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Using Multi-level Petri Nets Models to Simulate
Microbiota Resistance to Antibiotics

R. Bardini, G. Politano, A. Benso and S. Di Carlo
Control and Computer Engineering Department

Politecnico di Torino Torino, Italy I-10129
Email: http://www.sysbio.polito.it

Abstract—The spread of antibiotic resistance is a growing
problem known to be caused by antibiotic usage itself. This prob-
lem can be analyzed at different levels. Antibiotic administration
policies and practices affect the societal system, which is made by
human individuals and by their relations. Individuals developing
resistance interact with each other and with the environment
while receiving antibiotic treatments moving the problem at a
different level of analysis. Each individual can be further see
as a meta-organism together with his associated microbiotas,
which prove to have a prominent role in the resistance spreading
dynamics. Eventually, in each microbiota, population dynamics
and vertical or horizontal transfer events implement cellular and
molecular mechanisms for resistance spreading and possibly for
its prevention. Using the Nets-within-nets formalism, in this work
we model the relation between different antibiotic administration
protocols and resistance spread dynamics both at the human
population and at the single microbiota level.

Index Terms—Antibiotic resistance, human microbiota, hybrid
models, multilevel models, Petri Nets, Nets-within-nets.

I. INTRODUCTION

Multicellular organisms are meta-organisms comprising
both a macroscopic host and its symbiotic microbiota. The
catalog of these organisms and their genes form the human
microbiome [1]. These complex communities of microbes
include: bacteria, fungi, viruses and other microbial and
eukaryotic species. They provide a tremendous enzymatic
capability and play a fundamental role in controlling several
aspects of the host’s physiology.

In the frame of this symbiotic relationship, bacteria and
other organisms composing the microbiota normally do not
express virulent traits. Indeed, one of their functions is to
protect the host from pathogens [2]. The different species
that form a microbiota populate their relative biological niche
according to the respective growth rates, and to the overall
availability of resources [3]. The more a species prevails, the
more its genetic set does.

In this paper, we propose a computational tool to investigate
how different antibiotic protocols can affect the spread of
antibiotic resistance. The central question we address is the
relation between antibiotic use and the spread of resistance, a
problem we choose to approach at different levels: from health
care management of antibiotic treatment policies and practices
to individual patients as meta-organisms.

Healthy microbiotas share two common features: (i) a uni-
form core of functionalities in the corresponding microbiomes,
and (ii) a great diversity in terms of species composition.
This provides on the one side a set of guaranteed core
functionalities and, on the other side, a great capability for
plasticity [1]. The microbiota can recruit new functionalities in

two ways. First, new species can join the population bringing
their different functional sets that enlarge the functions of the
established microbiota [4]. Second, horizontal transfer (HGT)
mechanisms allow cells to acquire new functional capabilities
[5]. The most studied HGT mechanism with respect to an-
tibiotic resistance spread is the exchange of plasmids between
bacterial cells of same or different species [6].

Since antibiotics target very conserved features [7], most
times they hit a large spectrum of different bacterial species
at once. After antibiotic administration, many bacterial cells
(besides the pathogenic ones the attack was directed onto) per-
ish, with the exception of those expressing antibiotic resistance
for that molecule. After that, resistant bacteria have way less
competition for resources, and gain advantage in colonizing
the niche [8].

Exchanges of genetic information between bacterial cells
take place through the external environment as well. Antibiotic
resistance affects individual hosts and the system they live in.
This may represent both an imminent risk for the society at
the production systems level, and a threat for the environment
in general [9].

Our model considers three main system levels. The top level
refers to the population of human hosts, each represented by
means of the specific microbiota it carries. At the middle level
microbiotas are described in terms of the bacterial species
they include. At the bottom level each species composing
the microbiota is represented by means of a sample of each
bacterial cells, either carrying resistance factors or not.

Our approach is based on Nets-Within-Nets (NWN), a high-
level Petri Nets formalism supporting the development of
multi-level and hybrid models suitable for stochastic and dy-
namic simulations [10]. Given their capability for exploring the
system behaviour through simulation, predicting its evolution
in time, and its variation in different conditions, these models
can make good decision support tools for the development of
innovative therapeutic protocols and for policy making in the
health care context [11], [12].

II. MATERIALS AND METHODS

A. Nets-within-nets (NWN)
NWNs are a class of high-level Petri Nets supporting nested

architectures where complex information attached to tokens
can recursively be specified with the Petri Nets formalism
[10]. NWNs provide encapsulation and selective commu-
nication. This suits well the modeling requirements posed
by the considered problem, where different entities mostly
evolve independently at different system levels and exchange
information in a highly controlled and selective ways.



For model design and simulation we relied on Renew, an
integrated tool supporting design and simulation of high-level
Petri Nets [13].

B. Model construction

To study how antibiotic administration protocols affect
insurgence spreading and severity of antibiotic resistance both
within individual human microbiotas and across populations,
we simulate resistance spreading in a control population not
receiving any treatment. This population is compared with
a population receiving antibiotics either under a traditional
protocol or under a carefully designed administration protocol.

Figure 1 shows a high-level conceptual view of the proposed
model organized into three hierarchical levels: (1) the human
host (top level), (2) the microbiotas (middle level), and (3) the
bacterial cells (the bottom level).
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Figure 1. High level conceptual view of the proposed model.

Human hosts (top level): This level, whose complete model
is reported in Figure 2, describes the population of human
individuals in which antibiotics resistance can spread. As
reported in Figure 2.A, this level is composed of three main
places respectively modeling the possible health conditions for
the microbiota: (i) absence of resistance factors reported in
green, (ii) state of mild resistance reported in yellow, and
(iii) state of severe resistance reported in red. Transitions
between such places represent the progressive worsening of
the antibiotic resistance state. Tokens at this level represent
human individuals through their microbiotas. Each microbiota
is a net whose structure is reported in Figure 3. At this level,
each microbiota is associated with a point prevalence score
(PPS). The PPS is dynamically computed as the proportion
of resistant bacterial cells over the total bacterial population
during the microbiota net simulation (Figure 3.A) [14]. The
PPS is sampled from the upper level (Figure 2.D) to take
decisions. When it exceeds a threshold, transitions move the
microbiota token to the next stage of resistance progression
(Figure 2.A). In this model, such effect is dictated primarily
by the activation of antibiotic administration and microbiota
re-integration events (Figure 2.B; Figure 3.B and Figure 3.F).
These are supposed to affect the system both at the population
level, where microbiotas exist as tokens (in Figure 2.C the net
structure instantiating them is highlighted), and at the level of
individual microbiotas (Figure 3). A back-end of custom Java
classes tracks the PPS (Figure 3.D) as well as the numerosity
of host individuals in the three different states (Figure 3.E).

Microbiotas (median level): individual microbiotas exist
at the human hosts (top) level as instances of the general
microbiota net depicted in Figure 3. In each instance, two
places (Figure 3.C) represent the conditions bacterial cells
(plain colored tokens) can fall into: (i) antibiotic resistance,
depicted in red and (ii) non-resistance, depicted in green.

Resistant and non-resistant populations of bacterial cells
in a microbiota engage into a competition based on the
interplay between growth rates, the competition for limited re-
sources, and HGT mechanisms able to transform non-resistant
cells into resistant ones. The model represents each of these
mechanisms by a specific structure in the net architecture.
HGT are able to turn an existing non-resistant cell into a
resistant one (Figure 3.G). Both resistant and non-resistant
species contribute to the overall population numerosity, but
through separate generative mechanism (Figure 3.D), which
for simplicity in this model we associate with the same
growth rates. Eventually, limited availability of resources
bounds population growth (Figure 3.E). From the upper level
(Figure 2) synchronous channels can provide inputs to the
microbiota simulation: antibiotic administration events cause
dose-dependent depletion of non-resistant cells (Figure 3.B),
and microbiota re-integration causes a re-population of the
state of non-resistance (Figure 3.F).

Bacterial cells (bottom level): tokens representing the bac-
terial cells composing the microbiota populate the places in
Figure 3.C. These tokens are colored tokens that use the
colors to carry information about species identity and the
possible presence of resistance factors in the cell. They can be
generated by either regular population growth (Figure 3.D) or
possibly by re-integration of non-resistant cells (Figure 3.F).

Antibiotic administration and spread of resistance (cross-
layer communication): both antibiotic administration and the
subsequent progression towards a state of higher resistance
involve more than one level in the model.

First, antibiotic administration origins at the human hosts
(top) level (Figure 2.B). It affects all microbiota instances
existing in the place it targets. Yet, the effects of such events
affect each single involved microbiota (through the channel in
Figure 3.B). They cause the depletion of all tokens represent-
ing non-resistant cells, dramatically affecting the overall target
population dynamics.

Second, the passage from a state of resistance prevalence
to the next one requires the enabling and activation of a
transition between the corresponding places at the human hosts
(top) level (Figure 2.A). This corresponds to the fulfillment
of a specific requirement at the microbiota level. The PPS
(computed in Figure 3.A) must cross the threshold to allow
the corresponding upper level transition (Figure 2.A) to fire
and thus to move the microbiota to the next resistance stage
at the population level.

These two mechanisms involve readings of information
originating from one level, and subsequent decision making
processes based on another level. Such exchanges occur dy-
namically as the model evolves, engaging the different levels in
a continuous crosstalk, connecting them through selected touch
points. This requires suitable channels allowing for real-time
selective communication. Renew supports the implementation



Figure 2. Net architecture for the human hosts (top) level. Three main places describe the health states the microbiotas can assume: non-resistant (in green),
mildly resistant (in yellow) and severely resistant (in red) (A). Transitions can move microbiota tokens, each having the net structure from Figure 3, to the
next place. The state of non-resistance holds two microbiota tokens depicted in a compact form, i.e., with their name only. This happens according to the
value of their PPS. A synchronous channel (D) reads the PPS from nets at the lower level, possibly taking the relative microbiota to the next step along
resistance progression. The structures in E track the changing numerosity of microbiota instances in each place). Synchronous channels take care of the
antibiotic administration and microbiota integration events (B), activating net structures at the lower level (Figure 3.B and Figure 3.F, respectively) according
to time delays and number of microbiota instances injected in the net by the dedicated structure (C).

Figure 3. Net architecture for the microbiotas (median) level. Two main places describe two conditions each bacterial cell can assume: a state of non-resistance
(green) and a state of resistance (red) (C). Horizontal transfer mechanisms can turn non-resistant cells into resistant ones (G). Net structures managing the
generation of new bacterial cells (D), total population numerosity and resources availability (E) rise competitive population dynamics between resistant
and non-resistant populations. Dose-dependent depletion of non-resistant cells following antibiotic administration (B) and microbiota reintegration (F) events
activate as synchronous channels with structures in Figure 2.B. The structure in A dynamically computes the PPS of the microbiota net, making the information
available for the upper level through a synchronous channel (see Figure 2.D)

of synchronous channels in NWN, thus fulfilling this precise
requirement [13].

C. Tuning of the model

To perform simulations the model must be properly tuned
with a careful aggregation of data from different sources.

In this work, we intend to present a proof of concept
model. For this reason, we represent the large diversity of
species composing a microbiota in an extremely simplified
way. In fact, the scope of this study is not to study species
diversity and how this is affected by antibiotic treatment (for
an introduction to this problem, see [15]). Instead, this work
aims at linking antibiotic administration protocols with the



spread of resistance in population of humans. This is done
looking at the dynamics that describe the spread of resis-
tance factors within individual microbiotas through horizontal
transfer mechanisms, and given species-specific competitive
population dynamics.

The proposed net architecture is based on a functional
descriptions of the problem at the different levels [16], while
species identity and antibiotic or resistance mechanisms are
maintained at an abstract level. The ultimate goal is to pro-
vide a general instrument that can be easily adapted to the
peculiarities of specific problems and use cases in the domain
of interest.

III. RESULTS AND DISCUSSION

To showcase the potential of the proposed multi-level and
hybrid model, we designed two experiments studying the
problem at different abstraction levels.

The first experiment aims at evaluating how standard antibi-
otic treatments can cause and speed-up the spread of resistance
factors in a single microbiota (Figure 4). The second exper-
iment is instead centered at the population level (Figure 5).
Multiple instances of the microbiota net are generated at the
top level to model a population of human hosts distributed into
the three resistance states. Their dynamics is then simulated.

For both experiments, the initial setting of every simulation
represents a state of health for the microbiota, where the non-
resistant bacterial population largely prevails over the resistant
one. This has been modeled with a ratio between non-resistant
and resistant cells of 9:1, recapitulating semi-quantitative
functional descriptions of a non-resistant microbiota.

In the first experiment (Figure 4), three different conditions
are considered. Figure 4.A reports the case of absence of
antibiotic treatment. Figure 4.B considers a traditional antibi-
otic administration protocol. Two administration events occur
within a given time frame: the first provides a low dose, the
second a high dose. Figure 4.C proposes an innovative treat-
ment protocol. The administration scheme from the traditional
protocol is maintained but, in parallel to the first low antibiotic
dose, the microbiota is integrated with non-resistant cells for
prevention purposes.

Simulations in this experiment aim at tracking the PPS of
a single microbiota that reflects the presence of resistant cells
within the total bacterial population. This metric is sampled
at different significant stages of the simulation to capture the
reaction of the system to the corresponding events. In particu-
lar, it is sampled: (1) before any treatment is administered; (2)
after the administration of the first lower dose of antibiotic
plus, for the innovative protocol, the microbiota integration,
and (3) after the administration of the second higher dose of
antibiotics.

The values presented are obtained averaging the PPS at each
phase over 30 simulation runs. Given the observed variance
across simulations, such number of runs guarantees a 5% error
margin at a 95% confidence interval under all experimental
designs. This type of simulation allows us to study the link
between the overall resistance state of a microbiota and
different kinds of treatments, given the internal population
dynamics of resistant and non-resistant species.

When no treatment is provided, the PPS remains at a low
and almost constant level along the simulation. Slight increases
can be ascribed to the activation of horizontal gene transfer
mechanisms or random mutations. Out of 30 experiments, only
in 4 cases the score exceeded the threshold required to move
the microbiota into a state of mild resistance. The relative
averaged PPS (APPS) of 57.75±0.63, reported in the second
bar of Figure 4.D refers to these cases. All other cases are
represented by the first bar of Figure 4.D, showing an APPS
of 48.67±0.61. In none of the cases the microbiota reached a
state of severe resistance.

The traditional antibiotic treatment protocols, based on
repeated administration events, are mimicked by the model in
a simplistic way. Two administration events occur: the first
provides a low dose, allowing for partial recovery of the
non-resistant portion of the bacterial population; the second
provides a high dose, taking the microbiota towards a state of
severe resistance. In Figure 4.E, we observe the increase of the
PPS, corresponding to what we consider the progressive spread
of resistance within the microbiota. Before treatment (pre-
treat), the APPS was 50.34±0.88, as in the control condition.
After the administration of the first dose (dose 1), a signif-
icantly APPS increase is observed compared to the control
condition (APPS = 64.74±1.14). After the second high-dosage
administration event (dose 2), the resistance violently increases
with a APPS of 93.24±2.4, depicting what we consider as a
state of severe resistance.

The innovative treatment protocol enriches the antibiotic
administration procedure with a parallel preventive reintegra-
tion of non resistant bacterial cells. This enforces the non-
resistant population and mitigates the advantage acquired by
the resistant cells in the competition for colonizing the niche.
This design is inspired by existing clinical practices such as
autologous microbiota transplants, also called bacteriotherapy
[4]. Such preventive action is performed in parallel with the ad-
ministration of the first antibiotic dose. As shown in Figure 4.F,
the pre-treatment APPS (pre-treat) is similar to the one of the
previous experiments: 50.94±0.67. With the addition of the
preventive intervention (dose 1 + prev), significant differences
can be seen already at the second stage. The APPS stops
at 53.03±0.52 showing a 18.08% decrease compared to the
traditional treatment. Eventually, in the third stage (dose 2),
the APPS reaches 70.75±0.82 with a 24.12% decrease with
respect to the traditional protocol.

Observing the sample tracks from the simulations, we can
spot an example of a steady PPS when no treatment is
administered (Figure 4.G). In Figure 4.H, in correspondence to
the lower and higher peaks of the blue curve representing the
antibiotic dosage administration time, the orange curve shows
proportional increases. It then stabilizes on fixed values that
correspond to the stages used to compute the APPS. The same
dynamic can be observed in Figure 4.I, with the difference that
the preventive action mitigates the effects of the first dose of
antibiotics, taking the PPS to a level similar to pre-treatment.
This takes time. In fact, right after the administration, a small
spike is an indication of the effects the antibiotic would have
otherwise.

In the second experiment we intend to center our observa-
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Figure 4. In the first experimental condition (a) no treatment administration occurs: the APPS is 48.67±0.61 (d), keeping the microbiota into the ”non-
resistant” state. Only in 4 cases such threshold was crossed, and the APPS for those cases is slightly higher: 57.75±0.63 (d). Most simulation tracks for the
PPS (the curve in orange) reach a value and keep it steadily along simulation time (g). In the second experimental condition (b), two doses of antibiotic
were administered to the microbiota, the first lower and the second higher. In (e) we report the APPS for the three significant stages of the experiment:
before treatment, an APPS of 50.34±0.88 is homologous to that maintained in (d); after the first dose, APPS is 64.74±1.14, corresponding to a state of
mild resistance; after the second higher dose APPS is 93.24±2.4, beyond the threshold for a state of severe resistance. The simulation track reported in (h)
recapitulates the typical track for this case: after each dose (the curve in blue, whose peaks represent doses administration) PPS increases proportionally,
moving from the non-resistant steady state, to the mildly resistant one, and finally to the severely resistant state, where it stays. In the third experimental
condition (c) the same antibiotic administration of (b) is maintained, but in parallel to the first dose administration, a reintegration of the non-resistant bacterial
population is performed. In (f) we observe how this lowers APPS both in the second and in the third stages of the experiment: while pretreatment APPS
remains homologous to those in (d) and (e) (50.94±0.67), after the first dose of antibiotic and microbiota reintegration APPS drops to 53.03±0.52, and
reaches after the second dose of antibiotics the value of 70.75±0.82, corresponding to significant decreases compared to the corresponding simulation stages
in the traditional treatment scenario (e). In (i) we observe how the effects of the first antibiotic dose are counterbalanced by the microbiota reintegration: in
a first moment APP begins to rise, but it is bounded right away to a low level by the preventive action, leaving on the track just a transient spike. After the
second higher dosage of antibiotics, APP increases, reaching a steady state at a higher level, which is anyway lower that that reached in (h).
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Figure 5. We tracked population numerosity inside each of the corresponding places at the top level in the model, representing states of non-resistance
(the curve in blue), mild resistance (orange) and severe resistance (yellow), respectively. As a metric for how resistance can affect a population of hosts,
we tracked the simulation time at which the state of severe resistance got more populated than the other two, describing it as the severe resistance onset
time (T). Simulation time is indicated in terms of simulation cycles. In the first experimental setting (a), a single high dose of antibiotics was presented to
each microbiota instance. This corresponded to an average T (AT) of 162.87±7.78. A typical track from these experiments is reported in (c), where healthy
individuals (blue curve) progressively acquire resistance. Some of them reach severe resistance right away (yellow curve), while most of them pass through a
phase of mild resistance (orange curve). In the second experimental condition (b), microbiota reintegration is performed in parallel to the single high antibiotic
dose administration. This yields an higher AT (178.64±7.4) with respect to that observed with the antibiotics alone. In (d) we notice how in the typical track
from this set of experiments the overall migration to healthy individuals towards a worsening resistant state slows down, resulting in higher values for T.

tions on the human hosts population level. Instead of creating a
single instance of the microbiota net token, we created multiple
instances in order to represent a population of human hosts.

In this experiment, we compare two experimental conditions:
traditional antibiotic treatment including a single high-dosage
administration event (Figure 5.A) and an innovative treatment



protocol, where preventive action occurs in parallel to the
single high-dosage antibiotic administration (Figure 5.B).

We performed simulations using 50 instances of the mi-
crobiota net. As a metric to analyze the evolution of the
population, we consider the simulation time1 in which the
number of human hosts in a state of severe resistance exceeds
the number of human hosts in a state of mild resistance. This
is a landmark of the process degeneration towards extensive
resistance spread and diffusion.

In the case no treatment is administered, microbiotas do
not get to a state of severe resistance ever. Therefore, a signi-
ficative comparison can be only done between the traditional
treatment and the innovative protocol administration condi-
tions. In both cases, the antibiotic dosage used is equivalent
to that used in the second high-dosage administration event
from the previous set of experiments.

No delays are imposed over the process evolution, since
in this case there is no necessity for temporal segregation of
different phenomena. In fact, there is a single administration
phase in the employed protocols.

When the treatment protocol provides high-dosage admin-
istration of antibiotic alone, on average the onset of a state of
prevalent severe resistance within the human hosts population
takes place at simulation time 162.87±7.78. When antibiotic
administration is provided in parallel with microbiota re-
integration preventive action, on average there is a delay of
9.68%. Severe resistance onset occurs on average at simulation
time 178.64±7.4.

In the sample tracks of Figure 5.C and Figure 5.D, an exam-
ple of the two correspondent temporal dynamics is provided.
In the first example, once all the hosts population passed from
an healthy state (blue) to a state of mild resistance (red),
the higher probability of passing the threshold of resistance
severity speeds up the population of the corresponding state
(yellow). On the other hand, a much slower conversion from
mild to severe resistance can be observed when the preventive
action is undertaken.

IV. CONCLUSIONS

In this work, we suggested some of the potential applica-
tions of a NWN model for investigating the relations between
antibiotic treatment and the spread of antibiotic resistance
within the microbiota, and across human populations. A
functional description of the phenomena at different levels is
employed to set up a model structure, which in simulation
recapitulates the system behavior under different conditions.
The usage of a multi-level and hybrid formalism allowed us to
integrate different kinds of data, as well as to describe multiple
levels from the system under study. This is a key feature to
account for the complexity of the system. In fact, we tried to
encompass the problem from the level of the bacterial cells
and the molecules providing them with resistance capabilities,
to the single microbiota, up to the population of human hosts
undergoing different treatments and interacting between each
other. Simulations enabled us to take into account timing and

1expressed as in terms of simulation cycles

stochastic behaviors required to represent timed administra-
tion protocols and biological processes, which are inherently
stochastic processes. In this work we want to underline how
models of this kind not only provide valuable tools for
investigating causal relations between different events and
mechanisms, but can be used as supports for decision making
processes and protocol development. A complex model like
ours as the potential to provide a systemic and multi-faceted
view on the problem, being a valuable tool able to enrich the
consideration of the problem and the testing of hypotheses or
possible solutions. This model in is current form is based on
strong simplifications. Nevertheless, its flexibility make it easy
to adapt it to specific and more realistic use cases obtained
gathering realistic data from the field.

V. MODEL AVAILABILITY

The full model is available at: https://github.com/
sysbio-polito/nwn-microbiota-antibiotic-resistence.
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