96 research outputs found

    Segmentasi luka diabetes menggunakan algoritma contour image processing

    Get PDF
    Pengukuran luas luka pada penderita diabetes masih menggunakan cara manual dengan penggaris luka. Sedangkan penggaris yang ditempelkan keluka akan menjadi contaminated agent yang dapat menularkan infeksi pada penderita lain. Metode pengukuran digital diperlukan agar masalah tersebut bisa terselesaikan. Tetapi untuk memperjelas batas antara luka dan kulit diperlukan ketelitian dan akurasi yang tinggi. Untuk itu diperlukan metode pencitraan yang dapat melakukan segmentasi antara batas luka dan kulit paada pasien diabetes berbasis digital yang dinamakan digital planimetry. Penelitian ini menggunakan algoritma contour image processing dari nilai hue, saturation, value (HSV).  kemudian melakukan iterasi sebanyak 5 kali dan filter gamma. Sehingga mendapatkan hasil segmentasi luka. Kesimpulan akhir dari penelitian ini adalah segementasi dengan metode ini belum dapat melakukan segementasi luka dengan baik dan diperlukan tambahan nilai masking yang lebih luas, akan tetapi hasil iterasi ke 5 mendapatkan error terkecil yaitu 0.002%.  Pencitraan digital yang dilakukan dalam penelitian ini dapat dikembangkan untuk menjadi alat ukur luas luka pasien diabetes berbasis digital

    Distributed gene clinical decision support system based on cloud computing

    Get PDF
    Background: The clinical decision support system can effectively break the limitations of doctors’ knowledge and reduce the possibility of misdiagnosis to enhance health care. The traditional genetic data storage and analysis methods based on stand-alone environment are hard to meet the computational requirements with the rapid genetic data growth for the limited scalability. Methods: In this paper, we propose a distributed gene clinical decision support system, which is named GCDSS. And a prototype is implemented based on cloud computing technology. At the same time, we present CloudBWA which is a novel distributed read mapping algorithm leveraging batch processing strategy to map reads on Apache Spark. Results: Experiments show that the distributed gene clinical decision support system GCDSS and the distributed read mapping algorithm CloudBWA have outstanding performance and excellent scalability. Compared with state-of-the-art distributed algorithms, CloudBWA achieves up to 2.63 times speedup over SparkBWA. Compared with stand-alone algorithms, CloudBWA with 16 cores achieves up to 11.59 times speedup over BWA-MEM with 1 core. Conclusions: GCDSS is a distributed gene clinical decision support system based on cloud computing techniques. In particular, we incorporated a distributed genetic data analysis pipeline framework in the proposed GCDSS system. To boost the data processing of GCDSS, we propose CloudBWA, which is a novel distributed read mapping algorithm to leverage batch processing technique in mapping stage using Apache Spark platform. Keywords: Clinical decision support system, Cloud computing, Spark, Alluxio, Genetic data analysis, Read mappin

    Inductive identification of functional status information and establishing a gold standard corpus: a case study on the mobility domain

    Get PDF
    The importance of functional status information (FSI) has become increasingly evident in recent years [1, 2]. However, implementation, application, and normalization of FSI in health care and Electronic Health Records (EHRs) have been largely underexplored. The World Health Organization's International Classification of Functioning, Disability and Health (ICF) [3] is considered to be the international standard for describing and coding function and health states. Nevertheless, the ICF provides only a limited vocabulary for recognizing FSI descriptions, since its purpose is to organize concepts related to functioning rather than to provide a comprehensive terminology or a complete set of relations between concepts. While the free text portion of EHRs might provide a more complete picture of health status, treatment, and progress, current Natural Language Processing (NLP) methods largely focus on extracting medical conditions (e.g. diagnoses and symptoms, etc.). The absence of a standardized functional terminology and incompleteness of the ICF as a vocabulary source makes it challenging to build a NLP system to extract FSI from EHR free text. Our work takes the first step towards extraction of FSI from free text by systematically identifying the structure of FSI related to Mobility, a key domain of the ICF and an important domain in the determination of work disability. Our interdisciplinary research group inductively evaluated examples extracted from over 1,200 Physical Therapy (PT) notes from the Clinical Center of the National Institutes of Health (NIH). This extensive work resulted in a nested entity structure comprised of 2 entities, 3 sub-entities, 8 attributes, and 21 attribute values. Furthermore, we have manually curated the first gold standard corpus of 200 double-annotated and 50 triple-annotated PT notes. Our inter-annotator agreement (IAA) averages 97% F1-score on partial textual span matching and from 0.4 to 0.9 Siegel & Castellan's kappa on attribute value matching. Such a rich semantic corpus of Mobility FSI is valuable and a promising resource for future statistical learning. Our method is also adaptable to other domains of the ICF

    Genome-scale MicroRNA target prediction through clustering with Dirichlet process mixture model

    Get PDF
    Background: MicroRNA regulation is fundamentally responsible for fine-tuning the whole gene network in human and has been implicated in most physiological and pathological conditions. Studying regulatory impact of microRNA on various cellular and disease processes has resulted in numerous computational tools that investigate microRNA-mRNA interactions through the prediction of static binding site highly dependent on sequence pairing. However, what hindered the practical use of such target prediction is the interplay between competing and cooperative microRNA binding that complicates the whole regulatory process exceptionally. Results: We developed a new method for improved microRNA target prediction based on Dirichlet Process Gaussian Mixture Model (DPGMM) using a large collection of molecular features associated with microRNA, mRNA, and the interaction sites. Multiple validations based on microRNA-mRNA interactions reported in recent large-scale sequencing analyses and a screening test on the entire human transcriptome show that our model outperformed several state-of-the-art tools in terms of promising predictive power on binding sites specific to transcript isoforms with reduced false positive prediction. Last, we illustrated the use of predicted targets in constructing conditional microRNA-mediated gene regulation networks in human cancer. Conclusion: The probability-based binding site prediction provides not only a useful tool for differentiating microRNA targets according to the estimated binding potential but also a capability highly important for exploring dynamic regulation where binding competition is involved

    Using multi-level Petri nets models to simulate microbiota resistance to antibiotics

    Get PDF
    The spread of antibiotic resistance is a growing problem known to be caused by antibiotic usage itself. This problem can be analyzed at different levels. Antibiotic administration policies and practices affect the societal system, which is made by human individuals and by their relations. Individuals developing resistance interact with each other and with the environment while receiving antibiotic treatments moving the problem at a different level of analysis. Each individual can be further see as a meta-organism together with his associated microbiotas, which prove to have a prominent role in the resistance spreading dynamics. Eventually, in each microbiota, population dynamics and vertical or horizontal transfer events implement cellular and molecular mechanisms for resistance spreading and possibly for its prevention. Using the Nets-within-nets formalism, in this work we model the relation between different antibiotic administration protocols and resistance spread dynamics both at the human population and at the single microbiota level

    Higher-order partial least squares for predicting gene expression levels from chromatin states

    Full text link
    Abstract Background Extensive studies have shown that gene expression levels are strongly affected by chromatin mark combinations via at least two mechanisms, i.e., activation or repression. But their combinatorial patterns are still unclear. To further understand the relationship between histone modifications and gene expression levels, here in this paper, we introduce a purely geometric higher-order representation, tensor (also called multidimensional array), which might borrow more unknown interactions in chromatin states to predicting gene expression levels. Results The prediction models were learned from regions around upstream 10k base pairs and downstream 10k base pairs of the transcriptional start sites (TSSs) on three species (i.e., Human, Rhesus Macaque, and Chimpanzee) with five histone modifications (i.e., H3K4me1, H3K4me3, H3K27ac, H3K27me3, and Pol II). Experimental results demonstrate that the proposed method is more powerful to predicting gene expression levels than several other popular methods. Specifically, our method enable to get more powerful performance on both commonly used criteria, R and RMSE, as high as 1.7% and 11%, respectively. Conclusions The overall aim of this work is to show that the higher-order representation is able to include more unknown interaction information between histone modifications across different species.https://deepblue.lib.umich.edu/bitstream/2027.42/143132/1/12859_2018_Article_2100.pd

    Clinical Big Data and Deep Learning: Applications, Challenges, and Future Outlooks

    Get PDF
    The explosion of digital healthcare data has led to a surge of data-driven medical research based on machine learning. In recent years, as a powerful technique for big data, deep learning has gained a central position in machine learning circles for its great advantages in feature representation and pattern recognition. This article presents a comprehensive overview of studies that employ deep learning methods to deal with clinical data. Firstly, based on the analysis of the characteristics of clinical data, various types of clinical data (e.g., medical images, clinical notes, lab results, vital signs and demographic informatics) are discussed and details provided of some public clinical datasets. Secondly, a brief review of common deep learning models and their characteristics is conducted. Then, considering the wide range of clinical research and the diversity of data types, several deep learning applications for clinical data are illustrated: auxiliary diagnosis, prognosis, early warning, and other tasks. Although there are challenges involved in applying deep learning techniques to clinical data, it is still worthwhile to look forward to a promising future for deep learning applications in clinical big data in the direction of precision medicine

    Arbuscular Mycorrhizal Fungi Taxa Show Variable Patterns of Micro-Scale Dispersal in Prairie Restorations

    Get PDF
    Human land use disturbance is a major contributor to the loss of natural plant communities, and this is particularly true in areas used for agriculture, such as the Midwestern tallgrass prairies of the United States. Previous work has shown that arbuscular mycorrhizal fungi (AMF) additions can increase native plant survival and success in plant community restorations, but the dispersal of AMF in these systems is poorly understood. In this study, we examined the dispersal of AMF taxa inoculated into four tallgrass prairie restorations. At each site, we inoculated native plant species with greenhouse-cultured native AMF taxa or whole soil collected from a nearby unplowed prairie. We monitored AMF dispersal, AMF biomass, plant growth, and plant community composition, at different distances from inoculation. In two sites, we assessed the role of plant hosts in dispersal, by placing known AMF hosts in a “bridge” and “island” pattern on either side of the inoculation points. We found that AMF taxa differ in their dispersal ability, with some taxa spreading to 2-m in the first year and others remaining closer to the inoculation point. We also found evidence that AMF spread altered non-inoculated neighboring plant growth and community composition in certain sites. These results represent the most comprehensive attempt to date to evaluate AMF spread

    Unsupervised Learning and Multipartite Network Models: A Promising Approach for Understanding Traditional Medicine

    Get PDF
    The ultimate goal of precision medicine is to determine right treatment for right patients based on precise diagnosis. To achieve this goal, correct stratification of patients using molecular features and clinical phenotypes is crucial. During the long history of medical science, our understanding on disease classification has been improved greatly by chemistry and molecular biology. Nowadays, we gain access to large scale patient-derived data by high-throughput technologies, generating a greater need for data science including unsupervised learning and network modeling. Unsupervised learning methods such as clustering could be a better solution to stratify patients when there is a lack of predefined classifiers. In network modularity analysis, clustering methods can be also applied to elucidate the complex structure of biological and disease networks at the systems level. In this review, we went over the main points of clustering analysis and network modeling, particularly in the context of Traditional Chinese medicine (TCM). We showed that this approach can provide novel insights on the rationale of classification for TCM herbs. In a case study, using a modularity analysis of multipartite networks, we illustrated that the TCM classifications are associated with the chemical properties of the herb ingredients. We concluded that multipartite network modeling may become a suitable data integration tool for understanding the mechanisms of actions of traditional medicine.Peer reviewe
    • …
    corecore