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Brain State in a Convex Bodv 
Martin Bohner 

Abstract-We study a generalization of the brain-state-in-a-box 
(BSB) model for a class of nonlinear discrete dynamical systems 
where we allow the states of the system to lie in an arbitrary 
convex body. The states of the classical BSB model are restricted 
to lie in a hypercube. Characterizations of equilibrium points of 
the system are given using the support function of a convex body. 
Also, sufficient conditions for a point to be a stable equilibrium 
point are investigated. Finally we study the system in polytopes. 
The results in this special case are more precise and have simpler 
forms than the corresponding results for general convex bodies. 
The general results give one approach of allowing pixels in image 
reconstruction to assume more than two values. 

I. INTRODUCTION 
HE brain-state-in-a-box (BSB) neural model was pro- T posed by Anderson and coworkers in 1977 (see [l]). It 

can be described by the equation 

Zk+l = S ( Z k  + Wac) 

where z o  is an element of the closed n-dimensional unit 
hypercube, z k  is the state of the system at time k, W some 
weight matrix, and the function g ensures that the states of the 
system are constrained to be in the unit hypercube. The BSB 
model has been investigated by many researchers, among them 
Anderson er al. ([I], [5, chapter 4]), Golden [2], Greenberg [3], 
Grossberg [4], Hui and Zak [7], and Hui et al. [5, chapter 111. 

One of the applications of the BSB model is to store patterns 
in such a way that when presented with a new pattern p ;  the 
system responds by finding the stored pattern most closely 
resembles p .  This problem is known as the associative memory 
problem (see [5] and [6]). One can study the equilibrium points 
of the system: the points e such that g(e+We) = e. Of greater 
interest is the set of all stable equilibrium points, namely, those 
points s where there exists an entire neighborhood around s 
with g(z  + Wz) = s for all z in that neighborhood. We can 
consider the stable equilibrium points of the system described 
above as the stored patterns. The neighborhood of attraction 
then contains the noisy versions of the stored pattern q which 
should be identified with q .  It is useful to choose the extreme 
points of the hypercube to be the equilibrium points of the 
system. Hui and Zak ( [ 5 ,  chapter 111, [7]) were able to give 
conditions on the matrix W so that this occurs. 

Of course the number of stored patterns is restricted to be 
2n for some natural number n in this case. The BSB model 
also only allows the coordinates to assume two values. For 

Manuscript received October 22, 1992; revised November 23, 1994. 
M. Bohner is with Abteilung Mathematik V, University of Ulm, 

S .  Hui is with the Department of Mathematical Sciences, San Diego State 

IEEE Log Number 9409355. 

Helmholtzstrasse 18, D-89069 Ulm, Germany. 

University, San Diego, CA 92182 USA. 

and Stefen Hui 

example, if one thinks of each coordinate as the value of a 
pixel in a two-dimensional image, then the BSB model only 
allows each pixel to be on or off with no possibility of a gray 
scale. In the present paper we introduce a generalization of the 
BSB model which can be used to address these problems. 

We fix an arbitrary closed, convex, bounded, and nonempty 
set S and consider the system described by 

Zk+l  = g ( f  ( Z k ) )  

where f is any continuous function and g maps from S to 
itself. The precise descriptions are given in Section 11. Of 
course we are interested in the equilibrium points of the 
system, and to find them, it is useful to introduce the support 
function of S and to look at some properties of convex sets and 
convex functions. Using the support function of S, we will give 
a characterization of the set of all equilibrium points which 
yields a necessary and sufficient condition for the statement 

(i) 

Moreover, if the support function of S is differentiable at 
certain points, then it is even easier to check whether a point 
is an equilibrium point of the system. This is, explored in 
Section 111. In Section IV we look at stability of the equilibrium 
points. First, a sufficient condition for a point to be a stable 
equilibrium point is given. We can simplify this condition if 
S is a polytope and we give conditions which imply 

all vertices of S are stable equilibrium points. (ii) 

For the remainder of Section IV, our system is governed by a 
linear function f (z) = z + Wz. where W is a weight matrix. 
We give conditions on W for (i) and (ii) which are numerically 
very easy to check. On the other hand, if we would like to have 
a finite number of fixed points be the equilibrium points, we 
can choose S to be the convex hull of those points. This may be 
one approach to reducing the number of spurious equilibrium 
points. Also, a pool of matrixes W which will work for (i) 
and (ii) is given in this section. We can choose from this pool 
the matrixes that are the best for a particular application. In 
particular, the results of Hui and Zak [7] for S = [-1,1]" 
will be easy consequences of our general theory. In Section 
V, we indicate how the results can be applied to the gray scale 
problem and give a numerical example. 

all vertices of S are equilibrium points. 

11. DEFINITIONS AND BACKGROUND RESULTS 

Dejinition 1: Let 'H be a Hilbert space over R with dim 
'H = n E N. A closed, convex, bounded, nonempty, and 

Let S denote a convex body. Let f be a continuous function 
and let xk = f ( ~ k - ~ ) .  We are interested in the restriction of 

n-dimensional subset of 'H is called a convex body. 

104-9227/95$04,00 0 1995 IEEE 
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the system to S. Since we want all the points to stay in S, we 
need to send the points which fall out of S back to S. To do 
that, we need the following lemma. 

Lemma I: For each y E 'H there exists a unique g(y) E S 
such that 

Furthermore g : 'H -+ S is continuous. 
Pro08 A proof can be found, for example, in [l 1, p. 

271. 
With the "nearest-point-map'' g of the above lemma we can 

define our system. 
Definition 2: Let x0 E S. Define 

Xk+l := g( f (.CL.)) v k E N U (0) 

where f : S + R is continuous and g: 'H + S is the 

That is, if f ( z k )  S for some k .  we take it back to the 

Definition 3: Let T ( z )  := g(f(z)) for z E S and let 

1) If T ( z * )  = z*. then T* is called an equilibrium point of 
the system. With Equi(S) we denote the set of all such 
points. 

2)  Let A(z*,s) := {s E 'HI ( ( x *  - s(I < 6). If there exists 
6 > 0 so that T ( S n  A(.r*. 6)) = {TI.*}. then x* is called 
a stable equilibrium point of the system. The set of all 
stable equilibrium points is referred to as Equi*(S). 

In other words, an equilibrium point is stable if there exists 
a neighborhood of the point so that all the points in that 
neighborhood are sent to the equilibrium point in one step. 
Observe also that Equi( S) # 8 by a consequence of Brouwer's 
fixed point theorem. 

Before we can give conditions for a point of S to be an 
equilibrium point, we need some properties of convex sets. To 
begin with. we define the support function of a convex body. 

nearest-point-map. 

unique point in S which minimizes the distance to f (zk). 

x* E s. 

Definition 4: The function h : 'H + R defined by 

h(u)  := sup(s. U ) .  U E 'H 
S E S  

is called the support function of S. For each U E 'H. let 

Of course, H ,  is just the half-space containing S determined 
by the hyperplane that is orthogonal to U and tangent to S. 
Clearly, if SO E S with h(u) = ( s 0 , u ) .  then so E S n dH, 
and dH,,  = {T  E 'Hl(z.u) = h(u ) }  is a hyperplane which 
supports S at so .  

Some properties of the support function are collected in the 
following lemma. 

Lemma 2: Let S be a convex body and h its support 
function. Then 

1 )  h is real-valued, 
2) h(u )  = maxSEas(s.u) V U E 'H. and 
3 )  h, is subadditive, positively homogenous, and convex on 
R. 

H ,  := {. E 'Hl(z,u) 5 h ( U ) } .  

Proof: The boundedness of S together with the 
Cauchy-Schwarz inequality imply 1). Everything else can be 

To become familiar with the support function, we will give 
two easy examples on how to compute it. We use fz, d X ,  
and X to denote the closure, boundary, and interior of a set 
X ,  respectively. 

Example 1 (Support Function): 
1) Let S = [-1. 11" be the closed n-dimensional unit 

hypercube in W" . We can calculate the support function 
h of S as follows 

verified easily. 

0 

n n 

n 

2) Let S = A(zO.k)  = { s  E R"I 11x0 - sll 5 k }  be the 
closed n-dimensional ball of radius IC in R" around 20. 

For s E S ,  we can find a E A(0. IC) with s = z0 + a. 
Thus we have 

h,(u) = sup(s,  U )  = ( 2 0 .  U )  + sup (a. U )  

S E S  a E m  

= ( 2 0 .  U )  + k((u(( v 1L E R" 

where we applied the equality part of the 
Cauchy-Schwarz inequality. 

Since ( 2  - 9, U )  = h(u) - h(u)  = 0 for all T ,  y E dH,, 
the vector U is normal to the hyperplane dH,. Now the 
geometric meaning of the following definition, where we 
denote { T  + ala E A }  for z E 3-1 and A c 'H by 2 + A ,  
is clear. 

Definition 5: Let z E dS.  
1) N ( s )  := z + {U E 'Hlz E S n a H u }  is called the 

normal cone of S at z. 
2) N * ( z )  := z + {U E 'Hl{z} = S n aH,} is called the 

absolute normal cone of S at z. 
3) 2 is said to be a vertex of S.  if all affine subspaces 

containing N ( z )  have dimension n. The set of all 
vertices of S is denoted by Vert(S). 

We illustrate the above definitions with an example. 
Example 2: Let S c W 2  be the region as depicted in Fig. 1. 

Let l , , l ~ . l u , ~ , . l v ,  and i, be line segments and R,, R, be 
open sectors as shown. We have 

N ( a )  = N * ( a )  = I,. N ( b )  = l b ,  N*(b)  = 0, 
N ( u )  = I ,  U f ,  U R,, 
N ( u )  = I ,  U I , ,  U R,, and "(U) = R,. 

" ( U )  = I, U R,, 

Furthermore, we have Vert(S) = { U ,  w, w}. 
Observe that N ( z )  = z + { U  E 'Hl(x,u) = h(u)}  and that 

N ( z )  is the collection of the outward normal vectors to the 
supporting hyperplanes at z. Moreover, it is easy to verify 
that N(.r)  is convex for each z E 8s. In the next section, 
the normal cone N(z) will be used to give necessary and 
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Fig. 1. Illustration of Definition 5 .  

sufficient conditions for Vert(S) c Equi(S). In Section IV, 
we will then use the absolute normal cone N * ( x )  to derive 
sufficient conditions for Vert( S )  C Equi* (S). For both results 
we need the following two theorems which are well-known 
results about convex sets and convex functions. 
Theorem 1 (Separating and Supporting Properties): 

1) If S is convex and xo E 8s. then there exists at least 
one hyperplane supporting S at 5 0 .  

2) If A and B are convex with A# 0 and A nB = 0, then 
there exists a hyperplane separating A and B. 

3) If S is a convex body and x 0  @ S ,  then there exists a 
hyperplane which strictly separates ( 2 0 )  and S. 

Proof: For a proof see, for example, [8, pp. 36, 38, and 

0 0 

Proof: First, suppose f (z)  E N ( s ) ,  i.e., (s, f ( x )  - s) = 
h(f(z) - s) and let t E S. Then with the aid of the 
Cauchy-Schwarz inequality we find that 

Ilf(.) - tll Ilf(.) - 4 2 (f(.) - t >  f ( x )  - s) 

= ( f ( z ) ,  f ( X )  - 5 )  - ( 4  f(x) - 3) 

2 ( f ( z ) ,  f ( z )  - 3) - h ( f ( x )  - $1 
= (f(.) - s, f ( x )  - 3) 

= Ilf(.) - S1l2. 

Now we have either f(x) E S which implies 0 2 [If(.) -s1I2, 
i.e., s = f ( x )  = g ( f ( z ) )  = T ( z ) ,  or f(z) @ S ,  and then 

inf Ilf(.) - tll 2 I l f (x) - SI1 
tFS  

so that again (see Lemma 1) s = g(f(x)) = T ( z )  holds. 
Now suppose T ( x )  = s. Since h(0)  = 0 we can assume 

without loss of generality that f (z )  6 S. We define a new 
convex set 

B := A(f(z) ,  f ( ~ )  - s). 

Note that B is the ball around f(z) which touches S at the 

point s E dS. We have B nS = 0 since 
0 

[If(.) - sll = min [If(.) - til. 

Thus we can separate those two convex sets by a hyperplane 
[see Theorem 1-2)], i.e., there exists 7~ E ‘Ft\{O} such that 

t E S  

( t .  U )  5 h(u)  5 (b.  U )  V t E S ,  V b E B. 
411. Of course, we have s E B n S. which yields (s, U )  = h(u) .  

Defining now U* := -U we see that Theorem 2: Let h : ‘Ft + W be convex. Then 

( b ,  U * )  5 h ( ~ * )  = (x. U * )  V b E B. 1) h is continuous on ‘Ft. 
2) Sh(z.y)  := lim,,o+(h(x + cy) - h ( x ) ) / ~  exists 

Thus the hyperplane { a  E ‘Ftl (a .u*)  = h(u*)}  supports at 

dh 
-(z) = (Oh(x).y). 
a y  

We have then 

(3 - f ( Z ) ? U * )  = Ilf(.) - SI1 IIU*lI 

and by the equality part of the Cauchy-Schwarz inequality, 

Q h ( f ( z )  - 3) = h ( a ( f ( z )  - s)) 
=h(-u*)  = h ( U )  = ( S , U )  

= (s, N(f(Z) - s)) = N ( S ,  f(x) - s) 
111. EQUILIBRIUM POINTS 

Now we can return to the model described in Section I. The 
goal is now to give a necessary and sufficient condition for a which yields ( s ,  f(.) - cS) = h ( f ( z )  - and f(.) E N(s) .m 
point to belong to Equi(S). The corollaries of the following For E we have 
two theorems will give necessary and sufficient conditions 
for Vert(S) c Equi(S). They can be considered as the main 
results of this paper. Before studying the proofs of Theorems 
3 and 4, the reader may also first have a look at Example 3 

f ( z 0 )  E N ( z 0 )  @ zo E Equi(S). 

Furthermore, the condition 

where the stability results concerning the classical BSB model f ( z 0 )  E N(xo)  V xo E Vert(S) (A) 
(see [ 5 ,  chapter 111 and [7]) are derived as easy consequences 
of our new general theory. 

Theorem 3: Let x E S and s E dS. Then 

is necessary and sufficient for Vert( S )  c Equi( S ) .  
Proof: Let s = z = 2 0  in Theorem 3. ’ 

Theorem 4: Let uo E ‘Ft. Then h is differentiable at uo if 

f(x) E N ( s )  e T ( z )  = s. 
and only if there exists 50 E dS such that 20 + uo E N *  (20 )  

and in this case we have xo = Vh(u0).  
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Proof: Let us assume that h is differentiable at U O .  Let 
x* E S n dH,,. Our goal is to show that z* = Vh(vo). For 
arbitrary U E IFI and E > 0 we have 

h ( U 0  + E U )  - h ( U 0 )  - h ( U 0  + E U )  - (2* ,  U o )  - 
E E 

(z*, U0 + E U )  - ( 2 * ,  uo) 2 = (x* .u) .  
E 

Letting E tend to zero from above, we find 

S h ( U 0 ,  U )  2 ( 2 * ,  U )  v U E IFI. 

Thus we have for all U E IFI 
( 2 * ,  U )  = - (T * .  - U )  2 -Sh(uo, - U )  

=Sh(Uo,u) 2 ( x* ,u ) .  

Note that the last equality is a consequence of Theorem 2.3) 
since h is differentiable at U O .  Now it follows by Theorem 
2.4) that 

d h  
dU 

(Vh(UO)? U )  = - (U())  = Sh(lL0, U )  

= (x*, U )  v U E 3-1, 

Since the above is true for all U E 'H. we have 11Vh(~0) - 
r*II = 0 which shows that S n dH,, = {Vh(uo)}  holds. 

Conversely suppose 20 E dS with S n dH,, = (20) .  To 
compute Sh(u0. U )  [which exists by Theorem 2-2)] for U E IFI 
we begin with 

q.0 + & U )  - q u o )  > ( 2 0 , U o  + €4 - ( 2 0 ,  uo) 
- 

E E 

= ( 2 0 , u )  v'E>0. 

So we have Sh(u0.u) 2 ( 2 0 , ~ )  V U E IFI. Now we turn 
our attention to the opposite inequality. For each E > 0 there 
exists Z O ( E )  E S with 

h(u0 + EU) = ( Z o ( E ) ,  210 + & U ) .  

Since S is bounded, the sequence {xO(l/n)},EN is bounded 
also. Therefore, by the Banach-Alaoglu Theorem for Hilbert 
spaces (see, for example, [lo, p. 77]), it contains a weakly 
convergent subsequence {zO( l/nk)}, say 

Also, x* E S, since closed convex sets are weakly closed (see 
[lo, p. 811). By the definition of {zo(l/nk)}, we have 

Therefore, letting k + cc in the inequality, it follows that 

S h ( U 0 ,  U )  5 ( 2 * .  U )  v U E 3-t. 
But since h is continuous [Theorem 2-l)], we can write 

h ( U O + -  ;k) = ( X 0 ( $ ) J L O )  + $ ( X 0 ( $ ) ; U )  

and let k + oc to arrive at 

q u o )  = ( T * , U O )  +O(x*.u) = (x*,uo). 
By assumption, ICO is the only element in S which satisfies the 
above equality, therefore z* = 20 and 

S h ( U 0 ,  U )  5 ( 2 0 .  U )  v U E IFI. 
Combining the above inequalities, we conclude that 

- S h ( U o ,  - U )  = - (To.  - U )  = ( 2 0 .  U )  

= S h ( U o .  U )  v u E E .  
Applying finally parts 3) and 4) of Theorem 2, we see that the 
(two-sided) directional derivative (dh/du) (uo)  exists for all 
U E IFI. Thus h is differentiable at uo and 

ah 
d U  

( 2 0 .  U )  = - ( U o )  = (Vh(U0). U )  v u E 3-1. 

Therefore Vh(r0)  = 20. and the proof is complete. 
Theorem 5: Let x E S and s E dS.  Then the following 

are equivalent: 
1) T ( r )  = s and h is differentiable at f ( z )  - s ,  
2) h is differentiable at f ( x )  - s with V h ( f ( z )  - s) = s ,  

and 
3) f(.) E N*(s ) .  

Proofi Suppose 1) holds. Then f ( x )  E N ( s )  by Theorem 
3 and 

V h ( f ( 2 )  - s )  + f(x) - s E N * ( V h ( f ( z )  - 3 ) )  

s E S n dHf( , ) - ,  = { V h ( f ( z )  - s)}. 

by Theorem 4 which yields 

Therefore 1) implies 2). 
Using Theorem 4, we see that 2) implies 

f(x) = V h ( f ( z )  - s )  + f(.) 
- s E N * ( V h ( f ( z )  - s)) 

= N * ( s )  
and 3) holds. 

From 3) it follows that 

s + (f(x) - s) = f(.) E " ( s )  c N ( s )  

holds which implies 1) by Theorem 3 and Theorem 4. 

alent: 
Corollary 2: Let 20 E dS. Then the following are equiv- 

1) 20 E Equi(S) and h is differentiable at f ( ~ )  - 20, 

2) h is differentiable at f ( s 0 )  - 2 0  with Vh( f (z0)  - 2 0 )  = 
20, and 

Proofi Theorem 5 with s = 2 = 20. 

3) f(.o) E "(xo) .  

To see how applicable the condition given in Corollary 2 
is, we will now give two examples. The first deals with the n- 
dimensional hypercube and the second with the n-dimensional 
unit ball. The first example contains a derivation of a well- 
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known result from the study of the BSB model using the 
techniques presented above. 

Example 3: Let S = [-1, lIn and define 

The set E is the collection of all extreme points of S. Let us 
assume that E c Equi(S) for f(x) = z + W x  + b, where 
f i ( e )  # ei V e E E .  Since h(u) = Cy=l luil by Example 
1-l), we have 

We have E c Equi(S) and so the following holds by 
Corollary 2 for each e = (e;)l<iln E E 

= (sgn (wiiei + b, + 2 w i j e j )  ) 
l<i<n 3 = 1 , j # i  

By a suitable choice of the vector e we see that a necessary 
condition of the required equation is given by 

n. 

w,, > - b, + I I U , , (  and 
j=l,j#i 
n 

j = l , j # a  

We will show later that this condition is also sufficient for the 
stability of the vertices. 

Observe that a matrix which satisfies condition (S) is 
necessarily strongly row diagonal dominant, that is 

n 

waa> l w i j l  v i E { l ; ~ ~ , n }  
j = l , j # i  

holds. For some properties of strongly row diagonal dominant 

Example 4: Let S = A(0, l ) .  By Example 1-2), we know 
that h(u) = llull for U E 'FI. Thus h is differentiable whenever 
U E H\{O} and we can calculate the partial derivatives 

matrices see for example [7]. 

ah 1 U 
- (U)  = -2U, = 2 
3U" 211U11 114 v U E 7f\{0}. 

Therefore 

Vh(U) = 2- v U E 'FI\{O}. 
IIUII 

We conclude that h is differentiable at f(x0) - 20 provided 
f(x0) # 20 and in this case we have by Corollary 2 that 

xo E Equi(S) e Vh( f ( z0 )  - 20) = xo 

IV. STABLE EQUILIBRIUM POINTS 

We already described conditions under which Vert(S) C 
Equi(S) is true. It would be even more pleasant if we have 
Vert(S) C Equi*(S). The next goal is to give a sufficient 
condition for this desired situation. 

Theorem 6: Let 20 E dS. Then 
0 

f(xo) EN (20)  + 20 E Equi*(S). 

Proof: By assumption there exists E >  0 so that 
A ( f ( x o ) , ~ )  c N ( z 0 ) .  Recall that f is assumed to be 
continuous (see Definition 2). Hence, corresponding to the 
above E there exists 6 > 0 so that 

Let x E S n A(xo.6). Then 

Consequently 

f ( 2 )  E A ( f ( . o ) . E )  c N(zo)  

and thus T ( x )  = xo by Theorem 3. Since 3: E S n A(z0,S) 
is arbitrary, we have in fact T ( S  n A(z0,S)) = {zo}, which 

W 

For the remainder of this section we assume that S is a 
polytope, i.e., the convex hull of finitely many points, and 
that V = { z j } l ~ ~ < ~  is a minimal generating set, or minimal 
representation, of S. In this special case the assumption in 
the above theorem is easier to check. We need the following 
lemma which is a little technical. 

implies by Definition 3.2) that xo is in Equi*(S). 

Lemma 3: N * ( x )  is open for all z E V. 
Proof: Recall that N * ( x )  = z + {U E 'FII S n d H ,  = 

{x}}. Suppose z = z, for some i E { 1, . . . , m} and uo E 
"(xi) - x i .  We must show the existence of an E > 0 so that 
A(uo,E) C N*(x i )  - xi. To do so, we need to define the 
following 

Note that the above quantities are strictly positive. Since h 
is continuous by Theorem 2-l), there exists 6 = S ( E * )  > 0 
so that 

Let E := min(6, p } .  Clearly E > 0. We claim that this E does 
the required job. Let U E A(0 , l ) .  Then 

and by the definition of 6 

So we have: Eaui(S1 = dS e 3a > 1 with f(x1 = ax. 
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Now we compute for each j E { 1,. . . , m}\{i} 

~ ( U O  + E U )  > h(u0) - E* = h(u0) - min Sj 
1 <_j<_m,j#i 

+ P lbjll 

Note that IIu(J 5 1 and so the last inequality is just 
the Cauchy-Schwarz inequality. Now take an arbitrary 
.z E S\{zzj. Then there exists { a J } 1 5 s ~ m  c [0,1] with 
E,”=,% = 1. and z* E {l.~~~~m}\{i} with a,* > 0 so that 
T = E,=, aJrJ.  We have therefore by the above estimate that 

m m 

But since equality has to hold for at least one element of S ,  
this element must be zi itself and we have immediately 

Therefore 

S n d H ,  = { x i }  V U E A(uOl E ) .  

This shows that A(uo. E )  c N*(x , )  - z, and N*(x , )  is open. 
H 

It is not hard to show that for polytopes S with minimal 
representation V = {z3}J<_1<_m we have Vert(S) = V. Using 
the above lemma, we can now give immediately the following 
corollary (compare also Corollary 1). 

Corollary 3: Let V = {.zj}1<_3<_m be a minimal represen- 
tation of the polytope S. Then 

Example 5: Let S = [-1, l]”, f(x) = z+Wx+b. Suppose 
that W and b satisfy condition (S) given in Example 3. Then 
Vert(S) c Equi*(S) (This is a result of Hui and Zak from 
[7]). We have shown in Example 3 that condition (S) is 
necessary. 

To show this assertion recall condition ( S )  
n 

w,, > Ib,I + IwZJI v i  E { l , . . . , n j .  ( S )  

We have V = E (see Example 3). Now assume that ( f (e)  - 
e),* = 0 for some e E Vert(5’) and i” E ( l , . . . , m }  . But 
then we have 

3 = 1 , 3 # ~  

contradicting condition (5’). Thus the support function h is 
differentiable at any e E Vert(S) with (see Example 3) 

Vh(f (e )  - e )  
= Vh(b + We)  

We now claim that the last expression is equal to e. Note first 
that by the triangle inequality 

n n 

Now, if e, = 1, we have by condition (S) and the left part 
of the above inequality 

and if e; = -1, we multiply condition (S) by (-1) and use 
the right part of the above inequality to obtain 

n 

w,,ep + b, + wZ3eJ 
f(.r,) E N * ( z , )  + x, E Equi*(S). 

Also, a sufficient condition for Vert( S) c Equi* (S) is 
This proves the claim and we have 

f(G) E “(x;) v i  E { l , . . ’ , m }  . (Ai )  
Vh(f(e) - e )  = F: V e E Vert(S) 

Proofi This is clear by Theorem 6 and Lemma 3. 
Corollary 4: If h is differentiable at f(z,) - 5 ,  for all 

i E (1 :... m},  then 

V h ( f ( z ; )  -xi) =zz v i  E { I , .  . . ,m}  
3 Vert (5’) c Equi* (S). 

Proofi This is Corollary 2 with Corollary 3. 
A demonstration of the practicality of condition ( A i )  fol- 

lows. 

and therefore Vert (5’) c Equi* (S) by Corollary 4. 
Our last goal is now to give explicit conditions on the matrix 

W such that Vert(S) c Equi(S) or Vert(S) C Equi*(S) is 
true if S is a polytope and if f(x) = x + Wz. To find such 
conditions, we first need to compute the support function of 
S in the case when S is a polytope. 

Lemma 4: Let V = { z z ) l ~ i < m  be a minimal representa- 
tion of the polytope S. Then 

h(u) = max ( z ; , ~ )  V U E ‘FI. 
l< i<m 
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14.3 

1.21 

-12.1 

-14.52 

-14.3 

-1.21 

Proof: A simple calculation shows that for U E 'FI 

h(U) = sup(s,u) 
S E S  

Fig. 2. Illustration of our approach. 

Proof: Corollary 5. 

v. APPLICATION TO ASSOCIATIVE MEMORY 

We now propose an approach to attack the gray scale 
problem mentioned in the introduction. We have to assume 
that at least one pixel (or coordinate) attains the maximum 
or minimum possible values. This assumption ensures that all 
desired equilibrium points are on the boundary of a convex set. 

To illustrate our approach, consider the case of only two 
pixels. If the pixels can only be on or off, we have four 
possible values: (1, l), (1. -1). (-1, -1), and (-1, l )  [see 
Fig. 2(a)]. Suppose we now desire an intermediate value zero. 
Then, with our assumption, there are eight possible values: 
(0, l), (1, 11, (1, O), (1, -1). (0, -1). (-1, -I) ,  ( - L O ) ,  and 
( -1 , l )  [see Fig. 2(b)]. These are not all vertices and so we 
perturb the nonvertices to obtain a regular polytope with eight 
sides [see Fig. 2(c)]. Our theory now applies, and we can find 
suitable W such that the vertices are stable equilibrium points. 

The same idea applies when there are more pixels with 
more intermediate values. We next give a numerical example 

= max (z , ,u)  5 h(u).  
1<2<m 

Thus it follows that h(u)  = maxl<i lm(z i .  U ) .  

With Lemma 4 we can now rewrite the conditions given in 

Corollary 5: Consider the conditions: 
the last section. This is done in the following: 

to illustrate our idea. 
Example 6: Let Then condition ( A )  is equivalent to Vert(S) c Equi(S) and 

condition ( A ; )  implies Vert ( S )  c Equi' (S). 

Finally, let us consider linear functions of the form f(z) = 
5 + W z  where W is a linear operator on 'FI. In this case we 

Corollary 6: Assume f (z)  = z + Wz.  Then conditions 

Proofi Lemma 4 with Corollary 1 and Corollary 3. z1  = (,4). 5 2  = (;), z3 = (lt), 
z4 = (:l). 5 5  = (-;.J z5 = (It), 

x=( 1.1 1 0 -1 -1.1 -1 0 1 

have immediately from the above corollary: 

( A )  and ( A ; )  have the form 2 7  = (-:'I). 2 8  = (y') 
(z j .Wz,)  = max (zi.Wzj) V j  E { l , . . . . m }  . ( A )  

( z J . W x j ) >  max (x i .Wzj)  V j  E (1 :.., m}. 
i E ( 1  :...m} 

i E  { l;. . ,m}\{j} 

be the vertices of a regular polytope and let 

0 1 1.1 1 0 -1 -1.1 -1 

( A ; )  

14.3 

El 
1.21 -12.1 - 14.52 -14.3 -1.21 

-14.3 

-14.52 

12.1 

0 14.3 -14.3 

-1.21 

-26 0 

14.3 12.1 

122 
-14.3 -12.1 

0 12.1 

- 1.21 

-14.3 

12.1 0 -12.1 -22 

-12.1 - 14.3 

- 26 

12.1 14.3 

El 
1.21 

0 14.3 14.3 0 

114.52 I -14.3 

0 

-14.52 

-12.1 

-12.1 1.21 14.3 12.1 

122 - 22 -12.1 0 12.1 
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be the matrix whose columns are 5 1 ,  . . . ,xg. With [6]  A. Hertz, J. Krogh, and R. Palmer, Introduction to the Theory of Neural 
Computation. 

[7] Hui, S.  and iak, S., “Dynamical analysis of the BSB neural model,” 
IEEE Trans. Neural Networks, vol. 3, pp. 86-94, 1992. 

[8] S. Lay, Convex Sets and their Applications. New York: Wiley, 1982. 
[9] W. Roberts and D. Varberg, Convex Functions. 

1973. 

Redwood City, CA: Addison-Wesley, 1991. 

= (Y :2) 
New York Academic, 

we can compute X T W X  to be the matrix shown at the bottom 
of the preceding page. We see that condition [lo] J. Weidmann, Linear Operators in Hilbert Spaces. New York: 

[ l l ]  N. Young, An Introduction to Hilbert Space. Cambridge: Cambridge 
Springer-Verlag, 1980. 

University Press, 1988. 
(.rj* ivcrl) > max 

zg{ 1,....m}\{ j )  
( x i ,  Wz,) v j E { 1, . . . , m} 

(-4:) 
’ r ’  

of Corollary 6 is satisfied. Therefore, all vertices are stable 
w equilibrium points of our system. 

VI. CONCLUSION 
We studied the BSB model on general convex bodies. 

We gave necessary and sufficient conditions for vertices to 
be equilibrium points and sufficient conditions for vertices 
to be stable equilibrium points in the generalized system. 
These results can be used in the study of associative memory 
problems as shown in Section V, where we proposed an 
approach to allow a gray scale in the pixels. The results here 
also contain as special cases the main results in [3] and [7]. 
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