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Abstract: One of the travelers’ main challenges is that they have to spend a great effort to find and
choose the most desired travel offer(s) among a vast list of non-categorized and non-personalized
items. Recommendation systems provide an effective way to solve the problem of information
overload. In this work, we design and implement “The Hybrid Offer Ranker” (THOR), a hybrid,
personalized recommender system for the transportation domain. THOR assigns every traveler a
unique contextual preference model built using solely their personal data, which makes the model
sensitive to the user’s choices. This model is used to rank travel offers presented to each user
according to their personal preferences. We reduce the recommendation problem to one of binary
classification that predicts the probability with which the traveler will buy each available travel
offer. Travel offers are ranked according to the computed probabilities, hence to the user’s personal
preference model. Moreover, to tackle the cold start problem for new users, we apply clustering
algorithms to identify groups of travelers with similar profiles and build a preference model for each
group. To test the system’s performance, we generate a dataset according to some carefully designed
rules. The results of the experiments show that the THOR tool is capable of learning the contextual
preferences of each traveler and ranks offers starting from those that have the higher probability of
being selected.

Keywords: Context-Aware Recommender System; personalization; preferences; user modeling;
journey planning; mobility; cold start; classification; clustering

1. Introduction

The recent blazing-fast advancements in big data analysis have unlocked the potential
of many novel applications for smart living [1]. In particular, big data techniques can be
used to greatly enhance how users experience personalized mobility, for which demand is
growing fast [2]. The Internet has become the main channel for travelers to obtain online
information before traveling, but they still spend a great effort to find and choose the most
desired travel offer(s) among a vast list of non-categorized and non-personalized ones [3].

A Recommender System (RS), a.k.a., Recommendation System, aims at predicting the
“preference” of a user about an item [4] and may provide a great help when users have
search or selection problems. Recently, there have been various advancements in the field
of Context-Aware Recommender Systems (CARS) [5–7]. Indeed, one should also take into
account that travel preferences may be significantly influenced by the context in which a
traveler interacts with the system [8,9]. According to Dey [10], “Context is any information
that can be used to characterize the situation of an entity, where an entity can be a person,
place, or physical or computational object” and “A system is context-aware if it uses context
to provide relevant information and services to the user, where relevancy depends on the
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user’s task”. For more information about context-aware systems, we refer the reader to
surveys provided in [11–13].

Despite various works that tackled the problem of recommending touristic destina-
tions to travelers [14–16], to the best of our knowledge, no works exist that designed CARS
for ranking a list of complete travel offers for travelers.

In this work, we assume that the user has access to an application to ask for travel offers,
such as, for example, the Travel Companion (TC) provided by the Shift2Rail ecosystem (see
Section 2.1). To provide a personalized experience to travelers, Javadian et al. designed
a high-level system architecture in [9] and a contextual preference model in [8] using the
Context Dimension Tree methodology [17]. This work aims to implement the recommender
core of the TC (or of a TC-like application) based on the contextual preference model
presented in [9]. More precisely, this work aims at answering the following research
questions (RQs):

RQ1: Using the traveler’s historical records, how can we design a personalized prefer-
ence model which ranks the available travel offers according to the contextual preferences
of the traveler?

RQ2: Given a new traveler without any historical records, how can we design an
initial personal preference model for them using other travelers’ historical data with the
most similar characteristics?

To tackle these research questions and provide travelers with a Context-Aware Rec-
ommender System, the contribution of this work is the development of “The Hybrid Offer
Ranker” (THOR), which could be integrated in applications such as the Shift2Rail TC.
Unlike the proposed RS in [18], which requires a user-specified list of preferences for filter-
ing and ranking the travel offers, THOR relies only on the historical purchase records of
the users while incorporating the user-specified preferences whenever available. THOR
assembles various algorithms to create a pipeline that considers the problem of ranking
travel offers shown to users according to their preferences as a binary classification problem
that predicts if the traveler will buy any of the available travel offers or not. First, each
traveler is assigned a unique contextual preference model built using their data. For this
purpose, THOR uses various well-known classification algorithms—i.e., K-Nearest Neigh-
bors (KNN) [19], Support Vector Classifier (SVC) [20], Decision Tree (DT) [21], Random Forest
(RF) [22], and Logistic Regression (LR) [23]—and finds the best set of hyper-parameters.
Then, when the system receives a set of travel offers to be shown to the user, it exploits the
contextual preference model to determine, for each offer, the probability that the user will
buy it and ranks the offers accordingly. Moreover, THOR incorporates the K-means [24]
and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [25] clustering
algorithms to identify users with similar profiles and build a preference model for each
group of similar users. In the case of a new user without any record, we identify the group
that contains the most similar users and use its associated preference model to provide
recommendations for the new user. Notice that the clustering and classification algorithms
are used independently of one another. More precisely, during each training phase, all
training algorithms are executed separately, and the one that produces the model with the
best performance—i.e., the highest accuracy—is saved for future use. To test the system’s
performance (in terms of both computation time and accuracy), we generate an extensive
dataset according to some carefully designed rules. The results show that the proposed
framework is promising and can provide benefits to existing systems.

The rest of the paper is organized as follows. Section 2 presents state-of-the-art
methodologies concerning the problem of designing RSs in the transportation domain.
Section 3 details THOR’s implementation. Section 4 shows the validation of THOR using
different approaches. Finally, Section 5 concludes and presents some future work.

2. Background and Related Work

This section discusses the relevant related work and how this inspired the method-
ology we propose. To the best of our knowledge, most previous research on RS for the
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transportation domain focuses on designing a system that aims at recommending the
most suitable destination to a traveler; instead, our approach aims to design an RS that,
given a destination and a mobility request (i.e., the action in which a traveler uses an
application to request possible travel solutions to go from a source to a destination), ranks
a set of travel offers satisfying that request according to the user preferences. In Section 2.1
we briefly discuss the ecosystem in which we chose to integrate our proposed system.
Section 2.2 discusses the state-of-the-art about RSs in the transportation domain; Section 2.3
investigates various important features (e.g., time, location, travel purpose) contributing
to the travelers’ preferences employed by state-of-the-art approaches; finally, Section 2.4
investigates techniques to tackle the crucial cold start problem.

2.1. Ecosystem

This work is performed within the Ride2Rail (R2R) project [26] (ride2rail.eu, accessed
on 10 October 2022), in the frame of Innovation Programme 4 (IP4) of the Shift2Rail (S2R)
initiative (www.shift2rail.org, accessed on 10 October 2022)) which aims at enhancing the
European Transportation domain. The S2R initiative aims at implementing a collaborative
ecosystem through its Interoperability Framework [27] that provides various modules and
services such as automated mapping [28,29], data conversion [30], and ontology manage-
ment [31]. The ecosystem facilitates the interoperability between IP4 services (e.g., Booking,
Journey Planning) and Travel Service Providers (TSP) and permits them to interact, share
data, and create more complex services while addressing their security and privacy con-
cerns [32]. The ecosystem includes a component, the so-called Travel Companion (TC),
which is an application that can run on various devices—e.g., smartphones—and assists
travelers before, during, and after each journey.

As mentioned in Section 1, the existence of an application assisting users in setting
up their travels is a prerequisite of our approach. The proposed system (THOR) is general
and it could be part of any such application. However, the specific application into which
the system is integrated has an impact on THOR’s implementation. In particular, the set of
travel features handled by the application determines the data fed to THOR for learning
preference models (see Table 1) and affects the resulting recommendations. THOR was
developed to be part of the S2R ecosystem, hence its implementation is compatible with
the S2R TC. More precisely, THOR is part of the R2R Offer Categorizer module (OC, see
Section 3.1), which pre-analyzes travel offers before feeding them to THOR and retrieves
the results of THOR’s computation. The complete implementation of the OC is not part of
this work.

2.2. Recommender Systems

Usually, an RS falls into one of the following categories [33,34]: (i) Content-based, where
recommendations are provided based on the user’s past purchases; (ii) Collaborative, where
recommendations are based on other users with similar preferences; and (iii) Hybrid, which
combine (i) and (ii).

Valliyammai et al. [35] propose a model-based, collaborative filtering system based on
fuzzy c-means [36] for clustering and A-priori [37] for classification. Motivated by their
future work, to enhance the proposed system, we utilize Support Vector Machines (SVM)
for our proposed system.

Sebasti et al. [15] developed a framework that collects user profiles by requiring users
to enter their details and general preferences and asking them to introduce their specific
preferences for the current visit. Then, the system generates a list of activities that are likely
of interest to the user. A hybrid RS classifies users into different categories—e.g., “Person
with Children”. Then, a content-based approach recommends more places according to the
user’s history, and a filter selects the proper places based on the current request. Unlike
Sebasti et al. [15], our proposed approach relies only on the historical records of the travelers
and does not require them to specify their preferences. In our system, a user can optionally

https://ride2rail.eu
http://www.shift2rail.org/
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specify some preferences which will be used by the recommender system. Further details
are available in Section 3.

Table 1. Main features used for data generation along with their type and category.

Name Type Category Name Type Category
Age Cat. Profile Starting Point Cat. Offer
City Cat. Profile Destination Cat. Offer
Country Cat. Profile Via List Offer
Loyalty Cards List Profile LegMode List Offer
Payment Cards List Profile Class List Offer
PRM Type List Profile Seats Type List Offer
Profile Type Cat. Profile Arrival Time Cat. Offer
Quick Float Offer Departure Time Cat. Offer
Reliable Float Offer Preferred Transp. Types List Search
Cheap Float Offer Preferred Carriers List Search
Comfortable Float Offer Preferred Refund Type Cat. Search
Door-to-door Float Offer Preferred Services List Search
Envir. Friendly Float Offer Max. No. of Transfers Int. Search
Short Float Offer Max. Transfers Duration Cat. Search
Multitasking Float Offer Max. Walking Dist. to Stop Cat. Search
Social Float Offer Walking Speed Cat. Search
Panoramic Float Offer Cycling Distance to Stop Cat. Search
Healthy Float Offer Cycling Speed Cat. Search
Legs Number Int. Offer Driving Speed Cat. Search

Lorenzi et al. [38] decompose a recommendation into travel services, and different
services are managed by different agents (that work cooperatively). As the recommenda-
tion process proceeds, each agent becomes expert in one or more specific travel service.
The interaction among these specialized agents results in better recommendations, and
an excellent offer will be generated by combining all services recommended by different
agents in this method. Although the system could be suitable for one user, the performance
can be quite different for different users. In other words, the system lacks personalization
at the individual level.

Javadian et al. [39] propose a data-mining-based RS to rank offers. They use association
rule mining to calculate the similarities between the user requests and the offers. The work
first designs the features through a historical traveler database and, after a pre-processing
phase, a knowledge base is set up by mining association rules from the database. Then, the
knowledge base enables scoring each offer according to the characteristics of the user’s
mobility request. The main limitation of their work is the choice of rule-based algorithms
(e.g., A priori) which are dependent on extracted/predefined rules which do not guarantee
a good performance on the undefined cases. Moreover, like other systems introduced earlier,
they rely only on the wisdom of the crowd and ignore the individual-level personalization.

Fang et al. [40] automatically generate, from a collection of documents based on
Wikipedia and Twitter, temporal feature vectors of Point Of Interests (POIs) that include
seasonal attractions such as water sports, snow festivals, and the viewing of scarlet maple
leaves. Similarly, Coelho et al. [41] employ travel-related tweets to personalize recommen-
dations regarding POIs for the user. Firstly, they categorize POIs as historical buildings,
museums, parks, and restaurants; then, they build a classification model to classify the
tweets. To obtain a better-personalized model, travel-related tweets of the user’s friends
and followers are also mined. The proposed systems by Fang et al. [40] and Coelho et al. [41]
have two main limitations: they recommend POIs rather than complete travel offers for a
journey, and they lack user modeling techniques.

Fararni et al. [42] explore a user profiling process according to the following scenarios:
(i) Inscription: Inserting preferences, which is done directly by the user. (ii) Social login:
Obtaining preferences from the user’s Social Media (SM) accounts. (iii) Consultation even
without login: Observation and analysis of the user behaviors. (iv) Context: Contextual
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information to generate dynamic visit schedules. The system also incorporates tourist
services information, a contextual meta-model for analyzing the input data, a hybrid
filtering process for storing the list of items with users’ appreciation degree, and a trip
planner for correlating all the choices as a trip. Our proposed system differs from the one
by Fararni et al. [42] in many ways. Considering the Inscription scenario, although we
incorporate user-provided preferences, our system does not depend on them. Concerning
the users’ behavioral aspects and context, our system implicitly learns the behavioral
changes and contextual preferences by updating the users’ preference models with recent
purchase histories. Finally, concerning the Social login scenario, due to privacy concerns, we
did not integrate SM as source of information in the current implementation of the system.
Note that our proposed system can be extended to incorporate SM information using the
social media core proposed in [9].

2.3. Travelers’ Preferences

This section overviews the works analyzing the main characteristics of travels and
travelers that potentially affect travelers’ preferences. From their analysis, we derived a
contextual dimension tree capturing the main features presented in [43].

Basile et al. [44] propose a system to understand if the users’ preferences explicitly
match their behavior. First, the system builds user profiles, i.e., general descriptions of
the users based on their travel preferences; second, it builds profiles using evaluation data
collected after the actual travels; and finally, the before- and after-travel user profiles are
matched. This type of model can keep improving the accuracy of the computation of user
preferences. Consonni et al. [45] collect travel-centered mobility data via crowdsourcing.
The time spent on the travel is analyzed from a traveler’s perspective: the user is asked
which activities they have performed during the trip, and which factors have influenced
their trip positively or negatively. After analyzing the data, the system can change the
perspective on the travel time: instead of considering it simply as spent or wasted, the system
characterizes the travel time in terms of the activities performed, i.e., fitness, enjoyment,
and productivity. Boratto et al. [46] analyze and characterize user behavior during journey
planning to get insights from different perspectives related to trip search options, i.e., both
sorting and selection actions. While selecting different offers, the system can rapidly learn
more about the users’ preferences.

2.4. Cold Start Problem

The dependency on the existence of historical data is known as the “cold start prob-
lem” [47]. Work in [48–52] explores various techniques for determining the best item
recommendations for a new user. These techniques employ strategies based on each item’s
popularity and/or the user profile. However, to provide the user with reliable recommen-
dations, a content-based RS should have access to a sufficient number of user’s records
that allow it to determine the user’s preferences. Therefore, a new user, having very few
records, might not receive accurate recommendations. Moreover, although recommending
a new user’s top popular offers might increase the user’s purchase likelihood, it decreases
the personalization. Finally, collaborative methods can help to improve personalization,
but the recommendations’ precision might be quite low.

Clustering algorithms can be used to group users according to their profiles, and the
resulting model can predict the cluster of a new user.

In our work, we design and build the RS block proposed by Javadian et al. [8,9]. To
do so, we combine collaborative and content-based methods to develop a hybrid approach.
Given a new user, we do not aim to find a single similar user, but we look for a group of
users with similar characteristics instead. Then, we do not directly recommend to new users
the travel offers that have been bought by similar groups. Rather, we use a content-based
method to build the recommender model for the group and use the model to predict the
new user’s recommendations.
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3. The Hybrid Offer Ranker (THOR)

This section details THOR’s implementation and functions. THOR’s source code
is publicly available to researchers for testing and possible improvement (github.com/
Ride2Rail/Learner_Ranker/tree/main/TravelOffer_RecommenderCore, accessed on 10
October 2022).

3.1. Overview

THOR aims to provide ranked travel offers to TC users according to their contextual
preferences. Figure 1 provides a high-level overview of the THOR system.

Travel offers and user profiles are collected when TC users send mobility requests,
where each request includes the so-called “search options”—i.e., situational preferences
such as the desired means of transportation, the maximum number of connections, and so
on (see also Table 1). In response, the Travel Solution Aggregator—a third-party application
that queries TSPs for travel solutions—returns the list of offers to fulfill the mobility
request. For each of the offers returned by the Travel Solution Aggregator, the Offer
Categorizer module (OC) computes scores for the following travel categories: fast, reliable,
cheap, comfortable, door-to-door, environmentally friendly, short, multitasking, social, panoramic,
and healthy (the implementation of the OC module, developed within the R2R project, is not
part of this work). The OC also extracts specific details of each leg of the travel offer (where
a leg is a single piece of travel contained in an end-to-end journey), such as transportation
mode, seat type, carrier, and length. In the rest of this work, we refer to the combination of
category scores and leg-level information as the enriched offer. In turn, enriched offers are
combined with the user’s most recent profile information to build the Ranker’s input data.
The Ranker uses the personal, contextual preference model of the user—elaborated by the
Learner—to predict if they will buy the offer or not. Next, the ranked list of offers is shown
to the user. After a travel offer is selected from the list, the user’s historical data are updated
with the offers in the list (where each offer is tagged as purchased/not purchased), and the
Learner module uses the new records to update the user’s contextual preference model.

User

Travel Solution Aggregator

sends  
mobility request

Travel Offers List

Enriched Travel Offers

Travel Companion App

contacts

builds Offer  
Categorizer

enriches

Model Exists?Ranker

computes

Learner

feeds

Ranked Offers 

is presented to

user's selection
is recorded in

65%
45%
30%
35%
...%

Quick
Cheap

Panoramic
Eco-friendly

...

is saved in

is sent to

Personal Contextual  
Preference Model

Profile Information

Historical Data

feeds
builds

feeds

feeds

No

Yes

feeds

Profile Information

Figure 1. High-level representation of THOR.

We say that a user is cold if their historical database contains a number of records
smaller than a given threshold (e.g., 100); among cold users, we have new users—i.e., users
who just registered so the system does not have any historical records for them.

https://github.com/Ride2Rail/Learner_Ranker/tree/main/TravelOffer_RecommenderCore
https://github.com/Ride2Rail/Learner_Ranker/tree/main/TravelOffer_RecommenderCore
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We separate contextual preference models into two categories: user-specific recommender
models—i.e., preference models obtained using data related to a single user—and cluster-
wide recommender models—i.e., models trained considering data from a set of travelers
(instead of a single one) with similar profiles. We recognize users who have similar profiles
by building a cluster model, which allows us to identify, for each user (even new ones), the
cluster to which they belong.

3.2. Data Pre-Processing

In order to prepare the data for the learning and ranking modules, the framework
applies the following pre-processing steps.

1. One-Hot Encoding:This step translates the raw textual data into a numerical one-hot
version. Moreover, null data are replaced with zeros. Consider, for example, the
feature “Profile”, which takes one of the following four values: “Basic”, “Business”,
“Family”, or “Leisure”. During one-hot encoding, “Profile” is split into four features
(one for each possible value) that are mutually exclusive—i.e., only one of them can
have a value equal to one, while the rest are zero.

2. Information-Less Columns Dropping (ILCD): in this step, the system deletes all
columns that have the same value in the dataset. For instance, if the user has never
changed their hometown, we can delete it because this feature means nothing to our
system. Deleting these columns substantially speeds up the training phase.

3. Data Normalization: Since the scales and magnitudes of the features are not the same,
if the original data values are used directly during the prediction phase, their degree
of influence is different. The system applies a normalization process through which
every feature will have the same influence on the result.

3.3. Learner Module

One of THOR’s fundamental blocks is the Learner, which constantly updates users’
preferences and builds the most recent contextual preference model for each user individu-
ally. Figure 2 details the logic control of the Learner module, and Algorithm 1 provides its
pseudo-code.

Administrator

Update Profile?

updateUserCurrProfile

User Type Check

Yes

No reClusterTag 
is True?

Cluster Model
Exist?

COLD USER AssignColdUserModel

CLUSTER_TRAINING

updateAllProfiles

retraining the cluster model

clusterModel.m

recommender
model for

each cluster

CLASSIFIER_TRAINOLD USER

best_model_ 
username_all 
_last.m

No

No

Yes

Yes

Figure 2. THOR’s Training (Learning) Workflow.

An administrator can manually or automatically (according to a schedule) trigger the
update of the user models. Before training the model, the administrator can choose to
update the current user or not, read all the users’ current profiles, and put them all into one
table as the input data to the cluster training module. The administrator can also upload
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other users’ profile data supplied by third parties to help the system train a better model at
the first stage.

For a cold user, the administrator can re-train the cluster model by setting the value
of reClusterTag to true, and the re-training process will also be completed when the
system does not find the cluster model. During the cluster model training phase (which is
encapsulated in algorithm ClusterModelTrain shown in Algorithm 2), all users’ profiles
are sent to CLUSTER_TRAINING; the system keeps track of the cluster model and of the
cluster-wide recommender models. These models are then associated with the cold user
based on the cluster to which the user belongs; in this way, we build the cold user’s model
by training it on the historical data of other—similar—travelers.

For an old user, the administrator uses the CLASSIFIER_TRAIN function to train or
re-train the user’s model and save the user’s best model.

Algorithm 1 Learner

Input: username; reClusterTag; new profile (optional).
Output: user-specific recommender model or cluster-wide recommender model.

1: function MODELTRAIN(username, reClusterTag, new profile)
2: user’s historical records← fetch user records from database(username)
3: user type← check the number of user’s historical records
4:
5: if user new profile is given then
6: update the database with new profile
7: end if
8:
9: if user type is old user then

10: user recommender model← CLASSIFIER_TRAIN(user’s historical records)
11: else
12: if cluster model does not exist OR reClusterTag is True then
13: search ranges← parameters range define
14: cluster model, cluster-wide recommender models ← ClusterModelTrain(search

ranges)
15: end if
16: user cluster← get user cluster(cluster model, username)
17: cluster-wide recommender model← get cluster-wide recommender model(cluster-wide

recommender models, user cluster)
18: user recommender model← copy model(cluster-wide recommender model)
19: end if
20: user-specific recommender model← save model(user recommender model)
21: end function

Algorithm 2 Cluster Model Training

Input: search ranges for each algorithm.
Output: cluster model; cluster-wide recommender models.

1: function CLUSTERMODELTRAIN(search ranges)
2: user profiles← fetch all user profiles from the database
3: best parameters← compute best parameters for algorithms(search ranges)
4: cluster model← CLUSTER_TRAINING(best parameters, user profiles)
5:
6: for cluster ∈ cluster model do
7: cluster historical records← merge all the users’ records in the cluster
8: cluster-wide recommender model← CLASSIFIER_TRAIN(cluster historical records)
9: end for

10: end function
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3.3.1. Cluster Training for New User

The pseudo-code for the training of the cluster-wide models that occur in case of a
new user is presented in Algorithm 2. The system first computes the clusters of users,
then, for each cluster, it learns a cluster-wide recommender model to solve the problem of
recommendations for cold users. This module computes the best parameter setting and
uses it to fit the cluster model. Then, it gathers the data for each cluster and trains its models.
The function also supports using data supplied by the administrator themselves; otherwise,
the system will automatically fetch all valid users’ current profiles in the database.

Before fitting the model, the system finds the best parameters by using the parameter-
tuning function. To do so, the first step is to define the search range for each parameter
in different algorithms. In this work, we used two well-known clustering algorithms:
K-means [24] and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [25]
provided in Sklearn.cluster [53]. One of the main strengths of these algorithms is that they
can be used easily with any data type, various distance functions, and efficient indexing
approaches facilitating the analysis of large datasets [54]. To calculate the optimal number
of clusters for K-means and DBSCAN, we employ the Elbow method and the Silhouette
coefficient, respectively [55], which are briefly recalled here.

In particular, K-means aims to minimize the Sum of Squared Error (SSE) between the
samples and the mass point of the cluster they belong to; the smaller the value of SSE, the
tighter the clusters. Given a set of samples, the value of SSE typically decreases as the
number of clusters increases, first slowly, then more steeply, until it again decreases slowly.
This gives the SSE curve the shape of an “elbow”, and the inflection point (i.e., the elbow)
corresponds to the number of clusters that offers the best performance for the algorithm.
The Elbow method allows us to determine the inflection point of the SSE curve, which
corresponds to the optimal number of clusters to configure K-means.

To obtain more precise clustering results with DBSCAN, instead, we calculate the
Silhouette coefficient. More precisely, the best coefficient is obtained when the distances
among points in the same cluster (resp., different clusters)—i.e., the cohesion (resp., the
separation)—are as small (resp., as big) as possible.

Comparing K-means and DBSCAN, although K-means requires a prototype-based
concept of a cluster (i.e., the number of clusters and their initial centroids), it is useful for
sparse and high dimensional data. On the other hand, DBSCAN is powerful in dealing
with noises, although it does not perform very well for high dimensional data [56].

After obtaining the best parameters for the algorithms (e.g., the number of clusters),
we use CLUSTER_TRAINING to compute the set of clusters of users with similar profiles.
Next, for each cluster, we combine the historical records of all the users in the cluster and
feed them to the CLASSIFIER_TRAIN module to build the cluster-wide recommender model.

Finally, when a new user registers to the system, THOR uses their profile information
to compute the cluster to which the user belongs and associates the corresponding cluster-
wide recommender model with the new user.

3.3.2. User Recommender Model Training

The CLASSIFIER_TRAIN function, whose pseudo-code is shown in Algorithm 3, is the
core mechanism for building both user-specific and cluster-wide recommender models.
More precisely, to train user-specific (resp., cluster-wide) recommender models, function
CLASSIFIER_TRAIN receives as input the records of a single user (resp., of all users that
belong to the cluster). The function first finds the best parameter setting, then uses it to
build the recommender model.

To capture the user context, each user record is made of the most recent user profile
information (profile), the enriched travel offer (travel offer, which includes the information
whether it was purchased or not), and the search options (request) that were used in the
mobility request to which the travel offers are the reply.
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Algorithm 3 Recommender Model Training

Input: user records, i.e., the most recent profile information (profile), purchased and not-
purchased enriched travel offers (travel offers), as well as their corresponding search
options (requests)

Output: recommender model.
1: function CLASSIFIER_TRAIN(user records)
2: train data← data preprocessing(user records)
3: search ranges← parameters range define
4:
5: for algo ∈ [KNN, SVC, DT, LR, RF] do
6: temp best model, score← BSCV(algo, train data, search ranges)
7: best model← compare scores of the models
8: end for
9: recommender model← save the model in file(best model)

10: end function

To create the training dataset, the system takes the received user records and first
performs a pre-processing step (see Section 3.2). Then, we use the data to find the best
algorithm and best parameters and then save the final model.

Knowing whether each offer was bought or not allows the system to solve a classifica-
tion problem, where each new travel offer is classified as “buy” or “not buy” depending on
the current profile. More precisely, for each new offer, the system predicts the probability
that the user will buy it and considers this value as the score of the offer; finally, offers are
ranked according to their scores (i.e., the probability that they will be bought).

To compute the prediction, and in particular to build the personal recommender
models, we use popular classification algorithms, all provided by the Sklearn package [53]:
KNN [19], SVC [20], DT [21], RF [22], and LR [23]. The reason for choosing such algorithms
instead of, say, neural networks is that they require much fewer data points, which is a
crucial requirement in our case for building personal models [57].

Let us briefly point out the main advantages and disadvantages of each algorithm.
KNN is non-parametric and does not make any prior assumption on the data distribution;
however, it can exhibit poor performance for high dimensional data and in presence of
irrelevant features. SVC is quite robust with respect to the behavior of observations that
are far from the decision boundary, but it is not suitable for large data sets. Considering
DT, although its results are interpretable, it is sometimes less accurate compared to the
other algorithms. RF requires higher training time than other algorithms, but it is suitable
when the dataset is large and interpretability is not a major concern. LR is very efficient
to train and does not make any assumptions about distributions of classes in the feature
space; however, if the number of records is much smaller than the number of features, it
may result in overfitting [58].

The set of chosen algorithms covers many cases and situations (e.g., some algorithms
work well with small datasets, others are better with big ones); THOR chooses the best-
performing algorithm depending on the current training dataset, which ensures the quality
of the recommendations. Therefore, a general evaluation method is needed to automatically
compare the algorithms among them and find the best fit for the dataset. In this regard,
the most popular one is Bayes Search Cross-Validation (BSCV) [59]. Grid Search Cross-
Validation (GSCV) [60] is another appropriate method, especially for KNN; however, BSCV
can be used for all the algorithms employed in this work. BSCV updates the current
best model during each iteration and changes parameter settings according to the search
ranges. If the parameter setting is invalid—i.e., the combination of values does not fit the
algorithm—the system discards it and searches for another one. The best model for the
current user, which depends on the best score given by BSCV, is then generated. Finally,
we store the best model to be used in the future.



Big Data Cogn. Comput. 2022, 6, 131 11 of 19

3.4. Ranker

The Ranker (shown in Algorithm 4) is the main component to get the recommendation
results for a user. Its core is represented by function CLASSIFIER_RESPONSE, which, for
each travel offer, computes the travel offer’s score (i.e., the probability that the user will
buy that travel offer) using the user’s recommender model. The Ranker assumes that
a recommender model has already been assigned to the user; if not, prior to the steps
described in the following, it invokes the Learner block shown in Algorithm 1.

Initially, the Ranker receives the corresponding preference model of the user, i.e., the
user-specific model in the case of the old user or the cluster-wide model in the case of a cold
user. After getting the model, the Ranker uses function CLASSIFIER_RESPONSE to predict if
the user will buy or not any of the offers and saves the results.

Algorithm 4 RANKER

Input: user’s recommender model (model), most recent profile information (profile), search
options (request), list of enriched travel offers (travel offers)

Output: ranked list of travel offers (ranked offers)
1: function RANKER(model, profile, request, travel offers)
2: scored_travel_offers = []
3:
4: for offer ∈ travel offers do
5: (offer_id, prediction’s score)← CLASSIFIER_RESPONSE(model, profile, request, offer)
6: scored_travel_offers.append((offer_id, prediction’s score))
7: end for
8: ranked offers← sort(scored_travel_offers)
9: end function

More precisely, the CLASSIFIER_RESPONSE function preprocesses the input data and
makes the predictions by using the user recommender model. Each travel offer in the set
(which has been enriched by the OC) is joined with the user’s current profile and with the
information concerning the mobility request to form the raw data, which is fed as input
to the prediction function. Using the recommender model associated with the user, we
obtain, for each offer, the probability that it will be bought by the user and use that as the
offer score.

Finally, the Ranker sorts the travel offers according to their scores and presents them
to the user.

3.5. User Feedback

To have better accuracy for the recommendations, the system needs to update the
user’s historical records continuously. The collected user feedback consists of the pur-
chasing decision after the recommendation: the user will typically buy an offer from the
list shown to them and ignore the rest. However, if the system recommends too many
offers to the user, part of them will not be seen by the user, and the model will be updated
based only on the best recommendations. Hence, the top 30 recommended offers, plus the
one bought by the user, are recorded in the historical dataset; this number may have little
impact on a large dataset, but it may change the results a lot for a small dataset, especially
for a new user.

4. Experimental Results

To evaluate the features of the THOR system, we carried out a few experiments with
the two following goals. Since, as mentioned in Section 1, to the best of our knowledge in
the literature, there are no other works directly comparable to THOR, a direct comparison of
the performance of THOR with that of similar tools is not possible. However, as described in
Section 4.1, we first aim to quantitatively evaluate the accuracy of THOR (and in particular
of its classifiers) when predicting the category (bought/not bought) of each travel offer
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received. Second (Section 4.2), we evaluate its ability to suitably rank the sets of offers
received, in particular when the user context (especially the user profile) changes. Since
there are no suitable metrics to assess the ranking mechanism in a quantitative manner
(e.g., through a notion of accuracy) [61], we designed a controlled experiment to evaluate
the quality of the rankings instead.

4.1. Validating the Classifiers

To test THOR, we need an existing dataset. At first, we attempted to find a suitable
publicly available dataset for this purpose; although the available datasets had some infor-
mation about travelers in Europe and public transport facilities, none of them could match
(even partially) with the Shift2Rail’s data structure. To do so, we designed a data generation
pipeline using some rules to avoid having a completely random dataset. An advantage of
this line of work is that knowing the distribution of the dataset allows us to validate the
results. Table 1 provides the main features that we used during our experiment. “Profile”
encompasses a set of features such as age and list of loyalty cards saved in the user’s profile.
“Search Options (Search)” includes a set of features related to the submitted mobility request
by the user (e.g., preferred transportation type). Lastly, “Travel Offer (Offer)” is the set
of features extracted from the offer to be ranked (e.g., number of legs). We generated a
dataset with 1000 unique user profiles and a total of 101,028 records (approximately 100
records—i.e., travel offers—per user, so each user has enough records to be considered
“old”, and a user-specific recommender model can be trained for them).

The dataset was generated randomly, but we introduced a few rules to avoid making it
uniform and to create “hidden patterns” to check whether our recommendation mechanism
was able to pick them up. For example, in the generated dataset, 40% of the travel offers
associated with users who are Persons With Reduced Mobility (PRM) have a single leg
(i.e., it holds that “Legs Number = 1”), and 80% are short. Then, we associated with each
offer a “Bought” tag that depended on one of the features of the offers (e.g., “short”), and
we finally randomly changed 10% of the bought (resp., not bought) travel offers to not bought
(resp., bought). In this way, the bought travel offers are not evenly distributed across the
dataset. We use 80% of the records in the dataset for training the classifiers and 20% for
testing their accuracy. A perfect classifier would be able to correctly guess which, among
the 20% travel offers used for testing are bought and which are not.

Figure 3 reports the box plot of the time required, for each user, to train each algorithm
(training was carried out on a MacBook Pro with CPU Core i9 and 16 GB RAM). If we
consider, for each user, the cumulative time that it takes to train all algorithms (i.e., the
time to train KNN on the user records, plus the time to train SVC on the same user records,
and so on), then the sum of the average training times (i.e., the values highlighted as
yellow lines in Figure 3) is around 1 s, and the sum of the maximum required training
times (i.e., the highest dots in Figure 3) is close to 2.1 s. Moreover, there exists a minor
computational cost (a few milliseconds) to retrieve the learned model and predict the scores
of the travel offers.

After getting all the best models of the test users—i.e., the combination of param-
eters for the algorithm with the best performance—we recorded the accuracy value of
each algorithm. The accuracy is obtained by considering true positives (resp., true nega-
tives) as the travel offers that are tagged as “purchased” (resp., “not purchased”) in the
dataset and for which THOR returned a correct prediction of 1 (resp., 0) by computing the
following quantity:

true positives + true negatives
number of records

× 100

Figure 4 details the accuracies of each algorithm for all the users. The last box plot
provides the scores obtained from the best algorithm for each user. We optimize the model
by selecting the best algorithm automatically. The average accuracy is equal to 91%; the
highest accuracy is equal to 100%, while the lowest accuracy is equal to 72%.
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Figure 5 shows the proportion of the models obtained by each algorithm as the optimal
model. We can see that LR is the most suitable and KNN and RF are the least suitable
algorithms for our test data.

Figure 3. The classifiers’ training time for all the users.

SVC DT LR RF KNN Best Score
Classifier
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Figure 4. The accuracies of each algorithm for all the users. The last box plot provides the scores
obtained from the best algorithm for each user.
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Figure 5. The probability distribution of different algorithms is used as the best model.

4.2. Validating the Ranker

The procedure discussed in Section 4.1 focuses on the validation of the performance
of the classifiers, and it is not well suited to validate the proposed ranking mechanism.
Therefore, in this section, we present a scenario-based validation procedure to evaluate
how the system ranks the travel offers for a specific user depending on the user context. To
do so, we manually created a data set for a fictional person named Sarah. The dataset is
such that Sarah selects different types of travel offers depending on her context. We expect
that THOR detects contextual preferences of Sarah and ranks the travel offers accordingly.

Sarah is a 35-year-old assistant professor at the Polytechnic University of Atlantis (EU).
She lives in Atlantis, and due to the research projects she is working on, she frequently
travels to many European countries to meet the project’s partners. She has been using
the TC application for some time to find the most suitable travel offers; therefore, the
system has some records of her choices in different contexts. Sarah’s travel records can
be divided into two typical situations. The first set of records concerns a period in which
she is healthy—i.e., she does not have any issues that could make her a PRM. In these
cases, she typically selects business class trips, window seats, does not put any constraints
(in the search options) on transfer duration and number of stops, and so on. Since she
cares a lot about global warming, she prioritizes travel offers with the minimum carbon
footprint—i.e., those with the highest environmentally-friendly score even if they are not
cheap or are not quick—and this results in her not choosing private taxis and similar
options with low environmentally-friendly scores. Moreover, she likes travel offers that
have high panoramic scores; therefore, she mostly avoids travel offers that cannot fulfill this
preference (e.g., underground transportation). In addition, this results in Sarah choosing
mostly travel offers with many legs (changes), low door-to-door scores, and sometimes low
comfort scores.

The second set of records is related to a period in which she needed to use a wheelchair
due to a car accident. As a result, she updated her profile information to mention her new
PRM status, and she started favoring, in her selections, travel offers with characteristics
such as door-to-door, comfortable, quick, and so on, even though they are totally different
from what she used to choose. As a result, her personal recommender model is updated
automatically using the new profile information. For instance, to satisfy the door-to-door
requirement, as a PRM, she always chooses travel offers that include taxis on the first and
last legs of the trip. Other changes in her selections related to modes of transportation
include not choosing ship and bus trips, which she used to choose before. Moreover, if
available, she chooses large seats. In other words, Sarah selects offers that are more suitable
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for PRM people. These offers are now part of her user records, where each record includes
the profile information under which the choices were made.

Using these records (first and second sets), we trained a personal recommender model
(using again 80% of the records for training and 20% for testing) that, on average, showed
90% accuracy when predicting travel offers that Sarah will buy. This shows that even
when the context of the user—hence their patterns of behavior—changes, if the profile
information is suitably updated, the system is able to adapt to these patterns and ranks
travel offers according to the user’s contextual preferences.

Since the purpose of this experiment is to test the ranking mechanism, we assumed a
situation in which Sarah becomes healthy again and does not use a wheelchair anymore.
For a given mobility request at this time, we generated three potential travel offers: travel
offer A, with characteristics most similar to the time when she was not a PRM, travel offer
B, with the characteristics most similar to the time when she was a PRM, and travel offer C,
with blended characteristics.

As expected, the Ranker could successfully rank travel offer A as the first, C as the
second, and B as the third.

5. Conclusions and Future Work

In this work, we designed and implemented The Hybrid Offer Ranker (THOR), a
personalized, context-aware, hybrid recommender system that employs various state-of-
the-art classification algorithms (DT, KNN, LR, RF, and SVC) to tackle RQ1—i.e., to learn the
travelers’ contextual preferences and rank travel offers accordingly. Moreover, to address
RQ2, we used the K-means and DBSCAN clustering algorithms to deal with the cold-start
problem for new users. To tune the algorithms’ hyper-parameters, we designed a grid
search (GSCV) mechanism which finds the set of hyper-parameters automatically. THOR
keeps learning as soon as a new record or user is registered in the system, thus, keeping
the recommender models up-to-date. Notice that the modular design of THOR allows the
integration of classification and clustering algorithms other than those used in this work.

Since the TC application is under development, there exists no real data for testing
purposes. Hence, to test the performance of THOR, we automatically synthesized a dataset
of 1000 unique user profiles and more than 100,000 travel offers, and we also manually
built a controlled dataset for a specific user according to a predefined scenario. On both
datasets, THOR showed an accuracy higher than 90%. These are promising results that
show that THOR can be integrated with other TC modules to be tested in demo sites.

In the future, we plan to extend/improve THOR in several directions. As soon as
we acquire enough real data, we plan to test the performance of THOR by using various
feature selection methods [62–64] which potentially might result in reducing the complexity
of the model while improving its accuracy.

Additionally, we plan to use deep learning approaches, such as the multimodal deep
learning methods presented in [65–67], for training the cluster-wide recommender models.
In addition, various transfer learning methods [68] could be exploited to reduce the training
time while updating the cluster-wide recommender models.

We plan to build the social media core proposed in [9] as a tool [69,70] to characterize
urban mobility patterns [71,72]. Moreover, the social media core will enable the system’s
stakeholders to understand user preferences during online events [73,74] which bring many
travelers to specific European cities. Consequently, we plan to design predictive models as
proposed in [75] to predict the popularity of online content generated by the stakeholders to
maximize the visibility and popularity of their news and advertisements. Last but not least,
the social media core will enable us to extract the conversation graphs [76,77] around specific
topics, build conversational agents [78], and facilitate customer relationship management.
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27. Sadeghi, M.; Buchníček, P.; Carenini, A.; Corcho, O.; Gogos, S.; Rossi, M.; Santoro, R. SPRINT: Semantics for PerfoRmant and
scalable INteroperability of multimodal Transport. In Proceedings of the TRA, Helsinki, Finland, 27–30 April 2020; pp. 1–10.

28. Hosseini, M.; Kalwar, S.; Rossi, M.G.; Sadeghi, M. Automated mapping for semantic-based conversion of transportation data
formats. In Proceedings of the 1st International Workshop On Semantics For Transport, Karlsruhe, Germany, 9 September 2019;
Volume 2447, pp. 1–6.

29. Kalwar, S.; Sadeghi, M.; Javadian Sabet, A.; Nemirovskiy, A.; Rossi, M.G. SMART: Towards Automated Mapping between Data
Specifications. In Proceedings of the 33rd International Conference on Software Engineering and Knowledge Engineering, SEKE
2021, KSIR Virtual Conference Center, Pittsburgh, PA, USA, 1–10 July 2021. [CrossRef]

30. Carenini, A.; Dell’Arciprete, U.; Gogos, S.; Kallehbasti, M.M.P.; Rossi, M.; Santoro, R. ST4RT—Semantic Transformations for Rail
Transportation. In Proceedings of the TRA 2018, Vienna, Austria, 16–19 April 2018; pp. 1–10.

31. Alobaid, A.; Garijo, D.; Poveda-Villalón, M.; Santana-Perez, I.; Fernández-Izquierdo, A.; Corcho, O. Automating ontology
engineering support activities with OnToology. J. Web Semant. 2019, 57, 100472. [CrossRef]

32. Sadeghi, M.; Sartor, L.; Rossi, M. A Semantic-Based Access Control Mechanism for Distributed Systems. In Proceedings of the
36th Annual ACM Symposium on Applied Computing, SAC’ 21, Gwangju, Korea, 22–26 March 2021; Association for Computing
Machinery, New York, NY, USA, 2021; pp. 1864–1873. [CrossRef]

33. Adomavicius, G.; Tuzhilin, A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible
extensions. IEEE Trans. Knowl. Data Eng. 2005, 17, 734–749. [CrossRef]

34. Cai, Y.; Leung, H.F.; Li, Q.; Min, H.; Tang, J.; Li, J. Typicality-Based Collaborative Filtering Recommendation. IEEE Trans. Knowl.
Data Eng. 2014, 26, 766–779. [CrossRef]

35. Valliyammai, C.; PrasannaVenkatesh, R.; Vennila, C.; Krishnan, S.G. An intelligent personalized recommendation for travel
group planning based on reviews. In Proceedings of the 2016 Eighth International Conference on Advanced Computing (ICoAC),
Chennai, India, 19–21 January 2017; pp. 67–71. [CrossRef]

36. Cao, Y.; Li, Y. An intelligent fuzzy-based recommendation system for consumer electronic products. Expert Syst. Appl. 2007,
33, 230–240. [CrossRef]

37. Agrawal, R.; Srikant, R. Fast algorithms for mining association rules. In Proceedings of the 20th International Conference on Very
Large Data Bases, Santiago de Chile, Chile, 12–15 September 1994; Volume 1215, pp. 487–499.

38. Lorenzi, F.; Loh, S.; Abel, M. PersonalTour: A Recommender System for Travel Packages. In Proceedings of the
2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, Lyon, France,
22–27 August 2011; Volume 2, pp. 333–336. [CrossRef]

39. Sabet, A.J.; Gopalakrishnan, S.; Rossi, M.; Schreiber, F.A.; Tanca, L. Preference Mining in the Travel Domain. In Proceedings
of the 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China,
28–30 June 2021; pp. 358–365. [CrossRef]

http://dx.doi.org/10.1016/j.is.2012.05.004
http://dx.doi.org/10.3390/su13158245
http://dx.doi.org/10.1109/SCORED.2016.7810073
http://dx.doi.org/10.1109/ISCAS.2006.1693321
http://dx.doi.org/10.1109/ICIE.2009.12
http://dx.doi.org/10.1109/ICCSE49874.2020.9201900
http://dx.doi.org/10.1109/ICCSNT47585.2019.8962457
http://dx.doi.org/10.23919/ChiCC.2018.8482823
http://dx.doi.org/10.1109/INES.2012.6249802
http://dx.doi.org/10.18293/SEKE2021-161
http://dx.doi.org/10.1016/j.websem.2018.09.003
http://dx.doi.org/10.1145/3412841.3442058
http://dx.doi.org/10.1109/TKDE.2005.99
http://dx.doi.org/10.1109/TKDE.2013.7
http://dx.doi.org/10.1109/ICoAC.2017.7951747
http://dx.doi.org/10.1016/j.eswa.2006.04.012
http://dx.doi.org/10.1109/WI-IAT.2011.69
http://dx.doi.org/10.1109/ICAICA52286.2021.9498231


Big Data Cogn. Comput. 2022, 6, 131 18 of 19

40. Fang, G.S.; Kamei, S.; Fujita, S. Automatic Generation of Temporal Feature Vectors with Application to Tourism Recommender
Systems. In Proceedings of the 2016 Fourth International Symposium on Computing and Networking (CANDAR), Hiroshima,
Japan, 22–25 November 2016; pp. 676–680. [CrossRef]

41. Coelho, J.; Nitu, P.; Madiraju, P. A Personalized Travel Recommendation System Using Social Media Analysis. In Proceedings
of the 2018 IEEE International Congress on Big Data (BigData Congress), Seattle, DC, USA, 10–13 December 2018; pp. 260–263.
[CrossRef]

42. Fararni, K.A.; Nafis, F.; Aghoutane, B.; Yahyaouy, A.; Riffi, J.; Sabri, A. Hybrid recommender system for tourism based on big
data and AI: A conceptual framework. Big Data Min. Anal. 2021, 4, 47–55. [CrossRef]

43. Shekari, M.; Sabet, A.J.; Guan, C.; Rossi, M.; Schreiber, F.A.; Tanca, L. Personalized Context-Aware Recommender System
for Travelers. In Proceedings of the 30th Italian Symposium on Advanced Database Systems, SEBD 2022, Tirrenia, Italy,
19–22 June 2022; Amato, G., Bartalesi, V., Bianchini, D., Gennaro, C., Torlone, R., Eds.; 2022, Volume 3194, pp. 497–504.

44. Basile, S.; Consonni, C.; Manca, M.; Boratto, L. Matching User Preferences and Behavior for Mobility. In Proceedings of the
31st ACM Conference on Hypertext and Social Media, HT ’20, Online, 13–15 July 2020; Association for Computing Machinery:
New York, NY, USA, 2020; pp. 141–150. [CrossRef]

45. Consonni, C.; Basile, S.; Manca, M.; Boratto, L.; Freitas, A.; Kovacikova, T.; Pourhashem, G.; Cornet, Y. What’s Your Value of
Travel Time? Collecting Traveler-Centered Mobility Data via Crowdsourcing. arXiv 2021, arXiv:cs.CY/2104.05809.

46. Boratto, L.; Manca, M.; Lugano, G.; Gogola, M. Characterizing user behavior in journey planning. Computing 2020, 102. [CrossRef]
47. Schein, A.I.; Popescul, A.; Ungar, L.H.; Pennock, D.M. Methods and metrics for cold-start recommendations. In Proceedings of

the 25th Annual International ACM SIGIR Conference on Research and Development in IR, Tampere, Finland, 11–15 August 2002;
pp. 253–260.

48. Rashid, A.M.; Albert, I.; Cosley, D.; Lam, S.K.; McNee, S.M.; Konstan, J.A.; Riedl, J. Getting to Know You: Learning New User
Preferences in Recommender Systems. In Proceedings of the 7th International Conference on Intelligent User Interfaces, IUI ’02,
College Station, TX, USA, 21–25 March 2022; Association for Computing Machinery: New York, NY, USA, 2002; pp. 127–134.
[CrossRef]

49. Guo, G. Integrating trust and similarity to ameliorate the data sparsity and cold start for recommender systems. In Proceedings
of the 7th ACM conference on Recommender Systems, Hong Kong, 12–16 October 2013; pp. 451–454.

50. Yu, K.; Schwaighofer, A.; Tresp, V.; Xu, X.; Kriegel, H.P. Probabilistic memory-based collaborative filtering. IEEE Trans. Knowl.
Data Eng. 2004, 16, 56–69. [CrossRef]

51. Ghodsad, P.R.; Chatur, P.N. Handling User Cold-Start Problem for Group Recommender System Using Social Behaviour Wise
Group Detection Method. In Proceedings of the 2018 International Conference on Research in Intelligent and Computing in
Engineering (RICE), San Salvador, El Salvador, 22–24 August 2018; pp. 1–5. [CrossRef]

52. Sang, A.; Vishwakarma, S.K. A ranking based recommender system for cold start data sparsity problem. In Proceedings of the
2017 Tenth International Conference on Contemporary Computing (IC3), Noida, India, 10–12 August 2017; pp. 1–3. [CrossRef]

53. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,
V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

54. Schubert, E.; Sander, J.; Ester, M.; Kriegel, H.P.; Xu, X. DBSCAN Revisited, Revisited: Why and How You Should (Still) Use
DBSCAN. ACM Trans. Database Syst. 2017, 42, 3068335. [CrossRef]

55. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: Berlin, Germany, 2013; Volume 112.
56. Kanagala, H.K.; Jaya Rama Krishnaiah, V. A comparative study of K-Means, DBSCAN and OPTICS. In Proceedings of the 2016

International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 7–9 January 2016; pp. 1–6.
[CrossRef]

57. Kumar, R.; Verma, R. Classification algorithms for data mining: A survey. Int. J. Innov. Eng. Technol. (Ijiet) 2012, 1, 7–14.
58. Narayanan, U.; Unnikrishnan, A.; Paul, V.; Joseph, S. A survey on various supervised classification algorithms. In Proceedings of

the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India,
1–2 August 2017; pp. 2118–2124. [CrossRef]

59. Chung, T.H.; Burdick, J.W. Analysis of Search Decision Making Using Probabilistic Search Strategies. IEEE Trans. Robot. 2012,
28, 132–144. [CrossRef]

60. Huang, Q.; Mao, J.; Liu, Y. An improved grid search algorithm of SVR parameters optimization. In Proceedings of the 2012 IEEE
14th International Conference on Communication Technology, Chengdu, China, 19–21 October 2012; pp. 1022–1026. [CrossRef]

61. Shani, G.; Gunawardana, A. Evaluating recommendation systems. In Recommender Systems Handbook; Springer: Berlin, Germany,
2011; pp. 257–297.

62. Hosseini, M. Feature Selection for Microarray Classification Problems. Master’s Thesis, Politecnico di Milano, Milan, Italy, 2018.
63. Brankovic, A.; Hosseini, M.; Piroddi, L. A Distributed Feature Selection Algorithm Based on Distance Correlation with an

Application to Microarrays. ACM Trans. Comput. Biol. Bioinform. 2019, 16, 1802–1815. [CrossRef]
64. Rajeswari, K. Feature selection by mining optimized association rules based on apriori algorithm. Int. J. Comput. Appl. 2015, 119,

30–34. [CrossRef]
65. Hong, D.; Gao, L.; Yokoya, N.; Yao, J.; Chanussot, J.; Du, Q.; Zhang, B. More Diverse Means Better: Multimodal Deep Learning

Meets Remote-Sensing Imagery Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4340–4354. [CrossRef]

http://dx.doi.org/10.1109/CANDAR.2016.0121
http://dx.doi.org/10.1109/BigDataCongress.2018.00046
http://dx.doi.org/10.26599/BDMA.2020.9020015
http://dx.doi.org/10.1145/3372923.3404839
http://dx.doi.org/10.1007/s00607-019-00775-8
http://dx.doi.org/10.1145/502716.502737
http://dx.doi.org/10.1109/TKDE.2004.1264822
http://dx.doi.org/10.1109/RICE.2018.8509054
http://dx.doi.org/10.1109/IC3.2017.8284347
http://dx.doi.org/10.1145/3068335
http://dx.doi.org/10.1109/ICCCI.2016.7479923
http://dx.doi.org/10.1109/ICECDS.2017.8389824
http://dx.doi.org/10.1109/TRO.2011.2170333
http://dx.doi.org/10.1109/ICCT.2012.6511415
http://dx.doi.org/10.1109/TCBB.2018.2833482
http://dx.doi.org/10.5120/21186-3531
http://dx.doi.org/10.1109/TGRS.2020.3016820


Big Data Cogn. Comput. 2022, 6, 131 19 of 19

66. Hong, D.; Gao, L.; Yao, J.; Zhang, B.; Plaza, A.; Chanussot, J. Graph Convolutional Networks for Hyperspectral Image
Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5966–5978. [CrossRef]

67. Wu, X.; Hong, D.; Chanussot, J. Convolutional Neural Networks for Multimodal Remote Sensing Data Classification. IEEE Trans.
Geosci. Remote. Sens. 2022, 60, 1–10. [CrossRef]

68. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [CrossRef]
69. Cea-Morán, J.J.; González-Briones, A.; De La Prieta, F.; Prat-Pérez, A.; Prieto, J. Extraction of Travellers’ Preferences Using Their

Tweets. In Proceedings of the International Symposium on Ambient Intelligence; Springer: Berlin, Germany, 2020; pp. 224–235.
70. Rivas, A.; González-Briones, A.; Cea-Morán, J.J.; Prat-Pérez, A.; Corchado, J.M. My-Trac: System for Recommendation of Points

of Interest on the Basis of Twitter Profiles. Electronics 2021, 10, 1263. [CrossRef]
71. Manca, M.; Boratto, L.; Morell Roman, V.; Martori i Gallissà, O.; Kaltenbrunner, A. Using social media to characterize urban

mobility patterns: State-of-the-art survey and case-study. Online Soc. Netw. Media 2017, 1, 56–69. [CrossRef]
72. Balduini, M.; Brambilla, M.; Della Valle, E.; Marazzi, C.; Arabghalizi, T.; Rahdari, B.; Vescovi, M. Models and Practices in Urban

Data Science at Scale. Big Data Res. 2019, 17, 66–84. [CrossRef]
73. Javadian Sabet, A. Social Media Posts Popularity Prediction during Long-Running Live Events. A Case Study on Fashion Week.

Master’s Thesis, Politecnico di Milano, Milan, Italy, 2019.
74. Brambilla, M.; Javadian Sabet, A.; Hosseini, M. The role of social media in long-running live events: The case of the Big Four

fashion weeks dataset. Data Brief 2021, 35, 106840. [CrossRef]
75. Javadian Sabet, A.; Brambilla, M.; Hosseini, M. A multi-perspective approach for analyzing long-running live events on social

media: A case study on the “Big Four” international fashion weeks. Online Soc. Netw. Media 2021, 24, 100140. [CrossRef]
76. Brambilla, M.; Javadian, A.; Sulistiawati, A.E. Conversation Graphs in Online Social Media. In Proceedings of the Web Engineering,

ICWE 2021, Biarritz, France, 18–21 May 2021; Springer International Publishing: Cham, Switzerland, 2021; pp. 97–112. [CrossRef]
77. Brambilla, M.; Javadian Sabet, A.; Kharmale, K.; Sulistiawati, A.E. Graph-Based Conversation Analysis in Social Media. Big Data

Cogn. Comput. 2022, 6, 113. [CrossRef]
78. Scotti, V.; Tedesco, R.; Sbattella, L. A Modular Data-Driven Architecture for Empathetic Conversational Agents. In Proceedings

of the 2021 IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju Island, Korea, 17–20 January 2021;
pp. 365–368. [CrossRef]

http://dx.doi.org/10.1109/TGRS.2020.3015157
http://dx.doi.org/10.1109/TGRS.2021.3124913
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.3390/electronics10111263
http://dx.doi.org/10.1016/j.osnem.2017.04.002
http://dx.doi.org/10.1016/j.bdr.2018.04.003
http://dx.doi.org/10.1016/j.dib.2021.106840
http://dx.doi.org/10.1016/j.osnem.2021.100140
http://dx.doi.org/10.1007/978-3-030-74296-6_8
http://dx.doi.org/10.3390/bdcc6040113
http://dx.doi.org/10.1109/BigComp51126.2021.00080

	Introduction
	Background and Related Work
	Ecosystem
	Recommender Systems
	Travelers' Preferences
	Cold Start Problem

	The Hybrid Offer Ranker (THOR)
	Overview
	Data Pre-Processing
	Learner Module
	Cluster Training for New User
	User Recommender Model Training

	Ranker
	User Feedback

	Experimental Results
	Validating the Classifiers
	Validating the Ranker

	Conclusions and Future Work
	References

