315 research outputs found

    Predictive Maintenance in the Production of Steel Bars: A Data-Driven Approach

    Get PDF
    The ever increasing demand for shorter production times and reduced production costs require manufacturing firms to bring down their production costs while preserving a smooth and flexible production process. To this aim, manufacturers could exploit data-driven techniques to monitor and assess equipmen’s operational state and anticipate some future failure. Sensor data acquisition, analysis, and correlation can create the equipment’s digital footprint and create awareness on it through the entire life cycle allowing the shift from time-based preventive maintenance to predictive maintenance, reducing both maintenance and production costs. In this work, a novel data analytics workflow is proposed combining the evaluation of an asset’s degradation over time with a self-assessment loop. The proposed workflow can support real-time analytics at edge devices, thus, addressing the needs of modern cyber-physical production systems for decision-making support at the edge with short response times. A prototype implementation has been evaluated in use cases related to the steel industry

    THOR: A Hybrid Recommender System for the Personalized Travel Experience

    Get PDF
    One of the travelers’ main challenges is that they have to spend a great effort to find and choose the most desired travel offer(s) among a vast list of non-categorized and non-personalized items. Recommendation systems provide an effective way to solve the problem of information overload. In this work, we design and implement “The Hybrid Offer Ranker” (THOR), a hybrid, personalized recommender system for the transportation domain. THOR assigns every traveler a unique contextual preference model built using solely their personal data, which makes the model sensitive to the user’s choices. This model is used to rank travel offers presented to each user according to their personal preferences. We reduce the recommendation problem to one of binary classification that predicts the probability with which the traveler will buy each available travel offer. Travel offers are ranked according to the computed probabilities, hence to the user’s personal preference model. Moreover, to tackle the cold start problem for new users, we apply clustering algorithms to identify groups of travelers with similar profiles and build a preference model for each group. To test the system’s performance, we generate a dataset according to some carefully designed rules. The results of the experiments show that the THOR tool is capable of learning the contextual preferences of each traveler and ranks offers starting from those that have the higher probability of being selected

    A Cloud-to-Edge Approach to Support Predictive Analytics in Robotics Industry

    Get PDF
    Data management and processing to enable predictive analytics in cyber physical systems holds the promise of creating insight over underlying processes, discovering anomalous behaviours and predicting imminent failures threatening a normal and smooth production process. In this context, proactive strategies can be adopted, as enabled by predictive analytics. Predictive analytics in turn can make a shift in traditional maintenance approaches to more effective optimising their cost and transforming maintenance from a necessary evil to a strategic business factor. Empowered by the aforementioned points, this paper discusses a novel methodology for remaining useful life (RUL) estimation enabling predictive maintenance of industrial equipment using partial knowledge over its degradation function and the parameters that are affecting it. Moreover, the design and prototype implementation of a plug-n-play end-to-end cloud architecture, supporting predictive maintenance of industrial equipment is presented integrating the aforementioned concept as a service. This is achieved by integrating edge gateways, data stores at both the edge and the cloud, and various applications, such as predictive analytics, visualization and scheduling, integrated as services in the cloud system. The proposed approach has been implemented into a prototype and tested in an industrial use case related to the maintenance of a robotic arm. Obtained results show the effectiveness and the efficiency of the proposed methodology in supporting predictive analytics in the era of Industry 4.0

    Forecasting Network Traffic: A Survey and Tutorial with Open-Source Comparative Evaluation

    Get PDF
    This paper presents a review of the literature on network traffic prediction, while also serving as a tutorial to the topic. We examine works based on autoregressive moving average models, like ARMA, ARIMA and SARIMA, as well as works based on Artifical Neural Networks approaches, such as RNN, LSTM, GRU, and CNN. In all cases, we provide a complete and self-contained presentation of the mathematical foundations of each technique, which allows the reader to get a full understanding of the operation of the different proposed methods. Further, we perform numerical experiments based on real data sets, which allows comparing the various approaches directly in terms of fitting quality and computational costs. We make our code publicly available, so that readers can readily access a wide range of forecasting tools, and possibly use them as benchmarks for more advanced solutions

    Electronic Regulation of Data Sharing and Processing Using Smart Ledger Technologies for Supply-Chain Security

    Get PDF
    Traditional centralized data storage and processing solutions manifest limitations with regards to overall operational cost and the security and auditability of data. One of the biggest issues with existing solutions is the difficulty of keeping track of who has had access to the data and how the data may have changed over its lifetime; while providing a secure and easy-to-use mechanism to share the data between different users. The ability to electronically regulate data sharing within and across different organizational entities in the supply chain (SC) is an open issue that is only addressed partially by existing legal and regulatory compliance frameworks. In this article, we present Cydon, a decentralized data management platform that executes bespoke distributed applications utilizing a novel search and retrieve algorithm leveraging metadata attributes. Cydon utilizes a smart distributed ledger to offer an immutable audit trail and transaction history for all different levels of data access and modification within a SC and for all data flows within the environment. Results suggest that Cydon provides authorized and fast access to secure distributed data, avoids single points of failure by securely distributing encrypted data across different nodes while maintains an “always-on” chain of custody

    Manufacturing as a Data-Driven Practice: Methodologies, Technologies, and Tools

    Get PDF
    n recent years, the introduction and exploitation of innovative information technologies in industrial contexts have led to the continuous growth of digital shop floor envi- ronments. The new Industry-4.0 model allows smart factories to become very advanced IT industries, generating an ever- increasing amount of valuable data. As a consequence, the neces- sity of powerful and reliable software architectures is becoming prominent along with data-driven methodologies to extract useful and hidden knowledge supporting the decision making process. This paper discusses the latest software technologies needed to collect, manage and elaborate all data generated through innovative IoT architectures deployed over the production line, with the aim of extracting useful knowledge for the orchestration of high-level control services that can generate added business value. This survey covers the entire data life-cycle in manufacturing environments, discussing key functional and methodological aspects along with a rich and properly classified set of technologies and tools, useful to add intelligence to data-driven services. Therefore, it serves both as a first guided step towards the rich landscape of literature for readers approaching this field, and as a global yet detailed overview of the current state-of-the-art in the Industry 4.0 domain for experts. As a case study, we discuss in detail the deployment of the proposed solutions for two research project demonstrators, showing their ability to mitigate manufacturing line interruptions and reduce the corresponding impacts and costs

    Bio-inspired computation for big data fusion, storage, processing, learning and visualization: state of the art and future directions

    Get PDF
    This overview gravitates on research achievements that have recently emerged from the confluence between Big Data technologies and bio-inspired computation. A manifold of reasons can be identified for the profitable synergy between these two paradigms, all rooted on the adaptability, intelligence and robustness that biologically inspired principles can provide to technologies aimed to manage, retrieve, fuse and process Big Data efficiently. We delve into this research field by first analyzing in depth the existing literature, with a focus on advances reported in the last few years. This prior literature analysis is complemented by an identification of the new trends and open challenges in Big Data that remain unsolved to date, and that can be effectively addressed by bio-inspired algorithms. As a second contribution, this work elaborates on how bio-inspired algorithms need to be adapted for their use in a Big Data context, in which data fusion becomes crucial as a previous step to allow processing and mining several and potentially heterogeneous data sources. This analysis allows exploring and comparing the scope and efficiency of existing approaches across different problems and domains, with the purpose of identifying new potential applications and research niches. Finally, this survey highlights open issues that remain unsolved to date in this research avenue, alongside a prescription of recommendations for future research.This work has received funding support from the Basque Government (Eusko Jaurlaritza) through the Consolidated Research Group MATHMODE (IT1294-19), EMAITEK and ELK ARTEK programs. D. Camacho also acknowledges support from the Spanish Ministry of Science and Education under PID2020-117263GB-100 grant (FightDIS), the Comunidad Autonoma de Madrid under S2018/TCS-4566 grant (CYNAMON), and the CHIST ERA 2017 BDSI PACMEL Project (PCI2019-103623, Spain)

    Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture

    Full text link
    [EN] The term "Agri-Food 4.0" is an analogy to the term Industry 4.0; coming from the concept "agriculture 4.0". Since the origins of the industrial revolution, where the steam engines started the concept of Industry 1.0 and later the use of electricity upgraded the concept to Industry 2.0, the use of technologies generated a milestone in the industry revolution by addressing the Industry 3.0 concept. Hence, Industry 4.0, it is about including and integrating the latest developments based on digital technologies as well as the interoperability process across them. This allows enterprises to transmit real-time information in terms behaviour and performance. Therefore, the challenge is to maintain these complex networked structures efficiently linked and organised within the use of such technologies, especially to identify and satisfy supply chain stakeholders dynamic requirements. In this context, the agriculture domain is not an exception although it possesses some specialities depending from the domain. In fact, all agricultural machinery incorporates electronic controls and has entered to the digital age, enhancing their current performance. In addition, electronics, using sensors and drones, support the data collection of several agriculture key aspects, such as weather, geographical spatialization, animals and crops behaviours, as well as the entire farm life cycle. However, the use of the right methods and methodologies for enhancing agriculture supply chains performance is still a challenge, thus the concept of Industry 4.0 has evolved and adapted to agriculture 4.0 in order analyse the behaviours and performance in this specific domain. Thus, the question mark on how agriculture 4.0 support a better supply chain decision-making process, or how can help to save time to farmer to make effective decision based on objective data, remains open. Therefore, in this survey, a review of more than hundred papers on new technologies and the new available supply chains methods are analysed and contrasted to understand the future paths of the Agri-Food domain.Authors of this publication acknowledge the contribution of the Project 691249, RUC-APS "Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems" (www.ruc-aps.eu), funded by the European Union under their funding scheme H2020-MSCARISE-2015.Lezoche, M.; Hernández, JE.; Alemany Díaz, MDM.; Panetto, H.; Kacprzyk, J. (2020). Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Computers in Industry. 117:1-15. https://doi.org/10.1016/j.compind.2020.103187S115117Ahumada, O., & Villalobos, J. R. (2009). Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research, 196(1), 1-20. doi:10.1016/j.ejor.2008.02.014Ait-Mouheb, N., Bahri, A., Thayer, B. B., Benyahia, B., Bourrié, G., Cherki, B., … Harmand, J. (2018). The reuse of reclaimed water for irrigation around the Mediterranean Rim: a step towards a more virtuous cycle? Regional Environmental Change, 18(3), 693-705. doi:10.1007/s10113-018-1292-zAli, J., & Kumar, S. (2011). Information and communication technologies (ICTs) and farmers’ decision-making across the agricultural supply chain. International Journal of Information Management, 31(2), 149-159. doi:10.1016/j.ijinfomgt.2010.07.008Alzahrani, S. M. (2018). Development of IoT mining machine for Twitter sentiment analysis: Mining in the cloud and results on the mirror. 2018 15th Learning and Technology Conference (L&T). doi:10.1109/lt.2018.8368490Amandeep, Bhattacharjee, A., Das, P., Basu, D., Roy, S., Ghosh, S., … Rana, T. K. (2017). Smart farming using IOT. 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). doi:10.1109/iemcon.2017.8117219Annosi, M. C., Brunetta, F., Monti, A., & Nati, F. (2019). Is the trend your friend? An analysis of technology 4.0 investment decisions in agricultural SMEs. Computers in Industry, 109, 59-71. doi:10.1016/j.compind.2019.04.003Baio, F. H. R. (2011). Evaluation of an auto-guidance system operating on a sugar cane harvester. Precision Agriculture, 13(1), 141-147. doi:10.1007/s11119-011-9241-6Belaud, J.-P., Prioux, N., Vialle, C., & Sablayrolles, C. (2019). Big data for agri-food 4.0: Application to sustainability management for by-products supply chain. Computers in Industry, 111, 41-50. doi:10.1016/j.compind.2019.06.006Nicolaas Bezuidenhout, C., Bodhanya, S., & Brenchley, L. (2012). An analysis of collaboration in a sugarcane production and processing supply chain. British Food Journal, 114(6), 880-895. doi:10.1108/00070701211234390Bhatt, M. R., & Buch, S. (2015). Prediction of formability for sheet metal component using artificial intelligent technique. 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN). doi:10.1109/spin.2015.7095356Birkel, H. S., & Hartmann, E. (2019). Impact of IoT challenges and risks for SCM. Supply Chain Management: An International Journal, 24(1), 39-61. doi:10.1108/scm-03-2018-0142Boehlje, M. (1999). Structural Changes in the Agricultural Industries: How Do We Measure, Analyze and Understand Them? American Journal of Agricultural Economics, 81(5), 1028-1041. doi:10.2307/1244080Bonney, L., Clark, R., Collins, R., & Fearne, A. (2007). From serendipity to sustainable competitive advantage: insights from Houston’s Farm and their journey of co‐innovation. Supply Chain Management: An International Journal, 12(6), 395-399. doi:10.1108/13598540710826326Boshkoska, B. M., Liu, S., Zhao, G., Fernandez, A., Gamboa, S., del Pino, M., … Chen, H. (2019). A decision support system for evaluation of the knowledge sharing crossing boundaries in agri-food value chains. Computers in Industry, 110, 64-80. doi:10.1016/j.compind.2019.04.012Brewster, C., Roussaki, I., Kalatzis, N., Doolin, K., & Ellis, K. (2017). IoT in Agriculture: Designing a Europe-Wide Large-Scale Pilot. IEEE Communications Magazine, 55(9), 26-33. doi:10.1109/mcom.2017.1600528Bronson, K., & Knezevic, I. (2016). Big Data in food and agriculture. Big Data & Society, 3(1), 205395171664817. doi:10.1177/2053951716648174Brown, K. (2013). Global environmental change I. Progress in Human Geography, 38(1), 107-117. doi:10.1177/0309132513498837Chilcanan, D., Navas, P., & Escobar, S. M. (2017). Expert system for remote process automation in multiplatform servers, through human machine conversation. 2017 12th Iberian Conference on Information Systems and Technologies (CISTI). doi:10.23919/cisti.2017.7975913Choi, J., In, Y., Park, C., Seok, S., Seo, H., & Kim, H. (2016). Secure IoT framework and 2D architecture for End-To-End security. The Journal of Supercomputing, 74(8), 3521-3535. doi:10.1007/s11227-016-1684-0Cohen, W. M., & Levinthal, D. A. (1990). Absorptive Capacity: A New Perspective on Learning and Innovation. Administrative Science Quarterly, 35(1), 128. doi:10.2307/2393553Dabbene, F., Gay, P., & Tortia, C. (2014). Traceability issues in food supply chain management: A review. Biosystems Engineering, 120, 65-80. doi:10.1016/j.biosystemseng.2013.09.006Del Borghi, A., Gallo, M., Strazza, C., & Del Borghi, M. (2014). An evaluation of environmental sustainability in the food industry through Life Cycle Assessment: the case study of tomato products supply chain. Journal of Cleaner Production, 78, 121-130. doi:10.1016/j.jclepro.2014.04.083Devarakonda, R., Shrestha, B., Palanisamy, G., Hook, L., Killeffer, T., Krassovski, M., … Lazer, K. (2014). OME: Tool for generating and managing metadata to handle BigData. 2014 IEEE International Conference on Big Data (Big Data). doi:10.1109/bigdata.2014.7004476Nascimento, A. F. do, Mendonça, E. de S., Leite, L. F. C., Scholberg, J., & Neves, J. C. L. (2012). Calibration and validation of models for short-term decomposition and N mineralization of plant residues in the tropics. Scientia Agricola, 69(6), 393-401. doi:10.1590/s0103-90162012000600008Dolan, C., & Humphrey, J. (2000). Governance and Trade in Fresh Vegetables: The Impact of UK Supermarkets on the African Horticulture Industry. Journal of Development Studies, 37(2), 147-176. doi:10.1080/713600072Dragincic, J., Korac, N., & Blagojevic, B. (2015). Group multi-criteria decision making (GMCDM) approach for selecting the most suitable table grape variety intended for organic viticulture. Computers and Electronics in Agriculture, 111, 194-202. doi:10.1016/j.compag.2014.12.023Dworak, V., Selbeck, J., Dammer, K.-H., Hoffmann, M., Zarezadeh, A., & Bobda, C. (2013). Strategy for the Development of a Smart NDVI Camera System for Outdoor Plant Detection and Agricultural Embedded Systems. Sensors, 13(2), 1523-1538. doi:10.3390/s130201523Eisele, M., Kiese, R., Krämer, A., & Leibundgut, C. (2001). Application of a catchment water quality model for assessment and prediction of nitrogen budgets. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(7-8), 547-551. doi:10.1016/s1464-1909(01)00048-xElsayed, K. M. F., Ismail, T., & S. Ouf, N. (2018). A Review on the Relevant Applications of Machine Learning in Agriculture. IJIREEICE, 6(8), 1-17. doi:10.17148/ijireeice.2018.681Esteso, A., Alemany, M. M. E., & Ortiz, A. (2017). Métodos y Modelos Deterministas e Inciertos para la Gestión de Cadenas de Suministro Agroalimentarias. Dirección y Organización, 41-46. doi:10.37610/dyo.v0i0.509Esteso, A., Alemany, M. M. E., & Ortiz, A. (2018). Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models. International Journal of Production Research, 56(13), 4418-4446. doi:10.1080/00207543.2018.1447706GERHARDS, R., GUTJAHR, C., WEIS, M., KELLER, M., SÖKEFELD, M., MÖHRING, J., & PIEPHO, H. P. (2011). Using precision farming technology to quantify yield effects attributed to weed competition and herbicide application. Weed Research, 52(1), 6-15. doi:10.1111/j.1365-3180.2011.00893.xGovindan, K., Jafarian, A., Khodaverdi, R., & Devika, K. (2014). Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food. International Journal of Production Economics, 152, 9-28. doi:10.1016/j.ijpe.2013.12.028Gumaste, S. S., & Kadam, A. J. (2016). Future weather prediction using genetic algorithm and FFT for smart farming. 2016 International Conference on Computing Communication Control and automation (ICCUBEA). doi:10.1109/iccubea.2016.7860028Hashem, H., & Ranc, D. (2016). A review of modeling toolbox for BigData. 2016 International Conference on Military Communications and Information Systems (ICMCIS). doi:10.1109/icmcis.2016.7496565Hefnawy, A., Elhariri, T., Cherifi, C., Robert, J., Bouras, A., Kubler, S., & Framling, K. (2017). Combined use of lifecycle management and IoT in smart cities. 2017 11th International Conference on Software, Knowledge, Information Management and Applications (SKIMA). doi:10.1109/skima.2017.8294112Hosseini, S. H., Tang, C. Y., & Jiang, J. N. (2014). Calibration of a Wind Farm Wind Speed Model With Incomplete Wind Data. IEEE Transactions on Sustainable Energy, 5(1), 343-350. doi:10.1109/tste.2013.2284490Hu, Y., Zhang, L., Li, J., & Mehrotra, S. (2016). ICME 2016 Image Recognition Grand Challenge. 2016 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). doi:10.1109/icmew.2016.7574663A. Irmak, J. W. Jones, W. D. Batchelor, S. Irmak, K. J. Boote, & J. O. Paz. (2006). Artificial Neural Network Model as a Data Analysis Tool in Precision Farming. Transactions of the ASABE, 49(6), 2027-2037. doi:10.13031/2013.22264Jeon, S., Kim, B., & Huh, J. (2017). Study on methods to determine rotor equivalent wind speed to increase prediction accuracy of wind turbine performance under wake condition. Energy for Sustainable Development, 40, 41-49. doi:10.1016/j.esd.2017.06.001Joly, P.-B. (2005). Resilient farming systems in a complex world — new issues for the governance of science and innovation. Australian Journal of Experimental Agriculture, 45(6), 617. doi:10.1071/ea03252Joshi, R., Banwet, D. K., & Shankar, R. (2009). Indian cold chain: modeling the inhibitors. British Food Journal, 111(11), 1260-1283. doi:10.1108/00070700911001077Kamata, T., Roshanianfard, A., & Noguchi, N. (2018). Heavy-weight Crop Harvesting Robot - Controlling Algorithm. IFAC-PapersOnLine, 51(17), 244-249. doi:10.1016/j.ifacol.2018.08.165Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2020). Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. International Journal of Production Economics, 219, 179-194. doi:10.1016/j.ijpe.2019.05.022Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 23-37. doi:10.1016/j.compag.2017.09.037Kelepouris, T., Pramatari, K., & Doukidis, G. (2007). RFID‐enabled traceability in the food supply chain. Industrial Management & Data Systems, 107(2), 183-200. doi:10.1108/02635570710723804Khan, S. F., & Ismail, M. Y. (2018). An Investigation into the Challenges and Opportunities Associated with the Application of Internet of Things (IoT) in the Agricultural Sector-A Review. Journal of Computer Science, 14(2), 132-143. doi:10.3844/jcssp.2018.132.143Kladivko, E. J., Helmers, M. J., Abendroth, L. J., Herzmann, D., Lal, R., Castellano, M. J., … Villamil, M. B. (2014). Standardized research protocols enable transdisciplinary research of climate variation impacts in corn production systems. Journal of Soil and Water Conservation, 69(6), 532-542. doi:10.2489/jswc.69.6.532Ko, T., Lee, J., & Ryu, D. (2018). Blockchain Technology and Manufacturing Industry: Real-Time Transparency and Cost Savings. Sustainability, 10(11), 4274. doi:10.3390/su10114274KÖK, M. S. (2009). Application of Food Safety Management Systems (ISO 22000/HACCP) in the Turkish Poultry Industry: A Comparison Based on Enterprise Size. Journal of Food Protection, 72(10), 2221-2225. doi:10.4315/0362-028x-72.10.2221Kvíz, Z., Kroulik, M., & Chyba, J. (2014). Machinery guidance systems analysis concerning pass-to-pass accuracy as a tool for efficient plant production in fields and for soil damage reduction. Plant, Soil and Environment, 60(No. 1), 36-42. doi:10.17221/622/2012-pseLamsal, K., Jones, P. C., & Thomas, B. W. (2016). Harvest logistics in agricultural systems with multiple, independent producers and no on-farm storage. Computers & Industrial Engineering, 91, 129-138. doi:10.1016/j.cie.2015.10.018Laube, P., Duckham, M., & Palaniswami, M. (2011). Deferred decentralized movement pattern mining for geosensor networks. International Journal of Geographical Information Science, 25(2), 273-292. doi:10.1080/13658810903296630Li, F.-R., Gao, C.-Y., Zhao, H.-L., & Li, X.-Y. (2002). Soil conservation effectiveness and energy efficiency of alternative rotations and continuous wheat cropping in the Loess Plateau of northwest China. Agriculture, Ecosystems & Environment, 91(1-3), 101-111. doi:10.1016/s0167-8809(01)00265-1Liakos, K., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine Learning in Agriculture: A Review. Sensors, 18(8), 2674. doi:10.3390/s18082674Meichen, L., Jun, C., Xiang, Z., Lu, W., & Yongpeng, T. (2018). Dynamic obstacle detection based on multi-sensor information fusion. IFAC-PapersOnLine, 51(17), 861-865. doi:10.1016/j.ifacol.2018.08.086Louwagie, G., Northey, G., Finn, J. A., & Purvis, G. (2012). Development of indicators for assessment of the environmental impact of livestock farming in Ireland using the Agri-environmental Footprint Index. Ecological Indicators, 18, 149-162. doi:10.1016/j.ecolind.2011.11.003Luque, A., Peralta, M. E., de las Heras, A., & Córdoba, A. (2017). State of the Industry 4.0 in the Andalusian food sector. Procedia Manufacturing, 13, 1199-1205. doi:10.1016/j.promfg.2017.09.195Malhotra, S., Doja, M. ., Alam, B., & Alam, M. (2017). Bigdata analysis and comparison of bigdata analytic approches. 2017 International Conference on Computing, Communication and Automation (ICCCA). doi:10.1109/ccaa.2017.8229821Mayer, J., Gunst, L., Mäder, P., Samson, M.-F., Carcea, M., Narducci, V., … Dubois, D. (2015). «Productivity, quality and sustainability of winter wheat under long-term conventional and organic management in Switzerland». European Journal of Agronomy, 65, 27-39. doi:10.1016/j.eja.2015.01.002McGuire, S., & Sperling, L. (2013). Making seed systems more resilient to stress. Global Environmental Change, 23(3), 644-653. doi:10.1016/j.gloenvcha.2013.02.001Mekala, M. S., & Viswanathan, P. (2017). A Survey: Smart agriculture IoT with cloud computing. 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS). doi:10.1109/icmdcs.2017.8211551Mishra, S., Mishra, D., & Santra, G. H. (2016). Applications of Machine Learning Techniques in Agricultural Crop Production: A Review Paper. Indian Journal of Science and Technology, 9(38). doi:10.17485/ijst/2016/v9i38/95032Mocnej, J., Seah, W. K. G., Pekar, A., & Zolotova, I. (2018). Decentralised IoT Architecture for Efficient Resources Utilisation. IFAC-PapersOnLine, 51(6), 168-173. doi:10.1016/j.ifacol.2018.07.148Mohanraj, I., Gokul, V., Ezhilarasie, R., & Umamakeswari, A. (2017). Intelligent drip irrigation and fertigation using wireless sensor networks. 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR). doi:10.1109/tiar.2017.8273682Montecinos, J., Ouhimmou, M., Chauhan, S., & Paquet, M. (2018). Forecasting multiple waste collecting sites for the agro-food industry. Journal of Cleaner Production, 187, 932-939. doi:10.1016/j.jclepro.2018.03.127Yandun Narváez, F., Gregorio, E., Escolà, A., Rosell-Polo, J. R., Torres-Torriti, M., & Auat Cheein, F. (2018). Terrain classification using ToF sensors for the enhancement of agricultural machinery traversability. Journal of Terramechanics, 76, 1-13. doi:10.1016/j.jterra.2017.10.005Nguyen, T., ZHOU, L., Spiegler, V., Ieromonachou, P., & Lin, Y. (2018). Big data analytics in supply chain management: A state-of-the-art literature review. Computers & Operations Research, 98, 254-264. doi:10.1016/j.cor.2017.07.004Nilsson, E., Hochrainer-Stigler, S., Mochizuki, J., & Uvo, C. B. (2016). Hydro-climatic variability and agricultural production on the shores of Lake Chad. Environmental Development, 20, 15-30. doi:10.1016/j.envdev.2016.09.001Nolan, P., Paley, D. A., & Kroeger, K. (2017). Multi-UAS path planning for non-uniform data collection in precision agriculture. 2017 IEEE Aerospace Conference. doi:10.1109/aero.2017.7943794Oberholster, C., Adendorff, C., & Jonker, K. (2015). Financing Agricultural Production from a Value Chain Perspective. Outlook on Agriculture, 44(1), 49-60. doi:10.5367/oa.2015.0197Opara, L. U., & Mazaud, F. (2001). Food Traceability from Field to Plate. Outlook on Agriculture, 30(4), 239-247. doi:10.5367/000000001101293724Ott, K.-H., Aranı́bar, N., Singh, B., & Stockton, G. W. (2003). Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts. Phytochemistry, 62(6), 971-985. doi:10.1016/s0031-9422(02)00717-3Panetto, H. (2007). Towards a classification framework for interoperability of enterprise applications. International Journal of Computer Integrated Manufacturing, 20(8), 727-740. doi:10.1080/09511920600996419Paulraj, G. J. L., Francis, S. A. J., Peter, J. D., & Jebadurai, I. J. (2018). Resource-aware virtual machine migration in IoT cloud. Future Generation Computer Systems, 85, 173-183. doi:10.1016/j.future.2018.03.024Pilli, S. K., Nallathambi, B., George, S. J., & Diwanji, V. (2015). eAGROBOT — A robot for early crop disease detection using image processing. 2015 2nd International Conference on Electronics and Communication Systems (ICECS). doi:10.1109/ecs.2015.7124873Pinho, P., Dias, T., Cruz, C., Sim Tang, Y., Sutton, M. A., Martins-Loução, M.-A., … Branquinho, C. (2011). Using lichen functional diversity to assess the effects of atmospheric ammonia in Mediterranean woodlands. Journal of Applied Ecology, 48(5), 1107-1116. doi:10.1111/j.1365-2664.2011.02033.xPrathibha, S. R., Hongal, A., & Jyothi, M. P. (2017). IOT Based Monitoring System in Smart Agriculture. 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT). doi:10.1109/icraect.2017.52Reardon, T., Echeverria, R., Berdegué, J., Minten, B., Liverpool-Tasie, S., Tschirley, D., & Zilberman, D. (2019). Rapid transformation of food systems in developing regions: Highlighting the role of agricultural research & innovations. Agricultural Systems, 172, 47-59. doi:10.1016/j.agsy.2018.01.022Ribarics, P. (2016). Big Data and its impact on agriculture. Ecocycles, 2(1), 33-34. doi:10.19040/ecocycles.v2i1.54Rosell, J. R., & Sanz, R. (2012). A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Computers and Electronics in Agriculture, 81, 124-141. doi:10.1016/j.compag.2011.09.007Roshanianfard, A., Kamata, T., & Noguchi, N. (2018). Performance evaluation of harvesting robot for heavy-weight crops. IFAC-PapersOnLine, 51(17), 332-338. doi:10.1016/j.ifacol.2018.08.200Routroy, S., & Behera, A. (2017). Agriculture supply chain. Journal of Agribusiness in Developing and Emerging Economies, 7(3), 275-302. doi:10.1108/jadee-06-2016-0039Ruiz-Garcia, L., Steinberger, G., & Rothmund, M. (2010). A model and prototype implementation for tracking and tracing agricultural batch products along the food chain. Food Control, 21(2), 112-121. doi:10.1016/j.foodcont.2008.12.003Saggi, M. K., & Jain, S. (2018). A survey towards an integration of big

    Ontology based recommender system using social network data

    Get PDF
    Online Social Network (OSN) is considered a key source of information for real-time decision making. However, several constraints lead to decreasing the amount of information that a researcher can have while increasing the time of social network mining procedures. In this context, this paper proposes a new framework for sampling Online Social Network (OSN). Domain knowledge is used to define tailored strategies that can decrease the budget and time required for mining while increasing the recall. An ontology supports our filtering layer in evaluating the relatedness of nodes. Our approach demonstrates that the same mechanism can be advanced to prompt recommendations to users. Our test cases and experimental results emphasize the importance of the strategy definition step in our social miner and the application of ontologies on the knowledge graph in the domain of recommendation analysis

    Clinical Big Data and Deep Learning: Applications, Challenges, and Future Outlooks

    Get PDF
    The explosion of digital healthcare data has led to a surge of data-driven medical research based on machine learning. In recent years, as a powerful technique for big data, deep learning has gained a central position in machine learning circles for its great advantages in feature representation and pattern recognition. This article presents a comprehensive overview of studies that employ deep learning methods to deal with clinical data. Firstly, based on the analysis of the characteristics of clinical data, various types of clinical data (e.g., medical images, clinical notes, lab results, vital signs and demographic informatics) are discussed and details provided of some public clinical datasets. Secondly, a brief review of common deep learning models and their characteristics is conducted. Then, considering the wide range of clinical research and the diversity of data types, several deep learning applications for clinical data are illustrated: auxiliary diagnosis, prognosis, early warning, and other tasks. Although there are challenges involved in applying deep learning techniques to clinical data, it is still worthwhile to look forward to a promising future for deep learning applications in clinical big data in the direction of precision medicine
    corecore