9,129 research outputs found

    A Reactive and Cycle-True IP Emulator for MPSoC Exploration

    Get PDF
    The design of MultiProcessor Systems-on-Chip (MPSoC) emphasizes intellectual-property (IP)-based communication-centric approaches. Therefore, for the optimization of the MPSoC interconnect, the designer must develop traffic models that realistically capture the application behavior as executing on the IP core. In this paper, we introduce a Reactive IP Emulator (RIPE) that enables an effective emulation of the IP-core behavior in multiple environments, including bitand cycle-true simulation. The RIPE is built as a multithreaded abstract instruction-set processor, and it can generate reactive traffic patterns. We compare the RIPE models with cycle-true functional simulation of complex application behavior (tasksynchronization, multitasking, and input/output operations). Our results demonstrate high-accuracy and significant speedups. Furthermore, via a case study, we show the potential use of the RIPE in a design-space-exploration context

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 2: Army fault tolerant architecture design and analysis

    Get PDF
    Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions

    Design of an integrated airframe/propulsion control system architecture

    Get PDF
    The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that uses both reliability and performance. A detailed account is given for the testing associated with a subset of the architecture and concludes with general observations of applying the methodology to the architecture

    Automatic Generation of Transducer Models for Bus-Based MPSoC Design

    Get PDF
    This paper presents methods for automatic generation of models of Transducer, a highly flexible communication module for interfacing Multiprocessor System-on-Chip (MPSoC) components. We describe the transducer architecture, comprising the bus interface, high-level communication controllers and buffer management blocks. The well-defined architecture of the transducer enables automatic generation of its Transaction-level and Register-transfer level (RTL) models. Moreover, the simple interface of the transducer provides for a well-defined software interface, making it easy to update the software after changes in MPSoC platform. Our experimental results show that MPSoC design for industrial-size applications, such as MP3 decoder and JPEG encoder, greatly benefits from automatic generation of transducer models. We found productivity gains of 9-23× due to significant savings in modeling effort. On the quality axis, we show that MPSoC communication design using automatically generated transducers has very little overhead in communication delay over a fully connected point-to-point communication architecture. Finally, we show that our automatically generated TLMs greatly reduce the system-level modeling time and provide a fast executable model for early functional validation

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    A Model-Based Development and Verification Framework for Distributed System-on-Chip Architecture

    Get PDF
    The capabilities and thus, design complexity of VLSI-based embedded systems have increased tremendously in recent years, riding the wave of Moore’s law. The time-to-market requirements are also shrinking, imposing challenges to the designers, which in turn, seek to adopt new design methods to increase their productivity. As an answer to these new pressures, modern day systems have moved towards on-chip multiprocessing technologies. New architectures have emerged in on-chip multiprocessing in order to utilize the tremendous advances of fabrication technology. Platform-based design is a possible solution in addressing these challenges. The principle behind the approach is to separate the functionality of an application from the organization and communication architecture of hardware platform at several levels of abstraction. The existing design methodologies pertaining to platform-based design approach don’t provide full automation at every level of the design processes, and sometimes, the co-design of platform-based systems lead to sub-optimal systems. In addition, the design productivity gap in multiprocessor systems remain a key challenge due to existing design methodologies. This thesis addresses the aforementioned challenges and discusses the creation of a development framework for a platform-based system design, in the context of the SegBus platform - a distributed communication architecture. This research aims to provide automated procedures for platform design and application mapping. Structural verification support is also featured thus ensuring correct-by-design platforms. The solution is based on a model-based process. Both the platform and the application are modeled using the Unified Modeling Language. This thesis develops a Domain Specific Language to support platform modeling based on a corresponding UML profile. Object Constraint Language constraints are used to support structurally correct platform construction. An emulator is thus introduced to allow as much as possible accurate performance estimation of the solution, at high abstraction levels. VHDL code is automatically generated, in the form of “snippets” to be employed in the arbiter modules of the platform, as required by the application. The resulting framework is applied in building an actual design solution for an MP3 stereo audio decoder application.Siirretty Doriast

    OVM compliant verification for a wishbone compatible i2c master controller core

    Get PDF
    Increasing design complexity and concurrency of Integrated Circuits has made traditional directed testbenches an unworkable solution for testing. Today, testing as a word has been substituted with verification. Verification engineers have to ensure what goes to the factory for manufacturing is an accurate representation of the design specification. Inter Integrated Circuit (I2C) bus is a very widely used communication protocol in embedded system design due to its hardware simplicity and high data transfer rates capability. Most ICs incorporate I2C interface. Thus the ASIC design process of these ICs calls for robust, independent and exhaustive verification to reduce the risks of their failures. Open Verification Methodology (OVM) is an open source verification methodology library intended to run on multiple platforms and be supported by multiple EDA vendors. This thesis attempts to study and hence introduces a comprehensive verification environment for the latest specifications of the I2C bus protocol realized in the OVM platform, a new industry standard for comprehensive verification due to its rich base classes and OOP features. This work has been challenging since very few work has been reported in this domain for reference

    Automated Debugging Methodology for FPGA-based Systems

    Get PDF
    Electronic devices make up a vital part of our lives. These are seen from mobiles, laptops, computers, home automation, etc. to name a few. The modern designs constitute billions of transistors. However, with this evolution, ensuring that the devices fulfill the designer’s expectation under variable conditions has also become a great challenge. This requires a lot of design time and effort. Whenever an error is encountered, the process is re-started. Hence, it is desired to minimize the number of spins required to achieve an error-free product, as each spin results in loss of time and effort. Software-based simulation systems present the main technique to ensure the verification of the design before fabrication. However, few design errors (bugs) are likely to escape the simulation process. Such bugs subsequently appear during the post-silicon phase. Finding such bugs is time-consuming due to inherent invisibility of the hardware. Instead of software simulation of the design in the pre-silicon phase, post-silicon techniques permit the designers to verify the functionality through the physical implementations of the design. The main benefit of the methodology is that the implemented design in the post-silicon phase runs many order-of-magnitude faster than its counterpart in pre-silicon. This allows the designers to validate their design more exhaustively. This thesis presents five main contributions to enable a fast and automated debugging solution for reconfigurable hardware. During the research work, we used an obstacle avoidance system for robotic vehicles as a use case to illustrate how to apply the proposed debugging solution in practical environments. The first contribution presents a debugging system capable of providing a lossless trace of debugging data which permits a cycle-accurate replay. This methodology ensures capturing permanent as well as intermittent errors in the implemented design. The contribution also describes a solution to enhance hardware observability. It is proposed to utilize processor-configurable concentration networks, employ debug data compression to transmit the data more efficiently, and partially reconfiguring the debugging system at run-time to save the time required for design re-compilation as well as preserve the timing closure. The second contribution presents a solution for communication-centric designs. Furthermore, solutions for designs with multi-clock domains are also discussed. The third contribution presents a priority-based signal selection methodology to identify the signals which can be more helpful during the debugging process. A connectivity generation tool is also presented which can map the identified signals to the debugging system. The fourth contribution presents an automated error detection solution which can help in capturing the permanent as well as intermittent errors without continuous monitoring of debugging data. The proposed solution works for designs even in the absence of golden reference. The fifth contribution proposes to use artificial intelligence for post-silicon debugging. We presented a novel idea of using a recurrent neural network for debugging when a golden reference is present for training the network. Furthermore, the idea was also extended to designs where golden reference is not present
    corecore