2,903 research outputs found

    On choice of preconditioner for minimum residual methods for nonsymmetric matrices

    Get PDF
    Existing convergence bounds for Krylov subspace methods such as GMRES for nonsymmetric linear systems give little mathematical guidance for the choice of preconditioner. Here, we establish a desirable mathematical property of a preconditioner which guarantees that convergence of a minimum residual method will essentially depend only on the eigenvalues of the preconditioned system, as is true in the symmetric case. Our theory covers only a subset of nonsymmetric coefficient matrices but computations indicate that it might be more generally applicable

    A Bramble-Pasciak conjugate gradient method for discrete Stokes equations with random viscosity

    Full text link
    We study the iterative solution of linear systems of equations arising from stochastic Galerkin finite element discretizations of saddle point problems. We focus on the Stokes model with random data parametrized by uniformly distributed random variables and discuss well-posedness of the variational formulations. We introduce a Bramble-Pasciak conjugate gradient method as a linear solver. It builds on a non-standard inner product associated with a block triangular preconditioner. The block triangular structure enables more sophisticated preconditioners than the block diagonal structure usually applied in MINRES methods. We show how the existence requirements of a conjugate gradient method can be met in our setting. We analyze the performance of the solvers depending on relevant physical and numerical parameters by means of eigenvalue estimates. For this purpose, we derive bounds for the eigenvalues of the relevant preconditioned sub-matrices. We illustrate our findings using the flow in a driven cavity as a numerical test case, where the viscosity is given by a truncated Karhunen-Lo\`eve expansion of a random field. In this example, a Bramble-Pasciak conjugate gradient method with block triangular preconditioner outperforms a MINRES method with block diagonal preconditioner in terms of iteration numbers.Comment: 19 pages, 1 figure, submitted to SIAM JU

    Natural preconditioners for saddle point systems

    Get PDF
    The solution of quadratic or locally quadratic extremum problems subject to linear(ized) constraints gives rise to linear systems in saddle point form. This is true whether in the continuous or discrete setting, so saddle point systems arising from discretization of partial differential equation problems such as those describing electromagnetic problems or incompressible flow lead to equations with this structure as does, for example, the widely used sequential quadratic programming approach to nonlinear optimization.\ud This article concerns iterative solution methods for these problems and in particular shows how the problem formulation leads to natural preconditioners which guarantee rapid convergence of the relevant iterative methods. These preconditioners are related to the original extremum problem and their effectiveness -- in terms of rapidity of convergence -- is established here via a proof of general bounds on the eigenvalues of the preconditioned saddle point matrix on which iteration convergence depends

    Conditioning analysis of block incomplete factorization and its application to elliptic equations

    Get PDF
    The paper deals with eigenvalue estimates for block incomplete fac- torization methods for symmetric matrices. First, some previous results on upper bounds for the maximum eigenvalue of preconditioned matrices are generalized to each eigenvalue. Second, upper bounds for the maximum eigenvalue of the preconditioned matrix are further estimated, which presents a substantial im- provement of earlier results. Finally, the results are used to estimate bounds for every eigenvalue of the preconditioned matrices, in particular, for the maximum eigenvalue, when a modified block incomplete factorization is used to solve an elliptic equation with variable coefficients in two dimensions. The analysis yields a new upper bound of type γh−1 for the condition number of the preconditioned matrix and shows clearly how the coefficients of the differential equation influ- ence the positive constant γ

    Stability Estimates and Structural Spectral Properties of Saddle Point Problems

    Full text link
    For a general class of saddle point problems sharp estimates for Babu\v{s}ka's inf-sup stability constants are derived in terms of the constants in Brezzi's theory. In the finite-dimensional Hermitian case more detailed spectral properties of preconditioned saddle point matrices are presented, which are helpful for the convergence analysis of common Krylov subspace methods. The theoretical results are applied to two model problems from optimal control with time-periodic state equations. Numerical experiments with the preconditioned minimal residual method are reported

    Preconditioners for state constrained optimal control problems with Moreau-Yosida penalty function

    Get PDF
    Optimal control problems with partial differential equations as constraints play an important role in many applications. The inclusion of bound constraints for the state variable poses a significant challenge for optimization methods. Our focus here is on the incorporation of the constraints via the Moreau-Yosida regularization technique. This method has been studied recently and has proven to be advantageous compared to other approaches. In this paper we develop robust preconditioners for the efficient solution of the Newton steps associated with solving the Moreau-Yosida regularized problem. Numerical results illustrate the efficiency of our approach

    Combination preconditioning of saddle point systems for positive definiteness

    Get PDF
    Amongst recent contributions to preconditioning methods for saddle point systems, standard iterative methods in nonstandard inner products have been usefully employed. Krzyzanowski (Numer. Linear Algebra Appl. 2011; 18:123–140) identified a two-parameter family of preconditioners in this context and Stoll and Wathen (SIAM J. Matrix Anal. Appl. 2008; 30:582–608) introduced combination preconditioning, where two preconditioners, self-adjoint with respect to different inner products, can lead to further preconditioners and associated bilinear forms or inner products. Preconditioners that render the preconditioned saddle point matrix nonsymmetric but self-adjoint with respect to a nonstandard inner product always allow a MINRES-type method (W-PMINRES) to be applied in the relevant inner product. If the preconditioned matrix is also positive definite with respect to the inner product a more efficient CG-like method (W-PCG) can be reliably used. We establish eigenvalue expressions for Krzyzanowski preconditioners and show that for a specific choice of parameters, although the Krzyzanowski preconditioned saddle point matrix is self-adjoint with respect to an inner product, it is never positive definite. We provide explicit expressions for the combination of certain preconditioners and prove the rather counterintuitive result that the combination of two specific preconditioners for which only W-PMINRES can be reliably used leads to a preconditioner for which, for certain parameter choices, W-PCG is reliably applicable. That is, combining two indefinite preconditioners can lead to a positive definite preconditioner. This combination preconditioner outperforms either of the two preconditioners from which it is formed for a number of test problems
    corecore