corresponding activation function

is executed, and the result is carried out. Think! is a polyvalent knowl-

edge representation formalism that simultaneously enables the use of

previously expressed knowledge in different formalisms by maximal-

ly preserving the capacities for explanation of the reasoning and by

acquiring new knowledge in a semi-automatic way. In a nutshell,

the knowledge is represented by a symbolic language, whereas the

deduction and learning are performed by a connectionist engine.

For a more detailed description about this formalism, the reader can

refer to Vilhelm et al. [69].

3.3. Aiddiag: a modular software architecture

In the Think!-based Aiddiag framework, we have developed a

Computer-Assisted decision support system for medical knowledge

management to help the patient's healthcare team (doctors, physi-

cians, biologists, etc.). As part of the Aiddiag project, to help the

physician, we have to build a central low-cost workstation to be

placed at the patient's bedside and that acts as a unique information

display and interpretation system. The data produced by monitoring

equipment is supposed to help the medical staff better diagnose and

monitor the evolution of the patient's status. The potentially available

data include heterogeneous sources, such as blood gas partial pres-

sures, hemodynamic parameters, or ventilator settings. The Aiddiag

system has been designed to accommodate different types of data:

images, parameters originating from ambient sound, therapeutic

event information and data that is retrieved from external databases

and knowledge bases. We have proposed data-driven techniques to

improve the exploitation of raw data coming from medical devices

that are present at the patient's bedside. Clearly, a set of relevant

indices has to be derived for the automatic recognition of complex

clinical scenarios and the efficient detection of dangerous situations.

To minimize the introduction of a priori knowledge, Calvelo et al.

[10] describe a data-oriented methodology for the extraction of

local trends from a set of raw physiological data and report its

on-line application in the working Aiddiag platform. For example,

acquiring and processing complex medical data (e.g., respiratory

frequency (Fr), arterial hemoglobin oxygen saturation [SaO2]) and

signals (e.g., the detection of mechanical abnormalities, disconnec-

tion, overpressure, very low levels of CO2), from biomedical devices

is possible. These data are checked, filtered, and described in the

working format before being transmitted to the database. The

adaptation of the GARCH method [24] improves the quality of the

symbolic time series transformation to construct a typical parameter

evolution or scenario. GARCH models have been extensively investi-

gated in the econometric domain and are employed commonly to

analyze the unpredictable movements of a time series. These models

provide an essential means for reliably capturing time-varying vola-

tility (i.e., periods of swings followed by periods of relative calm)

and effectively managing risk.

Aiddiag is based on a totally modular architecture to allow a

certain level of flexibility in varying circumstances, making the

encapsulation of knowledge and expansion of the KBS by incremental

development easy. The Aiddiag architecture was re-designed to

provide a significantly more reliable infrastructure [4] (Fig. 4). The

application is built as an assembly of storage and module layers,

implementing a simple function including data acquisition, data

display, and alert evaluation. There are four types of modules: the

kernel controls Aiddiag's behavior, drivers acquire the data from

biomedical equipment, computing modules compute the data and

display modules show the data. Each module comes with its data as

a separate shared memory segment (storage layer) that is available

to the other modules. The storage layer answers queries from other

modules and triggers alerts and alarms based on the data present in

the shared memory when pre-set thresholds are exceeded. The

AdgVariables are programming variables that are used to store data

and inform the modules of updates. All modules are loadable or

unloadable dynamically without interrupting the application. The

modules can communicate through a messaging system, and when

Fig. 4. Architecture of the Aiddiag's software [4].



a module fails, its data remains available for the others. There are two

types of modules, which differ in the way their information is

displayed:

• Modules without a graphic interface, such as the driver module that

is in charge of clinical data acquisition from biomedical equipment

(e.g., the measure of the respiratory exchange ratio (VCO2/VO2).

The driver module connects to the equipment with the available

communication medium (e.g., serial line, analog line, switched or

wireless network). If a module crash is detected, the faulty module

is restarted automatically by the kernel that controls Aiddiag's

behavior, which is itself redundant and fault-tolerant. The computa-

tion module is a neuro-symbolic engine for medical knowledge

representation and reasoning. With the processing of representa-

tive parameters, for example, it defines the current state of the

patient and the evolution of that state. The knowledge base (includ-

ing the medical knowledge acquired from data) should be easily

understandable so that the physician can judge the relevance of

the rules and possibly develop his/her own rules that he/she may

then integrate into the system to test their accuracy.

• Modules with a graphic interface, using contextual menus and

widgets (user interface elements such as buttons and drop lists),

try to make the user interface as usable and useful as possible for

the medical staff. Aiddiag interface widgets mix graphical and

artificial intelligence features, and they stay both in the Computing

and Display modules. The integrating IUI in the Aiddiag's architec-

ture allows a more comprehensive view of the time course of the

patient's state to be built, thereby giving it the ability to manage

several therapeutic strategies depending on the patient's state.

These strategies enable the synthetic visualization of a clinical

situation by providing real-time video, imagery, diagrams and

textual information. For example, the status bar module located at

the top of the computer screen displays the current global status

of the patient (e.g., OK or alarm) along with his medical history

and a one-line text message (alarm text, event). The history can

be browsed to see what happened some time ago or to examine a

specific event. This knowledge-driven user interface is suitable to

model and capture a substantial part of the physician's expertise.

In user interface management, a widget engine is a software service

available to users to run and display applets on a graphical user inter-

face [63]. The automatic linking of widgets includes detecting a trigger

event associated with a first widget and providing access to a second

widget in response to the trigger event in a respiratory system

(Fig. 5). In such a respiratory system, a communication path or channel

is established between widgets to share information to connect the left

lungwith the right lung. Awidget linkmanager is used to automatically

establish links between widgets and designate shared information, re-

strictions or arrangements.

The visible sequence in Fig. 5 derives contextual information from

sensors that monitor the clinical situation and provides active features

within the various components of the respiratory system. These then

alert physicians with hints and stimuli on what is going on in each

particular context. The user can select other components of interest

and get details on demand or perform a zoom-in/zoom-out of the

examined organ, causing a dynamic rearrangement of the organs and

widgets that are displayed. This example illustrates how the Aiddiag

interface widgets actually adapt themselves according to the context

acquired from the medical sensors or user actions. Therefore, the

computing tool allows an easy modeling of medical processes and

provides a number of means of analysis (e.g., segmentation, clustering,

detection of events) for both quantitative and functional properties

(e.g., completion time, workloads, critical path, data flow, process

type, multistep simulation). In addition, the explanation facility enables

the user to see an explanation of the reasoning used by the knowledge

base system to reach a given conclusion. The user can consequently ask

“why” a conclusionwas reached, and the systemwill explain its reason-

ing in a human-readable form.

4. Application to the intelligent (knowledge-based) visualization
of clinical data

Medical user interfaces need to adequately take into account

effective presentations and interactions with data, information, and

knowledge. These goals are also achieved by the computer-assisted

use of visual processing to gain understanding with three goals [14]:

• to visually present medical data in more intuitive formats that are

easy to understand, easy to learn, easy to recognize, easy to

navigate, and easy to manage;

• to visually magnify subtle aspects of the diagnostic, therapeutic,

patient management, and healing process, which otherwise could

be difficult to notice;

• to prevent information overload and allow members of the clinical

staff to master larger quantities of previous information.

Medical user interfaces require some intelligent modules for

knowledge acquisition and global automated real time monitoring,

including the detection of technical hitches and human faults to

reduce the lost work time [48]. For this aim, we link user interface

to an inference engine in the Aiddiag tool. We propose scenario recog-

nition as a technique for temporal reasoning in medical domains: the

time-course of a clinical process is compared with a predetermined

set of possible behaviors for this process [23]. This recognition allows

us to anticipate forthcoming events from the partial instantiation of

the recognized scenario and to intervene in the process, for example,

to prevent specific expected (undesirable) situations.

The Aiddiag-associated tool provides some intelligent assistance

modules that will more specifically help the specialists, including

biologists and doctors, with precise facts that are difficult to explain

otherwise. Indeed, the system can provide some medical advice

unselected by the doctors but equally or even more accurate than

1 2

3

Fig. 5. A sequence of expert knowledge acquisition.
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the doctor's options because it studies different scenarios according

to its medical knowledge base and the evolutionary data of the

pertaining diseases or infections. Specific information concerning

the patient (e.g., morphology, type of pathology) and the foreseen

therapy (e.g., adjustment of respiratory assistance to the patient's

need) are specified by the physician in charge of the system's initial-

ization. The user interface shows all useful information (respiratory

parameters, blood-pressure, etc.) to the clinical staff and predicts an

unknown state (the etiology of a clinical problem or future prognosis

of patient) from the current known states. Thus, the interface enables

the physicians to choose appropriate actions over time to influence

the evolution of the patient's state.

Aiddiag's software architecture illustrates the interest of the pro-

posed approach to help the user easily understand the knowledge

base to visualize a reasoning or decision-making process. The benefits

of the use of computers in health care will be delivered if we design

computerized medical assistants that can efficiently relieve the

clinical staff of repetitive tasks, and more importantly, really support

practitioners in their decision-making in real time. Plan recognition

and user modeling techniques enable the system to infer the user's

goals and plans using evidence from the user's input and previous

interactions with the system [46]. The basic idea is presented here.

The system should observe the user's actions and interpret these

actions in terms of his/her possible goals and plans. Aiddiag includes

a limited goal recognition mechanism so that it may recognize the

general context of the users’ actions and possible problematic situa-

tions. Aiddiag supports semantic modeling and formal reasoning to

provide context-aware actions (e.g., delivering contents, adapting

applications or running applications), and it can free the user from

learning complex command languages.

4.1. Detection and creation of medical sequences

Identifying user-dependent information that can be automatically

collected helps build a user model (1) to predict what he/she wants to

do next and (2) to perform relevant pre-processing tasks. Such

information is often relational to the user's tasks and best represented

by a set of sequences. Therefore, we need to know the sequence of

actions made by the practitioner on the graphical user interface

(GUI) to know which parameters he/she asked to be displayed and

what modifications he/she made on these parameters. The idea is to

learn by observing the user, i.e., by finding regularities in the user's

behavior and using these regularities for prediction. Context manage-

ment incorporates the widget management network that generates

the necessary knowledge for a decision on the selected actions to

provide context-aware support [42]. The widget management

network is responsible for creating the Think! network representing

the sequences of the actions and uses the rules in the knowledge

base to activate adaptation. After a certain amount of time, which

corresponds to the learning procedure, many sequences will exist in

the network. An analysis of these sequences will show which of

them are most used. The credit assignment of reinforcement learning

is achieved by weighing the various types of sequential actions

according to their observed occurrence. Which individual sequences

or scenarios are largely responsible for the success or failure of an

action in the medical context can then be determined. Thus, we will

be able to implement sequences and associated rules given by the

physicians and let the system refine them. After a certain learning

time, removing inadequate sequences and associated rules would be

possible.

After a validation procedure, the information generated by the

activation function of the sequence processes will be used. The

physician will not have to ask for specific parameters because they

will be automatically displayed. The characteristic of the system is the

binding of the widgets to the knowledge bases so that each of these

widgets has associated semantics and the validation consequently has

a strongly contextual meaning. For example, the validation of a

sequence of actions aimed at the establishment of a diagnosis in lung

pathology (e.g., affecting the transfer of gases and ventilation/perfusion

relationshipswithin the lungs) iswell distinguished from the validation

of another sequence of actions leading to a treatment in defects of

respiratory control (e.g., affecting the regulation of gas exchange and

therefore the respiratory pump).

From a cognitive viewpoint, the detection and creation of medical

sequences are intended to provide optimal working conditions by

removing barriers to quality, productivity, and safe human perfor-

mance. To adapt the knowledge base to the user's problem solving

style and to restructure the knowledge base to improve comprehen-

sibility, having members of the health care staff who build themselves

a mental representation of the patient's case is useful. The user

interface widgets (buttons, drop lists, etc.) handled in the user

interface aim to enable a physician to partly visualize certain types

of information (trends, clinical conditions, view of respiratory system,

time-stamped actions, etc.), share it with other physicians and make

it evolve through cooperation with other physicians. The Aiddiag

display can be updated in real time and also allow users to clearly

interact with the GUI by selecting and modifying elements of the

interface. Moreover, this user interface strives to minimize the

cognitive load (i.e., the level of effort associated with thinking and

reasoning [66]) associated with operating the interface itself so that

all of a physician's cognitive resources are available for their tasks

and the problems to solve. Thus, he/she would be more able to deal

with some unusual or unforeseen situations by a better utilization

of their clinical judgment to assess and treat their patients.

4.2. An illustration of sequence creation for user interface elements

The time of execution and temporal interval are pieces of informa-

tion that may help capture the user's behavior. A sequence refers to a

series of ordered consequences (events or episodes) and will be

denoted throughout this paper by Pseq, but this technique can be

understood as independent from the clinical domain. Sequences of

actions are represented by connections between widget management

networks of the active interface objects contained in the sequence.

The battery device is used to detect the time between events. When

an active object is selected by the user, a battery device is charged.

The discharge of the batteries allows a simple mechanism to detect

the end sequence, or more precisely, the beginning of a new se-

quence: if the charge of the previous object's battery is below a

given threshold, the new click is considered as a part of a new

sequence and is not connected to the previously clicked object.

When the user clicks on an object, its widget management network

looks for the previously clicked objects and creates a current

sequence with queries in the different system components. A logically

ordered set of Pseq elements holds valuable information, such as

trends and patterns, which is used to improve medical monitoring

andmedical decisions. In the example shown in Fig. 6, the consequent

Pseq is derived from its corresponding widget management network.

End Tidal CO2 (ETCO2 or PetCO2) determines the level of (partial

pressure of) carbon dioxide released at the end of expiration, and it

is directly related to the ventilation status of the patient. For example,

ETCO2 monitoring may be used to verify if the tracheal tube is placed

in the trachea and not in the esophagus before ventilating the patient.

ETCO2 monitoring can also provide an early warning sign of shock for

trauma patients, cardiac patients and any patient at risk for shock.

In the example shown in Fig. 7, VE denotes the minute ventilation

of the lungs (i.e., the volume of air inhaled [inspired minute volume]

or exhaled [expired minute volume] by the lungs in one minute). Mi-

nute ventilation is calculated by taking the tidal volume andmultiply-

ing it by the respiratory rate (the number of breaths per minute a

person is taking). When an alarm occurs on the ETCO2 (End- Tidal

Carbon Dioxide – measured at the end of normal expiration), an



excitation is sent on the input of the ETCO2 container, activating the

corresponding network. When the physician wants to display the

expiratory minute ventilation, an excitation is sent to the input of

the VE (Volume of Expired Minute Ventilation) container activating

its corresponding network. A process of the VE window manager

network has an activation function that is looking for the object

with the highest level of battery charge. Because the battery of the

ETCO2 object has the highest charge, a tube is created between the

two networks at the level of the sequence process (Fig. 7). Increased

ETCO2 can reflect decreased VE or hypermetabolic states. Decreased

ETCO2 can be caused by increased ventilation or states of low or

absent pulmonary blood flow or cardiac output [57].

Thus, if the respiratory rate (RR) object is selected a few times

after the VE (Volume of Expired Ventilation) object, the VE and RR

objects are connected (Fig. 8). If the tube already exists, its weight

will be reinforced with a value inversely proportional to the differ-

ence of charges from the two batteries, i.e., it is reinforced more if

the two clicks are close in time. If the previous sequence is repeated,

then the weight of the tubes connecting the objects will be increased.

When the learning phase is completed, the network is visualized

using a 3D graphic tool. By exciting the starting point of a sequence

(e.g., an event, such as the process representing the ETCO2 alarm in

the sequence chains), propagations will be sent through all the

sequences originating at this event. The 3D representation allows us

to follow the paths followed by the excitations, which represent the

sequences of the actions performed during the learning phase. The

sequences that seem to be the most pertinent can then be introduced

to the running of the system. More generally, given a set of respirato-

ry parameters, relationships between attributes and parameters, such

as the presence of one pattern implying the presence of another

pattern, can be identified. Sequential pattern analysis is useful in the

investigation of relationships between parameters over a period of

time. For example, while monitoring ventilation, this analysis allows

the identification of problems (e.g., ventilation asynchronies) before

the patient's condition significantly deteriorates by providing an

early warning of an impending respiratory crisis, followed by auto-

matically optimizing the ventilatory settings [29].

To provide an intelligent assistance for the exploration of time-

oriented clinical data, gaining knowledge about the problem solving

steps from the observation of user activities and adapting the knowledge

base according to the lessons learned (success or weak points) is impor-

tant [33]. The computational model underlying the Aiddiag interface

learns and detects ICU-related clinical patterns (using an existingmedical

knowledge base represented or previously learned by the network) in

streaming time-oriented ICU clinical data, with the sequences of events

being learned in the user interface. The sequential pattern analysis

draws some learning from the “macro-operators” of the user actions on

the interface, such as a chain of actions performed once the user performs

thefirst event in the chain. TheGUI reasoning is able to suggest the appro-

priate chain to apply given a single prefix with contextual parameters

when there are several potential continuations: contextual data are

used to customize theway the inputs are processed and increase the pre-

cision of the information retrieval [31]. The purpose is to extract pieces of

knowledge that will convey an improved understanding of the patient's

clinical facts or circumstances and support helpful decision making

processes.

5. A practical example for the monitoring of severe brain injury
patients

The first evaluation of the characteristics of the Aiddiag architec-

ture was performed in 15 rooms at the intensive care unit at the

Fort-de-France University Hospital in Martinique (French West

Indies). A study was completely carried out with the system on the

clinical outcome of severe brain trauma patients after episodes of

cranial hypertension [4]. The importance of continuous monitoring

for neurosurgical patients has been outlined in the ICUs, and comput-

erized monitoring has showed clinical advantages over manual

recording (e.g., reliability of the number of critical episodes and the

accuracy of estimating the severity of a patient's injury) [72].

The appropriate modeling and analysis of medical time-series

allow behavioral models to be extracted after intensive computation.

The neuro-symbolic engine is used for the implementation of severe

brain trauma care algorithms and later comparison with the

physician's behavior. The neural network can detect a clinical prob-

lem (critical patient condition) quickly, suggesting diagnostic proce-

dures, while the knowledge extracted from it can explain the

problem later on. If misguided, the information can be used to fine

tune the learning system. In the case study, the Aiddiag framework

combined intelligent temporal analysis and information visualization

techniques for information feedback to caregivers and critical care

recommendations for assessment purposes. In particular, the Aiddiag

interface was able to perceive the patterns of expressive visualization

and ease visual analysis for the detection of an intracranial hyperten-

sion situation. It facilitates the review and interpretation of the pa-

tient data by presenting color trends, plots, and charts on a screen

display. Finally, the detection of certain critical patient conditions is

improved, and they are displayed in a more relevant manner.

In addition, we mention the possible utilization of existing

methods pertaining to the well-known and important task of

mapping clinical knowledge and particularly clinical guidelines to

the patient's electronic medical record. Examples of such mapping
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solutions that employ international standardized vocabularies and

terminologies include those proposed by Boxwala et al. [8], German

et al. [26] and Peleg et al. [55]. In particular, we have implemented

a medical protocol for the ICU management of severe head injury

[17] and incorporated the consensus guidelines produced by the

Brain Trauma Foundation and the European Brain Injury Consortium.

This protocol firstly considers the maintenance of cerebral perfusion

pressure (CPP) and secondly the management of intracranial pressure

(ICP) or mean arterial pressure (MAP). The specific patterns, regular-

ities or sequences of events (scenarios) associated with this algorithm

are used to evaluate the medical orders. The set of deleterious situations

can be determined to assess the presence or absence ofmedical reactions

and their relevance according to the theoretical objectives (Table 1 [47]).

In the Aiddiag user interface, both the acquired information and

the calculated information are presented by data display modules.

On the one hand, there are some generic display modules (e.g., phys-

iologic signals or care plans) applicable to different activities. On the

other hand, specific display modules are dedicated to a predefined

activity [4]. An example of a physician-designed module for the mon-

itoring of severe brain injury patients is shown in Fig. 9. The screen

consists of three parts:

• In the left frame of the window, the monitoring frame permits the

detection of certain clinical conditions such as hypoxemia (the

decreased partial pressure of oxygen in the blood), hyperthermia

(a greatly increased body temperature due to failed thermoregula-

tion) or intracranial hypertension. A minimal increase in the intra-

cranial pressure (ICP) due to compensatory mechanisms is known

as stage 1 of intracranial hypertension. An increased ICP in the

brain affects the nervous centers and causes periods of high vaso-

constriction and blood pressure. The characteristics of stage 2 of

intracranial hypertension include a compromise of neuronal oxy-

genation and systemic arteriolar vasoconstriction to increase the

mean arterial pressure (MAP) and cerebral perfusion pressure

(CPP). Jugular venous oxygen saturation (JVOS) measurements are

used to monitor global cerebral oxygenation and metabolism.

JVOS monitoring has been very useful in detecting cerebral ische-

mia (the lack of oxygen- and nutrient-rich blood flow in a given

area of the brain).

• In the middle frame of the window, some trends are extracted and

analyzed for monitoring and decision support. For example, the

trends of systolic arterial pressure (SAP), arterial occlusion pressure

(AOP), and human body temperature (T) are calculated and

displayed. AOP determines the minimum cuff pressure that stops

arterial blood flow distal to the cuff and provides a measure of the

cuff pressure required to maintain a bloodless surgical field. SAP is

measured when the pressure is at its highest in the arteries of the

body, which generally occurs at the beginning of the cardiac cycle

when the ventricles are contracting. Hypotension (an abnormally

low blood pressure with SAPb90 mmHg) is a frequent and funda-

mental source of cerebral ischemia following severe brain injury.

• In the right frame of thewindow, the list of time-stamped actions are on

view in the Interface Verification Plan (IVP), and the text block lines

are used to inform nurses about past, current or future prescriptions

(for example, Glucose+vitamin, Colloid bolus+Vasoconstrictor infu-

sion, Mannitol/Furosemide). The color legibility and consistency of

the text block lines are improved with backgrounds of a hue similar

to the text or, for increased contrast, of a complementary hue. The

purpose of a text box is to allow the user to input text information re-

lated to clinical events (such as allergic reactions resulting from

medications) to make them available for further analysis.

This application has a user-friendly interface touchscreen that was

adapted according to feedback from the caregivers. The middle and

left frames of the window contain sufficient recorded information to

justify the diagnosis and warrant the treatment. These frames permit

clinicians to track patients and their progress, follow a course of

treatment, and keep a service history. The proposed GUI development

methodology potentially results in some improvements in patient

safety and care provider performance and reduces medical decision-
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Table 1

Specific scenarios and verification of the adequacy of the medical reactions that were performed.

Parameter patterns Diagnosis Medical orders

ICP MAP CCP ICPaction MAPaction MAPaction & ICPaction

Above threshold Normal range Normal range ICPevent Adequate Inadequate Excessive

Normal range Below threshold Below threshold MAPevent Inadequate Adequate Excessive

Above threshold Normal range Below threshold ICPevent Adequate Inadequate Excessive

Above threshold Below threshold Below threshold MAPevent & ICPevent Insufficient Insufficient Adequate

Normal range Normal range Normal range Normal



making errors. Most reasoning and decision-making errors in medicine

are execution mistakes (goal, intention or action mistakes) and evalua-

tion mistakes (perception or interpretation mistakes) [54]. These

mistakes are due to incorrect or incomplete knowledge or other factors

(e.g., faulty heuristics, misperception, and information overload). The

proposed approach enhances the clinicians' ability to perform tasks

through the reduction of evaluation mistakes because they can better

comprehend the information (e.g., the number and duration of critical

episodes), analyze the situation (e.g., estimate the severity of a patient's

injury), and make decisions (e.g., the intensity of the treatment

required). In fact, clinical performance is improved by displaying

context-relevant information in layouts (consistent with the user's

clinical processes without appealing to any auxiliary interpretation)

that provide advice and guidance to support the reasoning and

decision-making of critical care health providers.

In addition, the hybrid architecture of the Aiddiag framework as it

stands can be extended to deal with data mining methods without

significant modifications to predict the evolution of patients in an

ICU [58]. The evaluation consists of the application of ratings,

structured interviews, and simulations to the system [43]. The

interviews and simulations provide insights into the types of infor-

mation that the clinical staff would need to have on-line (e.g., in

monitoring situations) to interpret developing trend data more effi-

ciently. Feedback from the users who operated the computerized

decision support for patient monitoring in the operating room (phy-

sicians, nurses, medical students) enabled the iterative adaptation of

the interface design and interaction sequences to the monitoring and

documentation tasks of the physician. Therefore, the enumeration of

the possible solutions in terms of planning and actions optimization

allows the identification of the possible action plans for the realization

of a task. Such mechanisms enable users to improve their level of

performance [32] as they are involved in their day-to-day activities

using the IUI. The evaluation, which also included the usability aspects

of the Aiddiag interface, was performed by our collaborators in the

Fort-de-France University Hospital. They tested the effectiveness (com-

plement to the collaborative knowledge construction), efficiency (work

load or time required to use), and subjective satisfaction (annotation

interfaces and visual feedbacks) by asking the user to complete various

tasks (e.g., following a guideline or making diagnoses) to collect exper-

imental feedback.

6. Conclusion and future work

Information representation and interaction style through the

intensive care monitoring of very critically ill patients call for a visual

and efficient analysis of that information for direct patient care at the

bedside. We have described a methodology for the provision of a

user-centered visual analysis to medical decision support systems that

builds on an existing methodology (Think!) and an existing ICU moni-

toring system (Aiddiag). Using the Think! formalism, the Aiddiag

data-acquisition software is a standalone application adapted to

patient data recording from biomedical devices and to caregiver

inputs. The underlying computational framework is used for a better in-

tegration of visual and analytical methods to filter, display, label, and

highlight relevant medical information from patient time-oriented

data. Thus, these methods may inform the physicians about a useful

evolution of the patient's state of which the physician would otherwise

not be aware. With improved user interfaces, such as graphical display

and data analysis, the GUI reasoning (detection of changes in the

context, panels, etc.) can support medical reasoning (e.g., diagnostic

methods) with the advantages offered by an easy-to-use interaction.

In addition, the hybrid reasoning architecture allowsmedical personnel

to view the acquired data, assess the visual analysis processes in

real-time, and occasionally influence the diagnostic process on the

Fig. 9. A specific display module of the Aiddiag interface for the management of severe head injury.



application. The hybrid reasoning architecture learns the patterns of

user actions in the interface and the acquired sequences represent in

some sense the cognitive path followed by the physician after the

event. The analysis of these sequences will allow us to extract medical

knowledge from the interaction between the medical staff and the sys-

tem when some elements of the context, such as the modification of a

prescription, are also taken into account. Therefore, capturing domain-

expert knowledge for further analysis with respect tomedical guideline

compliance is possible.

The describedmedical interface takes advantage of the graphical ca-

pabilities of the hybrid reasoning architecture to generate a visual anal-

ysis for adapting applications in critical care settings. The computational

model underlying the interface detects ICU-related clinical patterns

(using an existing medical knowledge base represented or previously

learned by the network) in streaming time-oriented ICU clinical data.

Consequently, it facilitates the diagnostic procedures and strategies by

efficiently organizing the relevant information into the user interface

of the medical monitoring systems and facilitates the actions required

to achieve the target medical care in critical settings. The model not

only aims to improve the working conditions of the users but also

takes part in an evolution of safety and effectiveness by a reduction in

errors, better control rates of risky procedures, and increases in health

care quality. In contrast to visual interactive tools such as KNAVE-II

[62] or [1] CareVis, which require a significant computer programming

effort, the proposed tool is designed to facilitate the users’ tasks and

allow an easy handling by medical doctors to formalize their knowl-

edge. This system is based on a human–computer collaborative ap-

proach involving contextual data exploration, semantic information

modeling and knowledge construction in a close interaction with clini-

cians for knowledge formalization and capitalization in the ICU domain.

Undoubtedly, many improvements can be made to the proposed

project manipulation interfaces. Some results from evaluating the pro-

posed approach in a real clinical setting and showingwhich concrete as-

pects are improved with regard to other approaches would be

discussed.Many useful suggestions have been received from physicians

during this experiment.We have analyzed and incorporated the follow-

ing valuable comments and feedback collected during the test and

evaluation process:

• A better understanding of how and when useful (general) adaptation

techniques can improve the interaction between the interface and

medical practitioners, such as the tools and methods that provide

reliable development and the maintenance of the intelligent parts of

the system taking into account contexts and expertise levels.

• Limitations have been detected during the intensive calculation of

relevant sequences to clarify the 3D representation of the possible

action plans. Fine adjustments of the computation module to obtain

optimum performance will suppress these limitations. Artificial

intelligence-controlled automated complex medical guidelines are

under evaluation.

For future work, we wish to focus on a more detailed explanation on

the World Wide Web based knowledge capitalization and sharing pro-

cess to disseminate methodological advances in health informatics or in

translational bioinformatics. Further work will possibly lead to study

the impact of human and technological resources availability on the

waiting time of admitted patients in ICU with a scheduling approach

guided by the principles for prioritization of emergency response actions.

In addition, we are taking account of computer network studies to sup-

port collaborativeworks between healthcare teams, and an economic ap-

proach is under consideration for the cost estimation of hospital services.
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