333 research outputs found

    The Reactome BioMart

    Get PDF
    Reactome is an open source, expert-authored, manually curated and peer-reviewed database of reactions, pathways and biological processes. We provide an intuitive web-based user interface to pathway knowledge and a suite of data analysis tools. The Reactome BioMart provides biologists and bioinformaticians with a single web interface for performing simple or elaborate queries of the Reactome database, aggregating data from different sources and providing an opportunity to integrate experimental and computational results with information relating to biological pathways. Database URL: http://www.reactome.org

    BioMart – biological queries made easy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biologists need to perform complex queries, often across a variety of databases. Typically, each data resource provides an advanced query interface, each of which must be learnt by the biologist before they can begin to query them. Frequently, more than one data source is required and for high-throughput analysis, cutting and pasting results between websites is certainly very time consuming. Therefore, many groups rely on local bioinformatics support to process queries by accessing the resource's programmatic interfaces if they exist. This is not an efficient solution in terms of cost and time. Instead, it would be better if the biologist only had to learn one generic interface. BioMart provides such a solution.</p> <p>Results</p> <p>BioMart enables scientists to perform advanced querying of biological data sources through a single web interface. The power of the system comes from integrated querying of data sources regardless of their geographical locations. Once these queries have been defined, they may be automated with its "scripting at the click of a button" functionality. BioMart's capabilities are extended by integration with several widely used software packages such as BioConductor, DAS, Galaxy, Cytoscape, Taverna. In this paper, we describe all aspects of BioMart from a user's perspective and demonstrate how it can be used to solve real biological use cases such as SNP selection for candidate gene screening or annotation of microarray results.</p> <p>Conclusion</p> <p>BioMart is an easy to use, generic and scalable system and therefore, has become an integral part of large data resources including Ensembl, UniProt, HapMap, Wormbase, Gramene, Dictybase, PRIDE, MSD and Reactome. BioMart is freely accessible to use at <url>http://www.biomart.org</url>.</p

    The BioMart community portal: an innovative alternative to large, centralized data repositories.

    Get PDF
    The BioMart Community Portal (www.biomart.org) is a community-driven effort to provide a unified interface to biomedical databases that are distributed worldwide. The portal provides access to numerous database projects supported by 30 scientific organizations. It includes over 800 different biological datasets spanning genomics, proteomics, model organisms, cancer data, ontology information and more. All resources available through the portal are independently administered and funded by their host organizations. The BioMart data federation technology provides a unified interface to all the available data. The latest version of the portal comes with many new databases that have been created by our ever-growing community. It also comes with better support and extensibility for data analysis and visualization tools. A new addition to our toolbox, the enrichment analysis tool is now accessible through graphical and web service interface. The BioMart community portal averages over one million requests per day. Building on this level of service and the wealth of information that has become available, the BioMart Community Portal has introduced a new, more scalable and cheaper alternative to the large data stores maintained by specialized organizations

    Large-scale discovery of male reproductive tract-specific genes through analysis of RNA-seq datasets

    Get PDF
    Robertson, M.J., Kent, K., Tharp, N. et al. Large-scale discovery of male reproductive tract-specific genes through analysis of RNA-seq datasets. BMC Biol 18, 103 (2020). https://doi.org/10.1186/s12915-020-00826-

    VGLL2-NCOA2 leverages developmental programs for pediatric sarcomagenesis

    Get PDF
    Clinical sequencing efforts are rapidly identifying sarcoma gene fusions that lack functional validation. An example is the fusion of transcriptional coactivators, VGLL2-NCOA2, found in infantile rhabdomyosarcoma. To delineate VGLL2-NCOA2 tumorigenic mechanisms and identify therapeutic vulnerabilities, we implement a cross-species comparative oncology approach with zebrafish, mouse allograft, and patient samples. We find that VGLL2-NCOA2 is sufficient to generate mesenchymal tumors that display features of immature skeletal muscle and recapitulate the human disease. A subset of VGLL2-NCOA2 zebrafish tumors transcriptionally cluster with embryonic somitogenesis and identify VGLL2-NCOA2 developmental programs, including a RAS family GTPase, ARF6. In VGLL2-NCOA2 zebrafish, mouse, and patient tumors, ARF6 is highly expressed. ARF6 knockout suppresses VGLL2-NCOA2 oncogenic activity in cell culture, and, more broadly, ARF6 is overexpressed in adult and pediatric sarcomas. Our data indicate that VGLL2-NCOA2 is an oncogene that leverages developmental programs for tumorigenesis and that reactivation or persistence of ARF6 could represent a therapeutic opportunity

    Transcriptome-wide association study and eQTL colocalization identify potentially causal genes responsible for bone mineral density GWAS associations

    Get PDF
    Genome-wide association studies (GWASs) for bone mineral density (BMD) have identified over 1,100 associations to date. However, identifying causal genes implicated by such studies has been challenging. Recent advances in the development of transcriptome reference datasets and computational approaches such as transcriptome-wide association studies (TWASs) and expression quantitative trait loci (eQTL) colocalization have proven to be informative in identifying putatively causal genes underlying GWAS associations. Here, we used TWAS/eQTL colocalization in conjunction with transcriptomic data from the Genotype-Tissue Expression (GTEx) project to identify potentially causal genes for the largest BMD GWAS performed to date. Using this approach, we identified 512 genes as significant (Bonferroni <= 0.05) using both TWAS and eQTL colocalization. This set of genes was enriched for regulators of BMD and members of bone relevant biological processes. To investigate the significance of our findings, we selected PPP6R3, the gene with the strongest support from our analysis which was not previously implicated in the regulation of BMD, for further investigation. We observed that Ppp6r3 deletion in mice decreased BMD. In this work, we provide an updated resource of putatively causal BMD genes and demonstrate that PPP6R3 is a putatively causal BMD GWAS gene. These data increase our understanding of the genetics of BMD and provide further evidence for the utility of combined TWAS/colocalization approaches in untangling the genetics of complex traits.First author draf

    Maps of Open Chromatin Guide the Functional Follow-Up of Genome-Wide Association Signals: Application to Hematological Traits

    Get PDF
    Turning genetic discoveries identified in genome-wide association (GWA) studies into biological mechanisms is an important challenge in human genetics. Many GWA signals map outside exons, suggesting that the associated variants may lie within regulatory regions. We applied the formaldehyde-assisted isolation of regulatory elements (FAIRE) method in a megakaryocytic and an erythroblastoid cell line to map active regulatory elements at known loci associated with hematological quantitative traits, coronary artery disease, and myocardial infarction. We showed that the two cell types exhibit distinct patterns of open chromatin and that cell-specific open chromatin can guide the finding of functional variants. We identified an open chromatin region at chromosome 7q22.3 in megakaryocytes but not erythroblasts, which harbors the common non-coding sequence variant rs342293 known to be associated with platelet volume and function. Resequencing of this open chromatin region in 643 individuals provided strong evidence that rs342293 is the only putative causative variant in this region. We demonstrated that the C- and G-alleles differentially bind the transcription factor EVI1 affecting PIK3CG gene expression in platelets and macrophages. A protein–protein interaction network including up- and down-regulated genes in Pik3cg knockout mice indicated that PIK3CG is associated with gene pathways with an established role in platelet membrane biogenesis and thrombus formation. Thus, rs342293 is the functional common variant at this locus; to the best of our knowledge this is the first such variant to be elucidated among the known platelet quantitative trait loci (QTLs). Our data suggested a molecular mechanism by which a non-coding GWA index SNP modulates platelet phenotype
    • …
    corecore