26,484 research outputs found

    Brain State in a Convex Body

    Get PDF
    We study a generalization of the brain-state-in-a-box (BSB) model for a class of nonlinear discrete dynamical systems where we allow the states of the system to lie in an arbitrary convex body. The states of the classical BSB model are restricted to lie in a hypercube. Characterizations of equilibrium points of the system are given using the support function of a convex body. Also, sufficient conditions for a point to be a stable equilibrium point are investigated. Finally, we study the system in polytopes. The results in this special case are more precise and have simpler forms than the corresponding results for general convex bodies. The general results give one approach of allowing pixels in image reconstruction to assume more than two value

    Linear Shape Deformation Models with Local Support Using Graph-based Structured Matrix Factorisation

    Get PDF
    Representing 3D shape deformations by linear models in high-dimensional space has many applications in computer vision and medical imaging, such as shape-based interpolation or segmentation. Commonly, using Principal Components Analysis a low-dimensional (affine) subspace of the high-dimensional shape space is determined. However, the resulting factors (the most dominant eigenvectors of the covariance matrix) have global support, i.e. changing the coefficient of a single factor deforms the entire shape. In this paper, a method to obtain deformation factors with local support is presented. The benefits of such models include better flexibility and interpretability as well as the possibility of interactively deforming shapes locally. For that, based on a well-grounded theoretical motivation, we formulate a matrix factorisation problem employing sparsity and graph-based regularisation terms. We demonstrate that for brain shapes our method outperforms the state of the art in local support models with respect to generalisation ability and sparse shape reconstruction, whereas for human body shapes our method gives more realistic deformations.Comment: Please cite CVPR 2016 versio

    Hypothesis Testing For Network Data in Functional Neuroimaging

    Get PDF
    In recent years, it has become common practice in neuroscience to use networks to summarize relational information in a set of measurements, typically assumed to be reflective of either functional or structural relationships between regions of interest in the brain. One of the most basic tasks of interest in the analysis of such data is the testing of hypotheses, in answer to questions such as "Is there a difference between the networks of these two groups of subjects?" In the classical setting, where the unit of interest is a scalar or a vector, such questions are answered through the use of familiar two-sample testing strategies. Networks, however, are not Euclidean objects, and hence classical methods do not directly apply. We address this challenge by drawing on concepts and techniques from geometry, and high-dimensional statistical inference. Our work is based on a precise geometric characterization of the space of graph Laplacian matrices and a nonparametric notion of averaging due to Fr\'echet. We motivate and illustrate our resulting methodologies for testing in the context of networks derived from functional neuroimaging data on human subjects from the 1000 Functional Connectomes Project. In particular, we show that this global test is more statistical powerful, than a mass-univariate approach. In addition, we have also provided a method for visualizing the individual contribution of each edge to the overall test statistic.Comment: 34 pages. 5 figure

    A Generative-Discriminative Basis Learning Framework to Predict Clinical Severity from Resting State Functional MRI Data

    Full text link
    We propose a matrix factorization technique that decomposes the resting state fMRI (rs-fMRI) correlation matrices for a patient population into a sparse set of representative subnetworks, as modeled by rank one outer products. The subnetworks are combined using patient specific non-negative coefficients; these coefficients are also used to model, and subsequently predict the clinical severity of a given patient via a linear regression. Our generative-discriminative framework is able to exploit the structure of rs-fMRI correlation matrices to capture group level effects, while simultaneously accounting for patient variability. We employ ten fold cross validation to demonstrate the predictive power of our model on a cohort of fifty eight patients diagnosed with Autism Spectrum Disorder. Our method outperforms classical semi-supervised frameworks, which perform dimensionality reduction on the correlation features followed by non-linear regression to predict the clinical scores

    Traumatic brain injury in pedestrian–vehicle collisions: Convexity and suitability of some functionals used as injury metrics

    Get PDF
    Background and Objective: Abrupt accelerations or decelerations can cause large strain in brain tissues and, consequently, different forms of Traumatic Brain Injury (TBI). In order to predict the effect of the accelerations upon the soft tissues of the brain, many different injury metrics have been proposed (typically, an injury metric is a real valued functional of the accelerations). The objective of this article is to make a formal and empirical comparison, in order to identify general criteria for reasonable injury metrics, and propose a general guideline to avoid ill-proposed injury metrics. Methods: A medium-size sample of vehicle-pedestrian collisions, from Post Mortem Human Subject (PMHS) tests, is analyzed. A statistical study has been conducted in order to determine the discriminant power of the usual metrics. We use Principal Component Analysis to reduce dimensionality and to check consistency among the different metrics. In addition, this article compares the mathematical properties of some of these functionals, trying to identify the desirable properties that any of those functionals needs to fulfill in order to be useful for optimization. Results: We have found a pair-wise consistency of all the currently used metrics (any two injury metrics are always positively related). In addition, we observed that two independent principal factors explain about 72.5% of the observed variance among all collision tests. This is remarkable because it indicates that despite high number of different injury metrics, a reduced number of variables can explain the results of all these metrics. With regard to the formal properties, we found that essentially all injury mechanisms can be accounted by means of scalable, differentiable and convex functionals (we propose to call minimization suitable injury metric to any metric having these three formal properties). In addition three useful functionals, usable as injury metrics, are identified on the basis of the empirical comparisons. Conclusions: The commonly used metrics are highly consistent, but also highly redundant. Formal minimal conditions of a reasonable injury metric have been identified. Future proposals of injury metrics can benefit from the results of this study.Peer ReviewedPostprint (author's final draft

    A Framework to Control Functional Connectivity in the Human Brain

    Full text link
    In this paper, we propose a framework to control brain-wide functional connectivity by selectively acting on the brain's structure and parameters. Functional connectivity, which measures the degree of correlation between neural activities in different brain regions, can be used to distinguish between healthy and certain diseased brain dynamics and, possibly, as a control parameter to restore healthy functions. In this work, we use a collection of interconnected Kuramoto oscillators to model oscillatory neural activity, and show that functional connectivity is essentially regulated by the degree of synchronization between different clusters of oscillators. Then, we propose a minimally invasive method to correct the oscillators' interconnections and frequencies to enforce arbitrary and stable synchronization patterns among the oscillators and, consequently, a desired pattern of functional connectivity. Additionally, we show that our synchronization-based framework is robust to parameter mismatches and numerical inaccuracies, and validate it using a realistic neurovascular model to simulate neural activity and functional connectivity in the human brain.Comment: To appear in the proceedings of the 58th IEEE Conference on Decision and Contro

    How to run a brain bank. A report from the Austro-German brain bank

    Get PDF
    The sophisticated analysis of and growing information on the human brain requires that acquisition, dissection, storage and distribution of rare material are managed in a professional way. In this publication we present the concept and practice of our brain bank. Both brain tissue and information are handled by standardized procedures and flow in parallel from pathology to neuropathology and neurochemistry. Data concerning brain material are updated with clinical information gained by standardized procedures

    Markov models for fMRI correlation structure: is brain functional connectivity small world, or decomposable into networks?

    Get PDF
    Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small-world properties of the underlying neural systems
    corecore