36,751 research outputs found

    "The Shift from Belt Conveyor Line to Work-cell Based Assembly Systems to Cope with Increasing Demand Variation and Fluctuation in The Japanese Electronics Industries"

    Get PDF
    As consumption patterns become increasingly sophisticated and manufacturers strive to improve their competitiveness, not only offering higher quality at competitive costs, but also by providing broader mix of products, and keeping it attractive by launching successively new products, the turbulence in the markets has intensified. This has impelled leading manufacturers to search the development of alternative production systems supposed to enable them operate more responsively. This paper discusses the trend of abandoning the strategy of relying on factory automation technologies and conveyor-based assembly lines, and shifting towards more human-centered production systems based on autonomous work-cells, observed in some industries in Japan (e.g. consumer electronics, computers, printers) since mid-1990s. The purpose of this study is to investigate this trend which is seemingly uneconomic to manufacturers established in a country where labor costs are among the highest in the world, so as to contribute in the elucidation of its background and rationality. This work starts with a theoretical review linking the need to cope with nowadays' market turbulence with the issue of nurturing more agile organizations. Then, a general view of the diffusion trend of work-cell based assembly systems in Japanese electronics industries is presented, and some empirical facts gathered in field studies conducted in Japan are discussed. It is worthy mentioning that the abandonment of short cycle-time tasks performed along conveyor lines and the organization of workforce around work-cells do not imply a rejection of the lean production paradigm and its distinctive process improvement approach. High man-hour productivity is realized as a key goal to justify the implementation of work-cells usually devised to run in longer cycle-time, and the moves towards this direction has been strikingly influenced by the kaizen philosophy and techniques that underline typical initiatives of lean production system implementation. Finally, it speculates that even though the subject trend is finding wide diffusion in the considered industries, it should not be regarded as a panacea. In industries such as manufacturing of autoparts, despite the notable product diversification observed in the automobile market, its circumstances have still allowed the firms to rely on capital-intensive process, and this has sustained the development of advanced manufacturing technologies that enable the agile implementation and re-configuration of highly automated assembly lines.

    Advancing automation and robotics technology for the space station and for the US economy: Submitted to the United States Congress October 1, 1987

    Get PDF
    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fifth in a series of progress updates and covers the period between 16 May 1987 and 30 September 1987. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the mandate of Congress is that an advanced automation and robotics technology be built to support an evolutionary space station program and serve as a highly visible stimulator affecting the long-term U.S. economy

    Assembly and Disassembly Planning by using Fuzzy Logic & Genetic Algorithms

    Full text link
    The authors propose the implementation of hybrid Fuzzy Logic-Genetic Algorithm (FL-GA) methodology to plan the automatic assembly and disassembly sequence of products. The GA-Fuzzy Logic approach is implemented onto two levels. The first level of hybridization consists of the development of a Fuzzy controller for the parameters of an assembly or disassembly planner based on GAs. This controller acts on mutation probability and crossover rate in order to adapt their values dynamically while the algorithm runs. The second level consists of the identification of theoptimal assembly or disassembly sequence by a Fuzzy function, in order to obtain a closer control of the technological knowledge of the assembly/disassembly process. Two case studies were analyzed in order to test the efficiency of the Fuzzy-GA methodologies

    A ROS2 based communication architecture for control in collaborative and intelligent automation systems

    Get PDF
    Collaborative robots are becoming part of intelligent automation systems in modern industry. Development and control of such systems differs from traditional automation methods and consequently leads to new challenges. Thankfully, Robot Operating System (ROS) provides a communication platform and a vast variety of tools and utilities that can aid that development. However, it is hard to use ROS in large-scale automation systems due to communication issues in a distributed setup, hence the development of ROS2. In this paper, a ROS2 based communication architecture is presented together with an industrial use-case of a collaborative and intelligent automation system.Comment: 9 pages, 4 figures, 3 tables, to be published in the proceedings of 29th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM2019), June 201

    Interacting Unities: An Agent-Based System

    Get PDF
    Recently architects have been inspired by Thompsonis Cartesian deformations and Waddingtonis flexible topological surface to work within a dynamic field characterized by forces. In this more active space of interactions, movement is the medium through which form evolves. This paper explores the interaction between pedestrians and their environment by regarding it as a process occurring between the two. It is hypothesized that the recurrent interaction between pedestrians and environment can lead to a structural coupling between those elements. Every time a change occurs in each one of them, as an expression of its own structural dynamics, it triggers changes to the other one. An agent-based system has been developed in order to explore that interaction, where the two interacting elements, agents (pedestrians) and environment, are autonomous units with a set of internal rules. The result is a landscape where each agent locally modifies its environment that in turn affects its movement, while the other agents respond to the new environment at a later time, indicating that the phenomenon of stigmergy is possible to take place among interactions with human analogy. It is found that it is the environmentis internal rules that determine the nature and extent of change
    • …
    corecore