10 research outputs found

    Energy efficient implementation of multi-phase quasi-adiabatic Cyclic Redundancy Check in near field communication

    Get PDF
    Ultra-low power operation in power-limited portable devices (e.g. cell phone and smartcard) is paramount. Existing conventional CMOS consume high energy. The adiabatic logic technique has the potential of rendering energy efficient operation. In this paper, a multi-phase quasi-adiabatic implementation of 16-bit Cyclic Redundancy Check (CRC) is proposed, compliant with the ISO/IEC-14443 standard for contactless smart cards. In terms of a number of CRC bits, the design is scalable and all generator polynomials and initial load values can be accommodated. The CRC design is used as a vehicle to evaluate a range of adiabatic logic styles and power-clock strategies. The effects of voltage scaling and variations in Process-Voltage-Temperature (PVT) are also investigated providing an insight into the robustness of adiabatic logic styles. PFAL and IECRL designs using a 4-phase power-clock are shown to be both the most energy-efficient and robust designs

    Adiabatic Approach for Low-Power Passive Near Field Communication Systems

    Get PDF
    This thesis tackles the need of ultra-low power electronics in the power limited passive Near Field Communication (NFC) systems. One of the techniques that has proven the potential of delivering low power operation is the Adiabatic Logic Technique. However, the low power benefits of the adiabatic circuits come with the challenges due to the absence of single opinion on the most energy efficient adiabatic logic family which constitute appropriate trade-offs between computation time, area and complexity based on the circuit and the power-clocking schemes. Therefore, five energy efficient adiabatic logic families working in single-phase, 2-phase and 4-phase power-clocking schemes were chosen. Since flip-flops are the basic building blocks of any sequential circuit and the existing flip-flops are MUX-based (having more transistors) design, therefore a novel single-phase, 2-phase and 4-phase reset based flip-flops were proposed. The performance of the multi-phase adiabatic families was evaluated and compared based on the design examples such as 2-bit ring counter, 3-bit Up-Down counter and 16-bit Cyclic Redundancy Check (CRC) circuit (benchmark circuit) based on ISO 14443-3A standard. Several trade-offs, design rules, and an appropriate range for the supply voltage scaling for multi-phase adiabatic logic are proposed. Furthermore, based on the NFC standard (ISO 14443-3A), data is frequently encoded using Manchester coding technique before transmitting it to the reader. Therefore, if Manchester encoding can be implemented using adiabatic logic technique, energy benefits are expected. However, adiabatic implementation of Manchester encoding presents a challenge. Therefore, a novel method for implementing Manchester encoding using adiabatic logic is proposed overcoming the challenges arising due to the AC power-clock. Other challenges that come with the dynamic nature of the adiabatic gates and the complexity of the 4-phase power-clocking scheme is in synchronizing the power-clock v phases and the time spent in designing, validation and debugging of errors. This requires a specific modelling approach to describe the adiabatic logic behaviour at the higher level of abstraction. However, describing adiabatic logic behaviour using Hardware Description Languages (HDLs) is a challenging problem due to the requirement of modelling the AC power-clock and the dual-rail inputs and outputs. Therefore, a VHDL-based modelling approach for the 4-phase adiabatic logic technique is developed for functional simulation, precise timing analysis and as an improvement over the previously described approaches

    A Charge-Recycling Scheme and Ultra Low Voltage Self-Startup Charge Pump for Highly Energy Efficient Mixed Signal Systems-On-A-Chip

    Get PDF
    The advent of battery operated sensor-based electronic systems has provided a pressing need to design energy-efficient, ultra-low power integrated circuits as a means to improve the battery lifetime. This dissertation describes a scheme to lower the power requirement of a digital circuit through the use of charge-recycling and dynamic supply-voltage scaling techniques. The novel charge-recycling scheme proposed in this research demonstrates the feasibility of operating digital circuits using the charge scavenged from the leakage and dynamic load currents inherent to digital design. The proposed scheme efficiently gathers the “ground-bound” charge into storage capacitor banks. This reclaimed charge is then subsequently recycled to power the source digital circuit. The charge-recycling methodology has been implemented on a 12-bit Gray-code counter operating at frequencies of less than 50 MHz. The circuit has been designed in a 90-nm process and measurement results reveal more than 41% reduction in the average energy consumption of the counter. The total energy savings including the power consumed for the generation of control signals aggregates to an average of 23%. The proposed methodology can be applied to an existing digital path without any design change to the circuit but with only small loss to the performance. Potential applications of this scheme are described, specifically in wide-temperature dynamic power reduction and as a source for energy harvesters. The second part of this dissertation deals with the design and development of a self-starting, ultra-low voltage, switched-capacitor (SC) DC-DC converter that is essential to an energy harvesting system. The proposed charge-pump based SC-converter operates from 125-mV input and thus enables battery-less operation in ultra-low voltage energy harvesters. The charge pump does not require any external components or expensive post-fabrication processing to enable low-voltage operation. This design has been implemented in a 130-nm CMOS process. While the proposed charge pump provides significant efficiency enhancement in energy harvesters, it can also be incorporated within charge recycling systems to facilitate adaptable charge-recycling levels. In total, this dissertation provides key components needed for highly energy-efficient mixed signal systems-on-a-chip

    Advanced modelling and design considerations for interconnects in ultra- low power digital system

    Get PDF
    PhD ThesisAs Very Large Scale Integration (VLSI) is progressing in very Deep submicron (DSM) regime without decreasing chip area, the importance of global interconnects increases but at the cost of performance and power consumption for advanced System-on- Chip (SoC)s. However, the growing complexity of interconnects behaviour presents a challenge for their adequate modelling, whereby conventional circuit theoretic approaches cannot provide sufficient accuracy. During the last decades, fractional differential calculus has been successfully applied to modelling certain classes of dynamical systems while keeping complexity of the models under acceptable bounds. For example, fractional calculus can help capturing inherent physical effects in electrical networks in a compact form, without following conventional assumptions about linearization of non-linear interconnect components. This thesis tackles the problem of interconnect modelling in its generality to simulate a wide range of interconnection configurations, its capacity to emulate irregular circuit elements and its simplicity in the form of responsible approximation. This includes modelling and analysing interconnections considering their irregular components to add more flexibility and freedom for design. The aim is to achieve the simplest adaptable model with the highest possible accuracy. Thus, the proposed model can be used for fast computer simulation of interconnection behaviour. In addition, this thesis proposes a low power circuit for driving a global interconnect at voltages close to the noise level. As a result, the proposed circuit demonstrates a promising solution to address the energy and performance issues related to scaling effects on interconnects along with soft errors that can be caused by neutron particles. The major contributions of this thesis are twofold. Firstly, in order to address Ultra-Low Power (ULP) design limitations, a novel driver scheme has been configured. This scheme uses a bootstrap circuitry which boosts the driver’s ability to drive a long interconnect with an important feedback feature in it. Hence, this approach achieves two objectives: improving performance and mitigating power consumption. Those achievements are essential in designing ULP circuits along with occupying a smaller footprint and being immune to noise, observed in this design as well. These have been verified by comparing the proposed design to the previous and traditional circuits using a simulation tool. Additionally, the boosting based approach has been shown beneficial in mitigating the effects of single event upset (SEU)s, which are known to affect DSM circuits working under low voltages. Secondly, the CMOS circuit driving a distributed RLC load has been brought in its analysis into the fractional order domain. This model will make the on-chip interconnect structure easy to adjust by including the effect of fractional orders on the interconnect timing, which has not been considered before. A second-order model for the transfer functions of the proposed general structure is derived, keeping the complexity associated with second-order models for this class of circuits at a minimum. The approach here attaches an important trait of robustness to the circuit design procedure; namely, by simply adjusting the fractional order we can avoid modifying the circuit components. This can also be used to optimise the estimation of the system’s delay for a broad range of frequencies, particularly at the beginning of the design flow, when computational speed is of paramount importance.Iraqi Ministry of Higher Education and Scientific Researc

    A Low Power FinFET Charge Pump For Energy Harvesting Applications

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)With the growing popularity and use of devices under the great umbrella that is the Internet of Things (IoT), the need for devices that are smaller, faster, cheaper and require less power is at an all time high with no intentions of slowing down. This is why many current research efforts are very focused on energy harvesting. Energy harvesting is the process of storing energy from external and ambient sources and delivering a small amount of power to low power IoT devices such as wireless sensors or wearable electronics. A charge pumps is a circuit used to convert a power supply to a higher or lower voltage depending on the specific application. Charge pumps are generally seen in memory design as a verity of power supplies are required for the newer memory technologies. Charge pumps can be also be designed for low voltage operation and can convert a smaller energy harvesting voltage level output to one that may be needed for the IoT device to operate. In this work, an integrated FinFET (Field Effect Transistor) charge pump for low power energy harvesting applications is proposed. The design and analysis of this system was conducted using Cadence Virtuoso Schematic L-Editing, Analog Design Environment and Spectre Circuit Simulator tools using the 7nm FinFETs from the ASAP7 7nm PDK. The research conducted here takes advantage of some inherent characteristics that are present in FinFET technologies, including low body effects, and faster switching speeds, lower threshold voltage and lower power consumption. The lower threshold voltage of the FinFET is key to get great performance at lower supply voltages. The charge pump in this work is designed to pump a 150mV power supply, generated from an energy harvester, to a regulated 650mV, while supplying 1uA of load current, with a 20mV voltage ripple in steady state (SS) operation. At these conditions, the systems power consumption is 4.85uW and is 31.76% efficient. Under no loading conditions, the charge pump reaches SS operation in 50us, giving it the fastest rise time of the compared state of the art efforts mentioned in this work. The minimum power supply voltage for the system to function is 93mV where it gives a regulated output voltage of $25mV. FinFET technology continues to be a very popular design choice and even though it has been in production since Intel's Ivy-Bridge processor in 2012, it seems that very few efforts have been made to use the advantages of FinFETs for charge pump design. This work shows though simulation that FinFET charge pumps can match the performance of charge pumps implemented in other technologies and should be considered for low power designs such as energy harvesting

    Asynchrobatic logic for low-power VLSI design

    Get PDF
    In this work, Asynchrobatic Logic is presented. It is a novel low-power design style that combines the energy saving benefits of asynchronous logic and adiabatic logic to produce systems whose power dissipation is reduced in several different ways. The term “Asynchrobatic” is a new word that can be used to describe these types of systems, and is derived from the concatenation and shortening of Asynchronous, Adiabatic Logic. This thesis introduces the concept and theory behind Asynchrobatic Logic. It first provides an introductory background to both underlying parent technologies (asynchronous logic and adiabatic logic). The background material continues with an explanation of a number of possible methods for designing complex data-path cells used in the adiabatic data-path. Asynchrobatic Logic is then introduced as a comparison between asynchronous and Asynchrobatic buffer chains, showing that for wide systems, it operates more efficiently. Two more-complex sub-systems are presented, firstly a layout implementation of the substitution boxes from the Twofish encryption algorithm, and secondly a front-end only (without parasitic capacitances, resistances) simulation that demonstrates a functional system capable of calculating the Greatest Common Denominator (GCD) of a pair of 16-bit unsigned integers, which under typical conditions on a 0.35ÎŒm process, executed a test vector requiring twenty-four iterations in 2.067ÎŒs with a power consumption of 3.257nW. These examples show that the concept of Asynchrobatic Logic has the potential to be used in real-world applications, and is not just theory without application. At the time of its first publication in 2004, Asynchrobatic Logic was both unique and ground-breaking, as this was the first time that consideration had been given to operating large-scale adiabatic logic in an asynchronous fashion, and the first time that Asynchronous Stepwise Charging (ASWC) had been used to drive an adiabatic data-path

    Power management systems based on switched-capacitor DC-DC converter for low-power wearable applications

    Get PDF
    The highly efficient ultra-low-power management unit is essential in powering low-power wearable electronics. Such devices are powered by a single input source, either by a battery or with the help of a renewable energy source. Thus, there is a demand for an energy conversion unit, in this case, a DC-DC converter, which can perform either step-up or step-down conversions to provide the required voltage at the load. Energy scavenging with a boost converter is an intriguing choice since it removes the necessity of bulky batteries and considerably extends the battery life. Wearable devices are typically powered by a monolithic battery. The commonly available battery such as Alkaline or Lithium-ion, degrade over time due to their life spans as it is limited by the number of charge cycles- which depend highly on the environmental and loading condition. Thus, once it reaches the maximum number of life cycles, the battery needs to be replaced. The operation of the wearable devices is limited by usable duration, which depends on the energy density of the battery. Once the stored energy is depleted, the operation of wearable devices is also affected, and hence it needs to be recharged. The energy harvesters- which gather the available energy from the surroundings, however, have no limitation on operating life. The application can become battery-less given that harvestable energy is sufficiently powering the low-power devices. Although the energy harvester may not completely replace the battery source, it ensures the maximum duration of use and assists to become autonomous and self-sustain devices. The photovoltaic (PV) cell is a promising candidate as a hypothetical input supply source among the energy harvesters due to its smaller area and high power density over other harvesters. Solar energy use PV harvester can convert ambient light energy into electrical energy and keep it in the storage device. The harvested output of PV cannot directly connect to wearable loads for two main reasons. Depending on the incoming light, the harvested current result in varying open-circuit voltage. It requires the power management circuit to deal with unregulated input variation. Second, depending on the PV cell's material type and an effective area, the I-V characteristic's performance varies, resulting in a variation of the output power. There are several works of maximum power point tracking (MPPT) methods that allow the solar energy harvester to achieve optimal harvested power. Therefore, the harvested power depends on the size and usually small area cell is sufficient for micro-watt loads low-powered applications. The available harvested voltage, however, is generally very low-voltage range between 0.4-0.6 V. The voltage ratings of electronics in standard wearable applications operate in 1.8-3 V voltages as described in introduction’s application example section. It is higher than the supply source can offer. The overcome the mismatch voltage between source and supply circuit, a DC-DC boost converter is necessary. The switch-mode converters are favoured over the linear converters due to their highly efficient and small area overhead. The inductive converter in the switch-mode converter is common due to its high-efficiency performance. However, the integration of the inductor in the miniaturised integrated on-chip design tends to be bulky. Therefore, the switched-capacitor approach DC-DC converters will be explored in this research. In the switched-capacitor converter universe, there is plenty of work for single-output designs for various topologies. Most converters are reconfigurable to the different DC voltage levels apart from Dickson and cross-coupled charge pump topologies due to their boosting power stage architecture through a number of stages. However, existing multi-output converters are limited to the fixed gain ratio. This work explores the reconfigurable dual-output converter with adjustable gain to compromise the research gap. The thesis's primary focus is to present the inductor-less, switched-capacitor-based DC-DC converter power management system (PMS) supplied by a varying input of PV energy harvester input source. The PMS should deliver highly efficient regulated voltage conversion ratio (VCR) outputs to low-power wearable electronic devices that constitute multi-function building blocks

    Architecture FPGA améliorée et flot de conception pour une reconfiguration matérielle en ligne efficace

    Get PDF
    The self-reconfiguration capabilities of modern FPGA architectures pave the way for dynamic applications able to adapt to transient events. The CAD flows of modern architectures are nowadays mature but limited by the constraints induced by the complexity of FPGA circuits. In this thesis, multiple contributions are developed to propose an FPGA architecture supporting the dynamic placement of hardware tasks. First, an intermediate representation of these tasks configuration data, independent from their final position, is presented. This representation allows to compress the task data up to 11x with regard to its conventional raw counterpart. An accompanying CAD flow, based on state-of-the-art tools, is proposed to generate relocatable tasks from a high-level description. Then, the online behavior of this mechanism is studied. Two algorithms allowing to decode and create in real-time the conventional bit-stream are described. In addition, an enhancement of the FPGA interconnection network is proposedto increase the placement flexibility of heterogeneous tasks, at the cost of a 10% increase in average of the critical path delay. Eventually, a configurable substitute to the configuration memory found in FPGAs is studied to ease their partial reconfiguration.Les capacités d'auto-reconfiguration des architectures FPGA modernes ouvrent la voie à des applications dynamiques capables d'adapter leur fonctionnement pour répondre à des évÚnements ponctuels. Les flots de reconfiguration des architectures commerciales sont aujourd'hui aboutis mais limités par des contraintes inhérentes à la complexité de ces circuits. Dans cette thÚse, plusieurs contributions sont avancées afin de proposer une architecture FPGA reconfigurable permettant le placement dynamique de tùches matérielles. Dans un premier temps, une représentation intermédiaire des données de configuration de ces tùches, indépendante de leur positionnement final, est présentée. Cette représentation permet notamment d'atteindre des taux de compression allant jusqu'à 11x par rapport à la représentation brute d'une tùche. Un flot de conception basé sur des outils de l'état de l'art accompagne cette représentation et génÚre des tùches relogeables à partir d'une description haut-niveau. Ensuite, le comportement en ligne de ce mécanisme est étudié. Deux algorithmes permettant le décodage de ces tùches et la génération en temps-réel des données de configuration propres à l'architectures son décrits. Par ailleurs, une amélioration du réseau d'interconnexion d'une architecture FPGA est proposée pour accroßtre la flexibilité du placement de tùches hétérogÚnes, avec une augmentation de 10% en moyenne du délai du chemin critique. Enfin, une alternative programmable aux mémoires de configuration de ces circuits est étudiée pour faciliter leur reconfiguration partielle

    ESSE 2017. Proceedings of the International Conference on Environmental Science and Sustainable Energy

    Get PDF
    Environmental science is an interdisciplinary academic field that integrates physical-, biological-, and information sciences to study and solve environmental problems. ESSE - The International Conference on Environmental Science and Sustainable Energy provides a platform for experts, professionals, and researchers to share updated information and stimulate the communication with each other. In 2017 it was held in Suzhou, China June 23-25, 2017

    The Sixth Annual Workshop on Space Operations Applications and Research (SOAR 1992)

    Get PDF
    This document contains papers presented at the Space Operations, Applications, and Research Symposium (SOAR) hosted by the U.S. Air Force (USAF) on 4-6 Aug. 1992 and held at the JSC Gilruth Recreation Center. The symposium was cosponsored by the Air Force Material Command and by NASA/JSC. Key technical areas covered during the symposium were robotic and telepresence, automation and intelligent systems, human factors, life sciences, and space maintenance and servicing. The SOAR differed from most other conferences in that it was concerned with Government-sponsored research and development relevant to aerospace operations. The symposium's proceedings include papers covering various disciplines presented by experts from NASA, the USAF, universities, and industry
    corecore