We propose a matrix factorization technique that decomposes the resting state
fMRI (rs-fMRI) correlation matrices for a patient population into a sparse set
of representative subnetworks, as modeled by rank one outer products. The
subnetworks are combined using patient specific non-negative coefficients;
these coefficients are also used to model, and subsequently predict the
clinical severity of a given patient via a linear regression. Our
generative-discriminative framework is able to exploit the structure of rs-fMRI
correlation matrices to capture group level effects, while simultaneously
accounting for patient variability. We employ ten fold cross validation to
demonstrate the predictive power of our model on a cohort of fifty eight
patients diagnosed with Autism Spectrum Disorder. Our method outperforms
classical semi-supervised frameworks, which perform dimensionality reduction on
the correlation features followed by non-linear regression to predict the
clinical scores