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a b s t r a c t

Online Social Network (OSN) is considered a key source of information for real-time decision making.
However, several constraints lead to decreasing the amount of information that a researcher can have
while increasing the time of social network mining procedures. In this context, this paper proposes
a new framework for sampling Online Social Network (OSN). Domain knowledge is used to define
tailored strategies that can decrease the budget and time required for mining while increasing the
recall. An ontology supports our filtering layer in evaluating the relatedness of nodes. Our approach
demonstrates that the same mechanism can be advanced to prompt recommendations to users.
Our test cases and experimental results emphasize the importance of the strategy definition step
in our social miner and the application of ontologies on the knowledge graph in the domain of
recommendation analysis.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, significant attention has been spent on mining
nline Social Network (OSN) in real-time. Decision analytic meth-
ds, from marketing to emergency management, from politics
o business and management benefit of real-time or near real-
ime event processing. Event detection is for example crucial in
raffic management [1], fire control [2], TV show hosting [3], and
mart-city management systems [4,5]. In combination with other
ata sources, OSN can boost complex decision making and risk
anagement methodologies [6]. For instance, Twitter has been
ffectively exploited in many real-world incidents to commu-
icate disaster warnings and disseminate information, capture
he evolving trends, control resource consumption, or discover
ffective mitigation strategies bottom-up [7–9].
However, OSN data must be treated with proper confidence

evels. What is happening because of the Coronavirus is a lively
ase study. In fact, if during the epidemics risen before the advent
f social media, experts had to wait for a publication in an
cademic journal to know the progress of the disease outbreaks.
owadays sharing information between experts is much faster.
n the other hand, the ease with which information is published
nd the speed with which it spreads pose new challenges when

∗ Corresponding author.
E-mail address: mohamad.dabberni@unimi.it (M. Arafeh).
https://doi.org/10.1016/j.future.2020.09.030
0167-739X/© 2020 Elsevier B.V. All rights reserved.
this information is incorrect or false (e.g. fake news). The so-
called infodemics needs to be promptly dealt trying to eliminate
the noise generated by the unverified news and by the alarms
caused by the fear of contagion, spreading reliable information
in the shortest time possible. In fact, the reliability of the social
network-based event analysis depends on several factors. The
actual presence of users on the ground acting as a sensor is the
first one. In Florence, during a recent Arno river embankment
collapse caused by a water pipe disruption, as the event happened
at 6.15 AM on 25/05/2016, no relevant variation on Twitter had
been detected, simply because there were no Twitter users on the
site to comment [10]. Social media are general-purpose commu-
nication platforms, for this reason filtering the activities that are
related to the domain of analysis is crucial to avoid introducing
selection bias.

To do so, a new class of agile and cost-effective methods
and tools has been proposed to support operators in analyzing
at a deeper level and closer to real-time the huge amount of
data generated by OSN is paramount. Twitter, for example, gives
researchers a gateway providing them with billions of informa-
tion about users’ links, written contents, and community circles,
giving analytics a gateway for improving their algorithms pri-
marily in Natural Language Processing [11], Link Prediction [12],
Community Detection [13] and Sentiment Analysis [14]. However,
such methods require a relevant amount of data to be processed
that impacts on the timeliness of the result provided as well as
the resources needed.

https://doi.org/10.1016/j.future.2020.09.030
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2020.09.030&domain=pdf
mailto:mohamad.dabberni@unimi.it
https://doi.org/10.1016/j.future.2020.09.030
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Several approaches have been proposed for mining OSNs while
imiting the time and the budget required for mining [15–22].
owever, to the best of our knowledge, none of them is capable
f using the mix of strategies we propose in this paper.
In the present work, we propose a mining platform to help

esearchers and data collector to mine and directly analyze social
etworks, defining API-specific and budget-constrained strategies
ble to filter data collection based on concurrent sampling and
ntology-enhanced filtering algorithms [23]. To test our approach
e exploited it in creating a content-based recommender system.

n our proposed architecture, recommendations are the results of
he graph projection of social network nodes with their relation-
hip and roles. In our approach, we are seeking machine learning
o find people’s entity from their shared contents, and ontologies
o build a knowledge graph that maps the relations between the
ccounts and their environment. Additionally, we consider our
latform for building ontology enhanced knowledge graph and
se it for recommendation purposes.
The paper is organized as follows: In Section 2 we present the

elated work. In Section 3 we describe our proposed platform,
ncluding its architecture and components. In Section 4, we show
he implementation of the ontologies as part of our platform and
he complete workflow of our recommender system analysis. In
ection 5, we present our system implementation. In Section 6,
e present our experimental analysis, and finally the conclusion

n Section 7.

. Related works

The value of the data collected from OSN lies in the potential
hey have to reveal hidden patterns or predict future dynamics
r trends [24,25] that are mostly impossible to do in other ways.
owever, the quality of the results of the analysis is intrin-
ically related to the method through which the datasets are
reated. Although extensive research has been carried out on
ata collection, some uncertainty remains about the existence of
standard sampling methodology to efficiently collect datasets

rom OSN [26].
Most of the OSN managing platforms provide APIs allowing

nyone to query and amass large amounts of information in a
elatively short time. Usually, the process requires the registra-
ion of an application first, then platform returns a set of tokens
ranting access to the streaming API. As of 2015 Twitter, which is
he main source of information for researchers, decided to limit
he access to their data.

Twitter supplies 10% randomly sampled tweets (known as
he gardenhose) from its firehose for a fee, and 1% randomly
ampled tweets for free in real time through Sample API. The
andomness of a sample – each element has an equal probability
f being chosen – is indeed of high importance for methodological
ntegrity as a sample selected randomly is regarded as valid rep-
esentation of the total population. However, the company does
ot reveal details about its data sampling mechanisms affecting
he reliability of the outcomes based on them [27].

Current studies have used non-probability methods to collect
ata e.g., (Guillory et al. 2018 [28]; Hsieh and Murphy 2017
29]), given the inherent coverage error of social media user base
or representing general population. The non-probability design
hich these studies employ prevents inference to populations

arger than the respondent sample.
[30]
Another limitation is related to the number of queries that

an be executed in a 15-minutes window, which results in low-
ring the amount of information available for the analysis while
ncreasing the time to mine the required resources.
770
Another limitation includes the definition of a maximum num-
er of request calls in a period that affects the informative po-
ential of the generated datasets in case a huge amount of tweets
s generated (and then lost) in certain cases (e.g. emergency). A
ork around is to create a number of accounts to access the APIs
hat can be used in a alternate fashion.

Finally, the access to historical Twitter is not allowed via the
witter API, and the limited number of characters of the message,
nd so on, force the developers to set up specific architectures
nd strategies for collecting tweets, while attempting to get them
ith a sufficient reliability [31,32].
To avoid the aforementioned limitation, upgrade from stan-

ard to premium or enterprise API is needed and is subject
o the payment of fees. However, researchers are finding new
ays to address this issue, where a web scraper mentioned

n [33] works by parsing hypertext tags and retrieving plain text
nformation embedded onto them. Since web scraper does not
et information directly using API, they are not restricted by
he limitation posed by OSN providers and thus can mine large
mounts of data with less time and budget. But using a web
craping tool has its limitations. A web scraper cannot be used
or long term monitoring since websites are in constant changes
ver time, thus web scrappers must be updated constantly to be
ligned to the new updates. This condition is particularly evident
n [34], where a web-based crawler for collecting vulnerabilities
nformation from the dark web should be adapted each time a
arvesting campaign is about to start. Additionally, each OSN
equires a custom web scraper. This issue is not different from
sing OSN API since each platform provides its own. However, the
evelopment of a reliable scrapper requires a fair amount of work
nd knowledge that a researcher may not have. Finally scrapping
ay pose the researcher to trials, e.g. in [4], LinkedIn sued peoples

hat anonymously scraped their website for different reasons like
violation of computer fraud and abuse act (CFAA), trespass and
reach of contract.
Another approach discussed in the literature is sampling

here a small fraction of the OSN users is mined to create a sam-
ling representative of the whole OSN. There are several sampling
echniques for OSN that aim to optimize the effort in terms of
ime, computation load, and dataset representativeness. In [10] a
ampling-based algorithm for efficiently exploring a user’s social
etwork respecting its structure and for quickly approximating
uantities of interest is proposed. In [35] and [32] the sampling
trategy is based on the concept of Channel, which consists of
set of simple and complex search queries performed on the
witter platform by the Crawler engine. The simplest Channel to
e monitored can refer to collect and analyze tweets referring to
single Twitter user, user citation, hashtag, or keyword. Complex
hannels may consist of several queries designed according to the
earch query syntax of Twitter APIs by combining keywords, user
Ds, hashtags, citations, etc., with some operators (e.g., and, or,
rom). Thus, a user can design its channel and run a collection
rocess on OSN. However, this method is limited by the fact that
he user should make some assumptions in defining the query
ilters (e.g. hashtag) that could not be appropriate to create a
omprehensive dataset to analyze a specific phenomenon.
In [26], the authors explored the use of random search al-

orithms to sample OSN such as a Brownian walk (based on
normal distribution), a spiral-inspired walk, and a Reservoir

ampling algorithm. The scope is to define a standard sampling
ethodology applicable where the OSN information flow is read-

ly available. In [6], four sampling algorithms such as DLAS, ED-
AS, ICLA-NS, and FLAS based on learning automata, are explored
o produce a scale-down representative subgraphs from OSN. The
andom walk exploring strategy, adopted in [15–18], provides the
ase method to ensure unbiased sampling. Random walk, how-
ver, requires a long mixing time, i.e. it requires a long startup
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eriod before guaranteeing good accuracy [19]. An effective way
or overcoming this issue is to incorporate uniform node sampling
UNI) into random walk sampling and enable the strategy to
ump to other parts of the graph. Different authors developed
his random walk with a jump approach. An alternative solution
o address the same issue is developing a multi-layered social
etwork, where multiple sources can be followed to exit the
lind roads or the local boundaries that a random walk can enter.
dditionally, another form of traversal algorithm are mentioned
n [36–38] to boost data transmission performance and to reduce
nergy and data consumption.
Researchers have also pointed out that sampling based on

ocial media APIs is biased by policies that are constructed to save
he vendor’s resources and not for optimizing the sampling power
f data [39,40]. This means scholars using data obtained via API
eed to apply caution when drawing inferences from such data.
n particular, it has been observed that the source of biases arise
rom the order connected nodes are returned [23] based on the
ge of the link created between two nodes and on the fixed time-
rames used for selecting the nodes to be included in the sample
PIs [41].
In the domain of the recommender systems, ratings and fea-

ures are widely used to infer the recommendation probabilities.
epending on the needs, researchers used either one or both
f them to achieve their promised results. In [42], Nilashi et al.
ropose an ontology-based recommendation system combined
ith dimensionality reduction in order to reduce the issues of
sparse dataset. It uses users’ ratings and features as an input

o infer a probability of recommendation. Similarly, the use of
imensionality reduction is also discussed in [43], where the au-
hors deploy the said methods under two Real-world experiments
nd compare it with collaborative filtering. In [44], the authors
emonstrate an existing relationship between an item and its
ocation by developing a location-aware recommendation system.
he system takes advantage of the data localization and the
atings to produces recommendation probabilities. Alternative
o the recommendation that focuses on the ratings, Yao et al.
ropose in [45] a recommendation system in the auto industry
here the availability of item ratings are believed to be scarce and

napplicable. Hence, the authors take advantage of the customer’s
ommon features to build relations between them.
The approach followed in the present work is to let the

ser compose strategies using a mixture of approaches and con-
traints. This supports the setting of API-specific and domain-
pecific solutions with the ability to compare alternative strate-
ies in order to assess them in real-world scenarios. Additionally,
e ought to explore our platform to build ontologies by taking
dvantage of the graphical nature of the saved data. Furthermore,
e propose an ontology enhanced graph analysis in the scope of
ecommendation systems, which to the best of our knowledge,
one of the current approaches has addressed it yet.

. A framework for sampling social networks

In this section, we present our framework. Accordingly, we
iscuss the system hierarchy organizing our architecture with its
bstraction layer, we detail the workflow guiding the mining pro-
edures, the network space exploring algorithms and the different
iltering strategies that make the system effective.

.1. System architecture and components

A Social Network is an ever-expanding data source. For this
eason, an effective mining procedure must rely on real-time
ata collection. Also, an evolving domain may require to extend

he computational capacity of the system. In order to address

771
this issue, we used different technologies that helped to achieve
maximum scalability in our architecture, by interfacing separated
components using abstract classes. Fig. 2 presents the hierarchy
of our architecture listing the abstract classes that compose it.

The system architecture directly reflects the elements of a
strategy with a software component for managing each element
independently. At the root level, we have a class for defining
mining strategies. Each strategy is a combination of multiple
settings managed by separated components.

Data Sources. A strategy has to contain a connection to an
input source that the miner uses for querying data. Sources could
be online like Twitter or Facebook, or locally available like a
local SQL Database, or data files (CSV, Excel). Abstracting such
component allowed us to have a limitless source in which we
were able to sustain the daily increasing number of the available
data.

Network Space Exploring Algorithm. As described in Sec-
tion 3, the network space exploring algorithm is used to navigate
through a data source embedding the mined data as a graph.
Moreover, such algorithms are also used to sample the data
source decreasing the time and budget spent on mining and data
analysis.

Event Subscribers. This component allows integrating further
omponents beyond the one provided in the architecture. The
dea came from the need for adding constantly additional features
n one hand and a data transformation on another hand. Upon
ach step, this component broadcasts the current status to sub-
cribers, thus allowing them to modify and transform the data.
his component adopts a limitless amount of custom-defined
ilters and data embedders. As en example, we have introduced
n ontology enhanced event subscriber as an advanced filtering
echnique to eliminate nodes that are unrelated to the specified
ase. More information is available in Section 4.
Analytics. This component contains the algorithms used to

un analytics from the mined data. Currently, we support all the
raph algorithms natively supported by Neo4j, including Cen-
rality algorithms, Community detection algorithms, Pathfinding
lgorithms, Similarity algorithms, and Link Prediction algorithms.
dditionally, we have introduced a new recommender system
lgorithm that assigns recommendation probability for each node
n the knowledge graph through a given ontology model.

.2. System workflow

Fig. 3 describes in detail the data processing workflow of our
ystem. The process starts when the network space exploring
lgorithm navigates the social network graph choosing the first
ode. The results differ based on the algorithm selected while
efining the strategy. The next step is scanning the selected node,
hus allowing further routes of the social graph to explore. More-
ver, more detail on the nodes demands additional specialized
equests to fetch them.

To reduce the number of API requests, we introduced a caching
ystem that answers the call in case it was already available in the
ache. Pre-Scan, Post-Scan, and Post-Fetch are event subscribers
hat run before and after scanning and after fetching. Such sub-
cribers can be used as data filters and mappers introducing
ew procedural information to the knowledge graph. An example
f Pre-Scan could be max-level filters that prevent adding any
dditional node located after the specified level, and max-fetch
ilters that limit the number of nodes that can be scanned thus
educing further the number of API requests. Post-Fetch filters are
sually used for filtering data based on nodes attributes where
uch information is only available after the fetch request. Other
sages of post fetch are like Entity Detectors, which introduce
ew information to the knowledge graph based on predefined
rocedures subscribed to receive updates when such an event
rouses.
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Fig. 2. The architectural hierarchy.

.3. Network space exploring algorithm

An important part of our framework depends on the space
xploring algorithms as they represent a crucial component when
efining a strategy. With such algorithms, we can navigate
hrough social networks and embed them as a graph in our
ata storing system. Graph Databases are used to store OSN
ccounts and posted-contents as nodes, while the link between
hem is captured by edges. Fig. 1 shows a graphical representation
772
Fig. 3. The system workflow.

of the stored data. Edges can be labeled to define the type of
relationship interconnecting two nodes, i.e. friends, follower, co-
authors, etc. A post and its originator can be presented as two
nodes connected by an edge labeled as posted-it. A post and a
reader can be connected by like-it, hate-it. Addressing the limits
posed by OSN providers, navigation algorithms combined with
filters are used as data samplers working on a subset of data
selected to be representative of the whole dataset. Sampling
social network reduces the time and budget required to collect
the minimum information needed. A similar approach has been
discussed in [46], in which the authors comparatively assessed
the accuracy of deterministic and probabilistic navigation algo-
rithm. Since each case requires a different strategy, we have
built our platform in such a way that allows the implementation
of different navigation algorithms, allowing us to compare their
performance and accuracy under different settings. The algo-
rithms that are available in the platform can be divided into two
groups: deterministic like Breadth-First, probabilistic like Forest
Fire, Random Walker, and Metropolis Hasting. Additional focus
has been given to probabilistic approaches, which can be supplied
with hyper-parameters that are capable of changing the shape of
the mined data, thus fitting more for data sampling work, while
further widening the traversed space of the network. Frequent
hyper-parameter used in the platform are forward weight and
iterations. Forward weight controls the onward and backward
jump rate of the random walker, the number range between 0
and 1, and the higher the number to deeper the level explored by
the algorithm. This parameter significantly affects the accuracy of
the results.

3.4. Node filtering strategies

Usually, any data analytics procedure includes data cleaning.
Filtering is intended to prune irrelevant data, thus reducing the
number of wasted requests. Filters such as minimum account
followers, creation dates, and scam detectors can be exploited to
identify fake accounts. In our framework, filters are part of the
event subscribers. A filter can be attached to receive continuous
updates about the nodes in all of its three states, before scanning
(Pre-Scan), after scanning (Post-Scan), and after fetching (Post-
Fetch). Information provided to the event subscribers is relevant
to the state they are subscribing to. In the Pre-Scan state, only
the Id of the node and its current level are available, making it
appropriate for a filter that depends on the level of the node.
Post-Scan state provides more information about the shape of
the network and how it will be extended. The scanned node
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Fig. 4. Recommender system component workflow.

ill now reveal all of its possible children. Therefore, filters that
epend on the number of node children like minimum twitter
ccount followers are ideal for this state. The importance of the
ost-Scan event resides by providing the last line of information
hat could eliminate a node before the actual fetch happens, thus
laiming limited resources. Finally, the Post-Fetch state has the
ost information about the node and typically a higher impact
n computational resources. Taking into consideration all the
apabilities of the filter, it is possible to significantly narrow the
rea of our interest, therefore decreasing the time and the budget
equired.

. Ontology enhanced event subscribers for a social network-
ased recommender system

We built our ontology-based recommender system as a layer
pon the mentioned framework. Using the capabilities of the
vent subscribers, we were able to intercept the process of saving
he node and update the graph accordingly with the selected
ntology.
Fig. 4 presents the complete steps of the proposed recom-

ender system. The processes start by building an ontology
odel. In our approach, such a model is manually created using
rior knowledge from the domain of analysis. The next steps are
uilt independence on the mining framework, which will handle
he role of collecting and fetching data from social networks.
urthermore, with the continuous update of the states of the
raph provided by the framework, we examine each received
ode and detect its roles in the graph. Later, after we complete the
equired knowledge on the node, we start the filtering procedure
y matching the node with the model. The process repeats until
he stop conditions are reached, and later, the recommendation
nalysis is executed to assign a recommendation value for each
ode.

.1. Ontology model

In the adopted scenario, we are studying the users interacting
ith the twitter account of an academic conference for creating a
ecommendation system. An academic-related ontology has been
anually developed and is presented in Fig. 5. The conference
lass is one of its kind and it is manually provided upon the
tart of data collecting. The followers of each conference will
e devised into a teacher, student, and attendee. To increase
he accuracy of the recommender system, other properties that
ay affect the results have been also taken into consideration,
.g. the location of the conference, the location of the students
nd teacher, and the institution in which a student study_in or
teacher teach_at.
773
Fig. 5. Academic ontology model.

4.2. Data collection

Data collection is handled by our mining framework using a
mining strategy. For example, the level breakdown of a space
exploring algorithm allows us to focus on a specific area of the
network rather than the whole, thus reducing a large amount of
data processing that may lead to no or few results. In our case,
the focus was on the lower level. Therefore, as a network space
exploring algorithm, Breadth-First could be a relevant algorithm
for this task. However, other algorithms can be tuned to focus
also on the lower levels. For example, with a small forward
probability, RandomWalker and Metropolis Hasting emphasize
the backward moving rather than moving forward, causing the
lower level nodes more significant.

4.3. Entity detection approaches

For a recommendation system to work accurately, nodes must
be assigned to classes specified by the ontology model. Usually,
specialized networks have well-defined entities assigned to each
node. This is however not the case in generalist networks like
twitter or other public social networks. We rely on labeled ac-
counts with their description to train an entity classifier. With the
description as input and the known entity as a label, we obtained
an efficient training and test sets. The entity classifier is made
using a classical supervised learning algorithm. Therefore support
vector machine was a solid selection. Once we built the classifier,
we can determine the entity of each node using its description.
Such a classifier is used as Post-Fetch event subscriber, thus
receiving nodes when they are fetched and updating their entity
accordingly.

4.4. Filtering & ontology matching

The amount of data a social network can provide is substan-
tial but uncontrolled. As a consequence, a large portion can be
cleaned and filtered out. Apart from the filters that we mentioned
in the previous section (MaxLevel Filter and MinFollowers), a new
filter is deployed to reduce the amount of data exposed to the rec-
ommendation system. In this step, we are seeking the elimination
of all possible inaccurate or faulty recommendations. A graph-
based ontology matching filter is proposed while considering the
ontology model to match the labeled graph available after the
discovery of the node entity. An approach similar to the DSSim-
ontology [47] is exploited to extract the similarities between the
node environment and our model. The goal is eliminating nodes

that did not follow a shape equivalent to the provided model.
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Fig. 6. Example of a labeled graph result.

.5. Recommendation assignment module

The recommendation assignment module of our ontology-
ased recommendation system approach. Fig. 6 shows a sample
f a graph results after the mining process. In this phase, we use
he extracted entities from the generated knowledge graph to
est for content similarity with the defined ontology model. Each
elationship is associated with a weight relative to its equivalence
n the model. For instance, a node that follows a similar structure
s the model will be assigned with the same weight.

eight =

{
wx if relation x exists
0 o/w

}
(1)

Nodes level have been also taken into consideration. The far-
ther the following node is, the lower is the possibility of it being
recommended. Such a case is being handled by powering the
weight by the level of the node.

weight(xL) = weight L (2)

Moving to the recommendation algorithm, we adopted an
improved version of the Adamic Adar algorithm to calculate the
possibility of a node being recommend to another. Let P(x, y)
be the possibility of node y being recommended to attend an
vent x. Let N(x) be the nodes adjacent to the node x, N(y), the

nodes adjacent to node y, and N(z) the nodes that are adjacent
to y and are remotely related to the node x. Finally, let U be the
intersection between N(x) and N(y) including N(z), and N(u) their
adjacent nodes. The recommendation evaluation can be defined
as:

P(x, y) =

∑
u∈N(x)∩N(y)∪N(z)

wu

log |N(u)|
(3)

Based on Eq. (3), if wu = 0, then the node log allocation index
ill be ignored and the results of the calculation will be lowered.
uch a case happens when a relationship exists between both
odes that are not described in the defined model. For example,
follower node lives in a location that no one of the attendees

ives in.

. System implementation

While the process of mining is always the same, mining
ource, graph navigation algorithm, event subscribers, and graph
nalysis always vary between strategies. Accordingly, in order to
educe the complexity and to increase the scalability, we tend to-
ard abstracting all of the architecture main components, there-

ore, allowing them to have multiple implementations. Mined
774
social network graphs are handled by Neo4j graph database.
Using this technology, we are capable of maintaining the dynamic
nature of social networks. Additionally, Neo4j is known for per-
formant querying with further access to various graph algorithms
that assist data analysis like centrality algorithms (e.g. PageRank).
MongoDB is used to keep a history of the defined strategy and
cache social network query results.

5.1. Mining process

The mining process manages the interaction between the ar-
chitecture components using a set of seed nodes to start the ex-
ploring process. It provides the navigator with the required data
source while broadcasting regularly to a set of event subscribers.
Additional information is presented in Algorithm 1. We start by
creating a root for the graph to be mined. Then the main com-
ponents are initialized from the strategy that includes the imple-
mentation to be adopted in the mining process, e.g. Breadth-First
Navigator for exploring and Twitter as a data source.

Algorithm 1: Mining Process
Data: strategy
let root denote the starting node of the graph;
xtract navigator from strategy;
xtract dataSource from strategy;
xtract events from strategy;
bserve(navigator, root);
nalyse(root);
unction observe(navigator: Navigator, root: Graph) : void is

scan(root);
foreach seed ∈ root do

navigate(navigator, seed);
end

nd
unction navigate(navigator: Navigator, node: Node) : void is

do
broadcast(node, "PreScan");
if node == dead then

broadcast(node, "Failed");
else if node ̸= scannable then

broadcast(node, "Failed");
else

scan(node);
broadcast(node, "PostScan");
if node == dead then

broadcast(node, "Failed");
else

fetch(node);
broadcast(node, "PostFetch");

cache();
node = navigator.next(node);

while node ̸= null||stopped;
nd

The initialized navigator scans the root to get the seeds nodes.
For each seed, it branches a navigator to explore further nodes.
Navigation starts from the seed and ends when the navigator
has no longer nodes to provide. The selected node that is go-
ing to be scanned will be broadcasted first to pre-scan event
subscribers, thus allowing them to modify the node properties
preventing it from being fetched or scanned further by marking
it as unscannable. Later, after a node is accepted and the scan is
performed, the node will be sent to Post-Scan subscribers. Simi-
larly, a node is marked as rather fetchable or not by comparing
the new properties with the working strategy. Further, when the
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ode is fetched, it will be sent to post fetch event subscribers to
ecide whether to keep this node if it has proven beneficial to the
tudy or prune it otherwise. As aforementioned, the difference
etween pre-scan, post-scan, and post-fetch is that the later has
ccess to an array of attributes that are not available in previous
tates. Finally, the fetched node is cached and used later when
he same node is requested again.

.2. RandomWalk

Algorithm 2: RandomWalk Navigator
Function next(node: Node) : Node is

let R be a random generated number;
extract strategy.weight into W ;
extract strategy.maxDepth into M;
initialise f := forward if node == root;
initialise f := backgward if node.level == M;
initialise f := backgward if node is Leaf;
initialise f := forward if R < W else backward;
if f == forward then

return a child selected randomly from node;
else

if parent(parent(node)) ̸= null then
initialise ancestor := parent(parent(node));

else
initialise ancestor := parent(node);

return a child selected randomly from ancestor;
nd

As an example of the navigator procedure invoked by the Min-
ng Process, we illustrate the RandomWalk algorithm. This algo-
ithm serves under the network space exploring algorithm com-
onents and one of the three implementations besides breadth-
irst and metropolis hasting. The pseudo-code in Algorithm 2
hows the process in detail. It first initializes a random number
nd compares it with the weight defined in the strategy to decide
o go further deep in the graph or returning to a higher level. The
igger the weight is, the deeper the walker will go.

. Experimental results and analysis

In this section, we present the experimental environment in
hich we used to perform our tests. Also, we analyze in the detail
he results of the comparison between different space exploring
lgorithms and the best use case of each. Finally, the enhanced
ecommendation algorithm is compared with its original equiv-
lence while showing the difference between the results of both
lgorithms.

.1. Experimental setup

For the experimental setup, we ran our framework on a virtual
achine setup with 2 cores and 4 processors each, thus resulting

n a machine with 8 threads with a frequency of 3.6 GHz. Rams is
uned to use only 8 GB. To hasten our experimental analysis, we
oint our miners to local data sources, which helped us compar-
ng different strategies under different conditions in a minimum
mount of time. We evaluate the accuracy of different strategies
n two different data sets. In the first one, we built and tested
ur strategies using data provided from random generators. In
he second one, experiments were performed on mined twitter
ccounts. For the recommendation system, we used a graph sim-
lator to generate a knowledge graph that went through all the
teps of the framework to finally be analyzed. The throughput
f the analysis has been shown and compared to its original
lgorithm.
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Table 1
Set 1 data overview.
Seed 1 2 3 4

Italy 62% 27% 50% 25%

Table 2
Set 1 mining strategies.

S1 S2 S3 S4 S5

Exploring algorithm BF RW MH RW MH
Account fetched 10% 10% 10% 5% 5%
Location filter Italy Italy Italy Italy Italy
Iterations – 500 500 500 500
Forward weight – 0.2 0.2 0.2 0.2
Distribution – – Normal – Normal

Fig. 7. Density of the Italian accounts.

6.2. Network space algorithm comparison

We propose a case where we need to mine the first level
followers of a set of twitter accounts that respects predefined
attribute conditions described in the strategy. Table 1 contains an
overview of the data generated using four seed nodes to serve the
experiments, focusing on the percentage of the seed’s followers of
Italian origins. Our experimental results are based on our miners
fetching followers of this particular country.

The mining strategies tested are illustrated in Table 2. In all of
them, we filtered the data and excluded any account that is not
located in Italy. The first mining strategy uses Breadth First as
exploring algorithms, fetching only 10% of the maximum account
followers. The rest of the strategies are a combination of using
Random Walk and Metropolis Hasting as navigation algorithms.
Different percentage of the maximum account number to be
fetched has been used to test the algorithm accuracy. Lower
fetching percentage results in a high sampling ratio since a lower
number of accounts will be fetched and included in the test
results. For Random Walk and Metropolis Hasting, we have 500
Iterations and 0.2 forward weight. Additionally, for metropolis
hasting, we used Normal Distribution to generate the next mining
position (see Table 2).

Experimental results in Fig. 7 show the density of the Italian
accounts for each seed in each strategy. We observe that the
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able 3
et 2 mining strategies.

S1 S2 S3 S4

Exploring algorithm BF BF RW MH
Account fetched – 50 50 50
Max depth 8 3 – –
Iterations – – 500 500
Forward weight – – 0.8 0.8
Distribution – – – Normal

Table 4
Community detected from Set 2.
Strategy Communities detected

S1 29
S2 14
S3 19
S4 10

Table 5
Set 2 execution time.

S1 S2 S3 S4

API Req. 13 650 379 289 177
Exec. time (s) 56456 1879 1400 970

first strategy displays the worst case compared to the original
data. Using breadth-first as navigation algorithm yields 53% for
seed 1 compared to 62%, 78% for seed 3 compared to 50%, and
78% for seed 4 compared to 25%. This scenario happens when
using breadth-first supplied with an attribute filter and a fetch
filters for sampling while an important portion of the data of
interest is located in the least of the data set. Other strategies
show acceptable results since they reflect proportionally the main
data even when using a higher sampling ratio.

In the second experiment, we used data provided from Kag-
le [6], called Twitter Friends and hashtags. It is a collection of
witter users that includes users’ information, friends, last seen,
anguage, trending topics the user tweeted about, and others. We
re interested in forming communities based on the frequent tags
sed by a user when posting on twitters. Our results show the
ensity of the communities detected from the data. Since we do
ot have a global overview of the data, we include a strategy
hat iterates over a large portion of the dataset. Additionally, for
he comparison, we have included other strategies that can be
onsidered samples regarding the original one.
Table 3 shows the different mining strategies used by min-

rs. For the first strategy, we intend to have a general idea to
se it as a comparison measurement. Therefore, breadth-first is
sed as a navigator since we are not focusing on sampling. We
ave not specified any restriction on the maximum accounts that
an be fetched in each node. The limitation of a maximum 8th
epth level can be considered very high since the data increases
xponentially when depth level increases. For other strategies,
e used the three remaining algorithms. Only 50 accounts can
e fetched under each node. Breadth-first is limited for the first
levels, while Random Walk and Metropolis Hasting level are
ot set, including additional settings for ‘‘forward weight’’ =

.8 allowing the navigators to expand their exploration territory
eeply in the lower levels, therefore allowing them to have a
ore wide view on the data.
The amount of communities detected by miners is available in

able 4. The first strategy contains the highest possible knowl-
dge about the dataset, therefore can be used to measure the
ccuracy of other sampling strategies. In total, 29 communities
re identified in the first strategy, followed by 19 while employ-
ng Random Walk navigator. Metropolis Hasting (S4) ought the
orst accuracy compared to the rest of the strategies.
776
Fig. 8. Level 1 comparison.

Fig. 9. Level 2 comparison.

Finally, Table 5 measures the number of API requests made,
and the total execution time in seconds for each strategy. The
numbers are based on simulated twitter APIs taking into consid-
eration the limitation posed at the time of discussion. The results
reveal that we can achieve through a well-defined strategy high
accuracy compared to the original with a significant reduction in
time and API requests.

6.3. Ontology enhanced recommender analysis

Figs. 8 and 9 show the difference between the analysis results
of the Ontology Enhanced Adamic Adar algorithm and the original
one over a set of multiple nodes. Since we are giving a different
weight for each level, Fig. 8 includes nodes that are the first-
degree followers of the attendee, while Fig. 9 includes nodes that
are second-degree followers of the attendee. One of the most
noticeable differences is the height of the line that is scaled
down in the case of the enhanced algorithms. The reason is that
the weight assigned to each relationship is being a constant to
0.5, in which the lines are shifted down since the results scale
proportionally with the weight.

Moreover, in Fig. 9, the changes in weight cause a scale down
by two with respect to the results of the recommendation system
in Fig. 8. Other noticeable changes are related to points in the
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Fig. 10. MovieLens representative ontology.

raphs that show a variation between the original and the en-
anced algorithms. For instance, at point 25, points ranged from
0 to 45 have quite different results. The reason is related to the
emote nodes that are adjacent to the current node and the node
f interests. For example, a second-degree follower is the one that
ived in the same location as someone attending the event. Such
ifferences are due to assigning weights based on the similarities
etween the nodes in the knowledge graph and its equivalence
n the ontology model.

.4. Recommendation system experiments

In this experiment, we employed data produced by
oviesLens, which consists of 100k ratings from different users

48]. It also contains additional demographic information about
ach user including gender, age, and occupations. We have built
he new ontology illustrated in Fig. 10 for MoviesLens dataset that
enefits from these features. For each movie, we have calculated
he ratio of watching per occupation, age, and gender. For ages,
e split them into four groups: Child, Teen, Grown, and Elder. We
hen devise a graph using the aforementioned ontology and apply
ur proposed algorithm to calculate the likelihood of each user for
atching a specific movie. The results are normalized between 1
nd 5 and act as a possible rating of a user for a movie.
For evaluating the results, we apply the Precision and Recall

echniques on each user over his/her watched movies to explore
he capabilities of our solution in accurately recognizing the
ossibilities for an item to be highly rated by the users. In this
ontext:

orrectly Identified = High Rated Items
⋂

Rated Identified Items

(4)

recision =
Correctly Identified

High Rated Identified Items
(5)

Recall =
Correctly Identified
High Rated Items

(6)

F1 =
2 × P r e c i s i o n × Recall

Precision + Recall
(7)

An item is considered Highly Rated if the rating is more than
3. The precision values reflect the percentage of the correctly
identified items, while the recall values allow us to observe the
percentage of identified items from the original set. Additionally,
the Mean Absolute Error (MAE) is used to assess the accuracy
of the results. These metrics provide insights about the expected
error margins.

MAE =

∑
|R − N|

(8)

T

777
Fig. 11. Recommendations scores precision, recall.

Fig. 12. Recommendations scores F1-test.

R = rating of user i to movie j (9)

N = normalised calculated rating of user i to movie j (10)

T = total number of ratings (11)

Figs. 11, 12, 13 present the results of our experiments. In
each iteration, we evaluate the analysis scores of each user based
on his/her list of ratings. In Fig. 11 the results reveal a high
precision value for the majority of the users followed by a low
recall, which indicates that the number of correctly identified
users is low but they are identified with high precision. The
difference in precision and recall can be observed precisely in
Fig. 12 where low values indicate a clear difference in both scores.
Furthermore, In Fig. 13 MAE results are considered fairly high
compared to other algorithms that rely on rating [49]. It is worth
mentioning that, compared to the literature, the original ratings
of the users are not needed in our proposed approach, which is
a major advantage when there is limited or no knowledge about
the current and new users’ preferences and historical data.

7. Conclusions

OSNs can be considered as the main source of information
for any Big Data analysis study. Our aim in this paper was to
develop a scalable platform that keeps pace with the continu-
ous development of OSNs and to bypass their restrictions that
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Fig. 13. Recommendations scores MAE.

limit the effectiveness of the mined data. In this regard, we
have introduced domain-specific sampling strategies that serve as
input for platform miners. Moreover, we have demonstrated the
capabilities of our platform by employing ontologies to reinforce
our graphical representation with stronger relations and used
them as part of the proposed recommendation system. In our
experiments, we have explored the importance of the strategy
definition step as well as its impact on the quality of the results.
Additionally, we have illustrated the implication of the ontologies
on the graph and have used it on a real word dataset for a
recommendation system.
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