
Jo
rg

e
Br

un
o

Fe
rre

ira
 d

a
Si

lva

janeiro de 2015UM
in

ho
 |

 2
01

5
Ge

ne
ra

tin
g

Ti
m

ed
 T

ra
je

ct
or

ie
s

fo
r

an
 A

ut
on

om
ou

s
Ro

bo
t

Universidade do Minho
Escola de Engenharia

Jorge Bruno Ferreira da Silva

Generating Timed Trajectories for
an Autonomous Robot

janeiro de 2015

Tese de Doutoramento
Programa Doutoral em Engenharia Electrónica e Computadores

Trabalho efectuado sob a orientação de
Professora Doutora Cristina Santos
Professor Doutor João Sequeira

Jorge Bruno Ferreira da Silva

Generating Timed Trajectories for
an Autonomous Robot

Universidade do Minho
Escola de Engenharia

STATEMENT OF INTEGRITY

I hereby declare having conducted my thesis with integrity. I confirm that I have not used plagiarism or

any form of falsification of results in the process of the thesis elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

University of Minho, _______________________________

Full name: __

Signature: ___

Preface

This manuscript describes the work performed throughout the author’s doctoral thesis
while member of the Adaptive System Behavior Group (ASBG), within the Doctoral
Program in Electrical and Computer Engineering at the University of Minho in Por-
tugal. The sponsoring of the project was supported by Fundação para a Ciência e
Tecnologia (FCT).

The supervisors of the project were Cristina Santos from University of Minho and
João Sequeira from Instituto Superior Técnico.

The main topic of this research was the development and stability analysis of an
architecture with time constraints to guide autonomous mobile robots in real environ-
ments.

Jorge Silva
January 2015

i

ii

Summary

The inclusion of timed movements in control architectures for mobile navigation has
received an increasing attention over the last years. Timed movements allow modulat-
ing the behavior of the mobile robot according to the elapsed time, such that the robot
reaches a goal location within a specified time constraint. If the robot takes longer
than expected to reach the goal location, its linear velocity is increased for compen-
sating the delay. Timed movements are also relevant when sequences of missions are
considered. The robot should follow the predefined time schedule, so that the next
mission is initiated without delay. The performance of the architecture that controls
the robot can be validated through simulations and field experiments. However, ex-
perimental tests do not cover all the possible solutions. These should be guided by a
stability analysis, which might provide directions to improve the architecture design
in cases of inadequate performance of the architecture.

This thesis aims at developing a navigation architecture and its stability analysis
based on the Contraction Theory. The architecture is based on nonlinear dynamical
systems and must guide a mobile robot, such that it reaches a goal location within a
time constraint while avoiding unexpected obstacles in a cluttered and dynamic real
environment. The stability analysis based on the Contraction Theory might provide
conditions to the dynamical systems parameters, such that the dynamical systems are
designed as contracting, ensuring the global exponential stability of the architecture.
Furthermore, Contraction Theory provides solutions to analyze the success of the mis-
sion as a stability problem. This provides formal results that evaluate the performance
of the architecture, allowing the comparison to other navigation architectures.

To verify the ability of the architecture to guide the mobile robot, several experi-
mental tests were conducted. The obtained results show that the proposed architecture
is able to drive mobile robots with timed movements in indoor environments for large
distances without human intervention. Furthermore, the results show that the Con-
traction Theory is an important tool to design stable control architectures and to
analyze the success of the robotic missions as a stability problem.

iii

iv

Resumo

A inclusão de movimentos temporizados em arquitecturas de controlo para navegação
móvel tem aumentado ao longo dos últimos anos. Movimentos temporizados permitem
modular o comportamento do robô de tal forma que ele chegue ao seu destino dentro de
um tempo especificado. Se o robô se atrasar, a sua velocidade linear deve ser aumen-
tada para compensar o atraso. Estes movimentos são também importantes quando se
consideram sequências de missões. O robô deve seguir o escalonamento da sequência,
de tal forma que a próxima missão seja iniciada sem atraso. O desempenho da arqui-
tectura pode ser validado através de simulações e experiências reais. Contudo, testes
experimentais não cobrem todas as possíveis soluções. Estes devem ser conduzidos por
uma análise de estabilidade, que pode fornecer direcções para melhorar o desempenho
da arquitectura.

O objectivo desta tese é desenvolver uma arquitectura de navegação e analisar a sua
estabilidade através da teoria da Contracção. A arquitectura é baseada em sistemas
dinâmicos não lineares e deve controlar o robô móvel num ambiente real, desordenado
e dinâmico, de tal modo que ele chegue à posição alvo dentro de uma restrição de
tempo especificada. A análise de estabilidade baseada na teoria da Contracção pode
fornecer condições aos parâmetros dos sistemas dinâmicos de modo a desenha-los como
contracções, e assim garantir a estabilidade exponencial global da arquitectura. Esta
teoria fornece ainda soluções interessantes para analisar o sucesso da missão como um
problema de estabilidade. Isto providencia resultados formais que avaliam o desem-
penho da arquitectura e permitem a comparação com outras arquitecturas.

Para verificar a habilidade da arquitectura em controlar o robô móvel, foram con-
duzidos vários testes experimentais. Os resultados obtidos mostram que a arquitectura
proposta é capaz de controlar robôs móveis com movimentos temporizados em ambi-
entes interiores durante grandes distâncias e sem intervenção humana. Além disso,
os resultados mostram que a teoria da Contracção é uma ferramenta importante para
desenhar arquitecturas de controlo estáveis e para analisar o sucesso das missões efec-
tuadas pelo robô como um problema de estabilidade.

v

vi

Acknowledgements

This thesis is the end of a journey on obtaining my PhD. At this moment of accom-
plishment, I would like to thank everyone who helped me on making this thesis possible
and a remarkable experience.

Primarily, I am grateful to my PhD advisors, Professors Cristina Santos and João
Sequeira. I wish to thank them for their constant support, fruitful discussions, proof-
reading and interesting suggestions. In particular, I am thankful to Professor Cristina
Santos, who invited me to join her lab, allowing me to pursue a research project on
mobile navigation and nonlinear dynamical systems. Further, I am grateful to Profes-
sor João Sequeira for sharing his knowledge on stability theory and for receiving me
at the IST in Lisbon.

A good daily support was essential to finish my journey. I am grateful to all the
elements of the ASBG lab team, in special those who shared the lab with me while
pursuing their PhDs, Miguel Oliveira, Vitor Matos, Pedro Silva, Carolina Vilares,
Maria Martins and Ricardo Campos. I would like to mention a special recognition to
Vitor Matos, for all the fruitful discussions we had about robotics and for the support
that he gave me on solving my problems. I also have a special thanks to Carolina
Vilares and Maria Martins for their valuable proofreading. I am indebted to all the
persons that participated in my experiments, in particular Vitor Faria, João Macedo,
César Ferreira, Carlos Teixeira and David Barbosa.

The support outside the lab was fundamental to keep me on track of my goals. I
especially thank my mom, dad and brother for their love, encouragement and inspi-
ration. I also would like to show gratitude to my girlfriend, Isabel, for the weeks we
were not together. Without their constant support, this thesis was not possible.

Finally, I thank the financial support provided by the Portuguese Science and
Technology Foundation (FCT) through the PhD grant SFRH/BD/68805/2010, and the
bureaucratic support provided by the University of Minho, in particular, the research
center ALGORITMI.

viii

Contents

List of Figures xiii

List of Tables xix

List of acronyms xxi

1 Introduction 1
1.1 Motivation . 1

1.1.1 Timing in Hospital Delivery Missions 2
1.1.2 Nonlinear Dynamical Systems Theory 3
1.1.3 Stability in Nonlinear Robotic Controllers 5
1.1.4 Contraction Theory . 5
1.1.5 Performance as a Stability Measure 6

1.2 Quick View of the Proposed Solution 6
1.3 Main Contributions . 7
1.4 Thesis Organization . 8
1.5 List of publications . 10

2 Context and Related Work 11
2.1 Service Mobile Robots . 11

2.1.1 Cleaning and Lawn Mower Robots 12
2.1.2 Tele-presence and Assistive . 13
2.1.3 Smart Walkers . 14
2.1.4 Delivery Robots . 14
2.1.5 Hospital Mobile Robots . 15
2.1.6 Comparative Analysis . 18

2.2 Control Architectures . 19
2.2.1 Local Path Planning . 20
2.2.2 Global Path Planning . 25
2.2.3 Timing Control . 28
2.2.4 Localization . 31

2.3 Robotic Architectures Paradigms . 35
2.4 Stability Analysis of Nonlinear Systems 37

2.4.1 Phase Plane Analysis . 37

ix

2.4.2 Lyapunov Theory . 38
2.4.3 Input-Output Stability . 39
2.4.4 Contraction Mapping Theory 40

2.5 Problem Statement . 41

3 Overall Architecture 43
3.1 Global System Overview . 43
3.2 Dynamic Approach to Motion Control 45

3.2.1 World Representation . 46
3.2.2 Transition Function M . 47
3.2.3 Total Cost of an Arc . 48
3.2.4 Global Planner . 54
3.2.5 Look-up Table . 55
3.2.6 Global - Local Integration . 59

3.3 Dynamic Approach to Local Control 60
3.3.1 Behavior Variables . 61
3.3.2 Target Orientation . 62
3.3.3 Obstacle Avoidance . 63
3.3.4 Target Orientation and Obstacle Avoidance Integration 66
3.3.5 Detection of Obstacles . 68
3.3.6 Target Orientation and Obstacle Avoidance Behaviors 68

3.4 Dynamic Approach to Timing Control 70
3.4.1 Velocity . 70
3.4.2 Timing Adaptation . 73
3.4.3 Obstacle Profile . 79
3.4.4 Behavior Switching . 81
3.4.5 Parameter Modulation . 84
3.4.6 Adiabatic Elimination . 86

4 Fundamentals for Stability and Success of the Global System 89
4.1 Contraction Mapping Theory . 89
4.2 Stability and Mission Success . 91
4.3 Stability Analysis . 95

4.3.1 Motion Control - Contraction Analysis 97
4.3.2 Local Control - Contraction Analysis 99
4.3.3 Timing Control - Contraction Analysis 101

5 Experimental Setup 107
5.1 Constraints of Hospital Environments 107

5.1.1 Robot Hardware Design . 108
5.1.2 Navigation and Safety . 109
5.1.3 Localization . 110
5.1.4 Interface . 110
5.1.5 Cost Effectiveness . 111

5.2 Indoor Environment . 112

x

5.3 Robot and Sensors . 114
5.4 Frame Assignment . 115
5.5 Simulator . 116
5.6 Localization System . 119

5.6.1 Vision System . 119
5.6.2 Landmark Placement . 122
5.6.3 Sensor Fusion - An Extended Kalman Filter Approach 123

5.7 Dependability of the Localization System 132
5.7.1 Accuracy and Precision . 132
5.7.2 Convergence Time . 133
5.7.3 Integrity . 133

5.8 External module . 138

6 Experiments 141
6.1 Simulation Experiments . 143

6.1.1 Simulation 1 . 143
6.1.2 Simulation 2 . 147

6.2 Real Experiments . 151
6.2.1 Experiment 1 . 152
6.2.2 Experiment 2 . 153
6.2.3 Experiment 3 . 157
6.2.4 Experiment 4 . 160
6.2.5 Experiment 5 . 163
6.2.6 Experiment 6 . 165
6.2.7 Experiment 7 . 166
6.2.8 Experiment 8 . 169
6.2.9 Experiment 9 . 172
6.2.10 Experiment 10 . 175
6.2.11 Experiment 11 . 175
6.2.12 Experiment 12 . 180

6.3 Discussion of the experiments . 181

7 Conclusions 183
7.1 Addressed Subjects . 183
7.2 Summary of Contributions . 184
7.3 Outlook . 187

A 191
A.1 World Representations . 191
A.2 Orthogonal Projection . 191
A.3 Stuart-Landau oscillator . 192
A.4 C1 Dynamical Systems . 195

B 203

xi

B.1 Robot Features . 203
B.1.1 Kinematics . 204

B.2 Sensors . 205

Bibliography 206

xii

List of Figures

3.1 Graphical representation of the global system. 44
3.2 Schematic of the K, frobot and fsupervisor blocks containing the modules

of control Motion, Local and Timing. 45
3.3 Schematic of the Motion Control module. 46
3.4 Space of beliefs for the robot’s position. 47
3.5 Sequence of algorithms used to build the transition function, M , which

describes topologically the environment. 47
3.6 Topological representation of the simulated environment. 48
3.7 Deterministic cost between regions r1 and r2. 49
3.8 a) Obstacles partially blocking the corridor. b) Obstacles totally block-

ing the corridor. 51
3.9 a) Two alternative paths connecting region r1 to region r8. b) The robot

selects the lowest cost path (path 2). 53
3.10 a) Two alternative paths connecting region r1 to region r8. b) The robot

selected path 2, because it is the lowest cost path. 54
3.11 Evolution of the total cost of path 1 (red dashed line) and path 2 (green

continuous line). 54
3.12 Robot starts its mission in region r3 (red circle) and goal location, Pg

(green cross) is located in region r16. 56
3.13 Example of a trajectory followed by the robot when it is close to a

boundary between regions. 57
3.14 A corridor of an environment composed by the sequence of regions,

ρ = {r1, r2, r3, r4}. 58
3.15 a) Robot moves from region r3 to region r2 by crossing critical line l3,2

at time t = k. b) Robot circumnavigates an unexpected obstacle (red
rectangle) at time t = k + 1 and the local goal Pb is updated according
to (3.18) and (3.19). 60

3.16 Schematic of the Local Control module. 61
3.17 Schematic representing the direction to the goal location, ψtar and the

robot’s heading direction, ϕ, relative to the allocentric reference frame,
{W}. 62

3.18 Vector field of the target orientation contribution. 63
3.19 Robot and laser range finder seen through a top perspective. 64
3.20 Range of the laser step, La,341, detecting an obstacle at a distance dl,341 . 66
3.21 Vector field of the obstacle avoidance contribution. 66
3.22 Vector field resulting from the superposition of the attractive and re-

pulsive forces. 67

xiii

3.23 Worst case scenario in which an obstacle lies between the robot and the
goal location. 69

3.24 a) Vector field of the target orientation contribution. b) Vector field
of the obstacle avoidance contribution. c) Resulting vector field of the
heading direction dynamics. 70

3.25 Schematic of the Timing Control module. 71
3.26 m trajectory modulation (solid red line) and parameters’ role. 72
3.27 Solution m of the Stuart-Landau oscillator 73
3.28 Single oscillation profile generated by the Stuart-Landau oscillator. . . 74
3.29 Blue continuous line depicts the frequency of the oscillator, ω, dashed

grey line depicts solution m and dashed dotted green line depicts the
oscillator offset, Om. 75

3.30 Example of how to calculate the distance D(0) between the robot’s
initial position, Pr(0), and the goal location, Pg. 78

3.31 A is the radius of the Stuart-Landau oscillator 79
3.32 Bifurcation diagram and phase space of the competitive dynamics with-

out the competitive term. 82
3.33 Triplet of variables ui. 85
3.34 Parameter µ according to the triplet of variables ui. 86
3.35 Behavior of the robot according to the triplet of variables ui. 87

4.1 T is contracting. r is the radius of ball B(x, r) and s is the radius of
ball B(Tx, s). 90

4.2 Graphical representation of the global system with feedback of the upper
bound of the stability indicator. 94

4.3 Block diagram representing the global system. 96
4.4 Phase portrait of D(f4) (D(f5)) and f4 (f5) for λtr < 0. 98
4.5 Phase portrait of D(f8) and f8 for λtar < 0. 100
4.6 Phase portrait of D(f8) and f8 for λobs,ik > 0 and λtar < 0. 101
4.7 Phase portrait of D(f15) and f15 for βi > 0 and βi < 0. 103

5.1 Map of the indoor environment in which the robot performs the field
experiments. 113

5.2 Snapshots from the indoor environment. 114
5.3 Pioneer 3-DX and remaining hardware used to control the robot: cam-

era, laptop and laser. 115
5.4 Reference frames. 116
5.5 Simulated model of the Pionner 3-DX in Webots. 117
5.6 Webots simulated environment. 117
5.7 Simulated objects usually found in hospitals. 118
5.8 Camera on the robot’s top and camera’s field of view. 120
5.9 Example of a line segment divided into N equal parts (black divisions)

and N equidistributed points (red circles). 122
5.10 Red circles identify the landmarks distributed on the environment. . . . 124
5.11 Localization System module composed by a direct EKF. 125

xiv

5.12 Error of the robot’s pose calculated by the camera when compared to
the ground truth. 130

5.13 Precision vs time: convergence of the localization system. 134
5.14 Minimum distance measured by the laser mounted on the robot and

reference velocity, generated by the Timing Control module. 135
5.15 Estimates of the robot’s pose (x̂r, ŷr, ϕ̂). 136
5.16 Uncertainty of the localization system when the percentage of detected

landmarks is changed. 137
5.17 Uncertainty vs time: convergence of the localization system when the

robot is kidnapped during an interval of time (green area). 138
5.18 Schematic of the External module that represents the interface between

the user and the robot. 139

6.1 Different situations faced by the robot during simulation 1. 144
6.2 Solutions m (blue continuous line) and n (red dashed line) generated by

the Stuart-Landau oscillator, remaining distance between the robot and
the goal location, D (black continuous line) and variables responsible
for the robot’s motor behavior. 145

6.3 Evolution of the bound of ∥D(fsupervisor)∥ along the three missions of
simulation 1. 146

6.4 Trajectory followed by the robot during simulation 1. 147
6.5 Estimates given by the EKF of the trajectory followed by the robot in

simulation 1. 148
6.6 Error between the ground truth of the robot’s position and the one

estimated by the EKF. 148
6.7 Trajectory followed by the robot during simulation 2. 149
6.8 Evolution of the bound of ∥D(fsupervisor)∥ and sequence of fi Jacobians

along the three missions of simulation 2. 150
6.9 Trajectory followed by the robot during the two failed missions of sim-

ulation 2. 151
6.10 Robot’s linear velocity, v, during simulation 2. 151
6.11 Snapshots of the robot performing the mission of experiment 1. 152
6.12 Solutions of the Stuart-Landau oscillator m (blue continuous line), n

(red dashed line), amplitude of the oscillator, A (black dashed-dotted
line) and distance between the robot and the goal location (black con-
tinuous line). 153

6.13 Estimates of the robot’s pose (blue continuous line) through the EKF
and robot’s pose provided by the camera (black circles). 154

6.14 Evolution of the bound of ∥D(fsupervisor)∥ along the mission of experi-
ment 1. 154

6.15 Snapshots of the robot performing the mission of experiment 2. 155
6.16 Estimates given by the EKF of the trajectory followed by the robot

during the experiment illustrated in fig. 6.15. 155

xv

6.17 Solution m (blue continuous line) and amplitude of the Stuart-Landau
oscillator, A (black dashed-dotted line), direction that the robot should
follow to reach the goal location and potential function indicating the
presence of obstacles, U(ϕ). 156

6.18 Evolution of the bound of ∥D(fsupervisor)∥ along the mission of experi-
ment 2. 157

6.19 Snapshots of the robot performing the mission of experiment 3. 158
6.20 Estimates given by the EKF of the trajectory followed by the robot

during the experiment illustrated in fig. 6.19. 158
6.21 Velocity followed by the robot, v (red continuous line), solution m of

the Stuart-Landau oscillator (blue continuous line), distance between
the robot and the goal location (black continuous line) and target ori-
entation Ftar (blue continuous line) and obstacle avoidance Fobs (red
dashed line) contributions. 159

6.22 Evolution of the bound of ∥D(fsupervisor)∥ along the mission of experi-
ment 3. 160

6.23 Snapshots of the robot performing the mission of experiment 4. 161
6.24 Snapshots of the surroundings of the robot when it performs its mission

in experiment 4. 161
6.25 Estimates given by the EKF of the trajectory followed by the robot

during the experiment illustrated in fig. 6.23. 162
6.26 Robot’s linear velocity, v (red continuous line), solution m generated by

the Stuart-Landau oscillator (blue dashed line), distance between the
robot and the goal location, D (black continuous line) and distance in
which it is assumed that the robot has reached the goal location (red
dashed line). 162

6.27 Evolution of the bound of ∥D(fsupervisor)∥ along the single mission of
experiment 4. 163

6.28 Snapshots of the robot performing the mission of experiment 5. 164
6.29 Robot’s linear velocity, v (red continuous line), solution m (blue dashed

line), distance between the robot and the goal location, D (black con-
tinuous line) and distance in which it is assumed that the robot reaches
the goal location (red dashed line). 165

6.30 Evolution of the bound of ∥D(fsupervisor)∥ along experiment 5. 166
6.31 Solution m (blue continuous line) and the amplitude of the oscillator, A

(black dashed-dotted line), set of variables responsible for the behavior
of the robot. 167

6.32 (a) Evolution of the bound of ∥D(fsupervisor)∥ along experiment 6. (b)
∥D(ftiming)∥ identifies if the mission is completed within the time con-
straint. 167

6.33 Snapshots of the robot performing the two missions in experiment 7.
The robot is kidnapped during the second mission. 168

6.34 Estimates of the robot’s pose (blue continuous line) through the EKF
and robot’s pose provided by the camera (black circles). 169

xvi

6.35 (a) Solutions m (blue continuous line) and amplitude of the oscillator, A
(black dashed-dotted line). (b) Distance covered by the robot through-
out the two missions. 170

6.36 Evolution of the bound of ∥D(fsupervisor)∥ along the two missions of
experiment 7. 170

6.37 Snapshots of the robot performing the mission in experiment 8. During
this mission, the robot is kidnapped and its vision system is disabled. . 171

6.38 (a) Robot’s linear velocity, v (red continuous line). (b) Distance covered
by the robot during the two missions. 172

6.39 Estimates of the robot’s pose (blue continuous line) through the EKF
and robot’s pose provided by the camera (black circles). 173

6.40 Limit-cycle of the Stuart-Landau oscillator when the robot is kidnapped
and its amplitude is increased to compensate the provoked delay. 174

6.41 Evolution of the bound of ∥D(fsupervisor)∥ along the two missions of
experiment 8. 174

6.42 Snapshots of the robot performing a mission in which it is kidnapped
and does not reach the goal location. 175

6.43 Estimates of the robot’s pose (blue continuous line) through the EKF
and robot’s pose provided by the camera (black circles). 176

6.44 (a) Robot’s linear velocity, v (red continuous line) and solution m gen-
erated by the Stuart-Landau oscillator (blue dashed line). (b) Distance
covered by the robot during the two missions. 176

6.45 Evolution of the bound of ∥D(fsupervisor)∥ along the two missions of
experiment 9. 177

6.46 Snapshots of the robot moving in a narrow passage. 177
6.47 Evolution of the bound of ∥D(fsupervisor)∥ along the mission of experi-

ment 10. 178
6.48 Snapshots of the robot performing the long-term mission. 178
6.49 Estimates given by the EKF of the trajectory followed by the robot. . . 179
6.50 Evolution of the bound of ∥D(fsupervisor)∥ along the sequence of missions.179
6.51 Goal locations Pg of the missions performed by the robot during exper-

iment 12. 180
6.52 Evolution of the bound of ∥D(fsupervisor)∥ along the sequence of missions.181

A.1 Representation of the simulated environment using occupancy grid, topo-
logical and landmark-based representations. Crosses represent landmarks.191

A.2 Projection of the robot’s position, Pr, onto the critical line, li,i+1. P1i
and P2i are the extremities of the respective critical line. 192

A.3 Phase portraits of the Stuart-Landau oscillator depicted in (3.35)-(3.36). 193
A.4 The bifurcation diagram and the one-parameter family of limit cycles

Γµ resulting from the Hopf bifurcation. 193
A.5 Smooth modulation of the generated trajectory amplitude (top panel)

by modifying parameter µ (bottom panel). 194
A.6 Harmonic oscillations with different periods. 194
A.7 Limit-cycles for different signals of frequency ω. 195
A.8 Offset Om and state variable m superimposed. 195

xvii

A.9 Derivatives of the feed-through map f12 relative to variables m and n. 201
A.10 Derivative of the feed-through map f12 relative to variable Om. 202

B.1 Lateral and top perspectives of the robot. Measures are in centimeters. 203
B.2 Distribution of the 8 sonar sensors mounted in front of the robot. . . . 204
B.3 (a) Laser Range Finder Hokuyo URG-04LX-UG01. (b) PsEye camera. . 205

xviii

List of Tables

2.1 Comparative analysis in terms of navigation capabilities (X - fulfilled,
X - not fulfilled) . 19

2.2 Expected error according to the exteroceptive sensor used for robot
indoor localization. 34

3.1 Distance required to circumnavigate obstacles type O1. 51
3.2 Total cost of path 1 and path 2 during 9 traversals. 53

4.1 Stability parameters. 104

5.1 Specifications considered for delivery mobile robots (X - fulfilled, X -
not fulfilled). 112

5.2 Results of the experimental field tests to verify the odometry uncertainty.129
5.3 Accuracy and precision of the Localization System. 132

6.1 Summary of the simulations and experiments. 143
6.2 Results of the sequential missions performed in experiment 12. 181

xix

xx

List of acronyms

2D two-dimensional 25

3D three-dimensional 13

AGVs Automatic Guided Vehicles 14

CAD Computer Aided Design 17

CPGs Central Pattern Generators 29

CVM Curvature-Velocity Method 23

DMP Dynamic Movement Primitive 31

DSA Dynamical Systems Approach 21

DWA Dynamic Window Approach 23

EKF Extended Kalman Filter 30

GPS Global Positioning System 33

LCM Lane-Curvature Method 23

LPA* Lifelong Planning A* 27

NDV Nearest Diagram Navigation 24

ODE Open Dynamics Engine 116

ORM Obstacle-Restriction Method 24

PVO Probabilistic Velocity Obstacle 23

RAPs Reactive Action Packages 36

xxi

RFID Radio Frequency Identification 32

SPA Sense-Plan-Act 36

TVDW Time-Varying Dynamic Window 24

UWB Ultra Wide Band 32

VFF Virtual Force Field 21

VFH Vector Field Histogram 22

VO Velocity Obstacle 23

WLAN Wireless Local Area Network 32

xxii

To my family. . .

xxiii

Chapter 1

Introduction

The main aim of this thesis is to develop an architecture able to guide an autonomous
mobile robot whose missions are performed with time constraints in a real and dynamic
environment. The modules of the architecture are based on nonlinear dynamical sys-
tems. Contraction Theory is a tool used to show under what conditions the proposed
architecture is stable and able to drive the mobile robot successfully.

Real experiments show the performance of the architecture in a lab indoor environ-
ment. This environment has similarities with hospitals, which are the main focus for
the navigation with time constraints proposed in the thesis. However, the proposed
architecture is indeed generic and can be applied to mobile robots in common indoor
environments.

1.1 Motivation

Navigation is the ability of a mobile robot to move towards its goal locations based
on sensory data and knowledge about the environment. In cluttered and dynamic
indoor environments, the robot can easily be blocked by obstacles and become unable
to pursue its mission until the obstacles have been removed. A well-designed control
architecture is required to successfully guide mobile robots in such environments.

The architecture has to deal with both global and local path planning problems.
Global path planning involves calculating a trajectory that will lead the robot towards
the goal location when the map of the environment is known. Typically, this problem is
solved before the robot starts its mission. Local path planning means locally modulate
the trajectory, given real-time sensory data acquired by the robot of its surroundings.
Local planning includes obstacle avoidance and target orientation behaviors. These
behaviors allow the robot to avoid collisions, so that it can safely reach the goal
location.

1

2 Chapter 1 Introduction

In autonomous navigation, global and local path planning abilities are not sufficient
to handle timing problems. If a robot has to obey a time constraint to reach its goal
location, it is necessary to include the ability to generate timed movements into its
architecture. The robot will be allowed to complete its missions according to an a
priori defined time constraint, despite varying environmental conditions or bounded
perturbations (e.g. obstacles). If a perturbation delays the robot, its movement is
compensated to comply as much as possible the time constraint.

The majority of approaches addressing navigation problems does not handle the
generation of timed movements. Time is not considered as a parameter to the control
architectures and robot actions are initiated and finished independently of the elapsed
time. If the robot takes longer than expected to complete its mission because of
unforeseen disturbances, this change of timing is not compensated along its trajectory.
For instance, obstacles detected during the mission may force the robot to cover a
larger distance than expected or even stop and wait for the clearance of the path. The
time lost to handle these disturbances is not compensated and the robot finishes its
mission after the expected time. Therefore, a timed movement approach where the
robot accelerates along its trajectory is necessary for compensating the possible delays.

The reason for including timed movements in mobile navigation is even more rel-
evant when sequences of missions are considered. If a mission is delayed by external
factors, the robot should follow the predefined time schedule and complete the mis-
sion within the expected predefined time, so that the next mission is initiated without
delay. A potential application for the generation of timed movements for sequence of
missions is the automation of deliveries in hospitals. The delivery time can be critical
for robots in hospitals, because in general, drugs and meals have scheduled times to
be delivered.

Timed movements are important for other robotic applications, mainly those that
require rhythmic movements, such as locomotion for legged robots [1–3], dancing,
catching, hitting, juggling and human-robot interaction [4]. Time independent move-
ments are for instance ambulatory displacements over the environment, wherein there
is no specific time to reach a particular goal point.

1.1.1 Timing in Hospital Delivery Missions

Several studies [5–7] have shown that automated deliveries of goods in hospitals im-
prove their transportation efficiency and overall organization, while reducing the lo-
gistic costs. Robots can transport non-urgent supplies, such as food, dishes, linens

Chapter 1 Introduction 3

and wastes. Nurses and housekeepers can spend more time on patient care tasks in-
stead of doing repetitive delivery tasks. This increases patient satisfaction and reduces
operational costs. Furthermore, the service quality offered by the hospital is improved.

Manual hospital delivery tasks are usually bounded by the limitations of available
workers. Transportation routes, load volumes, load weights and travel frequencies are
planned according to the available means of transportation framework and personnel.
An automated system improves flexibility, as transportation routes can be optimized
and deliveries can be planned for night and daytime.

Current delivery robots navigate in hospital facilities at a constant velocity and
stop when imminent collisions are detected. After the obstacles have been removed,
the robot keeps moving with the previous constant velocity. Since time constraints
are not considered as a requirement to complete the delivery missions, the delay is not
compensated for by accelerating the robot and the goal location is reached after the
scheduled time. This delay can be very significant for the reason that robots move
in corridors along with human traffic, ride elevators, open automatic doors and avoid
obstacles. For instance, the time that elevators need to travel between floors depends
on the number of persons who call them and if they are far from the floor where they
were requested to arrive. These perturbations will cause several interruptions to the
movement of the robots and they will fail to reach their destinations when they are
needed.

Controlling the velocity of the robot instead of setting a constant velocity has mul-
tiple advantages. For instance, regardless of the initial position of the robot and the
final destination, the robot can perform its delivery missions within a specific time.
Performing delivery time schedules is important when considering drugs or meals,
whose delivery times are in general predefined. Thus, if the robot is late on a delivery
mission, it must compensate the delay, such that the following missions are initiated
according to the time schedule. Another reason for generating timed movements is to
ensure that robots complete similar missions at different periods of the day with the
same time constraints, even if the density of obstacles changes throughout the day. In
addition, controlling the velocity of the robot can save operational time that can be
used by the robot to perform more delivery tasks.

1.1.2 Nonlinear Dynamical Systems Theory

In the last years, nonlinear approaches have been widely used by researchers to design
and build control systems. Even though linear control has been successful in a wide
range of industrial applications, nonlinear control offers useful tools for analyzing and

4 Chapter 1 Introduction

modeling patterns of stability in the behavior of a system. For instance, the generation
of timed movements in robotics has been following a standard approach based on
nonlinear dynamical systems. The work in [4] suggested that all timing models can be
represented by limit cycles in nonlinear oscillators.

The majority of physical and engineering systems is inherently nonlinear. Numerous
sources of nonlinearities that arise in such systems, e.g., friction (Coulomb, hysteresis),
input constraints (e.g., saturation), gyroscopic and kinematic effects must be accounted
for in the system analysis and control design. These nonlinearities are handled by non-
linear controllers in large or small range operations, while linear controllers have to
rely on the small range operation where the linearity assumption is valid. Linear con-
trollers may be unstable if the operation range is large or if the discontinuities in the
nonlinearities do not allow linear approximation [8]. Nonlinear control provides tech-
niques to estimate the behavior of the system even in the presence of nonlinearities.
Linear controllers may require extensions to handle systems with significant nonlin-
earities, such as high quality actuators and sensors. On the other hand, nonlinear
control may use less expensive actuators with nonlinear characteristics and that does
not compromise the system in terms of stability and performance [8]. Well-designed
nonlinear controllers handle uncertainties on the parameters because of their robust-
ness and adaptability. On the contrary, linear control requires that the parameters of
the model are well known. If they are inaccurate, linear control may exhibit instability
and degradation in the performance.

Nonlinear systems provide richer and more complex behaviors than linear systems.
The variables of a nonlinear system might converge to an equilibrium state, blow to
infinity, exhibit irregular chaotic patterns, bifurcate from one pattern to another, re-
peat periodic patterns or behave randomly. Furthermore, a single nonlinear dynamical
system can exhibit different patterns depending on its initial conditions and control
parameters. Thus, the stability analysis of nonlinear dynamical systems is much more
difficult. In fact, there are nonlinear dynamical systems that can not be solved ana-
lytically. Stability theory can be used to predict the behavior of nonlinear dynamical
systems by analyzing the trajectory of their state variables over time, the set of their
possible bifurcations and their control parameters. In fact, the small number of control
parameters in nonlinear dynamical systems reduces the dimensionality of the control
problem [9]. Thus, they are amenable to formal analysis, namely, when considering
stability conditions in real robots.

Chapter 1 Introduction 5

1.1.3 Stability in Nonlinear Robotic Controllers

Nonlinear systems can be analyzed under several properties, such as controllability,
observability, invertibility and stability [10]. All properties play a fundamental role
in the behavior of the systems. Among them, stability can be used to estimate the
behavior of the systems over time.

If a control system is stable, its output will follow its input at a certainty distance.
An unstable control system can not guarantee that its output follows its input under
bounded perturbations. The amplitude of at least one system coordinate or output
variable of an unstable system may be unbounded, even if the input of the system
is bounded. Usually, this drives the system to saturation and to undesirable conse-
quences, such as breakdowns or damages. For these reasons, the stability of control
systems must be guaranteed.

In the case of mobile navigation, it is clear that experimental tests, such as simu-
lations and real experiments, of nonlinear control architectures are very important to
validate the performance of the mobile robots over time. However, experimental tests
do not cover all the possible solutions, since nonlinear systems exhibit a wide range
of behaviors that depend on initial conditions, inputs and perturbations. A stability
analysis may provide conditions under which the solutions of the nonlinear systems
can be predicted, despite the different initial conditions and bounded perturbations.

1.1.4 Contraction Theory

There is no single concept of stability and many different definitions are possible. A
number of strong stability concepts, such as global asymptotic stability or global expo-
nential stability are required to the navigation problem. Global asymptotic stability
ensures that all solutions tend to an equilibrium state of interest. This concept of
stability is motivated by the fact that stability and performance properties of many
control systems are independent of the initial time. However, global asymptotic stabil-
ity does not quantify the rate of convergence and in some applications, it is insufficient
to know that the control system converges to an equilibrium point in finite time. In
robot navigation, there is a need to estimate how fast the mobile robot approaches the
goal location.

The concept of global exponential stability ensures that the convergence of the
system is bounded by an exponential decay. If a system is exponentially stable, then
it is asymptotically stable and stable in the sense of Lyapunov. The converse is not
necessarily true. If a system composed by a nonlinear controller and a robot is globally

6 Chapter 1 Introduction

exponentially stable, then it is able to drive the robot from its initial position to a
neighborhood arbitrarily small centered on any goal position in finite time.

Contraction Theory is a recent tool (see [11]) that ensures global exponential sta-
bility of nonlinear control systems. This theory states that if a nonlinear system is
contracting, then its initial conditions are somehow forgotten and transient bounded
disturbances vanish exponentially. Thus, bounded external perturbations have no ef-
fect on the convergence, and this is a fundamental property when dealing with realistic
control systems.

1.1.5 Performance as a Stability Measure

As the complexity in robotics is increasing, it becomes necessary to establish perfor-
mance measures that enable the comparison among robotics research results. A typical
performance criterion that evaluates the ability of a control architecture to guide mo-
bile robots is the mission success, i.e., the number of successful missions completed by
the robot.

Contraction Theory provides a combination property, that can be used to evalu-
ate the mission success as a stability problem. Combination property guarantees the
contraction of a control architecture if all of its nonlinear dynamical systems are con-
tracting. Furthermore, the knowledge of the internal organization of the architecture is
not required, as the contraction of the architecture holds over a wide range of possible
combinations of its dynamical systems [12].

A contraction criterion can be derived through the combination property, and
viewed as a stability indicator that identifies the success of the mission. If the overall
system is contracting, it reaches its unique fixed point and the mission is successfully
completed. Otherwise, the mission may fail.

To the best of the author’s knowledge, performance criteria measuring the ability
of a navigation system to drive mobile robots in complex dynamic environments are
obtained through simulation tests or real experiments. In general, there is a lack of
formal results. On the other hand, analyzing the performance criteria as a stabil-
ity problem based on Contraction Theory provides formal results that evaluate the
performance of the navigation system.

1.2 Quick View of the Proposed Solution

A previous architecture [13], where obstacle avoidance and timed movements were
successfully achieved for short displacements, in the order of a couple of meters, using

Chapter 1 Introduction 7

a toy-like mobile robot, supports the proposed architecture. The new architecture
includes three modules of control, Motion Control for path planning, Local Control for
local path planning and Timing Control for generating timed movements. Each module
is based on a mesh of C1 nonlinear dynamical systems and feed-through maps 1.

The Motion Control module receives the map of the environment and the position
of the robot, in order to generate the goal direction that the robot should follow to
reach the goal location. This module converts the representation of the environment
from a physical perspective to a mathematical perspective, in order to treat the envi-
ronment as a mathematical model. The Local Control module is responsible for the
obstacle avoidance and target orientation tasks. It receives the goal direction from the
Motion Control and verifies based on sensory information if the robot can follow this
direction. This module generates the robot’s angular velocity. The Timing Control
module generates the linear velocity, so that the robot accomplishes its missions within
their respective time constraints. The pose of the robot (position and orientation) is
estimated based on vision information and odometry by the localization system. The
position of the robot is included into the Timing Control module to verify if the robot
is on time, on advance or delayed to complete the mission.

1.3 Main Contributions

This thesis provides three main contributions. First, it proposes an architecture that
combines in a novel way navigation abilities (local and global path planning) with the
generation of timed movements for a mobile robot capable of performing missions in
cluttered and dynamic environments.

The second contribution consists on the exploitation of the Contraction Theory
properties. This contribution is divided into two directions. The first one provides
stability conditions that define the control parameters of the dynamical systems com-
posing the architecture. Hence, the architecture is designed on top of stability con-
ditions. The second direction extends the combination property of the Contraction
Theory to derive a contraction criterion that identifies if the robot completes with
success its missions. This property includes a norm bounded constraint augmented
with a term corresponding to the time constraint, which corresponds to a desired level
of performance. Thus, the mission success is identified as a stability problem. If the
global system2 converges to its unique fixed point, then, the robot successfully com-
pletes the mission. An important aspect of this contribution is that it provides an a

1C1 stands for the set of continuously differentiable functions.
2Closed loop composed by the robot, its controlling architecture and the interacting environment.

8 Chapter 1 Introduction

priori roadmap to design stable control systems that can be extended to a wide range
of other control systems.

Results obtained from field experiments in a real environment are the final contri-
bution. Several experiments were conducted to show that the architecture successfully
drives the mobile robot to its goal locations in due time. Furthermore, it is expected
that the stability indicator identifies possible successful and unsuccessful missions.
This final contribution also provides a dependability analysis that concludes about the
robustness of the proposed architecture. The dependability analysis considers the reli-
ability, integrity and safety of the robot. Long-term experiments, covering a wide range
of realistic scenarios in a typical university indoor environment, validate the ability of
the architecture to guide the robot towards its goal location while respecting the time
constraint. These experiments assess if the proposed architecture is able to drive a
mobile robot for large periods of time in realistic environments, such as hospitals. In
this final contribution, Monte Carlo tests show the ability of the localization system
to provide accurate robot poses estimates under different environment conditions.

The main contributions of this thesis are summarized as follows:

• Extension of a control architecture with time constraints based on nonlinear
dynamical systems and feed-through maps capable of guiding autonomous mobile
robots in dynamic and cluttered environments, such as hospitals;

• Extension of the dynamic approach that generates and modulates the timing
control of the robot to deal with global and local path planning;

• Stability analysis of the architecture through the Contraction Theory;

• Definition of a stability indicator based on the combination property of Contrac-
tion Theory that identifies the ability of the robot to successfully complete its
missions;

• Results obtained from the conducted long-term experiments that covered a wide
range of realistic scenarios in a lab environment with similarities to hospital
environments.

1.4 Thesis Organization

This section briefly reviews the different chapters of this thesis.
Chapter 2

Chapter 1 Introduction 9

This chapter presents a review of literature related to this work. A brief introduction
to autonomous mobile robots is given. This review compares navigation techniques,
sensors for obstacle avoidance, real-time localization and assigned tasks between de-
livery hospital robots and other autonomous mobile robots, namely, assistive/tele-
presence, cleaning and mowing robots. The chapter continues with a description about
methods for obstacle avoidance, global path planning, timing control and localization
techniques. A description of stability theory methods for control architectures con-
cludes this chapter.

Chapter 3
This chapter fully details the modules that compose the control architecture: Mo-

tion, Local and Timing. They are responsible for generating the linear and angular
velocity, so that the robot completes the missions within their respective time con-
straints.

Chapter 4
A stability analysis based on Contraction Theory for each module is described in

this chapter. This analysis provides stability conditions that constrain the control
parameters in the dynamical systems. Furthermore, a stability indicator that identifies
the ability of the robot to complete its missions is developed based on the combination
contraction property.

Chapter 5
Hospital environments tend to constrain robot autonomy. Challenges as safety,

obstacle detection, hardware design or localization must be considered during the
process of designing the robot. This chapter includes an overview about the hospital
constraints and a description of the indoor environment and robot used to run the field
experiments. This environment shares several characteristics with hospitals, such as
people walking around, passages through doors and static obstacles. Then, a Kalman
filter based approach is adopted to fuse sensory information from different sources, in
order to obtain an accurate robot’s pose estimated by the localization system. The
performance of the localization system is evaluated through Monte Carlo tests.

Chapter 6
In this chapter, both simulations and field experiments are conducted to verify if the

proposed architecture successfully produces smooth and uninterrupted robot motion
over long distances without human supervision. Single and long-term missions compose
the experiments. During the experiments, the stability indicator is used to verify if the
robot successfully completes the assigned missions in time. The environment contains
unpredictable obstacles that appear in the trajectory of the robot.

Chapter 7

10 Chapter 1 Introduction

The last chapter of this thesis presents the conclusions obtained from the results,
the summary of contributions and guidelines for future works.

1.5 List of publications
Conference papers

• Jorge Silva, Cristina Santos and João Sequeira, Developing a timed navigation archi-
tecture for hospital delivery robots, In IEEE 3rd Portuguese Meeting in Bioengineering
(ENBENG), (pp. 1 - 4), 2013

• Jorge Silva, Cristina Santos and João Sequeira, Navigation Architecture for Mobile
Robots with Temporal Stabilization of Movements, In 9th IEEE International Workshop
on Robot, Motion and Control (RoMoCo) (pp. 209-214), 2013

• Jorge Silva, João Sequeira and Cristina Santos, A Stability Analysis for a Dynamical
Robot Control Architecture, In Intelligent Autonomous Vehicles (IAV), (Vol. 8, No, 1,
pp. 225 - 230), 2013

• Jorge Silva, Cristina Santos and João Sequeira, Timed Trajectory Generation Combined
with an Extended Kalman Filter for a Vision-Based Autonomous Mobile Robot, In
Intelligent Autonomous Systems 12 (pp. 67 - 79). Springer Berlin Heidelberg, 2013

• João Sequeira, Cristina Santos and Jorge Silva, Dynamical Systems in Robot Con-
trol Architectures: A Building Block Perspective, In 12th International Conference on
Control, Automation, Robotics and Vision (ICARCV) (pp. 82 - 87), 2012

• Jorge Silva, Cristina Santos and João Sequeira, Timed Trajectory Generation for a
Vision-based Autonomous Mobile Robot in Cluttered Environments, In 9th Interna-
tional Conference on Informatics in Control, Automation and Robotics (ICINCO) (pp.
431 - 434), 2012

• Jorge Silva, Vitor Matos and Cristina Santos Generating Timed Trajectories for Au-
tonomous Robots, In International Workshop on Bio-Inspired Robots, 2011

Chapter 2

Context and Related Work

This chapter begins by describing service mobile robots commercially available or expected
to be on the market in the near future. The description specifies their physical features,
sensors, tasks and navigation techniques. A comparative analysis between each category of
service mobile robots and hospital delivery robots is given.

Service mobile robots must be able to autonomously navigate in dynamic and cluttered
environments, in order to complete their missions. The control architectures that rule these
robots should integrate several modules of control, such that the missions are successfully
completed. Section 2.2 gives an overview about the control modules that architectures should
have, namely techniques and approaches to address local and global path planning, localiza-
tion and timing control.

Once the modules that compose the architecture are identified, it is fundamental to detail
the intrinsics and connect them, such that the architecture deals with real-time applications
and unexpected events. Section 2.3 reviews robotic architecture paradigms, fundamental to
obtain a well-designed architecture.

Additionally, it is essential to ensure that the architecture converges to an equilibrium
state. Section 2.4 describes methods for stability analysis of nonlinear systems. The chapter
ends with a summary describing the weaknesses of the related work addressed in this thesis.

2.1 Service Mobile Robots
In the last years, the number of service mobile robots has significantly increased [14]. From
cutting grass to floor cleaning, transporting laundry in hospitals or materials in industrial
facilities, mobile robots are performing some of the trivial tasks that humans regularly do.

In the following section, a description of available or expected commercial robots, including
cleaning, lawn mowers, tele-presence, assistive, smart walkers and delivery robots is given.
This summary aims to provide the sensors characteristics, goals and limitations of each
robotic application and compare them with delivery hospital robotic applications.

11

12 Chapter 2 Context and Related Work

2.1.1 Cleaning and Lawn Mower Robots

Cleaning robots perform tasks such as brushing, scrubbing and vacuuming dirt and/or dust
on the floor [15–18]. These robots are designed to be inexpensive and small. Simple heuristic
rules define their random navigation patterns. Typically, infrared and contact sensors are
employed to detect obstacles. Simplest cleaning robots use infrared sensors to obtain their
current location and to prevent them from falling down the stairs [19]. Most expensive clean-
ing robots have other sensors for mapping and navigation, such as ultrasonic sensors, cameras
and lasers [20–22]. To estimate their localization, they use gyroscopes or accelerometers.

More sophisticated navigation algorithms allow robots to avoid cleaning the same spot
repeatedly. When running out of power or after finishing the cleaning tasks, they return
to the dock charging station and continue cleaning where they left off in the last session.
Delimited areas defined on the floor through magnetic strips or virtual walls ensure that the
cleaning robots do not leave the specific area.

Large cleaning robots [23] are more expensive than small ones and have a physical portrait
similar to hospital delivery robots. When obstacles are detected in the cleaning path, robots
wait for the clearance of the corridor before continuing. This option imposes constraints
in the environment hallways and rooms, as they should be completely free of obstacles, in
order to ensure a proper cleaning operation. This is a suitable solution for cleaning robots,
as cleaning missions can be continued after the obstacles have been removed.

Lawn mower robots have sensory hardware and control navigation techniques similar to
cleaning robots. However, they are specially designed for outdoor environments. Simplest
lawn mower robots [24–31] use ultrasonic sensors and bumpers to detect obstacles. Addi-
tionally, random algorithms based on heuristics are used for navigation. When obstacles
are detected, these robots stop and only move after the obstacles have been removed. A
more intelligent navigation system developed for the robot described in [25] measures the
garden and calculates the shortest possible route to perform the lawn mower mission. In [32],
the robot uses a combination of accelerometers, gyroscopes or electronic compasses to keep
straight its trajectory.

Typically, lawn mower robots require a boundary wire around the lawn to define the
mowing area. In some cases, the wire defines the location of the charging dock station.

The random navigation algorithms for cleaning and lawn mower robots are unfeasible
for hospital delivery applications. As previously mentioned, when obstacles are detected,
these robots stop and wait for the clearance of the path or change their movement based on
heuristics. They assume that the cleaning and mowing tasks will be eventually completed,
regardless of the direction followed after avoiding obstacles. However, this solution is not
feasible in hospital hallways, since delivery hospital robots have to reach a specific location
even when obstacles are detected. In terms of security, delivery hospital robots need a higher
number of sensors to detect obstacles, as they are in general larger and taller than cleaning
or mowing robots.

Chapter 2 Context and Related Work 13

2.1.2 Tele-presence and Assistive

Nowadays, tele-presence, assistive and multi-task robots are navigating in hospitals and other
public spaces, making surveillance missions, providing meetings between patients and doctors
and assisting elderly or physically disabled people.

There are several tele-presence robots on the market, but only the RP-VITA [33] and, more
recently, the Ava 500 from iRobot [34] are completely autonomous. Users specify the desired
destination and these robots automatically navigate towards it without human intervention.
Both robots use laser, three-dimensional (3D) imaging and sonars to safely avoid obstacles
in cluttered environments, without bumping into people or objects. RP-VITA robots are
already installed in 50 hospitals.

FURO-S [35] and FURO-K [36] are multi-service robots already operating in airports and
malls, as guides or receptionists. These robots autonomously navigate in the environment
using ultrasonic sensors and bumpers to detect obstacles, reaching velocities up to 1 m/s.

Expected to be commercially available in 2015, the Kompai robot [37, 38] is being designed
to assist elderly and disabled people. This robot autonomously navigates to specific locations
given by the user. To detect obstacles, rear and front bumpers, sonars, infrared, laser and
3D vision are applied. Furthermore, traditional techniques for laser-based simultaneous
localization and mapping are used.

Giraff [39] is another assistive robot expected to be launched to the market in 2015. It
uses a laser range finder on its base for obstacle avoidance. If Giraff detects an obstacle under
30 cm, it warns the user about the existence of an obstacle and stops to avoid the collision.
Giraff uses an a priori map built offline from data acquired by the laser.

Most known non-commercially solutions for assistive health care, domestic or tele-presence
robots include several research projects. The latest version of the health care robot Care-O-
bot [40] is equipped with omnidirectional drives, range and image sensors for object learning
and autonomous navigation. AMIGO robot [41] was designed for domestic service tasks. This
omni-directional robot uses a 3D Kinect camera and a laser to detect obstacles. The Nursebot
Pearl [42] is a personal mobile service robot that assists elderly people in domestic tasks,
makes tele-presence and social interaction. This robot uses sonars and a laser for obstacle
avoidance. CoBot [43] is a robot that interacts with humans in indoor environments, being
able to achieve autonomous localization and navigation using a 3D Kinect camera, WiFi and
a laser.

SIGAs robots [44] are operating in the facilities of a banking group as guides to clients.
These robots are equipped with odometers, gyroscopes and RF sensors for localization. To
detect obstacles, each robot uses 16 sonars mounted on a ring around it to detect obstacles.
They are able to move up to six hours and automatically return to their charging station
when the batteries are low.

Assistive, domestic and tele-presence robots have similar features to hospital delivery
robots, as the moving velocity, navigation techniques and sensors for localization. They

14 Chapter 2 Context and Related Work

autonomously navigate to specified destinations while avoiding bumping into people and
other obstacles. After completing the missions, they automatically return to their docking
stations for charging.

2.1.3 Smart Walkers

Smart walkers work as a physical support and navigational aid for frail and visually impaired
people. Several research groups aim to integrate navigation properties in the smart walkers.
Moreover, only a pair of these robots with autonomous navigation capabilities is commercially
available: the Siemens c-Walker [45] and Guido [46].

c-Walker is equipped with multiple vision sensors, enabling the mobile walker to monitor
its spatial surroundings and react to obstacles located in the trajectory. This walker guides
the users to their destinations. On the other hand, Guido is able to select the best trajectory
based on an a priori map, which is updated in real-time through a laser. To detect obstacles,
Guido uses sonars and a laser.

Based on these characteristics, hospital delivery robots should present navigation and
localization capabilities similarly to Guido and c-Walker. However, both smart walkers
are tailored for low velocity applications. In hospital environments, the delivery robots are
expected to reach higher velocities, leading to the necessity of more sensors to detect obstacles
and faster navigation techniques.

2.1.4 Delivery Robots

In the back years, the development of Automatic Guided Vehicles (AGVs) mainly aimed to
transport materials between different locations in controlled environments. The robots are
able to follow a path, calculated at the beginning of the mission. If some event disturbs the
robot movement, the mission can fail.

Kiva mobile robots from Amazon [47] compose the most common delivery automated
systems for warehouses. These robots can lift approximately 450 kg and travel at 1.3 m/s.
They follow bar-code stickers on the floor detected through onboard cameras. As the robots
move, encoded information to estimate their coordinates in the warehouse is being read.
Simultaneously, the navigation system corrects the position of the robots if they are not
centered at the stickers.

Based on this simple navigation approach, robots are mechanically simpler and, subse-
quently, cheaper. This system presents good performance in controlled environments, such
as warehouses and distribution centers. In hospitals, this navigation approach is unfeasible,
once it is not possible to fill the ground with tapes and assure that obstacles are never placed
over them. Obstacles appear in unpredictable locations and the navigation approach must
be able to deal with this uncertainty.

Chapter 2 Context and Related Work 15

2.1.5 Hospital Mobile Robots

Robots have already acquired a place in the health-care world. In 2013, approximately 1000
robots were performing delivery missions in hospitals. Those numbers are expected to grow
10 times in the next five years. The good reputation of delivery robots is leading hospital
managers to “hire” them for their services as workers. Due to the need for delivery robots,
as well as potential strategies for their implementation in hospitals, several studies have
been made [5–7, 48, 49]. These studies have shown that automated deliveries improve the
efficiency of hospital transportation, overall organization, cost reduction, and allow nurses
and housekeepers to focus their attention on health-care services, rather than doing delivery
tasks. Expenses in relation to logistic account are approximately 30 - 46% of a hospital’s
total budget and nurses spend 10% of their time performing logistics, rather than patient
care tasks. These numbers can be reduced by adopting automated delivery strategies.

The analysis in [50] showed that the installation of delivery robots in a mid-size hospital
has better performance than its current system of 3 clinical laboratory delivery employers.
Robots are able to deliver over 85% of all goods in hospitals, such as blood samples, linen,
trash, food and medical material according to [7]. Mobile robot solutions are cost effective
and delivery performances are similar to human based delivery systems, in terms of average
time, but with a significant reduction in the standard deviation [51].

Preliminary remarks about delivery robots already operating in hospitals are presented
in [52, 53]. In [53], robots were responsible for transporting blood samples between different
locations. The hospital staff showed some familiarity with the robots, but they did not
fully rely on them. The way that organizational factors in a hospital environment affect
the response of the staff to delivery robots are addressed in [52]. This study was conducted
for 15 months in a hospital where 7 robots were operating since 2003. The study revealed
distinct opinions according to the staff health-care service. Medical units were reluctant to
the benefits introduced by delivery robots. They enhanced the frequent interruptions and
collisions caused by them. On the other hand, postpartum units accepted positively the
delivery robots because heavy loads were no longer transported by them, but by the robots.
Even though delivery robots provide a collective benefit to the hospital organization, some
members needed to adjust their workflow and do additional work, which was not always well
accepted. These studies suggested that future delivery robots must cause fewer interruptions
to the staff workflow and improve social interactions.

The task of designing delivery robots for hospital environments should consider some
important challenges, in order to fulfill the requirements identified by the survey in [6]: (1)
safety - robots should not collide with people and obstacles. (2) Obstacle detection - the robot
should have onboard sensors such that the scanned area is maximized. (3) Path planning
- the robot should plan the shortest path to go from the starting point to the destination
point. (4) Navigation - the robot must continuously know its pose and do not look clumsy or
hostile when it moves. (5) Velocity - the robot can travel at high velocities or slowing down

16 Chapter 2 Context and Related Work

in some areas. (6) Logistics - cooperation between multiple robots. (7) Automatic doors
and elevators - the robot should communicate with automated devices, in order to be able
to move between floors and to other areas. (8) Installation of charging and parking stations.
(9) User interface - hospital staff communicates with the robot through an interface, in order
to specify the delivery destination. (10) The robot must deal with emergencies, such as
evacuations.

Some academic research groups have tried to develop solutions for mobile robots focused
on delivery tasks for hospital environments. The work developed by [54] proposed the use of
natural landmarks of the environment, namely the florescent lamps on the ceiling, to localize
the robot instead of distributing artificial landmarks along the environment. This robot is
efficiently operating in a hospital in Hong Kong since 2001. The robot uses 24 sonars, 24
infrared sensors and bumpers to detect the presence of obstacles. A potential field approach
for obstacle avoidance based on [55] has been adopted. The maximum velocity of the robot
is 0.3 m/s.

The i-Merc mobile robot developed by [56] delivers meals in health care services. It has
more capabilities than the robot proposed by [54], since i-Merc communicates with other
mobile robots, elevators, automatic doors and with the management system. Ultrasonic
sensors and bumpers are used to detect obstacles. i-Merc reduces its velocity when an obstacle
is detected. If i-Merc is unable to avoid the obstacle, it stops and waits for the clearance
of the path. A combination of odometry, an inertial sensor and landmarks detected by an
optical sensor is used to obtain the robot’s pose.

The Muratec Keio robot proposed by [57] is an omni-directional mobile robot that is under
development. The robot includes a wagon truck to accommodate the hospital stuff. Laser
and ultrasonic sensors are used for obstacle avoidance. Navigation is based on the potential
fields method proposed by [55], and different time scales are defined to deal with unexpected
events. This robot reaches a maximum velocity of 0.5 m/s, higher than the robots proposed
in [54, 56].

The Merry Porter in [58] has a unicycle structure with a front steering wheel that reaches
a maximum speed of 1.5 m/s, carries goods until 180 kg and handles overtakes on the floor
up to 3 cm. It has a telescopic turret for placing sensors at a variable height, in order to
avoid occlusions due to surrounding people. Merry Porter uses a laser on top of the turret
to localize itself and another laser and 16 ultrasound sensors to detect obstacles. When the
robot is not able to deal with obstacles, it stops and waits for the clearance of the path.
Navigation is based on the standard potential field approach [55]. During navigation, the
robot is allowed to deviate from its trajectory to avoid obstacles, but it is never allowed to
exit a convex area defined by the roaming stripes algorithm [59].

Robotic commercial solutions that accomplish the aforementioned challenges are already

Chapter 2 Context and Related Work 17

implemented in hospital environments. One of the pioneer robots deployed in hospital envi-
ronments is the HelpMate robotic courier proposed by [49, 60] and manufactured by Help-
Mate Robotics Inc.. More than 150 HelpMate robots are being used in hospitals in Europe,
Japan, Canada and United States. HelpMate robots combine laser, sonars, bumpers and
infrareds mounted around the robot to detect obstacles and the ground. They use an of-
fline built map with the desired stop locations embedded into its onboard memory to au-
tonomously navigate throughout the hospital facilities. Radio signals provide communication
with elevators. HelpMate robots apply a simple rule to avoid dynamic objects: they are al-
lowed to leave their defined paths within a specified distance to obstacles or stop until the
obstacles have disappeared. Its pose is estimated through an odometric system and natural
landmarks. HelpMate robots have a flashing warning light to notice their presence and a
stopping button to be used in emergency cases.

RoboCart robots [61] are produced by California Computer Research Inc. and designed
to operate in clinical laboratory environments. These robots have more limited resources
than HelpMate robots. They are able to follow a fixed path, specified by a tape placed in
the floor. When their onboard sonars detect obstacles, they stop and wait for the clearance
of the path. A RoboCart robot occupies about the same floor area as a human and moves
at approximately 0.58 m/s.

TUG robots [62] commercialized by Aethon Inc. are being used in hospitals to deliver med-
ical records and supplies (specimen, food and laundry) since 2008. They make approximately
50000 deliveries each week. TUG robots are equipped with laser range finders, ultrasound
and infrared sensors to detect obstacles and safely navigate in the hospital. When several
obstacles obstruct the corridor, TUG robots wait for clearance. Their operating system con-
verts Computer Aided Design (CAD) drawings of the hospital into a map understandable
by them. TUGs’ onboard sensors track their pose within the embedded map of the build-
ing. They do not require the installation of radio markers, magnetic strips or other space
delineating technologies like RoboCart. TUG robots use the hospital existing WiFi system
to communicate with elevators, automatic doors, fire alarms and with other TUG robots (for
optimal delivery and performance).

RoboCourier [63] and SpeciMinder [64] are made by CCS Robotics and commercialized
by Swisslog Inc.. These robots have the same appearance and overall performance. They
perform approximately 32000 delivery tasks and travel around 3200 Km per year. Lasers,
sonars and bumpers are used to detect obstacles and, consequently, navigate in dynamic
environments in a safe way. When obstacles are detected, they calculate the fastest path to
circumnavigate them and proceed to the next goal. If the obstruction prevents the circum-
navigation, they wait for a specified period for the clearance of the objects. When stuck,
these robots emit a warning signal. Batteries are recharged during the interval between
missions. Verbal announcements are emitted to alert people of their presence and intentions.

Matsushita’s HOSPI robots [65] are commercialized by Panasonic Inc. and have suffered

18 Chapter 2 Context and Related Work

several improvements along the past years. HOSPI robots are already operating in several
Japanese hospitals. They use laser range finders to detect obstacles on their way and stop
moving when obstacles are detected within a specified area around them. Otherwise, they
automatically adjust their route. They know the map of the building a priori and the map
system is sufficiently flexible to handle extensions to the existing facilities. HOSPI robots
call and take elevators automatically. They can move at a maximum velocity of 1 m/s and
work up to 7 hours before needing to recharge.

QC BOT [66] is produced by VECNA Inc. and save approximately 50 hours per week
spent on medicine transportation. QC BOT robots use lasers and a camera to detect the
environment and avoid obstacles. The navigation of QC BOT robots does not require mod-
ifications in the hospital facilities. Furthermore, they include cameras for video conferences
between patients and medical staff.

Swisslog’s TransCar [67] uses laser, ultrasonic, bumpers and photoelectric sensors for
navigation. Safety and warning zones are defined around the robots. Transcar robots stop
immediately when an obstacle is detected within the safety zone or emit sounds and warning
lights when an obstacle is detected within the warning zone. TransCar robots reach a max-
imum velocity of 1.6 m/s. Wireless communication is used to communicate with elevators
and doors.

This literature review underlines that current hospital delivery robots present multiple
similarities, which reveals efforts to achieve a unified solution. To navigate, lasers are suit-
able sensors, since they cover a large area with greater detail of the robot surroundings.
Furthermore, a stopping area around the robot must be defined for safety. Delivery robots
stop and wait for the clearance of the path, always that an obstacle is detected in the safety
area. This safety measure prevents the robots to change abruptly its trajectories or to collide
with obstacles. The map of the environment is provided a priori, since the map is not built or
updated while the robots are performing the missions. Although the success of commercial
solutions to perform delivery missions in hospitals, the cooperation between robots and hos-
pital staff needs to be improved [52]. Furthermore, current delivery robots do not consider
time constraints as a condition to successfully complete their missions. Robots can be stuck
for large periods of time and do not compensate the delay after the clearance of the path.

2.1.6 Comparative Analysis

This section overviews a comparative analysis (see table 2.1) in terms of navigation capabil-
ities between each category of service mobile robots and hospital mobile robots. In terms of
local path planning, delivery robots as AGVs follow a predefined path and stop when obsta-
cles are detected. The remaining service mobile robots have sufficient capabilities to detect
and circumnavigate obstacles. The ability to plan global paths is not present in cleaning and
mowing robots. They usually follow heuristic rules and assume that sooner or later their

Chapter 2 Context and Related Work 19

missions are performed. In terms of the capability to reach high velocities, only smart walk-
ers are tailored for low velocity applications. The remaining service mobile robots can reach
velocities up to 1 m/s. In terms of localization, all service robots have sensors to estimate
their poses.

Table 2.1: Comparative analysis in terms of navigation capabilities (X - fulfilled,
X - not fulfilled)

Ability Cleaning/ Tele-presence/ Smart Delivery Hospital
mowing robots assistive robots Walkers robots robots

Local Planning X X X X X
Global Planning X X X X X
High Velocities X X X X X

Localization X X X X X

2.2 Control Architectures
Control architectures for autonomous mobile robots must be able to solve the robot naviga-
tion problem. In general, this problem is handled by answering three questions,

• Where am I? The robot must know its current location to make decisions about its
next movement.

• Where am I going? The robot has to know the goal location where its mission ends.

• How do I get there? Once the robot knows the goal location, it should be able to find
a path to get there.

These questions are solved by including into the robotic architecture modules that address
each specific question. The first question is answered by the localization module, which
provides an estimate of the robot’s pose. The second question is addressed by an entity that
specifies the location where the mission ends. This entity can be the user or a module of
the architecture responsible for defining the goal locations. The last question is solved by
including local and global path planning modules. Information about the environment is
used to prevent the robot to be stuck in deadlock situations. The inclusion of both local and
global path planning modules provides the advantages of both methods operating solely.

In this work, time is a variable used to ensure that the robot performs its missions within
a specified time constraint. The problem of navigation becomes more complex and another
question needs to be solved,

• How long do I have? The robot needs to know if it is in time, delayed or in advance
to accomplish its mission, and act according that.

20 Chapter 2 Context and Related Work

This question is solved by adding a timing module responsible for generating velocity
commands, allowing the robot to reach the goal location within the specified time constraint.

This section describes different techniques and approaches used to address local and global
path planning, localization and timing control.

2.2.1 Local Path Planning

This section overviews a taxonomy of obstacle avoidance methods for mobile robots. It
shows that there is not a unified solution addressing all local path planning problems. The
solution depends on the robotic requirements. For instance, there are solutions that provide
a smooth behavior in narrow passages and cluttered environments. Other solutions consider
the dynamics of the robot or the velocity of obstacles, and others are well suited for robots
moving at high velocities.

In cluttered environments, such as hospitals, it can be desirable that the robot presents
a smooth behavior while avoiding obstacles. Moving at high velocities is not a critical point
because the robot will move at low velocities when obstacles are detected or even stop if
obstacles are too close.

Obstacle avoidance methods can be divided into two groups: methods that compute the
motion in one-step and in multiple steps. One-step methods reduce the sensory information
to a motion control, and can be divided into heuristic and physical analogies methods. Mo-
tion controls can be a set of directions or velocities. Multiple steps methods compute an
intermediate set of candidate motion controls, over which the best candidate motion control
is selected.

2.2.1.1 Heuristic Methods

Heuristic methods were the first techniques used to generate motion in two-dimensional
scenarios based on sensory information. Being heuristic, these methods can neither be ex-
haustively tested nor proved effective in all cases. In fact, poor solutions or no solutions at
all may result from this method [68]. However, in easy environments, heuristic methods have
shown to be effective and, when reaching a solution, it is quickly calculated.

Main heuristic methods derive from classical planning methods. For instance, the Bug
algorithm [69] defines a set of rules for obstacle avoidance. When an obstacle is detected,
the robot follows the obstacle boundary and repeats the same procedure if new obstacles
are detected. The Collision Cone [70] adopts a set of strategies to avoid collisions when
the robot and an obstacle are on a collision route. Additional heuristic methods based on
classical planning methods can be seen in [71–73].

Chapter 2 Context and Related Work 21

2.2.1.2 Physical Analogies Methods

Physical analogies methods apply mathematical equations from physics to sensory informa-
tion, in order to compute the motion commands. The most known methods are the potential
field approach [55] and the Dynamical Systems Approach (DSA) [74].

Potential Fields
The potential field approach considers that the robot is viewed as a particle that moves

in space under the influence of a force field. Attractive forces that attract the robot towards
the target and repulsive forces that move away the robot from obstacles constitute this force
field.

The major problem of potential fields is when attractive and repulsive forces cancel out
each other and the robot stops before reaching the goal location. This is the so-called local
minima problem. Other problems include the instability of the robot dynamics in narrow
corridors and when the robot moves at high speeds.

Simple heuristic solutions attempt to avoid the local minima problem by adding rotational
fields around obstacles or random fields to the force field. However, these solutions might
be insufficient to eliminate the local minima problem. On the other hand, more complex
solutions such as, harmonic functions [75], circulatory field approach [76] and biharmonic
potential fields [77] compute a potential field free of local minima.

One of the most known methods that stem from the potential field approach is the Vir-
tual Force Field (VFF) method [78]. This method includes certainty grids [79] for obstacle
representation and potential fields for navigation. Each cell of the grid contains a probability
indicating whether the respective area encoded by the cell is free or occupied by obstacles.
Each cell exerts a virtual repulsive force proportional to its value. The robot will avoid cells
with repulsive forces and follow empty cells. However, in some circumstances, the robot
is unable to pass through doorways because of the repulsive forces from both sides of the
doorway. Furthermore, a smooth control signal is required to the steering motor because
drastic changes in the resultant forces cause fluctuations in the steering control.

Dynamical Systems Approach
The conceptual framework of the dynamical systems approach (DSA) is based on the

theory of nonlinear dynamical systems (see [80]). This approach was proposed by [74] to
replace the transient solutions of the potential field approach by attractor solutions of a
dynamical system. DSA provides a smooth control signal to the steering motor control.
The dynamical system is modeled by a system of differential equations with attractors and
repellers, standing for goals and obstacles, respectively.

An intelligent choice of planning variables makes possible to guide the robot over com-
plex trajectories from stationary stable states. In [74], the robot’s heading direction was
selected as the planning variable to control and guide the robot towards the goal location
while, simultaneously, avoiding obstacles. The planning variable lies in or near a fixed point
attractor at all times, and this is a major advantage over potential fields whose point of

22 Chapter 2 Context and Related Work

attraction is only accomplished if the robot reaches the global minimum. Once a behavior
is generated from nonlinear dynamical systems, theoretical tools from mathematical theory
can be used to obtain a suitable robot’s behavior. The dynamical systems approach offers
robustness against small perturbations, providing the possibility to fuse new inputs into the
system without changing its properties.

Over the last years, several researchers have adopted the DSA method to address local
navigation of mobile robots. In [81], DSA was combined with a neural dynamical field to
endow a mobile robot with memory ability, enabling it to store the positions of obstacles.
In [82, 83], DSA was extended for real-time path planning on a mobile robot working with
low level sensory information. Dynamical systems were used to control the velocity and
direction of a mobile robot, able of obstacle avoidance and target attraction. This approach
was later used in several mobile robots [1, 84–86].

Other robotic behaviors were generated using the DSA method, such as corridor following
and walls avoidance [87], modeling formations [88], predicting routes [89] or decision among
different behaviors [90]. Furthermore, nonlinear dynamical systems can include harmonic
functions [91] or neural networks [92] to obtain customizable behaviors in real-time envi-
ronments. Other variations to the obstacle avoidance behavior include the addition of new
variables to the motion equation [93].

DSA was extended for obstacle avoidance and target attraction for an anthropomorphic
arm [94, 95], and [96] showed that DSA could be applied to perform obstacle avoidance in
Cartesian and joint spaces.

2.2.1.3 Multiple step Methods

This section presents the most known multiple steps methods for obstacle avoidance.
Vector Field Histogram
The drawbacks of the VFF method motivated the development of the Vector Field His-

togram (VFH) [97]. VFH uses a two-stage data reduction to provide detailed information
about the obstacles in the environment. This representation allows the robot to identify nar-
row passages and move across them without oscillations. Fluctuations in the steering control
are also eliminated. The main disadvantage of VFH is the necessity to define a threshold that
selects the candidate direction for the robot. If the threshold value is too large, the robot can
achieve positions very close to obstacles and eventually collide with them. If the threshold
value is too low, some potential candidate directions will be excluded and the robot will not
move through narrow passages. Additionally, VFH does not consider the robot dynamics,
which can be problematic in cluttered environments.

An improvement to VFH, named as VFH+ is proposed in [98]. This method applies
a four-stage data reduction to compute the direction of motion and to solve several VFH
disadvantages. For instance, VFH+ considers the robot dynamics to reduce the parameters
inherent to VFH. Nonetheless, two new thresholds are introduced to obtain smooth and more

Chapter 2 Context and Related Work 23

reliable trajectories. VFH+ applies a cost function to select the desired direction, reducing
the hysteresis provoked by oscillatory movement in narrow passages.

Curvature-Velocity
The Curvature-Velocity Method (CVM) [99] selects the best linear and angular velocity

from a set of candidate velocities, in order to maximize an objective function that guarantees
a trade-off between safety, speed and direction to the goal. CVM calculates in real-time a
curvature trajectory that considers the dynamics of the robot and, simultaneously, avoids
hitting the obstacles.

The Lane-Curvature Method (LCM) [100] combines the CVM with a directional method
called lane method to yield a collision-free and smooth motion. LCM divides the environment
into lanes and selects the best lane to follow the desired direction. Then, the CVM uses the
selected lane to determine the linear and angular velocities. However, both CVM and LCM
do not consider the velocity of obstacles to calculate the set of candidate velocities.

Dynamic Window Approach
The Dynamic Window Approach (DWA) developed by [101] selects a velocity for the

robot from a set of candidate velocities. The search space is restricted to velocities that allow
the robot to stop safely, without colliding with obstacles, and to the admissible velocities
that the robot can reach within the next time interval. DWA considers the robot dynamic
constraints, such as maximum velocities and torque limits. A cost function, based on a set
of heuristics, selects the best candidate velocity. DWA keeps low complexity even at high
velocities. However, this method is not able to deal with possible future points of collisions
and considers that obstacles are avoided if the robot can stop without colliding with them.

The Global Dynamic Window proposed in [102] combines the DWA with a grid based
global navigation function, in order to provide goal directness and free space connectivity.

Both DWA and CVM yield good results for obstacle avoidance, even at high speeds. The
local minima problem in these approaches can be solved by combining other techniques [75,
77].

Velocity Obstacle
The Velocity Obstacle (VO) proposed by [103] is an extension of DWA and CVM. VO

considers the velocity of the obstacles to calculate the candidate velocities, being well suited
for dynamic environments. VO method reduces the representation of the robot to a single
particle and enlarges the obstacles by considering the robot’s radius. Then, the velocity of
each obstacle is estimated. A collision cone is created and the set of colliding velocities is
defined. The best candidate velocity outside the range of colliding velocities is selected by a
cost function based on a set of heuristics.

Probabilistic Velocity Obstacle
The Probabilistic Velocity Obstacle (PVO) was proposed to handle with the uncertainty

on the velocity and on the radius of the obstacles [104]. Both dynamic and kinematic
constraints of the robot are considered to obtain the current velocity space. Similarly to VO

24 Chapter 2 Context and Related Work

method, the velocity candidate is selected based on a set of heuristics.
In [105], the PVO method was combined with occupancy grids [79], in order to consider

the uncertainty in the perception system. The probability to collide with obstacles is used
to obtain the velocity space over which a candidate velocity is selected.

Time-Varying Dynamic Window
The Time-Varying Dynamic Window (TVDW) method developed by [106] associates the

DWA and VO methods. TVDW combines the benefit of using the well-structured steps of
the DWA method and the ability to operate in dynamic environments provided by the VO
method. TVDW considers the holonomic constraints of car-like robots. Furthermore, the
velocity of obstacles was discretized to allow operating at high velocities. A set of heuristics,
similar to the DWA method, calculates the best candidate velocity.

Nearest Diagram Navigation
The Nearest Diagram Navigation (NDV) [107] computes some high-level information as an

intermediate step to calculate the robot’s motion. The idea behind this approach is to apply
the “divide and conquer” strategy, in order to reduce the complexity of the environment and
the difficulty of the navigation problem. This method allows robots to move in complex,
cluttered and dense scenarios, where other methods possibly would fail.

Obstacle-Restriction
The Obstacle-Restriction Method (ORM) developed by [108] suggests to use the available

obstacle information along with the two-steps iteration process. First, based on the obstacle
distribution, a local procedure selects the set of candidate motion directions. The second step
associates a motion restriction to each obstacle, in order to calculate the selected direction.

This method avoids technical problems inherent to classical methods, such as local trap
situations (U-shape obstacles), oscillations or instable motions. ORM has no internal pa-
rameters to tune, which simplifies its implementation. Similar results to the NDV method
were obtained in open spaces, but in dense and complex scenarios, ORM shows a better
performance [108].

Fuzzy Logic
Fuzzy logic [109, 110] has been applied in mobile navigation, due to its ability to cope

with large amounts of uncertainty inherent to real environments. However, fuzzy logic lacks
in terms of correctness, consistency and completeness of its rules.

Artificial intelligence techniques have been used to overcome the insufficient information
of the environment. Combinations of fuzzy logic with reinforcement learning [111, 112],
evolutionary algorithms [113], genetic algorithms [114] and neural networks [115] have been
adopted to extract a set of fuzzy rules after a training phase. Furthermore, fuzzy logic is
combined with classical techniques for obstacle avoidance, such as potential fields [116].

Chapter 2 Context and Related Work 25

2.2.2 Global Path Planning

Global path planning is responsible for generating a collision-free path that connects the
initial position of the robot to the goal location. Before planning the global path, the
robot must know the geometry of the environment. Global planning does not consider the
vehicle stability or the existence of unexpected obstacles. These are left to the local planning
controller.

Global path planning can be separated into two problems. First, available information
of the environment has to be represented by a configuration space. Second, a search path
algorithm should find the best path based on the user’s criteria, such as the distance or the
time to reach the goal location. This is the so-called search path problem.

2.2.2.1 Representation of the environment

Methods to represent the environment characterize its geometrical information by a mathe-
matical model understandable by the robot. The representation of the environment can be
constructed offline if the map is already known, or online from sensory information acquired
by the robot

Two-dimensional (2D) grids can simplify the representation of indoor environments, since
these environments are mainly composed by linear structures, such as lines and planes. Even
though several methods can build 2D world representations, they must share important fea-
tures. First, they must be compacted, in order to be efficiently used by other modules.
Second, they should be adapted according to the type of the environment. Finally, the rep-
resentation of the environment must contain the uncertainty inherent to sensory information.

Cell Decomposition
Cell decomposition methods divide the free space of the environment into cells that com-

pose a grid (metric representation). A non-direct graph, called connectivity graph, represents
the adjacency relation between the cells. The outcome of these methods is a sequence of cells
called channel.

Cell decomposition methods do not rely on any predefined features of the environment
and offer a constant access to the grid cells. On the other hand, when dealing with large
environments, potential discretization errors and high memory requirements are problematic
for real-time applications.

Line Maps
Line maps represent indoor environments by connecting a set of data points (Cartesian

coordinates), in order to create a line that minimizes the square distance to all points. Line
maps have several advantages over cell decomposition methods as they require less memory,
are better scalable with the size of the environment, do not suffer from discretization problems
and are more accurate. On the other hand, the large number of lines needed to represent
the environment, as well as the assignment of data points to individual lines are the major

26 Chapter 2 Context and Related Work

disadvantages. A common solution to overcome these drawbacks is to use the split-and-
merge algorithm developed by [117]. Unfortunately, this algorithm does not guarantee that
the resulting model is optimal, i.e., the minimization of the square distance to all points in
not guaranteed.

Landmark-based Maps
In environments with sufficient distinguishable features, methods based on landmarks

detection have been extensively used, as for instance, the FastSLAM algorithm [118]. The
locations of the landmarks are known a priori through two-dimensional Gaussians. The
robot estimates its position, over time, based on the detected landmarks. However, this
representation largely fails when the environment lacks of distinguishable features.

Roadmap Methods
Roadmap methods consist of capturing the connectivity of the free space in a network of

one-dimensional curves (called the roadmap), such that all starting and goal points of the free
space are connected by a path. The roadmap is a set of standardized paths that reduce the
path planning problem to the problem of assigning the starting and final location to points
in the roadmap [119]. Most known roadmap methods include visibility graphs [120], Voronoi
diagrams [121], probabilistic roadmaps [122] and rapidly exploring random trees [123].

The major disadvantage of roadmap methods is their representational incompleteness. If
a path exists in the map, there is no guarantee that it will be found using a roadmap method.

Topological Maps
In contrast to geometric structures methods such as line maps or cell decomposition,

topological maps represent the environment through a set of regions. A node represents a
region, and nodes are connected through arcs. According to [124], a region can be a corridor
or a room, and arcs represent doors, stairways or elevators. More generally, the environment
can be viewed as a graph-like structure and regions can result from a tessellation procedure
of the environment.

Topological maps are computationally lighter than geometric structural methods. They
provide simpler representations of complex and large environments, which is suitable for
navigation purposes [125–127]. On the other hand, topological maps provide a coarse repre-
sentation of the environment, which makes it unsuitable for mapping.

Combination of Topological and Metric representations
The majority of works addressing autonomous navigation combine topological and metric

representations into the same architecture. A metric map represents the environment and
several topological maps, partitioned by a Voronoi diagram, are obtained from the underlying
metric map [126]. The planning depends on the size and shape of the topological region where
the robot is located. The search algorithm is applied to the metric map, but the topological
map provides the points that define the robot’s initial and final location. In [128], the
partition of the environment is performed on a graph-cut clustering model, rather than on
a Voronoi diagram. Consequently, the computational cost is reduced and the average loss

Chapter 2 Context and Related Work 27

in the paths’ optimality is not deteriorated. The resultant performance is similar to [126],
showing that, planning based on topological maps leads to path lengths only a few percent
greater than the metric based ones.

In [127], a topological map is used for global path planning and a local metric map for
local path planning. The set of waypoints that the robot must reach is generated in the local
metric map. Only this map is re-planned at each instant of time, rather than the global
metric map, as in [126]. Consequently, this work contributes to the simplification and design
of navigation architectures.

In the work proposed by [129], topological and metric maps are alternated with the help
of visual landmarks and in [130], they are alternated according to the precision needed for
navigation. In large areas, precision is less important than robustness and global consistency.
Thus, topological maps are well applied. In small areas, precision is important and local
metric maps are used.

Some of the aforementioned approaches use metric maps in small sections of the en-
vironment and topological maps in large and dynamic environments. However, in some
approaches, the search path algorithm successfully solves the global path planning in topo-
logical maps. For the purposes of navigation, a metric map is not required to calculate the
robot trajectory and the topological map is sufficient to drive the robot towards the goal
locations [131, 132].

2.2.2.2 Search Path Problem

The search path problem consists on selecting the path that minimizes or maximizes a
specific cost function. One of the first algorithms that solve the shortest path problem
is the Dijkstra’s algorithm [133]. The original Dijkstra’s algorithm solves the problem for a
graph with nonnegative edge costs in computational time O(|V |2), in which |V | is the number
of nodes. Later, a common implementation of this algorithm applies a priority queue that
runs in O(|E| + |V | log |V |), in which |E| is the number of edges connecting the regions.

The A* algorithm proposed in [134] is considered as a generalization of the Dijkstra’s
algorithm. The main difference lies in the fact that A* uses a distance-plus-cost heuristic
function that determines the order in which each node in the graph is explored. Conse-
quently, it reduces the size of the sub-graph that remains unexplored. A* uses a best-first
search algorithm to find the minimum cost path between regions, similarly to the Dijkstra’s
algorithm. The time complexity of the A* algorithm depends on the heuristic complexity.
The higher the heuristic knowledge about the goal distance, the faster the search problem is
solved.

In the Lifelong Planning A* (LPA*) algorithm [135], both incremental and heuristic infor-
mation are combined to reduce re-planning times. LPA* finds the shortest path from a given
start node to a goal node, while the edges costs and vertices can be changed. Even though

28 Chapter 2 Context and Related Work

this method provides the ability to re-plan its paths after discovering unknown obstacles, the
resultant planning time can be in the order of minutes for large environments.

Later, the D* algorithm (Focused Dynamic A*) introduced by [136] allowed to solve search
problems, with a reduction of computational complexity of one to two orders of magnitude
over the previously described search algorithms. It uses a clever heuristic search method over
which repeated A* searches by locally modifying previous search results.

Recently, the D* Lite algorithm proposed by [137] is implemented based on the same
navigation strategy as D*, but being algorithmically different. It uses a single criterion for
comparing priorities, which simplifies their maintenance. D* and its variants solve the search
problem faster than other algorithms, which makes them suitable for real-time applications.

In a delivery robot, considering that a topological map represents the environment, the
search path problem consists on calculating the sequence of topological regions that the robot
should follow to reach the final location. The number of regions in hospital environments is
in the order of hundreds. Therefore, the computational time required by any of the search
path algorithms is not relevant, and any of the algorithms previously described can be used
in the present application. Furthermore, the search path problem is solved before the robot
starts its missions.

2.2.3 Timing Control

The generation of timing movements has been addressed in different ways according to the
control architecture paradigm that rules the robot [3, 9]: classical approaches, in which
planning and control are conceptually separated [119]; and behavior-based approaches, in
which exteroceptive sensory information connects perception and action [138].

Classical approaches imply that space and time constraints on the robot motion must
be known a priori, which makes it difficult for robots to operate in unknown environments
constantly subject to disturbances. Despite the efficiency of classical planning algorithms
in theory, the path planning remains separated from exteroceptive perception and control.
Such systems are inflexible and do not allow online adjustments to the planned actions, i.e.,
if external perturbations disturb the generation of timing movements, this timing change is
not rectified. The overall result is a robotic system with a lack of responsiveness and limited
real-time capabilities.

Behavior-based approaches allow a continuous coupling to exteroceptive sensory informa-
tion. The dynamics of uncontrolled environments are considered by the robot, so that it can
adapt its behavior accordingly [138]. Consequently, perturbations on the timed movement
of the robot can be corrected in real-time. However, the generation of timed movements is
more difficult to handle in behavior-based approaches than in classical approaches.

Solutions to the generation of timed movements, namely, the way that rhythmic movement
are generated, have been biologically inspired by analogies with nervous systems [139, 140].

Chapter 2 Context and Related Work 29

A specialized neural network, called Central Pattern Generators (CPGs), located in the
vertebral spine [141, 142] generates self-adjusted rhythmic activity. CPGs do not require
sensory feedback or higher-level commands to initiate rhythmic movement. This rhythmic
activity has been mathematically described in literature by nonlinear dynamical systems
with limit cycle solutions.

The dynamical systems theory was initially proposed to understand the patterns of rhyth-
mic movements coordination in [143]. The basic concepts were motivated by physical theories
of pattern formation [144]. Coordination patterns of rhythmic movements are represented
as collective variables, and the identification of pattern dynamics are described as equations
of motion. The dynamical systems theory provides theoretical concepts, such that a single
model integrates the theory to initiate, generate and modulate the rhythmic movement. The
work in [143] showed that complex nonlinear biological systems could be suitably described
by simple equations. Furthermore, it showed that stability is an important property of a
coordination pattern. Measures of stability, namely near phase transitions in the generation
of movement have led to prediction of a coordination rhythmic pattern.

Later, the work suggested by [145] described a theoretical attempt to extend the dynamical
systems theory with stable limit cycle solutions, and their adaptation to understand the
coordination of discrete movements.

The work proposed by [146] provided a dynamic theory that includes online linkage with
time varying sensory information. The dynamic theory of discrete and rhythmic movement is
based on [145, 147] and expresses coordination movement patterns (postural states) in terms
of motion equations. Variables that characterize motion are identified as attractor solutions.

In [81], a dynamic theoretical approach is proposed to endow task-related variables with
simple fixed points and with limit cycle dynamics. Vision information is coupled into the
dynamics of the action variables, such that the timing movements are elicited by such infor-
mation. Compensatory movements are generated in response to perturbations of the visual
motion. This work showed that the contributions to the action dynamics can be viewed as
finite individual forces. Therefore, it is possible to understand how such contributions may
interact and cooperate without losing their characteristic properties when coupled.

One of the first approaches focused on generating rhythmic movement for wheeled mobile
robots was proposed in [140]. This work suggested using limit cycle attractors to generate
a single continuous pattern of rhythmic movement. However, the integration of discrete
movements into the generated patterns was not addressed.

The theoretical approach proposed by [81] was applied in two manipulators to generate
rhythmic and temporal discrete movements by coupling two dynamical systems [148]. The
manipulators achieved synchronization, revealing an independency relatively to the specifica-
tion of their individual parameters. The model consists of a timing layer that uses a nonlinear
oscillator with a Hopf bifurcation to generate rhythmic movement, and attractor states to
achieve discrete movement. By coupling sensory information, sensor driven initiation and

30 Chapter 2 Context and Related Work

termination of movement are enabled.
The work in [1] was based on previous work [148] and applied temporal stabilization and

sequences of movements for an autonomous mobile robot with low-level sensory information
to steer action. This work demonstrated the robustness of nonlinear dynamical systems to
deal with small perturbations, while achieving good performance on the mission success.
Stability and controllability of the architecture is weakly verified by ensuring the time scale
separation between the multiple dynamical systems. This approach was then extended to
generate temporal coordination between two simulated mobile robots in [149]. Both robots
were able to complete missions within non-structured environments. In [150], temporal
movement was generated for a robotic arm whose mission was catching a ball acquired by
vision information. The dynamical solution was used to control the velocity of the arm,
instead of controlling the spatial coordinates, as in [1].

By the same time, the work proposed in [3] claimed that the mechanism of temporal
stabilization proposed in [1] was not able to preserve the timing constraint. They proposed
to use the dynamical solution to control the velocity of the robot, rather than controlling
the spatial coordinates. In addition, its proposal was able to reach a moving target while
circumnavigating obstacles, as well as to deal with other disturbances. Theoretically, they
stated that the time allocated for the movement was strictly preserved by an adaptive rule.
Mobile robots performing simple travel missions demonstrated the success of this approach.

Later, the challenge of controlling the velocity of a mobile robot suffered additional adap-
tations. The work in [13] proposed to explore the bifurcation theory to switch the qualita-
tive dynamics of the oscillators. This allowed using a single dynamical system to generate
rhythmic and discrete movement, instead of switching between different dynamical systems.
Furthermore, based on the current state of the oscillators, a new adaptive mechanism for
frequency modulation of the velocity profile was proposed. This allowed specifying the time
intervals for the robot acceleration and deceleration. The new velocity profile takes into
account the robot physical perspectives by requesting lower maximum velocities.

The work in [85] used the same dynamical system proposed in [13]. However, the sensory
loop was closed by acquiring the target location through an onboard camera. This improve-
ment showed that the dynamical system responsible for generating the timed movement was
robust to the noise introduced by the vision information. As the localization of the target
is acquired by the robot’s vision system, there might be situations in which the target is
not detected by the camera (e.g. something is occluding the ball or the robot needs to
change its direction). The estimation of the target location is a major problem addressed
in [151, 152]. An Extended Kalman Filter (EKF) is applied to estimate the target location
relative to the robot’s current position. Additionally, this work showed through experimental
field trials that including an EKF into the architecture does not degrade the generation of
timed movements for the robot.

The aforementioned works addressed simple missions. The goal locations could be reached

Chapter 2 Context and Related Work 31

by the robot in a simple way, despite small perturbations, e.g., obstacles placed in the
environment. Moreover, only short distances, in the order of meters, between the goal
location and the initial position of the robot were considered. In hospitals or in other large
environments, the robot could be summoned to a far location. In such cases, a global path
planning is required to endow the robot with knowledge relatively to the best route to follow.
Works proposed in [86, 153] included a control module responsible for global path planning.
These works demonstrated that the generation of timed movements could be extended to
more complex and longer missions.

The aforementioned approaches deal with temporal stabilization by generating rhythmic
and discrete solutions for the spatial coordinates of the robot movement or for the robot’s
velocity. In both cases, the good performance of the dynamical systems approach encourages
researchers to continue applying them in other robotic applications. In fact, the generation of
timed movements is not exclusive to mobile navigation or to robotic arms, and other robotic
frameworks have also addressed timed movements, in order to perform both rhythmic and
discrete actions.

Robotic frameworks that include learning by human demonstration [154–158] have ex-
tended the Dynamic Movement Primitive (DMP) [159] to achieve rhythmic, discrete and
superposing of both primitives (rhythmic and discrete). The goal was to generate synchro-
nized movements for robots with multiple degrees of freedom. These authors claimed that
representing a movement with differential equations has the advantage to automatically cor-
rect perturbations by the system dynamics.

The success of nonlinear dynamical systems to model mathematically the role of the spinal
cord to generate motor patterns through CPGs networks, have led researchers to apply them
in robotic locomotion, including quadruped [160–163], biped [164–166], hexapod [167–169]
and swimming robots [170–172].

Performer robots in a wide variety of activities, including drumming [173, 174], rehabili-
tation [175], modular robotics [176–178], ball paddling [179, 180], reaching objects [181, 182]
have also used dynamical systems to generate movement.

2.2.4 Localization

Robot localization is a key problem on the development of autonomous mobile robots, since
the robot should know its location to decide its next movement. The localization problem
can be divided into three different subproblems, namely position tracking, global positioning
and kidnapped problem [183, 184].

The position tracking problem consists on keeping track the robot’s pose from a known
initial pose. The main difficulty of this problem is to compensate the unbounded errors in the
robot’s odometry. Algorithms for position tracking consider assumptions on the maximum
error and on the shape of the robot’s uncertainty.

32 Chapter 2 Context and Related Work

The global positioning problem is a more challenging localization problem that consists
on determining the robot’s pose under global uncertainty. This problem can be divided in
two phases. The first phase determines the possible robot’s initial poses based on sensory
information. In cases where multiple poses are candidates, the second phase eliminates the
incorrect candidates. In this phase, the robot should travel the minimum distance neces-
sary to calculate its location, which depends on the size and on the symmetry level of the
environment.

In the kidnapped problem [185, 186], the robot may be well localized but suddenly it
is moved to another location without be informed about. The robot has to detect the
“kidnapping” and calculate its new pose. Solving this problem is very important to verify
the ability of the robot to recover from catastrophic localization failures.

These localization problems can be solved in two steps: the first one consists on installing
sensors and/or landmarks over the environment; the second one consists on selecting the
localization technique that combines noisy sensory information to estimate the robot’s pose.

2.2.4.1 Sensors for the localization problem

The localization of the robot can be estimated through proprioceptive and/or exteroceptive
sensors. Proprioceptive sensors measure physical variables on the robot. These sensors in-
clude encoders, gyroscopes, accelerometers and compasses. On the other hand, exteroceptive
sensors measure the relation between the robot and the environment through natural or ar-
tificial objects. For short displacements, proprioceptive sensors are accurate. However, for
long-term missions, as uncertainty grows exponentially, measurements become inaccurate. In
general, exteroceptive sensors provide data with a constant uncertainty and are not available
at all instants of time. In mobile robotics, a common strategy is to use proprioceptive sensors
to estimate the robot’s pose during short displacements, and exteroceptive sensors to correct
the measurements provided by the proprioceptive sensors. Exteroceptive sensors include
cameras, laser range finders, radars, infrared, Wireless Local Area Network (WLAN), Ultra
Wide Band (UWB), pseudolites, Bluetooth and Radio Frequency Identification (RFID). The
survey presented in [187] compares different wireless sensors for indoor applications.

Infrared
Infrared is a short-range wireless technology mainly used in combination with other tech-

nologies for robot localization. The EIRIS system [188] combines infrared and ultra-high
frequency to obtain approximately 1 m of accuracy. A localization uncertainty of approxi-
mately 2 m with a combination of infrared and Bluetooth was obtained in [189].

RFID
RFID have limited ranges, typically approximately 12 m, and the cost of the readers is

relatively high. This technology has particular problems, like interferences and reflections of
the signal, missing tag range and a high number of false negative readings. Metal objects
absorb the energy sent by the RFID reader and, consequently, tags attached to metallic

Chapter 2 Context and Related Work 33

objects will only be detected in a short range. RFID readings are generally affected by high
uncertainty and, in the case of passive tags, the RFID reader can only determine whether a
tag is present within the reading range. RFIDs do not require direct line-of-sight and multiple
tags can be detected simultaneously. Best location results using RFID achieve errors in the
order of 0.5 m [190–192].

UWB
Ultra wide band sends short duration pulses that passes easily through walls, equipment

or clothing. However, metallic and liquid materials cause UWB signal interference, which
can be minimized by placing more UWB readers. An indoor localization accuracy about
0.2-0.3 m was obtained in [193, 194].

WLAN
WLAN is becoming the standard technology for indoor wireless communication because

many buildings are already equipped with WLAN infrastructures. Wi-Fi devices are dis-
tributed along the environment to act as beacons and the signal strength is used to localize
the receiver sensor placed on the mobile robot. However, the WLAN signal is absorbed by
water and corrupted by random effects, such as noisy signals, which decreases the signal
strength. Several works have obtained an accuracy in the order of 1-10 m [195–197].

Bluetooth
Bluetooth is a short-range wireless technology whose accuracy for robot localization is

subject to the influence of obstacles in the environment. This technology is not suitable
for large distances between the reader and the receiver devices. Work [198] showed that
localization with Bluetooth provides an accuracy of approximately 1 m.

Pseudolite
Pseudolite is a technology that overcomes the limitations of the conventional Global Po-

sitioning System (GPS) in indoor environments. A pseudolite system consists of several
transmitters that act as pseudo-satellites. A minimum of four pseudolite transmitters should
be placed in known positions, in order to obtain unambiguous estimates of the robot local-
ization. Pseudolite suffers from multipath problems, affecting the accuracy of the robot’s
localization. Approaches using pseudolites for localization [199–201] obtained uncertainty
errors less than 0.4 m.

RGB and infrared Cameras
The main goal of a vision localization system is to estimate the robot’s pose based on

natural or artificial landmarks. In general, vision techniques for robot localization are com-
bined with estimator algorithms, in order to improve the accuracy and provide estimates even
when the vision signal is lost. Several works have adopted vision for robot localization in dy-
namic environments [202–204]. Surveys for robot localization based on vision sensors can be
consulted in [205, 206]. The localization system Stargazer [207] and approach [208] present
uncertainty errors in indoor environments under optimal conditions close to approximately
0.1 m.

34 Chapter 2 Context and Related Work

Laser range finder
2D laser range finders provide a scan of the surrounding environment that can be compared

against an a priori map. Several works have reported that accurate laser scanners can obtain
localization errors between 0.05 m and 0.25 m [186, 209–211].

Sensors accuracy comparison
In hospital environments, delivery mobile robots should perform the missions with a

maximum error of approximately 0.4 m (see section 5.1 for further details). In table 2.2,
it is shown the error of the aforementioned sensors used for indoor localization. Infrared
sensors can localize the robot with an error of approximately 1 m, which is higher than the
maximum error allowed for localization in hospital environments. RFIDs present a lower
error than infrared technology. Nevertheless, this error level is not sufficiently low to be
considered suitable for hospital environments. Furthermore, hospitals are non-controlled
environments and plenty of interferences will deteriorate the RFID signals. Both WLAN
and bluetooth are not feasible for robot localization in hospitals. Pseudolites and UWB can
be suitable for mobile robots in hospitals. However, UWB and pseudolite readers are very
expensive, which may be economically unviable for large environments. Even though the
cameras localization errors were achieved in controlled environments, vision is a favorable
solution for robot localization in hospitals. Laser range finders have a well-suited range of
localization errors and can be adopted as a solution for hospital environments.

Table 2.2: Expected error according to the exteroceptive sensor used for robot
indoor localization.

Exteroceptive sensors Expected error (m)
Infrared 1
RFID 0.5
UWB 0.2-0.3

WLAN 1-10
Bluetooth 1
Pseudolite 0.4

RGB and infrared cameras 0.1
Laser 0.05-0.25

2.2.4.2 Techniques

Several techniques have been developed over the last years to solve the localization problem
(see a survey [212]). One of these techniques is the so-called dead-reckoning. This tech-
nique uses simple geometric equations, based on odometry, to compute the position of the
robot relative to its initial position. However, dead-reckoning is unable to provide accurate
estimates for long distances.

Other algorithms solve the localization problem by combining relative and absolute po-
sition measurements. The fusion of information from multiple sensors can provide more

Chapter 2 Context and Related Work 35

accurate estimates of the robot’s pose. In general, approaches for data fusion when ap-
plied to robots are probabilistic approaches [183], such as the Kalman filters family [213],
probabilistic grids and sequential Monte Carlo techniques.

The Kalman filter is a recursive estimator that provides a continuous state that evolves
over time, based on non-continuous observations of the state. Kalman filters are well suited
to deal with multi-sensor estimates. The use of statistical measures of uncertainty makes it
possible to evaluate the role that each sensor plays in the overall system performance. Never-
theless, Kalman filters require that the starting position of the robot is known a priori. This
limitation makes Kalman filters unfeasible for global localization problems [186]. Algorithms
as multi-hypothesis Kalman filters, Grid-based Markov or Monte Carlo filters are able to
overcome this limitation.

Multi-hypothesis Kalman filters represent beliefs through a mixture of Gaussians, which
allows representing multiple and distinct hypothesis of the robot’s pose, each one represented
by a single Gaussian [214]. However, the assumption that noise is modeled by Gaussian func-
tions remains. Grid-based Markov localization uses a probabilistic framework to maintain a
position probability density over the set of possible robot poses. This algorithm deals with
multi-modal and non-Gaussian densities, making it able to handle ambiguous situations, such
as the re-localization of the robot in case of failures. Markov localization assumes that the
environment does not change over time, which can lead it to fail in dynamic environments.

Monte Carlo filters describe probability distributions as a set of weighted samples of an
underlying state space. These techniques are well suited to problems where state-transition
models and observation models are highly nonlinear, since they can represent general prob-
ability densities. In addition, multimodal or multiple hypothesis density functions are well
handled. In general, the number of samples required to accurately model a given density
increases exponentially with state-space dimension. However, the effect of dimensionality
can be reduced by re-sampling samples, as particle filters do [215].

2.3 Robotic Architectures Paradigms
Robotic systems are based on a predefined architectural structure that specifies how the
architecture is divided into subsystems, and how they interact to each other. A well-conceived
architecture offers significant advantages in the specification, execution and validation of the
robotic system.

Robotic systems should fulfill important requirements, as the need to interact asyn-
chronously, in real-time and in dynamic environments. These requirements are satisfied by
including capabilities into the robotic systems, such as, simultaneous support for actuators
and sensors and integration of high-level planning with low-level control. These capabilities
can be implemented using different architectural structures, each one with their inherent
benefits.

36 Chapter 2 Context and Related Work

Another important feature of robotic architectures is modularity. This consists on the
ability to decompose a complex system into a group of simple subsystems. Decomposition of
complex architectures provides multiple architectural styles that support the particular needs
of different applications. The decomposition can be hierarchical, in which subsystems are
built on top of other subsystems. Temporal dimension decomposes architectures according
to the operation frequency. Architectures decomposed by abstraction have subsystems at one
layer invoked by other layers. In mobile navigation, abstraction decomposition may divide
the architecture into local and global navigation.

One of the first known paradigms used to decompose robotic architectures is the Sense–
Plan-Act (SPA) [216]. The architecture is decomposed into three functional groups: sensing,
planning and executing. The sensing group is responsible for translating environmental in-
formation into an internal model. The planning group generates the sequence of actions sent
to the robot by the executing group. The main advantage of this paradigm is that the plan
is executed without using the sensory information that created the model. However, the
execution of a plan without considering sensory information is critical in dynamic worlds.
Herein, new robotic paradigms include a reactive planning, in which sensory information is
considered on the mission planning.

Subsumption paradigm proposed by [217] considered that the architecture is built from
layers of interacting finite-state machines, called behaviors. This paradigm allows robots to
constantly sense the world. Several robotic behavior architectures were built based on the
subsumption paradigm [218, 219].

The behavior-based architecture [220] was built based on biological inspiration, allowing
to connect motor and perceptual schemas. Due to the lack on planning capabilities, this
paradigm presents several difficulties to generate behavior for long-range goals. Robots need
the planning capabilities of early architectures, as well as the reactivity of the behavior-based
architectures. This leads to the development of a new architecture paradigm: layered robot
control.

One of the first architectures integrating planning, reactive and sequencing modules was
the Reactive Action Packages (RAPs) developed by [221]. This architecture was the first
one to outline a three-layered (3T) architecture. Several 3T paradigms based architectures
have been developed since then, such as, MITRE [222], ATLANTIS [223], LAAS [224],
CLARAty [225]. Later, the 3T paradigm was extended to multi-robot coordination in the
Syndicate architecture [226]. Each layer was not restricted to interact only with the layers
located above and below, but also with layers at the same level. By this way, distributed
control loops could be designed at multiple levels of abstraction.

Hospital delivery robots need the planning and reactive capabilities that the 3T paradigm
offers. In fact, this paradigm has been widely used to design the control architectures for
current autonomous mobile robots.

Chapter 2 Context and Related Work 37

2.4 Stability Analysis of Nonlinear Systems
Robotic architecture paradigms conceive well-organized architectures that control robots
such that they are able to complete successfully its missions. However, some issues relative
to the behavior of the robots can not be answered by these paradigms. For instance, what
happens with the system during long periods? Is the architecture able to deal with different
initial conditions and bounded perturbations along the mission? Answering these issues is
relevant when dealing with mobile robots in unpredictable and dynamic environments.

Stability theory provides tools that can be used to address these issues. However, despite
the great importance of stability theory for control architectures, no general method has been
adopted to the design of stable nonlinear controllers in robot navigation. Considerable efforts
have been made to develop a wide range of alternative theoretical methods in the stability
theory, each one more suitable to be applied to particular nonlinear control problems.

In linear control, a system can be analyzed by standard techniques in frequency or in time
domain. However, these standard techniques are useless for nonlinear control, since direct
solutions of nonlinear systems are in general impossible to determine and transformations in
the frequency domain are not applied. In the following sections, some relevant methods for
stability analysis of nonlinear systems are described.

2.4.1 Phase Plane Analysis

The basic idea of phase plane analysis is to solve graphically second-order nonlinear systems
through a phase portrait, rather than seeking for an analytical solution. The phase plane
analysis provides a set of system motion trajectories on a two-dimensional plane. This al-
lows visualizing the behavior of a nonlinear system starting from different initial conditions,
without having to calculate analytically the solution of the nonlinear system. The qualita-
tive features of the motion trajectories are sufficient to provide intuitive insights about the
stability and other motion patterns existent in the system.

The analysis of the fixed points (equilibrium points) is very important in the phase plane,
as they can reveal the behavior of the system. Linear systems only have one fixed point, and
their stability is characterized by the nature of the respective fixed point. On the other hand,
the more complicated patterns of nonlinear systems, such as limit cycles, chaotic attractors
or multiple fixed points can be seen in the phase plane.

Some methods for constructing the phase portrait for linear or nonlinear systems include:
Isocline, delta method, Pell’s method, Lienard’s method and the Vector field diagram.

Phase plane analysis is suitable to second-order dynamics, since their motion trajectories
are well represented by carves in a plane. This restrains the generality of the analysis to
simple nonlinear systems based architectures. Extensions to third-order systems can be
achieved through computer graphics. However, the graphical study of higher-order systems
is geometrically and computationally complex.

38 Chapter 2 Context and Related Work

Phase plane analysis has been adopted for designing stable controllers in robotics. The
work proposed in [227] discussed how the phase plane analysis describes the overall behavior
of single and multiple autonomous robotic vehicles with finite state machine rules. A con-
troller for mobile navigation based on the dynamical system theory demonstrated its stability
through the phase plane analysis [82].

Appraches [228, 229] proved the stability in the phase plane of a limit cycle that con-
trols the periodic motion of a mechanical biped robot. Additionally, other biped [230–232],
quadruped [233], robotic hands [234], hopping robots [235, 236] and snake-like robots [237,
238] used phase plane analysis to design and model their controllers.

The applicability of the phase plane stability analysis has been extended to biologic prob-
lems, as the study of the rat exploratory behavior [239] and to mathematics, as the study of
the Kuramoto-Sivashinsky equations [240].

2.4.2 Lyapunov Theory

Lyapunov theory is an approach widely used to study the stability of nonlinear systems [241].
Lyapunov theory includes two methods for stability analysis, namely, direct and indirect
methods.

The indirect method proves that the stability of a nonlinear system can be inferred by
analyzing the stability in the close vicinity of its fixed points. This method uses the lineariza-
tion of the nonlinear system in the neighborhood of its fixed points to obtain the stability of
the nonlinear system. However, Lyapunov’s indirect method does not provide information
about how the system behaves when the initial condition is not in the neighborhood of the
fixed point.

Due to its generality, Lyapunov’s direct method has been widely used to design nonlinear
controllers in robotics and adaptive control. The basic idea of this method is to define
an overall energy function (called Lyapunov function) as the sum of the energy functions
associated to all controllers in the system. Then, a control law that makes this energy function
to decrease is selected. This idea is based on the generalization of the energy concepts
associated to a mechanical system, in which its motion is stable if its total mechanical
energy decreases during all the time instants. Similarly, if the total energy of the system is
continuously dissipated, eventually, the system converges to an equilibrium point.

Lyapunov’s direct method can be applied to all types of control systems, whether linear or
nonlinear, autonomous (time-invariant) or non-autonomous (time-varying), finite or infinite
dimensional, continuous or discrete, in small or large motion. Furthermore, it is useful in
many engineering problems where stability in the sense of Lyapunov (indirect method) is not
enough. These problems require that, when disturbed, the state does not remain close to its
solution, but rather converges gradually to it [8].

Chapter 2 Context and Related Work 39

Lyapunov theory works equally well in showing the boundedness of solutions when no
equilibrium points exist [242]. This constitutes an advantage over phase plane stability
analysis.

Lyapunov theory has been successful adopted to guarantee stability of switched and hy-
brid controllers with hard nonlinearities [243]. Several researchers have adopted Lyapunov
theory to ensure stability for their mobile navigation controllers [244–248], including both
global and local stability [249]. Other robotic frameworks applying Lyapunov theory include
manipulators [250], formation of multi-mobile robots [251], lawn mower robot [252], and the
stability of dynamical systems to reproduce human arm movements [159].

Other works addressed the convergence of tracking errors [253, 254], and the stability of
neural networks [255]. The improved dynamic window approach (DWA) in [256] incorporated
Lyapunov stability criteria to guarantee global and asymptotic convergence.

The main limitation of the Lyapunov’s direct method lies in the fact that there is no generic
way of finding Lyapunov functions for nonlinear systems. Some methods as Krasovskii’s
method or the variable gradient method can be used to facilitate the search for Lyapunov
functions [8]. Control designers use these methods, experience, intuition, trial and error,
and physical insights to search for a suitable Lyapunov function. Furthermore, Lyapunov
theory does not provide freedom to the architecture design. If a new module is included
into the architecture, it is not guaranteed that the same Lyapunov function works. Even
though several architectures have been proven to be stable based on Lyapunov theory, these
architectures only addressed local navigation purposes. Global navigation and generation of
timed movements were not considered for the stability analysis.

2.4.3 Input-Output Stability

Lyapunov stability and phase plane analysis study stability through the mathematical mod-
eling of the dynamical systems. Input-output stability is an alternative approach to the
mathematical modeling of dynamical systems based on input-output notions. This approach
analyzes the stability of a given system by relating the output directly to the input of the sys-
tem, without knowing the internal state of the system. The system is treated as a black box,
only accessed through its inputs and output terminals. A system is stable in the input-output
sense if small input signals produce small output signals.

Input - output stability analysis was previously developed for linear feedback systems.
The most notable contributions to generalize this analysis to nonlinear systems were made
by [257, 258]. Small-gain and passivity are important theorems that provide conditions for
the preservation of input-output stability in a feedback configuration.

Concepts from input-output stability and Lyapunov theory were combined to derive the
input-to-state stability [259], in which inputs and states are considered for the stability
analysis.

40 Chapter 2 Context and Related Work

Input-output stability is useful for studying the stability of interconnected systems, since
the gain of a system can be used to track how the norm of a signal increases or decreases
as it passes through the system. Input-output stability provides a method to anticipate
the qualitative behavior of a feedback nonlinear system with scarce information about the
feedback components. This leads to notions of robustness of feedback stability and motivated
many of the recent developments in modern control theory.

This type of stability is mainly used for network and time-varying delayed systems [260].
Applications of the input-output stability for mobile navigation controllers are scarce. In [249]
input-output stability was used to assure stability of a controller for local navigation. In [261],
a smooth nonlinear feedback was obtained to achieve asymptotical input-output stability.
This stability method was also addressed to design a stable tracking controller [262].

The main disadvantage of input-output stability approach is the fact that the system
description is unable to deal with physical system interconnections. Hence, the mathematical
modeling based on state space models is of fundamental importance in the description of
physical dynamical systems.

2.4.4 Contraction Mapping Theory

Searching for a contraction metric is an alternative to phase plane analysis, Lyapunov and
input-output stability theories. While phase plane analysis must be constructed over a known
equilibrium point, Lyapunov analysis need a Lyapunov function and input-output analysis is
unable to deal with physical system interconnections, Contraction Mapping Theory implies
indirectly the existence of a single stable equilibrium. This is particularly useful if the
equilibrium point changes from locations depending on the unknown dynamics.

Contraction Theory is a useful method that provides a set of tools to analyze the stability
of both linear and nonlinear systems. Contraction analysis is inspired by fluid mechanics,
being different from the classical point of view of stability [11, 263, 264]. Using this analysis,
stability is not viewed relative to some equilibrium point. Alternatively, a system is stable
in some region if the initial conditions or temporary bounded disturbances are forgotten,
i.e., the solution of the system converges to the unique equilibrium point independently of
the initial conditions. Contraction is an incremental form of stability, i.e., stability of the
system trajectories with respect to one another [265], besides being attracted towards an
equilibrium position. Incremental stability concept is useful to analyze the robustness and
performance properties of nonlinear closed-loop systems, and to verify if the system holds
suitable steady-state properties [266, 267]

As an alternative to Lyapunov theory, Contraction Theory establishes exponential stabil-
ity of systems [11] without having to select a Lyapunov function. Additionally, it explicitly
incorporates the control input in the process of stability analysis [268], which is similar to the
input-to-state stability. Systems that are universally contracting with respect to the inputs

Chapter 2 Context and Related Work 41

are stable with respect to the input-to-state stability [268]. Contraction Theory studies sta-
bility when external bounded perturbations do not put the system out of contraction bounds.
This implies these perturbations have no effect on the global exponential convergence, which
is an important advantage when dealing with real-time applications. These perturbations
might represent noise and uncertainty in the system control.

The combination property [269] inherent to Contraction Theory provides freedom to the
architecture design, as the overall architecture remains stable if a new module included into
the architecture is contracting. The analysis of the remaining modules does not change,
as in the case of Lyapunov theory, for which a new Lyapunov function may be necessary.
Therefore, contraction is preserved through a large variety of systems combinations (e.g.,
parallel, feedback or hierarchies), which makes this theory useful for analyzing the stability
of large complex real-time control architectures. Contraction Theory is a powerful tool to
study synchronization and the dynamic behavior of coupled nonlinear systems and oscillators.
Furthermore, contraction analysis is extended to autonomous and non-autonomous systems.

Contraction Theory has been widely used to derive stable controllers for several robotic
frameworks, including robotic flight control [270, 271], underwater vehicles [11], flexible robot
arm [272], tracking [273], indoor mobile navigation [274] and dynamical movement primitives
for locomotion [275]. However, global navigation was not considered on the stability analysis.
Later, the approach addressed in [153] included the global navigation into the architecture
presented in [274] and successfully demonstrated the stability of the architecture in simulated
missions. Even though the referred works have used Contraction Theory to prove the stability
of control architectures, they lack of robustness when the robot and the environment include
external bounded perturbations into the global system.

Contraction Theory has also been applied to the analytical development of observers for
problems such as inertial navigation [276] and dynamic positioning of surface vessel [277],
to the nonlinear stability of complex dynamic network systems [278, 279], and to verify the
exponential convergence of the EKF [263].

2.5 Problem Statement
This section summarizes the main limitations of the literature previously described.

• Timing constraints: even though several current commercial delivery mobile robots are
already navigating in hospitals, none of them includes timing constraints as require-
ments for their delivering missions. This limitation is also verified in other aforemen-
tioned commercial robots. Current works including timing control into a navigation
architecture based on nonlinear dynamical systems with local and global planners for
mobile robots were developed within the scope of this thesis.

42 Chapter 2 Context and Related Work

• Navigation control: delivery mobile robots typically stop in cases where obstacles
are detected in a safety zone, waiting for the clearance of the path. The robot will
be delayed if the mission must be completed within a time constraint. With the
architecture proposed in this thesis, the robot must slow down when obstacles are
detected and try to circumnavigate them. The robot only stops when obstacles are
detected in a close neighborhood to it.

• Stability conditions: despite the extensive research on stability theory, there are no
works focused on formal stability analysis of complex navigation architectures with
time constraints, when controlling robots in real environments.

• Duration and complexity of the experiments: there is a lack of formal results demon-
strating the stability and performance of robots in indoor environments. This is special
important for long-term missions. Dependability tests should validate the robustness
of the architecture in real field experiments.

Chapter 3

Overall Architecture

This chapter starts with a review of each block of the global system, namely, the architecture,
the robot and the environment. The following sections explore the several modules that
compose the architecture.

Section 3.2 details the Motion Control module. This section starts with a description of
the module responsible for representing the environment. Later, the process to obtain the
trajectory that leads the robot to its goal location and how this trajectory is converted into
a direction that the robot must follow is described.

Section 3.3 describes the Local Control module. The section details the target orientation
and obstacle avoidance contributions. Furthermore, it describes how the robot detects a zone
with obstacles and what should be the contributions of the target orientation and obstacle
avoidance behaviors.

This chapter is concluded with an overview of the Timing Control module, including its
description and parameterization, and the calculation of the distance that the robot needs
to reach the goal location. Furthermore, it is explained the module responsible for specifying
the robot’s motor behavior and the adiabatic elimination.

3.1 Global System Overview
Fig. 3.1 shows the global system: frobot stands for the robot, fsupervisor stands for the archi-
tecture that controls the robot, and block K represents the interacting environment.

Maps fsupervisor and frobot are assumed to be described by C1 discrete dynamical systems1

of the form,

xk+1 = fsupervisor(xk, Pg, ek+1), (3.1)

qk+1 = frobot(qk, xk+1), (3.2)

ek+1 = K(ek, qk+1 ⊕ ηk+1), (3.3)
1Current robotic systems are computer-based and hence intrinsically discrete.

43

44 Chapter 3 Overall Architecture

fsupervisor frobot
x

q

e

K

k+1

k+1

k+1

ηk+1

Figure 3.1: Graphical representation of the global system. The robotic application
can be viewed in general terms as the robot frobot, the architecture fsupervisor and

the interacting environment K.

where ek+1, qk+1 and ηk+1 stand for the observations, interactions and disturbances, respec-
tively. ⊕ represents the combination of signals qk+1 and ηk+1. Pg stands for the goal location
where the mission ends, and xk+1 represents commands sent by fsupervisor that trigger ac-
tions on the robot. The C1 assumption is reasonable since in practical terms situations, C0

or C−1 maps can be replaced by C1 maps using splines (see for instance [280] or for other
regularization methods [281, 282]).

Hereafter, the feed-through maps and dynamical systems that compose the global sys-
tem are represented through their discrete form, and k is the discretization index. The
discretization method is the forward Euler method.

A detailed schematic of the global system is shown in fig. 3.2. The architecture (repre-
sented by fsupervisor) is responsible for guiding the robot along the missions. Three modules of
control compose the architecture, namely, Motion (green area), Local (blue area) and Timing
(red area). Each module of control works independently of the others, however information
flows among them.

The architecture outputs the angular, ϖ, and linear velocity, v, to the robot. Both
velocities safely guide the robot towards its goal location. The Motion Control calculates
the trajectory that connects the current robot’s position, P̂r, to the goal location, Pg. This
trajectory is used to obtain the direction ψtar that the robot should follow to reach Pg. The
Local Control guides the robot by setting its angular velocity, ϖ. It receives the direction
that the robot should follow, ψtar, and verifies based on sensory information, ψobs,i, if the
direction ψtar can be followed by the robot without colliding with obstacles. Timing Control is
in charge of setting the robot’s linear velocity, v. This module receives the remaining distance
to the goal location (encoded by A), the time constraint, MT , and sensory information (laser,
Lai and sonars, Si).

The Localization System is responsible for estimating the robot’s pose, P̂r(x̂r, ŷr, ϕ̂) through
an Extended Kalman Filter (EKF) that merges the sensory information provided by odom-
etry and vision information 2. The External module represents the user that interacts with

2Notationˆstands for estimates provided by the EKF.

Chapter 3 Overall Architecture 45

Motion Control Timing Control

Local Control

M

 Global
 Planner

 World
Representation

 Global - Local
 Integration

 Look-up
 Table

ρ

External

User

 Local
 Planner

ψtar

Velocity

A,ω

MT Parameter
 Modulation

µ,Om

 Behavior
 Switching

 Behavior
 variables

 Timing
 Adaptation

ϖv

ψ
obs,i

Kinematics

lw rw

K
 Sensors Robot

La

fsupervisor frobot

(x ,y)P

Localization System

 EKF

 Odometry

 Vision Information

r r
r

{r , i= 1,...n i

(x ,y)P
g gg

Si

(x ,y)P
r r

r

f2

f7,f8,

f10,f11
f16,f17

f15f12,f13,f14

f9

f1

f3,f4,f5,f6
ftiming

 Constraint

Time

t

Map

a }

i,

L

ϖ ϖ

^
^^

^ ^^

Figure 3.2: Schematic of the K, frobot and fsupervisor blocks containing the modules
of control Motion, Local and Timing.

the robot. The user sends the time constraint, MT , and the goal location, Pg, to the archi-
tecture. In a practical perspective, this represents the time to complete the mission and the
location on the environment for which the robot is requested to move. The user also provides
the map of the environment before the robot initializes its first mission.
frobot is composed by the physical robot and the kinematics module. The kinematics

are feed-through maps that convert the linear velocity, v, and angular velocity, ϖ into the
angular velocities for left, ϖlw, and right, ϖrw, wheels. The kinematics block depends on the
robot used to carry out the missions.

Block K represents the environment that interacts with the robot. It maps the frobot

outputs into the fsupervisor inputs.

3.2 Dynamic Approach to Motion Control
The Motion Control is responsible for calculating the trajectory that the robot should follow
to complete its mission. This module provides the goal direction ψtar that the robot should
track to follow the obtained trajectory. The map of the environment, e.g., corridors, rooms
and distance between zones is considered to calculate the trajectory, such that the expected

46 Chapter 3 Overall Architecture

time spent by the robot to cover the trajectory is minimized. Real-time sensory information
acquired by the laser and sonars is not considered. The Motion Control (see schematic in
fig. 3.3) is composed by four blocks: World Representation, Global Planner, Look-up Table
and Global - Local Integration, which are detailed in the following.

M

 Global
 Planner

 World
Representation

 Global - Local
 Integration

 Look-up
 Table

{r , i= 1,...n a }ρ

ψtar

i

Pr

(x ,y)P
g gg

(x ,y)r r

Map

L

^
^ ^

Figure 3.3: Schematic of the Motion Control module. Inputs of this module are
the goal location, Pg, the robot’s location, P̂r, and the map of the environment. The

output is ψtar.

The Motion Control module should deal with sensory and state uncertainty, τ . State
uncertainty stands for the unmodeled external influences on the motion of the robot, and
sensory uncertainty includes partial or noisy measurements of the robot’s pose. One typical
solution to model the uncertainty is to consider the robot’s pose as the space of all beliefs.
Representing the robot’s pose as a space of beliefs was already addressed in the coverage
problem [283, 284], and assuming the worst-case model to bound the uncertainty was ad-
dressed in [285]. In fact, for navigation purposes, it is sufficient to know that the robot is
in some bounded region. In practical terms, the Localization System provides the robot’s
position P̂r, with a maximum uncertainty τ (see fig. 3.4). The true robot’s position is within
the neighborhood B

(
P̂r, τ

)
.

3.2.1 World Representation

The World Representation block is responsible for representing the map of the environment
as a mathematical model, M , understandable by the robot. The environment is represented
by a topological map, and known by the robot before starting its missions. Section A.1
in appendix A shows an example of the simulated environment illustrated under different

Chapter 3 Overall Architecture 47

τ

Belief Space

B(P ,τ)r

Figure 3.4: Space of beliefs for the robot’s position, B (Pr, τ). The true robot’s
position is within a circular area with radius τ .

representations. The following sections describe how a mathematical module can be used to
represent the topological features of an environment.

3.2.2 Transition Function M

The topological representation is obtained through a sequence of algorithms similar to the
work described in [126]. The sequence is illustrated in fig. 3.5.

Grid-based

 Map

Voronoi

Diagram

Environment Critical

 Points

Critical

 Lines

Topological

 Regions

Topological

 Graph

{C,C} R

c

M ri l i,a

i,a

Figure 3.5: Sequence of algorithms used to build the transition function, M , which
describes topologically the environment.

The first step to obtain a topological representation is to discretize the environment in
cells, as in the Occupancy Grid method [97, 286, 287]. Each cell has a binary occupancy
value, 0 for clear and 1 for occupied. Clear cells are considered free-space and denoted by C.
Occupied cells are denoted by C̄.

Based on the set {C, C̄}, the Voronoi diagram (see [119] for details) calculates a region
space R composed by a set of points in the free-space, C, equidistant to at least two obstacles

48 Chapter 3 Overall Architecture

(see blue line in fig. (3.6)). Nevertheless, any other method to divide the free-space into
regions could be used. The Voronoi diagram R contains points, called critical points ci,j (see
red empty circles in fig. (3.6)), that identify the center of passages from large areas to narrow
areas.

Critical points are connected to their basis points (points that intersect the walls of the
environment) through critical lines, l (see red dashed lines in fig. (3.6)). Critical lines divide
the free-space C into regions ri. These regions can be rooms or corridors. The critical line
that divides regions ri and rj is denoted as li,j . The center of each region is represented by
a filled black circle. Black thick lines represent occupied cells C̄ and white space represents
free cells C.

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

1234

8 7 6 5

12 11

10

9

13

1415

16

X

Y

rr

r r

r

rr

r

r

r

r
r

r

r

r r

Figure 3.6: Topological representation of the simulated environment. Voronoi
diagram (blue line) is drawn over a grid-representation. Critical points are depicted
by empty red circles, critical lines by red dashed lines and the center of reach region

by filled black circles. Regions are numbered from 1 to 16, {r1, ..., r16}.

Each duplet of neighbor regions, ri and rj , is connected by an arc, named aij . Each arc
has an associated cost Cij . The higher the cost, the greater the expected time to traverse
the arc. The transition function, M , receives a duplet of regions {ri, ri+1} and provides the
cost to move from region ri to ri+1.

3.2.3 Total Cost of an Arc

The topological representation allows representing obstacles and unforeseen disturbances that
may occur in the environment by dynamically updating the cost of the arcs.

The cost of each arc includes two components: a deterministic cost, dij , defined a priori
through the geometrical information included in the map, e.g. walls, doors and distance be-
tween regions, and an uncertainty cost, uij , which represents the appearance of unpredictable

Chapter 3 Overall Architecture 49

obstacles in the environment,

Cij = dij + uij . (3.4)

In practical terms, the deterministic cost, dij , represents the distance that the robot has to
cover between regions, and the uncertainty cost, uij , represents the additional distance that
the robot expects to travel when unpredictable obstacles appear.

3.2.3.1 Deterministic Cost

The deterministic cost dij of an arc connecting regions, ri and rj , is obtained by summing
the Euclidean distance, di,c, between the center of the region, ri, and the critical point that
divides both regions, ci,j , plus the distance, dc,j , between ci,j and the center of the region rj ,

dij = di,c + dc,j . (3.5)

Fig. 3.7 shows a representation of the deterministic cost of the arc connecting regions r1

and r2, d12, given as follows,

d12 = d1,2 + d2,1, (3.6)

where d1,2 is the distance between the center of region r1 and the critical point c1,2, and d2,1

is the distance between the center of region r2 and the critical point c1,2. 3 The deterministic
cost is viewed as the absolute value of the line segments illustrated by the blue lines.

X

Y

d

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

critical point

(m)

(m)

1,2d2,1

c 1,22r 1r

Figure 3.7: Deterministic cost between regions r1 and r2. Red empty circles
represent critical points and black filled circles represent the center of the regions.

3Note that d12 is equidistant to d21, but the same is not true for d1,2 and d2,1.

50 Chapter 3 Overall Architecture

3.2.3.2 Uncertainty Cost

The uncertainty cost uij of an arc represents a probability of unexpected obstacles to appear
in regions ri and rj . Initially, if unexpected obstacles do not appear in the environment,
uij = 0, ∀i, j ∈ R. While the robot is moving and acquiring data, the uncertainty cost
uij is being updated if obstacles are detected. If an obstacle is detected in region ri, the
uncertainty cost of all arcs containing this region is updated, ui,a, ∀a ̸= i ∈ R.

Onboard sensors are used to calculate the number of zones with obstacles. A potential
function, U(ϕ) (see section 3.3.5 for details), verifies if obstacles are obstructing the trajectory
of the robot. If U(ϕ) < 0, the robot is in a repulsion zone created by obstacles. When
U(ϕ) ≥ 0, no obstacles are in the surroundings of the robot. Thus, always that U(ϕ) triggers
from zero to a negative value, a zone with obstacles is detected and must be considered for
the uncertainty cost.

Obstacle Types
In a real environment, two types of obstacles can be identified,

• O1 - obstacle partially blocking the path.

• O2 - obstacle totally blocking the path.

When an obstacle partially obstructs the path, the robot can circumnavigate it and follow
the same path. However, the robot travels a larger distance than expected to reach the goal
location. Consequently, a re-planning of the path is not necessary. If an obstacle blocks a
corridor or a passage, the robot needs to find an alternative path to reach its goal location.
Fig. 3.8 depicts an example showing the two types of obstacles, O1 and O2. Fig. 3.8 (a)
depicts the robot in a partial obstructed corridor. The robot has to circumnavigate the
obstacles, but it is still able to follow the same path. Fig. 3.8 (b) depicts a case in which
obstacles are blocking the corridor, preventing the robot to follow the path. An alternative
path leading the robot to its goal location should be planned. The robot must select the path
with the minimum expected number of obstacles type O1 and avoid paths with obstacles type
O2. If no alternative paths are available, the robot must stop and wait for the clearance of
the corridor.

The more obstacles the robot faces in a corridor, the greater the distance the robot must
travel to traverse the corridor. Thus, the uncertainty cost, uij , should depend on the number
and type of the detected unexpected obstacles,

uij = d1vij1 + d2vij2 , (3.7)

where d1 and d2 are the average distance needed by the robot to circumnavigate obstacles
type O1 and O2, respectively. vij1 and vij2 indicate the number of obstacles O1 and O2 in
arc aij , respectively.

Chapter 3 Overall Architecture 51

partially blocked

(a)

totally blocked

(b)

Figure 3.8: a) Obstacles partially blocking the corridor. b) Obstacles totally
blocking the corridor.

The distance d1 required by the robot to circumnavigate obstacles type O1 was empiri-
cally calculated through field experiments. The experiments consist of performing a mission
without obstacles, and then repeating the same mission with obstacles type O1. In both
missions, the robot follows a constant velocity of 0.4 m/s. Table 3.1 resumes the obtained
results. First column depicts the number of obstacles detected by the robot. Second column
refers the expected distance that the robot should traverse and the third column stands for
the effective distance traveled by the robot. On average, the robot had to travel approx-
imately more 0.4 m to circumnavigate each obstacle type O1. Thus, it was defined that
d1 = 40.

Table 3.1: Distance required to circumnavigate obstacles type O1.

Number of obstacles type O1 Expected distance (m) Traveled distance (m)
1 2 2.36
2 4 4.78
3 5 6.26
10 10 14.10

Obstacles type O2 force the robot to stop and find a new path to complete its mission.
Thus, the robot should not select paths in which an obstacle type O2 was detected, except
when no alternatives paths are available. For that, the uncertainty cost of an arc with an
obstacle type O2 is set as the maximum cost of the arcs in the environment, d2 = max{Cij}.
This ensures that an alternative path is selected, rather than the obstructed path.

The number of unexpected obstacles type O1 and O2 is given by a probability distribution
that defines the mean, vij , and variance, σ, of their occurrence in any arc of the environment.
The adopted probability distributions are similar to the ones presented in [288]. The number
of unexpected obstacles type O1 in a corridor is proportional to its length. On the other
hand, the presence of unexpected obstacles type O2 in a corridor can be viewed as a discrete

52 Chapter 3 Overall Architecture

event, because only two possible outcomes are available: the presence or the absence of an
obstacle type O2.

The average number of obstacles type O1 in arc aij , vij1 , is defined as,

vij1 = E [O1]

= α1
β1
, (3.8)

where E[.] denotes the expected value and α1 gives the number of obstacles detected along
the arc aij during β1 missions.

The average number of obstacles type O2 in arc aij , vij2 , is defined as,

vij2 = E [O2]

= α2
α2 + β2

. (3.9)

where α2 is the number of detected unexpected obstacles type O2 and β2 is the number of
missions in which the robot did not detect an obstacle O2 in arc aij .

The uncertainty cost, uij is obtained by substituting (3.8) and (3.9) into (3.7),

uij = d1

(
α1
β1

)
+ d2

(
α2

α2 + β2

)
. (3.10)

The cost Cij is obtained by substituting (3.10) into (3.4),

Cij = dij + d1

(
α1
β1

)
+ d2

(
α2

α2 + β2

)
. (3.11)

Uncertainty Cost - Simulation Results
A set of simulated missions is performed to verify how unexpected obstacles modify the

path followed by the robot. Fig. 3.9 illustrates the simulations set-up. The robot starts
its mission in region r1 and should reach the goal location Pg (black cross) in region r8.
Two alternative paths are available: path 1, composed by the set of regions {r1, r2, r3, r4, r8}
(red dashed line), and path 2 composed by the set of regions {r1, r2, r6, r7, r8} (green dashed
line) (fig. 3.9 (a)). Before the first mission, there is no knowledge about the occurrence of
obstacles type O1 and O2. Thus, parameters are initialized as: α1 = 0, α2 = 0, β2 = 0, β1 = 0.
Furthermore, for the purposes of this simulation, it is assumed that the total cost of path 1
and path 2 is 1993 and 1984, respectively. Consequently, the robot follows path 2 to complete
its mission (fig. 3.9 (b)).

In the first mission, the robot follows path 2 and detects an unexpected obstacle in region
r7 (see fig. 3.9 (b)). According to (3.10), the uncertainty cost is updated with d1 = 40, since
the robot only detected one obstacle type O1. The number of performed missions and the
number of detected obstacles are updated to β1 = 1 and α1 = 1, respectively. The cost of
the arcs containing region r7 (a6,7 and a7,8) are updated. Thus, v671 = 1 and v781 = 1. The

Chapter 3 Overall Architecture 53

Path 1

Path 2

Unexpected Obstacle

Region

 1

Region

 8

Region

 1

Region

 8

Region

 2

Region

 3

Region

 6

Region

 7

Region

 4

Region

 3
Region

 2

Region

 6

Region

 7

Region

 4

Figure 3.9: a) Two alternative paths connecting region r1 to region r8. b) The
robot selects the lowest cost path (path 2).

total cost of path 2 after the first mission is updated to 2064, which is higher than the cost
of path 1. Consequently, for the next missions, the robot will select path 1 to travel from
region r1 to region r8. Table 3.2 depicts the evolution of the total cost of path 1 and path 2.

Parameter βi increases as the robot performs missions, and α1 remains unchanged since
no obstacles were detected. Consequently, the cost of path 2 decreases and after the 9th

mission, it is lower than the cost of path 1. After this mission, the robot will follow path 2
to move from region r1 to region r8.

Table 3.2: Total cost of path 1 and path 2 during 9 traversals.

Path β1 = 0 β1 = 1 β1 = 2 β1 = 3 β1 = 4 β1 = 5 β1 = 6 β1 = 7 β1 = 8 β1 = 9
1 1993 1993 1993 1993 1993 1993 1993 1993 1993 1993
2 1984 2064 2024 2010.6 2004 2000 1997.4 1995.4 1994 1992.8

The next simulation verifies the effect of the detection of an obstacle type O2 on the
uncertainty cost. The same initial conditions of the previous simulation are repeated.
Parameters α2 and β2 defining the number of detected obstacles type O2 and the
number of missions in which no obstacles type O2 are detected, respectively, are set
to 0. Once again, the robot must travel from region r1 to region r8 through path 2.
Fig. 3.10 illustrates the simulation set-up. During the first mission, the robot detects
an obstacle in region r7 that blocks the corridor. Thus, arcs containing region r7 will
be set with the maximum cost of the arcs in the environment, max{Cij}. After the
cost update, path 2 is no longer an alternative path to follow, since its cost is very high.
Parameters α2 = 1 and β2 = 1 are updated. Fig. 3.11 shows the evolution of the total
cost of both paths connecting region r1 to region r8. Initially, the cost of path 1 (red
dashed line) is higher than the cost of path 2 (green continuous line), and the robot
follows path 2. After an obstacle type O2 has been detected, the total cost of path 2
increases and for approximately 55 travels, this cost is the highest one. Consequently,

54 Chapter 3 Overall Architecture

Path 1

Path 2

Unexpected Obstacle

Region

 4Region

 4

Region

 3

Region

 3

Region

 7

Region

 7

Region

 8
Region

 8

Region

 2

Region

 2
Region

 1

Region

 1

Figure 3.10: a) Two alternative paths connecting region r1 to region r8. b) The
robot selected path 2, because it is the lowest cost path. During the mission, the

robot detects an obstacle totally blocking the passage.

the robot follows path 1. Parameter α2 is not updated since no obstacles type O2

are detected, and β2 increases to 55. The exponential decay of the appearance of an

1900

2000

2100

2200

2300

Number of traversals

T
o
t
a
l
C

o
s
t

0 10 20 30 40 50 60 70 80 90 100

Figure 3.11: Evolution of the total cost of path 1 (red dashed line) and path 2
(green continuous line).

obstacle type O2 allows the robot to forget the influence of past unexpected obstacles
and to re-select the paths where such obstacles were previously detected.

3.2.4 Global Planner

The Global Planner block aims at finding a sequence of regions, ρ, connecting the
robot’s position, P̂r, to the neighborhood of the goal location, B(Pg, ϵ). ϵ is a suitable
radius that defines the neighborhood in which the robot reaches Pg. This value is
calculated based on the expected uncertainty on the robot’s pose and allows the robot
to stop in the neighborhood of the goal location, despite the inertia on the robot.

The sequence of regions ρ ≡ {r1, . . . , rna} is found by selecting the path with the
minimum cost Ca connecting P̂r to Pg,

J = min{Ca}, a ∈ {1, ..., N}, (3.12)

Chapter 3 Overall Architecture 55

where N is the number of possible paths connecting P̂r to Pg, na is the number of
regions ri in sequence ρ and Ca is defined as,

f1 , Ca = E

[
na−1∑
k=0

M(rk, rk+1)
]
, (3.13)

subject to constraints r0 = rs, the starting region; and rna = rg the goal region. E[.]
denotes the expectation operation on the transition function M and M(rk, rk+1) gives
the cost Ck,k+1 of the arc connecting rk to rk+1.

Minimization of the cost function is achieved by using a search path algorithm,
namely the Djikstra’s algorithm. This algorithm receives the transition function, M ,
from the World Representation block, the current robot’s position, P̂r, from the Lo-
calization System and the goal location, Pg, provided by the user. As output, the
Djikstra’s algorithm provides the sequence of regions, ρ, which satisfies the minimiza-
tion and connects P̂r to Pg. If no sequence of regions is available, the region where Pg

lies is unreachable by the robot. The choice of the Djisktra’s algorithm was motivated
because it is simple and yields similar results to others.

Fig. 3.12 shows an example of the search path problem. The robot starts its mission
in region r3 (red circle) and the goal location Pg (green cross) lies in region r16. The
Djisktra’s algorithm calculates the number of different paths that successfully connect
P̂r to Pg. In this example, two possible paths are available, N = 2, each one with
an associated cost, Ca. Path 1 (blue line) is composed by the sequence of regions
ρ1 = {r3, r2, r6, r10, r11, r12, r13, r14, r15, r16} and path 2 (yellow line) is composed by
the sequence of regions ρ2 = {r3, r4, r8, r7, r6, r10, r11, r12, r13, r14, r15, r16}. The path
with the minimum cost will be selected.

3.2.5 Look-up Table

The Look-up Table block is composed by a feed-through map responsible for the
transition between the regions of ρ. For instance, when the robot is in region ri,
it must know which region is the next one to move. In order to ensure the transition
between regions, the Look-up Table provides a local goal Pb(xb, yb) that the robot
should follow to cross to the next region. This point belongs to the critical line li,i+1

that divides the region where the robot is, ri, and the next region to be crossed, ri+1.
In a general view, the Look-up Table provides a sequence of local points Pb that guides
the robot to the final region.

A critical line li,i+1 can be represented through a linear equation, where its extrem-
ities are the points that intersect the walls of the environment, P2,i(x2i, y2i). Note that

56 Chapter 3 Overall Architecture

X

Y0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

r

Pg

Pr

Path 1Path 2

4

r3
r2

r1

r5r6
r7r8

r9
r10

r11
r12

r13

r14
r15

r16

Figure 3.12: Robot starts its mission in region r3 (red circle) and goal location,
Pg (green cross) is located in region r16. Path 1 is depicted by a blue line and path

2 is depicted by a yellow line.

li,i+1 is named as critical line, however in a mathematical sense, li,i+1 is a line segment.
The number of critical lines to be crossed is equal to na − 1.

Critical lines are selected according to the region where the robot is. Considering
that the robot is in region r1 and the next region to reach is r2, the selected critical
line should be the one that defines the border between r1 and r2, l1,2.

The robot’s position, P̂r, can be used to verify in which region the robot is, and
therefore what is the next region to move. However, the inaccurate robot’s pose
provided by the Localization System, which contains the uncertainty τ (see fig.3.4),
could lead the robot to present oscillations on its motor behavior. For instance, when
the robot is close to a boundary between regions, the estimated robot’s position can
alternate between neighbor regions. If the selection of the critical line depends on
the perceived region, the alternation between critical lines will cause an oscillatory
behavior on the robot. Fig. 3.13 shows an example of the robot’s position (black
circle) when the robot is close to a boundary (red dashed line) between regions. The
space of beliefs is represented by the green circle. In t = 1 s, the robot considers that
it is in region r1 and selects the critical line l1,2. At t = 2 s, the robot has moved to
another position and considers that it already has crossed to region r2. However, note
that according to the space of beliefs, the robot’s true position can be in region r1.
The robot selects the critical line diving region r2 and the next region. At t = 3 s, the
robot considers that it is in region r1. Consequently, critical line l1,2 is selected again
and this causes an oscillation on the critical lines selections. Therefore, the robot can
exhibit oscillations in its motor behavior.

In order to avoid the oscillatory behavior, the space of beliefs of the robot’s position

Chapter 3 Overall Architecture 57

r1 r2

r1 r2

r1 r2

t = 1 s

t = 2 s

t = 3 s

l1,2

l1,2

l1,2

Figure 3.13: Example of a trajectory followed by the robot when it is close to a
boundary between regions. Arrows indicate the direction of the robot’s movement.

is used to know in which region the robot is. Thus, the robot’s position is represented
as an area, and therefore, the selection of the critical lines must be obtained according
to the area where the robot is. Areas where the robot can wrongly perceive its current
region are named as critical areas, rci. They depend on τ and on the extremities of
the respective critical line, P1,i, P2,i, as follows,

rci =
{

(x, y) | x(u) = w

2
sgn(cos(u)) , y(u) = h

2
sgn(sin(u)), 0 ≤ u ≤ 2π

}
, (3.14)

where h is the Euclidean distance between P1,i and P2,i, w = 4τ and sgn(x) is defined
as in (A.7). The greater the uncertainty τ , the larger the size of the critical areas.

The next critical line should be selected only when the robot has certainty that it
is in a critical area. The robot is in a critical area if its space of beliefs, B (Pr, τ), is
completely within a critical area. This is verified if the Euclidean distance between
the robot’s position, P̂r, and the local goal, Pb, defined as,

uk = ∥P̂rk
− Pbk

∥, (3.15)

58 Chapter 3 Overall Architecture

is less than 2τ . A C1 feed-through map that verifies if uk < 2τ can be given as follows,

f2 , ek = 1 + tanh (b (uk − 2τ))
2

, (3.16)

which gives 0, if uk < 2τ (the space of beliefs of the robot’s position is outside a critical
area), and 1, if uk > 2τ (the space of beliefs of the robot’s position is within a critical
area). The selection of the critical line that the robot should cross, L, can be given
through the following condition,

f3 , Lk = tanh (b (1 − ek))li,i+1 + tanh (b(ek))li+1,i+2. (3.17)

If the robot is outside of a critical area, the local goal Pb ∈ li,i+1 is selected. On the
other hand, if the robot is within a critical area, Pb ∈ li+1,i+2 is selected. The selection
of the next critical line through the critical areas augments the transition zone between
regions from a line to an area. Note that other C1 feed-through maps could be used
to represent f2 and f3.

Fig. 3.14 depicts an example of a sequence of regions, ρ = {r1, r2, r3, r4}, in which
the critical lines dividing neighbor regions are identified by red dashed lines and the
critical areas are represented by green areas. Considering that the robot (red circle
identifies the space of beliefs of the robot’s position) starts its mission in r1. To reach
the goal location Pg, it must cross l1,2 to reach r2, l2,3 to reach r3, and finally cross l3,4
to reach the final region r4 where Pg (green cross) lies. In region r1, while the robot

r1

l1
,2

P

r2 r3 r4

l3
,4

l2
,3

2τ
Pr Pg

1,1 P1,2 P1,3

P2,1 P2,2 P2,3

^

Figure 3.14: A corridor of an environment composed by the sequence of regions,
ρ = {r1, r2, r3, r4}. Red dashed lines depict the critical lines, green areas represent

critical areas and points P1,i, P2,i hold for the extremities of the critical lines.

is outside the critical area, the local goal Pb belongs to the critical line l1,2. When the
robot approaches the border between region r1 and r2, it eventually enters the critical
area. In this case, l2,3 is selected and Pb ∈ l2,3. This local goal remains selected, until
the robot enters the next critical area around the border between regions r2 and r3.

Chapter 3 Overall Architecture 59

The same procedure holds for the following regions, until the robot reaches the final
region r4.

3.2.6 Global - Local Integration

The Global - Local Integration block receives the critical line li,i+1 or li+1,i+2 depending
on whether the space of beliefs of the robot’s position is inside or outside of a critical
area, and provides the direction ψtar that the robot should follow. In order to calculate
ψtar, it is required to obtain the local goal Pb(xb, yb), which is calculated at each time
step as the orthogonal projection of P̂r onto the received critical line. See appendix A.2
for more details.

While the robot traverses regions by following the local goals Pb(xb, yb), abrupt
changes in the critical lines will occur. Without losing generality and to maintain
the consistency with C1 dynamical systems, the local goal Pb is chosen by a smooth
function. Local goal Pb can be calculated by integrating the following dynamical
systems,

f4 , xbk+1 = xbk
+ λtr (xbk

− xb) dk, (3.18)

f5 , ybk+1 = ybk
+ λtr (ybk

− yb) dk, (3.19)

where λtr = 1
τtr

defines the relaxation rate of the dynamical systems and dk is the
discretization step. These smooth functions allow analyzing the stability during the
transitions of regions. Otherwise, only the stability inside each region ri would be
assured.

In the last region (where the goal location lies), the point Pb does not belong to a
critical line, but it is assumed as the final goal location, Pb = Pg.

Finally, the direction that the robot should follow, ψtar, to move across the critical
lines between regions is calculated as follows,

f6 , ψtark
= arctan

(
ybk

− yrk

xbk
− xrk

)
. (3.20)

Fig. 3.15 depicts an example in which the robot has to move from region r3 to region
r2 by crossing critical line l3,2. The point Pb is calculated as the orthogonal projection of
the robot’s position P̂r onto l3,2. In fig. 3.15 (a), no obstacles appear in the environment
and the robot follows a straight trajectory to reach Pb. In fig. 3.15 (b), an unexpected
obstacle (red rectangle) suddenly appears, and the robot needs to circumnavigate it.
As the robot moves, Pb is being updated according to (3.18) and (3.19).

60 Chapter 3 Overall Architecture

r

P

l

P

(3,2)

br

min(||P - P||)r b4 r1r2

r3

r6
r7r8

^
^

(a) t=k

l
(3,2)

P Pr

min(||P - P||)
br

br4 r1r2

r3

r6
r7r8

^
^

(b) t=k + 1

Figure 3.15: a) Robot moves from region r3 to region r2 by crossing critical line
l3,2 at time t = k. b) Robot circumnavigates an unexpected obstacle (red rectangle)
at time t = k + 1 and the local goal Pb is updated according to (3.18) and (3.19).

Green areas represent the critical areas.

3.3 Dynamic Approach to Local Control

This section describes the Local Control module composed by a dynamic approach
responsible for controlling the robot’s angular velocity, ϖ. The robot should be able
to navigate in disturbed environments, full of obstacles like people and other objects.
The robot has no knowledge about the position of unexpected obstacles. However, it
should be able to detect and circumnavigate them.

The Local Control module receives the direction, ψtar, that the robot should follow
to reach Pg, and sensory information that identifies the direction of obstacles, ψobs,i.
This module adapts the robot’s heading direction, ϕ, to guide the robot towards the
goal location, Pg, while avoiding obstacles.

The choice of this dynamical approach [74, 82] as the local planner method was
motivated since its properties allow the integration for sensory-motor feedback, which
provides a closed-loop control. In addition, it is consistent in terms of C1 dynamical
systems. However, for navigation purposes, any other local planner method could be
used as well.

Fig. 3.16 depicts the schematic of the Local Control module. It includes the Local
Planner block that uses the dynamic approach to provide the robot’s angular velocity,
ϖ.

In the following, the basic concepts of the dynamic approach to obstacle avoidance
and target orientation for mobile robots are reviewed (see [74] for an extended review).

Chapter 3 Overall Architecture 61

Local Control

 Local

 Planner

ψ
tar ψ

obs,i

ϖ

Figure 3.16: Schematic of the Local Control module. It receives as inputs the
direction to the goal location, ψtar, and the direction where obstacles are detected,

ψobs,i. It provides the robot’s angular velocity, ϖ.

3.3.1 Behavior Variables

The dynamical systems theory can be used as a theoretical language and tool to design,
specify, analyze and implement the heading dynamics of robotic platforms [84]. In the
context of the dynamical systems approach, it is fundamental to find variables that
explicitly describe, parameterize and represent the state of the system. These variables
are called behavioral variables. In the robotic framework, they represent the behavioral
state of the robot and the necessary requirements for the robot to execute its missions.
Each behavioral variable is governed by a nonlinear vector field.

The robot’s heading direction is defined as the behavioral variable, because at all
instants of time, the heading direction is near or in a resulting attractor created by
the obstacle avoidance and target orientation contributions. The complete behavioral
dynamic that governs the robot’s heading direction, ϕ, is achieved by summing the
individual contributions (target orientation and obstacle avoidance). Each individual
contribution is characterized by three different parameters: the behavioral variable, a
relaxation rate responsible for defining the strength of attraction or repulsion, and the
range of the behavioral variable over which the force exerts its effect, [0, 2π[.

As the robot moves, the directions to obstacles and the goal location change, so that
the resulting attractor shifts, pulling the robot’s heading along. Because the angles are
related to the allocentric reference frame, {W}4, the contributions to the dynamical
system of the heading direction do not depend on the robot’s heading direction, ϕ.

When an obstacle is detected, a repulsive force is erected at direction ψobs,i, relative
to the allocentric reference frame, {W}. The repulsive force erects an unstable fixed
point on the dynamics of the behavioral variable. Similarly, the existence of a goal

4The reference frames can be consulted in section 5.4

62 Chapter 3 Overall Architecture

location in the environment erects an attractive force at direction ψtar, which creates a
stable fixed point and attracts the robot’s heading direction to the direction where the
goal location lies. The complete behavioral dynamics were implemented on a physical
mobile robot in [13, 84, 85, 151], and are described in the following.

3.3.2 Target Orientation

In an undisturbed environment, the robot’s heading direction ϕ closely follows ψtar

(given by (3.20)), since the movement of the robot is not disturbed by obstacles.
Fig. 3.17 depicts the angle ψtar between the robot’s position, P̂r, and a goal location,

Pg. The orientation ψtar, specifies the fixed point with an attractive force that attracts

φ

 Goal

Location

X

Y

ψ
tar

Pg

Figure 3.17: Schematic representing the direction to the goal location, ψtar and
the robot’s heading direction, ϕ, relative to the allocentric reference frame, {W}.

the robot’s heading direction, ϕ,

Ftar(ϕ) = λtar sin(ϕ− ψtar), (3.21)

where λtar = 1
τtar

defines the strength of attraction that the orientation ψtar exerts on
the robot’s heading direction. τtar gives the relaxation rate. This nonlinear system has
2 fixed points, ψtar and ψtar +π. If λtar < 0, ψtar behaves as an attractor and ψtar +π as
a repeller. Otherwise, if λtar > 0, the fixed point ψtar + π behaves as an attractor, and
the fixed point ψtar behaves as a repeller. In this case, the robot’s heading direction,

Chapter 3 Overall Architecture 63

ϕ is shifted from the direction ψtar. Ftar(ϕ) results on a sinusoidal contribution to
provide the same dynamics when complete rotations (2π rad) are performed.

Fig. 3.18 depicts an example for a negative λtar. An attractor is erected at the
direction where the goal location lies, ψtar, and a repeller is erected at the opposite
direction, ψtar + π. The robot’s heading direction, ϕ is forced to converge to ψtar,
independently of the initial robot’s heading direction within the interval of time [0, 2π[.

π

π

2

0

2π

F ()tar φ

φ

tarψ

Attractor

Repeller

3

2

π

Figure 3.18: Vector field of the target orientation contribution. At the location
ϕ = ψtar exists a zero crossing whose rate of change has negative slope. Thus, an

attractive force at that location is erected.

3.3.3 Obstacle Avoidance

The robot senses its surroundings through a laser range finder and sonars. The laser
measures 682 steps (see appendix B.1), Nl = 682, and each laser step, Lai, has an
angle θi relative to the robot coordinate reference frame {R}. Hence, relatively to the
allocentric reference frame, each laser step measures the environment into the direction
ψobs,i = θi + ϕ.

8 sonars are mounted on the robot, Ns = 8, as depicted in fig. B.2. Each sonar,
Si, has an angle θs,i relative to reference {R}. Obstacles are detected relatively to the
allocentric reference frame into the direction ψsobs,i = θs,i + ϕ.

The robot’s heading direction, ϕ, is not required to the obstacle avoidance algorithm,
since only the angles, θi and θs,i are necessary. Note that −θi = ϕ− ψobs,i and −θs,i =
ϕ − ψsobs,i. Fig. 3.19 depicts a top perspective of the robot and the laser mounted on

64 Chapter 3 Overall Architecture

it. The yellow shadow represents the area over which the laser senses its surroundings.
The obstacle is detected into the interval of directions {ψobs128 , . . . , ψobs170}.

φ

ObstacleObstacleObstacle

ψ
682

5600 mm

obs, ψ
1

obs,

ψ
170

obs,

ψ
128

obs,

Figure 3.19: Robot and laser range finder seen through a top perspective. Yel-
low shadow depicts the area over which the laser measures its surroundings. Each
laser step measures the environment into direction ψobs,i relatively to the allocentric

reference frame. Two laser steps are represented, ψobs,128 and ψobs,170 .

When a laser step, Lai, detects an obstacle, a direction representing that obstacle
ψobs,i is specified and a repulsive force fobs,i centered at ψobs,i is erected,

fobs,i = λobs,i (ϕ− ψobs,i) exp
[

−(ϕ− ψobs,i)2

2σ2
obs,i

]
, i = 1, ..., Nl, (3.22)

where i subscribes the laser step. When a sonar sensor Si detects an obstacle at
direction ψsobs,i, a repulsive force fsobs,i is erected at that direction,

fsobs,i = λsobs,i (ϕ− ψsobs,i) exp
[

−(ϕ− ψsobs,i)2

2σ2
sobs,i

]
, i = 1, ..., Ns, (3.23)

where i subscribes the sonar index and Ns = 8. Parameters λobs,i and λsobs,i are
responsible for defining the intensity of each repeller according to the distance to the
detected obstacle. The closer the robot, the higher the values of λobs,i and λsobs,i,
as well as the intensity of the respective obstacle repulsing forces, fobs,i and fsobs,i.
This allows the robot to avoid obstacles more quickly when they are near than far.

Chapter 3 Overall Architecture 65

Parameters λobs,i and λsobs,i are mathematically defined as follows,

λobs,i = βobs,1 exp
[

−dl,i

βobs,2

]
, i = 1, ..., Nl, (3.24)

λsobs,i = βsobs,1 exp
[

−ds,i

βsobs,2

]
, i = 1, ..., Ns, (3.25)

where dl,i and ds,i stand for the distance to an obstacle measured by the laser step Lai
and sonar Si, respectively. βobs,1 and βsobs,1 define the maximum value for parameters
λobs,i and λsobs,i, respectively. The relaxation rates of the dynamics are defined as
τobs,i = 1

λobs,i
and τsobs,i = 1

λsobs,i
.

Parameters βobs,2 and βsobs,2 define the decay rate of the obstacle repulsion force.
Obstacles farther than βobs,2 (or βsobs,2) are repelled weakly than nearby obstacles.
Both contributions decay exponentially with distances dl,i and ds,i.

Parameters σobs,i and σsobs,i define the angular range over which the obstacle repul-
sion forces, fobs,i and fsobs,i, exert their effect on the robot,

f7a , σobs,ik = arctan
[
tan

(
∆θ
2

)
+ Rrobot

Rrobot + dl,i

]
, (3.26)

f7b
, σsobs,ik = arctan

[
tan

(
∆θs

2

)
+ Rrobot

Rrobot + ds,i

]
, (3.27)

where ∆θ and ∆θs are constant values and stand for the angular range of laser step
Lai, and sonar sensor Si. They are defined as ∆θ = 0.0061 rad and ∆θs = 0.52 rad.
Parameter Rrobot subscribes the radius of the robot. Fig. 3.20 depicts an example of the
repulsion range, σobs,341 , when an obstacle appears in front of the robot. The obstacle
is detected by several laser steps, however for visual purposes it is only illustrated the
laser step La,341 and its measured distance to an obstacle, dl,341 .

For the obstacle avoidance behavior, all contributions from the laser steps and
sonars sensors are considered. The obstacle contributions are summed, resulting in
the repeller standing for the direction that the robot should avoid,

Fobs(ϕ) =
Nl∑
i=1

fobs,i(ϕ) i = 1, ..., Nl, (3.28)

and

Fsobs(ϕ) =
Ns∑
i=1

fsobs,i(ϕ) i = 1, ..., Ns. (3.29)

66 Chapter 3 Overall Architecture

Obstacle

Rrobot

d

341
σ

341

obs,

l,

Figure 3.20: Range of the laser step, La,341, detecting an obstacle at a distance
dl,341 . A repulsive force is erected at ψobs,341 and the repulsion range is σobs,341 .

Fig. 3.21 depicts an example of the repeller created by summing the obstacle con-
tributions from the laser and sonars. The repeller is located at ψobs = π

2 and this is
the direction that the robot should avoid.

0

3π

2

2π

π

2

π

Repeller

F () φobs

φ
obsψ

Figure 3.21: Vector field of the obstacle avoidance contribution. At location ϕ =
ψobs, there is a zero crossing and the rate of change has positive slope. Thus, a

repulsive force at that location is erected.

3.3.4 Target Orientation and Obstacle Avoidance Integration

The integration of obstacle avoidance, Fobs(ϕ) and Fsobs(ϕ), and target orientation
Ftar(ϕ) contributions is achieved by adding each contribution to the vector field that

Chapter 3 Overall Architecture 67

governs the heading direction dynamics,

Fres(ϕ) = ϕ̇ = Fobs(ϕ) + Fsobs(ϕ) + Ftar(ϕ) + Fstoch,

f8 , ϕk+1 = ϕk +

 Nl∑
i=1

λobs,i (ϕk − ψobs,i) exp
[

−(ϕk − ψobs,i)2

2σ2
obs,ik

]

+
Ns∑
i=1

λsobs,i (ϕk − ψsobs,i) exp
[

−(ϕk − ψsobs,i)2

2σ2
sobs,ik

]
+ λtar sin(ϕk − ψtar) + Fstoch) dk (3.30)

As the robot moves, both sensory information and heading direction dynamics
change. Eventually, the sum of the target orientation and obstacle avoidance con-
tributions generates local minima, and the robot’s heading direction may lie over an
unstable state. To overcome this problem, a typical solution consisting on adding a
stochastic component, Fstoch, to the vector field has been proposed [1, 74, 289],

Fstoch =
√
Qξn, (3.31)

where ξn is a Gaussian white noise with zero mean and unit variance, and Q the
effective variance. This solution ensures an escape from unstable states in finite time.

Fig. 3.22 depicts the vector field resulting from the integration between the at-
tractive contribution, Ftar(ϕ) (see fig. 3.18) and the obstacle avoidance contributions
Fobs(ϕ) and Fsobs(ϕ) (see fig. 3.21). In this example, an attractor is erected at ϕ = π

2

rad and a repeller at ϕ = 3π
2 rad.

F ()

π

2π
 0 π

2

res φ

φ

3π

2

Attractor

Repeller

Figure 3.22: Vector field resulting from the superposition of the attractive and
repulsive forces.

68 Chapter 3 Overall Architecture

3.3.5 Detection of Obstacles

A systematic way to indicate if obstacles are present in the environment is to construct
a function, U(ϕ), by integrating the laser obstacle contribution given by (3.28),

f9 , Uk(ϕk) =
Nl∑
i=1

(
λobs,iσ

2
obs,ik exp

[
−(ϕk − ψobs,i)2

2σ2
obs,ik

]
−
λobs,iσ

2
obs,ik√
e

)
. (3.32)

If U(ϕ) ≥ 0, the repulsion from the obstacle contribution is weak and the robot does not
change its direction. If U(ϕ) < 0, the robot is on a repulsion zone created by obstacles.
See detailed information about U(ϕ) in [74, 289]. The same procedure is applied to
construct the function, Us(ϕ), which integrates the sonar obstacle contribution given
by (3.29).

3.3.6 Target Orientation and Obstacle Avoidance Behaviors

Obstacle avoidance behavior should predominate over the target orientation one. In a
sense, it is more important that the robot avoids collisions and does not reach the goal
location, than colliding with an obstacle when trying to reach the goal. Thus, people
and physical components of the robot are protected against damages.

Obstacle avoidance behavior predominates over the target orientation if its contri-
bution is stronger than the target orientation one, Fobs(ϕ) > Ftar(ϕ) and Fsobs(ϕ) >
Ftar(ϕ). By construction,

Nl∑
i=1

βobs,1 exp
[

−dl,i

βobs,2

]
> λtar, (3.33)

Ns∑
i=1

βsobs,1 exp
[

−ds,i

βsobs,2

]
> λtar, (3.34)

ensures that the intensity of each individual obstacle avoidance contribution is stronger
than the target orientation contribution. The first terms in (3.33) and (3.34) define
the maximum force exerted by an individual obstacle contribution and the exponen-
tial terms depend on the distance measured to obstacles, dl,i and ds,i. If the obstacles
are thin, only a low number of laser steps, Lai, detect them. On the other hand, if
the obstacles are large, a high number of laser steps will detect them. A thin obsta-
cle should erect a sufficient repulsive force allowing the obstacle circumnavigation. A
large obstacle should not erect an excessive repulsive force. Consequently, parameters
defining the precedence of obstacle avoidance over target orientation depend on the

Chapter 3 Overall Architecture 69

environment configuration. Empirically, these parameters are defined such that con-
ditions (3.33) and (3.34) are validated, βobs,1 = 0.7, βsobs,1 = 5, λtar = 1, βobs,2 = 0.9
and βsobs,2 = 0.5.

The worst case scenario consists on a situation in which an obstacle is located
between the robot and the goal location, Pg (see fig. 3.23). Consider that Pg attracts

Obstacle

Goal Location

φ = π/2

Pg

ψ = π/2
obs

Figure 3.23: Worst case scenario in which an obstacle lies between the robot and
the goal location.

the robot’s heading direction to ψtar = π
2 and the obstacle repels it to ψobs = π

2 . In
this situation, the direction that the robot should follow coincides with the one that
it should avoid. Fig. 3.24 depicts the vector field contributions for this scenario. To
ensure that the robot does not collide with the obstacle, the obstacle contribution has to
be stronger than the target orientation contribution. Consequently, conditions (3.33)
and (3.34) are verified. Panel (a) depicts the vector field of the target orientation
contribution. Note that the robot’s heading direction ϕ = π

2 is near the attractive fixed
point, meaning that the robot is in the correct direction to reach the goal location.
Panel (b) depicts the vector field of the laser obstacle avoidance contribution, Fobs(ϕ).
The obstacle is in front of the robot and a repeller is created at ψobs = π

2 . Panel (c)
depicts the resulting vector field of the heading direction dynamics. As the obstacle
avoidance contribution is stronger than the target orientation contribution, a resulting
repeller is erected at direction ϕ = π

2 and the robot’s heading direction, ϕ moves away
from ϕ = π

2 rad.

70 Chapter 3 Overall Architecture

1 2 3 4 5 6

−1

−0.5

0

0.5

φ

(rad)

F () φ
tar

Attractor

(a)

1 2 3 4 5 6

−1

−0.5

0

0.5

1

(rad)

φ

F () φobs

Repeller

(b)

1 2 3 4 5 6

−1

−0.5

0

0.5

1

(rad)

φ
F () φres

Repeller

(c)

Figure 3.24: a) Vector field of the target orientation contribution. b) Vector
field of the obstacle avoidance contribution. c) Resulting vector field of the heading

direction dynamics.

3.4 Dynamic Approach to Timing Control

This section describes the Timing Control module responsible for generating the robot’s
linear velocity, v, so that the robot completes its mission under a time constraint.

This module (see fig. 3.25) is developed based on the Stuart-Landau nonlinear os-
cillator, whose solutions are used to set in a straightforward way the robot’s linear
velocity, v. The module is composed by four blocks: Velocity, Timing Adaptation,
Parameter Modulation and Behavior Switching.

3.4.1 Velocity

The generation of the robot’s linear velocity, v, is fundamental to allow the robot
to complete its mission in the specified time constraint, MT . A robotic mission is
considered successful if the robot moves from its initial position to the final position,
within the specified time constraint, MT .

Chapter 3 Overall Architecture 71

Timing Control

Velocity

A

 Parameter

 Modulation

µ,Om

 Behavior

 Switching

 Behavior

 variables

 Timing

 Adaptation

MT

v

(x ,y
Pr

r r)

La Sii,

^
^ ^

Figure 3.25: Schematic of the Timing Control module. It receives as inputs the
time constraint, MT , the robot’s position, P̂r, and sensor information, Lai (laser)

and Si (sonars). The output is the robot’s linear velocity, v.

To generate the robot’s linear velocity, the Stuart-Landau nonlinear oscillator whose
solution is a single limit cycle (a periodic oscillation with cycle time T = 2π

ω
and finite

amplitude A) is adopted,

f10 , mk+1 = mk +
(
α
(
µk − r2

k

)
(mk −Omk

) − ωknk
)
dk, (3.35)

f11 , nk+1 = nk +
(
α
(
µk − r2

k

)
nk + ωk (mk −Omk

)
)
dk, (3.36)

rk+1 =
√

(mk −Omk
)2 + n2

k, (3.37)

where m and n are the state variables and µ, Om, ω and α are control parameters.
This oscillator can be written in polar coordinates as follows,

rk+1 = rk + rkα(µk − r2
k)dk, (3.38)

θk+1 = θk + ωdk, (3.39)

where rk and θk define the radius and the angle of the oscillations, respectively.
This oscillator was selected, because it is analytically treatable to a large extend

and provides a complete control over its states. This benefits the specification of
parameters and represents a definitive advantage over other oscillators. In addition, it
enables to explicitly modulate the generated solutions according to parameters, while
keeping the general features of the original movements. These features are useful for
generating stable solutions, applied in robotics [1, 2, 13, 85, 149]. A full description of
the Stuart-Landau oscillator can be viewed in appendix A.3.

72 Chapter 3 Overall Architecture

When the parameters are changed, the oscillator promptly changes the frequency,
amplitude and offset of its solutions, resulting in smooth and responsive trajectories.
To summarize, the trajectories generated by the Stuart-Landau oscillator can be de-
fined over time as,

m (t)
n (t)

 =

Om

0

 , µ < 0,Om + √
µ cos (ωt)

√
µ sin (ωt)

 , µ > 0,
(3.40)

and the oscillator is able to generate different solutions depending on its parameters
(see fig.3.26):

1. a discrete movement to a time-varying offset Om, if µ < 0 (Region A);

2. a rhythmic movement around Om, if µ > 0 (Regions B,C and D).

0 1 2 3 4 5 6 7 8 9

−10

0

10

C DBA

10

Time (s)

Figure 3.26: m trajectory modulation (solid red line) and parameters’ role. (A):
because µ = −2.82 (dashed blue) the oscillatory behavior is turned off due to the
Hopf bifurcation, leading to a discrete movement towards the value of Om = 10
(dotted dark green). (B), (C), (D): when µ > 0 a rhythmic movement is obtained,
with frequency ω (light green) around Om. (B): µ = 2.82, Om = 0 and ω = 10rad.s−1.
(C): µ = 102, Om = −7 and ω = 3rad.s−1. (D): µ = 2.82, Om = 5 and ω = 15rad.s−1.

The state variable m of the Stuart-Landau oscillator was used to directly control
the robot’s linear velocity, while the state variable n is required to enable the oscillator
to undergo periodic motion. Thus, the robot’s linear velocity, v, is given as follows,

v = m. (3.41)

The online adjustment of the robot’s linear velocity is performed by tuning the oscil-
lator parameters (µ,Om, α, ω), so that the robot is able to complete its mission within
MT .

Chapter 3 Overall Architecture 73

3.4.2 Timing Adaptation

This section describes how to modulate the limit cycle solution provided by the Stuart-
Landau oscillator, in order to generate the required robot’s linear velocity profile.
When µ < 0, the oscillator (3.35),(3.36) generates a rhythmic solution whose period
equals the time constraint MT = 2π

ω
. To control the robot’s linear velocity during a

mission, only one period of the solution m is required. Fig. 3.27 depicts an example of
solution m, wherein one period is highlighted in red.

2A

T = MT

0 2 4 6

m

1

2

3

4

Time (s)

Figure 3.27: Solution m of the Stuart-Landau oscillator with T = 2 s, during 6 s,
for A = 2 and Om = 2 (blue dashed line). Only one period of the solution m is used,
i.e. only the red part is generated and used to control the robot’s linear velocity.

Considering that Om = A, the time constraint, MT , is the time required by solution
m to go from zero to twice the oscillator amplitude and back to zero again, perform-
ing a full sinusoidal cycle. Fig. 3.28 (top) depicts an example of solution m with a
constant frequency ω during the interval of time MT = 2 s. Nonetheless, ascend-
ing and descending parts of the oscillator cycle have equal durations, meaning that a
large amount of time is spent accelerating towards the maximum required velocity and
decelerating back to zero again. This velocity profile can be given as follows,

v (t) = A (1 − cos (ωt)) , (3.42)

where A is the amplitude of the oscillator and ω defines the angular frequency.
From a robot physical perspective, it would be beneficial if minor maximum ve-

locities are requested. The velocity profile should be kept approximately constant, as
long as possible. As minor maximum velocities are required, less performance of the
robot’s servos, motor and other physical components is demanded, increasing their
lifetime. This velocity profile (fig. 3.28 (bottom)) has shorter acceleration and deceler-
ation times, but more abrupt. Ideally, it should be possible to select the acceleration
and deceleration durations for the mission. These intervals of time can be set according
to the mechanical features of the robot. In the first interval, [0, t1[, the robot acceler-

74 Chapter 3 Overall Architecture

0 0.5 1 1.5 2
0

0.075

0.15

0 MT

Time (s)

t
1

t
2

t
3

T
1

T
2

T
3

A

MT/2

T
1

T
2

T
3

0

0.075

0.15

t
1 t

2
t

3

(m/s)

v

(m/s)

v

Figure 3.28: Top) Single oscillation profile generated by the Stuart-Landau oscil-
lator. On this profile, T1 and T3 are longer, resulting in a curve with a higher top
velocity. Bottom) Modulated oscillation profile where periods T1 and T3 are shorter,

resulting in a smaller top velocity.

ates; in the second interval, [t1, t2[, the robot keeps a velocity approximately constant;
in the third time interval, [t2, t3[, the robot decelerates until stop. Each interval of time
can be defined with a different duration, such their sum equals the time constraint,
MT = T1 + T2 + T3. Note that in both velocity profiles, the robot should cover the
same distance for equal intervals of time.

During the first interval of time, [0, t1[, it is considered that the oscillator covers the
first quarter of the cycle, (T1), half of the cycle is covered during the second interval
of time, [t1, t2[, (T2), and the last quarter of the cycle is covered in the last interval of
time, [t2, t3[, (T3).

Each interval of time has an angular frequency, (ω1, ω2, ω3), such that, in the overall,
the oscillation is performed within the correct timing ω = 2π

MT
,

ω1 = π

2T1
, ω2 = π

T2 − ta
, ω3 = π

2T3
, (3.43)

where ta is the amount of time in which the condition m < Om is verified within
the interval of time [t1, t2[. This situation occurs when the robot detects an obstacle
and eventually reduces its velocity to safely circumnavigate it. Hence, ta is defined as

Chapter 3 Overall Architecture 75

follows,

ta =
MT∑
t=0

dk
(1 + exp [−b(m−Om)]) (exp [−b(t− T1)]) (exp [b(t− T1 − T2)])

, (3.44)

where dk is the discretization step and b = 500 is an empiric constant that defines the
speed between transitions. Fig. 3.29 depicts an example in which the initial frequency
of the oscillator is ω1. Then, in the interval of time [t1, t2[, ω2 is selected. At approxi-
mately t = 35 s, the robot’s linear velocity is reduced and m < Om. Dashed gray line
depicts the solution m and dashed dotted green line depicts the offset Om. To ensure
a quick acceleration, ω1 is again selected. During this period, ta is being incremented
according to (3.44). When m > Om, ω2 is selected again, but with a different value,
since ta was updated. Finally, in the last interval, ω3 is selected.

10 20 30 40 50 60 70 80

0.1

0.2

0.3

0.4

0.5

Time (s)

ω
(rad/s)

ω1 ω1

ω2

ω3

 ω2
T1 t

T3

T2 - t

0.1

0.2

0.3 m

(m/) s

0.4

0.5

t1 t2 t3

a

a

Figure 3.29: Blue continuous line depicts the frequency of the oscillator, ω, dashed
grey line depicts solution m and dashed dotted green line depicts the oscillator offset,

Om.

The distance s covered during each interval of time is calculated by integrating (3.42)
for a fixed amplitude, A, during the given intervals of time,

s1 =
∫ T1

0
A(1 − cos(ω1t))dt =

A
(
π
2 − 1

)
ω1

, (3.45)

s2 =
∫ T2

0
A(1 − cos(ω2t))dt = A (π + 2)

ω2
, (3.46)

s3 =
∫ T3

0
A(1 − cos(ω3t))dt =

A
(
π
2 − 1

)
ω3

. (3.47)

In an undisturbed scenario, in which no disturbances affect the trajectory of the
robot, the total distance covered by the robot is the distance required to reach the

76 Chapter 3 Overall Architecture

final position, Pg, at the beginning of the mission,

D (0) = s1 + s2 + s3, (3.48)

D (0) =
A
(
π
2 − 1

)
ω1

+ A (π + 2)
ω2

+
A
(
π
2 − 1

)
ω3

, (3.49)

where D (0) is the initial distance between the robot’s position and the final location,
Pg.

If no obstacles disturb the trajectory of the robot, the amplitude of the oscillator,
A, does not need to be adapted and can be calculated as,

A = D (0)
(π

2 −1)
ω1

+ (π+2)
ω2

+ (π
2 −1)
ω3

. (3.50)

However, in real environments, disturbances of many types may occur, forcing the
robot to change its trajectory. The expected distance in such cases is no longer the
distance calculated in the beginning of the mission. Thus, it is necessary to adapt
in real-time the amplitude A of the Stuart-Landau oscillator. This adaptation must
consider the remaining distance, D, between the robot’s position, P̂r, and the goal
location, Pg. In the following, it is depicted the process to calculate the distance D
and amplitude A at each instant of time.

3.4.2.1 Distance Calculation

The distance, D, that the robot has to cover can be used to verify whether the robot
is on the desired position, delayed or advanced relatively to the time constraint of the
mission.

Consider that D(0) is equal to the sum of the remaining distance D and the distance
already covered by the robot, Dc,

D(0) = D +Dc. (3.51)

In previous works [1, 3, 13, 85, 151], the distance D was calculated through the
Euclidean distance between Pg and the robot’s position, P̂r. However, for complex en-
vironments where the robot moves between several corridors and rooms, the Euclidean
distance between P̂r and Pg is unfeasible to calculate D.

A three-step iterative algorithm is used to determine the distance that the robot has
to cover to reach Pg. This algorithm follows the same approach as in appendix A.2,

Chapter 3 Overall Architecture 77

as the next position of the robot is the projection onto the next critical line. The first
iteration consists on calculating the distance d1 between the robot’s initial position,
Pr(0), and its projection, B0,1, onto the critical line l1,2 that divides region r1 and r2.
The second iteration consists on calculating the distance di,i+1 between all projections
onto the respective critical lines, starting by calculating the distance between the first
projection, B0,1, and the projection of B0,1 onto the critical line l2,3, B1,2. The last
iteration consists on calculating the distance dn,g between the last projection Bn−1,n−2

and the goal location, Pg,

D(0) = d1 +
na∑
i=2

di,i+1 + dn,g, (3.52)

where na is total number of regions in the environment that the robot has to traverse
to reach the goal location. Note that in cases the robot starts its mission in the same
region of the goal location, D(0) = dr,g, where dr,g is the distance between the robot’s
initial position, Pr(0), and Pg.

Consider for instance the example of calculating the distance the robot has to cover
in fig. 3.30. Initially, the robot is inside region r1, and the first step is to calculate the
distance d1. Then, the distance between consecutive projections is calculated while
the robot does not reach the final region r10, where Pg lies. Finally, it is calculated the
distance dn,g between the last projection and Pg.

At the beginning of the mission, the remaining distance, D, that the robot has to
cover is equal to the initial distance, D(0) that the robot has to cover. As the robot
moves towards the goal location, the remaining distance D changes as follows,

D = D(0) −
(
d1 +

nr∑
i=2

di,i+1

)
+ drobot,i+1, (3.53)

where nr is the current region of the robot and drobot,i+1 is the distance between the
current robot’s position and the next critical line. Note that when the initial region is
equal to the final region, D = drobot,g, i.e., the distance between P̂r and Pg.

The adaptive rule to calculate the amplitude A is obtained by substituting (3.50)
into (3.51) and by integrating (3.42),

for 0 < t < t1:

A1 = D
π
2 −1+sin(ω1t)

ω1
+ π+2

ω2
+

π
2 −1
ω3

− t
, (3.54)

78 Chapter 3 Overall Architecture

X

Y

r

d

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

projection points

(m)

(m)

initial position

goal position

d4,5dn,g

1

d2,3

d3,4

d5,6

d6,7

d7,8

d9,10
d8,9

1

r2

r3

r8
r4

r6

r7

r5
r10

r9

Figure 3.30: Example of how to calculate the distance D(0) between the robot’s
initial position, Pr(0), and the goal location, Pg. Blue line represents the calculated

path.

for t1 < t < t2:

A2 = D
π
2
ω1

+ π+1+cos(ω2(t−T1))
ω2

+
π
2 −1
ω3

− t
, (3.55)

for t2 < t < t3:

A3 = D
π
2
ω1

+ π
ω2

+
π
2 −cos(ω3(t−T1−T2))

ω3
− t

. (3.56)

The velocity profile is modulated in amplitude and frequency by simply changing
both A and ω parameters, respectively. The idea is to explicitly change these param-
eters according to the oscillator current state, as follows,

f12 , A′
k = A1k

(1 + exp [b (mk −Omk
)]) (1 + exp [bnk])

+ A2k

1 + exp [−b (mk −Omk
)]

+ A3k

(1 + exp [b (mk −Omk
)]) (1 + exp [−bnk])

, (3.57)

where A1, A2 and A3 are defined in (3.54), (3.55), (3.56), respectively. A′ is equal to
A1 when m is smaller than Om and n is negative. A′ is equal to A2 always that m is

Chapter 3 Overall Architecture 79

greater than Om. A′ is equal to A3 when m is smaller than Om and n is positive. b
controls the alternation speed between these values.

The same procedure is used for parameter ω as follows,

f13 , ωk = ω1

(1 + exp [b (mk −Omk
)]) (1 + exp [bnk])

+ ω2

1 + exp [−b (mk −Omk
)]

+ ω3

(1 + exp [b (mk −Omk
)]) (1 + exp [−bnk])

. (3.58)

Both A′ and ω values are selected from Ai and ωi (i = 1, 2, 3) respectively, according to
the state of m and n. Fig. 3.31 illustrates an example of a limit cycle where parameters
A and ω are selected according to the values of Om, m and n.

0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

A ,
A=O

n

m

ω
2 2

A ,ω
1 1

A , ω
3 3

m

Figure 3.31: A is the radius of the Stuart-Landau oscillator (in this example A = 1
and Om = 1). It takes different values according to the oscillator state. A = A1
when state variable m is smaller than Om and state variable n is negative. A = A2,
if m is greater than Om. A = A3, when n is positive and the value of m is smaller

than Om.

3.4.3 Obstacle Profile

During the missions, the robot detects obstacles that may force it to modify its path
and cover a larger distance than initially expected. If the robot moves at a high veloc-
ity, collisions with obstacles might not be avoided. Due to its physical constraints, e.g.
inertia, the robot might not be able to decelerate and stop before hitting the obsta-
cle. Thus, the robot should consider its surroundings, namely, the distance to nearby
obstacles, in order to adapt its velocity, v. This allows the robot to circumnavigate
safely the obstacles or eventually stop in case of eminent collisions.

As the robot moves in the environment, the distance to obstacles and the angular
range subtended by them vary, such that their locations change relative to the robot’s

80 Chapter 3 Overall Architecture

position. The same happens to the direction of the goal location in the environment.
Herein, the attractor (direction to reach the goal location) gradually shifts in the space
of heading direction. If the relaxation rate of the attractor movement is sufficiently
slow compared to the relaxation rate of the timing dynamics, the system relaxes to
the new attractor position before it moves again. This is achieved by setting the
relaxation rate of the heading dynamics much faster than the relaxation rate of the
attractor movement. The difference in the relaxation rates makes it possible to treat
the attractor (ψtar) as a constant value from the viewpoint of the heading dynamics. In
such case, the heading variable, ϕ, is in or near the resulting attractor of the dynamical
system responsible for the heading direction control.

The maximal shift rate of the fixed points, ψ̇max, is a function of the robot’s linear ve-
locity, v, and the minimum distance between the robot and an obstacle, min {Lai, Si},
(see [74, 289] for a full discussion),

ψ̇max ≈ v

min {Lai, Si}
. (3.59)

The function min {Lai, Si} can be approximated by a smooth function as follows,

min {Lai, Si} ≈ 1
2

(
Lai + Si −

√
(Lai + Si)2

)
. (3.60)

This maximal rate is obtained when the obstacle is seen sideways and it is assumed
constant, such that the system is able to track the moving attractor. The robot’s linear
velocity, v, should be decreased when the minimum distance to an obstacle decreases.
This is achieved by adapting the amplitude of the oscillator, A. Empirically, the
following condition is suitable to reduce the robot’s linear velocity,

f14 , Ak = A′
k

 1
1 + exp [−bUk(ϕk)]

+
d
(

1
2

(
Lai + Si −

√
(Lai + Si)2

))c
1 + exp [bUk(ϕk)]

 . (3.61)

If no obstacles are detected, U(ϕ) ≥ 0, a reduction of the amplitude is not required
and A = A′. If obstacles are detected, U(ϕ) < 0, the amplitude A is reduced according
to (3.61), which depends on the minimum distance to any obstacle detected by the
laser or sonars. d and c are control parameters empirically selected, such that the
robot reduces its velocity when obstacles are close to it.

Chapter 3 Overall Architecture 81

3.4.4 Behavior Switching

The Behavior Switching block is responsible for specifying the motor behavior of the
robot. The robot performs three different motor behaviors: stop, when no movement
is generated and the robot is stopped; execution, when timed movement is generated;
and rescue, an escape behavior responsible for dealing with situations in which the
goal location, Pg, cannot be reached by the robot within the time constraint, MT .
Furthermore, the switch between these behaviors should be autonomously elicited ac-
cording to sensory information. The selected behavior is achieved through a nonlinear
dynamical system that reproduces a competition among variables. This dynamical
system was already used in previous works [74, 290]. This dynamical competition
was applied because it provides stability against bounded perturbations in the input
signals and the environment can easily elicited an autonomous switch. Furthermore,
the concordance in terms of dynamical systems is preserved. Each motor behavior
contributes with a value to the vector field. However, only one motor behavior should
be active at each instant of time, while the others are disabled.

3.4.4.1 Competitive Dynamics

Each motor behavior of the robot is represented by a behavioral variable ui (i =
stop, execution, rescue). The competitive dynamics used to represent the competition
among these variables is formulated as follows,

f15 , uik+1 = uik +

(
βiuik− | βi | u3

ik
− ν

∑
a ̸=i u

2
ak
uik + Fstoch

)
αu

dk, (3.62)

where variables ui can go “on” (ui = ±1) or “off” (ui = 0) and τu = 1
αu

defines the
relaxation rate. These dynamics enforce competition among behaviors depending on
parameter βi. The variable ui with the highest competitive advantage, βi > 0, is
likely to win the competition. Note that |βi| is a non-smooth function, which can be
approximated by the smooth function

√
β2
i + η. The smaller the η, the more accurate

is the approximation.
The first two terms of the competitive dynamics represent the normal form of a

degenerate pitch-fork bifurcation (see fig. 3.32) (a). The third term containing param-
eter ν ensures the competition among variables ui and destabilizes any attractors in
which more than one variable ui is active.

Each variable ui (i = stop, execution and rescue) converges to a solution of the
competitive dynamics. A detailed analysis in [290] calculated the fixed points of this
competitive dynamics, ufp1 = 0, ufp2 = 1 and ufp3 = −1. The absolute value of ufp is

82 Chapter 3 Overall Architecture

= +1

= -1

= 0

β

u
fp2

u
fp3

u
fp1

u
fp

(a)

β

0 1 1u u

β

du
dt

du
dt

u
fp1

u
fp2

u
fp3

(b)

Figure 3.32: a) Bifurcation diagram of the competitive dynamics without the
competitive term, ν = 0. b) Phase space for the competitive dynamics without the
competitive term, ν = 0. For β < 0 there is a fixed point at ufp1 = 0. For β > 0,

this fixed point becomes unstable and two new fixed points appear, ufp2,3 ± 1.

adopted, so that both ufp2 and ufp3 are equivalent to the “on” state, while ufp1 = 0
is equivalent to the “off” state. The activation of the fixed points depends on βi (see
fig. 3.32) (b). Fixed point ufp1 = 0 is the single attractor for βi < 0. It becomes
unstable for βi > 0 and two new attractors appear at ufp2 = 1 and ufp3 = −1.

Considering the competitive term, ν, a new set of possible solutions arise. A detailed
stability analysis of each possible solution is provided in [290]. They demonstrated
that the stability of the fixed points depends on parameters βi and ν. Considering
that a variable ui is active and the other variables uj are disabled, then the condition
ν > βj, ∀j ̸= i must be true. The active variable ui has the highest βi and inhibits
the other variables. Parameters βstop, βexecution, βrescue and ν are defined to ensure that
only one variable ui and consequent motor behavior is active.

Chapter 3 Overall Architecture 83

3.4.4.2 Motor Behavior Activation

Functional forms for parameters βi and ν are designed so that the competitive dynamics
bifurcates suitably for the different types of behavior. While the robot is performing a
mission, its state (moving or stopped) changes and parameters βi should reflect these
changes. βi is empirically defined within the interval, 1.5 ≤ βi ≤ 3.5, and the offset
of this interval is 2.5. If ν > 2.5, it is guaranteed that only one variable ui is active
(see [291] for a detailed explanation). Otherwise, if ν < 2.5, multiple variables ui may
be active. It was defined that ν = 3, in order to guarantee the existence of a single
motor behavior.

Parameter βi varies between 1.5 and 3.5, as follows,

βi = 1.5 + 2bi, (i = stop, execution, rescue), (3.63)

where bi are “quasi-boolean” variables that alternate between 0 and 1. The motor
behavior switching is generated by converting sensory conditions and constraints into
variables bi (see [291] for a description and [1, 9, 149] for examples).

Variables bi are mathematically expressed as follows,

bstop =
tanh

(
b ((1 − tstart) + (tstart)(treached))2 − 0.5

)
+ 1

2
, (3.64)

bexecution = tanh (b((tstart)(1 − treached)(greachable))2 − 0.5) + 1
2

, (3.65)

brescue = tanh (b((tstart)(1 − greachable))2 − 0.5) + 1
2

, (3.66)

where treached, tstart and greachable are mathematically defined as sigmoid functions.
treached returns 1 when the robot reaches the neighborhood of the goal location B(Pg, ϵ),
and 0 otherwise,

treached = tanh(b(−D + ϵ)) + 1
2

. (3.67)

tinit is a period of time that the robot must wait before starting its timed movement.
During this period, the robot rotates towards the local goal, Pb, and only starts moving
after tinit has been elapsed. tstart returns 1 when t > tinit and 0 when t < tinit,

tstart = tanh(b(t− tinit)) + 1
2

. (3.68)

84 Chapter 3 Overall Architecture

The goal location, Pg, is considered reachable if the robot is able to complete its
mission within MT . Mathematically, this condition is verified as follows,

greachable =
tanh((b(D

vmax
− (MT + tinit − t))) + 1)

2
, (3.69)

where parameter greachable returns 1 if Pg is reachable, and 0 if it is unreachable by the
robot within MT . vmax defines the maximum velocity reached by the robot and t is
the elapsed time since the beginning of the mission.

3.4.5 Parameter Modulation

The Parameter Modulation block is responsible for defining the topological type (fixed
point or limit cycle behavior) of the solutions generated by the Stuart-Landau oscilla-
tor. In addition, this block defines the offset Om according to the variable ui received
by the Behavior Switching module.

Small parameter changes in the Stuart-Landau oscillator modulate the generated
trajectories with respect to their amplitude, frequency and offset, in order to achieve
the desired robot behavior. Therefore, the oscillator parameters have to be set accord-
ing to their roles in the final modulation.

Different triplets of variables ui, (ustop, uexecution, urescue), lead to different robot be-
haviors, namely: no movement, timed movement and movement with constant velocity.
Each triplet must be mapped onto different values for the set of parameters. To acti-
vate each motor behavior (stop, execution and rescue), the triplets of variables ui are
defined as,

• “stop” → (ustop, uexecution, urescue) = (±1, 0, 0),

• “execution” → (ustop, uexecution, urescue) = (0,±1, 0),

• “rescue” → (ustop, uexecution, urescue) = (0, 0,±1).

3.4.5.1 Offset Modulation

The offset of solution m of the Stuart-Landau oscillator, Om, is modulated according
to the values of variables ui as follows,

f16 , Omk
= tanh

(
b ustopk

)
Os + tanh (b uexecutionk

)Oe + tanh (b urescuek
)Or, (3.70)

Chapter 3 Overall Architecture 85

where Os, Oe and Or are respectively the offsets when the robot is stopped, executing
timed movement or moving with a constant velocity. The offset values are set according
to desired behaviors: Os = 0, Oe = A and Or = 0.1.

When variable ustop is active, the robot stops. When variable uexecution is active,
the offset Om is set according to the necessity of the robot to accelerate or decelerate
its velocity, indicated by parameter A. When variable urescue is activated, the timing
nature of the mission is no longer important and the robot is unable to finish the
mission within MT . Thus, this variable sets the oscillator offset with a constant
value, such that the robot may reach the goal location Pg with a constant velocity,
v = 0.1 m/s.

Fig. 3.33 illustrates how the different triplets of variables ui, (ustop, uexecution, urescue),
modulate the offset parameter Om.

(1,0,0) (0,1,0) (0,0,1)

Om = 0 Om = A Om = 0.1

0

A

0.1

O

Stop Execution Rescue

Time (s)

m

Figure 3.33: When the triplet of variables ui is (1,0,0), ustop is “on” and Om = 0.
When the triplet is (0,1,0), uexecution is “on” and Om = A. Finally, when the triplet

is (0,0,1), urescue is “on” and Om = 0.1.

3.4.5.2 Qualitative Behavior

By modifying parameter µ, the system switches between the fixed point at (m,n) =
(Om, 0) (for µ < 0) and the limit cycle (for µ > 0). In addition, µ controls the amplitude
of the oscillations, and therefore the amplitude of the robot’s linear velocity, v. The
value of µ is set according to the competitive dynamics as follows,

f17 , µk = − tanh
(
b (ustopk

+ urescuek
)
) A2

k

2
+ tanh (b uexecutionk

)A2
k, (3.71)

86 Chapter 3 Overall Architecture

When ustop or urescue are “on”, µ is negative
(
µ = −A2

2

)
and the robot’s linear velocity

is constant (0 m/s in case of ustop is “on” or 0.1 m/s in case urescue is “on”). When
uexecution is “on”, µ is positive (µ = A2), and the timing movement is generated by the
Stuart-Landau oscillator.

Fig. 3.34 illustrates how different triplets of variables ui (ustop, uexecution, urescue) mod-
ulate the parameter µ.

(1,0,0) (0,1,0) (0,0,1)

A
2

2 µ = A
2 A

2

2

Stop Execution Rescue

0

A

µ
2

A
2

2
A

2

2

Time (s)

µ =µ =

Figure 3.34: When ustop or urescue are “on”, (1,0,0) and (0,0,1), respectively, µ
parameter is negative, µ = −A2

2 , and the generated trajectory will be constant. On
the other hand, when uexecution is “on” (0,1,0), µ parameter is positive, µ = A2, and

the generated trajectory will be timed.

Fig. 3.35 illustrates the process of generating the trajectory for the robot according
to the different triplets of variables ui (ustop, uexecution, urescue) that modulate both A

and µ parameters.

3.4.6 Adiabatic Elimination

In architectures with coupled dynamical systems, a common solution for approximat-
ing the dynamics of the system by eliminating irrelevant coupled levels is adiabatic
elimination. This solution consists on providing a hierarchy of relaxation times, such
that the faster dynamics are treated as parameters in the slower ones [291]. Conversely,
from the viewpoint of the slower dynamics, the faster dynamics can be assumed to have
already relaxed to their corresponding fixed points.

The smallest relaxation rate of the global system is defined by the integration cycle,
dk ≈ 0.024 s, which defines the discretization step. This step defines a lower bound
to the relaxation rates of the dynamical systems. Also, the highest relaxation rate
of the dynamical systems is upper bounded by the time constraint, MT . Therefore,
the relaxation rates of the dynamical systems should be higher than dk, and lower

Chapter 3 Overall Architecture 87

Parameter

 Selection

(1,0,0) (0,1,0) (0,0,1)

Parameter

 Selection
Parameter

 Selection

0.1

Velocity

 (Hopf)

v
−

Om Om Omµ µ µ

Velocity

 (Hopf)
Velocity

 (Hopf)

Time (s)
0

(ms)
1

Figure 3.35: When the triplet is (1,0,0), ustop is active and the robot does not
move, because the generated velocity is 0 m/s. When the triplet is (0,1,0), uexecution is
active and the robot performs the timed movement according to the task constraints.
Finally, when the robot cannot reach the goal location within the time constraint,
the triplet is (0,0,1), and urescue is active. In this case, the robot will move towards

to the goal location with a constant velocity of 0.1 m/s.

than MT . Note that the problem of defining the relaxation rates is not a conceptual
problem, but rather a limitation imposed by implementation considerations.

In the architecture modules, the following relaxation rates are identified: τtar, τobs

and τsobs on the Local Control, τtr on the Motion Control, τu and 1
2αµ on the Timing

Control.
For relaxation purposes, the rate 1

2αµ is not important since, no other relaxation
rates depend on it. The competitive dynamics should be defined as the fastest ones,
since they are used as parameters in the other dynamics. Consequently, its relaxation
rate, τu, must be the smallest one.

As defined in section 3.3.6, conditions
Nl∑
i=1

λobs,i > λtar and
Ns∑
i=1

λsobs,i > λtar should

be verified. Consequently, the relaxation rate of the target orientation contribution,
τtar should verify the following conditions, τtar > τobs,i and τtar > τsobs,i.

The goal point Pb should have already converged to the desired value when the
robot’s linear velocity, v, and the robot’s heading direction, ϕ changes. Pb is consid-
ered as a parameter for the calculus of ϕ. Thus, the relaxation rate τtr must be lesser
than the largest relaxation rate of the heading dynamics, τtar. Velocity depends on the
distance to the goal location, Pg, which in turn depends on the robot’s heading direc-
tion, ϕ. Thus, the largest relaxation rate τtar must be lesser than the time constraint

88 Chapter 3 Overall Architecture

MT .
The following hierarchy of relaxation rates ensures that the outputs of the faster

dynamical systems are viewed as parameters to the slower ones and the obstacle avoid-
ance contribution is stronger than the target orientation one.

dk << τu,max {τobs,i, τsobs,i} < τtar, τtr << τtar, τtar << MT. (3.72)

Chapter 4

Fundamentals for Stability and
Success of the Global System

Contraction Mapping Theory is a framework commonly used in stability analysis [11].
This theory addresses the existence and uniqueness of a single stable equilibrium state.
If a nonlinear dynamical system is contracting, its initial conditions and temporary
disturbances are forgotten exponentially fast, i.e., the trajectories of the nonlinear
system return to their equilibrium state with an exponential convergence rate.

The unique equilibrium state of a contracting system depends smoothly on the
contraction and simultaneously presents exponentially convergence [11]. Moreover,
this equilibrium state is stable under bounded perturbations, and this is an important
robustness property for control architectures (see Propositions 2.2.20 and 2.6.14 in [292]
for perturbations on fixed points).

This chapter begins with mathematical concepts about Contraction Mapping The-
ory, namely the contraction principle and the definition of contraction. The chapter
continues with the construction of a stability indicator that is identified with the abil-
ity of the robot to complete the mission with success. This condition follows from the
combination property of the Contraction Mapping Theory. The chapter is concluded
with a stability analysis for each module of the architecture based on the Contrac-
tion Mapping Theory. This analysis provides stability conditions used as guidelines to
design the architecture.

4.1 Contraction Mapping Theory

Contraction Mapping Theory states that if a map f(xi) = xi+1 : X 7→ X is con-
tracting with respect to an Euclidean space X, then f converges exponentially to its

89

90 Chapter 4 Fundamentals for Stability and Success of the Global System

unique solution, x0, called fixed point, i.e., f(x0) = x0 (see the contraction principle
in proposition 2.2.10 [292]). A map f is contracting (see definition 2.2.1 in [292] if the
following property is verified,

d(fn(x), fn(y)) < λnd(x, y) ∧ λ ∈ [0, 1[, ∀x, y ∈ X, (4.1)

where n ∈ N1 and d 2 stands for the Euclidean distance with Cartesian coordinates.
A contraction brings every two points x and y in X closer together. In particular,

for every x ∈ X, and any r > 0, all points y in the ball B(x, r), are mapped into a ball
B(Tx, s), with s < r (see fig. 4.1).

x

Tx

sr

Figure 4.1: T is contracting. r is the radius of ball B(x, r) and s is the radius of
ball B(Tx, s).

The contraction property of a map f in the Euclidean space can be extended to a
multi-variable analysis through the derivative of f . Let C ⊂ Rn be an open strictly
convex set and C̄ its closure, then according to theorem 2.2.16 in [292], f is contracting
and has a unique fixed point x0 ∈ C̄ for every x ∈ C̄ if f : C̄ 7→ Rn is differentiable on
C, continuous on C̄ and

∥Df∥ ≤ λ < 1, (4.2)

where D refers to the Jacobian matrix and ∥·∥ refers to the Euclidean norm, defined as√
λmax(fTf) = σmax(f), and λmax the maximum eigenvalue, fT stands for the transpose

of f and σmax stands for the maximum singular value.
The Contraction Theory can be applied under weaker hypotheses according to def-

inition 2.6.11 [292], in which a map f(xi) = xi+1 is eventually contracting if there is a
constant G > 0, such that,

d(fn(x), fn(y)) < Gλnd(x, y) ∧ λ ∈ [0, 1[, ∀x, y ∈ X, (4.3)
1N is the set of integers. This follows the same notation as in [292].
2d(x, y) =

√∑n
i=1(xi − yi)2.

Chapter 4 Fundamentals for Stability and Success of the Global System 91

for all n ∈ N.
Condition (4.2) can be rewritten for an eventually contracting map as follows,

∥Df∥ ≤ Gλ. (4.4)

The definition of eventually contracting maps is important to analyze the stability of
global systems, since there might be dynamical subsystems of the resulting dynamical
system in the global system that are not contracting in the entire space X, but converge
to a unique fixed point in a part of X. Thus, the eventually contracting dynamical
system obeys to condition (4.2) in that part of space X, over which it converges to the
unique fixed point.

4.2 Stability and Mission Success

When a map f(xi) represents a closed loop process, such as the global system in fig. 3.1,
the stability of its unique fixed point can be identified with the mission success.

Definition 4.1. The mission is considered successful if the resulting dynamical sys-
tem in the global system, which may include contracting and eventually contracting
dynamical systems, is contracting and thus converge to the unique fixed point of the
global system fsupervisor ◦ frobot ◦K (see fig. 3.1) 3.

In practical terms, the stability of the global system means that the mission is
successfully completed, e.g., the robot reaches the goal location Pg within the time
constraint, MT .

The robot is deployed in an indoor environment with a topology allowing the suc-
cessful execution of its missions. In a sense, it is assumed that the environment is
neutral. Neutrality can be defined in multiple forms. A simple form is to identify
the map K with the identity map. A less restrictive form is that of a isomorphism.
Since a isomorphism between metric spaces preserves distances at the input to the
output [293], this means that the environment does not scale the distances at the
input. Hence, if a scaling is required, it can be accommodated by fsupervisor (see be-
low). Consequently, the global system is simplified and might be analyzed through the
composition fsupervisor ◦ frobot or frobot ◦ fsupervisor.

3Symbol ◦ stands for function composition.

92 Chapter 4 Fundamentals for Stability and Success of the Global System

Theorem 4.2. For a generic robot for which there is no information on its structure,
assume that,

||D(fsupervisor)|| << 1. (4.5)

Then (4.5) means that it can be safely assumed as a sufficient condition to ensure the
contraction of the global system and hence the existence of a fixed point, independently
of the model of the robot.

Proof. Considering that O is an Euclidean space, the global system composed by
fsupervisor : O 7→ X and frobot : X 7→ O (see fig. 3.1), under the aforementioned
assumptions on differentiability and environment neutrality, is considered contracting
if it verifies condition (4.2),

∥D(frobot ◦ fsupervisor)∥ < 1. (4.6)

Using the differentiation rule, the left-hand term in (4.6) can be written as (assuming
norm compatibility, see for instance [294]) ,

∥D(frobot ◦ fsupervisor)∥ ≤ ∥D (frobot) ◦ fsupervisor∥ ∥D(fsupervisor)∥. (4.7)

Using (4.7) and (4.6) and adopting a conservative design approach (4.5), yields,

∥D (frobot) ◦ fsupervisor∥ ∥D(fsupervisor)∥ < 1. (4.8)

This ensures the contraction of the global system and hence the existence of a fixed
point, independently of the model of the robot.

Theorem 4.2 is a weak condition for mission success as it does not consider the
information of the robot in frobot. Nevertheless, it represents an important design tool
due to its generality to a wide range of robotic applications.

Contracting systems offer desirable combination properties [12]. The contraction of
a mesh of nonlinear systems is preserved under many types of combinations. According
to [295], the knowledge of the internal organization of the mesh is not required to estab-
lish the contraction of the architecture. If the nonlinear systems are connected to each
other, e.g. through a parallel, feedback or hierarchical combination, the global system
remains contracting if each individual dynamical system is contracting or eventually
contracting [12].

Chapter 4 Fundamentals for Stability and Success of the Global System 93

The global system can be represented by a sequence of fi modules (see fig. 3.2) and
∥D(fsupervisor)∥ is given as follows,

||D(fsupervisor)|| = ||D(f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17)||

≤
17∏
i=1

∥D(fi)∥. (4.9)

The combination property can be extended to the global system composed by a mesh
of nonlinear dynamical systems and feed-through maps, fi, if the following conditions
are verified: (i) the dynamical systems and feed-through maps are connected (parallel,
feedback or hierarchical combination); (ii) the dynamical systems are contracting or
eventually contracting; (iii) the Jacobians of the feed-through maps are upper bounded;
and (iv) the Jacobian norms of the dynamical systems when composed with the feed-
through maps (that can have Jacobians with upper bounds greater than 1) result in a
value below 1. Otherwise, the contraction of the global system is not verified and the
mission may not be completed with success.

It must be noted that bounds such as (4.9) do not embed information on the in-
terconnection among the feed-through maps and nonlinear dynamical systems. In a
sense, this corresponds to assuming that each fi block is meaningfully interconnected
to others such that fsupervisor will work towards completing the mission within MT .

In stability terms, bounding the time the robot has to complete the mission requires
that the global system converges to the fixed point fast enough. For instance, a dy-
namical system with initial condition q0 and final condition qf is said to verify a time
constraint MT if,

∀ϵ > 0, ∃u(t) : q(t) ∈ B(qf , ϵ), t ≥ MT (4.10)

where u(t) are command inputs of the system and B(qf , ϵ) is a ball of radius ϵ cen-
tered at qf . However, ||D(fsupervisor)|| given by (4.9) does not include any block con-
cerning the verification of the time constraint. Including a block concerning the ver-
ification of the time constraint into ||D(fsupervisor)|| can be achieved by several C1

feed-through maps, provided that they verify some conditions. They must return ap-
proximately 1 when the mission is in time, t ≤ MT , and a value sufficiently large
to set ||D(fsupervisor)|| >> 1 when the mission is not finished in MT . Consequently,
condition (4.5) no longer holds and the mission can be considered failed, as the fixed
point of the global system is no longer stable. One possible C1 feed-through map,
which verifies if the mission is completed within the time constraint can be described

94 Chapter 4 Fundamentals for Stability and Success of the Global System

as follows,

ftiming = 1 + exp [−b(MT − t)], (4.11)

where b defines the rate of transition and is suitably selected. The same representation
as in (4.9) is used to include the Jacobian of the map ftiming into the architecture,

||D(fsupervisor)|| ≤ ∥D(ftiming)∥
17∏
i=1

∥D(fi)∥, (4.12)

where the right-hand side is the upper bound of ||D(fsupervisor)|| and is denoted as
||D(fsupervisor)||.
The stability indicator, ∥D(fsupervisor)∥, or more generally its upper bound can be used
as feedback on the global system (see fig. 4.2), such that information of the current
state of the mission (a continuum between failure or success) is used to steer actions
on the robot. For instance, the robot can follow at a constant velocity to the goal
location in cases that the mission is failed or follow its mission in cases the mission
is considered successful. Block H receives the upper bound of the stability indicator
||D(fsupervisor)k|| and produces commands, hk+1, that can be used in the architecture,
fsupervisor. Block H must have into account properties such that it does not disturb
the contraction or eventual contraction of the global system.

fsupervisor
frobot

xe k+1
k+1

H
fsupervisor||D()

h
k+1

k
||

q
K

k+1

ηk+1

Figure 4.2: Graphical representation of the global system with feedback of the
upper bound of the stability indicator, ∥D(fsupervisor)k∥, into block M .

This stability indicator, ∥D(fsupervisor)∥, can also be used to estimate at a given
instant of time t < MT , if the mission will be completed with success.

Chapter 4 Fundamentals for Stability and Success of the Global System 95

Theorem 4.3. The mission of the robot is completed with success if,

∃ t1 < MT, ∀t ∈]t1,MT] : ||D(fsupervisor)|| << 1, subject to η, (4.13)

where t1 stands for an instant of time and η is a bounded perturbation.

Proof. If the expected perturbations of the global system, η, verify the neutrality of the
environment, then the success of the mission only depends on the ability of the global
system to converge to a unique solution. This is verified if condition ||D(fsupervisor)|| <<
1 is verified at least after a certain point t1, even if during other instants of time, only
the eventually contracting is verified, ||D(fsupervisor)|| ≤ Gλ, with Gλ approximately 1.
However, for t ∈]t1,MT], an unbounded perturbation η, could lead the global system
to diverge from the unique fixed point and the mission may be considered failed.

The Timing Control module already embeds fi blocks that adjust the velocity and
make ∥D(fsupervisor)∥ to increase. However, this increase may not be large enough,
leading to a small ∥D(fsupervisor)∥ (a typical example is a saturation). In such cases,
it is necessary to use a performance timing index, such as ftiming, which observes the
system in greater detail.

Including additional constraints in the architecture can be easily done using the
above principle. This shows the usefulness of Contraction Theory, in particular the
combination property used in (4.9) and in (4.12), to analyze the stability of complex
real-time control architectures.

The global system can be assumed as a hybrid system, i.e., contains continuous-time
and discrete-time elements. Sufficient conditions to extend the combination property
to hybrid systems can be found in theorem 4 in [296]. Hybrid systems are said to
be contracting if and only if their dynamics (continuous and discrete) are uniformly
exponentially stable.

4.3 Stability Analysis

The internal organization of the global system is depicted in fig. 4.3, where rectangular
shapes stand for dynamical systems whereas triangles represent feed-through maps.

The behavior of each block shown in fig. 3.2 can be written more compactly as 4,
4Right-hand term variables in (4.14), (4.15), (4.16) and (4.17) are already depicted in chapter 3.

96 Chapter 4 Fundamentals for Stability and Success of the Global System

f10

f11

frobot

K

f

7

f6

ψ
tar

f4

f5

f3

f13

f2
f1

Mρ
s

L

x

v

A

ω

f

ψ
obs,i

φ
f12

A' 14

ω

f17

f15

f16u

f

fkinematics

ϖlw
,ϖrw

La

Pr Pr

Pr

Timing

Motion

U
φ

σ
f9

 Local

Control

µ

Om

EKF

User

Pg

External

MT

b

yb

i

kk

k

k

 (P)
k

k

k

k+1

k+1

k+1

k

k+1

k

k

k

k

i

k

k
m

k+1
=

Pr
k

k

k+1

8

Control

Control

k

b

φ)
k

Pg

dl,i

ψ
obs,ik

i
Si

(

obs,i σsobs,ik

σ
kobs,i σsobs,ik

a

7f b

ds,i

Figure 4.3: Block diagram representing the global system, wherein only variables
exchanged between blocks are represented. Block f1 is dashed represented because

the mission begins only when ρ (sequence of regions) is provided to block f2.

Motion Control

f1(M,Prk
, Pg) = ρ (4.14)

f2(Prk
, Pbk

) = sk

f3(sk, li,i+1, li+1,i+2) = Lk

f4(xbk
, Lk, λtr) = xbk+1

f5(ybk
, Lk, λtr) = ybk+1

f6(Prk
, Pbk

) = ψtark

where the i in f3 is a region index. Block f1 returns a set of indexes identifying the
sequence of regions to be traversed before the robot starts its mission. f2 is a map that
constantly checks in which region the robot is, and it can be constructed as a smooth
interpolation between the pairs of points P1i, P2i.

Chapter 4 Fundamentals for Stability and Success of the Global System 97

Local Control

f7a(Rrobot, dl,i) = σobs,ik (4.15)

f7b
(Rrobot, ds,i) = σsobs,ik

f8(ϕk, ψobs,ik , σobs,ik , σsobs,ik) = ϕk+1

f9(ϕk+1, ψobs,ik , σobs,ik , σsobs,ik) = Uk(ϕk)

where i identifies the index of each sensor used to measure the environment.
Timing Control

f10(mk, nk, Omk
, µk, αk, ωk) = mk+1 (4.16)

f11(mk, nk, Omk
, µk, αk, ωk) = nk+1

f12(La, d, c, A
′
k) = A′

k

f13(ωi,mk, nk, Omk
, b),∀ i ∈ {1, 2, 3} = ωk

f14(Aik , A′
k,mk, nk, Omk

, b,Dk),∀ i ∈ {1, 2, 3} = Ak

f15(uik , βi, ν),∀ i ∈ {1, 2, 3} = uik+1

f16(uik+1 , Os, Oe, Or),∀ i ∈ {1, 2, 3} = Omk

f17(uik+1 , Ak),∀ i ∈ {1, 2, 3} = µk

where i ∈ {1, 2, 3} encodes the robot’s motor behavior (stop, execution, rescue).
Robot Module

frobot(qk, ωlwk
, ωrwk

) = qk+1 (4.17)

K(qk) =
(
ψobs,ik , Prk

, Lai, Si, dl,i, ds,i
)
.

4.3.1 Motion Control - Contraction Analysis

Motion Control module is composed by a series composition of direct feed-through
maps (f2, f3, f6) and dynamical systems (f4, f5). This module is contracting if the dy-
namical systems converge to a unique fixed point (contracting if verify condition (4.2),
or eventually contracting if verify condition (4.4)) and the Jacobians of the feed-
through maps are upper bounded.

98 Chapter 4 Fundamentals for Stability and Success of the Global System

The Jacobian of dynamical systems f4, f5 are as follows,

D(f4) = ∂f4

∂xbk

= 1 + λtrdk, (4.18)

D(f5) = ∂f5

∂ybk

= 1 + λtrdk. (4.19)

Verifying if D(f4) and D(f5) validate (4.2) yields,

∥1 + λtrdk∥ < 1, (4.20)

and this condition is true when,

−2 < λtrdk < 0. (4.21)

Assuming sufficient small dk, (4.21) holds for λtr < 0. Fig. 4.4 (a) illustrates Jacobians
D(f4) and D(f5) when λtr < 0. Clearly, both Jacobians are below 1. Thus, f4 and f5

are contracting maps and converge to the unique fixed point (see fig. 4.4 (b)).

0 1 2 3 4 5 6 7 8

0.5

0.6

0.7

 0.8

 0.9

1

D(f 4)

λtr < 0

D(f 5)

x
k,b y

kb

(a)

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

λtr < 0

0 1 2 3 4 5 6 7 8

f 4

f 5

x
k,b

fixed point

y
kb

(b)

Figure 4.4: Phase portrait of D(f4) (D(f5)) and f4 (f5) for λtr < 0.

Feed-through maps f2 and f3 are continuous in R through a suitable choice of
parameter b (see (3.16) and (3.17)). Thus, their Jacobians, D(f2) and D(f3) are upper
bounded. Feed-through map f6 is continuous in R (see (3.20)) and consequently D(f6)
is upper bounded.

Chapter 4 Fundamentals for Stability and Success of the Global System 99

4.3.2 Local Control - Contraction Analysis

The Local Control module composed by block (f7, f8, f9) is contracting if the dynamical
system f8 converges to a unique fixed point (f8 is contracting or eventually contracting),
and the Jacobians of feed-through maps f7 and f9 are upper bounded. Note that f7

is composed by f7a and f7b
. Nevertheless, their stability analysis is similar, and thus

considered only as a f7 block.
The Jacobian of f8 is defined as,

D(f8) = ∂f8

∂ϕk
= 1 +

λtar cos (ϕk − ψtar) +
Nl∑
i=1

λobs,ik exp
[
− a2

2σ2
obs,ik

](
1 − a2

σ2
obs,ik

)

+
Ns∑
i=1

λsobs,ik exp
[
− a2

1
2σ2

sobs,ik

](
1 − a2

1
σ2

sobs,ik

))
dk, (4.22)

where a = (ϕk − ψobs,i) and a1 = (ϕk − ψsobs,i). If ∥D(f8)∥ < 1, f8 is contracting.
Verifying if (4.22) validates (4.2),

∥∥∥∥∥∥1 +

λtar cos (ϕk − ψtar) +
Nl∑
i=1

λobs,ik exp
[
− a2

2σ2
obs,ik

](
1 − a2

σ2
obs,ik

)

+
Ns∑
i=1

λsobs,ik exp
[
− a2

1
2σ2

sobs,ik

](
1 − a2

1
σ2

sobs,ik

))
dk

∥∥∥∥∥ < 1, (4.23)

which is true if the following condition is verified,

−2 <

λtar cos (ϕk − ψtar) +
Nl∑
i=1

λobs,ik exp
[
− a2

2σ2
obs,ik

](
1 − a2

σ2
obs,ik

)

+
Ns∑
i=1

λsobs,ik exp
[
− a2

1
2σ2

sobs,ik

](
1 − a2

1
σ2

sobs,ik

))
dk < 0 (4.24)

Considering the situation where obstacles are not detected, (λobs,ik = 0, i = 1, ..., Nl

and λsobs,ik = 0, i = 1, ..., Ns), condition (4.24) can be rewritten as,

−2 < (λtar cos (ϕk − ψtar)) dk < 0. (4.25)

For the target attraction behavior, ϕk should converge to ψtar and this is verified
when λtar < 0. Thus, assuming that dk is sufficient small and λtar < 0, condition (4.25)
is verified during the interval: 2πn− π

2 < ϕk − ψtar < 2πn+ π
2 , n ∈ N. Thus, in these

intervals, condition (4.2) is verified. This is illustrated in fig. 4.5 (a) by the shadow
areas.

100 Chapter 4 Fundamentals for Stability and Success of the Global System

However, during intervals: −3π
2 + 2πn < ϕk − ψtar < −π

2 + 2πn and π
2 + 2πn <

ϕk − ψtar <
3π
2 + 2πn (white areas), (4.25) is not verified. In these intervals, D(f8)

verifies (4.4). Thus, f8 is eventually contracting, since D(f8) < Gλ with G = ∥λtar∥dk
and λ ∈ [0, 1[. However, note that the repulsive fixed points, ϕk − ψtar + πn and
ϕk − ψtar − πn, push the solution to the fixed point ϕk − ψtar in such intervals (see
fig. 4.5 (b)). Thus, considering the interval −π < ϕk − ψtar < π, f8 maintains the
contraction principle and converges to the unique fixed point ψtar. Different solutions
will arise in other intervals, but they can be mapped to the interval]0, 2π[.

−6 −4 −2 0 2 4 6

0.6

1

1.4

D(f)8

φk

λtar
<

ψ
tar

−

 0

π
2

π
2

−

1.8

3π
2

3π
2

−

(a)

−4 −3 −2 −1 0 1 2 3 4

−0.4

−0.2

0

0.2

0.4

0.6

λtar
<

ψ
tar

π
2

π
2

−

−

f8

φk ψ
tar−

 0

π− π

(b)

Figure 4.5: Phase portrait of D(f8) and f8 for λtar < 0.

In cases where obstacles are detected, λobs,ik ̸= 0 ∀i or λsobs,ik ̸= 0 ∀i, the robot must
avoid the direction where they are located. The second and third terms of (4.24) are
responsible for moving away the robot from the direction where obstacles are located.
This is achieved by setting λobs,ik > 0, ∀k, i = 1, ..., Nl and λsobs,ik > 0, ∀k, i =
1, ..., Ns. Since the first term of (4.24) was already verified to be eventually contracting,
the other terms are contracting if the following condition is verified,

−2 <

 Nl∑
i=1

λobs,ik exp
[
− a2

2σ2
obs,ik

](
1 − a2

σ2
obs,ik

)

+
Ns∑
i=1

λsobs,ik exp
[
− a2

1
2σ2

sobs,ik

](
1 − a2

1
σ2

sobs,ik

))
dk < 0, (4.26)

which is true if the following sufficient conditions are verified,

a > ±σobs,ik , ∀k, i = 1, . . . Nl

a1 > ±σsobs,ik , ∀k, i = 1, . . . Ns

Chapter 4 Fundamentals for Stability and Success of the Global System 101

 Nl∑
i=1

λobs,ik exp
[
− a2

2σ2
obs,ik

](
1 − a2

σ2
obs,ik

)

+
Ns∑
i=1

λsobs,ik exp
[
− a2

1
2σ2

sobs,ik

](
1 − a2

1
σ2

sobs,ik

))
dk > −2. (4.27)

Assuming that dk is sufficient small, λtar < 0, λobs,ik > 0, λsobs,ik > 0, a > ±σobs,ik and
a1 > σsobs,ik , f8 is contracting if (4.27) is verified. However, (4.27) is not verified in
the interval ψobs,i − σobs,ik < ϕk −ψobs,i < ψobs,i + σobs,ik . Nevertheless, f8 is eventually
contracting since D(f8) verifies (4.4), D(f8) < Gλ with G = ∑Nl

i=1 λobs,ik +∑Ns
i=1 λsobs,ik .

The repulsive fixed point ψobs,i in the interval ψobs,i−σobs,ik < ϕk−ψobs,i < ψobs,i+σobs,ik

pushes the solution f8 to the unique fixed point ψtar (see fig. 4.6 (b)). Therefore,
when obstacles are detected, f8 is eventually contracting but maintains the contraction
principle and converges to the unique fixed point ψtar in the interval 0 < ϕk − ψobs,i <

2π.

−2 −1 0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

D(f)8

λtar
< 0,

obs,i
ψ

2σ

λobs,i > 0
k

k

φ
k
ψ

obs,i
−

k

obs,i k

(a)

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

f8

λtar
< λobs,i > 0,

obs,i
ψ

ψ
tar

−2 −1 0 1 2 3 4 5 6

φ
k
ψ

obs,i
−

 0
k

k

k

(b)

Figure 4.6: Phase portrait of D(f8) and f8 for λobs,ik > 0 and λtar < 0.

Feed-through maps f7 (including f7a and f7b
) (see (3.26)-(3.27)) are continuous in

R. Thus, their Jacobians are upper bounded. Note that tan
(

∆θ
2

)
and tan

(
∆θs

2

)
are

replaced by constant values. Feed-through map f9 see (3.32)) is also continuous in R.
Consequently, its Jacobian, D(f9), is upper bounded.

4.3.3 Timing Control - Contraction Analysis

Conditions for contraction of the Timing Control module require that the dynamical
systems (f10, f11) and f15 converge to a unique fixed point (contracting or eventually
contracting), and the set of maps ∥D(f12, f13, f14, f16, f17)∥ is upper bounded.

102 Chapter 4 Fundamentals for Stability and Success of the Global System

Dynamical system f15 is contracting if its Jacobian verifies (4.2), (∥D(f15)∥ < 1),

D(f15) = ∂f15

∂uik
= 1 +

(
βi − 3|βi|u2

ik
− ν

∑
a ̸=i u

2
ak

αu

)
dk. (4.28)

Verifying if (4.28) validates (4.2),
∥∥∥∥∥1 +

(
βi − 3|βi|u2

ik
− ν

∑
a ̸=i u

2
ak

αu

)
dk

∥∥∥∥∥ < 1, (4.29)

which is true if the following condition is verified,

−2 <
(
βi − 3|βi|u2

ik
− ν

∑
a ̸=i u

2
ak

αu

)
dk < 0. (4.30)

For βi > 0 and αu > 0, f15 is contracting if the following conditions are verified,

∥uik∥ >

∥∥∥∥∥∥
√√√√1

3
−
ν
∑
a ̸=i u2

ak

3βi

∥∥∥∥∥∥ , (4.31)

∥uik∥ <

∥∥∥∥∥∥
√√√√ 2αu

3βidk
+ 1

3
−
ν
∑
a̸=i u2

ak

3βi

∥∥∥∥∥∥ , (4.32)

which are true if βi > ν
∑
a ̸=i u

2
ik

and 2αu

3βidk
+ 1

3 >
ν
∑

a ̸=iu2
ik

3βi
, respectively.

For βi < 0, f15 is contracting if the following conditions are verified,

∥uik∥ >

∥∥∥∥∥∥
√√√√1

3
+
ν
∑
a ̸=i u2

ak

3βi

∥∥∥∥∥∥ , (4.33)

∥uik∥ <

∥∥∥∥∥∥
√√√√ 2αu

3βidk
+ 1

3
−
ν
∑
a̸=i u2

ak

3βi

∥∥∥∥∥∥ , (4.34)

which are true if ν > 0 and 2αu

3βidk
+ 1

3 >
ν
∑

a ̸=iu2
ak

3βi
.

For visual purposes, fig. 4.7 depicts the phase plane of D(f15) and f15, respectively
for βi > 0 and βi < 0. For βi > 0, condition (4.31) is illustrated in figs. 4.7 (a) (c) by

vertical dashed lines. However, note that during the interval ∥uik∥ <
∥∥∥∥∥
√

1
3 −

ν
∑

a ̸=i
u2

ak

3βi

∥∥∥∥∥,
condition (4.31) is not verified. Consequently f15 is not a contraction when βi > 0.
However, f15 is eventually contracting since D(f15) verifies (4.4), ∥D(f15∥ < Gλ with

G = β1 − ν
∑

a ̸=iu2
ak

αu
. For the interval ∥uik∥ <

∥∥∥∥∥
√

1
3 −

ν
∑

a ̸=i
u2

ak

3βi

∥∥∥∥∥, uik , the repulsive fixed

point, 0, pushes away the solution to the attractor fixed points, −
ν
∑

u2
ik

β1
and

ν
∑

u2
ik

β1
.

However, both fixed points identify the same active behavior for the robot, and thus

Chapter 4 Fundamentals for Stability and Success of the Global System 103

−0.4 0 0.4
−12

−10

−8

−6

−4

−2

0

2

4

6

1

3
−
ν∑ 2

3βi

1

3
−
ν∑

3βi
−

2

β i >

D(f)15

0.8−0.8

 0

u
ik

1

3
−
ν∑

3βi
−

2
1

3
−
ν∑ 2

3βi

uik
uik

(a)

−1 −0.5 0 0.5 1
−25

−20

−15

−10

−5

0

5

β i <

D(f)15

 0

u
ik

1

(b)

−1.6 −1.2 −0.8 −0.4 0 0.4 0.8 1.2 1.6

−6

−4

−2

0

2

4

6

8

u
i

β i > 0

f15

1

3

ν∑ 2

3βi

1

3

ν∑ 2

3βi

ν∑

βi

ν∑ 2

βi

-- -

-

k

2

1

3

ν∑ 2

3βi

ν∑ 2

βi

- -

-

1

3

ν∑ 2

3βi

ν∑

βi

-

2

uik
uik

uik
uik

(c)

−1 −0.5 0 0.5 1
−15

−10

−5

0

5

10

15

f15

β i < 0

 0

u
ik

 0 0

(d)

Figure 4.7: Phase portrait of D(f15) and f15 for βi > 0 and βi < 0.

∥uik∥ is adopted. Consequently, for this robotic application, it is not relevant the sign
of the fixed point but rather, its Euclidean norm. Thus, f15 maintains the contraction
principle for βi > 0 and converges to the unique fixed point

∥∥∥∥ν∑u2
ik

β1

∥∥∥∥ independently of
the initial value of uik .

For βi < 0, condition (4.33) is always verified if ν > 0. Thus, D(f15) is below 1 for
the entire domain (see fig. 4.7 (b)), and consequently f15 is contracting and converges
to the unique fixed point, 0, independently of the initial value of uik . Fig. 4.7 (d)
illustrates the convergence of f15 when βi < 0.

A Hopf bifurcation is expected to occur in block (f10, f11) (see chapter 4 in [80])
from a stable fixed point at (m,n) = (Om, 0), when µ < 0, to a stable limit cycle
when µ > 0 (see example 1 in section 4.4 in [80]). To simplify the analysis, oscillator
(f10, f11) is written in polar coordinates,

f10
.= rk+1 = rk + rkα(µ− r2

k)dk, (4.35)

f11
.= θk+1 = θk + ωdk. (4.36)

104 Chapter 4 Fundamentals for Stability and Success of the Global System

According to remark 2.4.9 and proposition 2.4.10 in [292], the orbit of a periodic point
p is a stable limit cycle if one eigenvalue is 1 and the others have absolute value below
1. The Jacobian of block (f10, f11) is given as,

D(f10, f11) =

 ∂f10
∂rk

∂f10
∂θk

∂f11
∂rk

∂f11
∂θk

 =

 1 + α(µ− 3r2
k)dk 0

0 1

 . (4.37)

This block has two eigenvalues, σ1 = 1 + α(µ − 3r2
k)dk and σ2 = 1. Thus, there is a

stable limit cycle around point p if,

∥1 + α(µ− 3r2
k)dk∥ < 1. (4.38)

This condition is true if,

−2 < α(µ− 3r2
k)dk < 0, (4.39)

is verified. If α > 0, µ > 0, 3r2
k > µ and α(µ − 3r2

k)dk > −2 are true, the absolute
value of eigenvalue σ1 is below 1. Assuming that dk is sufficient small, α > 0, µ > 0
and 3r2

k > µ are sufficient conditions to ensure that block (f10, f11) is contracting to a
stable limit cycle and every point is positively asymptotic to its orbit.

Once conditions that ensure the contraction of the block of dynamical systems
(f10, f11) and (f15) were derived, the Jacobian of the maps (f12, f13, f14, f16, f17) must
be upper bounded.

Through a suitable choice of parameters a, b and c, f12, f13 and f14 are continuous
in R, and therefore their Jacobians are upper bounded. Os, Oe and Or are finite values
and ustop, uexecution and urescue (∥uik∥) were demonstrated to converge to a unique fixed
point if conditions (4.31) and (4.33) are true. Therefore, f16 and f17 are continuous in
R and their Jacobians are upper bounded.

Parameters that ensure the contraction or eventual contraction of the dynamical
systems derived in this section are summarized in table 4.1.

Table 4.1: Stability parameters.

Module Conditions Values
Motion Control λtr < 0 λtr = −0.9

Local Control
λtar < 0, λobs,i > 0, λsobs,i > 0 λtar = −0.6, λobs,i = 0.7, λsobs,i = 4

ϕk − ψobs,i > ±σobs,i , 0.0359 < σobs,i < 0.7869,
ϕk − ψsobs,i > ±σsobs,i 0.2905 < σsobs,i < 0.9023

Timing Control βi > ν
∑
a̸=i u

2
ak

if βi > 0 ν = 1.7, βi = 3.5 if βi > 0,
α > 0, µ > 0, 3 r2

k > µ α = 100, µ = A2
k

Chapter 4 Fundamentals for Stability and Success of the Global System 105

In the overall, this chapter illustrates the principles of the analysis of the proposed
architecture.

106 Chapter 4 Fundamentals for Stability and Success of the Global System

Chapter 5

Experimental Setup

This chapter starts by describing the constraints that mobile robots usually face when
delivering goods in hospitals. The indoor environment used for the field experiments
is explained in section 5.2. Section 5.3 describes the hardware composed by the robot
Pioneer-3DX and its on-board sensors. Later on, the frame assignment used to repre-
sent the position and orientation of the robot is depicted in section 5.4.

Before the field experiments, the architecture that guides the robot must be tested
in a simulation software. This software and the simulated hospital environment are
described in section 5.5. The chapter continues with a description and dependability
analysis of the Localization System in sections 5.6 and 5.7, respectively. This chapter
is concluded by describing the External module that represents the interaction between
the robot and users.

5.1 Constraints of Hospital Environments

Mobile robots must be able to navigate in cluttered and dynamic environments,
accounting for several constraints. These constraints should be satisfied by the robot,
both at software and hardware levels. In case of hospital environments, such constraints
can be partitioned as,

• Robot hardware design: a number of hardware features on the robot must be
considered to address the physical problems of the environment like slopes, size
of the rooms, corridors and doorways;

• Navigation and security: robots must navigate in different and cluttered areas of
the hospital, which may be full of unpredictable obstacles and collisions must be

107

108 Chapter 5 Experimental Setup

avoided. Thus, the security system must have higher priority over the navigation
system, such that collisions are avoided at any cost;

• Localization: a localization system must provide an estimate of the robot’s pose
with sufficient accuracy to allow navigation. Localization failures are not accept-
able, as in general, they require a technical intervention to re-locate the robot;

• Cost effectiveness: from a customer’s perspective, hospital robots must be less
expensive and more efficient than nurses or auxiliary staff when performing the
same delivery missions;

• User interface: a simple interface allows users to visualize the information of the
robot’s current state and to manage robot missions.

5.1.1 Robot Hardware Design

Knowing the hospital layout before starting the missions is essential for mobile robots
to know what routes they should take to complete the missions. In fact, most in-
door environments can be represented by a set of predefined locations. For instance,
in hospital environments, these locations can be patient, nurse or store rooms, etc..
Furthermore, these locations are connected by a network of corridors and elevators.
Information of the locations and paths connecting them must be included into the map
of the environment.

During missions, the robot should interact with several automated devices, such as
elevators and automated doors. The robot should be able to call an elevator, select the
required floor and communicate with automated doors, such that they can be opened,
allowing the robot to pass through.

In terms of hospitals layout, corridors can usually be 1.8 m to 2.4 m wide, with
many doors along the walls [48]. Some corridors have a low density of obstacles, but
others are so cluttered with medical equipment that navigation is impossible until the
equipment has been removed. The physical design of the robots must consider that
its size can not exceed the dimensions of doors, corridors and elevators. Furthermore,
they must be able to safely maneuver in the corridors.

Hospitals grounds are usually flat, such that steps and other irregularities do not
prevent robots to complete the missions. For instance, if one robot detects stairs during
its trajectory, it will be unable to finish its mission. However, the robot’s wheels should
be able to overcome small steps, as the alignment between elevators and floors, which
might not be perfect.

Chapter 5 Experimental Setup 109

The distance traveled by a delivery robot should be at least similar to the average
distance covered during a working day by nurses or auxiliary staff. Furthermore, robots
must be able to navigate 24 hours per day, excluding charging periods.

Robots must have a suitable container to carry out goods. According to [297], a
container with the size of 60x50x45 cm, and a payload up to 50 kg is sufficient to carry
out the typical hospital goods. Locking the containers is an important issue to ensure
the security of the goods transported by the robot. During the transportation process,
the container should be locked and it can only be opened by authorized people.

5.1.2 Navigation and Safety

Contrary to AGVs, the navigation of delivery robotic solutions for hospital environ-
ments can not be restricted to a rigid network of wires or tapes attached to the ground,
as AGVs normally do in automated factories. Dynamic and static obstacles would
interfere with the track-guided motion, leading to potential collisions. Therefore, hos-
pital delivery robots must leave their routes in case of necessity. Dynamical obstacles
include hospital staff, visitors, patients or other moving obstacles. Static obstacles
include walls, stairs, beds, food trays, wheelchairs, stretches and other medical equip-
ment. However, in hospitals, which are usually crowded and cluttered, the obstacle
avoidance module can trap the robot in narrow areas that are difficult to handle. In
such situations, it might be preferable that the robot stops and waits for the clearance
of the area than trying to circumnavigated them. This assumes that eventually the
obstacles are removed, allowing the robot to continue its mission. In fact, an emer-
gency stop device is necessary according to European laws (EN 1525:1997) and it is
activated only when necessary. In the unlike case an obstacle is not detected, bumpers
mounted on the robot’s base will sign the eventual collision and trigger the emergency
stop.

The velocity that robots follow during missions is an important safety factor. Robots
moving slowly interfere with the normal hospital workflow. On the other hand, faster
robots have a higher probability of colliding with obstacles. The average walking ve-
locity for older pedestrians is 0.92 m/s, and 1.2 m/s for younger pedestrians [298]. For
short distances and short periods of time, a worker can reach an average velocity up
to 1.6 m/s [5]. However, the velocity of a pedestrian is a function of the pedestrian
density in the respective environment [299]. Even though the robot should follow a
desirable velocity similar to humans, safety must be preserved. For instance, the Help-
mate robot [48] navigates along the corridors at a velocity of approximately 0.6 m/s
when the path is clear and 0.3 m/s when obstacles are detected. These values are

110 Chapter 5 Experimental Setup

consistent to the approach suggested in [5], where the robot should adopt different
velocities according to the area of the hospital: the highest velocity for non-patient
areas, the medium velocity for patient areas and the lowest velocity for interactions
with elevators.

Noise can have an adverse effect on patient sleep patterns. Robots should be as
quiet as possible and do not emit noise and sound levels that may disturb patients,
particularly at night.

5.1.3 Localization

Robots need to continuously know their poses while performing missions. A typical
method to estimate the robot’s pose in cluttered environments is to distribute artificial
landmarks along them. However, in hospitals, it might be forbidden to place artificial
landmarks. Using natural landmarks such as walls, lamps or corners is preferable,
but it may hamper the accuracy of the robot’s pose estimates. Odometry can be
an auxiliary technique to estimate the robot’s pose. However, uneven floors, wheel
slippage, skidding or external forces might make unreliable the information provided
by the wheel encoders for large distances. Thus, a fusion of multiple sensors can be
used to reduce the errors on the robot’s pose estimates.

The workspace of hospitals can be characterized by many narrow passages that
the robot must go through, such as elevators and doors. The robot’s pose should
be estimated with a positioning error, such that the robot passes through doors and
reaches elevators with success. Standard width for indoor doors is approximately 0.86
m. To successfully move through a door, the robot should navigate with a maximum
error of half the door’s width, considering that the robot passes through the center of
the door. Thus, robots should navigate with a maximum expected error of 0.43 m. In
the case that this accuracy can not be achieved, robots can fail to navigate through
doors or reach the elevators. Note that the radius of the robot is not considered to
calculate the maximum localization error. If the robot is close to the doorjambs, it
will interpret them as obstacles and avoid them.

5.1.4 Interface

The interface is important for users to set up scheduling missions for the robot, monitor
its execution and program the map of the environment. Scheduling missions consists
on defining the locations (for instance the rooms) that the robot should reach, and
the time assigned to complete each mission. Both the map and the missions must be
provided to the robot only by authorized staff, such as nurses or auxiliary staff.

Chapter 5 Experimental Setup 111

The interface should notify users with other relevant information about the robot’s
state. For instance, it can reveal the robot’s position relative to the environment, the
goal location, battery status, the current velocity and the status of the mission, i.e. if
the mission is in time or delayed.

5.1.5 Cost Effectiveness

Robots should be able to perform delivery missions during 24 hours per day in a
hospital environment. Nevertheless, if they are not cost efficient, hospital managers
will not buy them. Therefore, a delivery robot must be less expensive and more efficient
than a corresponding team of human workers when performing the same delivery task.

One typical solution to maximize the efficiency of delivery robots is to ensure that
they follow the fastest route to reach their goal location. In general, the shortest path
is also the fastest one. However, there are situations where obstacles may obstruct the
shortest path, provoking a delay on the timing scheduling. The number of expected
obstacles that can appear in a corridor must be considered to calculate the fastest path.
Furthermore, the fastest path must be calculated at the beginning of each mission and
it can change along the day. Moreover, the robot only initiates its delivery mission if
there is at least one path connecting the initial location to the goal location.

There are some problems not considered in the scope of this thesis. Nevertheless,
they are relevant when considering the implementation of mobile robots in hospital
environments. For instance, how do robots should behave in case of a catastrophic
emergency (fire, earthquakes, etc.), or get the attention of busy staff when they arrived
at their goal locations and await for the unloading.

In conclusion, the specifications that hospital delivery robots must fulfill can be
viewed in terms of physical design, mechanical performance and sensory performance.
In terms of physical design, robots should be approximately 1 m long and 0.5 m wide,
in order to navigate with sufficient space in corridors and pass through doors. They
must have a container to store approximately 50 kg of goods. Moreover, robots must
be able to overtake steps of approximately 3 cm, as the floors can be rugged or the
alignment between elevators and floors can be not perfect [58]. In terms of mechanical
performance, robots should reach different levels of velocity, according to the area of
the hospital. In obstacle-free areas, robots should be able to reach velocities up to
1 m/s. In crowded areas, they should move slower. Even though their velocity levels,
robots must be as silent as possible. In terms of sensory performance, several sensors
must be mounted on robots to ensure that they do not collide with any obstacle. Also,

112 Chapter 5 Experimental Setup

the localization system must provide estimates about their pose, with a maximum
error of 0.43 m, such that robots navigate for long periods of time with success.

Specifications on the physical features of environments must also be assumed. They
should have wide space enough for the robot navigation, flat floors and elevators aligned
with the floor, such that robots can use them. Passages to all rooms must be clear, in
order to ensure that robots are always able to reach the destination goals. Table 5.1
resumes the specifications for delivery mobile robots and identifies those that were
fulfilled in this thesis.

Table 5.1: Specifications considered for delivery mobile robots (X - fulfilled, X -
not fulfilled).

Design Issues Specifications

Robot Hardware

Container to carry out goods X
Bumpers X

Robot’s size satisfies dimensions of doors and corridors X
Robot’s wheels overcome small steps X

Low-level noise X
Robot emits sound to notify its presence X

Navigation

Interaction with automated devices X
Robot is able to navigate 6/7 Km during a working day X

Leave the predefined route in case of necessity X
Selection of the fastest route X

Safety

Robot’s linear velocity changes according
to the presence of obstacles X

Specific behavior in emergency cases X
Emergency stop condition X

Localization Robot’s pose estimate < 0.43 m X
Natural landmarks X

Interface Visual interface X

5.2 Indoor Environment

The indoor environment selected for the field experiments is part of the Industrial Elec-
tronic Department of the University of Minho, located in Guimarães, Portugal. This
environment mimics several hospital features, such as corridors with approximately
the same width, passage between doors, cluttered rooms, static obstacles and people
unfamiliar with the robot’s behavior.

A schematic of the indoor environment is illustrated in fig. 5.1. Striped regions
identify forbidden areas while empty regions identify free areas that can be used by the
robot. The environment has approximately 130 m2 of free area. Letters correspond to

Chapter 5 Experimental Setup 113

Y

X

2 m 0.6 m

8.4 m

20 m

(a)

(b)

(c)

(d)

(e)

(f)(g)

Figure 5.1: Map of the indoor environment in which the robot performs the field
experiments.

the sequence of images of the indoor environment illustrated in fig. 5.2. Snapshots (a)
and (b) depict the passage through a door between the corridor and the laboratory.
Snapshots (c), (d) and (e) illustrate parts of the laboratory from different perspectives.
Snapshots (f) and (g) depict the corridor.

During a working day, many people whose behavior is unpredictable move in the
corridor. While some persons try to obstruct the robot, others treat it as an obstacle
and keep a proper trajectory to avoid colliding with it. People move at a velocity of
approximately 1.2 m/s in the corridor. Inside the laboratory, people move with lower
velocities as it is a smaller and more cluttered area. In addition, they are familiarized
with robots and do not interfere with the behavior of the robot.

Corridors are 2.40 m wide (see panels (f) and (g) in fig. 5.2), which is enough for
the robot to perform the obstacle avoidance maneuvers. The door that separates the
laboratory from the corridor is 0.8 m width (see panels (a) and (b) in fig. 5.2), which
is sufficient for the robot to pass through it if its localization error is at most 0.4 m.

114 Chapter 5 Experimental Setup

(a) (b)

(c) (d)

(e) (f) (g)

Figure 5.2: Snapshots from the indoor environment: (a),(b) passage through a
door, (c),(d),(e) areas of the laboratory, (f),(g) corridor.

5.3 Robot and Sensors

The adopted mobile robot is a Pioneer 3-DX (see fig. 5.3 (a)) developed by Adept
MobileRobots Corporation.

Pioneer 3-DX has an oval shape with maximum and minimum diameters of 0.455 m
and 0.381 m, respectively, and 0.237 m height. It can reach a maximum forward/back-
ward velocity of 0.8 m/s and a rotation speed of 300◦/s. 8 ultrasonic sensors are
mounted on a ring and used to measure the robot surroundings. More details about

Chapter 5 Experimental Setup 115

Sonars

(a)

Pioneer 3-DX

Hokuyo

 laser
Laptop

Camera

(b)

Figure 5.3: Pioneer 3-DX and remaining hardware used to control the robot:
camera, laptop and laser.

the Pioneer 3-DX features can be read in appendix B.1.
The robot uses a laser range finder (Hokuyo URG-04LX-UG01) and a RGB camera

(PSEye), mounted onboard the robot to detect obstacles and to identify artificial
landmarks in the environment, respectively. More details of these sensors can be seen
in appendix B.2. Fig. 5.3 (b) shows the Pioneer 3-DX robot, the laptop that runs the
navigation architecture, the camera and the laser.

5.4 Frame Assignment

Coordinate systems are defined to represent position and orientation in space. Each
frame is characterized by a position vector and a rotation matrix. Five different coor-
dinate frames (see fig. 5.4) have been applied,

1. The environment or allocentric reference frame {W} (black axes);

2. The robot coordinate frame {R}, centered on the mobile robot (blue axes);

3. The camera coordinate frame {C}, fixed to the camera mounted on top of the
robot and facing upwards (red axes);

4. The laser coordinate frame {L}, fixed on the robot’s front. The laser frame lies
along the robot’s heading direction (green axes);

5. Each sonar sensor has a reference frame fixed pointing forward, {Si}. The dis-
tance to obstacles measured by each sonar is relative to the center of their indi-
vidual reference frames (yellow axes).

116 Chapter 5 Experimental Setup

{R}

{W} {C}

{L}

X
W

Y
W

X
R

Y
R

Y
L

Y
L

X
C

Y
C

{S }i

Figure 5.4: The robot’s pose is measured relative to the allocentric reference frame,
{W} (black axes). Laser data is acquired relative to the coordinate frame {L} (green
axes). Landmarks detected on the ceiling are measured relative to {C} (red axes)
and converted a posteriori to {R} (blue axes). Sonar data are acquired relative to

the respective coordinate frame {Si} (yellow axes).

5.5 Simulator

Simulations are used to assess the ability of the architecture to fulfill the proposed aims.
They save time in the design of the control architecture, as they increase the reliability
level in the planning process and program development. Previewing the behavior of
the robot in a simulated environment allows for a variety of configurations, controllers
and “what-if scenarios” to be tried and tested, before implementing the architecture
in the real robotic application.

The selected simulator is Webots [300]. This simulator provides real-time motion
simulation of several mobile robots using their kinematic models and the geometry of
the environment. Indoor environments can be customized with 3-D objects, simulating
as close as possible real hospital environments.

Webots provides a large choice of simulated sensors and actuators to equip robots.
Interactions between robots and environments are simulated with the Open Dynam-
ics Engine (ODE). The sonar sensors mounted on Pioneer 3-DX robot are simulated
through an algorithm reminiscent of ray-tracing. Errors on odometry include slip and
encoder noise. Slip noise is simulated by adding a noise component to the command
for each simulation step. The added noise is different for each wheel and presents a

Chapter 5 Experimental Setup 117

uniform distribution. The encoder noise is simulated by adding a cumulative uniform
noise to the encoder values at each simulation step. Both sonars and laser are also
simulated with Gaussian white noise. The simulated model of the Pionner 3-DX is
illustrated in fig. 5.5.

Bumpers

Sonars

Hokuyo laser

Figure 5.5: Simulated model of the Pionner 3-DX in Webots.

The simulated hospital environment is illustrated in fig. 5.6. The environment
simulates a part of a hospital floor with an area of 324 m2. It is composed by a

A

B

C

D

E

E

F

18 m

1
8
 m

Figure 5.6: Webots simulated environment. Capital letters identify different re-
gions of the hospital.

kitchen/eating room (letter A), a patient room (letter B), a doctor room (letter C),
a corridor (letter D), waiting rooms (letter E) and a dispensary (letter F). All parts
of the environment are connected by corridors or doors, such that the robot is able to
reach any part of the environment regardless of its initial position.

118 Chapter 5 Experimental Setup

Typical obstacles commonly found in hospitals are simulated through 3-D models,
in order to achieve more realistic simulations (see fig. 5.7). The sensors mounted on
the robot should be able to detect the different obstacles, which are very different in
terms of physical structure. Nevertheless, the Local Control module should guide the
robot, such that any collision is avoided.

(a) (b) (c)

(d) (e) (f)

(g) (h)

(i) (j)

Figure 5.7: Simulated objects usually found in hospitals: (a) corridors with obsta-
cles, (b) doors, (c) persons, (d) wheelchairs, (e) medical equipment, (f) food trays,

(g) stretchers, (h) tables and chairs, (i) beds and (j) seats.

Chapter 5 Experimental Setup 119

5.6 Localization System

This section describes the robot’s localization system, which combines vision infor-
mation and odometry through an Extended Kalman Filter (EKF). The vision system
detects artificial landmarks distributed along the environment, such that their place-
ment follows an optimized distribution.

5.6.1 Vision System

Using odometry to estimate the robot’s pose lacks in accuracy for long distances,
as odometry errors grow unbounded. A possibility to reset the odometry data and
continue to provide an accurate robot’s pose is to use an exteroceptive sensor. As
described in section 2.2.4.1, cameras, UWB and pseudolites are used in several works
with acceptable noise levels for hospital environments. In this work, vision is adopted,
since simple RGB cameras are relatively cheap when compared to other exteroceptive
sensors, such as pseudolites receptors or UWB. Furthermore, their uncertainty level
on the robot’s pose estimates is similar.

Vision has long been used to solve the robot localization problem by capturing natu-
ral or artificial landmarks placed in the environment. The robot knows the landmarks’
position and when one landmark is detected, its position and distance to the robot is
used to estimate the robot’s pose. This requires that each landmark is unique.

In this work, landmarks are distributed on the ceiling, since, in populated environ-
ments, occlusions of the landmarks are usually less frequent when they are placed on
the ceiling than in walls. The detection of the artificial landmarks is performed by
the ARToolkit software library [301]. This software provides video tracking libraries
that calculate in real-time the position and orientation of the camera relative to the
detected landmarks. The landmarks information is stored in a database used by the
ARToolkit to identify them and obtain their identification code. The detected land-
mark with the highest degree of confidence is the one used to estimate the robot’s
pose.

Some disadvantages should be considered when vision is used to estimate the robot’s
pose. The uncertainty level of the robot’s localization depends on factors such as
lighting conditions, camera’s resolution and on the distance between the camera and
the landmarks.

120 Chapter 5 Experimental Setup

5.6.1.1 Vision System Configuration

The vision system consists on a camera mounted on the robot’s top (see fig. 5.3 (b))
and pointing upwards to detect the landmarks on the ceiling. Fig. 5.8 (a) depicts
the schematic of the camera mounted on the robot and the camera’s field of view.
The distance between the camera and the ceiling is approximately 2.8 m. Fig. 5.8 (b)
represents the camera’s field of view projected into the ceiling of the environment. The
field of view has a minimum side of ms = 1.2 m and an area of approximately 1.92 m2.
Only the landmarks placed within the camera’s field of view are detected.

ceiling

camera

field of

 view
2.8m

Robot

(a)

ceiling

field of

 view
1.6m

1.2m

(b)

Figure 5.8: a) Representation of the camera on the robot’s top pointing towards
the ceiling. b) Camera’s field of view projected into a part of the environment’s

ceiling.

5.6.1.2 Low Discrepancy Sequence

The number of available artificial landmarks to distribute on the environment is lim-
ited, either by computational efforts or by the high cost of the landmarks. Hence, the
distribution of landmarks should follow an optimization process, in order to obtain the
minimum number N of landmarks.

The optimal landmarks distribution problem has been addressed by several authors
in literature. The approaches can be divided into two categories: online and offline. In
the online selection, the robot selects at each time step the subset of visible features to

Chapter 5 Experimental Setup 121

maximize a predefined policy. This can be performed through several methods as neu-
ral networks [126], entropy concepts [302] and reinforcement learning [303]. However,
these methods rely on the fact that robots usually repeat the same trajectory.

In dynamic environments, obstacles can obstruct the trajectory of the robots and a
trajectory replanning might be required to avoid collisions. Thus, an online landmark
distribution is not optimized to every possible trajectory followed by the robot. In
dynamic environments, offline methods present advantages over online ones. The set
of landmarks in offline methods is selected independently of the robot’s trajectory and
before the robot starts moving. Offline methods [304–306] consider that the landmarks
should be distributed to maximize their joint coverage of the environment, and at least
one landmark lies in the direct line of sight to the robot.

In this work, an offline method to distribute the landmarks is adopted. Landmarks
are equidistributed on the ceiling, and at least one landmark is always visible by the
robot. These assumptions are already verified in [305].

An equidistributed sequence of points inside an arbitrary setB has a low discrepancy
if the proportion of points in B is proportional to the measure of B. A bounded
sequence of points {s1, . . . , sn} on an interval [a, b], is said to be equidistributed if for
any subset [c, d] of [a, b] we have,

lim
N→∞

|{s1, . . . , sN} ∩ [c, d]|
N

= d− c

b− a
, (5.1)

and the discrepancy D(L) of a sequence of points {s1, . . . , sN} with respect to the
interval [a, b] can be defined as,

D(L) = sup
a≤c≤d≤b

∣∣∣∣∣{s1, . . . , sN} ∩ [c, d]
N

− d− c

b− a

∣∣∣∣∣ , (5.2)

where L is the set of landmarks and the discrepancy D(L) tends to 0 as N tends to
infinity if the sequence is equidistributed.

The minimum number ofN landmarks depends on the minimum side of the camera’s
field of view, ms = 1.2 m. This constraint limits the projection area of the camera on
the ceiling. The larger the projection area, the lesser the number of required landmarks.
ms can be viewed as the maximum distance between the landmarks that ensures that
one landmark is always visible by the robot.

A typical process to obtain a low-discrepancy sequence is the rectangle rule. This
rule consists on dividing a s-dimensional interval into N equal parts. The equidis-
tributed sequence of points is then defined as the center position of the N equal parts.
Fig. 5.9 depicts an example of a line segment defined in the interval [a,b] and divided

122 Chapter 5 Experimental Setup

into N equal parts (black divisions). The equidistributed N points (red circles) are
placed in the middle of adjacent equal parts.

a b

equidistributed points

Figure 5.9: Example of a line segment divided into N equal parts (black divisions)
and N equidistributed points (red circles).

5.6.2 Landmark Placement

Consider the ceiling of a region of the environment as a rectangular polygon with width
wi and height hi. The number of necessary landmarks N to obtain an equidistribution
in that region, such that at least one landmark is always visible by the robot is obtained
by multiplying the integer value of the following divisions,

nx = int
(
wi
ms

)
, (5.3)

ny = int
(
hi
ms

)
(5.4)

and
N = nxny. (5.5)

Without losing generality and assuming that each region ri is polygonal, the bound-
aries of the environment W can be defined by polygonal lines parameterized by the
arc length l,

W =

c1(l), 0 < l < l1

c2(l), l1 < l < l2
..., ...

cp(l), lp−1 < l < lp

. (5.6)

A rectangular region ri is defined by polygonal lines c1(l) and c3(l) with Euclidean
norm ||b − a|| and c2(l) and c4(l) with norm ||d − c||. The distance between two

Chapter 5 Experimental Setup 123

consecutive landmarks is calculated by using (5.3) and (5.4) as follows,

dx = nx
||b− a||

, (5.7)

dy = ny
||d− c||

. (5.8)

Through the rectangle rule, the equidistributed positions of the N landmarks for region
ri are obtained as follows,

xls = a+ sdy, ∀s ∈ [1, 2, . . . nx], (5.9)

ylj = c+ jdx, ∀j ∈ [1, 2, . . . ny]. (5.10)

Finally, the set of N equidistributed landmarks L is defined as,

L ≡
{
Li = (xls, ylj), ∀s ∈ [1, 2, . . . nx]

∨
∀j ∈ [1, 2, . . . ny]

}
. (5.11)

In summary, the number of landmarks for each region of the environment is cal-
culated through conditions (5.3), (5.4) and (5.5). The necessary landmarks for each
region ri of the environment depicted in fig. 5.1 is calculated through the proposed
equidistribution optimization. Once the total number of required landmarks is known,
N = 32, and for each region, N1 = 8, N2 = 4, N3 = 3, N4 = 1, N5 = 4, N6 = 12,
conditions (5.9) and (5.10) are applied to obtain the exact location of each landmark
(see fig. 5.10 to visualize the equidistribution of the N landmarks in the indoor envi-
ronment).

5.6.3 Sensor Fusion - An Extended Kalman Filter Approach

The localization of the robot is obtained by combining the information provided by a
camera mounted on the robot and by the encoders on the robot’s wheels. The fusion
between both sensors should provide a more accurate solution than any of the sensors
when considered solely. A popular solution to fuse multiple data sources is the Kalman
filter. This filter is widely used when sensor fusion or reducing the contribution of noisy
measurements to the estimates are required. When the state model to estimate and/or
the observation model are nonlinear, which is the case in this work, the Extended
Kalman filter (EKF) is used.

EKF has several features that make it suitable to deal with multisensor estimation
and data fusion problems. In particular, the explicit description of the process and
observations allows a wide variety of different sensor models to be incorporated within

124 Chapter 5 Experimental Setup

Y

X

2 m 0.6 m

8.4 m

20 m

r6

r2

r1

r3

r4

r5

Figure 5.10: Red circles identify the landmarks distributed on the environment.

the basic algorithm. Furthermore, using the statistical measures of the uncertainty
makes it possible to evaluate the role that each sensor plays in the overall system
performance.

Several works have using Kalman filters to fuse multiple data sources in mobile
navigation applications [307–309]. However, a major caveat in EKFs, is that they
need to operate in the correct neighborhood to ensure that the linearized models are
validated.

Particle filters could also be applied to deal with multisensor estimation and data
fusion problems. However, they need a trade off between accuracy and efficiency.
In fact, there is not a method to calculate the most efficient number of particles for
each application. Furthermore, computational requirements are higher than in EKF.
Particle filters are more suitable for multi-hypothesis estimations, where simple EKF
are not suitable.

5.6.3.1 EKF Formulation

There are several methods to fuse sensorial information through an EKF (details of the
most important methods can be viewed in [310]). One of the most used methods is the
called direct EKF scheme (see fig. 5.11). In this scheme, the measurement signals are
combined into the EKF and it can still estimate even if only one measurement signal
is available. The more the measurement signals are available, the more accurate are
the estimates. The disadvantage of this scheme is that it needs to know the dynamic
model of the sensors, in order to find the predicted position.

Chapter 5 Experimental Setup 125

The Localization System module combines the data provided by odometry, Xo
1,

and by vision information, Xv, to estimate the robot’s pose, X̂r (see fig. 5.11). The

Localization System

 EKF

 Odometry()

 Vision Information Robot's Pose

Xv

Xo

() Xr
()^

Figure 5.11: Localization System module composed by a direct EKF. The robot’s
pose X̂r is estimated by combining two data sources: vision information and odom-

etry.

vision information data, Xv = [xv, yv, ϕv], provides the robot’s pose obtained from the
detected landmarks. The odometry data, Xo = [xo, yo, ϕo], is obtained through the
wheels encoders and provides the robot’s pose according to the wheels rotation.

The EKF requires a state space model of the dynamical systems, f , describing the
time evolution of the robot’s pose, Xr = [xr, yr, ϕ], at each instant of time k as follows,

xrk = xrk−1 + vk cos(ϕrk)dk, (5.12)

yrk = yrk−1 + vk sin(ϕrk)dk (5.13)

ϕk = ϕrk−1ωkdk, (5.14)

where vk and ϕk are respectively the linear and angular velocity of the robot at instant
of time k. dk is the discretization step.

The nonlinear system describing the robot’s pose dynamics can be expressed in a
more suitable form as follows,

Xrk = f (Xrk−1, Uk−1) +Wk, (5.15)

Yrk = h (Xrk) + Zk, (5.16)

where function f is used to compute the predicted state from the previous estimate
and similarly, function h computes the predicted measurement from the predicted state
and Uk−1 = [vk, ωk]T is the control variable. Variables Wk and Zk represent the process

1Upper case letters represent non-scalar variables.

126 Chapter 5 Experimental Setup

and measurement noise, respectively. They are assumed white and independent of each
other and with normal probability distribution.

The EKF linearizes the nonlinear system to be estimated (5.15)-(5.16) and obtains
estimates of the state space model as follows,

Xrk ≈ X̂−
rk + Fk (Xrk−1 − X̂rk−1) + LkWk−1, (5.17)

Yrk ≈ Ŷ −
rk +Hk (Xrk−1 − X̂rk−1) +Mk Zk−1, (5.18)

where Fk and Hk are the Jacobian matrices of f and h relative to Xrk. Lk and Mk are
the Jacobian matrices of f and h relative to Wk−1 and Zk−1, respectively,

Fk = ∂f

∂Xrk

∣∣∣∣∣
X̂rk−1,Uk−1

=

1 0 vk−1 sin(ϕk−1)dk
0 1 −vk−1 cos(ϕk−1)dk
0 0 1

 , (5.19)

Hk = ∂h

∂Xrk

∣∣∣∣∣
X̂rk

=

1 0 0
0 1 0
0 0 1

 , (5.20)

Lk = ∂f

∂Wk

∣∣∣∣∣
X̂rk

=

1 0 0
0 1 0
0 0 1

 , (5.21)

Mk = ∂f

∂Zk

∣∣∣∣∣
X̂rk

=

1 0 0
0 1 0
0 0 1

 . (5.22)

The EKF time update equations are defined as follows,

X̂r
−
k = f (xrk−1, yrk−1, ϕk−1, Uk−1) , (5.23)

P−
k = FkPk−1F

T
k +Q, (5.24)

where P−
k is the a priori error covariance, Pk is the a posteriori error covariance, and

X̂
−
k is the state estimated a priori. The EKF measurement update equations are given

as follows,

Kk = P−
k H

T
k (HkP

−
k H

T
k +R)−1 (5.25)

Nk = Sk − Yrk (5.26)

X̂rk = X̂−
rk +KkNk (5.27)

Pk = (I −KkHk)P−
k (5.28)

Chapter 5 Experimental Setup 127

where Kk is the Kalman gain, Nk is the innovation, X̂k represents the state estimated
a posteriori and Sk represents the input of the EKF, which is defined by the robot’s
pose obtained from odometry and vision information,

Sk =

xo

yo

ϕo

xv

yv

ϕv

. (5.29)

5.6.3.2 Measurement and Process Matrices

Matrices Q and R are used to specify the weight that the process and the sensor
measurements contribute to the estimated state. Matrix Q defines how accurate is
the nonlinear system (5.12)-(5.14). The difference between the real dynamics and the
nonlinear system is called the process error, σp. The higher the unmodeled nonlinear-
ities in the real dynamics, the higher the process error. This error is used to build the
matrix Q as follows,

Q =

σp 0 0
0 σp 0
0 0 σp

 . (5.30)

Matrix R specifies the uncertainty of the input sensors data (odometry and vision sys-
tem). The uncertainty is measured relative to coordinates xr and yr of the robot’s po-
sition, and to the robot’s heading direction, σo = [σox, σoy, σoϕ] and σv = [σvx, σvy, σvϕ]
for odometry and vision system, respectively. Thus, matrix R is built as follows,

R =

σox 0 0 0 0 0
0 σoy 0 0 0 0
0 0 σoϕ 0 0 0
0 0 0 σvx 0 0
0 0 0 0 σvy 0
0 0 0 0 0 σvϕ

. (5.31)

Matrix R defines the weight that odometry and vision data contribute to the EKF
estimates. If the odometry uncertainty, σo, is higher than the vision uncertainty, σv,
then odometry should contribute more than vision to the EKF estimates. On the

128 Chapter 5 Experimental Setup

other hand, if the vision uncertainty is higher than the odometry uncertainty, the
EKF estimates should rely more on the vision information than on odometry.

If the unmodeled nonlinearities existing in the system are neglected, then the pro-
cess noise, σp, is smaller than the sensors uncertainty, σp < {σv, σo}. Consequently,
the EKF strongly relies on the nonlinear equations and gives less importance to the
measurements provided by sensors. On the other hand, if the unmodeled nonlinear-
ities affect considerably the system, then the process noise must be larger than the
uncertainty of the sensors, σp > {σv, σo}. Thus, the EKF strongly relies on the sen-
sors measurements. Both matrices R and Q are diagonal, since it is assumed that the
errors between odometry and vision are independent from each other.

5.6.3.3 Odometry and Vision Information Uncertainty

The odometry uncertainty, σo = [σox, σoy, σoϕ], and the vision uncertainty, σv = [σvx,
σvy, σvϕ], are obtained from field tests performed with the Pioneer 3-DX. The tests
include displacement of the robot along the x-axis and y-axis, and rotation over the
z-axis.

Odometry Uncertainty
Table 5.2 summarizes the results of the field tests performed to calculate the odom-

etry uncertainty. For each test, 10 trials are performed. At the end of each trial, the
robot’s pose is compared to the ground truth and the average result is considered. The
ground truth is calculated by comparing the robot’s pose at the end of each trial with
the allocentric reference frame.

In the first experiment, the robot moves 4 m along one axis. The average error is
0.1 m with a standard deviation of 0.04 m. The second test consists on verifying the
uncertainty of the robot’s heading direction when the robot rotates around the z-axis
and does not move along one of the axes. The error on the robot’s heading direction
is approximately 0.22 rad with a standard deviation of 0.07 rad. However, this value
increases to approximately 0.7 rad if the robot rotates 2 turns around the z-axis. Note
that the uncertainty on the robot’s pose when the robot moves along x-axis or y-axis
is similar. The last two tests are performed to verify the uncertainty when combining
movement along the x-axis (or y-axis) and rotations over the z-axis. Initially, the robot
rotates 1 or 2 turns according to the test and then moves 1 m. For 1 rotation, the error
is approximately 0.29 m and the standard deviation is 0.08 m. For 2 rotations, the
error increases to 0.4 m with a standard deviation of 0.1 m. Other more complex tests
could be performed, but these will lead to larger odometry errors. In fact, combining
linear and angular movement leads to catastrophic localization errors after a few meters

Chapter 5 Experimental Setup 129

of displacement. The odometry uncertainty increases as the robot moves forward or

Table 5.2: Results of the experimental field tests to verify the odometry uncer-
tainty.

Experiment Average (m)
x and y axes

Std. dev.
(m) x and y
axes)

Average
(rad) orien-
tation

Std. dev.
(rad) orien-
tation)

4 m displacement along one axis 0.1 0.04 0.08 0.02
1 rotation over z-axis 0.01 0.006 0.22 0.07
2 rotations over z-axis 0.015 0.009 0.7 0.18

1 Rotation and 1 m displacement 0.29 0.08 0.26 0.1
2 Rotations and 1 m displacement 0.4 0.1 0.75 0.2

rotates over the z-axis. Thus, for the EKF purposes, odometry should contribute more
to the estimates during short distances and small rotations.

Both the average and the standard deviation are important to define the uncertainty
of each sensor. One solution is to define the data uncertainty for the EKF as the sum of
the average and the standard deviation. Thus, for short distances and small rotations
the odometry uncertainty can be given as σo = [0.14, 0.14, 0.1].

Vision Information Uncertainty
There are typical errors that must be considered when vision is used to detect

landmarks. First, when a landmark is detected, its position is acquired with a certain
level of noise. Second, there are false positive detections, where the camera detects a
landmark that it is not within the range of detection. Finally, there are false negative
detections, in which the camera does not detect landmarks that are in the range of
detection.

To analyze the uncertainty of the vision system, σv = [σvx, σvy, σvϕ], the robot
performs a sequence of single missions. When the robot reaches a goal location, it
rotates towards the next goal location and moves to it. This sequence is repeated 10
times. The error values (evx, evy, evϕ) are the difference between the ground truth and
the values provided by the camera. The error on coordinates x and y is depicted in
fig. 5.12 (a). Their average error is approximately 0.07 m and the standard deviation
is 0.23 m. Fig. 5.12 (b) shows the error relative to the robot’s heading direction. The
average error is approximately 0.01 rad and the standard deviation is 0.09 rad.

The vision uncertainty is constant independently of the distance covered by the
robot, or by the number of rotations that the robot performs during a mission. Sim-
ilarly to odometry, the value of the vision uncertainty is calculated as the sum of
its average and standard deviation. Thus, the vision uncertainty can be defined as
σo = [0.3, 0.3, 0.1].

130 Chapter 5 Experimental Setup

100 200 300 400 500 600 700 800 900 1000

−0.4

−0.2

0

0.2

0.4

0.6

e
v
x
,e

v
y
 (

m
)

(a)

100 200 300 400 500 600 700 800 900 1000
−0.4

−0.2

0

0.2

0.4

Time (s)

e
v
φ
 (

r
a
d
)

(b)

Figure 5.12: Error of the robot’s pose calculated by the camera when compared
to the ground truth. (a) Coordinates x and y of the robot’s pose. (b) Orientation

of the robot.

The uncertainty tests show that for short displacements, (< 4 m), and without
rotations, the odometry uncertainty is lower than the vision uncertainty. However,
odometry uncertainty grows unbounded, up to a certain point that exceeds the vision
uncertainty. At this point, odometry is unreliable and vision becomes the most reliable
sensor to estimate the robot’s pose. A reset operation is necessary to change the
weights that vision and odometry contribute to the EKF estimates. Thus, two heuristic
conditions are defined to trigger the reset operation,

• the robot moves more than 4 m;

• the robot rotates more than
√

2
2 rad.

When one of these conditions is verified, the reset operation is triggered and matrix R is
changed. Even though the reset conditions were not exhaustive studied, they revealed
to be important conditions to change the sensors weights on the EKF formulation.

5.6.3.4 Reset Operation

The reset operation is performed by updating the matrix R. This operation is usual
when multiple sensors have to be considered. For instance, there are situations in
which the most reliable sensor becomes inaccurate, and the weight of its contribution

Chapter 5 Experimental Setup 131

to the estimates should be decreased. A general solution [311, 312] is to use fuzzy logic
to decide which is the most reliable sensor and thus change the matrix R accordingly.

Two R matrices were adopted, one for the normal operation, Rn, and another for
the reset operation, Rr. In the normal operation, odometry provides more accurate
estimates of the robot’s pose than vision. Thus, R = Rn. The reset operation is
triggered when odometry becomes unreliable, and this occurs when one of the two
reset conditions is verified. During the reset operation, R = Rr.

Matrix Rn is built based on the tests accomplished to verify the odometry and vision
uncertainty, as depicted in (5.31),

Rn =

0.14 0 0 0 0 0
0 0.14 0 0 0 0
0 0 0.1 0 0 0
0 0 0 0.3 0 0
0 0 0 0 0.3 0
0 0 0 0 0 0.1

. (5.32)

In the reset operation, odometry has a very weak contribution to the robot’s pose
estimates. A sufficient value for the odometry uncertainty during the reset operation is
σo = [0.5, 0.5, 0.5]. These values were empirically validated through field experiments,
but other values could be applied as well. Thus, matrix Rr is defined as,

Rr =

0.5 0 0 0 0 0
0 0.5 0 0 0 0
0 0 0.5 0 0 0
0 0 0 0.3 0 0
0 0 0 0 0.3 0
0 0 0 0 0 0.1

. (5.33)

Once matrix R is defined, it is required to define matrix Q. The estimation of the
process error is assumed constant, i.e., the unmodeled nonlinearities presented in the
system do not change as the robot performs the missions. Thus, the process error is
empirically defined as σp = [0.5, 0.5, 0.5] and matrix Q is defined as follows,

Q =

0.5 0 0
0 0.5 0
0 0 0.5

 . (5.34)

132 Chapter 5 Experimental Setup

Field experiments show that the EKF estimates with these assumptions are sufficient
accurate to keep the robot well localized, i.e., its uncertainty when compared to the
ground truth are at most equal to the maximum expected error for the used indoor
environment 0.40 m.

5.7 Dependability of the Localization System

Dependability can measure the service quality provided by a system, so that the user
can have justified confidence on it. Dependability involves physical safety and oper-
ational robustness, such as reliability and integrity [296, 313]. Some of these factors
can overlap, as their respective measures carry a certain degree of subjectivity.

Monte Carlo tests might be used to assess the performance of the localization system
by analyzing its accuracy, precision and convergence time. Accuracy gives the closeness
of the estimates to the ground truth, and precision is related to the repeatability
of the estimates. Integrity assesses the ability of the localization system to recover
from unexpected situations, e.g., (i) collisions, (ii) landmarks failures and (iii) robot
kidnapping.

5.7.1 Accuracy and Precision

The accuracy and precision of the localization system are obtained from a set of 20
experiments. In each experiment, the robot is stopped at random locations and the
estimates of its pose are compared to the ground truth. Table 5.3 summarizes the
results of these experiments. Errors ex, ey, eϕ stand for the error on x, y coordinates
and orientation of the robot, respectively. The average error of the coordinates x and
y is approximately 0.16 m and its standard deviation is 0.1 m.

Table 5.3: Accuracy and precision of the Localization System.

Error Accuracy Precision
ex, ey (m) 0.16 0.1
eϕ (rad) 0.05 0.01

Even though the accuracy of the localization system is sufficient to allow the nav-
igation of the robot through doors with a maximum width of approximately 0.86 m,
its precision relative to coordinates x and y is poor. In cluttered environments with
small free areas, poor precision can increase the number of mission failures. In terms
of the robot’s orientation, the obtained values are sufficient to allow the navigation of
the robot.

Chapter 5 Experimental Setup 133

Nonetheless, these values are similar to current UWB standalone indoor localization
systems [193, 194] and to systems combining odometry, laser range measurements, and
a priori known maps [314].

5.7.2 Convergence Time

The convergence rate of the robot’s localization is obtained from a set of 20 field exper-
iments. The robot is stopped and does not move during the experiments. Furthermore,
it does not know its initial location and the EKF is initialized at a random location
for each experiment. When compared to the ground truth, the random initializations
of the EKF have an error of approximately 4 m in coordinates x, y and 3 rad relative
to orientation.

It is considered that the localization system has converged, when the EKF estimates
are approximately equal to the values obtained in table 5.3. Fig. 5.13 shows the
precision of the robot’s pose, namely in coordinates x, y and in orientation, ϕ, along
the time. In terms of coordinates x, y, it can be seen in fig 5.13 (a)-(b) that the robot’s
pose converges to approximately 0.16 m in 5 s. The orientation ϕ takes approximately
1 s to converge to 0.05 rad.

5.7.3 Integrity

In order to evaluate the ability of the robot to recover from unexpected situations,
several experiments are conducted to expose the robot to the following failures: (i)
collisions deliberately caused with the robot. Despite the navigation and security
systems that prevent the robot to collide with obstacles, some people can intentional
or involuntary collide with the robot. The localization system must be able to deal
with those situations, in such a way that the robot is never lost. (ii) Variations on the
percentage of detected landmarks. Along the day, the number of detected landmarks
changes as the lighting conditions vary. Also, the distance that the robot needs to
travel to detect a landmark increases as the number of detected landmarks decreases.
(iii) How do the localization system deals with the kidnapped problem [185, 186].

5.7.3.1 Collisions

Collisions with obstacles may occur when the robot moves in populated environments,
as people may inadvertently bump the robot. To verify the ability of the localization
system to keep providing estimates of the robot’s pose after collision, the robot per-
forms a sequence of missions lasting 500 s and covering 100 m. During these missions,

134 Chapter 5 Experimental Setup

1 2 3 4 5 6 7 8 9

1

2

3

e
x
 (
m

)

convergence point

(a)

1 2 3 4 5 6 7 8 9
0

1

2

3

4

e
y
 (
m

)

convergence point

(b)

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.5

1

1.5

2

2.5

Time(s)

e

(r

a
d
)

convergence point

φ

(c)

Figure 5.13: Precision vs time: convergence of the localization system. Blue line
depicts the average error of the 20 experiments.

some people intentionally collide with the robot by bumping its front and forcing it to
rotate and find a new trajectory.

Fig. 5.14 depicts the robot’s linear velocity during this experiment. The continuous
blue line in fig. 5.14 (a) illustrates the minimum distance between the robot and
obstacles measured by the laser. Whenever this distance lies below 0.25 m (identified
by the dashed red line), a collision occurs. Thirteen collisions are verified during the
missions (green circles). Fig. 5.14 (b) illustrates the robot’s linear velocity (continuous
blue line) and vertical dashed green lines depict the instants of time where collisions
occur. Despite the collisions, the Timing Control module successfully generates the
suitable linear velocity, as the robot completes the missions in due time.

Fig. 5.15 illustrates the estimates of the robot’s pose (blue line) (x̂r, ŷr, ϕ̂) and green
dashed lines depict situations where collisions occur. The data provided by the camera

Chapter 5 Experimental Setup 135

50 100 150 200 250 300 350 400 450

1

2

3

4

5

500

m
in

 L
a
s
e
r
 (

m
)

(a)

50 100 150 200 250 300 350 400 450

0

0.3

0.6

Time (s)

V
e
lo

c
it
y

 (
m

/
s)

500

(b)

Figure 5.14: (a) Minimum distance measured by the laser mounted on the robot
(blue line), red dashed line identifies 0.25 m and green circles represent situations in
which collisions occurred. (b) Reference velocity, generated by the Timing Control

module (blue line) and vertical dashed green lines indicating the collisions.

mounted on the robot about its pose (black circles) (xo, yo, ϕo) continues to be cor-
rectly acquired after the collisions, and the degradation of the localization accuracy
is not relevant. Although the robot has to rotate and find a new trajectory to follow
after a collision, the localization system is able to keep the robot within an adequate
localization uncertainty for navigation.

5.7.3.2 Landmark Fails

During missions, it is expected that some landmarks are not detected, e.g., due to
varying lighting conditions. The effect of non-detected landmarks in the localization
uncertainty is verified by modifying the available landmarks in the experiments. For
each experiment, a percentage of landmarks is wittingly removed, namely, using 100%,
75%, 50%, 25% and 0% of the full set of landmarks. In each experiment, the robot
performs a sequence of single missions for approximately 300 m. When the robot
reaches a goal location, it immediately assumes a new goal location and moves towards
to it.

Fig. 5.16 shows the uncertainty of the localization system when the percentage of
detected landmarks changes. The percentage of available landmarks has an impact on
the localization uncertainty, i.e., the higher the percentage of available landmarks, the

136 Chapter 5 Experimental Setup

50 100 150 200 250 300 350 400 450

1

2

3

4

5

x
r
,x

o
 (

m
)

^

(a) Coordinate x of the robot’s pose.

50 100 150 200 250 300 350 400 450

0.5

1

1.5

2

y
r
,y

o
 (

m
)

^

(b) Coordinate y of the robot’s pose.

50 100 150 200 250 300 350 400 450

1

2

3

4

5

6

φ
,φ

o
 (

r
a
d
)

Time (s)

^

(c) Orientation ϕ of the robot’s pose.

Figure 5.15: Estimates of the robot’s pose (x̂r, ŷr, ϕ̂) (blue line), data of the robot’s
pose acquired by the camera (black circles) and instants of time in which collisions

occurred (green dashed lines).

lower the average error (green circles). The maximum and minimum numbers (black
dotted lines) and the percentile (blue rectangles) show that when fewer landmarks are
available, the estimates are more inaccurate. In normal conditions, in which 100% of
the landmarks are available for detection, the results are similar to the ones presented
in table 5.3.

The robot successfully completes the sequence of missions even when the number of
available landmarks is reduced to 75%, 50%, and 25%, albeit with larger uncertainty
values. When no landmarks are available (0%) the robot is unable to reset its position
based on vision information and therefore unable to complete the sequence of missions.
In fact, the robot is lost after moving a few meters.

Chapter 5 Experimental Setup 137

10

20

30

40

50

60

100% 75% 50% 25%

Landmarks detection (%)

σ
 (
c
m

)

Figure 5.16: Uncertainty of the localization system when the percentage of de-
tected landmarks changes. Green circles represent the average error, red lines rep-
resent the median, black dotted lines represent the minimum and maximum values

and blue rectangles represent the 25% − 75% percentile.

5.7.3.3 Robot Kidnapping

The kidnapped robot tests assess the ability of the Localization System to recover from
catastrophic localization failures.

In these tests, the robot initiates its mission in a known position and remains
stopped for 10 s to ensure the convergence of the robot’s localization (note that the
convergence time is approximately 5 s). Then, the robot is moved to another position
and has no vision information during a period of time sufficient for the robot to get
lost.

This test is repeated for 10 runs and the average uncertainty between the robot’s
true position and the estimated robot’s position after the kidnapping is 4 m. Fig. 5.17
shows the average uncertainty relative to coordinates x, y and orientation ϕ in the
kidnapped test. Green area represents the average interval of time in which the robot
is being kidnapped. When vision information is available again, coordinates x, y of the
robot’s position converge to the expected uncertainty (0.16 m according to table 5.3)
in approximately 5 s (see fig. 5.17 (b), which is zoomed during the interval time of
convergence, 50 s < t < 72 s). Relative to the orientation, it converges to the expected
uncertainty (0.05 rad according to table 5.3) in approximately 1 s (see fig. 5.17 (c)).
These values suggest that the convergence of the robot’s pose given by the Localization
System is consistent to those obtained in table 5.3, even after a catastrophic failure.

138 Chapter 5 Experimental Setup

10 20 30 40 50 60 70
0

1

2

3

 4

Kidnapping
σ

x
 (
m

)

(a) Coordinate x of the robot’s pose.

10 20 30 40 50 60 70
0

0.1

0.2

Kidnapping

σ
y
 (
m

)

(b) Coordinate y of the robot’s pose.

10 20 30 40 50 60 70

0.02

0.04

0.06

0.08

Kidnapping

Time(s)

σ

φ
(r

a
d
)

(c) Orientation ϕ of the robot’s pose.

Figure 5.17: Uncertainty vs time: convergence of the localization system when the
robot is kidnapped during an interval of time (green area).

5.8 External module

The External module represents the interface over which the user defines the missions
for the robot (see fig. 5.18). For instance, the mission of the robot might be initiated
via the human interface, and the required information should be provided to the robot.
The user, which might represent a nurse or an auxiliary, defines the destination of a
single mission, Pg, or a set of sequential destinations, in case of multiple missions. For
each mission, a correspondent time constraint MT must be specified. In cases where a
time constraint is not assigned by the user, the robot can reasonable calculate a time
constraint for the mission.

In this work, the map is provided to the robot through a topological representation
in the form of a transition function M . Nevertheless, the specification of the map
could be done by CAD files [58], or by building the map through the robot’s onboard
laser by moving the robot along the environment.

Chapter 5 Experimental Setup 139

External

User
MT

(x ,y)
Pg

g g

Map

Figure 5.18: Schematic of the External module that represents the interface be-
tween the user and the robot.

140 Chapter 5 Experimental Setup

Chapter 6

Experiments

This chapter presents a set of simulations and real experiments to illustrate the ability
of the architecture to guide the robot while satisfying a time constraint. Furthermore,
the chapter discusses a dependability analysis about the robustness of the proposed
architecture, considering the reliability, integrity and safety of the robot. It is also
expected that the stability indicator based on the Contraction Theory identifies the
failed and successful missions.

Even though the contraction analysis suggests that the whole system is dependable,
real experiments allow a realistic assessment. However, there are multiple reasons
why simulations are useful to develop and test a control architecture. These include,
(1) reduction of the time to develop the robot control code; (2) enabling real-time
testing of complex control algorithms; (3) avoiding unnecessary damage to the robot
equipment when testing new control strategies or stability solutions; (4) studying the
robot behavior in complex systems without having to build them.

The real experiments are conducted in a typical university indoor environment,
but the obtained results can be considered to hospital environments. In both envi-
ronments, the robot should deal with people, whose behavior is unpredictable, avoid
static obstacles and navigate through narrow passages.

Both simulations and real experiments include long-term missions, which allow ver-
ifying if the proposed architecture is able to drive a mobile robot for large periods
of time in realistic environments. These long-term missions consist of multiple single
missions performed sequentially. When the robot reaches a goal location, the current
mission is completed, a new one is selected and the robot starts moving towards its
goal location. Conducting long-term experiments allows a more meaningful analysis
of the architecture, and hence, a truer representation of the localization performance
accuracy. Delivery autonomous robots must cover distances in the order of kilometers
and maintain an accurate information about their location.

141

142 Chapter 6 Experiments

The robot must know the map of the environment before performing any mission.
Furthermore, in the beginning of each mission, the goal location where the mission
ends, Pg, and its time constraint, MT , are provided to the robot. The time constraint
varies in each mission, and is empirically set to allow the robot to complete the re-
spective mission using an average velocity of approximately 0.4 m/s. Before of each
mission, the robot waits a time interval, used for rotating towards the goal location.
In the following simulations and experiments, this time interval is defined as tinit = 8 s.
In the case that the robot is unable to complete its mission within the time constraint,
i.e., the robot can not reach the goal location even moving at its maximum velocity,
vmax = 0.8 m/s, the rescue behavior must be activated. The condition that activates
this behavior and deactivates the others is given in (3.69). A mission is successful
completed when the robot reaches the neighborhood of a goal location, i.e., the re-
maining distance is less than ϵ = 0.4 m. This is a suitable distance that allows the
robot to stop safely and close to the goal location, despite the error no localization.
As an emergency condition, the robot stops immediately when an obstacle is detected
at a distance less than 25 cm.

Table 6.1 depicts the goal of the simulations and experiments included in this chap-
ter. The two simulations aim at showing the behavior of the robot in a simulated
hospital environment. In the first four real experiments, the robot has to deal with
typical situations of dynamic and cluttered environments, such as static and dynamic
obstacles. In experiments 5 and 6, a person intentionally obstructs the trajectory of
the robot. In experiments 7, 8 and 9, the robot faces catastrophic localization fail-
ures, since it is kidnapped during its missions. In experiment 10, the robot navigates
through a long narrow passage and in the last two experiments, the robot performs
long-term missions.

Chapter 6 Experiments 143

Table 6.1: Summary of the simulations and experiments.

Identification Main goals

Simulation 1 Robot has to handle typical hospital obstacles
in 3 missions

Simulation 2 Robot has to perform multiple single missions
during a working day of approximately 9.5 hours

Experiment 1 Single mission without
obstacles

Experiment 2 Single mission with static
obstacles

Experiment 3 Single mission with narrow passages, static and dynamic
obstacles

Experiment 4 Robot has to move through a door while
facing the same kind of obstacles of experiment 3

Experiment 5 Person prevents the robot to complete
its mission with success

Experiment 6 Person obstructs the robot,
but it succeeds to complete the mission

Experiment 7 Robot performs two single missions and is kidnapped
during the second mission

Experiment 8 Robot is kidnapped during a mission,
in which it has to move through a door

Experiment 9 Robot performs two single missions and
does not recover from a kidnapping

Experiment 10 Robot must navigate through a
long narrow passage

Experiment 11 Robot performs a long-term mission consisting
on sequential single missions

Experiment 12 Robot performs a long-term mission whose locations
are randomly generated

6.1 Simulation Experiments

The environment used for the simulations is the hospital environment shown in fig. 5.6.
The obstacles that the robot will face during its missions are the ones illustrated in
fig. 5.7. Pedestrians are simulated with a velocity of 1.2 m/s [298], when no other
pedestrian or obstacle is in the surroundings. Otherwise, the velocity of the pedestrian
decreases to 0.8 m/s [299].

6.1.1 Simulation 1

This simulation shows the behavior of the robot when it has to perform three missions
in a hospital environment. These missions are sufficient to show the robot handling
typical hospital situations, as avoiding static and dynamic obstacles or moving through

144 Chapter 6 Experiments

narrow passages. It is expected that the robot completes its missions within due time,
80 s for the first two missions and 120 s for the last one. Furthermore, the stability
indicator should identify the success of the three missions.

Fig. 6.1 shows situations that the robot faces during these three missions. Snapshots
A, B and C concern the first mission, D and E the second mission and F , G and H

the third mission. Snapshots A, D, F , G and H show the robot avoiding people and
other static obstacles. Snapshots B, C and F illustrate the robot moving in narrow
passages, created by obstacles or doors. Snapshot E shows the robot reaching the goal
location of the second mission, identified by the red circle.

A B C

D E F

G H

Figure 6.1: Different situations faced by the robot during simulation 1. The robot
avoids people (snapshots A, D, F , G and H), static obstacles (snapshots B and D)

and navigates through narrow passages (snapshots B, C, D and F).

Fig. 6.2 (a) shows the solutions m (continuous blue line) and n (red dashed line),
generated by the Stuart-Landau oscillator. Note that solution m is directly used to
control the robot’s linear velocity, v, according to (3.41). Solution n is required to
enable the oscillator to undergo periodic motion. In three situations, identified by the
green ellipses, the amplitude of solution m is reduced through the velocity decreasing
condition (3.61), in order to ensure a safe circumnavigation of obstacles. The second
and third situations in which the solution m decreases can be viewed in snapshots F
and G, respectively. After the obstacle circumnavigation, the robot’s linear velocity in-
creases to compensate for the delay caused by the obstacles. Fig. 6.2 (b) illustrates the
remaining distance between the robot and the goal location during the three missions,
D (black continuous line). The red dashed line stands for the threshold (ϵ = 0.4 m)

Chapter 6 Experiments 145

50 100 150 200 250

−0.2

0

0.2

0.4

m
,
n mission 1 mission 2

mission 3

(a)

50 100 150 200 250

5

10

15

20

25

D
 (

m
)

mission 1 mission 2 mission 3

(b)

50 100 150 200 250

0.2

0.4

0.6

0.8

1

u
st

o
p
,u

e
x
e
c
u
ti
o
n
,u

re
sc

u
e

Time (s)

mission 1 mission 2 mission 3

(c)

Figure 6.2: (a) Solutions m (blue continuous line) and n (red dashed line) gen-
erated by the Stuart-Landau oscillator. (b) Remaining distance between the robot
and the goal location, D (black continuous line), during the 3 missions. Red dashed
line identifies the distance between the robot and the goal location over which the
mission is considered finished. (c) Variables responsible for the robot’s motor be-
havior. When ustop (black continuous line) is activated, the robot is stopped; when
uexecution (blue dashed line) is activated, the robot is performing the mission; urescue
(dashed-dotted line) was never activated, since the robot was able to complete its

missions within their respective time constraints.

that identifies when the robot reaches the goal location. In the three missions, the
robot reaches the goal location, as the remaining distance is lower than ϵ after the
time constraint has been elapsed, D < ϵ. In fact, the robot takes 76 s, 75 s and 113 s
to reach, respectively, the goal location of the first, second and third mission. Thus, it
completes the three missions within due time. The time the robot takes to complete
the mission could be closer to the respective time constraint if ϵ was smaller. However,
this would require a more accurate localization system. The total distance covered
by the robot is approximately 80 m. Fig. 6.2 (c) depicts the variables responsible for
the robot’s motor behavior. In the beginning of the first mission, variable ustop (black
continuous line) is activated and variables uexecution (blue dashed line) and urescue (red

146 Chapter 6 Experiments

dashed-dotted line) are deactivated. Consequently, the robot is stopped. When tinit

(waiting time in the beginning of each mission) has been elapsed, the variable uexecution

is activated and ustop is deactivated. Thus, the robot starts its movement towards the
goal location. When the robot reaches the goal location, variable ustop is activated
again and uexecution is deactivated. Accordingly, the robot stops moving. The same
procedure is repeated for the other 2 missions. As the robot reaches the goal locations
of the 3 missions within the time constraint, the variable urescue is never activated.

Fig. 6.3 shows the evolution of the bound of ∥D(fsupervisor)∥. Condition (4.5),
∥D(fsupervisor)∥ << 1, holds for the three missions. This means that the robot reaches
the three goal locations within their respective time constraints, MT . As expected,
the stability indicator is sufficient to identify the successful missions. Despite the sev-
eral static and dynamic obstacles detected by the robot during the three missions, the
robot is able to successfully complete them.

50 100 150 200 250

1

2

3

4

x 10
−5

||
D

(
f
s
u
p
e
r
v
is

o
r
)
||

Time (s)

A B C D

E

F G H

Figure 6.3: Evolution of the bound of ∥D(fsupervisor)∥ along the three missions of
simulation 1. Capital letters identify the snapshots illustrated in fig. 6.1.

Fig. 6.4 depicts the trajectory followed by the robot. The ground truth, representing
the real trajectory that the robot covers, is depicted by the blue line. The position of
the robot obtained by the robot’s vision system is depicted by the green circles. Red
line stands for the trajectory calculated by odometry. The trajectory estimated by the
EKF is depicted through the yellow line. Black circles represent the goal locations of
the 3 missions. The robot starts its missions at location (2, 2), identified by the red
cross. The goal location of the first mission is (14, 4). When the robot reaches this
location, a new mission is defined, whose goal location is (1, 8). Once this mission is
completed, the next one, whose goal location is (13, 15.5), is started. Black arrows
show the direction of the trajectory followed by the robot. Numbers stand for the
identification number of the missions.

Fig. 6.5 illustrates the trajectory estimated by the EKF followed by the robot. The
closer the points, the slower the robot moves. Note that mission 2 is shorter than
mission 1 (see fig. 6.2), but the time constraint is the same. Consequently, during

Chapter 6 Experiments 147

4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2

(1)

(1)

(1)

(1)

(2)

(2)

(2)

(3)

(3)

(3)

x

(
m

)

y (m)

A

B

C

D

E

F

G

H

r

r

Figure 6.4: Trajectory followed by the robot during simulation 1. Yellow line
represents the estimated trajectory through the EKF. Green circles represent the
robot’s position obtained through the robot’s vision system. Red line represents
the trajectory calculated by odometry and blue line represents the ground truth.
Red cross represents the initial position of the robot in simulation 1. Black circles
stand for the goal locations. Black arrows indicate the direction followed by the
robot during the respective mission. Capital letters identify snapshots illustrated in

fig. 6.1.

mission 2, the robot follows at a lower velocity than in mission 1. Thus, the points are
closer.

Fig.6.6 shows the error between the ground truth of the robot’s position and the
one estimated by the EKF. During the sequence of missions, the maximum error is
approximately 0.40 m. This error is small enough to allow the robot to complete its
missions with success. Green dashed circles illustrate some instants of time in which
a reset operation to the Localization System is performed. Note that in the reset
operation, the robot’s pose provided by the vision system has a larger weight than
odometry to the estimates of the EKF. Furthermore, odometry data is reset with the
vision data.

6.1.2 Simulation 2

In this simulation, the robot performs an interrupt sequence of missions during a real
working day of approximately 9.5 hours. This sequence consists of 9 single missions.
When the robot completes one mission, a new one is defined and the robot starts
moving towards the goal location of the new mission. The robot repeats 400 times the
sequence of 9 single missions, covering approximately 8400 m.

148 Chapter 6 Experiments

4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2

(1)

(1)

(1)

(1)

(2)

(2)

(2)

(3)

(3)

(3)

x

(
m

)

y (m)

A

B

C

D

E

F

G

H

r

r

Figure 6.5: Estimates given by the EKF of the trajectory followed by the robot in
simulation 1.

50 100 150 200 250
0

0.1

0.2

0.3

0.4

Time (s)

E
r
r
o
r
 (

m
)

mission 1

mission 2 mission 3

A B C D

E

F G H

Figure 6.6: Error between the ground truth of the robot’s position and the one
estimated by the EKF. Capital letters identify the snapshots illustrated in fig. 6.1.

Fig. 6.7 illustrates the trajectory covered by the robot estimated through the EKF.
The robot starts the sequence of missions at location (14, 4), identified by the red
cross. When the robot reaches the goal location of the first mission, located at (1, 8),
it assumes a new mission and starts moving towards the goal location of mission 2,
located at (13, 16). The robot performs the remaining missions until it completes
mission 9. When mission 9 is completed, the robot starts moving towards the goal
location of mission 1, and thus repeating the sequence. In this simulation, the robot
faces similar obstacles identified in simulation 1 (see fig. 6.1). It is expected that the
robot completes all missions within their respective time constraints, such that the
schedule of the delivery missions is completed without delay.

Fig. 6.8 (a) shows the evolution of the bound of ∥D(fsupervisor)∥ along the sequence of
missions. Its upper bound does not verify condition (4.5) in two missions, which means
that the robot is unable to complete them within due time. Fig. 6.8 (b) illustrates the

Chapter 6 Experiments 149

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

1

2

3

5

4

7

6

8

9

y (m)
r

x

(
m

)
r

(1)

(1)

(1) (2)

(2)

(2)
(3)

(3)

(3)

(4)

(4)

(5)

(5)

(6)

(6)

(6)

(7)

(7)

(8)

(8)

(9)

Figure 6.7: Trajectory followed by the robot during simulation 2. Red cross rep-
resents the initial position of the robot. Black circles stand for the goal locations.
Numbers represent the sequence of missions that the robot has to perform. Black
arrows indicate the direction followed by the robot during the respective mission.

sequence of fi modules, ∏17
i=1 ∥D(fi)∥ (condition (4.9)), that represents the stability of

the architecture without the time constraint. Its upper bound is less than 1, meaning
that the architecture is able to guide the robot towards its goal locations. Consequently,
the parameters illustrated in table 4.1 were fulfilled.

These two missions are failed, because a configuration of obstacles created by people
forces the robot to reduce its velocity and prevents it to follow its trajectory. Fig. 6.9
illustrates the trajectory covered by the robot estimated through the EKF during the
two failed missions. The first failed mission is started in goal location 2 and the robot
follows towards goal location 3. The mission fails when the robot is close to the goal
location 3 (green dashed circle). A person obstructs the trajectory of the robot and
it is unable to complete the mission in due time. In the second failed mission, the
robot starts from goal location 3 and must reach goal location 4. However, the robot
is obstructed during a large period of time by a person (black dashed circle). When
the path is clear, the mission is already failed and the robot follows with the rescue
behavior, at 0.1 m/s. Note that the blue points are very close after the black dashed
circle, indicating the low velocity of the robot. During the two intervals of time in
which the rescue behavior is active, the robot covers 23 m in 218 s. This period of
time is the amount of time wasted by the robot to complete the sequence of missions.

150 Chapter 6 Experiments

0 1.5 3 4.5 6 7.5 9
0

0.5

1

1.5

2

||
D
(
f
s
u
p
e
r
v
is
o
r
)
||

(a)

0

0.01

0.02

0.03

0.04

0 1.5 3 4.5 6 7.5 9

Time (h)

||
D

(
f
i)
||

∏
i

=
 1

1
7

(b)

Figure 6.8: (a) Evolution of the bound of ∥D(fsupervisor)∥ along the three missions
of simulation 2. Graphic is bounded to 2, but for failed missions ∥D(fsupervisor)∥
is much higher. (b) Evolution of the sequence of fi Jacobians without the time

constraint as in (4.9),
∏17
i=1 ∥D(fi)∥.

However, it could be reduced, if during the rescue behavior, the robot had follow at a
higher constant velocity.

Fig. 6.10 shows the robot’s linear velocity during simulation 2. The robot moves
at different velocities, according to the mission being executed. In some missions, the
robot reaches its maximum velocity, 0.8 m/s, in order to compensate for delays. Green
circles show the periods in which the robot is in the rescue behavior and follows at
a constant velocity of 0.1 m/s. The red dashed line indicates the average velocity
followed by the robot during the sequence of missions, 0.24 m/s.

Chapter 6 Experiments 151

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

 2

3

4

y (m)
r

x

(
m

)
r

(2)

(2)
(2)

(3)

(3)

(3)

Figure 6.9: Trajectory followed by the robot during the two failed missions of
simulation 2. Black circles stand for the goal locations. Numbers represent the

sequence of missions that the robot performs.

0.2

0.4

0.6

0.8

0 1.5 3 4.5 6 7.5 9

Time (h)

v
 (

m
/
s
)

Figure 6.10: Robot’s linear velocity, v, during simulation 2. Green circles represent
periods of time when the robot is in the rescue behavior. Black dashed circle repre-
sents a period of time in which the robot is stopped due to an obstacle configuration.

Red dashed line depicts the average robot’s linear velocity, 0.24 m/s.

6.2 Real Experiments

Several single missions are performed in a cluttered and uncertainty environment to
verify the ability of the robot to handle static and dynamic obstacles (people), to
navigate in narrow passages, to pass through doors and the ability of the robot’s
localization system to recover from catastrophic failures. Furthermore, it is verified if
the disturbances of the environment affect the stability of the global system. Long-
term missions are performed to verify the ability of the architecture to guide the mobile
robot with an accurate localization.

152 Chapter 6 Experiments

6.2.1 Experiment 1

In the first experiment performed on the real environment, the robot has to complete
a single mission without unexpected obstacles. The initial distance between the robot
and the goal location is 4 m, and the robot has 10 s to complete the mission. It
is expected that the robot follows a straight line to complete the mission. Fig. 6.11
shows some snapshots of this mission. For visual purposes, a blue square on the floor
identifies the goal location.

 Goal

Location

A B

C D

Figure 6.11: Snapshots of the robot performing the mission of experiment 1.

Fig. 6.12 (a) shows the solutions m (blue continuous line) and n (red dashed line),
and the amplitude, A (black dashed-dotted line), of the Stuart-Landau oscillator.
During the first 8 s, when t < tinit, the robot does not move and only rotates towards
the goal location. The amplitude A is 0 and consequently m = 0. After this interval
of time, the robot moves to the goal location and reaches a maximum velocity of
approximately 0.7 m/s. Note that during the interval of time, 8 < t < 9 s, the robot’s
linear velocity increases quickly. This is a consequence of the angular frequency of the
oscillator defined in (3.43) and selected in (3.58). Fig. 6.12 (b) illustrates the distance
between the robot and the goal location (black continuous line). The red dashed line
shows the distance (ϵ = 0.4 m) in which it is assumed the robot has reached the goal
location. As expected, the robot reaches the goal location within the time constraint,
MT = 10 s (note that 8 s are wasted in the beginning of the mission). In fact, the

Chapter 6 Experiments 153

2 4 6 8 10 12 14 16 18

−0.2

0

0.2

0.4

0.6

m
,
n
,
A

t init

(a)

2 4 6 8 10 12 14 16 18

1

2

3

4

D
 (

m
)

Time (s)

t init

MT = 10 s

(b)

Figure 6.12: (a) Solutions of the Stuart-Landau oscillator m (blue continuous line),
n (red dashed line) and the amplitude of the oscillator, A (black dashed-dotted line).
(b) Distance between the robot and the goal location (black continuous line) and
distance in which it is assumed that the robot reaches the goal location (red dashed

line), D < 0.4 m.

robot takes 8 s to reach the goal location. Despite the mission is considered completed,
the robot continues moving due to inertial forces.

Fig. 6.13 illustrates the estimates of the robot’s pose, (x̂r, ŷr, ϕ̂) (blue continuous
line) estimated by the EKF and the robot’s pose provided by the camera mounted on
top of the robot (xv, yv, ϕv) (black circles). The robot starts the mission at location
(1, 1) and must reach the goal location at (5, 1). As the robot follows a straight
trajectory, its orientation is approximately constant during the mission, ϕ̂ ≈ π

2 rad.
Vision information is only available when a landmark is detected by the robot’s vision
system.

Fig. 6.14 shows the evolution of the bound of ∥D(fsupervisor)∥. As expected, the
stability indicator is well below 1, in agreement with (4.5). This implies that the global
system is contracting and converges to the unique fixed point within MT . In practical
terms, this condition suggests that the robot successfully completes this mission.

6.2.2 Experiment 2

In this experiment, the initial and goal locations of the robot are the same of the
previous experiment. However, the robot has to deal with unexpected static obstacles
located in the environment. The robot should detect and circumnavigate them to
reach the goal location. Consequently, the time constraint for this mission is increased

154 Chapter 6 Experiments

2 4 6 8 10 12 14 16 18
1

2

3

4

5

x
 ,
 x

(
m

)
v

r
^

(a) Coordinate x of the robot’s pose.

2 4 6 8 10 12 14 16 18

0.95

1

1.05

y
 ,
 y

(
m

)
v

r
^

(b) Coordinate y of the robot’s pose.

2 4 6 8 10 12 14 16 18

1.5

1.55

1.6

Time (s)

φ
,
φ

(
r
a
d
)

v
^

(c) Orientation ϕ of the robot’s pose.

Figure 6.13: Estimates of the robot’s pose (blue continuous line) through the EKF
and robot’s pose provided by the camera (black circles).

2 4 6 8 10 12 14 16

5

10

15

x 10
−9

||
D

(
f
s
u
p
e
r
v
is

o
r
)
||

Time (s)

A B C
D

Figure 6.14: Evolution of the bound of ∥D(fsupervisor)∥ along the mission of ex-
periment 1. Capital letters identify the snapshots illustrated in fig. 6.11

.

to 20 s. It is expected that the robot avoids the obstacles and reaches the goal location
within the time constraint. Fig. 6.15 shows some snapshots of this experiment. Panels
B and C show the robot avoiding obstacles. In panel D, the robot is reaching the goal
location.

Fig. 6.16 illustrates the trajectory followed by the robot along regions {r1, r2}. Red

Chapter 6 Experiments 155

A B

C D

 Goal

Location

Figure 6.15: Snapshots of the robot performing the mission of experiment 2. The
robot avoids unexpected static obstacles located in the environment.

circles show the estimates of the robot’s position given by the EKF. Black circles rep-
resent the robot’s position provided by the vision system. When no vision information
is available, due to lighting conditions, only the odometry is used to estimate the
robot’s pose. As expected, the robot circumnavigates the obstacles and reaches the
goal location (green cross).

r1

r5

r3

r4

r2

A
B

C

D

Figure 6.16: Estimates given by the EKF of the trajectory followed by the robot
during the experiment illustrated in fig. 6.15 (red circles). Black circles show the
robot’s position provided by the vision system. Green cross represents the goal
location and red dashed lines stand for the critical lines dividing the regions. ri
represents the regions of the environment. Capital letters represent the snapshots

shown in fig. 6.15.

156 Chapter 6 Experiments

Fig. 6.17 (a) illustrates the solution m (blue continuous line) and the amplitude A
(black dashed-dotted line) of the Stuart-Landau oscillator. As a consequence of the de-
tected obstacles, the robot has to change its trajectory and cover a larger distance than
expected. Thus, to compensate this delay, the amplitude of the oscillator, A, increases
and the robot’s linear velocity increases as well. The green ellipse shows the interval of
time in which the robot’s linear velocity increases from 0.2 to 0.4 m/s. When the robot
recovers from the delay, its velocity decreases until stopping. Fig. 6.17 (b) shows the

5 10 15 20 250

0.1

0.2

0.3

m
,
A t init

0.4

0.5

(a)

5 10 15 20 25

1.2

1.4

1.6

1.8

2

2.2

ψ
t
a
r
,
φ̂
(
r
a
d
)

r1

r2

B

C

A

D

(b)

5 10 15 20 25

−8

−6

−4

−2

0

Time (s)

U
(
φ
)

B

C

A

A

D

(c)

Figure 6.17: (a) Solution m (blue continuous line) and amplitude of the Stuart-
Landau oscillator, A (black dashed-dotted line). (b) Direction that the robot should
follow to reach the goal location, ψtar (black dashed line), and robot’s heading di-
rection, ϕ̂ (blue continuous line). Red circles show the periods of time in which
the robot is avoiding unexpected obstacles and the dashed grey line indicates the
transition between regions of the environment. (c) Potential function indicating the

presence of obstacles, U(ϕ).

direction that the robot should follow, ψtar (dashed black line), and the robot’s heading
direction estimated by the EKF, ϕ̂ (blue continuous line). The red circles show the
periods of time in which the robot is avoiding unexpected obstacles. Capital letters
indicate the respective panel in fig. 6.15. Despite the detected obstacles in region r1,
the robot must follow ψtar = π

2 rad. After the obstacles circumnavigation, the robot

Chapter 6 Experiments 157

enters in region r2, where the goal location is, and ψtar changes, in order to orientate
the robot towards the goal location. As expected, the robot’s heading direction follows
ψtar and the robot completes the mission within MT = 20 s. Fig. 6.17 (c) shows the
potential function, U(ϕ), that indicates the presence of obstacles in the surroundings
of the robot. The detection of obstacles occurs in the interval 10 < t < 23 s (bounded
by the dashed grey lines), when U(ϕ) < 0.

Fig. 6.18 shows that the stability indicator holds during the mission. This means
that the architecture remains stable and the robot reaches the goal location, Pg, within
the specified time constraint, MT = 20 s. Even though the circumnavigation of the
unexpected static obstacles illustrated in panels B and C in fig. 6.15, the robot is able
to successfully complete the mission.

5 10 15 20 25

1

2

3

x 10
−3

Time (s)

||
D

(
f
s
u
p
e
r
v
is

o
r
)
||

A B C D

Figure 6.18: Evolution of the bound of ∥D(fsupervisor)∥ along the mission of ex-
periment 2. Capital letters identify the snapshots illustrated in fig. 6.15.

6.2.3 Experiment 3

In this experiment, the robot must cope with dynamic obstacles (e.g. people) (panels
A and B in fig. 6.19), unexpected static obstacles (panel A) and narrow passages
(snapshots C and D), while completing the mission. The robot starts its mission
in region r1 and the goal location is located in region r5 (see fig. 6.20). The time
constraint, MT = 40 s, is sufficient for the robot to complete the mission. The
mission evolves along regions {r1, r2, r3, r4, r5} and people are already familiar with
the behavior of the robot.

Fig. 6.20 illustrates the trajectory followed by the robot. The robot successfully
reaches the goal location in region r5 identified by the green cross. The green circle
shows an example of the robot’s pose reset. The estimates of the EKF in the reset
situation rely much more in the robot’s vision system data, rather than in the odometry.
Consequently, the EKF estimates converge quickly to the robot’s pose provided by the
vision system. This is achieved by setting R = Rr (see section 5.6.3.4).

158 Chapter 6 Experiments

A B

C D

 Goal

Location

Figure 6.19: Snapshots of the robot performing the mission of experiment 3. The
robot avoids unexpected static and dynamic obstacles while navigating in narrow
corridors. The upper right corners show snapshots captured by the robot of its front.

r1

r5

r3

r4

r2

A
B

C

D

Figure 6.20: Estimates given by the EKF of the trajectory followed by the robot
during the experiment illustrated in fig. 6.19 (red circles). Black circles show the
robot’s position provided by the vision system. Green cross represents the goal
location and red dashed lines stand for the critical lines dividing the regions. Capital

letters represent the snapshots shown in fig. 6.19.

Fig. 6.21 (a) shows the robot’s linear velocity, v (red continuous line), and the
solution m of the Stuart-Landau oscillator (blue dashed line). The green dashed circles
depict the instants of time in which obstacles force the robot to decrease its velocity to
ensure a safe circumnavigation. Capital letters indicate the panels in fig. 6.19. After
the obstacle circumnavigation, the robot’s linear velocity increases to compensate for

Chapter 6 Experiments 159

the delay. Fig. 6.21 (b) shows the distance between the robot and the goal location

5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

v
,m

 (
m

/
s
)

A

B

C Dt init

(a)

5 10 15 20 25 30 35 40 45

2

4

6

D
 (

m
)

t init

MT = 40 s

(b)

5 10 15 20 25 30 35 40 45

−1.5

−1

−0.5

0

0.5

1

Time (s)

F

,
F o

b
s

t
a
r

(c)

Figure 6.21: (a) Velocity followed by the robot, v (red continuous line), and so-
lution m of the Stuart-Landau oscillator (blue continuous line). The green dashed
circles depict the instants of time in which obstacles force the robot to decrease its
velocity to ensure a safe circumnavigation. Capital letters indicate the panels in
fig. 6.19. (b) Distance between the robot and the goal location (black continuous
line) and distance in which it is assumed that the robot reaches the goal location
(red dashed line), D < 0.4 m. The blue dashed circle shows an example of the
increasing of the distance caused by the obstacle circumnavigation shown in panel B
of fig. 6.19. (c) Target orientation Ftar (blue continuous line) and obstacle avoidance

Fobs (red dashed line) contributions.

(black continuous line). As expected, the robot completes the mission within the time
constraint, MT = 40 s. In fact, the robot reaches the goal location in 36 s. The
blue dashed circle shows a period of time in which the robot has to cover a larger
distance than expected, because of an obstacle circumnavigation. Nevertheless, the
robot’s linear velocity increases to compensate this delay and the robot completes with
success its mission. Fig. 6.21 (c) shows the target orientation Ftar (blue continuous
line) and the obstacle avoidance Fobs (red dashed line) contributions. It is noticeable
that when obstacles are detected (identified by the grey dashed circles), the absolute
value of the obstacle avoidance contribution is larger than the absolute value of the

160 Chapter 6 Experiments

target orientation contribution, ∥Fobs∥ > ∥Ftar∥. This prevents the robot to collide
with obstacles when following the direction to the goal location.

Fig. 6.22 shows the evolution of the bound of ∥D(fsupervisor)∥. Clearly, it is well

5 10 15 20 25 30 35 40 45

2

4

6

8

x 10
−3

||
D

(
f
s
u
p
e
r
v
is

o
r
)
||

Time (s)

Figure 6.22: Evolution of the bound of ∥D(fsupervisor)∥ along the mission of ex-
periment 3.

below 1, in agreement with (4.5). This suggests that the global system is contracting
and converges to the unique fixed point within MT . This correlates with the mission
success, as expected.

6.2.4 Experiment 4

In this experiment, the robot has to move from the laboratory (region r1) to the goal
location in the corridor (region r6) (see fig. 6.25). In order to complete the mission,
the robot has to pass through a door that separates the laboratory from the corridor,
while facing the same kind of obstacles detected in experiment 3. Nevertheless, in this
experiment, the robot deals with people moving in the corridor who have never inter-
acted with the mobile robot. Despite these disturbances, the robot should complete
its mission within MT = 45 s. Fig. 6.23 shows snapshots of the robot performing this
mission. The robot detects unexpected static obstacles (panel A), passes through a
door (panel B) and detects dynamic obstacles in the corridor (panels C and D).

Fig. 6.24 shows snapshots captured by a camera mounted on the robot’s front,
showing the surroundings of the robot. It is noticeable the people that the robot faces
during this mission. Some people in the corridor interact with this robot for the first
time and do not know its behavior in cases where obstacles have to be avoided. While
some people act cooperatively and avoid staying in front of the robot, other stop in its
trajectory to verify if the robot is able to avoid them (see panel 6).

Fig. 6.25 shows the trajectory of the robot estimated by the EKF for this experiment.
The robot starts its mission in region r1, crosses region r2 and completes its mission in
region r6, where the goal location is located (green cross). In the corridor (region r6),

Chapter 6 Experiments 161

A B

C D

Figure 6.23: Snapshots of the robot performing the mission of experiment 4. The
robot avoids unexpected static and dynamic obstacles while navigating in narrow

corridors.

t = 4 s t = 25 s t = 30 s

t = 33 s t = 37 s t = 39 s

1 2 3

4 5 6

Figure 6.24: Snapshots of the surroundings of the robot when it performs its
mission in experiment 4. Numbers denote the images captured by the robot’s camera.

the red circles are further apart from each other, meaning the robot’s linear velocity is
higher. The detected people force the robot to cover a larger distance and to reduce
its velocity. This delay is compensated for by increasing the robot’s linear velocity, v.

Fig. 6.26 (a) shows the robot’s linear velocity, v (red continuous line) and the so-
lution m generated by the Stuart-Landau oscillator (blue dashed line). Green dashed
lines indicate instants of time in which obstacles are detected and the solution m is
decreased to ensure a safe circumnavigation, according to (3.61). Consequently, the

162 Chapter 6 Experiments

r1

r5

r6

r4r3

r2

1

2

3

45
6

Figure 6.25: Estimates given by the EKF of the trajectory followed by the robot
during the experiment illustrated in fig. 6.23 (red circles). Black circles show the
robot’s position provided by the vision system. Green cross represents the goal loca-
tion and red dashed lines stand for the critical lines dividing the regions. Numbers

represent the snapshots shown in fig. 6.24.

robot’s linear velocity decreases accordingly. However, due to delays on the servos con-
trol, the robot’s linear velocity presents a delay relatively to solution m. Fig. 6.26 (b)

5 10 15 20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

v
,m

 (
m

/
s
)

t init

(a)

5 10 15 20 25 30 35 40 45 50

2

4

6

8

D
 (

m
)

t init

MT = 45 s

Time (s)

(b)

Figure 6.26: (a) Robot’s linear velocity, v (red continuous line) and solution m
generated by the Stuart-Landau oscillator (blue dashed line). (b) Distance between
the robot and the goal location, D (black continuous line) and distance in which it is
assumed that the robot has reached the goal location (red dashed line), D < 0.4 m.

Blue dashed ellipse shows the increasing of the distance covered by the robot.

illustrates the distance D. Note the increasing of the distance (blue dashed ellipse)
because of the new trajectory that the robot has to follow, in order to avoid the un-
expected obstacles. Nevertheless, the robot completes the mission within the time

Chapter 6 Experiments 163

constraint, MT = 45 s. In fact, the robot takes 39 s to reach the goal location. Due
to inertial forces, the robot continues moving after reaching the goal location.

The robot reaches the goal location within the time constraint MT , as it is visible
in fig. 6.26 (b). Consequently, the upper bound of the stability indicator should be less
than 1 during the mission. As expected, fig. 6.27 shows that ∥D(fsupervisor)∥ < 1 holds
during the mission, meaning that the robot completes with success the mission.

5 10 15 20 25 30 35 40 45 50

0.1

0.2

0.3

Time (s)

||
D

(
f
s
u
p
e
r
v
is

o
r
)
||

Figure 6.27: Evolution of the bound of ∥D(fsupervisor)∥ along the single mission of
experiment 4.

6.2.5 Experiment 5

In this experiment, when the robot is completing a mission, a person obstructs the
trajectory of the robot, such that it is unable to reach the goal location within the
time constraint, MT = 50 s. It is expected that the robot activates its rescue behavior
and completes the mission with a constant velocity, v = 0.1 m/s. Furthermore, the
stability indicator must identify this mission as a failed one.

Fig. 6.28 shows snapshots of the robot performing this mission. Panels A, B and
C show the person obstructing the trajectory of the robot. The person forces the
robot to face the opposite direction to the one that it should follow. When the person
stops perturbing the robot, it rotates towards the goal location and follows the suitable
trajectory to complete the mission.

Fig. 6.29 (a) shows the robot’s linear velocity, v (red continuous line) and the
solution m (blue dashed line). Grey dashed line represents the instant of time in
which the rescue behavior is activated. The green shadow stands for the period of
time in which the person is obstructing the trajectory of the robot. When the person
stops perturbing the robot, its velocity increases to the maximum value, 0.8 m/s, in
order to compensate the delay caused by the person. However, during the period
38 < t < 42 s (green dashed circle), the robot is unable to continue following at its
maximum velocity as a consequence of a sharp turn. At t ≈ 42 s, the rescue behavior
is activated, as the robot is unable to complete its mission within MT = 50 s. Thus,

164 Chapter 6 Experiments

A B

C D

 Goal

Location

Figure 6.28: Snapshots of the robot performing the mission of experiment 5. The
robot is performing the mission when a person blocks its trajectory and prevents the
robot to follow towards the goal location. Eventually, the person stops obstructing

the trajectory of the robot and it is able to move towards the goal location.

the robot covers the remaining distance at a constant velocity, 0.1 m/s. Fig. 6.29 (b)
depicts the distance between the robot and the goal location, D. As expected, the
robot completes the mission after the time constraint has been elapsed. Fig. 6.29 (c)
shows the variables responsible for the behavior of the robot. Initially, when t < tinit,
ustop = 1 (blue dashed-dotted line), uexecution = 0 (red dashed line) and urescue = 0
(green continuous line). Thus, the robot does not move and rotates towards the goal
location. When t > tinit, variable ustop is disabled and variable uexecution is activated.
Consequently, the robot performs its timed movement. When it is not possible to
complete the mission within MT , variable uexecution is disabled and urescue is activated,
such that the robot can complete the mission at a constant velocity.

Fig. 6.30 (a) shows the evolution of the bound of ∥D(fsupervisor)∥ along the mission.
As expected, at the moment the robot realizes that it is not possible to complete
the mission within MT , the stability indicator is not verified, as condition (4.5) does
not hold. Consequently, the contraction of the global system is not verified. The
Jacobian of the C1 feed-through map responsible for verifying the ability of the robot
to successfully complete the mission, D(ftiming), returns a value sufficiently large to set
∥D(fsupervisor)∥ >> 1 when the robot is unable to complete the mission in MT (see
fig. 6.30 (b)).

Chapter 6 Experiments 165

10 20 30 40 50 60 70 80

0.2

0.4

0.6

0.8

1

t init

v
,m

 (
m

/
s
)

Rescue

(a)

10 20 30 40 50 60 70 80

2

4

6

8

10

D
 (

m
)

t init

Rescue

MT = 50 s

(b)

0

0.5

1

1.5

u
st
o
p
,u
e
x
e
c
u
ti
o
n
,u
re
sc
u
e

RescueExecutionStop

10 20 30 40 50 60 70 80

(c)

Figure 6.29: (a) Robot’s linear velocity, v (red continuous line) and solution m
(blue dashed line). Green shadow represents the period of time in which the person
is obstructing the trajectory of the robot. Green dashed circle shows the period of
time in which the robot is unable to follow at its maximum velocity. Grey dashed line
depicts the instant of time in which the rescue behavior is activated. (b) Distance
between the robot and the goal location, D (black continuous line) and distance
in which it is assumed that the robot reaches the goal location (red dashed line),
D < 0.4 m. (c) Set of variables responsible for the behavior of the robot, ustop (blue

dashed-dotted line), uexecution (red dashed line), urescue (green continuous line).

6.2.6 Experiment 6

In this experiment, a person perturbs the robot during its mission. However, the
perturbation caused by the person is insufficient to prevent the robot to complete
successfully its mission.

Fig. 6.31 (a) depicts solution m (blue continuous line) and the amplitude of the
oscillator, A (black dashed-dotted line). Green dashed circle illustrates the period of
time in which the robot is unable to continue its mission due to the movement of the
person. During this period, the amplitude decreases to 0, and solution m decreases
accordingly to ensure a safe circumnavigation of the obstacle. After the robot has
circumnavigated this obstacle, other obstacles are detected, namely at t ≈ 47 s and
t ≈ 57 s. Fig. 6.31 (b) shows the variables responsible for the behavior of the robot.

166 Chapter 6 Experiments

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

||
D

(f
su

p
e
rv

is
o
r)
||

mission failed

(a)

10 20 30 40 50 60 70 80

0.5

1

1.5

2

x 10
17

||
D

(f
ti
m

in
g
)|
|

Time (s)

(b)

Figure 6.30: (a) Evolution of the bound of ∥D(fsupervisor)∥ along experiment 5.
Values larger than 1 mean that the mission is not successfully completed. Graphic is
bounded to 2, but for failed missions, the bound of ∥D(fsupervisor)∥ is much higher.

(b) Feed-through map, D(ftiming) identifying the nonsuccess of the mission.

Variable urescue (green continuous line) is never activated, which means that the robot
is able to complete the mission within the time constraint, MT = 50 s. Variable ustop

(blue dashed-dotted line) is activated when the robot starts the mission and when it
reaches the goal location. When the robot is performing the timed movement, uexecution

(red dashed line) is activated.
The robot is able to complete successfully its mission. Thus, the stability indicator

must identify the mission success (see fig. 6.32 (a)). Furthermore, the feed-through
map ftiming must return 1 during the mission, since the robot is able to complete the
mission within MT .

6.2.7 Experiment 7

In this experiment, the robot performs two missions. In the first one, the robot moves
from regions r1 to r2. When this mission is completed, the robot returns to its initial
position in region r1. The robot should cover 4 m in each mission. The time constraints
are MT = 20 s and MT = 40 s for the first and second missions, respectively. During
the second mission, the robot’s vision system is disabled and the robot is taken to
another position without knowing. When its vision system is activated again, it is
expected that the robot localizes itself and completes the mission with success.

Chapter 6 Experiments 167

10 20 30 40 50 60
0

0.25

0.5

m
,
A

t init

(a)

0 10 20 30 40 50 60 70
0

0.5

1

1.5

u
st
o
p
,u
e
x
e
c
u
ti
o
n
,u
re
sc
u
e

ExecutionStop

S
to
p

(b)

Figure 6.31: (a) Solution m (blue continuous line) and the amplitude of the os-
cillator, A (black dashed-dotted line). Green dashed circle shows the period of time
in which the person is disturbing the robot. (b) Set of variables responsible for the
behavior of the robot, ustop (blue dashed-dotted line), uexecution (red dashed line),

urescue (green continuous line).

Fig. 6.33 shows snapshots of the robot during this experiment. Panel A shows the
robot reaching the goal location (identified by a red square) of the first mission. Panel
B shows the robot’s vision system being disabled by occluding the camera mounted
on the robot. Panel C depicts the robot being kidnapped to the position indicated by

10 20 30 40 50 60

1

2

3

4

5

6

x 10
−4

||
D
(
f
s
u
p
e
r
v
is
o
r
)
||

(a)

10 20 30 40 50 60
0

0.5

1

1.5

2

||
D

(f
ti
m

in
g
)|
|

Time (s)

(b)

Figure 6.32: (a) Evolution of the bound of ∥D(fsupervisor)∥ along experiment 6.
(b) ∥D(ftiming)∥ identifies if the mission is completed within the time constraint.

168 Chapter 6 Experiments

the yellow arrow. The last panel shows the robot completing the second mission.

A B

C D

 Goal

Location

 Visual System

 Disabled

 Goal

Location

DKidnapping

Figure 6.33: Snapshots of the robot performing the two missions in experiment 7.
The robot is kidnapped during the second mission.

Fig. 6.34 illustrates the estimates of the robot’s pose, (x̂r, ŷr, ϕ̂) (blue continuous line)
and the robot’s pose provided by the camera mounted on top of the robot (xv, yv, ϕv)
(black circles). During the kidnapping (green areas), the robot’s vision system is
disabled and the robot is taken to another position without knowing. The new position
is far from the goal location than the position where the robot was at the time of the
kidnapping. The robot’s wheels keep rotating and the EKF only relies on the odometry
data during the kidnapping period. Therefore, the estimates of the robot’s pose are
wrong. The difference between the robot’s pose estimates and the robot’s pose provided
by the vision system after the kidnapping is approximately 1.5 m in axis x and 0.1 m in
axis y. Relatively to the robot’s heading direction, there is not significant differences
before and after the kidnapping. Even though the error on coordinate x of the robot’s
pose, the EKF estimates converge to the values provided by the vision system before
the robot completing the mission.

As the robot has to cover a larger distance than expected, once the robot is moved
to a position farther the one that it was before the kidnapping, it is expected that the
robot’s linear velocity increases to compensate the delay provoked by the kidnapping.
Fig. 6.35 (a) shows the solution m (blue continuous line) and the amplitude of the
oscillator, A (black dashed-dotted line). The robot completes the first mission without
any disturbance. During the second mission, note the increasing of the amplitude A

Chapter 6 Experiments 169

10 20 30 40 50 60 70
1

2

3

4

5

kidnapping

x
 ,
 x

(m

)
v

r^

1.5 m

(a) Coordinate x of the robot’s pose.

10 20 30 40 50 60 70

0.8

1

1.2

1.4

1.6

kidnapping

y
 ,
 y

(m

)
v

r^ 0.1 m

(b) Coordinate y of the robot’s pose.

10 20 30 40 50 60 70

1

2

3

4

5

6

Time (s)

kidnapping

 ,
 φ

(m

)
v

φ̂

(c) Orientation ϕ of the robot’s pose.

Figure 6.34: Estimates of the robot’s pose (blue continuous line) through the
EKF and robot’s pose provided by the camera (black circles). Green area shows the

interval of time when the robot is being kidnapped.

after the kidnapping, and consequently the increasing of solution m. Fig. 6.35 (b)
shows the distance covered by the robot during the two missions. It is expected that
the robot covers approximately 8 m during the two missions. However, during the
kidnapping, the robot’s wheels keep rotating, increasing the distance that the robot
believes it traveled. When the robot recovers from the kidnapping, it has to cover the
remaining distance to reach the goal location. Thus, the robot covers approximately
10 m to complete these two missions.

Despite the kidnapping during the second mission, the robot completes with success
both missions. Thus, it is expected that the stability indicator holds less than 1 during
the two missions, which can be verified in fig. 6.36.

6.2.8 Experiment 8

In this experiment, the robot is again moved to another location without being noticed.
However, this mission is more complicated than the previous one, since the robot has

170 Chapter 6 Experiments

10 20 30 40 50 60 70

0

0.1

0.2

0.3

m
,
A

t init t init

mission 1

mission 2

kidnapping
0.4

(a)

10 20 30 40 50 60 70
0

2

4

6

8

Time (s)

D
is

ta
n
c
e
 C

o
v
e
re

d
 (

m
)

t init t init

mission 1

mission 2

MT = 40 sMT = 20 s

kidnapping

(b)

Figure 6.35: (a) Solutions m (blue continuous line) and amplitude of the oscillator,
A (black dashed-dotted line). (b) Distance covered by the robot throughout the two

missions.

10 20 30 40 50 60 70

2

4

6

x 10
−3

||
D

(
f
s
u
p
e
r
v
is

o
r
)
||

Time (s)

Figure 6.36: Evolution of the bound of ∥D(fsupervisor)∥ along the two missions of
experiment 7.

to move from regions r1 (inside the laboratory) to r6 (corridor) (see fig. 6.25). To
complete this mission, the robot should navigate through a door that separates the
laboratory from the corridor. If the robot is kidnapped inside the laboratory, it must
recover its pose before reaching the door. In the case it does not, it might assume that
it already reached the door and turns towards the goal location. This will cause a long
delay in the mission, as its true position is inside the laboratory. The time constraint
for this mission is MT = 60 s.

Fig. 6.37 shows snapshots of the robot during this experiment. Panel A shows the
robot starting its mission. Panel B illustrates the disabled robot’s vision system and
the robot being moved to another location without knowing. In panel C, the robot is
passing through the door, in order to move to the corridor and reach the goal location.

Chapter 6 Experiments 171

Panel D shows the robot approaching the goal location.

A B

C D

Kidnapping

 Visual System

 Disabled

 Goal

Location

Figure 6.37: Snapshots of the robot performing the mission in experiment 8.
During this mission, the robot is kidnapped and its vision system is disabled.

Fig. 6.38 (a) shows the robot’s linear velocity, v (red continuous line). Green dashed
circle shows the period of time in which the robot’s pose estimated by the EKF is
converging to the data provided by the robot’s vision system after the kidnaping.
After the period of convergence, the robot’s linear velocity is increased, as the robot is
moved to a position farther from the goal location than it was before the kidnapping.
Fig. 6.38 (b) illustrates the distance between the robot’s position and the goal location,
D. Despite the kidnapping of the robot, it is noticeable that the robot is able to
reach the goal location within the time constraint. The robot takes 58 s to reach the
neighborhood of the goal location.

Fig. 6.39 illustrates the estimates of the robot’s pose, (x̂r, ŷr, ϕ̂) (blue continuous line)
and the robot’s pose provided by the camera mounted on top of the robot (xv, yv, ϕv)
(black circles). The green area represents the period of time in which the robot is
moved to another location, farther from the goal location, without being noticed.
During the interval of time 27 < t < 42 s, the robot’s vision system is activated, but it
does not detect any landmark due to the lighting noise. After this interval of time, the
robot starts detecting landmarks and approximately at t = 48 s, the robot’s pose has
converged. The convergence occurs before the robot reaches the door that separates
the laboratory from the corridor. Consequently, the robot is able to rotate towards
the goal location within the corridor and complete the mission with success.

172 Chapter 6 Experiments

10 20 30 40 50 60

0.1

0.2

0.3

0.4

0.5

v
 (

m
/
s
)

t init

(a)

10 20 30 40 50 60

2

4

6

8

D
 (

m
)

t init

MT = 60 s

(b)

Figure 6.38: (a) Robot’s linear velocity, v (red continuous line). (b) Distance
covered by the robot during the two missions.

Fig. 6.40 shows the limit-cycle of the Stuart-Landau oscillator. Black arrows indicate
the direction over which solutions m and n evolve. It is noticeable the increasing of
solution m (green dashed ellipse), in order to compensate the delay provoked by the
kidnapping.

The mission is successfully completed, despite the kidnapping. Consequently, it is
expected that the stability indicator identifies the success of the mission. Fig. 6.41
shows the evolution of the bound of ∥D(fsupervisor)∥ along this mission. It is below 1
during all mission, and condition (4.5) holds, identifying the success of the mission.

6.2.9 Experiment 9

In this experiment, the robot performs two missions and is kidnapped during the
second mission. In the first mission, the robot moves from regions r1 to r2. The
second mission consists on returning the robot to the original location in region r1.
The robot should cover 4 m in each mission. The time constraints are MT = 20 s and
MT = 40 s for the first and second missions, respectively. The time constraint for the
second mission is higher to allow compensating the time lost during the kidnapping.

During the second mission, the robot is kidnapped, but the localization system
is unable to recover the robot’s pose before the robot assumes that the mission is
completed. In fact, the position where the robot stops is far from the goal location.
Fig. 6.42 depicts some snapshots of this experiment. Panel A shows the robot reaching
the goal location of the first mission. Panel B shows the robot’s vision system being

Chapter 6 Experiments 173

10 20 30 40 50 60

2

4

6

x
 ,
 x

(m

)
v

r^

kidnapping

(a) Coordinate x of the robot’s pose.

10 20 30 40 50 60

−4

−3

−2

−1

0

1

y
 ,
 y

(m

)
v

r^

kidnapping

(b) Coordinate y of the robot’s pose.

10 20 30 40 50 60

1

2

3

4

5

6

φ
 ,
 φ

(r

a
d
)

v
^

kidnapping

(c) Orientation ϕ of the robot’s pose.

Figure 6.39: Estimates of the robot’s pose (blue continuous line) through the
EKF and robot’s pose provided by the camera (black circles). Green area shows the

interval of time when the robot is being kidnapped.

disabled. Panel C shows the robot being kidnapped and panel D depicts the position
where the robot stops, which is at a distance of 2 m from the goal location.

Fig. 6.43 depicts the estimates of the robot’s pose, (x̂r, ŷr, ϕ̂) (blue continuous line)
and the robot’s pose provided by the camera mounted on top of the robot (xv, yv, ϕv)
(black circles). The kidnapping and the deactivation of the robot’s vision system
occurs in the interval of time 41 < t < 60 s, represented by the green area. After the
kidnapping, the robot’s vision system is unable to detect any landmark, due to lighting
noise. Consequently, as the EKF relies only on odometry during the period in which
the robot is being kidnapped, the robot will be lost, since only the odometry data is
being updated. The robot will believe that it already reached the goal location, when
its true position is approximately at 2 m from the goal location.

Fig. 6.44 (a) shows the robot’s linear velocity, v (red continuous line) and the
solution m (blue dashed line). The green area stands for the period of time in which
the robot is being kidnapped and its vision system is disabled. As the robot’s vision
system is unable to recover the robot’s pose after the kidnapping, the EKF continues
estimating the robot’s pose only based on odometry. The robot is unable to detect this

174 Chapter 6 Experiments

0 0.1 0.2 0.3 0.4 0.5

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

m

n

Figure 6.40: Limit-cycle of the Stuart-Landau oscillator when the robot is kid-
napped and its amplitude is increased to compensate the provoked delay. Green
dashed ellipse shows the increasing and decreasing of the solutions required to solve

the kidnapping.

10 20 30 40 50 60

0.5

1

1.5

2

2.5

3

x 10
−6

||
D

(
f
s
u
p
e
r
v
is

o
r
)
||

Time (s)

Figure 6.41: Evolution of the bound of ∥D(fsupervisor)∥ along the two missions of
experiment 8.

catastrophic failure and stops moving before reaching the goal location. As shown in
fig.6.44 (b), the robot finishes both missions in the neighborhood of both goal locations.
In mission 1, both vision and odometry data are used by the EKF to estimate the
robot’s pose. However, in mission 2 only odometry is used. Therefore, the robot is
unable to detect any kidnapping and re-localize itself.

Fig. 6.45 shows that ∥D(fsupervisor)∥ remains below 1 during this experiment, which
means that the robot believes that the mission is successfully completed. In fact, this is
true if only considering the information the robot has available to estimate its robot’s
pose. Moreover, it is expected that eventually, a landmark will be detected and the
robot would be able to recover its pose. Nevertheless, this does not happen before
mission 2 has been completed.

Chapter 6 Experiments 175

A B

C D

 Visual System

 Disabled

Kidnapping

 Goal

Location

 Goal

Location

Figure 6.42: Snapshots of the robot performing a mission in which it is kidnapped
and does not reach the goal location.

6.2.10 Experiment 10

In this experiment, the robot must pass through a narrow passage and reach a goal
location at the end of the passage. As a result of the narrow passage, the mechanism for
reducing the robot’s linear velocity (3.59) prevents the robot to follow at the required
velocity to complete the mission within MT = 20 s. Consequently, the robot will be
delayed and unable to complete successfully this mission.

Fig. 6.46 shows snapshots of this experiment. Panel A illustrates the beginning of
the mission. In panels B and C, the robot is moving inside the tunnel and in panel D
the robot reaches the goal location.

Even though the robot is able to reach the goal location, the time constraint for
this mission is not verified. The robot’s linear velocity is reduced, so the robot is
able to safely traverse the narrow passage. Fig. 6.47 shows the evolution of the
bound of ∥D(fsupervisor)∥ along the mission. At t ≈ 22 s, the robot is unable to
complete the mission in MT . Thus, D(ftiming), returns a value sufficiently large to set
||D(fsupervisor)|| >> 1.

6.2.11 Experiment 11

In this experiment, the robot performs a long-term mission consisting on reaching a
sequence of 7 different goal locations. The sequence is repeated 70 times, performing

176 Chapter 6 Experiments

10 20 30 40 50 60 70
1

2

3

4

5

x
 ,
 x

(m

)
v

r^

visual system

disable and

kidnapping

(a) Coordinate x of the robot’s pose.

10 20 30 40 50 60 70

0.5

1

1.5

y
 ,
 y

(m

)
v

r^

visual system

disable and

kidnapping

Time (s)

(b) Coordinate y of the robot’s pose.

Figure 6.43: Estimates of the robot’s pose (blue continuous line) through the
EKF and robot’s pose provided by the camera (black circles). Green area shows the
interval of time when the robot is being kidnapped and its vision system is disabled.

10 20 30 40 50 60 70

0.1

0.2

0.3

0.4

0.5

v
,m

 (
m

/
s)

t init t init

visual system

disable and

kidnapping

(a)

10 20 30 40 50 60 70

1

2

3

4

t init

MT = 40 s
MT = 20 s

t init

D
 (

m
)

Time (s)

(b)

Figure 6.44: (a) Robot’s linear velocity, v (red continuous line) and solution m
generated by the Stuart-Landau oscillator (blue dashed line). (b) Distance covered

by the robot during the two missions.

490 missions. When the final goal of the sequence is reached, the robot’s next goal is
set as the first mission, thus repeating the cycle. These goal locations are chosen, so
the robot covers a large part of the free space in the environment.

During these multiple missions, the robot faces several situations, usually found in
disturbed environments, such as, static obstacles and people moving around. While

Chapter 6 Experiments 177

10 20 30 40 50 60 70

0.02

0.04

0.06

0.08

||
D

(
f
s
u
p
e
r
v
is

o
r
)
||

Time (s)

Figure 6.45: Evolution of the bound of ∥D(fsupervisor)∥ along the two missions of
experiment 9.

A B

C D
 Goal

Location

Figure 6.46: Snapshots of the robot moving in a narrow passage.

some people collaborate with the robot by following a suitable trajectory to avoid
colliding with it, others try to obstruct the robot by standing up in front of it and
complicating its trajectory.

Fig. 6.48 illustrates some situations that the robot has to face during the long-term
mission. Panels 1, 2, 4, 7 and 8 show the robot moving in the corridor, while the other
panels show the robot in the laboratory.

The total time spent by the robot to complete the missions is approximately 6 hours,
covering a total distance of approximately 4200 m. Fig. 6.49 depicts the trajectory
performed by the robot during the missions. This trajectory is estimated through the
EKF. The blue circles illustrate the 7 goal locations. Note that the robot reaches the
neighborhood of these goal locations. Red dashed ellipses depict 3 situations in which
the error between the robot’s pose estimates and the ground truth was higher than

178 Chapter 6 Experiments

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

mission failed

||
D

(f
su

p
e
rv

is
o
r)
||

Time (s)

Figure 6.47: Evolution of the bound of ∥D(fsupervisor)∥ along the mission of ex-
periment 10.

1 32 4

5 6 7 8

Figure 6.48: Snapshots of the robot performing the long-term mission. These
images are captured by a camera mounted on top of the robot and pointing forwards.

0.4 m. Despite these errors, the robot is able to re-localize itself in such situations.
These errors occur because the robot travels a large distance without detecting a
landmark. The re-localization is possible because eventually, a landmark on the ceiling
is detected and the reset operation of the estimates is triggered.

Fig. 6.50 shows the evolution of the bound of ∥D(fsupervisor)∥. Condition (4.5) holds
when the mission is completed within MT and does not hold when the mission fails (see
red data for failed missions). During the 6 hours of movement, the robot fails to reach
the goal location within the time constraint in 17 missions. Despite the unsuccessful
of the missions in terms of time constraints, the robot reaches the goal location of the
missions.

The failed missions occur because of two reasons. The first one, and the one that
causes more failed situations (14 in 490 missions), is the high density of obstacles in the
environment. These obstacles create complex situations, in which the robot is unable
to handle them. The other reason that lead to the failure of 3 missions, is the large
error on the robot’s vision system during these missions. This happens because the
robot remains a long time without detecting a landmark. The robot’s pose estimates

Chapter 6 Experiments 179

Figure 6.49: Estimates given by the EKF of the trajectory followed by the robot.
Striped areas represent forbidden space. Red dashed lines stand for the critical lines
dividing the regions. Blue circles illustrate the 7 goal locations where the respective
missions end. Red dashed ellipses show situations in which the error of the robot’s

pose was larger than 0.4 m.

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

||
D

(f
su

p
e
rv

is
o
r)
||

Time (hours)

Figure 6.50: Evolution of the bound of ∥D(fsupervisor)∥ along the sequence of
missions. Values larger than 1 mean that the mission is not successfully completed.
Graphic is bounded to 2, but for failed missions the bound of ∥D(fsupervisor)∥ is much

higher.

are being updated only through the odometry, which become unreliable after a few
meters of displacement or when the robot rotates.

In terms of a dependability analysis, the architecture is evaluated in terms of in-
tegrity, reliability and safety. Regarding the integrity analysis, the localization system
is able to re-localize the robot from the catastrophic failures occurred in these 3 mis-
sions, when a landmark is detected and the reset operation activated. However, the
convergence of the Localization System is not sufficiently fast to allow that the robot
completes the 3 missions in due time.

In terms of safety, despite the several obstacles that the robot has to face, only
one collision is recorded. In fact, the robot collides with one wheel of the cleaning
cart in the corridor, when the cleaning staff is operating. This occurs because the
laser or sonars of the robot do not detect the cleaning cart wheels. Nevertheless,
after the collision, the robot is able to continue moving towards the goal location and

180 Chapter 6 Experiments

successfully complete the respective mission.
During the missions, the robot fails to reach the goal location within the time

constraint, MT , in 17 missions, yielding a reliability percentage of approximately
96.5% (17/490).

6.2.12 Experiment 12

At the beginning of this experiment, a set of 242 locations over the environment are
randomly generated, such that no two successive locations are from the same region
of the environment. Sequentially, the robot has to autonomously navigate to these
locations. The time MT for each mission is also randomly generated, so the required
average robot’s linear velocity to complete the mission is 0.30 m/s.

Fig. 6.51 depicts the goal location for the missions in this experiment (green circles
for success missions and red crosses for failed missions). During the missions, the robot
faces the same difficulties found in the previous experiments. The percentage of failed
missions is higher inside the laboratory, (regions r1, r2, r3, r4, r5), than in the corridor
(region r6). The laboratory has more narrow spaces, which facilitates the creation of
unlucky obstacles configurations that prevent the robot to reach the goal within the
assigned MT .

r1

r2

r3 r4

r5

r6

Figure 6.51: Goal locations Pg of the missions performed by the robot during
experiment 12. Green circles represent successful missions whereas red crosses rep-
resent unsuccessfully missions. There is a total number of 230 successful missions

and 12 unsuccessfully missions.

The robot performs 242 missions and covers a distance of approximately 1261 m in
approximately 2 hours. Results of this experiment are summarized in table 6.2. The
average MT for each mission is approximately 22 s, and the average linear velocity
is 0.27 m/s. Note that this velocity is lower than the required average velocity used
to calculate MT (0.30 m/s). This is a consequence of the failed missions, in which

Chapter 6 Experiments 181

the robot moves at a low velocity (0.1 m/s) when it verifies that the goal location is
unreachable in the remaining time. The percentage of successful missions in this ex-
periment (95%) is slightly lower than the percentage verified in experiment 11 (96.5%).
This means that the robot has more difficult to complete the missions within their time
constraints. The reason for the decrease in the success of the missions is that some of
the random goal locations are difficult for the robot to reach them (e.g., corners and
locations close to obstacles).

Table 6.2: Results of the sequential missions performed in experiment 12.

Number of
missions

Time
(s)

Average
Velocity
(m/s)

Maximum
Velocity
(m/s)

Distance
Covered

(m)

Average MT
(s) Fails

242 7057 0.27 0.8 1261 22.2 12

Fig. 6.52 depicts ∥D(fsupervisor)∥. Clearly, condition (4.5) holds when the missions
are successfully completed. Once again, when the robot does not complete the mission
within MT , condition (4.5) is not verified.

1000 2000 3000 4000 5000 6000 7000
0

0.2

0.4

0.6

0.8

1

Time (s)

||
D

(
f
s
u
p
e
r
v
is

o
r
)
||

Figure 6.52: Evolution of the bound of ∥D(fsupervisor)∥ along the sequence of
missions. Values larger than 1 mean that the mission is not successfully completed.

6.3 Discussion of the experiments

In this chapter, several simulations and real experiments in a dynamic and cluttered
indoor environment were performed. These experiments allowed verifying the behavior
of the robot while performing missions under different situations. During the missions,
the robot detected static and dynamic obstacles, navigated through narrow passages
and was kidnapped to other locations without being noticed.

The robot successfully avoided the detected obstacles, excepting a cleaning cart,
whose wheels were not detected by the laser or sonars. During the kidnappings, the
robot’s pose was being updated only through the odometry data, since the robot’s
vision system was disabled. Consequently, the robot was lost. After the kidnappings,

182 Chapter 6 Experiments

the robot’s localization system took approximately 5 s, after detecting at least one
landmark, to recover to the true robot’s pose. This convergence time could be reduced,
if a larger weight in the EKF estimates was given to the robot’s vision system. However,
the odometry would had a negligible contribution, even for shorter distances.

In the long-term missions, the robot traveled 5460 m in approximately 8 hours and
performed 732 missions. The percentage of successful missions was approximately 97%
(710/732), i.e., the robot failed 22 missions. The majority of these failed missions were
caused by complex configurations of obstacles. The robot spent much time to handle
them and it was unable to complete the missions in due time. The remaining missions
were failed because of the large error on the robot’s vision system. Even though these
missions were not completed in due time, the robot succeeded to reach the goal location
of each mission. In the simulation experiments, the robot successfully avoided typical
hospital obstacles and performed delivery missions during approximately 9.30 hours.

When the mission was successfully completed, the robot reached the goal location
within its respective time constraint. However, the time that the robot took to com-
plete the mission was less than the time constraint. This was due to the distance ϵ. In
general, the robot completed a mission in 88% of the time constraint of the respective
mission. The standard deviation was approximately 8%. A more accurate localization
system could reduce the assumed value of ϵ. Consequently, the average time to com-
plete the mission would be closer to the time constraint of the mission. Furthermore,
the standard deviation would also be reduced.

The performance condition based on the Contraction Theory identified the ability
of the robot to complete with success its missions. In cases where the robot failed
to complete the mission, ∥D(fsupervisor)∥ was greater than 1. Otherwise, the bound of
∥D(fsupervisor)∥ was below 1.

Chapter 7

Conclusions

This thesis addresses a robot control architecture based on nonlinear dynamical sys-
tems. The architecture is in charge of controlling a mobile robot, so that it performs
delivery missions with time constraints between different locations in an indoor en-
vironment. Three modules of control compose the architecture. Motion and Local
Control modules are responsible for generating an angular velocity that safely guides
the robot towards the goal locations. Timing Control module generates the linear ve-
locity that enables the robot to complete its mission within the time constraint. Each
module of the architecture is parameterized under stability conditions derived through
the Contraction Theory. Furthermore, a stability indicator based on the combination
property of the Contraction Theory allows identifying the success of the missions as a
stability problem. Several long-term experiments in an indoor environment show the
ability of the architecture to guide the robot along its missions and the capability of
the stability indicator to classify missions as failed or success.

This final chapter starts with a section summarizing the subjects addressed through-
out the thesis. The second section overviews the achieved original contributions and
includes a general discussion about the work. The final section addresses several pos-
sibilities for future research.

7.1 Addressed Subjects

Section 2.5 addresses the requirements for autonomous navigation of mobile robots in
cluttered and dynamic environments. These were: (1) the need for including time con-
straints in missions performed by a robot. (2) The development of an architecture that
drives the robot so that it follows the fastest path while avoiding obstacles. (3) De-
sign principles for complex control architectures. (4) The need to analyze the mission

183

184 Chapter 7 Conclusions

success as a stability problem and (5) lack of results in previous studies demonstrating
the stability and behavior of robots when performing long-term missions.

These problems were tackled throughout this thesis as shown by the following topics:

• (1) The Timing Control that fulfills the timing constraints of the mission is
detailed in section 3.4. This module includes the three-iterative algorithm that
calculates the remaining distance to reach the goal location in section 3.4.2.1
and the heuristic rule that reduces the robot’s linear velocity in the vicinity of
obstacles in section 3.4.3.

• (2) The Motion Control capable of generating the trajectories for the robot is
depicted in section 3.2. This module includes the critical areas that handle the
uncertainty on the robot’s position in section 3.2.5 and the dynamical system
responsible for generating the local goals in section 3.2.6. Furthermore, the
Local Control responsible for avoiding obstacles and driving the robot towards
the goal locations is described in section 3.3.

• (3) The performance condition that identifies the mission success as a stability
measure is derived in section 4.2.

• (4) The stability analysis of the proposed architecture through the Contraction
Theory is described in section 4.3.

• (5) The optimal landmark distribution necessary for the Localization System is
illustrated in section 5.6.1. A dependability analysis of the Localization System
is verified in section 5.7. The performed experiments, including the long-term
ones, are shown in chapter 6.

7.2 Summary of Contributions

The contributions of this thesis are divided in three main research directions: (1) the
development of a control architecture based on nonlinear dynamical systems, respon-
sible for generating timed movements for a mobile robot while guiding it in an indoor
environment; (2) a stability analysis based on the Contraction Theory that infers
conditions so that the modules of the architecture are designed on top of stability con-
ditions. Furthermore, the combination property of the Contraction Theory is used to
obtain a stability indicator that verifies the ability of the robot to successfully complete
its missions; (3) realization of long-term field experiments that experimentally show

Chapter 7 Conclusions 185

the ability of the architecture to drive the robot, and the ability of the performance
condition to identify failed and successful missions as a stability problem.

(1) Control architecture based on nonlinear dynamical systems

The proposed architecture is fully designed in terms of C1 nonlinear dynamical
systems and feed-through maps. It contains three modules of control, namely, Motion,
Local and Timing.

The Local Control module (chapter 3) explores the dynamical systems theory to
control the robot’s heading direction, and thus guide the robot along the environment.
Sensory information is included into the dynamical system, in order to verify the
presence of obstacles. If obstacles are detected, repulsive values change the robot’s
heading direction so that the robot avoids the obstacles.

1. Works that adopted the dynamical systems theory to guide mobile robots [1,
83, 85, 289], used low cost sensors, such as sonars or infrared to sense the en-
vironment. The number of sensors was limited, but the dynamical approach
successfully guided the robot towards its goal locations in environments with few
obstacles. This thesis contributed to show the feasibility of this dynamical ap-
proach for obstacle avoidance when the robot uses a laser range finder in complex
environments with unpredictable obstacles (chapter 6).

This local planner method based on the dynamical systems theory successfully
guided the robot throughout the missions with time constraints in cluttered and
dynamic environments during long-term missions. However, this local planner
takes a long time to overcome some configurations of obstacles.

The Timing Control module (chapter 3) explores the Stuart-Landau oscillator to
control the robot’s linear velocity. This oscillator contains a Hopf bifurcation that
modifies the generated solution from a stable fixed point to a limit cycle, or vice versa.
The stable fixed point generates a constant or null velocity, depending on the solution
offset. The limit cycle solution is adapted to accelerate or decelerate the robot’s linear
velocity, such that the mission is accomplished within its time constraint. In cases
where the robot is delayed, the amplitude of the oscillator increases and the robot’s
linear velocity increases as well. When the robot needs to decrease its velocity, the
amplitude is reduced and the robot slows down. This real-time adaptation of the
robot’s linear velocity is possible if the robot knows the remaining distance to reach
the goal location.

186 Chapter 7 Conclusions

2. The main innovation of this module regarding previous works [1, 3, 13, 85, 151]
is the extension of the dynamic approach to generate and modulate the robot’s
linear velocity, when dealing with global and local path planning in complex
environments. The difference to these works is the calculus of the remaining dis-
tance that the robot has to cover for each mission. In such works, the remaining
distance was calculated through the Euclidean distance between the goal location
and the current robot’s position, since both locations were in the same region of
the environment.

In this work, a three-step iterative algorithm (section 3.4.2.1) considers the se-
quence of regions that the robot has to traverse and the current robot’s position
to calculate the distance the robot has to cover. Real experiments and simula-
tions showed the feasibility of this three-step iterative algorithm to calculate the
remaining distance the robot has to cover.

It can be concluded that the robot’s linear velocity generated by the Timing
Control module was successfully generated and adapted in real-time, in cases
where the robot was delayed.

(2) Stability analysis and mission success

Contraction Mapping Theory was used as a stability theory framework to design,
specify and analyze the dynamical systems of the control architecture. The stability
analysis derived conditions used as guidelines to define the parameters of the dynamical
systems, so that the contraction or eventual contraction of each dynamical system is
verified. Ensuring that a dynamical system is contracting or eventually contracting
guarantees the exponential convergence to its unique equilibrium state, independently
of its initial conditions.

3. Previous works [270–273, 275] that used Contraction Theory to prove stability
of control architectures did not consider the integration of timing control, global
and local navigation into the same architecture.

This thesis contributed to verify the feasibility of the Contraction Theory to
derive stability conditions for a navigation architecture able of generating timed
movements, local and global path planning (chapter 4).

It can be concluded that Contraction Theory is an important method from sta-
bility theory to provide conditions that ensure the exponential stability of the
navigation architecture. This thesis provided sufficient formal and experimental

Chapter 7 Conclusions 187

results showing that Contraction Theory is an alternative to Lyapunov stability
to establish exponential stability of nonlinear systems.

The combination property of the Contraction Theory (section 4.2) provides freedom
in the architecture design. The knowledge of the internal organization of the archi-
tecture is not required to prove its contraction. Furthermore, for a generic robot, for
which there is no information on its structure, the contraction of the architecture is
viewed as a weak performance condition that identifies the mission success.

4. This thesis showed that the combination property of the Contraction Theory
allows the inclusion of additional constraints into the architecture. In this work,
the mission constraint was time, but others could be added as well.

The performance condition identified as a stability measure the ability of the
robot to complete with success its missions. This shows the usefulness that Con-
traction Theory, in particular its combination property, provides to the stability
analysis of complex real-time control architectures.

(3) Long-term experiments

Despite the great importance of stability theory to design stable architectures for
mobile robots, there is no extensive research addressing the architecture stability when
robots move in real environments. Works [270–273, 275] that used Contraction Theory
lack in robustness when both the robot and environment include external perturbations
into the global system. Besides, the obtained results were achieved in simulation. On
the other hand, long-term experiments allow to verify if the architecture is able to
drive the mobile robot for large periods of time.

5. This thesis yielded stability analysis results of an architecture that guides a mo-
bile robot in long-term experiments in a typical university indoor environment.
The experiments showed that the dynamical systems remained stable even when
perturbations of the environment affect the architecture. Furthermore, Contrac-
tion Theory is a suitable stability theory framework to verify the stability of the
architecture in real environments.

7.3 Outlook

The work described in this thesis offers several possibilities for further research. These
are focused on improving the major limitations identified throughout the thesis.

188 Chapter 7 Conclusions

A first limitation was identified on the local planner method based on the dynamical
systems approach. This method presented difficulties to handle complex configuration
of obstacles. The Gaussian noise added to the vector field to ensure an escape from
local minima in finite time is a poor solution. If the added noise level is high, the robot
presents an oscillatory behavior. If the noise level is low, the robot might take longer
to avoid some complex configurations of obstacles. This might imply higher velocities
to fulfill the time constraint of the mission. A future improvement is to use other C1

local planner methods that avoid local minima and present better performance when
dealing with complex configuration of obstacles.

The Localization System uses artificial landmarks distributed a priori along the
environment, in order to estimate the robot’s pose. In large environments, such as
hospitals, the number of required landmarks could be about thousands, if comparing
to the number of landmarks used in this work. A further research direction could be
exploited to reduce the number of required landmarks. A typical solution is to use a
camera with a wider field of view, so that the distance between landmarks increases and
fewer landmarks are necessary to ensure that at least one landmark is always visible by
the robot. Other solution could be use the natural landmarks already present in the
environment, as doors, corners, walls, etc. Combining natural with artificial landmarks
or using only natural landmarks is an alternative solution to estimate the robot’s pose
without the need to distribute thousands of artificial landmarks in the environment.

The robot’s pose estimates provided by the Localization System were obtained
through a combination of odometry and vision data. A typical solution that could
improve the accuracy of the robot’s pose estimates is to match the acquired sensory
information with an a priori built map of the environment. Furthermore, using maps
to localize the robot could be an important alternative for when the camera mounted
on the robot is not detecting any landmark. The fusion of vision and odometry data
was obtained through an Extended Kalman Filter. The inclusion of more sensors to
estimate the robot’s pose is possible, however, the reset operation would have to be
updated. The weight that each sensor contributes to the estimates has to be calculated
when sensors are added or replaced.

The stability results provided in this thesis were obtained through the Contraction
Theory, which relied on smoothness assumptions, and thus on the use of C1 dynam-
ical systems and feed-through maps. A future improvement should provide to the
stability analysis the ability to deal with non-smooth dynamics. For instance, transi-
tions between solutions of dynamical systems can be studied through the bifurcation
theory. Other solution includes converting non-smooth dynamical systems to C1 dy-
namical systems. For instance, a non-smooth dynamical system can be partitioned

Chapter 7 Conclusions 189

into several pieces, on which smoothness holds (piecewise smoothness). Using bifurca-
tion theory [80] or piecewise smoothness [280] to analyze non-smooth dynamics allows
the inclusion of new control algorithms into the architecture, which could handle for
instance the navigation limitations, namely on the Local Control module.

The experiments accomplished along this work were done in a typical university
indoor environment, in order to mimic the conditions that a mobile robot would face
in a hospital. The university indoor has static and dynamic obstacles, as well as
narrow passages and doors. However, a real hospital environment provides unexpected
situations that were not covered in the performed experiments and must be solved when
considering the real application. For instance, how do patients and staff interact with
the robot, how do the robot should behave when it is unable to finish the mission within
the time constraint, or in emergency cases, such as evacuations and fires? Shall the
robot stop and give priority to medical staff and persons in hallways or shall the robot
try to circumnavigate them? All these situations must be handled by the architecture
of the robot. Experiments in a hospital environment could provide additional insights
to the previous questions.

In fact, when running an autonomous mobile robot in real environments, safety
and operability issues are of major importance. In safety terms, it is necessary that
the robot detects all the unexpected obstacles that can appear in the environment.
The robot’s scanning area must be maximized, such that there are no blind areas
where obstacles are undetected. A typical solution to maximize the scanning area is
to combine multiple sensors, such as cameras, bumpers, sonars, infrared and lasers.

In operability terms, the robot must check the charge level of its batteries, in such a
way that when the charge level is low, the robot must autonomously move to a charging
station. When the robot is charging its batteries or performing a mission, it is unable
to accomplish a new mission. Consequently, a high level of control must supervisor and
assign the new delivery missions to the available robots. Furthermore, mobile robots
must be as autonomous as possible from human intervention. Thus, robots should
be able to control elevators and electronic doors, in order to freely navigate in indoor
environments. However, in case of failures, the robot must stop, alert the failure and
wait for the human intervention.

This architecture has been developed with the focus of guiding delivery mobile
robots in hospital environments. However, this architecture could be applied to other
robotic applications. Timed movements can be suitable for a wide variety of robots
in charge or domestic tasks, such as cleaning, mowing or vacuum tasks. Robots will
be controlled such that their tasks are finished within time constraints. This is an
alternative to controllers that assume that sooner or later the robots will complete the

190 Chapter 7 Conclusions

domestic tasks. In warehouses, delivery robots can perform timed deliveries. These
environments are less disturbed than hospitals and therefore the generation and mod-
ulation of the trajectory followed by the robot is more simple. In shopping malls,
airports or other public spaces, exhibitory or publicity robots can make timed tours.

Appendix A

A.1 World Representations

Fig. A.1 illustrates the simulated environment (see fig. 5.6) represented by an occu-
pancy grid, a topological and a landmark-based representation. The occupancy grid
divides the environment into equal-sized cells. The topological map represents the en-
vironment through a set of regions and corridors and landmark-based representation
uses known landmarks.

Occupancy Grid Topological Landmark-based

Figure A.1: Representation of the simulated environment using occupancy grid,
topological and landmark-based representations. Crosses represent landmarks.

A.2 Orthogonal Projection

A representation of the orthogonal projection of the robot’s position Pr onto a critical
line can be viewed in fig. A.2.

The line segment li,i+1 that includes the points P1i and P2i and the line segment
that includes the points Pr and Pb are perpendicular, and their slopes are the negative
reciprocals of each other. Both line segments can be identified by their parametric

191

192 Appendix A

l (i,i+1)

P

Pb

r

P
2i

P
1i l

(r,b)

(x
2i,

 y
2i)

(x
1i,

 y
1i)

(x
r,

 y
r
)

Figure A.2: Projection of the robot’s position, Pr, onto the critical line, li,i+1. P1i
and P2i are the extremities of the respective critical line.

representations as follows,

li,i+1
.= y1 = m1x1 + b1, (A.1)

lr,b
.= y2 = m2x2 + b2. (A.2)

Substituting m1 and m2 by the respective slopes and b1 and b2 by their intersection
on y-axes, the following equations are obtained,

y1 = −
(
x2i − x1i

y2i − y1i

)
x1 + yr +

(
x2i − x1i

y2i − y1i

)
xr, (A.3)

y2 =
(
y2i − y1i

x2i − x1i

)
x2 + y2i −

(
y2i − y1i

x2i − x1i

)
x2i (A.4)

At point Pb(xb, yb), the y1 and y2 intersect each other, and this point can be calcu-
lated as follows,

xb =
y2i −

(
y2i−y1i

x2i−x1i

)
x2i − yr −

(
x2i−x1i

y2i−y1i

)
xr

−
(
x2i−x1i

y2i−y1i

)
−
(
y2i−y1i

x2i−x1i

) , (A.5)

yb =
(
y2i − y1i

x2i − x1i

)
xb + y2i −

(
y2i − y1i

x2i − x1i

)
x2i. (A.6)

A.3 Stuart-Landau oscillator

The topological type of the Stuart-Landau oscillator can be modified, since it contains
an Hopf bifurcation, which occurs by changing the value of parameter µ. The solution
bifurcates to either a limit cycle (µ > 0) with amplitude A to a fixed point (m,n) =
(Om, 0), (µ < 0, see Theorem 1 in section 4.4 in [80]). When µ = 0, the solution

Appendix A 193

remains in the current solution (limit cycle or a fixed point). These phase portraits
are shown in fig. A.3.

µ < 0 µ > 0 µ = 0

m m m

n n n

Om

Figure A.3: Phase portraits of the Stuart-Landau oscillator depicted in (3.35)-
(3.36).

The bifurcation diagram of the Stuart-Landau oscillator is shown in fig. A.4. The
upper curve in the bifurcation diagram represents the one-parameter family of limit
cycles Γµ = √

µ(cos t, sin t)T which defines a surface in R2 ×R.

µ

r

0

n

µ

m

Γµ

Figure A.4: The bifurcation diagram and the one-parameter family of limit cycles
Γµ resulting from the Hopf bifurcation.

The control parameters of the Stuart-Landau oscillator (µ, Om, ω and α) are used
to explicitly modulate the generated solutions m and n.

The amplitude of the oscillations A is controlled by parameter µ, A = √
µ for

µ > 0. Fig. A.5 depicts an example of the oscillator solutions when µ changes, and the
amplitude A changes accordingly. Initially, A = 1 and the oscillations vary between
-1 and 1. At time t = 3s, the amplitude changes to A = 4 and the oscillations vary
between -4 and 4. At time t = 6s, the amplitude is again A = 1.

194 Appendix A

−4

−2

2

4

0 1 2 3 4 5 6 7 8 9 10

m
,n

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10

2A 2A

A

A

Time (s)

µ
√

0

Figure A.5: Smooth modulation of the generated trajectory amplitude (top panel)
by modifying parameter µ (bottom panel). Blue continuous line and green dashed

line represent the state variable m and n, respectively.

Parameter ω specifies the oscillations frequency (rad.s−1), with a periodic oscillation
of T = 2π

ω
s. Fig. A.6 shows an example of solutions (m,n) when the frequency ω is

changed. In fig. A.6 (a) the frequency is ω = π (rad.s−1), and in fig. A.6 (b), ω = π
2

(rad.s−1). The ω signal controls the limit cycle direction: for positive ω values, ω > 0,

0 1 2 3 4 5 6 7 8 9 10

Time (s)

m
,n

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) ω = π (rad.s−1)

0 1 2 3 4 5 6 7 8 9 10

m
,n

Time (s)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) ω = π
2 (rad.s−1)

Figure A.6: Harmonic oscillations with different periods.

the limit cycle rotates counter-clockwise; for negative ω values, ω < 0, it rotates
clockwise (see fig. A.7).

Parameter Om controls the offset of the solution m. Fig. A.8 illustrates Om (dashed
red line) that initially is 0 and A = 1. At time t = 6 s, Om changes to Om = −2 and
solution m (blue continuous line) converges to oscillate around Om.

Control parameter, α, defines the relaxation rate, given by 1
2αµ , of the generated

solutions. The larger α, the faster the solutions converge to the steady state value.

Appendix A 195

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

n

m

(a) Counter clockwise limit-cycle. ω = π rad.s−1

n

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

m

(b) Clockwise limit-cycle. ω = −π rad.s−1

Figure A.7: Limit-cycles for different signals of frequency ω.

0 2 4 6 8 10

Time (s)

-2

-1

0

1

2

-3

m
,O

m

O = 0m

O = -2m

Figure A.8: Offset Om (dashed red line) and state variable m (blue continuous
line) superimposed. During the interval of time 0 < t < 6s, Om = 0. At t = 6s, Om
is changed to −2 and the system quickly converges to oscillate around that value.

A.4 C1 Dynamical Systems

Henceforward, it is assumed that sgn(x) refers a signum function of a real number x,

sgn(x) =

−1 if x < 0
0 if x = 0
1 if x > 0

(A.7)

A dynamical system or a feed-through map is said to be C1 if their first derivatives
exist and are continuous in R.

Feed-through map f2 receives the distance, uk, between the robot’s position, Pr,
and the goal location, Pb,

f2 , ek = tanh (b (uk − 2τ)). (A.8)

196 Appendix A

Its first derivative is described as follows,

∂f2

∂uk
= −b (tanh(b (2τ − uk))2 − 1), (A.9)

which is clearly continuous in R.
Feed-through map f3 receives parameter ek given by f2,

f3 , Lk = tanh (b ek)li,i+1 + tanh (b (1 − ek))li+1,i+2. (A.10)

Its first derivatives are described as follows,

∂f3

∂ek
= −b li,i+1 tanh

(
(b ek)2 − 1

)
+ b li+1,i+2 tanh

(
(b (1 − ek)2) − 1

)
,

∂f3

∂li,i+1
= tanh (b ek),

∂f3

∂li+1,i+2
= tanh (b (1 − ek)), (A.11)

and clearly, they are continuous in R.
The first derivatives of the dynamical systems f4 relative to xbk

and f5 relative to
ybk

are described as follows,

∂f4

∂xbk

= 1 + λtrdk, (A.12)

∂f5

∂ybk

= 1 + λtrdk. (A.13)

Clearly, the first derivatives of f4 and f5 are continuous in R.
For the analysis of feed-through map f6, consider that xk = ybk

−yrk

xbk
−xrk

. Thus, f6 can
be written as,

f6 , ψtark
= arctan (xk), (A.14)

and its first derivative is given by,

∂f6

∂xk
= 1
x2
k + 1

, (A.15)

which is clearly continuous in R.
Feed-through maps f7a and f7b

are similar and for the purposes of the C1 analysis, it
is assumed that xk =

(
tan

(
∆θ
2

)
+ Rrobot

Rrobot+dl,i

)
and yk =

(
tan

(
∆θs

2

)
+ Rrobot

Rrobot+ds,i

)
. Their

Appendix A 197

first derivatives are given as follows,

∂f7a

∂xk
= 1
x2
k + 1

, (A.16)

∂f7b

∂yk
= 1
y2
k + 1

, (A.17)

which are continuous in R.
The derivatives of the dynamical system f8 are given as,

∂f8

∂ϕk+1
= 1 +

−
Nl∑
i=1

λobs,i exp
[

−(ϕk−ψobs,i)2

2σ2
obs,ik

]
2 (ϕk − ψobs)2

σ2
obs,ik

+ λobs,i exp
[

− (ϕk − ψobs,i)2

2σ2
obs,ik

]
−

Ns∑
i=1

λsobs,i exp
[

−(ϕk−ψsobs,i)2

2σ2
sobs,ik

]
(ϕ2

k − ψ2
sobs)

σ2
sobs,ik

+ λsobs,i exp
[

− (ϕk − ψsobs,i)2

2σ2
sobs,ik

]
+ λtar cos (ϕk − ψtar)

)
dk, (A.18)

∂f8

∂σobs,ik
=

Nl∑
i=1

λobs,i exp
[

−(ϕk − ψobs,i)2

2σ2
obs,ik

]
(ϕk − ψobs)3

σ3
obs,ik

dk, (A.19)

∂f8

∂σsobs,ik
=

Ns∑
i=1

λsobs,i exp
[

−(ϕk − ψsobs,i)2

2σ2
sobs,ik

]
(ϕk − ψsobs)3

σ3
sobs,ik

dk, (A.20)

∂f8

∂ψobs,ik
=

Nl∑
i=1

λobs,i exp
[

−(ϕk−ψobs,i)2

2σ2
obs,ik

]
2(ϕk − ψobs)2

2σ2
obs,ik

− λobs exp
[

−(ϕk − ψobs,i)2

2σ2
obs,ik

])
dk, (A.21)

∂f8

∂ψsobs,ik
=

Ns∑
i=1

λsobs,i exp
[

−(ϕk−ψsobs,i)2

2σ2
sobs,ik

]
2(ϕk − ψsobs)2

2σ2
sobs,ik

− λsobs exp
[

−(ϕk − ψsobs,i)2

2σ2
sobs,ik

])
dk, (A.22)

∂f8

∂ψtar
= −λtar cos(ϕk − ψtar)dk. (A.23)

which are continuous in R.

198 Appendix A

The derivatives of feed-through map f9 are given as follows,

∂f9

∂ϕk
=

Nl∑
i=1

−
2λobs,i exp

[
−(ϕk−ψobs,i)

2σ2
obs,ik

]
(ϕk − ψobs,i)

2σobs,ik
, (A.24)

∂f9

∂ψobs,i
=

Nl∑
i=1

2λobs,i exp
[

−(ϕk−ψobs,i)
2σ2

obs,ik

]
(ϕk − ψobs,i)

2σobs,ik
, (A.25)

∂f9

∂σobs,ik
=

Nl∑
i=1

λobs,i exp
[

−(ϕk − ψobs,i)
2σ2

obs,ik

]
−

2λobs,iσobs,ik√
e

(A.26)

+
2λobs,i exp

[
−(ϕk−ψobs,i)

2σ2
obs,ik

]
(ϕk − ψobs,i)2

σ2
obs,ik

, (A.27)

which are continuous in R.
The derivatives of the Stuart-Landau oscillator are given as,

 ∂f10
∂mk+1

∂f10
∂nk+1

∂f10
∂µk

∂f10
∂Omk

∂f10
∂rk

∂f10
∂ωk

∂f11
∂mk+1

∂f11
∂nk+1

∂f11
∂µk

∂f11
∂Omk

∂f11
∂rk

∂f11
∂ωk

 =

[
1 + α(µk − r2

k)dk −ωkdk −α(Omk −mk)dk −α(−r2
k + µk)dk 2αrk(Omk −mk)dk −nkdk

ωkdk 1 + α(µk − r2
k)dk αnkdk −ωkdk −2αnkrkdk (mk −Omk)dk

]
,

(A.28)

which are clearly continuous in R.

Appendix A 199

The first derivatives of feed-through maps f12 and f13 relative to state variables mk

and nk are described as follows,

∂f12

∂mk

= − A1k
b exp [−b(−mk +Omk

)]
(exp [b(mk −Omk

)] + 1)2 (exp [b nk] + 1)
+ A2k

b exp [b(−mk +Omk
)]

(exp [b(−mk +Omk
)] + 1)2

− A3k
b exp [−b(−mk +Omk

)]
(exp [−b(−mk +Omk

)] + 1)2 (exp [−b nk] + 1)
, (A.29)

∂f12

∂nk
= − A1k

b exp [b nk]
((exp [−b(−mk +Omk

)] + 1) (exp [b nk] + 1))2

+ A3k
b exp [−bnk]

((exp [−b(−mk +Omk
)] + 1) (exp [−b nk] + 1))2 , (A.30)

∂f12

∂Omk

= A1k
b exp [−b(−mk +Omk

)]
(exp [b(mk −Omk

)] + 1)2 (exp [b nk] + 1)
+ A2k

b exp [b(mk −Omk
)]

(exp [b(−mk +Omk
)] + 1)2

+ A3k
b exp [−b(−mk +Omk

)]
(exp [−b(−mk +Omk

)] + 1)2 (exp [−b nk] + 1)
, (A.31)

∂f13

∂mk

= − ω1 b exp [−b(−mk +Omk
)]

(exp [b(mk −Omk
)] + 1)2 (exp [b nk] + 1)

+ ω2 b exp [b(−mk +Omk
)]

(exp [b(−mk +Omk
)] + 1)2

− ω3 b exp [−b(−mk +Omk
)]

(exp [−b(−mk +Omk
)] + 1)2 (exp [−b nk] + 1)

, (A.32)

∂f13

∂nk
= − ω1 b exp [b nk]

((exp [−b(−mk +Omk
)] + 1) (exp [b nk] + 1))2

+ ω3 b exp [−bnk]
((exp [−b(−mk +Omk

)] + 1) (exp [−b nk] + 1))2 , (A.33)

∂f13

∂Omk

= ω1 b exp [−b(−mk +Omk
)]

(exp [b(mk −Omk
)] + 1)2 (exp [b nk] + 1)

+ ω2 b exp [b(mk −Omk
)]

(exp [b(−mk +Omk
)] + 1)2

+ ω3 b exp [−b(−mk +Omk
)]

(exp [−b(−mk +Omk
)] + 1)2 (exp [−b nk] + 1)

, (A.34)

and they are continuous in R if A1, A2, A3, ω1, ω2 and ω3 are replaced without lack of
generality by C1 maps using splines [280] or other regularization methods [281, 282].

The transition between A1 and A2 and ω1 and ω2 occurs when m = Om and n < 0.
Assuming a sufficient positive b and substituting into (A.29), (A.30), (A.31), (A.32),

200 Appendix A

(A.33), (A.34),

∂f12

∂mk

= b(A2k
− A1k

)
22 , (A.35)

∂f12

∂nk
= bA3k

22 , (A.36)

∂f12

∂Omk

= b(A1k
+ A2k

)
22 , (A.37)

∂f13

∂mk

= b(ω2 − ω1)
22 , (A.38)

∂f13

∂nk
= bω3

22 , (A.39)

∂f13

∂Omk

= b(ω1 + ω2)
22 . (A.40)

This shows that these derivatives exist during the transitions between A1 and A2 and
ω1 and ω2.

The transition between A2 and A3 and ω2 and ω3 occurs when m = Om and n > 0.
Substituting into (A.29), (A.30), (A.31), (A.32), (A.33), (A.34),

∂f12

∂mk

= b(A2k
− A3k

)
22 , (A.41)

∂f12

∂nk
= −bA1k

22 , (A.42)

∂f12

∂Omk

= b(A1k
+ A2k

)
22 , (A.43)

∂f13

∂mk

= b(ω2 − ω1)
22 , (A.44)

∂f13

∂nk
= −bω1

22 , (A.45)

∂f13

∂Omk

= b(ω2 + ω3)
22 . (A.46)

This shows that these derivatives exist during the transitions between A2 and A3 and
ω2 and ω3.

Fig. A.9 shows the derivatives of f12 relative to variable m (A.29) and to variable
n (A.30) for an example of a mission with MT = 20 s. f12 is initiated with A1 and
starts changing to A2 at t ≈ 6.5 s. At this instant of time, ∂f12

∂mk
= b(A2k

−A3k
)

22 and
∂f12
∂nk

= − bA1k

22 . At t ≈ 13.5 s, f12 starts changing to A3 and ∂f12
∂mk

= b(ω2−ω1)
22 and

∂f13
∂nk

= − bω1
22 . It is noticeable that the larger b, the higher is the derivative and thus the

faster is the transition between the variables. This is also valid for the feed-through
map f13. Fig. A.10 shows the derivative (A.31) according to the different values of b.

Appendix A 201

0 2 4 6 8 10 12 14 16 18

10

20

30

40
b=1

b=10

b=50

20

∂f12
∂mk

(a)

0 2 4 6 8 10 12 14 16 18

10

20

30
b=1

b=10

b=50

20

Time (s)

∂f12

∂nk

(b)

Figure A.9: Derivatives of the feed-through map f12 relative to variables m and
n.

They are only shown during an interval of 20 s, but they are continuous in R.
The first derivatives of feed-through map f14 are described as follows,

∂f14

∂A′
k

= 1
1 + exp [−bUk(ϕk)]

+
d
(

1
2

(
Lai + Si −

√
(Lai + Si)2

))c
1 + exp [bUk(ϕk)]

, (A.47)

∂f14

∂Uk(ϕk)
= Akb exp [−Uk(ϕk)b]

(exp(Uk(ϕk)b) + 1) (exp(−Uk(ϕk)b) + 1)2)

−
Akb exp [Uk(ϕk)b] (1

exp[−Uk(ϕk)b] + 1)d(Lai+Si−
√

(Lai+Si)2
c
)

2

(exp [Uk(ϕk)b] + 1)2 , (A.48)

∂f14

∂Lai
= ∂f14

∂Si
= −

(
Ak c d

Lai+Si√
(La+Si)2

− 1
)(

Lai + Si −
√

(La+ Si)2
(c−1))

2 exp [Uk(ϕk) b] + 1
,

(A.49)

which are continuous in R.
The derivatives of dynamical system f15 relative to uik , βi and ν are given as,

∂f15

∂uik
= 1

τµ
+

βi − 3u2
ik

√
β2
i + η − ν

∑
a ̸=i

u2
ak

 dk
τµ
, (A.50)

∂f15

∂βi
= uik

τµ
−

βiu
3
ik√

β2
i + η

dk
τµ
, (A.51)

∂f15

∂ν
= −

∑
a ̸=i

u2
ak
uik

dk
τµ
, (A.52)

202 Appendix A

0 2 4 6 8 10 12 14 16 18

2

4

6

b=1

20

∂f12
∂Omk

(a)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

x 10
5

20

b=10

∂f12
∂Omk

(b)

0 2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

x 10
23

20

b=50

Time (s)

∂f12

∂Omk

(c)

Figure A.10: Derivative of the feed-through map f12 relative to variable Om.

which are continuous in R.
The first derivatives of feed-through maps f16 and f17 are described as follows,

∂f16

∂ustopk

= Os b(tanh(b ustopk
)2 − 1), (A.53)

∂f16

∂uexecutionk

= Oe b(tanh(b uexecutionk
)2 − 1), (A.54)

∂f16

∂urescuek

= Or b(tanh(b urescuek
)2 − 1), (A.55)

∂f17

∂ustopk

= ∂f17

∂urescuek

= −
A2
k b(tanh(b(ustopk

+ urescuek
))2 − 1)

2
, (A.56)

∂f17

∂uexecutionk

= A2 b(tanh(b urescuek
)2 − 1), (A.57)

and clearly they are continuous in R.

Appendix B

B.1 Robot Features

Pioneer 3-DX is a commercial mobile robot steered by two lateral motorized wheels and
supported by a passive rear caster wheel for motion stability. Each motorized wheel has
a diameter of 0.195 m, and a motor with 500-tick encoders that guarantees an accurate
control of velocity. Fig. B.1 depicts a schematic of lateral and top perspectives of the
robot.

62

455

195

210

237 381

Figure B.1: Lateral and top perspectives of the robot. Measures are in centimeters.

The robot is supplied by 12 V, weighs approximately 9 kg and is able to carry a
payload of approximately 17 kg. It can reach a maximum forward/backward speed of
vmax = 0.8 m/s and a rotation speed of 300 ◦/s. The robot radius is Rrobot = 0.1905 m.
At runtime, Pioneer 3-DX is powered by a maximum of 3 sealed batteries, each one
with a capacity of 7.2 Ah, which gives the robot an operating time of 8-10 hours.

The robot is equipped with 8 forward-facing ultrasonic (sonar) sensors mounted on
a ring, used to measure the environment (see fig. B.2). Each sonar has a beam width
of 30◦, and a range of 0.2 m to 5 m. The distance to an object is determined by the
time of flight of an acoustic signal generated by the transducer and reflected by the
detected object.

203

204 Appendix B

5 4 3 267

18
10-10

30

50

90-90

-50

-30

º

º º

º

º

º

º

º

Figure B.2: Distribution of the 8 sonar sensors mounted in front of the robot.
They are arranged at angles -90◦,-50◦,-30◦,-10◦,10◦,30◦,50◦,90◦.

The robot has an embedded controller that provides the robot’s state and control
information that includes battery charge data and sonar range sensing data. A single
laptop with a processor operating at 2.4 GHz is mounted on the robot in order to run
the ARIA framework. This framework is developed for controlling all MobileRobots
platforms that includes the Pioneer 3-DX. ARIA provides a framework for communi-
cation with the robot and that includes receiving and sending data from the robot.

B.1.1 Kinematics

Robots with a two-wheel differential drive and a passive caster wheel offers a simple
mechanical structure and a simple kinematic model. They allow a zero turning radius
and the obstacle-free space can easily be computed by extending obstacle boundaries
by the robot radius.

The kinematics model for a two-wheel differential drive robot specify the robot’s
linear velocity, v, and the robot’s angular velocity, ϖ by setting the rotational velocity
for each robot’s wheel, namely, ϖlw and ϖrw for left and right wheels, respectively, as
follows,

ϖlw = 1
Rwheel

(
v −ϖ

(
Dwheel

2

))
, (B.1)

ϖrw = 1
Rwheel

(
v +ϖ

(
Dwheel

2

))
, (B.2)

Appendix B 205

where Rwheel = 0.0975 m and Dwheel = 0.381 m are respectively the wheels radius and
the distance between the wheels.

B.2 Sensors

The laser Hokuyo URG-04LX-UG01 was selected since its features are well-applied to
our robotic application. It provides high accuracy in the range of 60 - 5600 mm, namely
±30 mm in range 60-1000 mm, and ±3% of measurement in range 1000-4095 mm. Its
angular measuring is 240◦ with a step angle of approximately 0.36◦, which gives 682
values for each scan. The laser scans the environment at each 0.1 s. Fig. B.3 (a) shows
the laser Hokuyo URG-04LX-UG01.

The PsEye is a digital camera device trademarked by Playstation. It is capable
of capturing standard images at 60 Hz at a pixel resolution 640x480. In addition,
the camera features a two-setting adjustable fixed focus zoom lens. It is possible to
manually select the field of view, which alternates between 56◦ for close-up framing,
and 75◦ for long shot framing. Fig. B.3 (b) shows the PsEye camera.

(a) (b)

Figure B.3: (a) Laser Range Finder Hokuyo URG-04LX-UG01. (b) PsEye camera.

206 Appendix B

Bibliography

[1] C. Santos. Generating timed trajectories for an autonomous vehicle:a
non-linear dynamical systems approach. in IEEE International Conference on
Robotics and Automation ICRA’04, 4:3741 – 3746, 2004.

[2] S. Degallier, C. Santos, L. Righetti, and A. Ijspeert. Movement generation
using dynamical systems: a humanoid robot performing a drumming task. In
IEEE-RAS International Conference on Humanoid Robots, 2006.

[3] M. Tuma, I. Iossifidis, and G. Schöner. Temporal stabilization of discrete
movement in variable environments: an attractor dynamics approach. in IEEE
International Conference on Robotics and Automation ICRA’09, pages 863 –
868, 2009.

[4] G. Schöner. Timing, clocks, and dynamical systems. Brain and Cognition, 48
(1):31–51, 2002.

[5] M. D. Rossetti, R. A. Felder, and A. Kumar. Simulation of robotic courier
deliveries in hospital distribution services. Health care management science, 3
(3):201 – 213, 2000.

[6] K. Niechwiadowicz and K. Zahoor. Robot based logistics system for
hospitals-survey. IDT Workshop on Interesting Results in Computer Science
and Engineering, 3, 2008.

[7] A. Özkil, Z. Fan, S. Dawids, H. Aanæs, J. Kristensen, and K. Christensen.
Service robots for hospitals: A case study of transportations tasks in a hospital.
Proc. of the IEEE International Conference on Automation and Logistics,
Shenyang, China, pages 289–294, 2009.

[8] J. Slotine and W. Li. Applied Nonlinear Control, volume 199. Englewood Cliffs,
NJ: Prentice-Hall, 1991.

207

Bibliography BIBLIOGRAPHY

[9] G. Schöner and C. Santos. Control of movement time and sequential action
through attractor dynamics: A simulation study demonstrating object
interception and coordination. in Proc. of the 9th Int. Symposium on
Intelligent Robotic Systems (SIRS), 2001.

[10] K. Ogata and Y. Yanjuan. Modern control engineering. Prentice-Hall
Englewood Cliffs, 1970.

[11] W. Lohmiller and J. Slotine. On contraction analysis for non-linear sytems.
Automatica, 34(6):683 – 696, 1998.

[12] J. Slotine and W. Lohmiller. Modularity, evolution, and the binding problem:
A view from stability theory. Neural networks, 14(2):137 – 145, 2001.

[13] J. Silva, C. Santos, and V. Matos. Generating trajectories with temporal
constraints for an autonomous robot. In 8th IEEE International Workshop on
Safety, Security & Rescue, Bremen, Germany, July 26-30, 2010.

[14] International federation of robotics ifr. @ONLINE [accessed 07 november 2014].
URL http://www.ifr.org/service-robots/statistics/.

[15] Roomba vacuum cleaning robot irobot inc. @ONLINE [accessed 22 april 2014].
URL www.irobot.com/us/learn/home/roomba.aspx.

[16] Scooba floor scrubbing robot from irobot inc. @ONLINE [accessed 22 april
2014]. URL www.irobot.com/us/learn/home/scooba.aspx.

[17] Vacuuming robot from agait technology corporation inc. @ONLINE [accessed
22 april 2014]. URL www.agaitech.com/en/products_list.aspx?xs_

class=90.

[18] Deebot vacuuming robot from ecovacs inc. @ONLINE [accessed 22 april 2014].
URL www.ecovacs.com/bot/Deebot-D76.html.

[19] J. Forlizzi and C. DiSalvo. Service robots in the domestic environment: a study
of the roomba vacuum in the home. 1st ACM SIGCHI/SIGART conference on
Human-robot interaction, pages 258–265, 2006.

[20] Hom-bot robot vacuum cleaner from lg corp.@ONLINE [accessed 22 april
2014]. URL www.lg.com/us/vacuum-cleaners/lg-LrV5900-robot-vacuum.

Bibliography 209

[21] Navibot s robot vacuum from samsung group. @ONLINE [accessed 22 april
2014]. URL www.samsung.com/au/consumer/home-appliances/

vacuum-cleaner/robot-vacuum/VCR8980L4K/XSA.

[22] Ottoro from hanool robotic inc. @ONLINE [accessed 22 april 2014]. URL www.

robotbg.com/robots/floor_cleaners/hanool/ottoro.

[23] Hydrobot, aerobot and duobot from intellibot robotics inc.@ONLINE [accessed
22 april 2014]. URL www.intellibotrobotics.com/products/.

[24] Lawn mowers from ambrogio robot s.p.a.@ONLINE [accessed 22 april 2014].
URL www.ambrogiorobot.com/.

[25] Indego robotic lawn mower from bosch gmbh@ONLINE [accessed 22 april
2014]. URL www.bosch-indego.com/gb/en/.

[26] Automower from husqvarna ab @ONLINE [accessed 22 april 2014]. URL www.

husqvarna.com/us/products/robotic-mowers/

husqvarna-robotic-mowers-for-homeowners/.

[27] Robomow rs630 from robomow@ONLINE [accessed 22 april 2014], . URL www.

bosch-indego.com/gb/en/.

[28] Tango e5 from john deere inc.@ONLINE [accessed 22 april 2014]. URL www.

deere.com/wps/dcom/en_INT/products/equipment/autonomous_mower/

tango_e5/tango_e5.page.

[29] Miimo from honda motor co. ltd@ONLINE [accessed 22 april 2014]. URL www.

honda.co.uk/garden/miimo/.

[30] Lawn mowers from belrobotics sa @ONLINE [accessed 22 april 2014]. URL
www.belrobotics.com/index.php/en/products/greenmow.

[31] Golmow from selftech@ONLINE [accessed 30 october 2014]. URL http://www.

selftech.pt/news/10.

[32] Robotic lawn mower lb300el from lawnbott @ONLINE [accessed 22 april 2014].
URL www.lawnbott.com/products/lb300el/.

[33] Rp-7i robot from intouch health inc.@ONLINE [accessed 22 april 2014]. URL
www.intouchhealth.com/products-and-services/products/

rp-vita-robot/.

Bibliography BIBLIOGRAPHY

[34] Ava 500 robot from irobot inc. @ONLINE [accessed 22 april 2014]. URL www.

irobot.com/us/learn/commercial/ava500.aspx.

[35] Smart service robot furo-s from future robot co.ltd @ONLINE [accessed 22
april 2014], . URL www.futurerobot.co.kr/en/page/product01.php.

[36] Smart service robot furo-k from future robot co.ltd @ONLINE [accessed 22
april 2014], . URL www.futurerobot.co.kr/en/page/product02.php#tab2.

[37] Kompai from robotsoft@ONLINE [accessed 22 april 2014], . URL www.

robosoft.com/robotic-solutions/healthcare/kompai/kompai-rd.html.

[38] M. Nani, P. Caleb-Solly, S. Dogramadzi, T. Fear, and H. van den Heuvel.
Mobiserv: an integrated intelligent home environment for the provision of
health, nutrition and mobility services to the elderly. 2010.

[39] J. González-Jiménez, C. Galindo, and J. Ruiz-Sarmiento. Technical
improvements of the giraff telepresence robot based on users’ evaluation. IEEE
RO-MAN, pages 827 – 832, 2012.

[40] U. Reiser, T. Jacobs, G. Arbeiter, C. Parlitz, and K. Dautenhahn. Care-o-bot 3
vision of a robot butler. Your virtual butler, pages 97 – 116, 2013.

[41] Amigo robot from tech united @ONLINE [accessed 22 april 2014]. URL www.

techunited.nl/en/amigo.

[42] M. E. Pollack, L. Brown, D. Colbry, C. Orosz, B. Peintner, S. Ramakrishnan,
and N. Roy. Pearl: A mobile robotic assistant for the elderly. AAAI workshop
on automation as eldercare, 2002:85 – 91, 2002.

[43] J. Biswas and M. M.. Veloso. Localization and navigation of the cobots over
long-term deployments. International Journal of Robotics Research, 32(14):
1679 – 1694, 2013.

[44] Santander siga from ydreams. @ONLINE [accessed 30 october 2014]. URL
http://www.ydreamsrobotics.com/projects/.

[45] c-walker from siemens ag@ONLINE [accessed 22 april 2014]. URL www.

siemens.com/innovation/en/news/2013/e_inno_1332_2.htm.

[46] D. Rodriguez-Losada, F. Matia, A. Jimenez, R. Galan, and G. Lacey. Guido,
the robotic smartwalker for the frail visually impaired. In 1st International

Bibliography 211

Congress on Domotics, Robotics and Remote Assistance for All. DRT4ALL, 5:
155–169, 2006.

[47] P. R. Wurman, R. D’Andrea, and M. Mountz. Coordinating hundreds of
cooperative, autonomous vehicles in warehouses. AI Magazine, 29(1), 2008.

[48] J. Evans, B. Krishnamurthy, B. Barrows, T. Skewis, and V. Lumelsky.
Handling real-world motion planning: A hospital transport robot. Control
Systems, IEEE, 12(1):15 – 19, 1992.

[49] J. M Evans. Helpmate: An autonomous mobile robot courier for hospitals.
Proceedings of the IEEE/RSJ/GI International Conference on Intelligent
Robots and Systems. Advanced Robotic Systems and the Real World, 3:
1695–1700, 1994.

[50] M. D. Rossetti, A. Kumar, and R.A. Felder. Mobile robot simulation of clinical
laboratory deliveries. Winter Simulation Conference, pages 1415 – 1422, 1998.

[51] M. D. Rossetti and F. Selandari. Multi-objective analysis of hospital delivery
systems. Computers & industrial engineering, 41(3):309 – 333, 2001.

[52] B. Mutlu and J. Forlizzi. Robots in organizations: The role of workflow, social,
and environmental factors in human-robot interaction. 3rd ACM/IEEE
International Conference on Human-Robot Interaction (HRI), pages 287 – 294,
2008.

[53] S. Ljungblad, J. Kotrbova, M. Jacobsson, H. Cramer, and K. Niechwiadowicz.
Hospital robot at work: something alien or an intelligent colleague?
Proceedings of the ACM 2012 conference on Computer Supported Cooperative
Work, pages 177 – 186, 2012.

[54] W. Fung, Y. Leung, M. Chow, Y. Liu, Y. Xu, W. Chan, and T. Law.
Development of a hospital service robot for transporting task. IEEE
International Conference on Robotics, Intelligent Systems and Signal
Processing, 1:628Ű–633, 2003.

[55] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots.
In Artificial Intelligence Laboratory Stanford University, Stamford, 1985.

[56] F. Carreira, T. Canas, A. Silva, and C. Caldeira. i-merc: a mobile robot to
deliver meals inside health services. IEEE Conference on Robotics, Automation
and Mechatronics, pages 1–8, 2006.

Bibliography BIBLIOGRAPHY

[57] M. Takahashi, T. Suzuki, H. Shitamoto, T. Moriguchi, and K. Yoshida.
Developing a mobile robot for transport applications in the hospital domain.
Robotics and Autonomous Systems, 58:889 – 899.

[58] F. Capezio, F. Mastrogiovanni, A. Scalmato, A. Sgorbissa, P. Vernazza,
T. Vernazza, and R. Zaccaria. Mobile robots in hospital environments: An
installation case study. Proceedings of the 5th International Conference on
Mobile Robots, Orebro, Sweden, pages 7–9, 2011.

[59] A. Sgorbissa and R. Zaccaria. Roaming stripes: smooth reactive navigation in
a partially known environment. The 12th IEEE International Workshop on
Robot and Human Interactive Communication, ROMAN, pages 19 – 24, 2003.

[60] G. Engelberger. Helpmate, a service robot with experience. Industrial Robot,
25(2):101–104, 1998.

[61] Robocart from california computer research inc. @ONLINE [accessed 20
december 2013], . URL www.robocart.com.

[62] Tug from aethon inc. @ONLINE [accessed 20 december 2013]. URL www.

aethon.com.

[63] Robocourier from swisslog inc. @ONLINE [accessed 20 december 2013], . URL
www.ccsrobotics.com/products/robocourier.html.

[64] Speciminder from swisslog inc. @ONLINE [accessed 20 december 2013]. URL
www.ccsrobotics.com/products/speciminder.html.

[65] R. Murai, T. Sakai, H. Uematsu, H. Nakajima, K. Mitani, and H. Kitano.
Conveyance system using autonomous mobile robots. In IEEE Workshop on
Advanced Robotics and its Social Impacts (ARSO), pages 54 – 59, 2009.

[66] Qc bot from vecna inc. @ONLINE [accessed 20 december 2013]. URL www.

vecna.com/on-demand-delivery.

[67] Transcar from swisslog inc. @ONLINE [accessed 20 december 2013]. URL www.

prweb.com/releases/2013/5/prweb10661451.htm.

[68] Y. K. Hwang and N. Ahuja. Gross motion planning - a survey. ACM
Computing Surveys (CSUR), 24(3):219–291, 1992.

Bibliography 213

[69] V. Lumelsky and A. Stepanov. Path-planning strategies for a point mobile
automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica,
2(1-4):403–430, 1987.

[70] A. Chakravarthy and D Ghose. Obstacle avoidance in a dynamic environment:
A collision cone approach. IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans, 28(5):562–574, 1998.

[71] R Chattergy. Some heuristic for the navigation of a robot. The International
Journal of Robotics Research, 4(1):59–66, 1985.

[72] A. Elnagar and A. Basu. Heuristics for local path planning. IEEE Transactions
on Systems, Man and Cybernetics, 23(2):624–634, 1993.

[73] J. Gasós and A. Martín. Mobile robot localization using fuzzy maps. Fuzzy
Logic in Artificial Intelligence Towards Intelligent Systems, pages 624–634,
1997.

[74] G. Schöner and M. Dose. A dynamical system approach to task-level system
integration used to plan and control autonomous vehicle motion. Robotics and
Autonomous Systems, 10(4):253–267, 1992.

[75] J-O Kim, , and P. Khosla. Real-time obstacle avoidance using harmonic
potential functions. IEEE Transactions on Robotics and Automation, 8(3):
338–349, 1992.

[76] L. Singh, H. Stephanon, and J. Wen. Real-time robot motion control with
circulatory fields. IEEE International Conference on Robotics and Automation,
3:2737–2742, 1996.

[77] A. Masoud, S. Masoud, and M. Bayoumi. Robot navigation using a pressure
generated mechanical stress field: "the biharmonic potential approach". IEEE
International Conference on Robotics and Automation, pages 124–129, 1994.

[78] J. Borenstein and Y. Koren. Real-time obstacle avoidance for fast mobile
robots. In IEEE Transactions on Systems, 19(5):1179–1187, 1989.

[79] H. Moravec and A. E. Elfes. High resolution maps from wide angle sonar. In
Proceedings of the 1985 IEEE International Conference on Robotics and
Automation, pages 116 – 121, March 1985.

[80] L. Perko. Differential Equations and Dynamical Systems. Springer-Verlag, 2003.

Bibliography BIBLIOGRAPHY

[81] G. Schöner. Dynamic theory of action - perception patterns: The
time-before-contact paradigm. Human Movement Science, (3):415–439, 1994.

[82] E. Bicho and G. Schöner. The dynamic approach to autonomous robotics
demonstrated on a low-level vehicle plataform. Robotics and Autonomous
Systems, 21:23–35, 1997.

[83] E. Bicho, P. Mallet, and G. Schöner. Using attractor dynamics to control
autonomous vehicle motion. Proceedings of the 24th Annual Conference of the
IEEE Industrial Electronics Society IECON, 2:1176–1181, 1998.

[84] E. Bicho. Dynamic approach to behavior-based robotics design, specification,
analysis, simulation and implementation. Shaker Verlag, Aachen, 2000.

[85] J. Silva, C. Santos, and V. Matos. Timed trajectory generation for a toy-like
wheeled robot. In 36th Annual Conference of the IEEE Industrial Electronics
Society, Glendale, USA, November 07-10, pages 1645 – 1650, 2010.

[86] J. Silva, Santos C., and Sequeira J. Navigation architecture for mobile robots
with temporal stabilization of movements. In 9th International Workshop on
Robot, Motion and Control, 2013.

[87] P. Althaus, H. Christensen, and F. Hoffman. Using the dynamical system
approach to navigate in realistic real-world environments. IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2:1023 – 1029,
2001.

[88] E. Bicho and S. Monteiro. Formation control for multiple mobile robots: a
non-linear attractor dynamics approach. IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2:2016 – 2022, 2003.

[89] B. R. Fajen and W. H. Warren. Behavioral dynamics of steering, obstacle
avoidance, and route selection. Journal of Experimental Psychology: Human
Perception and Performance, 29(2):343 Ű– 362, 2003.

[90] E. Aaron, H. Sun, F. Ivancic, and D. Metaxas. A hybrid dynamical systems
approach to intelligent low-level navigation. IEEE Computer Animation, pages
154 – 163, 2002.

[91] S. Goldenstein, M. Karavelas, D. Metaxas, L. Guibas, E. Aaron, and
A. Goswami. Scalable nonlinear dynamical systems for agent steering and
crowd simulation. Computer & Graphics, 25(6):983 – 998, 2001.

Bibliography 215

[92] M. Quoy, S. Moga, and P. Gaussier. Dynamical neural networks for planning
and low-level robot control. IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans, 3(4):523–532, 2003.

[93] H. Hoffmann, P. Pastor, D. H. Park, and S. Schaal. Biologically inspired
dynamical systems for movement generation: automatic real-time goal
adaptation and obstacle avoidance. IEEE International Conference on Robotics
and Automation, pages 2587 – 2592, 2009.

[94] I. Iossifidis and G. Schöner. Dynamical systems approach for the autonomous
avoidance of obstacles and joint-limits for an redundant robot arm. IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 580 – 585,
2006.

[95] L.P. Ellekilde and H. Christensen. Control of mobile manipulator using the
dynamical systems approach. IEEE International Conference on Robotics and
Automation, pages 1370 – 1376, 2009.

[96] S. M. Khansari-Zadeh and A. Billard. A dynamical system approach to
realtime obstacle avoidance. IEEE/RSJ International Conference on Intelligent
Robots and Systems, 32(4):433 – 454, 2012.

[97] J. Borenstein and Y. Koren. The vector field histogramŰfast obstacle avoidance
for mobile robots. In Proceedings of The Ninth International Conference on the
SIMULATION OF ADAPTIVE BEHAVIOR – SABŠ06, volume 7.

[98] I. Ulrich and J. Borenstein. Vfh+: Reliable obstacle avoidance for fast mobile
robots. In IEEE International Conference on Robotics and Automation.
Leuven, Belgium, pages 1572–1577, 1998.

[99] R. Simmons. The curvature-velocity method for local obstacle avoidance. In
IEEE International Conference on Robotics and Automation, pages 3375–3382,
1996.

[100] N. Y. Ko and R. Simmons. The lane-curvature method for local obstacle
avoidance. IEEE/RSJ International Conference on Intelligent Robots and
Systems, 3:1615 – 1621, 1998.

[101] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision
avoidance. In IEEE Robot. Autom. Magaz., 1(4):23–33, 1997.

Bibliography BIBLIOGRAPHY

[102] O. Brock and O. Khatib. High-speed navigation using the global dynamic
window approach. In IEEE International Conference on Robotics and
Automation, 1:341–346, 1999.

[103] P. Fiorini and Z. Shiller. Motion planning in dynamic environments using
velocity obstacles. International Journal of Robotics Research, 17(7):760–772,
1998.

[104] B. Kluge and E. Prassler. Reflective navigation: individual behaviors and
group behaviors. IEEE International Conference on Robotics and Automation,
4:4172–4177, 2004.

[105] C. Fulgenzi, A. Spalanzani, and C. Laugier. Dynamic obstacle avoidance in
uncertain environment combining pvos and occupancy grid. IEEE International
Conference on Robotics and Automation (ICRA), 4:1610 –1616, 2007.

[106] T. Myers, L. Vlacic, T. Noel, and M. Parent. Autonomous driving in a
time-varying environment. In IEEE Workshop on Advanced Robotics and its
Social Impacts, pages 53–58, 2005.

[107] J. Minguez and L. Montano. Nearness diagram (ND) navigation: collision
avoidance in troublesome scenarios. In IEEE Transactions on Robotics and
Automation, volume 20, pages 3855 – 3862, 2004.

[108] J. Minguez. The obstacle-restriction method for robot obstacle avoidance in
difficult environments. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2284–2290, 2005.

[109] A. Saffiotti. The uses of fuzzy logic in autonomous robot navigation. Soft
Computing, 1(4):180 – 197, 1997.

[110] H. A. Hagras. A hierarchical type-2 fuzzy logic control architecture for
autonomous mobile robots. IEEE Transactions on Fuzzy Systems, 12(4):524 –
539, 2004.

[111] H. R. Beom and K. S. Cho. A sensor-based navigation for a mobile robot using
fuzzy logic and reinforcement learning. IEEE Transactions on Systems, Man
and Cybernetics, 25(3):464 – 477, 1995.

[112] C. Ye, N. Yung, and D. Wang. A fuzzy controller with supervised learning
assisted reinforcement learning algorithm for obstacle avoidance. IEEE

Bibliography 217

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 33(1):17
– 27, 2003.

[113] A. Homaifar and E. McCormick. Simultaneous design of membership functions
and rule sets for fuzzy controllers using genetic algorithms. IEEE Transactions
on Fuzzy Systems, 3(2):129 – 139, 1995.

[114] D. Pratihar, K. Deb, and A. Ghosh. A genetic-fuzzy approach for mobile robot
navigation among moving obstacles. International Journal of Approximate
Reasoning, 20(2):145 – 172, 1999.

[115] G. N. Marichal, L. Acosta, L. Moreno, J. A. Mendez, J. J. Rodrigo, and
M. Sigut. Obstacle avoidance for a mobile robot: A neuro-fuzzy approach.
Fuzzy Sets and Systems, 124(2):171 – 179, 2001.

[116] N. Tsourveloudis, K. Valavanis, and T. Hebert. Autonomous vehicle navigation
utilizing electrostatic potential fields and fuzzy logic. IEEE Transactions on
Robotics and Automation, 17(4):490 – 497, 2001.

[117] David H. Douglas and Thomas K. Peucker. Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature. In
Cartographica: The International Journal for Geographic Information and
Geovisualization, volume 10, pages 112 – 122, October 1973.

[118] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. Fastslam: a factored
solution to the simultaneous localization and mapping problem. Nat. Conf.
Artif. Intell. (AAAI), pages 593 – 598, 2002.

[119] J. Latombe. Robot motion planning. Kluwer Academic Publishers, 1991.

[120] B. J. Oommen, S. S. Iyengar, V. Rao, and R. Kashyap. Robot navigation in
unknown terrains using learned visibility graphs. part i: The disjoint convex
obstacle case. IEEE Journal of Robotics and Automation, 3(6):672 – 681, 1987.

[121] B. R. Donald. Motion planning with six degrees of freedom. Technical Report
AIM-791, MIT Artificial Intelligence Laboratory, 1984.

[122] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Transactions on Robotics and Automation, 12(4):566 – 580, 1996.

Bibliography BIBLIOGRAPHY

[123] S. M. LaValle and J. Kuffner Jr. Rapidly-exploring random trees: Progress and
prospects. 2000.

[124] R. Chatila and J. Laumond. Position referencing and consistent world
modeling for mobile robots. IEEE International Conference on Robotics and
Automation, 2:138 – 145, 1985.

[125] B. J. Kuipers and Y. Byun. A robust qualitative method for spatial learning in
unknown environments. In Proceedings of National Conference on Artificial
Intelligence (AAAI), 1988.

[126] S. Thrun. Learning metric-topological maps for indoor mobile robot
navigation. In Artificial Intelligence, volume 99, pages 21 – 71, 1998.

[127] K. Konolige, E. Marder-Eppstein, and B. Marthi. Navigation in hybrid
metric-topological maps. In IEEE International Conference on Robotics and
Automation (ICRA) 2011, pages 3041 – 3047, 2011.

[128] Z. Zivkovic, B. Bakker, and B. Kröse. Hierarchical map building and planning
based on graph partitioning. In IEEE International Conference on Robotics
and Automation, pages 803 – 809, 2006.

[129] A. Ozkil, Z. Fan, J. Xiao, J. Kristensen, S. Dawids, K. Christensen, and
H. Aanaes. Practical indoor mobile robot navigation using hybrid maps. Proc.
of the 2011 IEEE International Conference on Mechatronics, Istanbul, Turkey,
2011.

[130] N. Tomatis, I. Nourbakhsh, and R. Siegwart. Simultaneous localization and
map building: a global topological model with local metric maps. Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui,
Hawaii, USA, 2001.

[131] F. Fraundorfer, C. Engels, and D. Nister. Topological, mapping, localization
and navigation using image collections. Proceedings of IEEE International
Conference on Intelligent Robot and Systems (IROS), pages 3872 – 3877, 2007.

[132] D. Rawlinson and R. Jarvis. Topologically-directed navigation. Robotica, 26(2):
189 – 203, 2008.

[133] E. W. Dijkstra. A note on two problems in connexion with graphs. In
Numerische Mathematik, volume 1, pages 269 – 271, 1959.

Bibliography 219

[134] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. In IEEE Transactions on Systems
Science and Cybernetics In Systems Science and Cybernetics, volume 4, pages
100 – 107, February 1968.

[135] S. Koenig, M. Likhachev, and D. Furcy. Lifelong planning a*. In Artificial
Intelligence, volume 155, pages 93 – 146.

[136] A. Stentz. Optimal and efficient path planning for partially-known
environments. In Proceedings IEEE International Conference on Robotics and
Automation, 4:3310–3317, IEEE, May 1994.

[137] S. Koenig and M. Likhachev. Fast replanning for navigation in unknown
terrain. In Transactions on Robotics, volume 21.

[138] R.C. Arkin. Behavior-based robotics. In MIT Press, Cambridge, 1998.

[139] R. D. Beer, H. J. Chiel, and L. S Sterling. A biological perspective on
autonomous agent design. Robotics and Autonomous Systems, 6(1):169–189,
1990.

[140] M. R. Clark, G. T. Anderson, and R. D Skinner. Coupled oscillator control of
autonomous mobile robots. Autonomous Robots, 9(2):189–198, 2000.

[141] S. Grillner and P. Wallén. Central pattern generators for locomotion, with
special reference to vertebrates. Annual review of neuroscience, 8(1):233–261,
1985.

[142] S. Hooper. Central pattern generators. eLS, 2001.

[143] J. Kelso, J. Scholz, and G. Schöner. Dynamics governs switching among
patterns of coordination in biological movement. in Biological Cybernetics, 134
(1):8 – 12, 1998.

[144] H. Haken. Synergetics, an introduction: Nonequilibrium phase transitions and
self-organization in physics. 1993.

[145] G. Schöner. A dynamic theory of coordination of discrete movement. in
Biological Cybernetics, 63:257Ű–270, 1990.

[146] G. Schöner. Dynamic theory of action - perception patterns: The “moving
room” paradigm. Biological cybernetics, 64(6):455–462, 1991.

Bibliography BIBLIOGRAPHY

[147] H. Haken, J. Kelso, and H. Bunz. A theoretical model of phase transitions in
human hand movements. Biological cybernetics, 51(5):347–356, 1985.

[148] G. Schöner and C. Santos. Control of movement time and sequential action
through attractor dynamics: A simulation study demonstrating object
interception and coordination. 2001.

[149] C. Santos and M. Ferreira. Two vision-guided vehicles: Temporal coordination
using nonlinear dynamical systems. in IEEE International Conference on
Robotics and Automation, ICRA 2007, April, 2007.

[150] C. Santos and M. Ferreira. Timed trajectory generation using dynamical
systems: Application to a puma arm. In Robotics and Autonomous Systems, 57
(2):182–193, 2009.

[151] J. Silva, C. Santos, and J. Sequeira. Timed trajectory generation combined
with an extended kalman filter for a vision-based autonomous mobile robot.
Proc. of the 12th IEEE International Conference on Intelligent Autonomous
Systems, Jeju Island, Korea, 2012.

[152] J. Silva, C. Santos, and J. Sequeira. Timed trajectory generation for a
vision-based autonomous mobile robot in cluttered environments. In ICINCO,
pages 431 – 434, 2012.

[153] J. Silva, J. Sequeira, and C. Santos. A stability analysis for a dynamical robot
control architecture. Intelligent Autonomous Vehicles, 8(1):225–230, 2013.

[154] A. Ijspeert, J. Nakanishi, and S. Schaal. Learning rhythmic movements by
demonstration using nonlinear oscillators. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 958 – 963. MIT Press,
2002.

[155] A. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor landscapes for
learning motor primitives. In Advances in Neural Information Processing
Systems 15, pages 1547–1554. MIT Press, 2002.

[156] E. Gribovskaya and A. Billard. Combining dynamical systems control and
programming by demonstration for teaching discrete bimanual coordination
tasks to a humanoid robot. 3rd ACM/IEEE International Conference on
Human-Robot Interaction, HRI08, pages 33–40, 2008.

Bibliography 221

[157] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. Learning and generalization
of motor skills by learning from demonstration. IEEE International Conference
on Robotics and Automation (ICRA), pages 763–768, 2009.

[158] J. Kober and J. Peters. Imitation and reinforcement learning. Robotics and
Automation Magazine, IEEE, 17(2):55–62, 2010.

[159] A. Ijspeert, J. Nakanishi, and S. Schall. Movement imitation with nonlinear
dynamical systems in humanoid robots. IEEE International Conference on
Robotics and Automation (ICRA), 2:1398–1403, 2002.

[160] H. Kimura, Y. Fukuoka, and A. H. Cohen. Adaptive dynamic walking of a
quadruped robot on natural ground based on biological concepts. International
Journal of Robotics Research, 26(5):475–490, 2007.

[161] C. Maufroy, H. Kimura, and K. Takase. Towards a general neural controller for
quadrupedal locomotion. Neural Networks, 21(4):667–681, 2008.

[162] L. Righetti and A. Ijspeert. Pattern generators with sensory feedback for the
control of quadruped locomotion. IEEE International Conference on Robotics
and Automation (ICRA), pages 819 – 824, 2008.

[163] V. Matos and C. Santos. Omnidirectional locomotion in a quadruped robot: a
cpg-based approach. IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 3392–3397, 2010.

[164] T. Komatsu and M. Usui. Dynamic walking and running of a bipedal robot
using hybrid central pattern generator method. IEEE International Conference
on Mechatronics and Automation, 2:987–992, 2005.

[165] S. Hyon, J. Morimoto, and G. Cheng. Hierarchical motor learning and
synthesis with passivity-based controller and phase oscillator. IEEE
International Conference on Robotics and Automation, pages 2705–2710, 2008.

[166] V. Matos and C. Santos. Central pattern generators with phase regulation for
the control of humanoid locomotion. IEEE-RAS International Conference on
Humanoid Robots, pages 134–139, 2012.

[167] S. Inagaki, H. Yuasa, T. Suzuki, and T. Arai. Wave cpg model for autonomous
decentralized multi-legged robot: Gait generation and walking speed control.
Robotics and Autonomous Systems, 54(2):118–126, 2006.

Bibliography BIBLIOGRAPHY

[168] R. Guanjiao, W. Chen, C. Kolodziejski, F. Worgotter, S. Dasgupta, and P.e
Manoonpong. Multiple chaotic central pattern generators for locomotion
generation and leg damage compensation in a hexapod robot. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
2756 – 2761, 2012.

[169] H. Yu, W. Guo, J. Deng, M. Li, and H. Cai. A cpg-based locomotion control
architecture for hexapod robot. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 5615 –5621, 2013.

[170] K. Inoue, S. Ma, and C. Jin. Neural oscillator network-based controller for
meandering locomotion of snake-like robots. IEEE International Conference on
Robotics and Automation, 5:5064 – 5069, 2004.

[171] A. Ijspeert, A. Crespi, and J. Cabelguen. Simulation an robotics studies of
salamander locomotion: Applying neurobiological principles to the control of
locomotion in robots. NeuroInformatics, 3:171 – 196, 2005.

[172] A. Crespi, K. Karakasiliotis, A. Guignard, and A. Ijspeert. Salamandra
robotica ii: An amphibious robot to study salamander-like swimming and
walking gaits. IEEE Transactions on Robotics, 29(2):171 – 196, 2013.

[173] S. Kotosaka and S. Schaal. Synchronized robot drumming by neural oscillator.
Journal-Robotics Society of Japan, 19(1):116–123, 2001.

[174] S. Degallier, C. Santos, L. Righetti, and A. Ijspeert. Movement generation
using dynamical systems: a humanoid robot performing a drumming task.
IEEE-RAS International Conference on Humanoid Robots, pages 512–517,
2006.

[175] R. Ronsse, N. Vitiello, T. Lenzi, J. van den Kieboom, M. Carrozza, and
A. Ijspeert. Human-robot synchrony: flexible assistance using adaptive
oscillators. IEEE Transactions on Biomedical Engineering, 58(4):1001–1012,
2011.

[176] J. Gonzalez-Gomez, H. Zhang, E. Boemo, and J. Zhang. Locomotion
capabilities of a modular robot with eight pitch-yaw-connecting modules. 9th
international conference on climbing and walking robots, 2006.

[177] A. Sprowitz, S. Pouya, S. Bonardi, J. Van den Kieboom, R. Mockel,
P. Dillenbourg, A. Billard, and A. Ijspeert. Roombots: reconfigurable robots

Bibliography 223

for adaptive furniture. IEEE Computational Intelligence Magazine, 5(3):20–32,
2010.

[178] X. Cui, Y. Zhu, X. Zang, S. Tang, and J. Zhao. Cpg based locomotion control
of pitch-yaw connecting modular self-reconfigurable robots. IEEE international
conference on Information and automation (ICIA), pages 1410–1415, 2010.

[179] J. Kober and J. Peters. Learning motor primitives for robotics. IEEE
International Conference on Robotics and Automation, pages 2112–2118, 2009.

[180] F. Oubbati, M. Richter, and G. Schöner. Autonomous robot hitting task using
dynamical system approach. IEEE International Conference on Systems, Man,
and Cybernetics (SMC), pages 4042 – 4047, 2013.

[181] M. Hersch and A. Billard. Reaching with multi-referential dynamical systems.
Autonomous Robots, 25(1-2):71–83, 2008.

[182] S. Kim, E. Gribovskaya, and A. Billard. Learning motion dynamics to catch a
moving object. IEEE-RAS International Conference on Humanoid Robots,
pages 106–111, 2010.

[183] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. 2005.

[184] L. Zhang, R. Zapata, and P. Lépinay. Self-adaptive Monte Carlo localization
for mobile robots using range sensors. 2009.

[185] S. Engelson and D. McDermott. Error correction in mobile robot map learning.
Int. Conference on Robotics and Automation (ICRA), pages 2555 – 2560, 1992.

[186] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust monte carlo
localization for mobile robots. Artificial Intelligence, 128:99 – 141, 2001.

[187] H. Liu, H. Darabi, P. Banerjee, and J. Liu. Survey of wireless indoor
positioning techniques and systems. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, 37(6):1067 — 1080, 2007.

[188] Eiris infrared localization system. system manual - raanana, israel: Elpas
electro-optic systems ltd. @ONLINE [accessed 22 april 2014]. URL http://

www.elpas.com/Products/Eiris-Software.aspx.

[189] B. Ottersten, M. Viberg, P. Stoica, and A. Nehorai. Exact and large sample ml
techniques for parameter estimation and detection in array processing.
Springer Berlin Heidelberg, pages 99–Ű151, 1993.

Bibliography BIBLIOGRAPHY

[190] M. Philipose, K. P Fishkin, D. Fox, K. Fishkin, and M. Philipose. Mapping
and localization with rfid technology. IEEE International Conference on
Robotics and Automation, pages 1015 – 1020, 2004.

[191] S. Schneegans, P. Vorst, and A. Zell. Using rfid snapshots for mobile robot
self-localization. 3rd European Conference on Mobile Robots (ECMR 2007),
pages 241 – 246, 2007.

[192] A. Milella, D. Di Paola, G. Cicirelli, and T. DŠOrazio. Rfid tag bearing
estimation for mobile robot localization. International Conference on Advanced
Robotics, ICAR 2009, pages 1 – 6, 2009.

[193] S. Krishnan, P. Sharma, Z. Guoping, and Ong Hwee Woon. A uwb based
localization system for indoor robot navigation. IEEE International Conference
on Ultra-Wideband, ICUWB 2007, pages 77 – 82, 2007.

[194] J. Gonzalez, J. Blanco, C. Galindo, A. Ortiz de Galisteo,
J. Fernandez-Madrigal, F. Moreno, and J. Martinez. Mobile robot localization
based onultra-wide-band ranging: A particle filter approach. Robotics and
Autonomous Systems, 57(5):496 – 507, 2009.

[195] A. Howard, S. Siddiqi, and G. S. Sukhatme. An experimental study of
localization using wireless ethernet. 4th International Conference on Field and
Service Robotics, 2003.

[196] A. M. Ladd, K. E. Bekris, A. Rudys, L. E. Kavraki, and D. S. Wallach.
Robotics-based location sensing using wireless ethernet. Wireless Networks,
(11):189 – 204, 2005.

[197] C. Röhrig and F. Künemund. Mobile robot localization using wlan signal
strengths. International Journal of Computing, SPECAL ISSUE: Intelligent
Data Acquisition and Advanced Computing Systems, 2(7):73 – 83, 2007.

[198] A. N. Raghavan, H. Ananthapadmanaban, M. S. Sivamurugan, and
B. Ravindran. Accurate mobile robot localization in indoor environments using
bluetooth. IEEE International Conference on Robotics and Automation, ICRA
2010, pages 4391 – 4396, 2010.

[199] K. Lee, S. Kim, H. Park, and M. Lee. Pseudolite ultrasonic system (pus) and
gyro integrated system using kalman filter. International Conference on
Control, Automation and Systems, pages 1125–1128, 2010.

Bibliography 225

[200] S. Kim, K. Yoon, D. Lee, and M. Lee. The localization of a mobile robot using
a pseudolite ultrasonic system and a dead reckoning integrated system.
International Journal of Control, Automation, and Systems, 9(2):339–347, 2011.

[201] Y. Sakamoto, T. Ebinuma, K. Fujii, and S. Sugano. Gps-compatible
indoor-positioning methods for indoor-outdoor seamless robot navigation.
IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO), pages
95 – 100, 2012.

[202] D. Fontanelli, A. Danesi, F. A. Belo, P. Salaris, and A. Bicchi. Visual servoing
in the large. The International Journal of Robotics Research, 28(6):802 –814,
2009.

[203] T. Goedeme, M. Nuttin, T. Tuytelaars, and L. Van Gool. Omnidirectional
vision based topological navigation. International Journal of Computer Vision,
74(3):219 –236, 2007.

[204] A. Remazeilles and F. Chaumette. Image-based robot navigation from an
image memory. Robotics and Autonomous Systems, 55(4):345 –356, 2007.

[205] G. N. DeSouza and A. C. Kak. Vision for mobile robot navigation: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(2):237
–267, 2002.

[206] F. Bonin-Font, A. Ortiz, and G. Oliver. Visual navigation for mobile robots: A
survey. Journal of intelligent and robotic systems, 53(3):263 – 296, 2008.

[207] Stargazer localization system from hagisonic co, ltd. @ONLINE [accessed 22
april 2014]. URL www.hagisonic.com/.

[208] S. Se, Lowe D., and J. Little. Vision-based global localization and mapping for
mobile robots. IEEE Transactions on Robotics, 21(3):364 – 375, 2005.

[209] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization for
mobile robots. IEEE International Conference on Robotics and Automation, 2:
1322 – 1328, 1999.

[210] E. Ivanjko, A. Kitanov, and I. Petrovic. Model based kalman filter mobile robot
self-localization. Robot Localization and Map Building, pages 59 – 89, 2010.

[211] J. Rowekamper, C. Sprunk, G. Tipaldi, C. Stachniss, P. Pfaff, and W. Burgard.
On the position accuracy of mobile robot localization based on particle filters

Bibliography BIBLIOGRAPHY

combined with scan matching. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3158 – 3164, 2012.

[212] D. Lee and W. Chung. Discrete-status-based localization for indoor service
robots. IEEE Transactions on Industril Electronics, 53(5):1737–1746, 2006.

[213] R. E. Kalman. A new approach to linear filtering and prediction problems.
Transaction of the ASME - Journal of Basic Engineering, pages 35 – 45, 1960.

[214] I. Cox and J. Leonard. Modeling a dynamic environment using a bayesian
multiple hypothesis approach. Artificial Intelligence, 66.

[215] D. Montemerlo, S. Thrun, and W. Whittaker. Conditional particle filters for
simultaneous mobile robot localization and people-tracking. IEEE
International Conference on Robotics and Automation, 1.

[216] N.J. Nilsson. A mobile automaton: An application of ai techniques. Proc. of
the First International Joint Conference on Artificial Intelligence (Morgan
Kaufmann Publishers, San Francisco), pages 509–520, 1969.

[217] A.R. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, 2(1):14 – 23, 1986.

[218] J. H. Connell. Sss: A hybrid architecture applied to robot navigation. Proc. of
the IEEE International Conference on Robotics and Automation, pages
2719–2724, 1992.

[219] I. Horswill. Polly: A vision-based artificial agent. Proc. of the National
Conference on Artificial Intelligence (AAAI), 1993.

[220] R. C. Arkin. Motor schema-based mobile robot navigation. International
Journal of Robotics Research, 8(4):92–112, 1989.

[221] Robert James Firby. Adaptive execution in complex dynamic worlds. Technical
report, Ph.D Thesis (Yale Univ., New Haven), 1989.

[222] R. P. Bonasso. Integrating reaction plans and layered competences through
synchronous control. In Proceedings of International Joint Conferences on
Artificial Intelligence, 1991.

[223] E. Gat. Integrating planning and reacting in a heterogeneous asynchronous
architecture for controlling real-world mobile robots. In Proceedings of the
National Conference on Artificial Intelligence (AAAI), 1992.

Bibliography 227

[224] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An architecture
for autonomy. International Journal of Robotics Research, 17(4):315–337, 1998.

[225] I. Nesnas, R. Simmons, D. Gaines, C. Kunz, A. Diaz-Calderon, T. Estlin,
R. Madison, J. Guineau, M. McHenry, I. Shu, and D. Apfelbaum. Claraty:
Challenges and steps toward reusable robotic software. International Journal of
Advanced Robotic Systems., 3(1):23–30, 2006.

[226] B. Sellner, F.W Heger, L.M. Hiatt, R. Simmons, and S. Singh. Coordinated
multi-agent teams and sliding autonomy for large-scale assembly. Proc. of the
IEEE- Special Issue on Multi-Robot Systems, 94(7):1425–1444, 2006.

[227] J. T. Feddema, R. D. Robinett, and B. J. Driessen. Designing stable finite
state machine behaviours using phase plane analysis and variable structure
control. volume 2, pages 1134 – 1141, 1998.

[228] A. Goswami, B. Espiau, and A. Keramane. Limit cycles and their stability in a
passive bipedal gait. In IEEE International Conference on Robotics and
Automation, volume 1, pages 246–251, 1996.

[229] A. Goswami, B. Thuilot, and B. Espiau. A study of the passive gait of a
compass-like biped robot symmetry and chaos. In The International Journal of
Robotics Research, volume 17, pages 1282–1301, 1998.

[230] Y. Hurmuzlu, F. Genot, and B. Brogliato. Modeling, stability and control of
biped robots - a general framework. In IEEE International Conference on
Robotics and Automation, volume 40, pages 1647–1664, 2004.

[231] P. M. Silva and J. A. T. Machado. Towards force interaction control of biped
walking robots. volume 3, pages 2568 – 2573, 2004.

[232] T. Wang and C. Chevallereau. Stability analysis and time-varying walking
control for an under-actuated planar biped robot. In Robotics and Autonomous
Systems, volume 59, pages 444–456, 2011.

[233] Y. Aoustin, C. Chevallereau, and A. FormalŠsky. Numerical and experimental
study of the virtual quadrupedal walking robot-semiquad. Multibody System
Dynamics, 16(1):1 – 20, 2006.

[234] R. Grupen and J. Coelho. Acquiring state from control dynamics to learn
grasping policies for robot hands. Advanced Robotics, 16(5):427 – 443, 2002.

Bibliography BIBLIOGRAPHY

[235] D. Koditschek and M. Buhler. Analysis of a simplified hopping robot. In The
International Journal of Robotics Research, volume 10, pages 587–605, 1991.

[236] W. Schwind and D. Koditschek. Control of forward velocity for a simplified
planar hopping robot. In IEEE International Conference on Robotics and
Automation, volume 1, pages 691–696, 1995.

[237] Z. Lu, S. Ma, B. Li, and Y. Wang. Design of a snake-like robot controller with
cyclic inhibitory cpg model. pages 35 – 40, 2005.

[238] J. Ryu, N. Chong, B. You, and H. Christensen. Locomotion of snake-like
robots using adaptive neural oscillators. volume 3, pages 1 – 10, 2010.

[239] O. Tchernichovski and I. Golani. A phase plane representation of rat
exploratory behavior. Journal of neuroscience methods, 62(1):21 – 27, 1995.

[240] J. S. Il’Yashenko. Global analysis of the phase portrait for the
kuramoto-sivashinsky equation. Journal of Dynamics and Differential
Equations, 4(4):585 – 615, 1992.

[241] A. M. Lyapunov. The general problem of stability of motion. International
Journal of Contro, 55(3):531 – 534, 1992.

[242] A. Behal, W. Dixon, D. M. Dawson, and B. Xian. Lyapunov-based control of
robotic systems, volume 36. 2009.

[243] M. Branicky. Stability of switched and hybrid systems. volume 4, pages 3498 –
3503, 1994.

[244] Y. Ma, J. Kosecka, and S. Sastry. Vision guided navigation for a nonholonomic
mobile robot. IEEE Transactions on Robotics and Automation, 15(3):521 –
536, 1999.

[245] E. Freiret, T. Bastos-Filho, M. Sarcinelli-Filho, and R. Carelli. A control
architecture for mobile robots using fusion of the output of distinct controllers.
pages 142 – 147, 2002.

[246] R. Carelli and E. Freire. Corridor navigation and wall-following stable control
for sonar-based mobile robots. Robotics and Autonomous Systems, 45(3):235 –
247, 2003.

[247] J. Toibero, R. Carelliz, and B. Kuchen. Switching control of mobile robots for
autonomous navigation in unknown environments. pages 1974 – 1979, 2007.

Bibliography 229

[248] A. Benzerrouk, L. Adouane, and P. Martinet. Lyapunov global stability for a
reactive mobile robot navigation in presence of obstacles. ICRA 2010
International Workshop on Robotics and Intelligent Transportation System,
2010.

[249] F. Cuesta and A. Ollero. Fuzzy control of reactive navigation with stability
analysis based on conicity and lyapunov theory. Control engineering practice,
12(5):625 – 638, 2004.

[250] M. Ertugrul and O. Kaynak. Neuro sliding mode control of robotic
manipulators. Mechatronics, 10(1):239 – 532636, 2000.

[251] L. Beji, M. ElKamel, and A. Abichou. A strategy for multi-robot navigation. in
decision and control and european control conference. pages 4214 – 4219, 2011.

[252] J. Yang, S. J. Chung, S. Hutchinson, D. Johnson, and M. Kise. Vision-based
localization and mapping for an autonomous mower. pages 3655 — 3662, 2013.

[253] T. Das and I. Kar. Design and implementation of an adaptive fuzzy logic-based
controller for wheeled mobile robots. IEEE Transactions on Control Systems
Technology, 14(3):501 – 510, 2006.

[254] S. Yang, A. Zhu, G. Yuan, and M. Meng. A bioinspired neurodynamics-based
approach to tracking control of mobile robots. IEEE Transactions on Industrial
Electronics, 59(8):3211 – 3220, 2012.

[255] S. Yang and M. Meng. An efficient neural network approach to dynamic robot
motion planning. Neural Networks, 13(2):143 – 148, 2000.

[256] H. Berti, A. Sappa, and O. Agamennoni. Autonomous robot navigation with a
global and asymptotic convergence. In International Conference on Robotics
and Automation (ICRA), pages 2712–2717, 2007.

[257] I. Sandberg. A frequency-domain condition for the stability of feedback
systems containing a single time-varying nonlinear element. Bell System
Technical Journal, 43(4):1601 – 1608, 1964.

[258] G. Zames. On the input-output stability of time-varying nonlinear feedback
systems part one: Conditions derived using concepts of loop gain, conicity, and
positivity. IEEE Transactions on Automatic Control, 11(2):228 – 238, 1966.

Bibliography BIBLIOGRAPHY

[259] E. Sontag. Input to state stability: Basic concepts and results. Nonlinear and
optimal control theory, Springer Berlin Heidelberg, pages 163 – 220, 2008.

[260] E. Fridman and U. Shaked. Input - output approach to stability and l2-gain
analysis of systems with time-varying delays. Intelligent Automation & Soft
Computing, 55(12):1041 – 1053, 2006.

[261] N. Sarkar, X. Yun, and V. Kumar. Control of mechanical systems with rolling
constraints application to dynamic control of mobile robots. The International
Journal of Robotics Research, 13(1):55 – 69, 1994.

[262] Y. Yang, C. Zhou, and J. Du. Adaptive robust fuzzy tracking control for pole
balancing robots using small gain design. Intelligent Automation & Soft
Computing, 11(2):97 – 109, 2005.

[263] J. Jouffroy and J. Slotine. Methodological remarks on contraction theory. In
43rd IEEE Conference on Decision and Control, 3:2537 – 2543, 2004.

[264] W. Wang and J. Slotine. On partial contraction analysis for coupled nonlinear
oscillators. Biological cybernetics, 92(1):38 – 53, 2005.

[265] D. Angeli. A lyapunov approach to incremental stability properties. IEEE
Transanctions on Automatic Control, 47(3):410 – 421, 2002.

[266] V. Fromion, G. Scorletti, and G. Ferreres. Nonlinear performance of a pi
controlled missile: an explanation. International Journal of Robust and
Nonlinear Control, 9:485 – 518, 1999.

[267] J. Jouffroy and T. Fossen. A tutorial on incremental stability analysis using
contraction theory. Modeling, Identification and Control, 31(3):93 – 106, 2010.

[268] J. Jouffroy. A simple extension of contraction theory to study incremental
stability properties. In European Control Conference, 2003.

[269] J. Slotine and W. Lohmiller. Modularity, evolution, and the binding problem:
A view from stability theory. Neural networks, 14(2):137 – 145, 2001.

[270] B. Perk and J. Slotine. Motion primitives for robotic flight control. arXiv
preprint cs/0609140, 2006.

[271] T. Kiant, S. Hungsun, and P. Chai. Uav flight path control using
contraction-based back-stepping control. Open Journal of Applied Sciences, 65
(3):65 – 70, 2013.

Bibliography 231

[272] T. D. Nguyen and O. Egeland. Output tracking control of a flexible robot arm.
44th IEEE Conference on Decision and Control, CDC-ECC’05, pages 5269 –
5274, 2005.

[273] S. Chung and J. Slotine. Cooperative robot control and concurrent
synchronization of lagrangian systems. IEEE Transactions on Robotics, 25(3):
686 – 700, 2009.

[274] J. Sequeira, C. Santos, and J. Silva. Dynamical systems in robot control
architectures: A building block perspective. Proceedings of the 12th
International Conference on Control, Automation, Robotics and Vision,
ICARCV, 2012.

[275] A. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal. Dynamical
movement primitives: learning attractor models for motor behaviors. Neural
computation, 25(2):328 – 373, 2013.

[276] Y. Zhao and J. Slotine. Discrete nonlinear observers for inertial navigation.
Systems & control letters, 54(9):887 – 898, 2005.

[277] G. Torsetnes. Nonlinear control and observer design for dynamic positioning
using contraction theory, 2004.

[278] A. Park, A. Mukovskiy, L. Omlor, and M. Giese. Synthesis of character
behaviour by dynamic interaction of synergies learned from motion capture
data. pages 9 — 16, 2008.

[279] I. Chang and S. Chung. Bio-inspired adaptive cooperative control of
heterogeneous robotic networks. pages 9 — 16, 2009.

[280] S. Pring and C. Budd. The dynamics of regularized discontinuous maps with
applications to impacting systems. SIAM Journal on Applied Dynamical
Systems, 9(1):188 – 219, 2010.

[281] J. Awrejcewicza, M. Fekanb, and P. Olejnika. On continuous approximation of
discontinuous systems. Journal of Nonlinear Analysis, 62:1317–1331, 2005.

[282] M. F. Danca and S. Codreanu. On a possible approximation of discontinuous
dynamical systems. Journal of Chaos, Solitons and Fractals, 13:681–691, 2002.

[283] A. Bry and N. Roy. Rapidly-exploring random belief trees for motion planning
under uncertainty. IEEE International Conference on Robotics and Automation
(ICRA), pages 723 – 730, 2011.

Bibliography BIBLIOGRAPHY

[284] Y. Guo and Q. Zhihua. Coverage control for a mobile robot patrolling a
dynamic and uncertain environment. 5th IEEE World Congress on Intelligent
Control and Automation, 6:4899 – 4903, 2004.

[285] T. Bretl and S. Hutchinson. Robust coverage by a mobile robot of a planar
workspace. IEEE International Conference on Robotics and Automation
(ICRA), 6:4567 – 4572, 2013.

[286] A. Elfes. Sonar-based real-world mapping and navigation. IEEE Journal of
Robotics and Automation, 3(3):249 – 265, 1987.

[287] A. Elfes. Occupancy grids: a probabilistic framework for robot perception and
navigation. Ph.D. Thesis, Department of Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburhg, PA, 1989.

[288] H. Hu and M. Brady. Dynamic global path planning with uncertainty for
mobile robots in manufacturing. IEEE Transactions on Robotics and
Automation, 13(5), 1997.

[289] E. Bicho, P. Mallet, and G. Schöner. Target representation on an autonomous
vehicle with low-level sensors. The International Journal of Robotics Research,
(210):424–447, 2000.

[290] E. Large. Scaling the dynamical systems approach to path planning. IEEE
International Symposium on Industrial Electronics, Guimaraes, Portugal, pages
21–26, 1997.

[291] A. Steinhage and G. Schöner. Dynamical systems for the behavioral
organization of autonomous robot navigation. In McKee G T Schenker PS,
editor, Sensor Fusion and Decentralized Control in Robotic Systems:
Proceedings of Spie-Intelligent Systems Manufactors, Boston, pages 169Ű–180,
1998.

[292] B. Hasselblatt and A. Katok. A First Course in Dynamics. Cambridge
University Press, 2003.

[293] E. Kreyszig. Introductory functional analysis with applications, volume 81. New
York: wiley, 1989.

[294] H. Lütkepohl. Handbook of Matrices. John Wiley & Sons, 1996.

Bibliography 233

[295] W. Lohmiller and J. Slotine. Control system design for mechanical systems
using contraction theory. IEEE Transactions on Automatic Control, 45(5):984
– 989, 2000.

[296] K. Rifai and J. Slotine. Compositional contraction analysis of resetting hybrid
systems. IEEE Transactions on Automatic Control, 51(9):1536–1541, 2006.

[297] A. Ozkil, S. Dawids, Z. Fan, and T. Sorensen. Design of a robotic automation
system for transportation of goods in hospitals. IEEE International Symposium
on Computational Intelligence in Robotics and Automation, pages 392–397,
2007.

[298] K. Fitzpatrick, M. Brewer, and S. Turner. Another look at pedestrian walking
speed. Transportation Research Record: Journal of the Transportation Research
Board, 1982(1):21 – 29, 2006.

[299] S. Hoogendoornn and P. Bovy. Simulation of pedestrian flows by optimal
control and differential games. Optim. Control Appl. Meth, 24:153 – 172, 2003.

[300] O. Michel. Webots: Professional mobile robot simulation. International
Journal of Advanced Robotic Systems, 1(1):39–42, 2004.

[301] H. Kato and M. Billinghurst. Marker tracking and hmd calibration for a
video-based augmented reality conferencing system. Proceedings of IWAR 99,
pages 85 – 94, 1999.

[302] S. Zhang, L. Xie, and M. D. Adams. Entropy based feature selection scheme for
real time simultaneous localization and map building. IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1175–1180, 2005.

[303] M. Beinhofer, J. Muller, and W. Burgard. Effective landmark placement for
accurate and reliable mobile robot navigation. Robotics and Autonomous
Systems, 2012.

[304] J. Salas and J. Gordillo. Placing artificial visual landmarks in a mobile robot
workspace. Proc. of the Ibero-American Conf. on Artificial Intelligence, 1484:
274 – 282, 1998.

[305] P. Sala, R. Sim, and A. Shokoufandeh. Placing artificial visual landmarks in a
mobile robot workspace. IEEE Transactions on Robotics, 22(2):334 – 349, 2006.

Bibliography BIBLIOGRAPHY

[306] D. Meyer-Delius, M. Beinhofer, A. Kleiner, and W. Burgard. Using artifical
landmarks to reduce the ambiguity in the environment of a mobile robot. Proc.
of the IEEE Int. Conference on Robotics and Automation (ICRA), pages 5173
–5178, 2011.

[307] L. Jetto, S. Longhi, and G. Venturini. Development and experimental
validation of an adaptive extended kalman filter for the localization of mobile
robots. IEEE Transactions on Robotics and Automation, 15(2):219–229, 1999.

[308] S. Han, Q. Zhang, and H. Noh. Kalman filtering of dgps positions for a parallel
tracking application. Transactions-American Society of Agricultural Engineers,
45(3):553–560, 2002.

[309] A. Paul and E. Wan. Dual kalman filters for autonomous terrain aided
navigation in unknown environments. IEEE International Joint Conference on
Neural Networks, 5:2784–2789, 2005.

[310] J. Sasiadek and P. Hartana. Sensor data fusion using kalman filter. 3rd
International Conference Information Fusion, 2:19–25, 2000.

[311] P. Escamilla-Ambrosio and N. Mort. Multisensor data fusion architecture
based on adaptive kalman filters and fuzzy logic performance assessment.
Proceedings of the Fifth International Conference on Information Fusion, 2:
1542–1549, 2002.

[312] V. Subramanian, T. Burks, and W. Dixon. Sensor fusion using fuzzy logic
enhanced kalman filter for autonomous vehicle guidance in citrus groves.
Transactions of the ASAE, 52:1411–1422, 2009.

[313] B. Graf. Dependability of mobile robots in direct interaction with humans.
Advances in Human-Robot Interaction, Springer Berlin Heidelberg, pages
223Ű–239, 2005.

[314] A. Llarena, J. Savage, A. Kuri, and B. Escalante-Ramirez. Odometry-based
viterbi localization with artificial neural networks and laser range finders for
mobile robots. Journal of Intelligent & Robotic Systems, 66(1-2):75 – 109, 2012.

