116 research outputs found

    Control of movement time and sequential action through attractor dynamics : a simulation study demonstrating object interception and coordination

    Get PDF
    The timing of movements and of action sequences is difficult when on-line coupling to sensory information is a requirement. That requirement arises in most behavior-based robot architectures, in which relatively low-level and often noisy sensor input is used to initiate and steer action. We show how an attractor dynamics approach to the generation of behavior in such architectures can be extended to the timing of motor acts. We propose a two-layer architecture, in which a competitive "neural" dynamics controls the qualitative dynamics of a second, "timing" layer. At that second layer, periodic attractors generate timed movement. By activating such limit cycles over limited time intervals, discrete movements and movement sequences can be obtained. We demonstrate the approach by simulating two tasks that involve control of timing: the interception of moving objects by a simple two-degree-of-freedom robot arm and the temporal coordination of the end-effector motions of two six-degree-of-freedom robot arms.Fundação para a Ciência e a Tecnoloia (FCT

    Timed trajectory generation for a toy-like wheeled robot

    Get PDF
    In this work, we address temporal stabilization of generated movements in autonomous robotics. We focus on generating movement for a mobile robot, that must reach a target location within a constant time. Target location is online calculated by using the robot visual system, such that action is steered by the sensory information. This is a very critical issue in several robotic tasks including: catching, hitting, and humanrobot scenarios. Robot velocity is controlled through an Hopf oscillator, adapted according to temporal feedback. Timing of the velocity profile is modulated according to an adaptive mechanism that enables setting different times for acceleration and deceleration. Results on a DRK8000 mobile robot confirm the system’s reliability with low-level sensors

    Timed trajectory generation combined with an Extended Kalman Filter for a vision-based autonomous mobile robot

    Get PDF
    Series : Advances in intelligent systems and computing, vol. 193, ISSN 2194-5357Planning collision-free trajectories requires the combination of generation and modulation techniques. This is especially important if temporal stabilization of the generated trajectories is considered. Temporal stabilization means to conform to the planned movement time, in spite of environmental conditions or perturbations. This timing problem has not been addressed in most current robotic systems, and it is critical in several robotic tasks such as sequentially structured actions or human-robot interaction. This work focuses on generating trajectories for a mobile robot, whose goal is to reach a target within a constant time, independently of the world complexity. Trajectories are generated by nonlinear dynamical systems. Herein, we extend our previous work by including an Extended Kalman Filter (EKF) to estimate the target location relative to the robot. A simulated hospital environment and a Pioneer 3-AT robot are used to demonstrate the robustness and reliability of the proposed approach in cluttered, dynamic and uncontrolled scenarios. Multiple experiments confirm that the inclusion of the EKF preserves the timing properties of the overall architecture.Work supported by the Portuguese Science Foundation (grant PTDC/EEA-CRO/100655/2008), and by project FCT PEst-OE/EEI/LA0009/2011. Jorge B. Silva is supported by PhD Grant SFRH/BD/68805/2010, granted by the Portuguese Science Foundation

    Generating timed trajectories foran autonomous robot

    Get PDF
    Tese de Doutoramento Programa Doutoral em Engenharia Electrónica e ComputadoresThe inclusion of timed movements in control architectures for mobile navigation has received an increasing attention over the last years. Timed movements allow modulat- ing the behavior of the mobile robot according to the elapsed time, such that the robot reaches a goal location within a specified time constraint. If the robot takes longer than expected to reach the goal location, its linear velocity is increased for compen- sating the delay. Timed movements are also relevant when sequences of missions are considered. The robot should follow the predefined time schedule, so that the next mission is initiated without delay. The performance of the architecture that controls the robot can be validated through simulations and field experiments. However, ex- perimental tests do not cover all the possible solutions. These should be guided by a stability analysis, which might provide directions to improve the architecture design in cases of inadequate performance of the architecture. This thesis aims at developing a navigation architecture and its stability analysis based on the Contraction Theory. The architecture is based on nonlinear dynamical systems and must guide a mobile robot, such that it reaches a goal location within a time constraint while avoiding unexpected obstacles in a cluttered and dynamic real environment. The stability analysis based on the Contraction Theory might provide conditions to the dynamical systems parameters, such that the dynamical systems are designed as contracting, ensuring the global exponential stability of the architecture. Furthermore, Contraction Theory provides solutions to analyze the success of the mis- sion as a stability problem. This provides formal results that evaluate the performance of the architecture, allowing the comparison to other navigation architectures. To verify the ability of the architecture to guide the mobile robot, several experi- mental tests were conducted. The obtained results show that the proposed architecture is able to drive mobile robots with timed movements in indoor environments for large distances without human intervention. Furthermore, the results show that the Con- traction Theory is an important tool to design stable control architectures and to analyze the success of the robotic missions as a stability problem.A inclusão de movimentos temporizados em arquitecturas de controlo para navegação móvel tem aumentado ao longo dos últimos anos. Movimentos temporizados permitem modular o comportamento do robô de tal forma que ele chegue ao seu destino dentro de um tempo especificado. Se o robô se atrasar, a sua velocidade linear deve ser aumen- tada para compensar o atraso. Estes movimentos são também importantes quando se consideram sequências de missões. O robô deve seguir o escalonamento da sequência, de tal forma que a próxima missão seja iniciada sem atraso. O desempenho da arqui- tectura pode ser validado através de simulações e experiências reais. Contudo, testes experimentais não cobrem todas as possíveis soluções. Estes devem ser conduzidos por uma análise de estabilidade, que pode fornecer direcções para melhorar o desempenho da arquitectura. O objectivo desta tese é desenvolver uma arquitectura de navegação e analisar a sua estabilidade através da teoria da Contracção. A arquitectura é baseada em sistemas dinâmicos não lineares e deve controlar o robô móvel num ambiente real, desordenado e dinâmico, de tal modo que ele chegue à posição alvo dentro de uma restrição de tempo especificada. A análise de estabilidade baseada na teoria da Contracção pode fornecer condições aos parâmetros dos sistemas dinâmicos de modo a desenha-los como contracções, e assim garantir a estabilidade exponencial global da arquitectura. Esta teoria fornece ainda soluções interessantes para analisar o sucesso da missão como um problema de estabilidade. Isto providencia resultados formais que avaliam o desem- penho da arquitectura e permitem a comparação com outras arquitecturas. Para verificar a habilidade da arquitectura em controlar o robô móvel, foram con- duzidos vários testes experimentais. Os resultados obtidos mostram que a arquitectura proposta é capaz de controlar robôs móveis com movimentos temporizados em ambi- entes interiores durante grandes distâncias e sem intervenção humana. Além disso, os resultados mostram que a teoria da Contracção é uma ferramenta importante para desenhar arquitecturas de controlo estáveis e para analisar o sucesso das missões efec- tuadas pelo robô como um problema de estabilidade.Portuguese Science and Technology Foundation (FCT) SFRH/BD/68805/2010
    corecore