
Turku Centre for Computer Science

TUCS Dissertations
No 171, March 2014

Moazzam Fareed Niazi

A Model-Based Development and
Verification Framework for Distributed
System-on-Chip Architecture

A Model-Based Development and
Verification Framework for
Distributed System-on-Chip

Architecture

Moazzam Fareed Niazi

To be presented, with the permission of the Faculty of Mathematics and
Natural Sciences of the University of Turku, for public criticism in

Auditorium Beta on March 26, 2014, at 12 noon.

University of Turku
Department of Information Technology

FIN-20014 Turku, Finland

2014

Supervisors

Principal Scientist, Dr. Tiberiu Seceleanu
ABB Corporate Research
Forskargränd, 721 78 Väster̊as
Sweden

Professor Hannu Tenhunen
Adjunct Professor Pasi Liljeberg
Department of Information Technology
University of Turku
FIN-20014 Turku
Finland

Reviewers

Professor Detlef Streitferdt
Software Architectures and Product Lines Group
Ilmenau University of Technology
Helmholtzplatz 5, 98693 Ilmenau
Germany

Dr. Vassilios A. Chouliaras
School of Electronic, Electrical and Systems Engineering
Loughborough University
Ashby Road, Loughborough, Leicestershire, LE11 3TU
United Kingdom

Opponent

Professor Jari Nurmi
Department of Electronics and Communications Engineering
Tampere University of Technology
FIN-33101 Tampere
Finland

The originality of this thesis has been checked in accordance with the University of

Turku quality assurance system using the Turnitin OriginalityCheck service.

ISBN 978-952-12-3028-8
ISSN 1239-1883

Abstract

The capabilities and thus, design complexity of VLSI-based embedded sys-
tems have increased tremendously in recent years, riding the wave of Moore’s
law. The time-to-market requirements are also shrinking, imposing chal-
lenges to the designers, which in turn, seek to adopt new design methods to
increase their productivity. As an answer to these new pressures, modern
day systems have moved towards on-chip multiprocessing technologies. New
architectures have emerged in on-chip multiprocessing in order to utilize the
tremendous advances of fabrication technology.

Platform-based design is a possible solution in addressing these chal-
lenges. The principle behind the approach is to separate the functionality
of an application from the organization and communication architecture
of hardware platform at several levels of abstraction. The existing design
methodologies pertaining to platform-based design approach don’t provide
full automation at every level of the design processes, and sometimes, the
co-design of platform-based systems lead to sub-optimal systems. In addi-
tion, the design productivity gap in multiprocessor systems remain a key
challenge due to existing design methodologies.

This thesis addresses the aforementioned challenges and discusses the
creation of a development framework for a platform-based system design,
in the context of the SegBus platform - a distributed communication archi-
tecture. This research aims to provide automated procedures for platform
design and application mapping. Structural verification support is also fea-
tured thus ensuring correct-by-design platforms. The solution is based on
a model-based process. Both the platform and the application are modeled
using the Unified Modeling Language. This thesis develops a Domain Spe-
cific Language to support platform modeling based on a corresponding UML
profile. Object Constraint Language constraints are used to support struc-
turally correct platform construction. An emulator is thus introduced to
allow as much as possible accurate performance estimation of the solution,
at high abstraction levels. VHDL code is automatically generated, in the
form of “snippets” to be employed in the arbiter modules of the platform, as
required by the application. The resulting framework is applied in building
an actual design solution for an MP3 stereo audio decoder application.

i

ii

Tiivistelmä

Sulautettujen järjestelmien tarjoama laskentakapasiteetti, niiden koko mi-
tattuna transistorien määrällä sekä kompleksisuus ovat kasvaneet huomat-
tavasti viimevuosien aikana Mooren lakia mukaillen. Näiden laitteiden tuo-
tantovaatimukset ovat myös kiristyneet tehden suunnitteluprosessista en-
tistä vaativamman suunnittelijoille. Tämä on pakottanut etsimään yhä uu-
sia suunnittelumenetelmiä jotta pystytään vastaamaan kiristyneihin tuotan-
tovaatimuksiin. Eräs vastaus näihin vaatimuksiin on ollut siirtyminen moni-
prosessorijärjestelmiin. Tämä teknologia puolestaan tuo uusia arkkitehtu-
uriasi haasteita ja mahdollisuuksia hyödyntää teknologisen kehityksen tuo-
mia mahdollisuuksia.

Sovellusalustapohjainen suunnittelu on eräs ratkaisu näihin haasteisiin.
Tämän paradigman kantavan ajatuksena on eriyttää kyseessä olevan sovel-
luksen funktionaalisuus ja järjestelmän sisäinen tiedonsiirto useilla eri abs-
traktio tasoilla. Olemassa olevat sovellusalustapohjaiset suunnittelumene-
telmät eivät ole täysin automatisoituja kaikilla suunnitteluprosessin osa-
alueilla. Lisäksi järjestelmän sisäinen tiedonsiirto aiheuttaa ongelmia tässä
prosessissa, sillä useasti järjestelmät eri osat eivät ole täysin yhteensopivia.

Tässä väitöskirjatyössä pyritään ratkaisemaan yllämainittuja ongelmia
sekä esitetään kehitetty sovellusalustapohjainen sulautettujen järjestelmien
suunnittelumenetelmä. Menetelmää on sovelluttu hajautettuun SegBus kom-
munikaationa arkkitehtuuriin. Tähän liittyen työssä on kehitetty automa-
tisoituja menetelmiä sekä alustan suunnitteluun että sovellusten vaatimien
resurssien sijoitteluun kyseiseen järjestelmään. Menetelmä tukee struktu-
raalista oikeellisuuden varmistamista joka perustuu mallipohjaiseen lähesty-
mistapaan. Objektipohjaista konseptia on sovellettu tukemaan struktu-
raalisesti oikeellista rakenteen varmistamista. Työssä on kehitetty myös
emulaattori, jonka avulla on mahdollista arvioida tarkasti suorituskykyä.
Työssä kehitetty sovellusalustapohjaista menetelmää on sovellettu audio-
järjestelmän dekoodaukseen.

iii

iv

To the memory of my beloved mother (1958-2007)

v

vi

Acknowledgments

First praise is to ALLAH, the Almighty, on whom ultimately we depend for
sustenance and guidance. Without His help and blessings, I was not able to

bring this work to its completion.

The completion of this doctoral thesis is an exciting moment of my life
and I am feeling glad while writing this part of my thesis. I would like to
express my gratitude to several people and institutions that have influenced
the research work presented in this thesis.

First and foremost, I would like to express my heartfelt gratitude to
my first two supervisors, Adjunct Professor Tiberiu Seceleanu and Professor
Hannu Tenhunen, for their guidance, encouragement and support that they
have provided to me during the course of this work. Especially, I wish
to thank Dr. Tiberiu Seceleanu for considering me for this research work,
and for all the support and guidance that he provided to me on numerous
occasions in Turku as well as in Väster̊as. I have always experienced the
true inspiration from him every time we discussed the ongoing work in a
much friendlier environment.

I would also like to extend my gratitude to my third supervisor Adjunct
Professor Pasi Liljeberg for comprehensive guidance throughout my doctoral
studies, and especially for handling the practical matters during the last
phase of this work. I am also very thankful to Dr. Dragoş Truşcan and Dr.
Torbjörn Lundkvist from Åbo Akademi for providing me guidance related
to UML modeling and tools in the start of this research work.

I would also like to thank Professor Detlef Streitferdt from Ilmenau
University of Technology, Germany and Dr. Vassilios A. Chouliaras from
Loughborough University, United Kingdom for the detailed reviews and con-
structive feedback on this thesis. Furthermore, I wish to sincerely thank
Professor Jari Nurmi from Tampere University of Technology, Finland for
accepting to be the opponent in the public defense of my thesis.

I gratefully acknowledge the financial support from different institutions
that made this research work possible. I am grateful to Academy of Fin-
land and Turku Centre for Computer Science (TUCS) for providing me
the financial support during the initial four years of this research work. I

vii

wish to express my sincerest gratitude to TES-Tekniikan edistämissäätiö and
University of Turku Graduate School (UTUGS) for their financial support
through incentive grants on two different occasions.

I owe my deepest gratitude to my friend Dr. Qaisar Malik for all the
support, help and kindness that he has provided to me while he was com-
pleting his doctoral studies in Åbo Akademi. I wish to appreciate him for
everything that he has done for me during all those years we spent together
in Turku. Similarly, I would also like to take this opportunity to thank
my oldest friend Ali Hanzala Khan for providing me a pleasant company
during all those years which we have spent together in Pakistan, Sweden
and Finland as well. He always showed me that there is a life outside the
academic environment. Moreover, I am also grateful to Syed Asad Jafri, Ali
Shuja Siddiqui, Fareed Ahmed Jokhio, Adnan Ashraf and many others for
providing me a good company during my stay in the ICT House, and also to
all others for exchanging smiles and saying greetings while passing through
the department corridors.

I would also like to extend my gratitude to my teachers from my former
university (Bahria University, Pakistan): Dr. Muhammad Mohiuddin; Dr.
Syed Aley Imran Rizvi; and Salman Zafar. Their continuous motivation
throughout my post-graduate studies kept my mind fertile, productive and
focused to my career goals.

I would also like to thank all the secretaries especially Irmeli Laine,
Maria Prusila, Heli Vilhonen, Päivi Rastas, administrative and support staff
especially Tomi Mäntylä and Sami Nuuttila, both at TUCS and Department
of Information Technology of the University of Turku for running the de-
partments in an efficient and hassle-free manner.

Most importantly, none of this would have been possible without the
best wishes, love, prayers and patience of my family. I am truly indebted
to my mother for everything that she has done for me. Although she is no
longer with us but she will be remembered for the rest of my life. I also
gratefully acknowledge the support and motivation from my father and all
my brothers, especially the elder ones. I am truly thankful to all of them.

Finally, I am truly grateful for the all the support, understanding and
love from my wife throughout the time we spent together while completing
this research work and writing this thesis as well. I appreciate her for all
the unconditional support, patience and nice advices that she provided to
me in difficult times.

Turku, March 2014
Moazzam Fareed Niazi

viii

“Seek knowledge from the cradle to the grave.”
Prophet Muhammad (Peace and blessings be upon him)

ix

x

Contents

1 Introduction 1

1.1 The Y-chart approach . 4
1.2 The Model-Based Paradigm and UML 5
1.3 Design and Verification Challenges 6
1.4 Thesis Approach and Contributions 8
1.5 Related Work . 10
1.6 Research Publications . 15
1.7 Summary of the Research Publications 15
1.8 Thesis Organization . 19
1.9 Thesis Navigation . 20

2 The SegBus Platform 21

2.1 Platform Communication . 23
2.2 Platform Characteristics . 25

2.2.1 Topology . 25
2.2.2 Number of Segments 26
2.2.3 Package Size . 26

2.3 Platform Constraints . 26
2.4 Summary . 27

3 The Model-based Development and Verification Framework 29

3.1 Design Methodology . 29
3.2 Model-Based Development Paradigm 31
3.3 The Unified Modeling Language 33
3.4 The Object Constraint Language 36
3.5 The SegBus UML Profile . 36
3.6 Application Modeling using the P-SDF 38
3.7 DSL for the SegBus Platform 39

3.7.1 The SegBus Component Library 39
3.7.2 Extensible Markup Language 41
3.7.3 Model Transformation 42

3.8 The SegBus Emulator . 43

xi

3.9 The VHDL Snippets . 43
3.10 Summary . 43

4 SegBus DSL 45
4.1 Profile Development . 46
4.2 DSL Customizations . 48
4.3 Structural Constraints . 51
4.4 SegBus Components Library 53

4.4.1 Reusability Consideration 53
4.4.2 Implementation Approach 58
4.4.3 Plug-in Setup . 65

4.5 Summary . 66

5 SegBus Emulator 69
5.1 Basic Concepts . 70
5.2 Model Transformations . 71
5.3 Setup for Emulation . 74
5.4 Implementation Approach . 78
5.5 Emulation and Estimation . 86
5.6 Summary . 87

6 The VHDL Snippets 89
6.1 Significance and Usage . 90
6.2 Execution Schedule Generation 94
6.3 Summary . 97

7 The Overall Framework 99
7.1 Example using the Framework 100

7.1.1 Application Partitioning and Modeling 100
7.1.2 Configuring the Platform and Application Mapping . 100
7.1.3 Model Validation . 102
7.1.4 Model transformation of the example application . . . 104
7.1.5 Execution with 3-Segments Configuration 108
7.1.6 Calculation of the Execution Time 110
7.1.7 Emulation Results . 110
7.1.8 VHDL “Snippets” Generation 111

7.2 Discussion . 112
7.3 Summary . 113

8 Conclusions 115
8.1 Thesis Contributions . 115
8.2 Future Directions . 116

Bibliography 118

xii

List of Figures

1.1 Comparison of gaps among other important trends of SoC
design [18]. 2

1.2 The Y-chart approach [30]. 4
1.3 Navigation of the thesis. 20

2.1 Traditional bus-based system. 21
2.2 Segmented bus structure [20][50]. 22
2.3 Inter-segment package transfer. 24
2.4 Difference between linear and circular topologies. 25

3.1 The macro-level view of the SegBus design process based on
the proposed framework. 30

3.2 UML language units / diagrams. 34
3.3 The SegBus profile elements [38]. 37
3.4 The micro-level view of the proposed framework and its in-

ternal distinct units. 40
3.5 The SegBus library component structure. 41

4.1 High-level design entry to application development. 45
4.2 Design activities involved in the development of the SegBus

DSL. 46
4.3 Platform elements and their association in profile. 47
4.4 DSL Customization classes for each element of the SegBus

platform. 49
4.5 User-defined rules for different attributes of the Customiza-

tion classes. 50
4.6 Dependency link between two profile elements. 51
4.7 Use case model of the SegBus components library. 55
4.8 An analysis model of a “Select and assign component” use-case. 57
4.9 The class diagram of the SegBus components library. 58
4.10 IPRecord class structure and operations’ description. 59
4.11 LibraryWindow class structure and operations’ description. . 60
4.12 AddComponent class structure and operations’ description. . 61
4.13 LibraryPlugin class structure and operations’ description. . . 63

xiii

4.14 MainMenuConfigurator class structure and description of its
methods. 64

4.15 MenuAction class structure and operations’ description. . . . 64

5.1 High-level view of design entry to SegBus emulator. 69
5.2 Operating flow of the emulator. 71
5.3 Hierarchical structure of the SegBus profile elements. 73
5.4 P-SDF model of an example application. 75
5.5 Thread life cycle in different states [9]. 78
5.6 Class diagram of the emulator application. 80
5.7 SBP class operations’ description. 80
5.8 SA class operations’ description. 81
5.9 CA class operations’ description. 82
5.10 BU class operations’ description. 83
5.11 SegBusEmulatorView class operations’ description. 84
5.12 MonitorClass class operations’ description. 85

6.1 High-level view of design and verification activities leading to
ultimate code generation. 89

6.2 Arbiter control flow [41]. 91
6.3 Arbiter code structure [41]. 91
6.4 Code extraction process for segments in the platform. 93
6.5 P-SDF model of an example application. 95

7.1 Block diagram of the Layer III simplified MP3 decoder [17]. . 99
7.2 P-SDF model of the MP3 decoder. 101
7.3 The communication matrix of the partitioned-application. . . 102
7.4 Example configuration of the SegBus platform with 3 seg-

ments and linear topology. 103
7.5 Allocation of processes on different platform configuration. . . 104
7.6 Progress on time of each application process in 3 segment,

linear topology with package size of 36 data items configuration.110
7.7 Activity graph of different platform elements in 3 Segments

and linear topology configuration for 18 and 36 bit package
sizes. 114

xiv

List of Abbreviations

µs micro second

ACG Automatic Code Generation

AM Application Model

API Application Programming Interface

BU Border Unit

CA Central Arbiter

CAD Computer-Aided Design

CIM Computation Independent Model

CoD Complexity of Design

CoPE Correctness of Platform Execution

CPM Complete Platform Model

CWM Common Warehouse Metamodel

DE Designer Expertise

DocA Distributed on-chip Architecture

DSL Domain Specific Language

DSM Domain Specific Modeling

EDA Electronic Design Automation

FIFO First In, First Out

FPGA Field-Programmable Gate Array

FU Functional Unit

xv

GI Graphical Interface

HDL Hardware Description Language

HLDE High-Level Design Entry

IP Intellectual Property

M2M Model-to-Model transformation

M2T Model-to-Text transformation

MDA Model Driven Architecture

MDD Model Driven Development

MOF Meta-Object Facility

MP3 MPEG-1/MPEG-2 Audio Layer III Encoding Format

MPEG Moving Picture Expert Group

MPSoC Multiprocessor System-on-Chip

NoC Network-on-Chip

OCL Object Constraint Language

OOP Object-Oriented Programming

OS Operating System

P-SDF Package SDF

PAM Partitioned Application Model

PC Personal Computer

PE Platform Emulation

PIM Platform Independent Model

PO Performance Optimization

PSM Platform Specific Model

RTL Register Transfer Level

SA Segment Arbiter

SAM Segmented Application Model

xvi

SDF Synchronous Dataflow

SoC System-on-Chip

SoPC System-on-Programmable Chip

SPM Synthesizable Platform Model

SysML Systems Modeling Language

TCT Total Clock Ticks

UML Unified Modeling Language

UP Useful Period

VHDL VHSIC HDL

VHSIC Very High Speed Integrated Circuit

WP Waiting Period

XMI XML Metadata Interchange

XML Extensible Markup Language

xvii

xviii

Chapter 1

Introduction

An embedded system is a special-purpose computer which is generally part
of a larger physical system and provides a dedicated, and sometimes pro-
grammable, functionality to its ambient environment. Nowadays, such sys-
tems are widely used in airplanes, automobiles, industrial systems, cameras,
medical equipment, house-hold appliances and inside so many other appli-
cation areas.

In recent years, the complexity of the embedded systems has increased
tremendously, along with the shrinking silicon features. The time-to-market
is also shrinking, imposing challenges for the designers to adopt new design
methods.

As an answer to the new capabilities and pressures, embedded computing
systems have moved towards on-chip multiprocessing architectures. These
include on-chip multiprocessing to utilize the tremendous advances of fab-
rication technology. The Distributed on-chip architectures (DocA) [20] or
multiprocessor system-on-chip (MPSoC) [4] paradigm have gained increas-
ing support from system designers. MPSoC is seen as one of the foremost
means through which performance gains are still to be sustained even after
Moore’s law expected demise [27]. The most common DocA / MPSoC plat-
forms are network-on-chip (NoC) [1], and segmented bus platforms [16][20].

As the complexity of the application is increasing with time, the design-
ers are facing software and hardware challenges when designing applications
targeting MPSoCs. However, it is also a challenge to take full benefits from
all the distinguished features provided by the MPSoC platforms such as
programability, enormous potential for performance gains, multiple clock
domains, scalability, heterogeneity support, parallelism, etc. At the mo-
ment, there are a number of difficulties in MPSoC development and the
prominent one is the lack of comprehensive design methodologies that can
deal with almost every aspect of the design processes [27].

1

The platform-based design approach [3][33][34] provides the means to
address these challenges. Few important features of this approach include:
fast time-to-market, programability, short design cycle, design reusability
(both hardware and software), design customization, huge potential for op-
timizations (performance, power consumption, etc.). The principle behind
that approach is to separate the functionality of an application from the
structural organization and communication architecture of a hardware plat-
form at several levels of abstraction. This not only eases the design process
but also delivers efficiency for concurrent engineering in specific aspects of
the system by different members of the design team. The essential step in
this approach is the mapping process where functions of the application to
be implemented are assigned (mapped) to the components of the hardware
platform spread within a single chip or on a number of chips. Targeting
initially single chip designs, the approach gains even more importance in
the context of DocA / MPSoC.

The existing design methodologies don’t provide full automation in every
level of the development process, and sometimes, the co-design of platform-
based systems lead to sub-optimal systems. In order to offer an optimum
match, platform specific characteristics must be taken into consideration for
each application.

Figure 1.1: Comparison of gaps among other important trends of SoC design
[18].

2

Moreover, the design productivity gap in MPSoC design remains one of a
key challenge in the existing design methodologies. This challenge can be ad-
dressed by developing new computer-aided design (CAD) tools/frameworks
based on modern design methods while improving the reusability of IP
components. This not only enables the designers to take full advantages
of MPSoC platforms, but further satisfies other important constraints e.g.
time-to-market, quality of results, costs, etc. Figure 1.1 compares the de-
sign productivity gap with the advances in silicon technologies and with the
growth trends in design verification [18]. Here, the gap between the chip
complexity (Moore’s law) and design productivity is increasing with the pas-
sage of time, which is important to realize now and must be addressed by
the Electronic Design Automation (EDA) community.

Design decisions taken at higher abstraction levels are expected to have
the highest impact on the quality of the system implementation. Given
the complexity of modern on-chip multiprocessor solutions, this seems to
gain even more in importance. On the other hand, optimality of design
is strictly affected by platform parameters; hence, such platform-level as-
pects, if taken into account at high abstraction levels will lead to a solution
that maximizes the benefits of the distinguished features offered by the MP-
SoC platform. The specific platform considered in this study is the SegBus
platform [20], which is an on-chip communication platform architected to
provide communication infrastructure between the connected IP-cores in an
MPSoC environment.

The three basic and most commonly used approaches of the design
methodologies used for the embedded system design are: top-down; meet-
in-the-middle [2]; and bottom-up. The top-down methodology begins with
a high-level system specification which specifies initially a system structure
with required elements. Next, the specification is iteratively refined by de-
composing system into sub-systems and components until enough details
are gathered for each component. The design is then partitioned into hard-
ware and software parts, and co-optimized. Hence, the approach is also
well-known as hw/sw co-design. On the other hand, a bottom-up approach
is an inverse approach where, firstly, individual components are built, and
integrated afterward to eventually develop a target system.

In the meet-in-the-middle [2] approach, the application(s) and the plat-
form are developed independently. The platform is developed by employing
a bottom-up design flow where the low-level aspects of the platform are con-
sidered, whereas the application is developed by following a top-down flow
starting from the high-level aspects of the application. When both specifi-
cations are complete, the application is then mapped on to the platform and
this is the distinguished feature of the meet-in-the-middle approach. This
approach is heavily dependent on a comprehensive library of software and
hardware elements which reduces the design time and efforts and improves

3

reusability. However, the establishment of such a library requires significant
efforts beforehand.

In this thesis, the work is highly influenced by the meet-in-the-middle
approach because of two important reasons. First, the thesis considers a
particular platform (the SegBus platform), which is intended to be used
as a communication platform. A number of applications from the same
family can be mapped on that platform, and thus those applications can be
executed in parallel. Second, the platform promotes the reuse of intellectual
property (IP) components at different levels of abstraction which addresses
other important complexity challenges e.g. design cost, time-to-market, etc.

Figure 1.2: The Y-chart approach [30].

1.1 The Y-chart approach

The Y-chart [29][30] is a generic and iterative design space exploration
methodology for platform-based designs. The methodology is based on the
meet-in-the-middle approach where the application and platform are devel-
oped independently but the platform is fine-tuned iteratively to achieve the
performance required by that application(s) at a certain level of abstraction.

In this methodology, an instance of the platform is known as a configu-
ration. In the mapping process, the mapping of the application onto a plat-
form configuration is performed. The general overview of this approach is
depicted in Figure 1.2. The artifacts (application(s), platform/architecture
and mapping) are equally important to achieve an optimal configuration
and thus, performance level. The performance aspects of the mapped ap-
plication running on a platform configuration are examined in Performance

4

Analysis step and these performance numbers determine the efficiency of
chosen configuration. If the configuration is not optimal, then the designer
get another chance to further explore the design space to produce a new
configuration and the process continues iteratively. This way, the author
can truly exploit all the essential parameters of the employed platform in
order to achieve the target performance goals.

1.2 The Model-Based Paradigm and UML

Software-based computing systems have been around for a few decades now.
Their increasing complexity with time is a known challenge to all those
associated with their design. At the beginning, it was relatively easy to
design and implement such software systems with some low-level program-
ming languages such as FLOW-MATIC, COBOL, Autocode, etc. But as
the time went by, system specifications became more difficult for newer gen-
eration of software systems and designers realized that abstraction levels
had to be raised. Consequently, high-level programming languages like C,
FORTRAN and Pascal were developed and employed in the 1970s. At the
time, these high-level programming languages were not competent enough
to tackle increasingly complex specifications, and as a result, the object-
oriented paradigm came into existence. The paradigm was based on a simple
idea - Everything is an object. Later, the object-oriented paradigm gained
popularity among designers and larger systems were developed by employing
this paradigm [5]. However, the ever increasing complexity of such systems
approached the limits of object-oriented paradigm and a new paradigm in-
troduced: the model driven paradigm. The paradigm is based on a simple
idea: Everything is a model. In fact, the idea is not so new because it has
been used previously in database systems.

The software engineering community gradually adopted the model based
paradigm, and as a result, the system specification moved from textual
description (C, C++, Java, etc.) to visual/graphical modeling languages,
which provide a higher-level of abstraction in modeling environments for
system specification. The Unified Modeling Language (UML) [65] is one of
them.

A notation is a graphical entity, and basically, forms the syntax of a mod-
eling language. UML is a general-purpose modeling language which includes
a set of graphical notations which are used in a particular diagram (e.g., class
diagram, state diagram, etc.) for specifying various aspects of a software
system in a generic manner. It can be applied to a variety of application do-
mains, most importantly to object-oriented and component-based systems.
Furthermore, the UML’s extensibility mechanism (i.e., stereotypes, tagged
values and constraints) enables the introduction of new building blocks from

5

the existing ones. This capability opens the door to raising the abstraction
level further - a modeling area, known as, domain specific modeling (DSM).
For DSM, UML is extensively applied initially to build domain specific lan-
guage (DSL) based on an associated UML profile targeted for a particular
domain (discussed briefly in Chapter 4).

The paradigm shift from programming languages to modeling languages,
as discussed earlier, for system specification has introduced a new method-
ology for software engineering known as the Model Driven Architecture
(MDA) [61] promoted by the Object Management Group (OMG). The pri-
mary focus of MDA is on models, automation (by model transformations)
and code generation which in turn, shifts the targeted system’s design con-
cerns from low-level implementation to high-level solution modeling. UML
is the key enabling technology for MDA, and thus, it is the default mod-
eling language for MDA. The model transformation is a key feature in the
MDA approach. It enables the transformation of a model from one abstrac-
tion level to another, and hence, is the driving force which shifts models
from higher to lower-levels of abstraction, and finally towards implementa-
tion. The important kinds of model transformation are: model-to-model
(M2M), and model-to-text (M2T). The thesis employs the model-to-text
(M2T) transformation in its intended approach, as it is briefly discussed in
Chapter 5.

In a networking session [28] a few years ago, on-chip MPSoCs were iden-
tified as the preferred architecture for future complex embedded system
design. Still, as discussed earlier, lack of right tools, design frameworks and
methodologies didn’t allow EDA vendors to support it as the mainstream
architecture for embedded systems implementations. This thesis intends to
take a small step further by making use of UML and MDA, towards develop-
ing a unitary framework for design and verification of applications targeting
an MPSoC platform.

1.3 Design and Verification Challenges

A few of the challenges in designing applications targeting DocA (in general)
and SegBus platform (in particular) addressed here in this thesis are as
follows.

CoD - complexity of design
In the context of embedded system design, the term complexity refers

to amount of uncertainty to move from one phase of design process
to another. Embedded systems are inherently complex [52]. This
is particularly true for modern embedded systems executing complex
software applications and always demanding new features. The sys-

6

tem complexity further increases as the number of specific design con-
straints increase. Some of these design constraints includes:

• real-time constraints relating to particular functions of the sys-
tem.

• crucial time-to-market constraints that become essential for the
success or failure of system under development.

• power consumption constraints which are always important for
battery-operated systems.

• low-cost constraints which decide the commercial viability of sys-
tem.

• endless pressure for increasing functionality.

The above mentioned and many other design constraints play a key
role in the immense growth of system complexity. One way of dealing
with complexity is with the use of models and model-based develop-
ment (MBD) (briefly elaborated in Chapter 3.2). Generally, the word
‘model’ refers to describe any given system aspect with simplicity.
Here, simplicity refers to hiding details which are less important per-
taining to a certain concern, but those details could be important ones
in some other models when concern changes. The process of building
models is called modeling. At the moment, modeling plays a signif-
icant role in systems engineering (especially core software systems).
The modeling process is based on divide-and-conquer approach where
the designer limits his/her focus only to certain aspects of the system-
under-development. Different members with specific expertise from
the development team then concentrate on particular aspects of the
system and provide solutions in a quick manner. This bring the thesis
to its definition of the term ‘model-based development’ that the thesis
follows, because there can be numerous interpretation of the generic
term. Model-based development or MBD is a development approach
with the use of models which are specified in a particular domain spe-
cific language, relating to a specific application domain. MBD has
been used in different application domains [62][63] to minimize devel-
opment effort and time.

PO - performance optimization
This is an important, and most of the times a primary challenge in

embedded system design. In recent years, it has got foremost atten-
tion especially in digital signal processing (DSP) applications. Con-
sequently, it plays a major role in the increased CoD. New multipro-
cessing architectures have been introduced to deal with CoD and PO.
An intelligent mapping of application functions on the multiprocessing

7

architectures is key to exploit tremendous features (including perfor-
mance) from such architectures. A bad mapping mostly makes the
chosen architecture a sub-optimal and unnecessary cost(s).

The approach for PO, which is discussed in this thesis, various map-
pings and allocation scenarios will provide different performance re-
sults, given the inter task communication requirements both at appli-
cation and at platform levels.

CoPE - correctness of platform execution
This deals with the proper ordering of application tasks after alloca-

tion, considering the support for parallelism.

DE - designer expertise
Following CoD, experienced developers may be required in the pro-

cess, possessing detailed knowledge about platform characteristics and
how issues may be solved at platform levels.

1.4 Thesis Approach and Contributions

This thesis presents an approach to addressing the previously mentioned
challenges. The thesis presents a model-based development and verification
framework for embedded systems in general, and MPSoC in particular. As
mentioned earlier, the particular MPSoC platform that the thesis considers
is the SegBus platform. From a high-level perspective, the key contributions
of this thesis are structured around the following directions.

HLDE - high level design entry
The thesis uses the Unified Modeling Language (UML) for high-level

design entry for both the platform (SegBus) and to support the alloca-
tion and mapping of application tasks on that platform. By providing
the HLDE solution, the thesis addresses the CoD, CoPE and DE chal-
lenges, while also providing the necessary support for the solutions
detailed below.

PE - platform emulation
Emulation is used here to provide estimative results prior to having

an actual implementation of the application on the platform. This is
an important step in observing at early design stages the quality and
performance of design. Addresses PO, CoPE and DE.

ACG - automatic code generation
A general solution to address CoD and DE. In the present context, it

also addresses CoPE.

8

The Unified Modeling Language (UML) [65] has been utilized in novel de-
sign methods proposing a solution for the challenges in the design of complex
electronic systems. Here, the purpose is to provide a unified environment
for platform modeling, application mapping and system emulation, such
that performance is estimated and adjusted to optimal levels in a correct
and efficient manner. The key contributions of this thesis are briefly listed
below.

1. The thesis introduces model-based development (MBD) support
for SegBus design. The choice of MBD helps the designers to address
CoD (by HLDE), CoPE (support for structured design, and correct-
ness related aspects - customization classes, OCL constraints, etc.,
support for design reuse - library). It also addresses DE, as a hard-
ware non-specialist (such as a software designer) may also develop ap-
plications without being fully aware of the specifics of the underlying
hardware platform.

The thesis then presents a technique to create a graphical interface
(GI) in the form of SegBus DSL within an existing modeling tool [60]
to leverage modeling infrastructure for the analysis of various Seg-
Bus instances that may answer to specific application requirements.
The customization of each platform element is defined in the form of
user-defined rules. These customization rules set properties on each
profile element about their relationships, ownerships (briefly discussed
in Chapter 4.2). The customization rules impose restrictions on profile
elements during application / platform modeling, in order to provide
a structurally correct version of the platform instance.

The GI answers especially the CoD and CoPE challenges, providing
the HLDE solution. By including model validation features, the GI
also serves the DE challenge.

2. The thesis develops an emulator program targeting the SegBus plat-
form as part of the framework to perform emulation on the mod-
eled configuration in DSL. A code generation engine transforms the
platform-independent and platform-dependent models of application,
as modeled in DSL, into XML schemes. The generated XML schemes
are then employed by the emulator program to estimate the utilization
of platform elements with respect to data transfers and total applica-
tion’s execution time. After the analysis of the emulation results, the
designer is able to take decisions on whether the emulated configu-
ration is the best/optimal or not for the target application, and can
fine-tune platform configuration before moving towards lower levels of
the design process.

9

Hence, the realization of the emulator addresses, via PE the PO, CoPE
and DE challenges.

3. The thesis presents methods to generate the application’s execution
schedule from system models which are used later to implement the
communication platform’s arbiters. Such capability is developed within
the emulator program. If designer finds the performance aspects from
the emulated system at an optimum/best level, the designer can gen-
erate the “application dependent” arbiter-level control code based on
VHDL [41], in an automated manner.

Hence, with this technique, the thesis addresses the CoPE and DE
challenges via GI, PE and ACG.

1.5 Related Work

As it has been discussed in section 1, the design methodologies and frame-
works being used today for embedded systems development lack automation
in many stages of their design process. While building the proposed frame-
work, several research studies have been studied where the authors present
concepts in particular areas of embedded system design. For instance, few
studies, which have come across, deal with high-level modeling of the em-
bedded systems while others express ideas specifically for system emulation.
Following are listed few studies which are similar to the proposed framework
up to some extent.

The UML Profile for MARTE [69] has been standardized by OMG a
few years ago. As the name suggests, MARTE is intended for the modeling
and analysis of real-time and embedded systems in a generic way. The
profile consists of various packages and notations, which help to specify and
validate target systems at a number of abstraction levels. However, MARTE
does not provide a methodology for designing any particular systems (real-
time and embedded) [48]. A lack of a proper methodology, for mapping
applications on a particular platform (SegBus platform in the context of this
thesis), gets prime focus when considering prospective improvements in the
designer productivity. Gamatié et al. [22] introduced Gaspard framework
for designing massively parallel embedded systems. The framework is based
on MARTE profile where system is defined initially, and refined in a step-
by-step manner for final implementation. Since their framework does not
target to any specific implementation platform (unlike this thesis’s approach
which targets the SegBus communication platform), therefore it provides
them opportunities to explore a comparatively wider design space. The
refinements in their framework are based on model-driven principles, which
are similar to the work presented in this thesis in many aspects.

10

Moreover, Architecture Analysis & Design Language (AADL), standard-
ized by SAE International [70], is a modeling language for software-intensive
system, which has gained popularity especially in safety-critical systems in
recent years. However, the issues highlighted in [23] makes it less attractive
for use in the proposed framework.

Kangas et al. [21] introduced a UML-based framework named as Koski
for MPSoC design and implementation. Koski provides tools ranging from
application modeling to architecture implementation. The framework is
based on a custom UML profile (the TUT profile) similar to this research.
The framework also supports synthesis and automated design space explo-
ration for identifying the right architecture for the target application. At the
same time, their approach does not consider a definite architecture/platform
for application implementation, unlike this work which focused on the Seg-
Bus platform. Another difference compared to this approach is that they
do not employ MDA and package-based communication in their approach
as this research do since the communication is a primary design concern for
modern MPSoC systems. Despite that their design flow seems to be inspired
by the MDA principles.

R. Thomson et al. [49] developed and implemented a H.264 decoder unit
in an UML environment, exposing models for both hardware and software
components. The FalconML tool is used to model different aspects of the
applications via various UML diagrams, and the flow eventually produces
RTL code (VHDL) which can be used to synthesize the design. The dif-
ference to the approach of this thesis is that this research work considers
a target platform for implementation whereas their approach generates a
customized solution.

Many DSLs have been proposed targeting a variety of application do-
mains and this research considers the SegBus platform as the backbone of the
embedded MPSoC system. Consel et al. [32] introduced the Spidle - DSL for
specifying streaming applications and a compiler for generating source code
for the intended software. The approach was validated experimentally by
comparing the source code generated by Spidle compiler with an equivalent
C source code. A number of optimizations in the Spidle compiler are miss-
ing, such as, temporal and spatial locality in data and instruction caches, the
performance impact of input streams buffering, etc. Similarly, Arora et al.
[31] presented a DSL for introducing an application-level Checkpointing and
Restart (CaR) mechanism in heterogeneous and distributed environments
such as computational grid. The idea is to make sequential and parallel sys-
tem fault-tolerant by introducing code for the CaR mechanism in high-level
specifications.

Riccobene et al. [53] presented a UML profile for SystemC and defined
a language to specify, analyze, design, and visualize different artifacts of the
SystemC language in a SoC design flow. These SystemC artifacts includes,

11

for example, SystemC primitive channels (signal, mutex, semaphore, etc.),
SystemC core language artifacts (modules, ports, processes, etc.), SystemC
data types (bits, bit vectors, 4-valued logic type, etc.). The profile provides
a modeling framework for systems in which high-level models can be refined
down to an implementation language. However, the work concluded that
there is still a need to develop appropriate mechanisms and tools to fully
utilize UML-based profiles system development with automation support.
Unlike their work, this research proposes a comprehensive UML-based profile
for the SegBus platform embedding structural semantics in a graphical form
while imposing restrictions among graphical elements at the same time.

Seceleanu et al. [19] introduced SBTool - a tool for handling optimum
device allocation on the SegBus platform based on the criteria to minimize
and balance traffic loads between devices across the platform. This work
takes advantage of the SBTool in the design methodology to get estimates
of the optimal placement of different devices over specified number of bus
segments.

Truscan et al. [50] introduced a model-based design methodology for
implementing applications on the SegBus platform. Their methodology al-
lows both application and platform to be modeled independently in earlier
phases, and after refinements in both models (application and platform), the
application can be mapped onto the platform in a stepwise manner. The pro-
posed methodology has been inspired by their methodology in many aspects
and the proposed methodology has been further evolved and customized for
the objectives of this thesis.

The primary objective in designing system emulator is to obtain as much
as possible accuracy in estimating the execution characteristics that can be
expected from a real platform. Several research studies have been presented
in recent years where the target was to develop emulators for different hard-
ware platforms, specially for the Network-on-Chip (NoC) platform [1], but
there exists a number of emulation tools for other areas as well.

Jaber et al. [7] presented early architecture exploration methodology
based on DIPLODOCUS framework [46][47] to examine the effects of shared
resources (CPU, bus, memory, etc.) on a system’s performance metrics such
as throughput, latency and resource utilization at high levels of abstraction.
Their methodology also facilitates the modeling of interactions of the sys-
tem with its environment. Their architecture modeling approach divides
the architecture into 3 classes of nodes: computations nodes (CPUs, DSPs,
hardware accelerators, etc.); communication nodes (buses, routers, switches,
etc.); and storage nodes (shared memories). They employed a library of
pre-defined abstract models of different nodes (limited only to architecture)
which is similar to this thesis’s approach of employing a library of reusable
IP components. On the contrary, the proposed framework’s library can
also store the application-related functional components which is dissimi-

12

lar to their library approach. Further, they introduced a SystemC-based
simulation environment for monitoring and analyzing the modeled system.
This is comparatively similar to the proposed emulator in this thesis which
is also used for monitoring and analyzing the utilization of platform ele-
ments with respect to data transfers and execution time. In addition, their
study is focused only to architectural exploration and analysis of simulation
results, and the comparisons with actual execution results over real archi-
tecture setup are missing, unlike to this thesis’s approach which compares
the emulated execution results with the real ones for the sake of predicting
emulator’s accuracy.

Schelle et al. [54] introduced an emulation tool - NoCem, for NoC explo-
ration. The tool provides the capability to emulate memory architectures,
asymmetric processor configuration, special purpose offload engines, etc.
The tool calculates path latencies in clock cycles, used for any particular
transfer between processor cores and provides a detailed view of the com-
munication bottlenecks within the NoC platform. This is fairly similar to
the platform emulator developed in this framework, which is used to emulate
a particular configuration of SegBus platform. Performance bottlenecks can
be discovered and then can be adjusted.

Liu et al. [39] presented NoCOP - an emulation and verification frame-
work for exploring on-chip interconnection architectures. An instruction-set
simulator (ISS) and universal serial bus (USB) communicator (the terms
mentioned in their paper) have also been introduced. The ISS and USB
communicator execute on a host computer and are used to set the parame-
ters of the emulation environment. Through the experimental results using
both software and hardware, the authors proved that the proposed emula-
tion/verification framework can speed up the simulation of the network-on-
chip (NoC) architecture, and decrease resource usage when targeting Field
Programmable Gate Array (FPGA) silicon. The design under emulation
needs to be programmed onto a FPGA device. A separate host computer
is responsible for initializing and managing emulation of the programmed
design in the FPGA. This makes it less flexible compared to the proposed
approach which is more flexible and does not require any FPGA device and
consideration about deeper levels of abstraction in the early stages of the
design process.

Genko et al. [24] presented a NoC emulation platform implemented on
FPGA. The NoC hardware platform has been implemented on a Virtex-II
Pro FPGA, which consists of network injection, reception and controller
components. The integrated PowerPC processor core functions as a con-
troller. Instead of merely being the platform where the circuit is prototyped,
the method can speed up functional validation and add flexibility to the NoC
configuration exploration. The major drawback in their approach is the use
of FPGA device as a prototyping platform with the purpose of predicting

13

performance scores, unlike the proposed approach in this thesis, which does
not require any prototyping platform for performance estimation.

MDA has been utilized in different design areas to provide automation
in design activities up to some extent [IV]. MDA provides a set of guide-
lines which designers use to specify the system requirements in a structured
manner. The resulting system specifications are expressed as models. With
the refinement techniques, the designer can ultimately converge the system
models toward a complete system with the help of the transformation tech-
niques (Model-to-Model, Model-to-Text, etc.) applied to different models.
Below, a few studies are listed where the authors employ MDA in embedded
system development at different abstraction levels.

Vidmantas et al. [26] introduced MDA methods where the designer can
create “Platform Independent Model” (PIM) of an application using UML
together with SysML plug-in. They introduced techniques to transform
PIM into a PSM model, which is later transformed into textual source code
specifically for one operating system (OS). The authors have considered more
than one OS where the modeled application can be run, unlike the proposed
approach where there is no consideration of OS is required. Further, this
thesis discusses PIM (known as P-SDF in this thesis) and PSM models of
any target application similar to their approach, but this thesis does not
generate source code of actual application’s functionality which is dissimilar
to their approach. Instead the thesis generates the control code for different
arbiters of the SegBus communication platform, which supports application
execution on the platform and eliminates the need of an OS.

Koudri et al. [35] presented a design flow for System-on-Chip/System-
on-Programmable Chip design based on the use of UML and dedicated pro-
files. They supported the use of the Model-Driven Development (MDD)
for hardware-software co-design with an example of Cognitive Radio Ap-
plication, implemented on FPGA. The modeling tool they used generates
thousands of lines of code for the modeled example application but further
improvements need to be done.

M. Thompson et al. proposed a highly automated framework titled as
Daedalus for system-level architectural exploration, system-level synthesis,
programming and prototyping of heterogeneous MPSoC platforms [44][45].
Their framework allows to construct customizable MPSoC platforms from
a library of pre-defined and pre-verified IP components, similar to the pro-
posed approach of having a library of pre-built functional components. At
the same time, their approach is dissimilar as this research is closely linked
to a communication platform - the SegBus platform.

14

1.6 Research Publications

During the course of conducting this research, the following articles have
been published in journal and international conference proceedings. Hence,
the thesis is fully or partially based on each of them.

I. Moazzam Fareed Niazi, Khalid Latif, Tiberiu Seceleanu, Hannu Ten-
hunen. “A DSL for the SegBus Platform”, in Proceedings of the 22nd

IEEE International System-on-Chip Conference (SOCC), pp. 393-398,
2009, Belfast, United Kingdom.1.

II. Moazzam Fareed Niazi, Tiberiu Seceleanu, Hannu Tenhunen. “An
Emulation Solution for the SegBus Platform”, in Proceedings of the
17th IEEE International Conference and Workshops on Engineering of
Computer-Based Systems (ECBS), pp. 268-275, 2010, Oxford, United
Kingdom.

III. Moazzam Fareed Niazi, Tiberiu Seceleanu, Hannu Tenhunen. “A Per-
formance Estimation Technique for the SegBus Distributed Architec-
ture”, in Proceedings of the 39th International Conference on Parallel
Processing Workshops (ICPPW), pp. 89-98, 2010, San Diego, USA.

IV. Moazzam Fareed Niazi, Tiberiu Seceleanu, Hannu Tenhunen. “An Au-
tomated Control Code Generation Approach for the SegBus Platform”,
in Proceedings of the 23rd IEEE International System-on-Chip Confer-
ence (SOCC), pp. 199-204, 2010, Las Vegas, USA.

V. Moazzam Fareed Niazi, Tiberiu Seceleanu, Hannu Tenhunen. “To-
wards Reuse-based Development for the On-Chip Distributed SoC Ar-
chitecture”, in Proceedings of the 36th Annual IEEE Computer Soft-
ware and Applications Conference Workshops (COMPSACW), pp. 278-
283, 2012, Izmir, Turkey.

VI. Moazzam Fareed Niazi, Tiberiu Seceleanu, Hannu Tenhunen. “A De-
velopment and Verification Framework for the SegBus Platform”, Jour-
nal of Systems Architecture, vol. 59, nr. 10, part C, pp. 1015-1031,
2013. http://dx.doi.org/10.1016/j.sysarc.2013.07.005

1.7 Summary of the Research Publications

Paper I - Moazzam Fareed Niazi, Khalid Latif, Tiberiu Seceleanu, Hannu
Tenhunen. “A DSL for the SegBus Platform”, in Proceedings of

1The above papers have been referred in this thesis many times with a usual citation
referring style e.g., [I], [II], [III], [IV], etc.

15

http://dx.doi.org/10.1016/j.sysarc.2013.07.005

the 22nd IEEE International System-on-Chip Conference (SOCC), pp.
393-398, 2009, Belfast, United Kingdom.

High-level design entry is essential for the designing and verification
of systems at higher levels of abstraction. In this paper, a Domain
Specific Language (DSL) for a multi-core segmented bus platform -
SegBus, is presented. The DSL, based on a UML profile, consists
of graphical platform elements in the form of stereotypes with the
necessary tagged values depicting platform aspects at high levels of
abstraction. Customizations are applied to each stereotyped element
in the form of user-defined rules to restrict relationship between plat-
form elements. The Object Constraint Language (OCL) is employed to
introduce structural constraints, in order to impose structural require-
ments between platform elements and mechanisms were introduced to
validate them during system-level modeling. The paper presents a sim-
plified example of a H.264 video encoder application where the DSL
is used to specify and validate the application and platform models in
a step-by-step unified way.

The author’s contribution: The author has been responsible for all
related work in this publication including profile development, cus-
tomization of platform’s elements inside the modeling tool, specifica-
tion of the structural constraints, DSL viability in the problem domain,
and writing the manuscript.

Paper II - Moazzam Fareed Niazi, Tiberiu Seceleanu, Hannu Tenhunen.
“An Emulation Solution for the SegBus Platform”, in Proceedings of
the 17th IEEE International Conference and Workshops on Engineer-
ing of Computer-Based Systems (ECBS), pp. 268-275, 2010, Oxford,
United Kingdom.

This paper presents an emulation solution for a multi-core segmented
bus platform, SegBus, to assess the performance of any specific appli-
cation on a particular platform configuration, modeled in UML. The
paper presents method to transform a Platform Specific Model (PSM)
of the application into Java source code using a modeling tool and the
generated code is utilized by the emulator program to get the execu-
tion results. The solution enables the estimation of the performance on
different platform configurations at early stages of the design process.

The author’s contribution: The author has been responsible for all
related work in this publication including writing Java source code
for each of the platform elements, emulator development, performance
estimation and analysis, and writing the manuscript.

16

Paper III - Moazzam Fareed Niazi, Tiberiu Seceleanu, Hannu Tenhunen.
“A Performance Estimation Technique for the SegBus Distributed Ar-
chitecture”, in Proceedings of the 39th International Conference on
Parallel Processing Workshops (ICPPW), pp. 89-98, 2010, San Diego,
USA.

The approach presented in this paper is a modified and enhanced
approach of performance estimation to that discussed in paper II.
Here, the paper proposes a performance estimation technique for a
multi-core segmented bus platform, SegBus. The technique enables
the assessment of the performance of any specific application on a
particular platform configuration, modeled in Unified Modeling Lan-
guage (UML). The paper presents methods to transform Package Syn-
chronous Data Flow (P-SDF) and Platform Specific Model (PSM)
models of the application into Extensible Markup Language (XML)
schemes using a modeling tool. The generated XML schemes are uti-
lized by the emulator program to get the execution results. The tech-
nique facilitates the performance estimation of the application mapped
on a number of different platform configurations during the early stages
of the design process.

The author’s contribution: The author has been responsible for all
related work in this publication including enhancing DSL to model
P-SDF models, emulator development, development of XML parser
inside the emulator, performance estimation and analysis, and writing
the manuscript.

Paper IV - Moazzam Fareed Niazi, Tiberiu Seceleanu, Hannu Tenhunen.
“An Automated Control Code Generation Approach for the SegBus
Platform”, in Proceedings of the 23rd IEEE International System-on-
Chip Conference (SOCC), pp. 199-204, 2010, Las Vegas, USA.

The transition from higher abstraction levels towards an implementa-
tion in an automatic manner is very important when addressing the
embedded system design productivity challenge. This paper presents
a model-based approach for the generation of low-level control code for
the (segment- and central-level) arbiters of the SegBus communication
platform in order to support application implementation and scheduled
execution. The approach considers Model-Based Development (MBD)
as a key to modeling the application at two different abstraction lev-
els, namely as Package-Synchronous Dataflow and Platform Specific
Model, using the SegBus platform’s DSL. Both models are transformed
into XML schemes and then utilized by an emulator to generate the
“application-dependent” VHDL code, the so-called “snippets”. The
obtained code is inserted in a specific section of the platform arbiters.

17

The paper presents an example of a simplified MP3 stereo audio de-
coder where the methodology is employed to generate the control code
of the arbiters.

The author’s contribution: The author has been responsible for all re-
lated work in this publication including writing the engine for generat-
ing the control code from the P-SDF model, embedding the developed
engine in the emulator, code generation and analysis of its accuracy,
and writing the manuscript.

Paper V - Moazzam Fareed Niazi, Tiberiu Seceleanu, Hannu Tenhunen.
“Towards Reuse-based Development for the On-Chip Distributed SoC
Architecture”, in Proceedings of the 36th Annual IEEE Computer
Software and Applications Conference Workshops (COMPSACW), pp.
278-283, 2012, Izmir, Turkey.

Reusability in the platform-based design approach is key to dealing
with increasing embedded systems design complexity. In this paper,
the development of a library of reusable components for a multi-core
segmented bus platform, the SegBus, is presented. The library is based
on a plug-in that was developed and deployed within a modeling tool
and used by the SegBus DSL for developing applications targeting
the SegBus platform. The steps required in building the library and
embedding it into a plug-in are discussed together with its use in the
proposed design methodology.

The author’s contribution: The author has been responsible for all
related work in this publication including plug-in development, plug-
in integration with the SegBus DSL in the modeling tool, establishing
components list in the library, and writing the manuscript.

Paper VI - Moazzam Fareed Niazi, Tiberiu Seceleanu, Hannu Tenhunen.
“A Development and Verification Framework for the SegBus Plat-
form”, Journal of Systems Architecture, vol. 59, nr. 10, part C, pp.
1015-1031, 2013. http://dx.doi.org/10.1016/j.sysarc.2013.07.005

This paper integrates all the ideas been presented in previous papers
to form a distinct framework for modeling and verification. Here,
the paper describes the creation of a development framework for a
platform-based design approach, in the context of the distributed ar-
chitecture of the SegBus platform. The work aims to provide au-
tomated procedures for platform build-up and application mapping.
Structural verification support is also featured. The solution is based
on a model-based process. Both the platform and the application are
modeled using the Unified Modeling Language (UML). A Domain Spe-
cific Language (DSL) is developed to support the platform modeling,

18

http://dx.doi.org/10.1016/j.sysarc.2013.07.005

based on a corresponding UML profile. Object Constraint Language
(OCL) constraints, in the form of a validation suite, are employed to
support a structurally-correct platform construction. The DSL helps
designers to correctly model application and platform in a fast manner
and further helps in model transformation at later stages of develop-
ment process. The validation suite embedded in the DSL helps the
designer to rectify the structural problems in models and correct them
with necessary measures. An emulator is consequently introduced to
allow an as much as possible accurate performance estimation of the
solution, at high levels of abstraction. VHDL code is automatically
generated, in the form of “snippets” to be employed in the arbiter mod-
ules of the platform, as pertaining to the application specification. The
resulting framework is applied to building actual design solutions for a
MP3 audio decoder application. The emulation-based solution enables
analyzing any platform configuration with respect to performance fig-
ures. Based on emulation results, it’s the job of the designer to decide
which configuration will be best suited for the final implementation.
Such decisions made in the early stages of design process improve the
quality of eventual system in terms of performance.

The author’s contribution: The author has been responsible for all re-
lated work in this publication including DSL analysis and development
in the modeling tool, construction of validation suite, emulator devel-
opment, design and development of the control code generator in the
emulator, verification of the presented methods on an actual example
application, and writing the manuscript.

1.8 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, the the-
sis provides a short description of the SegBus platform with its structural
characteristics. Next, in Chapter 3, the thesis discusses the proposed design
methodology that employs the proposed model-based framework while de-
signing applications targeting the SegBus platform. The development of the
SegBus DSL and the associated library of reusable components are described
in Chapter 4. The approach of emulating and estimating the modeled system
is presented in Chapter 5, while the method of execution schedule generation
from the modeled system is briefly discussed in Chapter 6. Furthermore, in
Chapter 7, the thesis formally employs and validates the proposed frame-
work on a real application as an example, followed by a discussion of the
proposed framework. Finally, the thesis concludes in Chapter 8.

19

1.9 Thesis Navigation

Figure 1.3: Navigation of the thesis.

20

Chapter 2

The SegBus Platform

A bus-based computing system comprises of a variety of modules, each with
particular functionality. Each module communicates with other modules
through a shared bus which connects with every module. A data exchange
between these modules is termed a bus transaction which is administered
by a set of specific rules known as transaction protocol. The modules are
generally classified as: masters, slaves and arbiters.

Master refers to a module which initiates a transaction on the bus and
remains active for the duration of transaction. In contrast, slave refers to a
passive module which is basically the “target” of a particular bus transaction
and in return, it delivers a service to requesting master. In principle, one
master and possibly many slaves can be involved in a bus transaction. As
the bus is a shared communication link, only one master can be allowed
to own the bus at any time, that is, transfer data to or from the slave
module. Hence, an arbiter does arbitration based on a specific priority
scheme between masters on the bus. Figure 2.1 represents high-level view
of a traditional bus-based computing system.

Figure 2.1: Traditional bus-based system.

21

The maximum bus speed is largely limited by the physical length of
the bus and the number of modules connected on the bus. A lengthy bus
introduce transmission delays in bus lines or wires due to physical effects.
The major physical effects on the bus wires includes: capacitance, resistance
and impedance, which put a restriction on the maximum bus frequency.
Additionally, the number of modules connected on the bus should be within
the maximum limit as defined by the bus to operate properly. Failure to
consider these two important concerns result in performance degradation,
increased power consumption, etc.

The bus arbiter follows a certain priority scheme for granting the bus
among different masters. The priority scheme can be either fixed priority or
rotating priority (also known as round-robin scheme). In the fixed priority
scheme, the priority of each module remains the same all the time irrespec-
tive of how many times a master has been granted the bus; while in rotating
priority scheme, the priority of each module changes based on the usage
history. Both priority schemes have certain advantages and disadvantages
and their selection is purely based on their suitability for the target system.

Figure 2.2: Segmented bus structure [20][50].

A segmented bus is a “collection” of individual buses (segments), inter-
connected with the use of FIFO structures. Each segment acts as a normal
bus between modules that are connected to it and operates in parallel with
other segments. Due to segmentation, each segment executes at a certain
clock frequency independent from the clock rate of the neighboring segments.
Therefore, the platform can be seen as a set of buses operating in parallel
with different clock frequencies. Neighboring segments can be dynamically

22

connected to each other to establish a connection between modules located
on different segments. In this case, all dynamically connected segments act
as a single bus during the duration of transaction. Due to the segmentation
of the bus lines, and their relative isolation, parallel transactions can take
place, thus increasing the performance. The passive segments, which are not
involved in transactions, are isolated from the rest of the bus. Hence, the
active segments, the ones that currently transfer data, offer faster operation
along with lesser energy consumption per transferred bit. A high level block
diagram of the segmented bus system is illustrated in Figure 2.2.

The SegBus communication platform [20] is built of components that
provide the necessary separation of segments - Border units (BU), arbitra-
tion units - the Central Arbiter (CA) and local, Segment Arbiters (SA). The
application then is realized with the support of (library available) Functional
Units (FU).

The SegBus platform has a single CA unit and several SAs, one for each
segment. In addition, each segment is composed of a group of masters, a
group of slaves and physical wires for data, address and control signals of the
bus. A BU connects two neighboring segments. A particular segment with
its connected units (masters, slaves, SA) acts as standalone bus operating
in parallel with other segments, where masters primarily requesting services
from slaves within the same segment. The SA of each bus segment decides
which device (FU), within the segment, will get access to the bus in the
following burst transfer. At times, a master may ask for services from a
slaved resident in a remote bus segment. In this case, the local SA forwards
the request to CA in order to perform inter-segment communication.

The CA stores information about the current status of each segment.
This includes which segments are currently involved in an inter-segment
communication and which new inter-segment communication requests are
still pending. In every polling cycle, the CA decides, based on this in-
formation, which pending request will be qualified to grant ownership for
inter-segment communication, and eventually, the CA activates certain con-
trol signals in the relevant segments. This way, the SegBus platform can be
seen as a centralized, two-level arbitration platform. At the first-level, local
arbitration is used inside each segment, while at the second-level, central ar-
bitration is employed to handle inter-segment communication requests from
different SAs. In this case, the CA treats individual SAs as virtual masters
requesting services from other segments.

2.1 Platform Communication

A package is the basic unit of communication and storage allocation in
the SegBus platform. Within a segment, data transfers follow a “tradi-

23

tional” package-based bus protocol, with SAs arbitrating access to local
resources. The inter-segment communication follows also a package-based,
circuit switched approach, with the CA having the central role. The in-
terface components between adjacent segments and the BUs, are basically
FIFO elements with some additional logic, controlled by the CA and the
neighboring SAs. The inter-segment communication is highly dependent on
the utilization of BUs which transfer data in both directions. The FIFO
buffer inside each BU accommodates as many data items as specified by
the package size (including package header). The size of a package is not
relevant from the operational point of view of the SegBus platform. How-
ever, larger package sizes require more chip area in each of the BUs which
could increase overall power consumption [20]. A brief description of the
communication is given below.

Whenever one SA recognizes that a request for a data transfer targets
a module outside its own segment, it forwards the request to the CA. The
latter identifies the target segment address and decides which segments need
to be dynamically connected in order to establish a link between the initi-
ating master and targeted slave device(s). When this connection is ready,
the initiating device is granted the bus access, and it starts filling the buffer
of the appropriate BU with the package data. Following a signaling proto-
col, the data is taken into account by the corresponding next segment SA,
which forwards it further, towards the destination. At this point, the SA
of the targeted segment routes the package to the own bus from where it is
collected by the targeted device.

A transfer from the initiating segment k to the target segment n is shown
in Figure 2.3. The segments from k to n are released for other possible
inter-segment operations in a cascaded manner, from the source k to the
destination, n.

The SegBus platform employs a simple round-robin arbitration [51] at
SA level, and a similar one at the CA level. The arbitration at CA level
implements the application data flow, with respect to these transfers. Hence,
one has to implement accurate control procedures for inter-segment trans-
fers, as possible conflicting requests must be appropriately satisfied, in order
to reach performance requirements and to correctly implement applications.

Figure 2.3: Inter-segment package transfer.

24

Both SA and CA strictly operate on the execution schedules, which are
provided and implemented by the designer in each of the platform arbiters.
Each entity (program line) of the execution schedules define, for instance,
the source (master) and destination (slave(s)) address of data transfer re-
quest, amount of packages to be transferred, destination segment’s address,
etc. (briefly discussed in Chapter 6). Based on this information, the SA
controls, in each grant activity, the amount of data to be transferred on
bus lines by means of a local counter. Whenever the defined limit (package
size) is reached, the SA clears the grant signal. This scheme eliminates the
possibility of any deadlock to occur between masters and slaves. The acqui-
sition of the bus segment can only be possible by each of them (masters and
slaves), if it is specified in the related SA’s execution schedule.

2.2 Platform Characteristics

The optimum performance from the SegBus platform can be achieved by
examining 3 of its explicitly-defined global parameters: topology, number of
segments and package size. A short description of each of them is given
below.

Figure 2.4: Difference between linear and circular topologies.

2.2.1 Topology

The topology defines the connectivity of the platform’s segments: either lin-
ear or circular. In linear topology, the segments are connected in a linear
fashion where each segment connects only with the adjacent segments (one
left and one right) except the first and last segments which connects to only
one adjacent segment (either right or left). In the circular topology, the ge-
ometry is similar to linear topology except the last segment always connects
to the first segment and it creates a cycle between segment organization

25

and thus called circular. This organization is sometimes appropriate [20]
as per performance requirements. The CA determines the shortest path
between any two segments in the circular configuration. Figure 2.4 shows
the difference between the two topologies.

2.2.2 Number of Segments

As the name implies, this parameter sets the desired number of segments in
a platform instance. Increasing the number of segments sometimes results
in improved performance however this is not always true in every case. It
may bring unnecessary communication overhead which affects the overall
performance. Hence, increasing the number of segments to achieve a certain
performance level must consider possible parallel operations in the target
application(s). For interested readers, a detailed analysis of this issue can
be found in [20].

2.2.3 Package Size

The unit of communication in the SegBus platform is called a package. A
package consists of a header and the data load (actual data to be trans-
ferred). The header further consists of two fixed-size fields: destination ad-
dress and source address. Thus, the size of the data payload influences the
overall package size and therefore has to be defined initially while specifying
the platform’s parameters. The designer needs to consider many important
factors while deciding the best/optimum size for the package. For instance,
for larger packages, more data can be transferred in one transaction how-
ever, this requires larger FIFOs inside all the BUs on the communication
path resulting in increased chip area. A comprehensive discussion about
such issues can be found in [20].

2.3 Platform Constraints

Designing a specific instance of the SegBus platform useful for one or more
applications must consider certain constraints. These constraints are essen-
tially the structural characteristics of the SegBus platform. The designer
must consider such structural constraints when designing a platform in-
stance. A few of these constraints are described as follows.

• The platform must have either a linear or a circular geometry. The
topology impacts on how the “terminal” segments are connected to
each other (discussed in Chapter 2.2.1).

• Every platform instance has a unique CA.

26

• Every segment has a unique SA.

• Every SA is connected to at most two BUs.

• Every BU is connected to at most two SAs.

• Every segment contains at least one FU.

• Every FU is characterized by an own unique ID.

A second group of constraints relates to the optimal placement of mod-
ules on the platform, taking into account the communication flow described
in section 2.1. Hence, appropriate control procedures must be devised such
that two masters could not obtain the bus grant simultaneously. At the
same time, the opportunities for parallel processing and transfers must be
maintained. This can be achieved by an appropriate mechanism for the re-
quest granting. The efficiency of that mechanism must be assessed at early
stages.

2.4 Summary

This chapter presented an overview of the SegBus platform, its architecture
and characteristics. The chapter also discussed possible topologies of the
platform along with a short description on the significance of the number
of segments and package size. The important structural constraints and
communication mechanism were also described. The work to be presented
in this thesis is based on this specific MPSoC platform and the terminologies
pertaining to the platform are heavily used in the rest of the thesis.

27

28

Chapter 3

The Model-based

Development and

Verification Framework

This chapter describes the essence of this thesis - the model-based develop-
ment and verification framework. The chapter starts with a brief description
of the proposed design methodology and important cornerstones of it. In
addition, the chapter presents the principles of the model driven paradigm
and their adoption is proposed in support of the proposed framework.

3.1 Design Methodology

This section defines the cornerstones of the design methodology utilizing
the SegBus as a communication platform. This section briefly describes the
notions used in the following sections while also presenting the existing body
of work that supports the proposed approach.

Figure 3.1 illustrates a general overview of the SegBus design process
employing a model-based framework. The proposed approach considers as
the start an application model (AM) which is transformed into a partitioned
application model (PAM) based on the application’s core functionality and
taking help from the available library elements. Each library element has a
structure shown in Figure 3.5, containing a pointer to a VHDL file that de-
scribes the related module’s functionality. The AM-to-PAM transformation
helps to derive right granularity level of the target application, which to be
implemented on an instance of the platform.

The communication matrix is the specification of device-to-device trans-
actions between application components [IV][50]. Each entity in the commu-
nication matrix describe how many data items need to be transferred from
one device to any other device. The matrix is generated from the PAM.

29

Figure 3.1: The macro-level view of the SegBus design process based on the
proposed framework.

30

Taking from the designer parameters such as the number of segments, the
(independent) SBTool [19] analyzes the given communication matrix and
provides support for an initial allocation of the application functional ele-
ments onto the platform. The allocation information, stored as a text file,
serves as input into the model based framework. Here, with the SegBus
DSL support, the allocation information is then modeled to obtain the seg-
mented application model (SAM). A DSL based approach guarantees the
(structural) correctness of the SAM.

The SAM further produces data for an emulator to simulate the system,
at high abstraction levels. The emulator produces two kinds of information.
First, through visual representation, the performance of the SAM can be
evaluated. Second, control code is obtained as VHDL snippets for the lo-
cal and central arbiters. If the emulation results do not satisfy the target
performance metric, the designer is able to change, within the framework,
the initial allocation of modules to segments. Subsequently, after a new
emulation round, the new results are available.

The VHDL code for arbiters plus the final allocation contained by the
SAM converge into a complete platform model (CPM). From here, with the
addition of the VHDL code for platform elements such as functional units,
specific platform units (border FIFOs, templates for arbiters, synchronizers,
etc), a synthesizable platform model (SPM) is obtained.

The generalized term for SAM, CPM and SPM is the platform-specific
model (PSM) because of their strict dependence on the communications
platform. This thesis thus uses the generalized term in the rest of the chap-
ters to eliminate ambiguity between different models.

3.2 Model-Based Development Paradigm

As discussed in Chapter 1.2, the challenging task of system development
with ever increasing complex requirements can be tackled by increasing
abstraction levels, and therefore model-driven paradigm has already been
proposed some time ago. In this paradigm, the dominant entities are the vi-
sual/graphical models which have shifted the traditional paradigm of system
specification from writing source code to modeling visual models.

By observing the trends in design paradigm evolution, the Model Driven
Architecture (MDA) [61] was launched by the Object Management Group
(OMG). MDA provides a set of guidelines which designers use to specify the
system requirements in a structured manner. The resulting system specifi-
cations are expressed as models. MDA supports modeling of a system from
the very beginning to an implementation. In the early stage of the modeling
process, MDA initially focuses on modeling the system behavior without
considering a specific implementation technology. When the initial system

31

model is developed, the modeling process gradually moves toward mapping
the system model onto a specific implementation technology. This is done
by refining and transforming the initial system model iteratively until it is
completely mapped.

To provide a classification among different models, MDA specifies three
distinct abstraction levels (also called viewpoints) for the system-under-
development: a computation independent model (CIM), a platform inde-
pendent model (PIM) and a platform specific model (PSM) [61].

The CIM targets the context and requirements of the system. It does
not show its internal structure and rather focuses on the context where the
system will be used. The PIM focuses on the functionality of the system
without considering the implementation technology or platform. Finally the
PSM combines the PIM with additional focus on the implementation plat-
form to be used by the system. The model transformation is the key feature
of MDA which transforms the system specification from one abstraction level
to another. There are four different types of transformations that can be
applied at certain abstraction levels, as listed below.

1. PIM-to-PIM transformation is applied on a PIM to get a refined
PIM. Here, refinement corresponds to adding more details in exist-
ing model(s).

2. PIM-to-PSM transformation incorporates “implementation platform”
details in the platform-independent PIM specification of a system.

3. PSM-to-PSM transformation is purposely used for refining the PSM.

4. PSM-to-PIM transformation is used to remove platform/technology
details from a PSM, to get a PIM model.

The MDA approach is supported by a number of different technology
standards which are also proposed by OMG [58] as listed below.

• Unified Modeling Language [65] to visualize, specify, construct and
document software systems.

• Meta-Object Facility (MOF) [66] to define new modeling languages.

• XML Metadata Interchange (XMI) [67] to interchange and integrate
models.

• Common Warehouse Metamodel (CWM) [68] to interchange ware-
house and business intelligence “metadata”.

• Object Constraint Language (OCL) [64] to get “consistent” models.

32

In the following, two MDA’s technology standards, that is, UML and
OCL are discussed in section 3.3 and 3.4 respectively. Next, the SegBus
UML profile is discussed in section 3.5. The application modeling using
the P-SDF is described in section 3.6. Furthermore, the SegBus DSL, the
SegBus emulator and the VHDL snippets are briefly discussed in section 3.7,
3.8 and 3.9 respectively.

3.3 The Unified Modeling Language

As discussed in Chapter 1.2, when the software engineering community re-
alized a need to increase the abstraction levels of developing systems, the
object-orientation emerged into practices. The community appreciated dur-
ing that time, and still appreciates its powerful features like data encapsu-
lation, inheritance, polymorphism, etc., to help classify different involved
objects.

With the gradual adoption of the object-oriented approach in different
technical areas, many new programming and modeling languages, and meth-
ods have been developed to support the approach, each with its strengths
and weaknesses. Hence, few of them were adopted by the community on a
significant scale, whereas remaining were either combined with other meth-
ods or simply filtered out. The three major methods of that time, Booch
methodology [10], the Object Modeling Technique (OMT) [11] and Object-
Oriented Software Engineering [12], later started to show similarities with
the other methods and their promoters, most importantly Grady Booch,
James Rumbaugh and Ivar Jacobson, then joined hands to unify common
concepts of object-orientation. Consequently, the Unified Modeling Lan-
guage (UML) has been introduced in 1996, as UML 0.9 and UML 0.91
afterward, and made a prominent successor position among other similar
languages in the object-oriented wave. In 1997, by a standardization pro-
cess launched by OMG [58], it became one of the OMG standard as UML
1.0. Afterward, many new versions have been introduced by the time with
improvements and additional features. Here, this thesis uses UML version
2.2 [65], since it was the latest version at the starting time of this research
work. However, the approaches discussed in this thesis may be applied with
the latest versions of UML, too. In addition, the backward compatibility
of the proposed approach has not been examined with the older versions of
UML.

The modeling concepts of UML are grouped into 14 language units [65] -
see Figure 3.2. A language unit or UML diagram consists of a set of tightly-
coupled modeling concepts that enable users to model a certain aspect of the
system-under-modeling. A language unit is also known as UML diagram.
All the language units are further classified into two distinct classes, namely
as, structural UML diagrams and behavioral UML diagrams.

33

Figure 3.2: UML language units / diagrams.

34

The structural UML diagrams consist of constructs which are used to
define structure of the system or sub-systems at a particular level of abstrac-
tion. For instance, the Class diagram provides a static structure by model-
ing the system in terms of data types (classes), their properties (attributes,
operations) and relationships among them (e.g., associations, containment,
inheritance, etc.). The Object diagrams are used to represent the struc-
tural relationships between classes’ instances (i.e., objects). The Package
diagrams show packages of classes and the dependencies among them. Each
package contains a set of classes that have similarities in some aspect(s).

On the other hand, the behavioral UML diagrams consist of constructs
which are used to model the functionality and operations of the system. For
instance, the Use Case diagrams enable the capture system requirements
by modeling the relationships between actors (external user of the system)
and use cases (system functionality). The State diagram provides a view
of the behavior of objects, by modeling all possible states of each object
and transitions between these states. The Activity diagrams models the
sequencing of activities performed by the system or sub-system.

Generally, not all the 14 diagrams need to be employed at once for any
system modeling. Instead, the designer has to select the ones needed for a
given aspect of the system model. UML is a “general-purpose” modeling
language which limits the degree of its usage in every application domain.
Therefore, to increase its suitability for every particular application domain,
OMG specifies two important techniques to introduce domain specific lan-
guages for the concerned domains. The first technique is to define a new
language (alternative to UML) applying the same principles as for UML
definition. The second method is the UML language’s extensibility support.
In brief, the UML language supports extensibility mechanisms where the
designer can customize the existing UML constructs by defining profiles as
per needs. A UML profile is a specialized package consisting of a set of
stereotyped classes (defined below). This is done by extending the elements
of UML language to represent entities of a particular application domain.
This extension process leads to a new UML profile with the help of three el-
ements: Stereotypes, Tagged values, and Constraints. By stereotyping UML
elements, the designer specializes a UML element for a particular concept or
entity in the application domain. With tagged values, the designer defines
certain attributes of these stereotyped elements. And with constraints, the
designer enforces certain additional restrictions of usage on the stereotyped
elements.

35

3.4 The Object Constraint Language

The Object Constraint Language (OCL) [64] enables the writing of expres-
sions that specify certain constraints for different UML constructs and it
is now part of the UML standard since UML version 1.3. The constraints
written in OCL are applied on a given UML model to make the model pre-
cise, complete and consistent. Initially, UML was not expressive enough to
describe each and every aspect of the system under modeling, and natu-
ral language was used as a replacement to describe certain aspects of the
system which eventually led to ambiguities. Later, formal languages were
introduced to overcome this problem. However, they were quite mathemat-
ical in nature, and hence, not easy to use. Therefore, OCL was introduced
to deal with all such problems.

OCL is not a general-purpose programming language, it does not support
control flow statements as other general-purpose programming languages do.
Using OCL, constraints can be defined in the form of invariants, precondi-
tion, postcondition, guard, etc. The invariants are Boolean OCL constraints
which evaluate to true/false and are attached to classes, while precondition
and postcondition constraints are attached to operation or methods which
are executed pre- and post execution of the relative operation/method re-
spectively. OCL’s guard expressions are applied on UML’s “state transition
diagram” and the guard expressions specify conditions which need to be met
before a transition can occur.

Since, OCL is a pure specification language [64], an OCL expression
does not introduce any kind of side effects on the target model and simply
returns a value. Moreover, the evaluation of an OCL expression does not
cause the state of the system to change. However, a specific state change, for
example, in a postcondition of an operation/method, can be specified by an
OCL expression without any potential risk on the system state. In summary,
a model can be made more expressive and complete by adding constraints,
and OCL provides a formal and non-ambiguous way of achieving this goal.

3.5 The SegBus UML Profile

Lindroth et. al [38] discussed the initial steps of the SegBus platform profile.
It includes a hierarchical decomposition of platform components and pro-
vides appropriate means for characterization, instantiation and connectivity.
However, some important features were missing, such as model validation
according to platform definition, attributes of platform elements, structural
constraints, etc. Figure 3.3 shows the profile elements.

The profile contains the structural elements of the platform. It contains
the platform itself, the stereotype SegBusPlatform, one element modeling
the segments, Segment, the stereotype representing the SA, SegmentArbiter,

36

Figure 3.3: The SegBus profile elements [38].

37

stereotype CentralArbiter represents CA, etc. A metaclass is a class whose
instances are classes. Here, all the elements are generalization of metaclass
uml20.classes.Class. Based on the ideas presented in [38], this thesis builds
a similar and enhanced profile for the SegBus platform to be able to model
systems in a domain-specific manner within a feature-rich framework.

3.6 Application Modeling using the P-SDF

The specification of the application enters the model-based framework as
a platform-independent Package SDF (P-SDF) model [III][IV]. This means
that the application is already partitioned on functional elements available
from the library. P-SDF is a customized version of Synchronous Data Flow
diagrams [37]. The approach is intended to facilitate the mapping of the
application to the architecture due to the similarity between the operational
semantics of the P-SDF and that of the SegBus architecture, thus allowing
us to cope in a more detailed manner with the communication characteristics
of the SegBus platform.

“An architectural style determines the vocabulary of components and
connectors that can be used in instances of that style, together with a set of
constraints on how they can be combined” [6]. The P-SDF is a specialization
of the Pipes and Filters architectural style (See [6] for description of this style
of software architecture).

A P-SDF comprises mainly two elements: processes and data flows; data
is organized in packages according to package size during execution. Pro-
cesses transform input data packages into output ones, whereas package
flows carry data from one process to another. A transaction represents the
sending of one data package by one source process to another target pro-
cess, or towards the system output. A package flow is a tuple of four values,
Pt, D, T and C. The Pt value represents the target process for the given
transactions; the D value represents the number of data items emitted by
the same source towards the same destination successively; the T value is
a relative ordering number among the (package) flows in one given system;
and the C value represents the number of clock ticks a process consumed
before sending one package. Thus, a flow is understood as the number of
data items (later transformed into packages issued by the same process, tar-
geting the same destination, having the same ordering number and same
clock ticks require to process one individual package.

If s is the package size (number of data items in a package) in the
platform configuration, then the Package SDF (P-SDF) of a certain system
is a sequence of package flows, < (Ptx

, D1

s
, T1, C1), . . . , (Ptx

, Dn

s
, Tn, Cn) >,

where ∀i, j, x ∈ {1, . . . , n} · Di

s
6= Dj

s
and T1 ≤ T2 ≤ . . . ≤ Tn.

38

The above definition of the P-SDF establishes a possibility of several
flows to exist on a very same T value thereby a deep level of parallel execution
can be set up, if possible as per application requirements [50][36][III].

3.7 DSL for the SegBus Platform

Domain-specific modeling (DSM) is a way of designing systems that involves
the systematic use of domain-specific languages (DSLs) to represent the
various facets of a system. A DSL tend to provide higher-level abstractions
than general-purpose modeling languages like UML. It encapsulates domain
concepts and provide semantics to domain entities, allowing designers to
work directly with domain concepts. Here, the proposed research employs
the MagicDraw UML [60] tool to graphically model various artifacts of the
proposed DSL, as the tool not only provides UML-based capabilities, but it
also provides the DSL Customization Engine - a mechanism able to process
user-defined rules for the DSL, and provide a visual interface for validation.

Figure 3.4 shows a more detailed and micro-level view of the proposed
design framework which highlights its certain primary features and internally
involved design stages. Within the framework, the thesis transforms the
top level platform concepts into the high-level graphical constructs to form
a DSL, specific for the SegBus platform. The DSL provides a graphical
environment where a designer can model P-SDF and PSM models of the
application quickly and assign pre-existing components from the SegBus
Component Library during the modeling. The application should be already
partitioned before modeling it in the P-SDF form and mapping it on to the
platform according to available library components.

The model can be validated for possible mistakes to get the correct P-
SDF and PSM. Later on, the designer transforms P-SDF and PSM models
of the application into XML schemes using M2T transformation supplied by
the tool. The XML schemes contain information about platform elements,
application components and their relative placement on different segments.

The thesis developed the “SegBus DSL” over three main directions: Pro-
file Development, DSL Customization, Structural Constraints. A detailed
analysis of the DSL development is discussed in Chapter 4.

3.7.1 The SegBus Component Library

The SegBus components’ library consists of a number of record locators. A
record locator stores important information about the library component.
The information includes a pointer to actual location of a VHDL file that
implements the functionality, the name, the version, and technical speci-
fications, such as area of the component in the given technology, timing

39

Figure 3.4: The micro-level view of the proposed framework and its internal
distinct units.

40

to process the inputs (clock ticks), etc. Figure 3.5 depicts the idea more
conveniently.

The framework utilizes the library especially while modeling the PAM
and SPM. During the PAM development phase, the designer refers the li-
brary to ensure about the availability and variety of functional components
and partitions the application accordingly. Further, while developing the
SPM, the library used more thoroughly for pointing out the actual VHDL
implementation of the selected components and to increase the visual un-
derstanding of the system. A detailed description about the development of
the library is presented in Chapter 4.4.

Figure 3.5: The SegBus library component structure.

3.7.2 Extensible Markup Language

A markup text is special text which can be distinguished by other texts
syntactically. The markup texts are used to give special meanings (anno-
tation, organization, ..) to ordinary text documents. Extensible Markup
Language (XML) is a markup language consisting of a set of rules that are
used to format data and information in structured documents. These XML
documents are easily understandable by both humans and machines. More-
over, the data represented in XML documents are also machine-processable,
which eventually, opens doors for information transportation between dif-
ferent types of applications.

XML was developed to structurally represent and share different types
of data between a variety of domains. This happened when the computing
shifted from mainframes to client-server model. The hassle of information
communication, representation and understanding of the received informa-
tion between local and remote machines had shifted the focus to markup
languages [14]. On one hand, the challenges of information containment
and visualization between computer applications and human had been re-
solved by the HyperText Markup Language (HTML). On the other hand,
the challenges pertaining to information representation and transportation
between different computer applications (no matter where they are located)
has been tackled with the advent of XML. For instance, in one application
domain, the data from the domain entities (e.g., applications’ objects) are

41

organized into XML document(s), and then transfer to another application
domain. The entities at the receiving domain upon receiving the XML doc-
ument transform the XML document(s) into a form which the receiving
domain generally uses inside its boundary.

XML documents can be made in any suitable desired format so that
information can be stored, represented and transported. However, problems
may occur with respect to formatting of the documents, if they are to be
shared with others. To enforce certain protocol in the formatting process,
the designers use XML schema to formalize protocol for formatting the
XML documents which to be shared among different users/applications in
a trouble-free manner. In this case, each XML document have to conform
with particular XML schema/schemes.

In the proposed framework, the designer transforms application and plat-
form models into XML schemes, such that the models can be shared with
emulator application, which eventually reads and processes the models (in
the form of XML schemes) for its own purposes.

3.7.3 Model Transformation

The model transformation is an important tool of the model-driven paradigm
which transforms a set of source models from one abstraction level into a
set of target models to the same or to different abstraction level(s). If the
transformation takes place between the same abstraction level, it is called
horizontal transformation e.g., PIM-to-PIM and PSM-to-PSM transforma-
tions; and if it takes place between two different abstraction levels, then
it is called vertical transformation e.g., PIM-to-PSM transformation, etc..
Both source and target models must have to conform respective (same or
different) metamodel(s). This is done by defining how elements in the source
models should appear in the target models by relating respective elements in
the source and target metamodels. In model-driven paradigm, it is mainly
used to refine and evolve the abstract specifications into more concrete ones
in a step-by-step manner.

There are two main kinds of model transformation: Model-to-Model
(M2M) and Model-to-Text (M2T). In M2M transformation, the transfor-
mation process transforms one set of different models into another set of
models and hence, it is called model-to-model transformation. For example,
the transformation of one set of UML class diagrams into another refined
set of class diagrams, etc.; While in M2T transformation, a set of models are
transformed into a set of text-based elements. For example, a transforma-
tion of UML models into source code of some programming language, XML
documents/schemes, etc.

The proposed framework employs Model-to-Text (M2T) transformation
for transforming the system models, which are built using the DSL, into

42

XML schemes to be further used by SegBus Emulator (discussed below) for
examining the merits of the source models for possible implementation.

3.8 The SegBus Emulator

Generally, emulation is necessary while designing applications targeting hard-
ware devices and platforms. The huge design and manufacturing costs of
such hardware platforms motivate designers to develop emulators and verify
the execution results. An emulator provides, to a certain extent of accu-
racy, the same functionality as the original hardware platform or computer
program. Designing an emulator requires a thorough understanding of the
target device or platform. This thesis introduces the SegBus emulator to
test platform configuration and estimate performance aspects before mov-
ing towards the final implementation.

In the proposed framework context, before the execution, the emulator
application reads the XML schemes of the P-SDF and PSM models, package
size and considers the structure (segment organization and resource alloca-
tion) from the XML schema of the PSM. Upon completion, the tool returns
results of the transactions from each platform element, performed during ex-
ecution. At this stage, if the obtained performance aspects of the emulated
configuration is up to an optimum level, the designer generates the control
code for the arbiters.

The details on the emulator are described in Chapter 5.

3.9 The VHDL Snippets

The control of the communication scheduling is done with the decision and
the supervision of the local and central arbiters. Templates for the operation
of these modules are located in the library. Based on the input from the
emulator, these are updated with the schedules for operation, trying, at the
same time, to enable an as much as possible parallel perspective on the data
transports and processing.

The details on how the snippets are defined and obtained are described
in Chapter 6.

3.10 Summary

This chapter presented a general overview of the proposed model-based de-
velopment and verification framework together with a brief description of the
employed methodology. The methodology can be seen as being inspired by
the Y-chart approach. Hence, the methodology has to be followed while de-
signing systems using the proposed framework. This chapter also introduced

43

the important cornerstones that guide us towards building the framework
successfully. In the following chapters, the thesis will discuss in more detail
the important cornerstones of the framework, that are required in different
phases of the methodology.

44

Chapter 4

SegBus DSL

This chapter presents a Domain Specific Language (DSL) for the SegBus
platform. The DSL, based on a UML profile, consists of graphical platform
elements in the form of stereotypes with the necessary tagged values to depict
platform aspects at high level of abstraction. Customizations are applied to
each stereotyped element in the form of user-defined rules to restrict relation-
ship between platform elements. The Object Constraint Language (OCL) is
employed to introduce constraints, in order to impose structural require-
ments between platform elements, for which we introduce mechanisms to
validate them. Moreover, a brief description about the SegBus components
library and its usage is also presented. Figure 4.1 shows the high-level de-
sign entry of any target application into the proposed framework where it

Figure 4.1: High-level design entry to application development.

45

Figure 4.2: Design activities involved in the development of the SegBus DSL.

is modeled in order to be implemented on the SegBus platform at the later
stages of the design methodology.

4.1 Profile Development

The structural characteristics of the platform are the key starting point of
profile development. These are analyzed in order to select the UML ele-
ments for modeling the hardware components of the platform at high levels
of abstraction. The important consideration in this phase is the selection
of suitable UML elements which can preserve related semantics and graphi-
cally represent the platform elements in the application domain. The UML
class diagram describes the structural view of the system. Thus a UML
package - SegBusProfileMagic is built which is a collection of classes in a
class diagram with necessary stereotypes, in order to sustain application
development on the SegBus platform. The profile defines the main struc-
tural elements of the platform. All the classes in the profile that model

46

Figure 4.3: Platform elements and their association in profile.

47

a particular element of platform are generalizations of the metaclass UML
Standard Profile::UML2 Metamodel::Classes::Kernel::Class. The structural
view of the profile is depicted in Figure 4.3 with the necessary association
and multiplicities between profile elements. Figure 4.2 provides a high-level
description of the activities involved in the development of the SegBus DSL.

The platform (SegBusPlatform) is characterized by the number of seg-
ments it contains, platform geometry (linear/circular), package size for com-
munication, data width and address lines. The BorderUnit element is an
interface between one segment and its neighbors. The internal FIFO buffer
is characterized by the fifoSize tag. The FU’s ID (natural number that is
unique at system-level) is inherited by both contained Master and Slave.
The FU methods contain procedures to produce data and to communicate
with the same segment’s SA. Procedures for sending and receiving data are
placed within Master and Slave respectively.

Additionally, Figure 4.3 contains three more stereotyped elements to
model the application at P-SDF level, that is, InitialNode, Process and
FinalNode. The initial node can only be connected to one or more pro-
cess node(s). The process node can be connected with other process nodes
and/or to the final node.

4.2 DSL Customizations

The next step in DSL development is to introduce user-defined rules for
each profile element so that the modeling tool [60] fully adapt the pro-
posed DSL in its modeling environment. All user-defined rules for each pro-
file element are stored in customization classes. Customization classes are
generalization of metaclass UML Standard Profile::MagicDraw Profile::DSL
Customization::Customization class, with stereotype Customization. These
customization classes consist of tags that store the user-defined DSL cus-
tomization rules. The customization rules are parsed and interpreted by the
DSL Customization Engine to assist validation process. A UML package is
created to store all customization classes.

Figure 4.5 shows the user-defined rules for each profile element. The
usage of a few customization rules are described below.

• customizationTarget. This tag stores the names of stereotype(s)
which are going to be customized with respect to current class. User-
defined rules that are introduced in the customization class will be
applied to all stereotyped classes which are mentioned in this tag (first
column in Figure 4.5).

• possibleOwners. This tag consists of stereotyped or other UML
elements that can instantiate current element. The possibleOwner of

48

Figure 4.4: DSL Customization classes for each element of the SegBus platform.

49

Segment can only be the SegBusPlatform (second row of Figure 4.5),
which can instantiate it.

• inShortCutMenu. This tag is used to add attributes of a class in
shortcut menu. In the first row of Figure 4.5, the properties that
appear as shortcut menu items are included in the context of the Seg-
BusPlatform class.

• suggestedOwnedTypes. This tag contains list of stereotypes and
metaclasses whose object can be instantiated inside the stereotyped
class as inner elements. For instance, SegBusPlatform can only be
associated with Segment, CentralArbiter and BorderUnit stereotyped
classes.

Figure 4.5: User-defined rules for different attributes of the Customization
classes.

We’ve also introduced three different customized Dependency links (Fig-
ure 4.3), in order to connect different stereotyped elements of the SegBus
platform according to needs. The advantage of customizing such links dur-
ing DSL development is to specify what will be the possible source and
target stereotype(s) for given links. The customization of these links allows
designer to connect only particular platform elements by imposing user-
defined rules. In Figure 4.6, the two elements Segment and BorderUnit
are connected with a customized link InterSegmentCommunication. The
link imposes specific properties of the platform for communication between
mentioned platform elements.

Figure 4.4 depicts the customization classes of the SegBus DSL.

50

Figure 4.6: Dependency link between two profile elements.

4.3 Structural Constraints

The stereotypes defined in the SegBus Profile, as discussed in section 4.1,
are simply a set of customized UML elements, each representing a specific
element of the SegBus platform. In fact, these stereotypes do not enforce
the structural restrictions as defined by the platform itself. The platform
characteristics defined in section 2.3 need to be introduced in the form of
structural constraints in the DSL. The required constraints are specified
by using the Object Constraint Language (OCL v2.0) [64] and relate them
to the SegBus UML profile, such that a correct component approach to
platform design can be implemented. Some of the constraints are already
introduced when applying multiplicities to relationships between elements
in profile the development phase. For instance, there should be exactly one
CentralArbiter in whole SegBusPlatform - modeled by specifying multiplicity
as ’1’ (Figure 4.3). Also, it is important to enforce in design that the number
of Segments should be equal to the property NrSegs of SegBusPlatform,
number of BorderUnits should match the platform geometry, etc.

All the constraints are stereotyped as validationRule from the Valida-
tion Profile, a profile supplied by the tool for supporting the validation of
models. A validation suite defines a set of validation rules, to be applied
when validating a model. The purpose of making a validation suite is to
group constraints logically in a UML package, SegBus Constraints, stereo-
type with validationSuite with proper context supplied for each constraint.
The designer applies this validation suite on models when validating them
against the platform constraints.

Upon any breach of any constraint requirement during the design pro-
cess, the tool provides an error message with a text specified by the DSL.
The designer can subsequently try to solve the indicated problem. The
description of a few of the constraints that were introduced in the DSL,
together with their respective error messages, are given below.
Number of Segments: This constraint enforces the number of Segments
in the model to be equal to the value of the integer attribute NrSegs that

51

the designer specified in the stereotype SegBusPlatform. NrSegs represents
the number of segments that the designer requires in the platform. The
constraint specification is given as:

context SegBusPlatform

inv NrOfSegments:

self.segments->size() = self.NrSegs

self.segments->size() > 1

Error Message 1. “Number of segments in model are not same as speci-
fied in SegBusPlatform”.

Cause. The designer introduced more / less segments than the specified
number.
Number of FunctionalUnits in a Segment: This constraint enforces in
model that each segment must contain at least one FunctionalUnit.

context Segment

inv NumberOfFU:

self.fu->size() >= 1

Error Message 2. “There should be at least one Functional Unit in each
segment”

Cause. A segment does not contain any FunctionalUnit.
Number of BorderUnits: This constraint enforces in design that there
must be a number of BorderUnits matching to number of segments with
respect to platform geometry.

context SegBusPlatform

inv NumberOfBorderUnits:

if self.IsCircular = true then

self.bu->size() = self.NrSegs

else

self.bu->size() = self.NrSegs-1

endif

Error Message 3. “Number of Border Units is not compliant given the
selected platform topology”.

Cause. The wrong number of border units has been included in the
design.
Missing BUs: This constraint issues an error message when the PSM model
does not contain any BUs whereas the segments are already existed.

context SegBusPlatform

inv MissingBorderUnits:

if NrSegs <> 1 then

self.bu->notEmpty()

52

Error Message 4. “None of the Border Unit is linked with the platform
instance”.

Cause. When two or more segments are already linked with the platform
instance and there does not exist any BU. In case when a BU is present in
the model, it must not be linked with the platform instance.
Missing segment: This constraint flags an error message when none of the
segments (if exist in the model) are linked with the platform instance.

context SegBusPlatform

inv MissingSegment:

self.segments->notEmpty()

Error Message 5. “None of the segments have been linked with platform
instance”.

Cause. When none of the segments are linked with the platform instance
(SegBusPlatform).

4.4 SegBus Components Library

This section discusses the development of a library of reusable IP compo-
nents - the SegBus Components Library, which is developed and integrated
into the SegBus DSL. Below, the thesis describes its significance in the pro-
posed framework and its implementation approach in detail.

4.4.1 Reusability Consideration

Reusability refers to the ability of an object that can be used more than once
with or without minor modification. It reduces the development time, and
additionally, enables accelerated time-to-market. Here, the thesis builds a
library (the SegBus Components Library) of often-used components to make
them reusable for further developments on the platform.

Without this library, the proposed methodology lacks means of selection
of the Intellectual Property (IP) components when modeling at higher levels
of abstraction, and whose (selected IPs) behavior could be evaluated during
emulation of a modeled system (discussed in Chapter 5). Similarly, there
was no way other than to manually select and map specific IPs during the
implementation phase. The thesis addresses here issues for evolving the
proposed design methodology further towards reusability and versatility.
The thesis introduces a library which is composed of a list of functional
components to be used within the design methodology. The components
are often referred during different stages of the system modeling - from
high-level modeling to low-level code generation.

53

To achieve this research goal, thus a plug-in is built and introduced
within the modeling tool [60] to get the library of reusable IP components in
graphical form, which can be operated while modeling in DSL. The tool runs
the plug-in every time it is run for modeling applications on the platform and
provides ease of choice for components selection. The realization of SegBus
components library is necessary because it enables to model and emulate
the system more accurately due to additional information it provides such
as IP name, clock ticks it consumes for processing one package, etc. This in
turn makes the code generation process more straight forward and accurate.

The development of the library starts with the use case analysis, which
is a common technique used to identify the system requirements that ulti-
mately assists in designing classes to satisfy them. The requirements are the
foundation over which the system is built on. Ambiguous and incomplete
requirements lead to an incompetent system and the design efforts are thus
wasted. Moreover, a scenario is a sequence of steps describing an interac-
tion between a user (system designer) and a system (the SegBus DSL in this
case) [8]. Each system requirement then evaluates to scenario(s). Further,
a use case is a set of scenarios tied together by a common user goal.

Following important functional requirements are identified that must be
included in the SegBus components library for a better use of it.

• The library can be opened in the tool.

• A new component can be added in the library.

• An existing component can be removed from the library.

• A component in the library can be selected and assigned to a (pre-
selected) model element.

• The library can be closed.

By examining the above mentioned requirements, a use-case model is
obtained, as illustrated in Figure 4.7. Following, the thesis briefly describes
each of the use cases.

54

Figure 4.7: Use case model of the SegBus components library.

Use case 1: Open library

Actor System designer
Precondition The tool is already opened and a target model

exists and contains elements to get assigned li-
brary components.

Postcondition The library window has been opened within the
modeling tool and ready to be used.

Main path (M)
1. The designer clicks “Library” menu.

2. A sub-menu “SegBus IP Library” displays.

3. The user clicks the sub-menu.

4. The library GUI displays.

Use case 2: Close the library GUI

Actor System designer
Precondition The library window is already opened and dis-

plays available components in the library.
Postcondition The library GUI closes.
Main path (M)

1. The designer clicks the “Close” button.

55

Use case 3: Select and assign component

Actor System designer
Precondition The library window is already opened and dis-

plays available components in the library.
Postcondition The chosen library component is assigned to se-

lected model element.
Main path (M)

1. The designer selects a target model ele-
ment.

2. The designer chooses certain component
from a list of available library components.

3. The designer presses “Assign” button on
the library main window.

Use case 4: Add component in the library

Actor System designer
Precondition The library window is already opened and dis-

plays available components in the library.
Postcondition The new component successfully adds to the li-

brary.
Main path (M)

1. The designer clicks “Add” button on the
main library GUI window.

2. A new GUI appears with required input
fields to get the information about the new
component.

3. The designer provides information about
the new component in the required input
fields.

4. The design clicks “Add” button.

5. The new components adds into the library.

56

Figure 4.8: An analysis model of a “Select and assign component” use-case.

Use case 5: Remove existing component from the library

Actor System designer
Precondition The library window is already opened and dis-

plays available components in the library.
Postcondition The selected component is removed from the li-

brary.
Main path (M)

1. The designer selects a certain component
to be removed.

2. The designer clicks “Remove” button on
the main library GUI window.

3. The component removes from the library
database.

Next, an analysis model is built based on the developed use-case model,
which describes the structure of the system. It consists of analysis objects
that describe the logical implementation of the functional requirements that
were previously identified in the use-case model. Here, the analysis model
contains the possible stereotypical classes (analysis objects) responsible for
certain roles in the system. These roles are: the boundaries (interface with
the outside world i.e. screens/forms), the entities (information container)
and the control objects (coordinators of the use case execution) [13]. Figure
4.8 illustrates a use case flow by considering the analysis objects. Other uses
cases are developed in a similar fashion.

57

4.4.2 Implementation Approach

A class diagram describes the static structure of the system. The descrip-
tion contains the types of objects a system is composed of and the static
relationships that exist among them. Here, a class diagram of the library
is developed on the basis of the developed use case analysis model, as dis-
cussed previously. Later, the library is implemented according to the static
structure described in the class diagram. Figure 4.9 shows the class diagram
of the SegBus components library.

Figure 4.9: The class diagram of the SegBus components library.

Each class in Figure 4.9 is responsible for a particular role within li-
brary’s functionality. Below, individual classes and their respective roles are
discussed briefly.

JFrame class is part of the “Swing” package of the Java language [57]
and it is used to produce a top-level window with a title and a border.
Figure 4.10 illustrates the class structure of the IPRecord class. This class
is a java bean - a class which allows access to its properties using dedicated
setter and getter methods. An object of this class is used to hold important
properties of a library component: name, feature size (technology), power
consumption, storage location, and so forth. The description of each of its
methods is described below.

IPRecord() - This is the constructor method of this class. It initializes
the member variables with the passed values to it during its object
initialization time.

58

Figure 4.10: IPRecord class structure and operations’ description.

setName() - This method sets the “Name” of the library component. A
string is passed to it as argument.

getName() - This method returns the name of the library component.

setTicks() - This method sets the “Ticks” of the component. Ticks rep-
resents total number of clock ticks this component generally takes to
process one package.

getTicks() - This method returns the “Ticks” value of the component.

setArea() - This method sets the “Area” attribute of the component.
Here, the area refers to total area to be occupied by this component
on a particular fabrication technology.

getArea() - This method returns the area cost pertaining to this specific
component.

setTechnology() - The feature size of the employed silicon technology for
this library component is set by this method.

getTechnology() - This method returns the feature size of the compo-
nent.

setPower() - The power consumption of this component is set by using
this method. (Power consumption has not been considered in this
research work. Here, the power field is introduced only to specify
the power consumption of the respected IP component if it is known
in advance. Further, it will be used in possible future work in the
direction of system-level power estimation.)

59

getPower() - This method returns the power consumption of this com-
ponent.

setFilePath() - This method sets the physical location of the component.

getFilePath() - This method returns the physical location of the compo-
nent.

The structure and operations of the LibraryWindow class are depicted
in Figure 4.11. This class is directly extended from JFrame class of the
Java standard API [57] which is used to create a container for graphical
components. The class is a central window which holds important graphi-
cal components of the library. The window is the starting point where the
available library components can be seen in a graphical form. Additionally,
the class provides the capability to add, remove and assign the library com-
ponents to a model’s element(s). A brief description of each of its member
methods is given below.

Figure 4.11: LibraryWindow class structure and operations’ description.

LibraryWindow() - The constructor method of this class. The method
initializes certain instance variables and displays the existing library
components in graphical user interface (GUI). The constructor method
calls the showRecords() method (described below) to get the existing
library components and later displays them in a list form.

showRecords() - This method first gets the components from the library
and then displays them on the GUI.

openFileForRead() - In Java, an I/O stream represents input source
or output destination of a sequence of data [57]. The stream source
and destination can be the file system, other programs and memory
arrays. This particular method creates an instance of class Object-
InputStream [57] so that the library database can be read from the

60

database file. The reason for using object-based streams for reading
and writing data is due to rich support from available classes in Java.
These classes (ObjectInputStream and ObjectOutputStream) enable
the reading and writing of the Java primitive types and user-defined
objects from/to the streams without any need further processing by
the developer.

closeFileAfterRead() - This method closes the ObjectInputStream after
reading the library components’ records.

removeComponent() - This method removes the selected component
from the library database.

openFileForWrite() - While removing selected component from the li-
brary database, this method is called by removeComponent() method.
This method creates an instance of class ObjectOutputStream [57] to
get access of the library database and the desired component is then
removed from the database.

closeFileAfterWrite() - After removing the selected component from
the library, the method closes the previously created ObjectOutput-
Stream.

Figure 4.12 shows the AddComponent class structure. This class is also
directly extended from JFrame class of the Java standard API like the previ-
ous one. The class provides a graphical window which holds other graphical
components (text fields, etc.) that are used to add new components in the
SegBus components library. Following a brief description of its member
methods is presented.

Figure 4.12: AddComponent class structure and operations’ description.

AddComponent() - This is the constructor method of this class which
upon execution creates a GUI based on the JFrame class. The GUI
allows the addition of new components in the library database. This

61

is done by having important text fields in the GUI populated with
information about the new component.

readRecords() - This method gets the existing records from the compo-
nents’ library and collect them into a Vector object [57]. This method
is executed before adding new component into the library database.

addComponent() - This method inserts a new component into the li-
brary database. This is done by adding the new component in the pre-
viously created vector object, and then write back all the vector items
into the database. The reason for initial reading the whole database
file before adding the new component is to verify any duplicate items
(identical to the new component) and thus avoid redundant entities in
the library.

openFileForRead() - This method creates an instance of class ObjectIn-
putStream so that the library database can be read to get the existing
components.

closeFileAfterRead() - This method closes the ObjectInputStream after
reading the library components from the database file.

openFileForWrite() - Before writing back all the records into the database
file, an object of ObjectOutputStream is created with this method.

closeFileAfterWrite() - After successful writing back to the database
file, this method closes the previously created ObjectOutputStream
stream of data.

The Open API of the MagicDraw tool [56] is a collection of classes which
allows writing user-defined plug-ins, create actions in the menus and tool-
bars, change UML model elements, etc. The Plugin class is part of the Open
API and is the base abstract class for every plug-in of the tool. The plug-in
under development must be extended from this class. Every plug-in has its
own descriptor (discussed in section 4.4.3).

LibraryPlugin class is directly extended from “com.nomagic.magicdraw-
.plugins.Plugin” class of the Open API. Figure 4.13 shows the class structure
along with its member methods. Below the description of each method is
discussed in brief.

init() - On MagicDraw UML startup, this overridden method is called
which initializes the SegBus components library plug-in. It then reg-
isters the action method from MenuAction class to execute when the
library plug-in is invoked to open the components library GUI during
modeling.

62

Figure 4.13: LibraryPlugin class structure and operations’ description.

close() - This method is executed when the modeling tool shuts down.
In the proposed library’s case, it returns true to notify tool that the
SegBus components library plug-in is ready to shut down too.

isSupported() - This method is called before initialization of every plug-
in. If this method returns false, the plug-in will not be initialized. In
the proposed library’s case, this method returns true to allow the tool
to initialize the SegBus components library plug-in.

getSubmenuActions() - This method is called by the init() method of
this class. Here, this method first instantiates an instance of Menu-
Action class (discussed below) and an instance (called as category) of
ActionsCategory class from the Open API. Second, it adds the Menu-
Action’s instance into the category. Finally, it instantiates an instance
of MainMenuConfigurator (discussed below) and forwards it to the
newly created category for further processing.

Figure 4.14 shows the static structure and member functions of the Main-
MenuConfigurator class. The action manager of the tool is responsible for
managing the actions and categories. It has a list of categories where it
registers different actions by shortcuts and IDs.

The MainWindowConfigurator class implements AMConfigurator inter-
face from the com.nomagic.actions package of the Open API, which in turn,
is used to configure the action manager. The AMConfigurator is a general-
purpose configurator in the MagicDraw UML tool which is widely used for
configuring menus, toolbars, browser and shortcuts for different diagrams
used in the tool [56]. A separate menu for the library in the tool’s main
menu bar is created with the help of this class. Below, a brief description
about the functionality of each of its member methods is discussed.

MainMenuConfigurator() - This is the constructor method of the class
which is used to introduce a new menu in the tool and registers an
appropriate action (the MenuAction in this case) whenever the menu
is clicked.

63

Figure 4.14: MainMenuConfigurator class structure and description of its
methods.

configure() - This is an overridden method of this class for the AMCon-
figurator implementation. This method provides information to the
action manager about the SegBus components library plug-in.

getPriority() - All configurators in the MagicDraw UML are sorted by
priority before configuration [56]. The priority is very important if
one configurator expects actions from other configurators. Here, the
SegBus components library plug-in uses the medium priority for the
MainMenuConfigurator class and this method (getPriority()) returns
the priority of the created menu to the MagicDraw UML.

The MDAction class belongs to the “com.nomagic.magicdraw.actions”
package of the Open API. It provides methods which can be overridden to
offer desired functionality whenever a related action is occurred within the
tool. The MenuAction class is directly extended from the “MDAction” class.
Figure 4.15 depicts the structure of this class and the description of each of
its member methods is mentioned below.

Figure 4.15: MenuAction class structure and operations’ description.

MenuAction() - This is the constructor method of this class. This method
sets important attributes e.g. name, ID, etc. In addition, it creates an
instance of the LibraryWindow class so that the SegBus components
library’s main GUI can be displayed in the modeling tool, when the
user clicks on the menu item.

actionPerformed() - In the modeling environment, when the designer
intends to open the SegBus components library, the designer goes to

64

main toolbar of the modeling tool and clicks on a separate menu for the
components library named as “Library”. The library menu contains
the item “SegBus Components Library”. When the designer clicks
on this menu item, an ActionEvent is generated and passed on to
actionPerformed() method. The method then makes the library’s GUI
visible, and hence, available to the designer.

4.4.3 Plug-in Setup

Plug-ins are the only way to add or change functionality in the MagicDraw
tool [56]. This thesis develops the SegBus components library in a plug-
in form such that it can be effectively utilized as a pool of reusable IP
components by the tool.

A plug-in must contain: a directory, compiled Java files packages into jar
files, a plug-in descriptor file and optional files to be used by that plug-in.
Apache Ant [55] is used to compile the source code of the library together
with the provided class library of the tool, and further package them into a
jar file (described below). Following that, the script is shown below, which
has been used to compile and package the source code into a jar file.

<project name="SBLibrary" basedir="." default="main">

<property name="lib.dir" value="../../lib"/>

<path id="classpath">

<fileset dir="${lib.dir}" includes="**/*.jar"/>

</path>

<target name="clean">

<delete dir="build"/>

</target>

<target name="compile">

<mkdir dir="build/classes"/>

<javac srcdir="src" destdir="build/classes"

classpathref="classpath"/>

</target>

<target name="jar">

<mkdir dir="build/jar"/>

<jar destfile="build/jar/SBLibrary.jar"

basedir="build/classes">

<manifest>

<attribute name="Main-Class"

value="SBLibrary.LibraryPlugin"/>

</manifest>

</jar>

</target>

</project>

The MagicDraw UML, on every startup, scans the plug-ins directory
and looks for further sub-directories. If a sub-directory contains a plug-in
descriptor file (named as “plugin.xml”), then the plug-in manager of the
MagicDraw UML reads it. Next, if requirements specified in the descriptor
file are satisfied then the plug-in manager executes the specified class by
calling its init() method. Therefore, the specified class (LibraryPlugin in

65

this case) must be derived from “com.nomagic.magicdraw.plugins.Plugin”
class in order to successfully get triggered by the plug-in manager.

The presented research work thus performed all the necessary steps
to make up the appearance of the library as an executable plug-in. To
achieve this, a directory is created ($(MagicDraw)\plugins\SBLibrary\).
Next, compilation is performed that builds a packaged jar file ($(SBLi-
brary)\build\jar\SBLibrary.jar) based on its general principles. Then, a de-
scriptor file has been written. The contents of the descriptor file are shown
below.

<?xml version="1.0" encoding="UTF-8"?>

<plugin id="SegBus.Library.Plugin"

name="SegBus IP Library Plugin"

version="1.0" provider-name="Moazzam"

class="SBLibrary.LibraryPlugin">

<requires>

<api version="1.0"/>

</requires>

<runtime>

<library name="build/jar/SBLibrary.jar"/>

</runtime>

</plugin>

Interested readers can find out the detailed semantics about various ele-
ments and related attributes used in the above descriptor file in “Open API
user guide” [56].

In general, the employment of reusability at different stages of the platform-
based design processes not only reduces the design time, but comprehen-
sively supports the automation between different sub-tasks in the design
processes. As discussed previously, the continuous evolution of computer-
aided design (CAD) tools and reusability in design methodologies are the
key enablers for the successful transition to the platform-based design. Sim-
ilarly, in the context of the SegBus platform, this research considers the
development of this library as a significant contribution in continuing efforts
towards building a unified framework for designing and implementing appli-
cations on to the SegBus platform. This is the key contribution of the work
presented in this thesis.

4.5 Summary

This chapter introduced a DSL for modeling and mapping of an application
onto an instance of the SegBus communication platform. The chapter de-
scribed in the form of graphical elements the principal structural elements of
the platform with their structural relations and the related DSL customiza-
tion.

66

The DSL provides an environment where a designer can model platform
and associate it with the application components using different configura-
tions in an automated manner. The DSL also helps in model transforma-
tion at later stages of development process. Moreover, the DSL supports
designers in modeling phase whereby none of the structural constraints are
violated. The validation suite embedded in DSL helps designers to rectify
the problems in the model of the system and correct them accordingly.

Together with DSL, a library of components for the SegBus platform
has also been presented , named as, SegBus Components Library, which is
a collection of reusable hardware/software components stored in a central-
ized library. This technique enables addressing evolving challenges with the
current trends in embedded systems development by applying IP reusability
during the design process.

67

68

Chapter 5

SegBus Emulator

This chapter presents an emulator program, the SegBus emulator, and a per-
formance estimation technique for the SegBus platform. The technique en-
ables the assessment of the performance of any specific application mapped
to a particular platform configuration, modeled using the SegBus DSL. The
chapter presents methods to transform the Package Synchronous Data Flow

Figure 5.1: High-level view of design entry to SegBus emulator.

69

(P-SDF) and Platform Specific Model (PSM) of the application into Ex-
tensible Markup Language (XML) schemes using the modeling tool. The
chapter also shows that how the generated XML schemes can be utilized by
the emulator program to get the execution results. The technique enables
the performance estimation of the mapped application on a number of dif-
ferent platform configurations during the early stages of the design process.
Figure 5.1 shows a high-level view of design transition between SegBus DSL
and SegBus emulator.

5.1 Basic Concepts

In the proposed SegBus emulator approach, the following considerations
apply to build the emulator as a close match to the SegBus communication
platform and to the application execution.

1. The schedule of the application is extracted from the P-SDF and im-
plemented within the arbiters, providing the correct sequencing among
processing and transfers.

2. As for the moment the designer is not interested in the actual opera-
tional results, therefore the FUs are modeled as counters, performing
for an established duration. The count values of the counters will
stand as a “processing” time associated with each FU. This time (in
the form of clock ticks - CT) will be extracted from the P-SDF model
where each FU is assigned a CT value. A CT value represents that
how many clock ticks are required by a FU to process one package.

3. The performance measurements (execution time) are established with
respect to the starting moment of the emulation process. While for
individual processes this might introduce errors in measurement (as
certain modules have to wait until data is present in order to start op-
erating), this does not affect the overall application time performance
- which is the main target in this study. The experimental results
(discussed in detail in Chapter 7.2) show that the proposed emulator
results (representing overall application time performance) only devi-
ate within 5-7% of the simulation results over real platform instances
and thus validates this argument.

4. The emulator is equipped with an array of flags - “Process Status
Flags”, each element here corresponding to one FU process of the
application. When a process finishes its activities and related transfers,
the appropriate flag is raised.

70

5. During the execution of the application on the emulated platform,
monitoring activities are executed to measure the execution times
(clock ticks) of the FUs, SAs and of the CA.

6. The system emulation is considered finished when all the flags de-
scribed above are high, and there is no activity to execute within any
of the platform’s SAs or CA.

Figure 5.2: Operating flow of the emulator.

5.2 Model Transformations

The first phase for performing the emulation of any SegBus configuration
modeled in DSL is to transform the models into XML schemes so that the
configuration can be used by the emulator program for further analysis. The
choice of XML-based approach allows models to be readable by both humans
and machines (SegBus emulator in this case). This approach provides ease

71

in information exchange between concerned entities in the framework and
allows for a smooth flow.

The emulator application is written in Java language [57] due to its rich
collection of classes for handling XML schemes, and classes for implementing
multi-threaded application (discussed in section 5.4). The code generation
engine provided by the modeling tool does provides the capability to trans-
form model(s) into XML schema as per the M2T specification [59].

Before transforming models to XML schemes, a code engineering set
needs to be introduced in the modeling tool for each model where the de-
signer specifies the required type of transformation i.e. Model-to-Model,
Model-to-Text (as in this case), etc. The code engineering set consists of a
set of model elements from a respective source model whose XML contents
need to be generated during transformation process.

Targeting the proposed approach of this thesis, two distinct code engi-
neering sets are made for the already modeled target system (one for PSM
and the other one for P-SDF). The code engineering set representing PSM
contains the platform elements (SAs, CA, BUs, etc.). While the other code
engineering set representing P-SDF contains all the application components
in the form of processes (P0, P1, etc.). A directory is also specified where
the generated XML schemes are saved. After applying transformation on
desired P-SDF and PSM models, the required XML schemes are obtained
in the mentioned directory.

The generated XML consists of a schema element and a number of sub-
elements, in the form of complexType and element types. Each complex type
represents a platform element (CA, SA, etc.) or application component
(P0, P1, etc.). The name attribute of each complex type shows the name
of the element. In addition, each complex type may contain sub-elements.
Figure 5.3 shows the hierarchical structure of the platform elements. At the
top level is the SegBusPlatform itself consisting of Segment(s) and exactly
one CA. Every segment is composed of at least one FU, and exactly one
SA. Each segment is connected with other neighboring segment through a
BU. Each FU must contain at least one Master or one Slave. A FU may
contain a combination of both master(s) and slave(s). The generated XML
also follows the same hierarchy in representing platform entities in XML
form.

Next, an XML snippet is shown from the example P-SDF model of Figure
5.4 after transformation, consisting of processes P0, P1, P3 and P4, and
their relative transfers to other processes.

<xs:complexType name="P0">

<xs:sequence>

<xs:element name="P1_576_1_250" type="P1"/>

<xs:element name="P8_576_1_250" type="P8"/>

</xs:sequence>

</xs:complexType>

72

Figure 5.3: Hierarchical structure of the SegBus profile elements.

<xs:complexType name="P1">

<xs:sequence>

<xs:element name="P2_540_2_250" type="P2"/>

<xs:element name="P3_36_3_250" type="P3"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="P3">

<xs:sequence>

<xs:element name="P4_36_4_500" type="P4"/>

<xs:element name="P10_36_4_500" type="P10"/>

<xs:element name="P11_540_4_500" type="P11"/>

<xs:element name="P5_540_4_500" type="P5"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="P4">

<xs:sequence>

<xs:element name="P5_36_5_250" type="P5"/>

</xs:sequence>

</xs:complexType>

73

Below is an extract from the XML snippet of an example PSM model
after transformation, representing the SegBus platform instance named as
SBP with three segments in a linear topology configuration, CA and BUs
as child-elements: “Segment 0” element with its child-elements (process P0,
P1, P2, P3, P8, P9 and P10 ; segment arbiter SA0 ; and BU buRight);
“Segment 1” element with its child-elements (process P5, P6, P7, P11, P12,
P13 and P14 ; segment arbiter SA1 ; and BU buRight and buLeft).

<xs:complexType name="SBP">

<xs:all>

<xs:element name="segment0" type="Segment0"/>

<xs:element name="segment1" type="Segment1"/>

<xs:element name="segment2" type="Segment2"/>

<xs:element name="ca" type="CA"/>

<xs:element name="bu12" type="BU01"/>

<xs:element name="bu23" type="BU12"/>

</xs:all>

</xs:complexType>

<xs:complexType name="Segment0">

<xs:all>

<xs:element name="p0" type="P0"/>

<xs:element name="p1" type="P1"/>

<xs:element name="p2" type="P2"/>

<xs:element name="p8" type="P8"/>

<xs:element name="p9" type="P9"/>

<xs:element name="p10" type="P10"/>

<xs:element name="p3" type="P3"/>

<xs:element name="arbiter" type="SA0"/>

<xs:element name="buRight" type="BU01"/>

</xs:all>

</xs:complexType>

<xs:complexType name="Segment1">

<xs:all>

<xs:element name="buRight" type="BU12"/>

<xs:element name="buLeft" type="BU01"/>

<xs:element name="p5" type="P5"/>

<xs:element name="p6" type="P6"/>

<xs:element name="p7" type="P7"/>

<xs:element name="p11" type="P11"/>

<xs:element name="p12" type="P12"/>

<xs:element name="p13" type="P13"/>

<xs:element name="p14" type="P14"/>

<xs:element name="arbiter" type="SA1"/>

</xs:all>

</xs:complexType>

5.3 Setup for Emulation

Parsing is a process in which text data is analyzed to extract meanings and
information from a machine. XML parsing is performed on XML documents
and schemes to get the contained information from the provided readable
XML.

74

Figure 5.4: P-SDF model of an example application.

The next phase of the design methodology is to parse the generated
XML files and build the structure of platform and allocation of resources on
it within the emulator. The DocumentBuilderFactory and DocumentBuilder
classes from the javax.xml.parsers package were utilized in order to create
XML document for further parsing. The parse method of the Document-
Builder class returns XML Document object, when the designer supplies
the generated XML file(s).

The emulator program handles the communication matrix in two differ-
ent possible ways. In the first method, it reads a text file which contains
the communication matrix entries in text form. The first method is used
when the P-SDF model do not provide information about the amount of
data to be transferred in each transaction. In the second method, the em-
ulator program create a communication matrix from the information that
are extracted from the P-SDF model. The second method is used when
the transactions in the P-SDF model are modeled in a way representing the
amount of data to be transferred in each transaction.

The reason for these two different ways for handling the communication
matrix is that, initially when this research work was started, the only way
to provide communication matrix to the emulator was in the form of a text
file. Later, as time passed by, the emulator functionality were enhanced to
further extent so that it can now fetch and create the communication matrix
from the P-SDF model and the legacy functionality is kept intact for possible
future use. Generally, the second method of building communication matrix
is used when the information about the data transfers are already contained
in the P-SDF model. Figure 5.2 depicts this feature in a detailed manner in
graphical form.

As discussed above, the emulator program builds the communication
matrix by extracting transactions between the processes in P-SDF model.
Based on the matrix, the (independent) SBTool utility [19] finds the optimal
device allocation solution, given the platform specifics (the number of seg-
ments). The optimal allocation results from the SBTool utility are treated as
allocation proposal which helps the allocation of application processes on dif-
ferent segments of the platform’s instance considering the designer obtains

75

the desired performance scores after emulation. Otherwise, the designer
modifies the processes’ allocations accordingly, if necessary.

The emulation process is based on both P-SDF and PSM models. The
P-SDF model provides information about interaction between application
processes with required data items and other useful parameters, while the
PSM model represents the placement of each application process on different
segments of the platform. Hence, the emulator program parses the XML of
both models to be later used for emulation. During the parsing process, the
emulator extracts following information from the P-SDF model:

• Number of application processes.

• Data transfers from each process.

• Ordering of transfers.

• Clock ticks to be consumed by each process while processing one pack-
age.

The emulator stores the above information in temporary variables and
arrays. Figure 5.4 shows the P-SDF model of the example application
(briefly discussed in Chapter 7). For instance, the name attribute from
one of the element from process P0, that is, “P1 576 1 250” represents a
transfer from process P0. The “ ” character serves as the separator between
the entities. The first entity “P1” represents the target process of this trans-
fer; the second entity “576” is the number of data items to be transferred;
the third entity “1” is the sequencing order and the last entity “250” is
the number of clock ticks a process needs to consumed before sending each
package.

Furthermore, the emulator extracts following information from the PSM
model and stores in a number of variables and arrays inside the emulator,
too:

• Platform’s communication elements (platform instance (SBP), CA,
BUs, etc.)

• Number of segments in the platform.

• Number of border units based on platform geometry.

• Placement of application processes on different segments.

When the parsing process is finished for the XML of the P-SDF model,
the emulator iterates in the previously populated arrays, instantiates objects
of the required FUs and pass them necessary information. This necessary
information contains number of data items to be transferred, destination

76

processes, relative ordering, clock ticks a process needs to be consumed
before sending a package and placement in the specific segment. The con-
structor method of the FU class analyzes the passed information to it and
instantiates the required number of objects of masters and slaves, which
later to be executed as threads during emulation.

The emulator has been programmed in a way to exhibit the behavior of
an actual platform instance. The functionality and behavior of each platform
element (SA, CA, BU, etc.) are programmed and stored in individual Java
source files. A number of monitoring statements are introduced in different
sections of SA, CA and BU codes. These monitoring statements count
clock ticks involved in any transfer, either intra-segment or inter-segment.
The arbitrate method in CA and SA source code performs arbitration and
called by the emulator application several required number of times dur-
ing execution. The method also counts how many clock ticks have been
consumed for any particular transfer at different stages of the operation.

At the SA level, certain statements are setup in an arbitrate method
(discussed in next section) to count requests coming from the application
processes. Separate counters are also setup inside source code to count
both kinds of requests (intra and inter-segment). These statements help us
later to analyze the configured system and provides means to take optimal
decision according to needs. In case of inter-segment transfers, there exist
another set of counters to count how many packages transferred to left and
right side BUs.

At the CA level, monitoring statements in arbitrate method count the
number of clock ticks CA consumed while setting and resetting related grant
signal in response to inter-segment requests. The monitoring statements at
BU level counts how many packages received from, and transferred to, left
and right-side segment. It also counts total number of clock ticks during all
transfers.

During the parsing process of XML for the PSM model, the emulator
application first looks for the SegBus platform instance in the XML doc-
ument, analyzes its structure by counting how many segments and BU it
contains as child nodes. It instantiates an object of platform instance, CA,
required number of BUs and saves the references (discussed below). Later
on, it looks for the elements in XML document, which represent segments.
It analyzes the structure of each segment, instantiates one SA and required
number of FUs associated with any particular segment and pass the object
reference of segment to left/right BU(s).

The emulator application maintains a number of lists each for different
communication (CA, SA, BU, etc.) and application (FU) components.
Whenever it encounters specific element in the XML document, it instan-
tiates an object of the relevant class and adds it to corresponding list. For
instance, if the emulator program finds an element representing a BU in

77

the XML document, it instantiates an object of class BU by calling the con-
structor and passing the necessary values and adds the object to a list that
holds only BU objects.

Figure 5.5: Thread life cycle in different states [9].

5.4 Implementation Approach

The microprocessor in a personal computer (PC) executes computer pro-
gram instructions in a sequential order. On the other hand, hardware de-
vices perform their dedicated functionality in parallel with other devices.
The main challenge of emulator development in this research work was to
transform the parallel behavior of hardware elements associated with plat-
form entities into some special form that can be run on the microprocessor-
based PC and exhibit the correct characteristics of the hardware devices. A
variety of programming and execution models exist to model concurrency in
computer programs such as POSIX [71], OpenMP [72], MPI [73], etc. Each
one of them has some particular characteristics which make them suitable
for a particular context and multi-threading is one of them.

Multi-threading is not a new idea and has been in existence for many
years. Generally, every running program on a PC is called a process. Multi-
threading is the task of creating a new thread of execution within an existing
process rather than starting a new process to begin function and running
them concurrently. All the threads in a process share the same allocated
memory and execute independently with other threads. The “concurrent”

78

execution of threads within the same process is often considered as a more ef-
ficient use of the resources of the PC. Multi-threading employs time-division
multiplexing to execute threads concurrently. Threads are obtained from the
pool of available ready-to-run threads and execute on the available micro-
processor(s).
Thread Life Cycle. During the life cycle of a thread, it lives in one
of different thread states [9]. Figure 5.5 shows the life cycle of a thread.
A thread starts its life cycle in new state whenever it is created. After
thread creation, the thread moves to runnable state and is executed by
the processor. Later, a thread moves to waiting state while it waits for
other threads to complete their tasks. The thread remains in this state
until it is notified. In addition, a timed waiting is another form of waiting
state. A thread remains in this state waiting for a certain time interval
to finish. Furthermore, a thread moves to blocked state when the thread
tries to complete a task and the task cannot be completed right away. It
temporarily waits in the blocked state until it is ready to complete the task.
Lastly, a thread moves to terminated state when it completes it required
tasks.

The thesis employs Java’s multi-threading feature in the proposed emula-
tor because of Java’s rich support for implementing multi-threaded applica-
tions. In the proposed emulator approach, all the classes related with emula-
tor (emulator engine and source files related to platform) run as threads dur-
ing execution. Each class implements the Runnable interface from java.lang
package by introducing a specific run() method. The method executes when
emulation starts and performs dedicated functionality.
Class descriptions. In Figure 5.6, a (simplified) class diagram of the
emulator program is illustrated with the most important classes and their
relationships. The diagram is simplified by omitting class attributes and
methods, for the purpose of increasing clarity.

Figure 5.7 shows the static structure of class SBP. This class is used
to instantiate a logical instance of the SegBus platform in the emulator.
Here, attributes of class are omitted from the shown structure to establish
simplicity. This class consists of 3 major methods, as described below.

SBP() - This is the constructor method for the class which is responsi-
ble for preparing and instantiating the class’s object and initializing
various objects and constituent members.

setMonitor() - This method creates an array of status flags for all the
FUs in the platform’s instance, and instantiates a MonitorClass ob-
ject and forward to it the created array of status flags for further
operations.

79

Figure 5.6: Class diagram of the emulator application.

Figure 5.7: SBP class operations’ description.

updateSequenceCounter() - This method updates the under-execution
ordering sequence counter, when all the task associated with current
sequence number has been finished.

Figure 5.8 depicts the class SA static structure including with the spec-
ification of its methods. Following a brief description of each method is
presented.

SA() - As the name suggest, this method is the class constructor, which
prepares the instance of this class. In addition, it also initializes im-
portant objects and constituent members.

run() - This method starts execution as soon its thread moves to runnable
state by the operating system. The core functionality of SA are part
of this method.

SetReqs() - This method sets incoming request from a master for bus
grant. The request is considered for bus grant in the next round of
arbitration.

80

Figure 5.8: SA class operations’ description.

granting() - This method grants bus access to a certain requesting master
for data transfer to intra-segment slave(s) or to inter-segment slave(s).
In case of inter-segment transfer, the SA also notifies appropriate BU
with respect to the direction of data transfer, and the master later fills
the buffer of the relevant BU accordingly.

arbitrate() - This method arbitrates data transfer activities inside a seg-
ment. First, it checks whether is there any request for bus access from
any master attached with concerned segment and take appropriate
granting action. Second, if a master is already holding the bus grant,
then it takes appropriate supervisory action.

supervise() - This method supervise data transfers, when a master is been
issued a bus grant. It checks the status of the ongoing data transfers
and its duration. If the master has already completed data transfer
or the duration of the bus grant is already passed, then this method
take further actions to set/reset certain signal so that the bus could
be available for further requests.

The static structure of class CA is depicted in Figure 5.9. This class
contains 4 major methods whose brief description is mentioned below.

CA() - The constructor method of the class which prepares newly created
object of this class for the proper usage. It also initializes constituent
members with appropriate values.

run() - As described previously, this method starts execution as soon its
thread moves to runnable state by the operating system. The core
functionality of CA are part of this method and it is repeatedly called
arbitrate method pertaining to this class to perform its dedicated op-
eration.

81

Figure 5.9: CA class operations’ description.

check path() - This method finds out the possibility of free path between
any source and destination segment, when inter-segment communica-
tion is requested from the CAṪhe method is repeatedly called in each
arbitration round by arbitrate method (discussed below) until the path
is free for serving pending requests.

arbitrate() - This is the main method of CA responsible to perform ar-
bitration related tasks and it is executed every time when CA thread
moves to runnable state, and hence, it performs an arbitration round.
When an inter-segment communication request is made from a cer-
tain segment, it checks the availability of free path between source
and destination segments. If the path is available, it grants the path
to requested segment, otherwise it move the request into a queue for
pending requests and are considered for grant in the next arbitration
round. In addition, it resets various grant signals pertaining to each in-
volved segment as soon the inter-segment communication is gradually
completed in a segment-by-segment manner.

Figure 5.10 shows the BU class structure. The class contains 6 major
functions and a brief description about them is mentioned below.

BU() - This is the (overloaded) constructor method of the BU class. Dur-
ing execution, it sets the instance name and initializes numerous im-
portant objects and variable which are useful for its correct execution.

run() - The implementation of run() method from the Runnable interface.
As described earlier, it is executed when its thread moves to runnable
state.

setDepth() - This method is used to set the depth of FIFO queue inside
a BU object. The FIFO depth is based on the package size to be used
platform-wide during emulation.

82

Figure 5.10: BU class operations’ description.

operate() - This is a core function of the BU class and it performs all
the major tasks of the BU. First, it receives package from a particular
master in one segment and copy the received package into the FIFO
buffer. Second, it requests appropriate neighboring segment to get the
package and then act accordingly. If the package in the BU belongs to
one of the slave in the neighboring segment, the SA in the neighboring
segment informs the targeted slave to get the package, otherwise the
neighboring segment copies the package from one BU to another BU
in a specific direction and this process continues until the package get
to its destination segment.

DataIn() - This method inserts the received package data into the FIFO
buffer.

DataOut() - This method removes the package data from the FIFO buffer.

The static structure of the SegBusEmulatorView class is illustrated in
Figure 5.11. The class performs the important functions of the emulator
program. First, it contains methods to read and parse the XML schemes of
the P-SDF and PSM models, and to set-up the emulation process. Second,
this class is responsible for creating and setting up a thread pool for the
threads to be executed. Below a brief description about each method of this
class is presented.

SegBusEmulatorView() - The constructor method of this class which
creates user interface of the emulator application, initialize certain
objects and important variables.

ReadPSDF() - This method is used to read and parse XML schema of
the P-SDF model of the target application.

83

Figure 5.11: SegBusEmulatorView class operations’ description.

ReadPSM() - This method is responsible for reading and parsing XML
schema of the PSM model of the modeled solution (application +
platform).

getProcessID() - This method extracts and returns the process ID from
the passed string.

getNrMaster() - From the XML schema of the P-SDF model, this method
allows to find out total number of masters which initiates data trans-
fers.

getDataItems() - The method extracts and returns total number of data
items to be transferred in a given dataflow transaction string between
two processes. The number of data items do not depend on the package
size at this stage.

getTSequence() - This method returns the transaction sequence number
from a provided dataflow transaction string.

getCT() - This method takes out and return the CT value from a provided
transaction string.

AddToThreadPool() - This method creates a thread pool using an in-
stance of ExecutorService class from the java.util.concurrent package.

84

The size of the thread pool depends on the number of items in all lists
that has been populated during parsing phase. Objects (in the form of
items), from all lists, are added into the thread pool before emulation.

ArraySetup() - During the XML parsing process, the emulator generally
establishes three distinct arrays by employing this method: an array
for holding segments; an array for holding FUs; and an array for
holding all the masters. All these arrays are exhaustively used during
emulation.

createACCArray() - This method is part of the ACG engine of the emu-
lator application (discussed in Chapter 6). After the XML parsing has
been finished for both P-SDF and PSM models, this method allows to
create ACC array to be used during code generation after successful
emulation. The details of the ACC array and code generation has been
discussed briefly in Chapter 6.

getDestSegment() - As part of ACG, this method finds out the direc-
tion of inter-segment package transfer pertaining to involved dataflow
transaction between two processes.

getMaxSequence() - This method returns the largest number from the
transaction sequences in the P-SDF model.

setupGuardEnable() - This method setups best/optimal values of guard
and enable fields in the ACC array to exploit maximum performance
from as many as possible parallel transfers (discussed in Chapter 6).

isMoreTransaction() - This method determines about remaining trans-
fers in the current transaction sequence. It returns true when there
exists anymore transfers in the current sequence number, otherwise it
returns false so that the parsing process moves further.

GenerateProgramLines() - This method is used to generate the control
code for the arbiters.

Figure 5.12: MonitorClass class operations’ description.

85

Figure 5.12 depicts the structure of the MonitorClass. An object of this
class acts as a thread during execution. This class is responsible for analyzing
the status flags for all FUs and monitors the activity inside other platform
elements which are executing as threads during emulation. When the object
of this class detects no communication activity within the platform, it sets
particular flag to inform the emulator about the end of ongoing emulation.
This class basically contains two methods: MonitorClass() - the constructor
method of this class; and a run() method which executes when thread of
this class is in the runnable state.

During the typical operation of the emulator, all threads execute concur-
rently and experience different thread states over the duration of emulation
to depict intrinsic characteristics of hardware.

5.5 Emulation and Estimation

The final step of the emulation process is to emulate the platform config-
uration after initial setup. In general, application processes communicate
with each other at different time instant after performing dedicated com-
putation on the supplied data. The emulator extracts execution sequence
from the P-SDF model and forwards them to relevant application processes
in the initial setup. During emulator development, some timing factors are
skipped that are less important in estimating performance. For instance,
this study did not include the time necessary to synchronize between two
adjacent clock domains, converging at the BUs. This time is parametrized,
but a value of two clock ticks is usually considered, at the translation of any
signal across two clock domains. This study also did not compute the time
necessary for the SAs to set the grant signal for a particular request and
corresponding master responds, due to a similarly low value, which is also
overlapping in time with the ongoing activities within the segments.

When the designer supplies the XML schemes to the emulator, the
tool parses the models, builds the communication matrix, instantiates the
threads corresponding to platform elements (communication elements and
application processes), supply particular value from communication matrix
to each FU and starts the emulation process. Upon completion of the emu-
lation, the emulator returns results from platform elements’ execution. Some
of the results are listed below:

• Total clock ticks (TCT) consumed for the operation of the CA and
each of the SAs.

• Total inter-segment requests received by CA and by each of the SAs.

• TCT consumed by each of the BUs.

86

• Start and end times of each FU.

• Number of packages transferred to left and right directions from each
BU.

The clock tick’s counter is incremented in SA and CA at numerous
moments. Each SA has its own counter for counting clock ticks and the
execution time for each device is computed separately (described in Chapter
7). For instance, the SA increments the clock tick’s counter while checking
the incoming requests from FUs in the segment. It increments the counter
when it receives intra- or inter-segment transfer request from one of the FU
in the segment. If the request is for inter-segment transfer, it forwards the
request to CA and increment the counter accordingly. While setting and
resetting grant signal in response to any request, it also updates the clock
tick’s counter.

During the time limit for any transfer, the SA always increment the
clock tick’s counter continuously till the time limit ends. The CA incre-
ments the clock tick’s counter every time when it checks for any incoming
inter-segment transfer request from a SA. It increments the counter while
setting and resetting grant signal for any inter-segment transfer request.
Furthermore, when one of the segment finishes its job in an inter-segment
transfer, the CA resets the necessary signal associated with particular seg-
ment and increments the clock tick’s counter.

5.6 Summary

This chapter introduced emulation technique for estimating performance
aspects of desired SegBus configuration. The chapter described how the
XML schemes can be generated from the models, specified in DSL, and
introduced mechanism to emulate the modeled configuration in early stages
of the development process.

The emulation-based solution enables us to analyze any platform con-
figuration with respect to performance figures. Based on emulation results,
it’s the job of the designer to decide which particular configuration will be
best suited for the final implementation. Such decisions in the early stages
of design process not only improve the quality of eventual system in terms
of performance, but also improves power consumption up to some extent
[36]. The granularity level of application components can also be balanced
in order to eliminate the traffic congestion located at certain BUs, that will
further improve the overall performance. Thus, the methodology allows a
designer to adjust the high-level design in a way to take full benefits from
the features exposed by the platform.

87

88

Chapter 6

The VHDL Snippets

This chapter presents a model-based approach for the generation of low-level
control code for the arbiters, to support application implementation and
scheduled execution on the SegBus platform. The approach considers model-
based development (MBD) support as a key to model application at two dif-

Figure 6.1: High-level view of design and verification activities leading to
ultimate code generation.

89

ferent abstraction levels, namely as Package Synchronous Dataflow (P-SDF)
and Platform Specific Model (PSM), using the SegBus DSL, as described in
Chapter 4. Both models are transformed into Extensible Markup Language
(XML) schemes, and then utilized by the emulator program (discussed in
Chapter 5) to, further, generate the “application-dependent” VHDL code,
the so-called “snippets”. The obtained code is inserted into a specific section
of the platform arbiters, which is treated as an execution schedule for the
target application. Figure 6.1 depicts a high-level view of the design and
verification activities employing the proposed framework finally leading to
automatic control code generation (ACG).

6.1 Significance and Usage

Seceleanu et al. [41] introduced the definition of the low-level control code
in the form of (manually obtained) VHDL snippets targeted for different
arbiters of the SegBus platform. They introduced the control procedures
for proper application execution over different segments of the platform.
The proposed framework uses such definition as ‘standard reference’ and in-
troduce certain methods in the emulator to generate application-dependent
VHDL snippets in an automated fashion.

The activity of the elements of the platform is directed with the help of
the local and central arbiters. They operate based on predefined policies,
captured in the form of a “program”. This is further implemented within the
(VHDL described) body of the units as “VHDL snippets”. The respective
code must take into consideration both the local (within segments) and the
global (platform level) structure and allocation, as well as the P-SDF of the
application, trying to maximize the number of possible parallel operations.
The results that are described here illustrate a procedure to automatically
obtain the content of the snippets.

The control flow of both SAs and of the CA is illustrated in Figure 6.2.
During the operation of arbitration, each arbiter runs arbitration rounds
indefinitely to control grant activities [20]. Briefly, in each round, the arbiter
first checks if a master (in case of SA) or a segment (in case of CA) already
has a bus grant for intended communication or not. In case there exists
no previously approved grant, it checks any possible new requests for bus
grant, and if there is any, it approves a single request at a time based on
round-robin arbitration scheme and continue further for another arbitration
round. Furthermore, in the other case when there exists a device or segment
which has got the bus grant in the previous arbitration round, the arbiter
sets appropriate signals in order to allow successful communication between
the concerned devices or segments. Then, the arbiter monitors the amount
of data transfers until it is finished, and finally it resets the grant and other
involved signals and continue towards the next arbitration round.

90

Figure 6.2: Arbiter control flow [41].

The SAs and the CA are VHDL defined modules, with a similar struc-
ture [41]. The code implements the operational flow of Figure 6.2, running
with multiple parameters as required by the platform specification. This
research study sees the application as a set of correlated transactions that
must be ordered in their execution by the arbiters. The specification of
the schedule - as supplied by the P-SDF representation, is provided by a
snippet introduced in the SA or the CA codes, representing the projection
of the application flow at the respective level and location. The snippets
correspond to the middle block - “Arbitration specification” in the arbiter
structure of Figure 6.3.

Figure 6.3: Arbiter code structure [41].

91

The block-level structure (see Figure 6.3), which is common in both cen-
tral and segment-level arbiters [41]. The general tasks for arbitration in
form of numerous procedures and functions are grouped into two different
blocks, named as, “Module Setup” and “Arbitration & Supervision”. The
functionality of these two blocks in an arbiter are independent of any par-
ticular application. These blocks are also responsible for reading input; and
producing output data to specific signals. The other important tasks include
granting bus requests to requesting masters, counting the total number of
transactions and resetting certain signals after each grant activity.

The middle block “Arbitration specification” is directly dependent on
the target application and it is actually serves as the execution schedule for
the application. Here, the research goal is to generate the control code from
the emulator, in the form of VHDL snippets for arbiter’s middle block in an
automated manner. The execution schedule indeed is the scheduling of the
grant decisions. In case of segment arbiter, it is the scheduling of different
masters in a segment. While in case of central arbiter, it is the scheduling of
the grant decisions for different segments involved in inter-segment transfers.
Hence, the generated snippet is extremely vital for successful execution of
an application on a particular platform instance.

The arbitration program elements. Being a part of a certain arbiter,
when the snippet code is executed properly, it follows the exact sequence of
actions as it was modeled in P-SDF. Thus, the snippet is a sequence - the
program - of signal assignments - the execution lines.

...

-- A SA program line:

program(5) <= (guard => 0, source => 0, dest => 1,

dest_seg => 0, togrant => 0, count=16, enables=13);

...

The program is thus a multi-dimensional vector consisting of a number of
execution lines with several fields [41][42], described below. The other code
blocks of the arbiter make use of different fields of this particular vector and
may read or write them as needed. The signal assignment allows the implicit
concurrency mechanism of VHDL to guide the selection of a program line,
as available at a given execution moment.

In brief, the execution line fields can be described as follows.

program(x)
Basically, x can be seen as the Program Counter, and program(x) rep-
resents the x line of arbitration code. x also provides reference for
accessibility from / to other lines of instructions.

92

Figure 6.4: Code extraction process for segments in the platform.

93

guard
When guard = 0, the respective line is enabled, that is, the arbiter may
consider it for selection. When guard > 0, the line is disabled, that is,
it cannot be considered in the arbitration. The arbiter marks a line as
executed whenever the respective count value reaches 0, by establishing
guard = nrLines, since nrLines is the total number of program lines
in the program vector, associated with the given arbiter.

source
For SA case, this field contains the address of the requesting master
- the initiator of a transfer request. Devices on the SegBus platform
(masters, slaves) are identified by a unique number. For the CA, this
field contains the address of the initiating segment.

dest
The address of the targeted device - the slave.

dest seg
The target slave’s segment address.

toGrant
This is the instruction for the arbiter to grant the requesting master.
At this moment the field is preserved for future developments.

count
This field identifies the number of packages the master has to send to
the specified slave.

enables
This field points to a particular execution line in the program vector.
When the execution line where this field contained in completes its
execution, the SA in response enables that particular execution line
(the targeted line in this context) which this field is pointing by sub-
tracting 1 from targeted line’s guard value so that the targeted line can
start execution in the next round of arbitration. For the sake of clarity
for readers, an execution line’s guard > 1 implies that this particular
line is not enabled at the moment and the other previous and possibly
dependent operations must have to be finished before this line starts
execution.

6.2 Execution Schedule Generation

Figure 6.4 illustrates the general flow of the code generation process for seg-
ments after the parsing of the P-SDF model has been done (as discussed
in Chapter 5.5) and the model resides now inside the emulator’s internal

94

variables and arrays. ArbiterProgram is a class in the emulator application
which is basically a data structure with various data fields. It is used to rep-
resent a single line of the any specific arbiter’s program. The code structure
of this class is shown below.

public class ArbiterProgram

{

public int program;

public int guard;

public int source;

public int dest;

public int dest_seg;

public int togrant;

public int count;

public int enables;

public int sequence;

public boolean dirtyBit;

}

Firstly, the emulator analyzes number of originating and incoming trans-
fers in each segment. On the basis of this information, it creates the respec-
tive number of ArbiterProgram objects. Secondly, it sets the dest field with
the target process ID and dest seg field with the segment ID where the target
process is placed. If the transfer is originated from a master in the current
segment, then it sets the source value of each object with an integer number
in increasing order and togrant = source, otherwise the transfer is consid-
ered to be coming from a different segment via left/right BU. In this case,
the togrant = ToR/ToL and source = RFL/RFR are set according to the
direction of the transfer. The count contains number of packages for this
transfer (data items divided by the package size). The program field con-
tains the order number of the execution line and the sequence field contains
the relative order number of the execution line according to P-SDF model.

Figure 6.5: P-SDF model of an example application.

The guard and enables fields are important to introduce parallelism in
the platform. An execution line is executed by the respective SA, when its
guard signal is zero. The emulator application sets the values of guard and
enables field on the basis of ordering sequence of transfers. If two or more
transfers occur at the same ordering sequence, it sets appropriate values

95

to both fields so that parallel transfer can occur. For instance, the P-SDF
model of the example application in Figure 6.5 contains two parallel transfers
from process P0 at sequence order 1. As per application requirements, both
transfers needs to be completed in parallel before moving towards further
transfers. The execution lines associated with these two transfers are given
below:

program(0) <= (guard => 0, source => 0, dest => 1,

dest_seg => 0, togrant => 0, count=16, enables=13);

program(1) <= (guard => 0, source => 1, dest => 8,

dest_seg => 0, togrant => 1, count=16, enables=2);

A similar approach is taken with respect to the VHDL code to be gen-
erated for the CA operations. The only difference here is that the source
and dest fields always refer to specific source and destination segments re-
spectively for a particular data transfer rather than pointing to some mas-
ter/slave devices in the same or different segment(s), as described earlier.

After performing successful emulation (as discussed in Chapter 5.5), and
the obtained performance results are up to a desired level, the designer ulti-
mately generates, with the help of automatic control code generation (ACG)
engine, the application-dependent control code (in the form of synthesizable
VHDL snippets) of the arbiters to be used in the final implementation. Fol-
lowing, an excerpt from the generated control code of an example application
is shown. Note that the thesis uses the notations: ToR/ToL - the destination
is the BU to the right / left of the current SA); RFL - the request comes
from left segment; and RFR - the request comes from the right segment.

-- VHDL Snippet for "Segment 1"

program(0) <= (guard => 0, source => 0, dest => 1,

dest_seg => 0, togrant => 0, count=16, enables=13);

program(1) <= (guard => 0, source => 1, dest => 8,

dest_seg => 0, togrant => 1, count=16, enables=2);

program(2) <= (guard => 1, source => 2, dest => 2,

dest_seg => 0, togrant => 2, count=15, enables=3);

...

program(10) <= (guard => 1, source => 11, dest => 10,

dest_seg => 0, togrant => 11, count=1, enables=11);

program(11) <= (guard => 1, source => 12, dest => 11,

dest_seg => 1, togrant => ToR, count=15, enables=12);

program(12) <= (guard => 1, source => 8, dest => 11,

dest_seg => 1, togrant => ToR, count=1, enables=0);

When the parsing process is done, the emulator creates:
• The accCAArray: a single-dimensional array, where each element in the
array represents an execution line of the CA.
• The accArray: a 2-dimensional array where each column represents an
execution line of a SA, while each row consists of execution lines associated
with any particular SA.

96

The above two arrays contain the key data of execution schedule for CA
and SAs, respectively. These arrays are employed to generate the VHDL
snippets in well-formaed form as required by the related arbiter.

6.3 Summary

This chapter introduced MDA-based design methods to generate the application-
dependent control code for a distributed platform, the SegBus. The chap-
ter described methods to model application at P-SDF and PSM levels by
employing SegBus DSL and run emulation using emulator program to get
performance aspects of the modeled configuration. The emulator program
has further evolved to generate the arbiters’ low-level control code, in the
form of VHDL snippets, which are then to be inserted in a specific block
of (segment or central-level) arbiters as an execution schedule for any given
application.

97

98

Chapter 7

The Overall Framework

This chapter formally employs and validates the proposed framework on a
real example application. In this way, the chapter depicts the practicality
and true effectiveness of the framework at each stage of the design method-
ology. Below, the chapter discusses briefly the important steps required to
design and implement the chosen application on the SegBus platform making
extensive employment of the proposed framework.

Figure 7.1: Block diagram of the Layer III simplified MP3 decoder [17].

99

7.1 Example using the Framework

The thesis manifest the effectiveness of the proposed framework with an
example of modeling, emulating and generating the execution schedule of a
simplified stereo MP3 audio decoder application [17] on an instance of the
SegBus platform.

Figure 7.1 illustrates the block diagram of the MP3 decoder. The first
block of the decoder (frame decoder) performs (optional) error-checking and
synchronization on the encoded bit-stream, which later logically divided into
frames. Each frame consists of a header, side information and coded samples.
After the decoding process, the decoder produces PCM samples which are
used to reconstruct the audio data. Interested readers can further explore
the detailed decoding process in [15].

7.1.1 Application Partitioning and Modeling

This research goal is started by the partitioning of the target application
before modeling it in the DSL. During the partitioning process [50], the de-
signer thoroughly analyzes the application based on prior experience, knowl-
edge and the availability of IP components in the SegBus library. The de-
signer researches the feasibility of running different application processes
either as hardware modules (selected from the library) or as software mod-
ules. At this stage, the application processes are further decomposed down
to the right granularity level on the basis of available library components.
Similarly, certain software modules are also mapped on some hardware mod-
ules resulting in potential communication traffic remaining internal to that
unit. In that case, the communication cost will be zero.

By employing the DSL, the designer then models the partitioned ap-
plication of the MP3 decoder in (platform-independent) P-SDF form, as
shown in Figure 7.2. In brief, process P0 represents frame decoding, P1/P8
- scaling on the left/right channel, P2/P9 - dequantizing left/right channel,
etc. The description about different attributes in each data transfer between
processes has already been discussed in Chapter 5.3. Next, the communi-
cation matrix of the application is generated from the P-SDF model (see
Figure 7.2) and is exposed in Figure 7.3. Each entity in the communication
matrix shows the amount of data items (irrespective of package size) to be
transferred from one particular process to another.

7.1.2 Configuring the Platform and Application Mapping

For PSM, the designer first forwards the communication matrix of the ap-
plication to the (independent) SBTool [19] utility to obtain an optimum
estimate of the allocation of the application processes over different plat-
form configurations. Figure 7.5 illustrates the estimation of the possible

100

Figure 7.2: P-SDF model of the MP3 decoder.

101

Figure 7.3: The communication matrix of the partitioned-application.

optimum allocation of application processes on three different platform con-
figurations, where segment borders in each configuration are marked as ‘||’.

Here, the designer selects and models the “3 segment” platform config-
uration with linear topology in order to validate the viability and efficiency
of the proposed framework. The package size is set to 36 data items (words)
in each package. The designer specifies the configuration information of the
platform in an instance of the SegBusPlatform class. For instance, for a
three segments configuration, the respective attributes are: NrSegs = 3,
IsCircular = false; the designer also sets other relevant information, such
as address and data bus widths, etc. Finally the application processes are
mapped from the P-SDF model onto the particular segments of the platform
- Figure 7.4.

7.1.3 Model Validation

In order to check the structural correctness of the design, the designer exe-
cutes the validation suite “SegBus Constraints” (see Chapter 4.3) as many
times as needed. This can be executed any time, for instance after making
a new change in the model, the designer simply clicks the menu in the Mag-
icDraw UML: Analyze → Validation → Validation. Then, in the opened
dialog, select SegBus Constraints and press the Validate button. Suppose
that the validation is executed immediately after instantiation of the plat-
form instance (SegBusPlatform), the modeling tool will generate an error
message of “Missing Segment” (nr. 5 - see Chapter 4.3) and will highlight
the platform instance because the designer didn’t define any segment yet.

102

Figure 7.4: Example configuration of the SegBus platform with 3 segments and linear topology.

103

Figure 7.5: Allocation of processes on different platform configuration.

Moreover, if the designer models more/less number of segments unlike
to what it was initially set in the ‘NrSegs’ attribute of the SegBusPlatform
class. The validation process will produce three error messages (nr. 1,
nr. 2 and nr. 4): the existing number of segments in the PSM model do
not comply the ‘NrSegs’ attribute of the SegBusPlatform class; each of the
segments does not contain any FU; and the model does not have any BU
yet. By taking the corresponding actions and running the validation again,
these error messages will disappear.

Assume the designer wants to have a linear topology in a three segment
configuration, then there must be two BUs between the segments. On the
other hand, if a circular topology is selected, then there must be three BUs
between the segments. If this requirement is not observed during modeling,
the validation action will come up with an error message of “Number of
BUs”(nr. 3).

In another example, consider that the decision is to implement a plat-
form with three segments. However, during the modeling phase, the designer
introduces a fourth segment. This will conflict with the ”Number of Seg-
ments” constraint, and the tool will provide the error message (nr. 1).

Finally, when the designer gets cleared from the validation process, the
designer transforms the P-SDF and PSM models of the modeled system
(application+platform) into XML schemes as it is briefly described in the
next sub-section.

7.1.4 Model transformation of the example application

The designer first transforms the P-SDF model of the example application
into an XML schema. Below the generated XML schema is shown after
transforming the P-SDF model.

<?xml version=’1.0’ encoding=’windows-1252’?>

<xs:schema targetNamespace="PSDF_MP3" xmlns="PSDF_MP3"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:complexType name="End"><xs:sequence/></xs:complexType>

<xs:complexType name="Start">

<xs:sequence>

<xs:element name="S_1152_0" type="P0"/>

</xs:sequence>

</xs:complexType>

104

<xs:complexType name="P14">

<xs:sequence>

<xs:element name="E_1152_9" type="End"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="P5">

<xs:sequence>

<xs:element name="P6_576_6_500" type="P6"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="P0">

<xs:sequence>

<xs:element name="P1_576_1_250" type="P1"/>

<xs:element name="P8_576_1_250" type="P8"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="P1">

<xs:sequence>

<xs:element name="P2_540_2_250" type="P2"/>

<xs:element name="P3_36_3_250" type="P3"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="P9">

<xs:sequence>

<xs:element name="P3_540_3_1000" type="P3"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="P8">

<xs:sequence>

<xs:element name="P9_540_2_250" type="P9"/>

<xs:element name="P3_36_3_250" type="P3"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="P6">

<xs:sequence>

<xs:element name="P7_576_7_500" type="P7"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="P7">

<xs:sequence>

<xs:element name="P14_576_8_500" type="P14"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="P12">

<xs:sequence>

<xs:element name="P13_576_7_500" type="P13"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="P2">

<xs:sequence>

<xs:element name="P3_540_3_1000" type="P3"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="P10">

<xs:sequence>

<xs:element name="P11_36_5_250" type="P11"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="P4">

<xs:sequence>

<xs:element name="P5_36_5_250" type="P5"/>

105

</xs:sequence>

</xs:complexType>

<xs:complexType name="P13">

<xs:sequence>

<xs:element name="P14_576_8_500" type="P14"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="P3">

<xs:sequence>

<xs:element name="P4_36_4_500" type="P4"/>

<xs:element name="P10_36_4_500" type="P10"/>

<xs:element name="P11_540_4_500" type="P11"/>

<xs:element name="P5_540_4_500" type="P5"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="P11">

<xs:sequence>

<xs:element name="P12_576_6_500" type="P12"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

Similarly, the generated XML schema of the PSM model of the example
application mapped on a 3-segments configuration with linear topology is
shown below after model transformation.

<?xml version=’1.0’ encoding=’windows-1252’?>

<xs:schema targetNamespace="segbusplatform" xmlns="segbusplatform"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:complexType name="P7">

<xs:all>

<xs:element name="segment" type="Segment1"/>

</xs:all>

</xs:complexType>

<xs:complexType name="P4">

<xs:all>

<xs:element name="segment" type="Segment2"/>

</xs:all>

</xs:complexType>

<xs:complexType name="P5">

<xs:all>

<xs:element name="segment" type="Segment1"/>

</xs:all>

</xs:complexType>

<xs:complexType name="P0">

<xs:all>

<xs:element name="segment" type="Segment0"/>

<xs:element default="250" name="Time" type="xs:integer"/>

</xs:all>

</xs:complexType>

<xs:complexType name="SBP">

<xs:all>

<xs:element name="segment0" type="Segment0"/>

<xs:element name="segment1" type="Segment1"/>

<xs:element name="segment2" type="Segment2"/>

<xs:element name="ca" type="CA"/>

<xs:element name="bu01" type="BU01"/>

<xs:element name="bu12" type="BU12"/>

106

</xs:all>

</xs:complexType>

<xs:complexType name="Segment0">

<xs:all>

<xs:element name="p0" type="P0"/>

<xs:element name="p1" type="P1"/>

<xs:element name="p2" type="P2"/>

<xs:element name="p8" type="P8"/>

<xs:element name="p9" type="P9"/>

<xs:element name="p10" type="P10"/>

<xs:element name="p3" type="P3"/>

<xs:element name="arbiter" type="SA0"/>

<xs:element name="buRight" type="BU01"/>

</xs:all>

</xs:complexType>

<xs:complexType name="P2">

<xs:all>

<xs:element name="segment" type="Segment0"/>

</xs:all>

</xs:complexType>

<xs:complexType name="P1">

<xs:all>

<xs:element name="segment" type="Segment0"/>

<xs:element default="500" name="Time"/>

</xs:all>

</xs:complexType>

<xs:complexType name="CA"><xs:all/></xs:complexType>

<xs:complexType name="P11">

<xs:all>

<xs:element name="segment" type="Segment1"/>

</xs:all>

</xs:complexType>

<xs:complexType name="P10">

<xs:all>

<xs:element name="segment" type="Segment0"/>

</xs:all>

</xs:complexType>

<xs:complexType name="P12">

<xs:all>

<xs:element name="segment" type="Segment1"/>

</xs:all>

</xs:complexType>

<xs:complexType name="SA0"><xs:all/></xs:complexType>

<xs:complexType name="P8">

<xs:all>

<xs:element name="segment" type="Segment0"/>

</xs:all>

</xs:complexType>

<xs:complexType name="P3">

<xs:all>

<xs:element name="segment" type="Segment0"/>

</xs:all>

</xs:complexType>

<xs:complexType name="Segment2">

<xs:all>

<xs:element name="buLeft" type="BU12"/>

<xs:element name="p4" type="P4"/>

<xs:element name="arbiter" type="SA2"/>

</xs:all>

</xs:complexType>

<xs:complexType name="SA2"><xs:all/></xs:complexType>

107

<xs:complexType name="Segment1">

<xs:all>

<xs:element name="buRight" type="BU12"/>

<xs:element name="buLeft" type="BU01"/>

<xs:element name="p5" type="P5"/>

<xs:element name="p6" type="P6"/>

<xs:element name="p7" type="P7"/>

<xs:element name="p11" type="P11"/>

<xs:element name="p12" type="P12"/>

<xs:element name="p13" type="P13"/>

<xs:element name="p14" type="P14"/>

<xs:element name="arbiter" type="SA1"/>

</xs:all>

</xs:complexType>

<xs:complexType name="P14">

<xs:all>

<xs:element name="segment" type="Segment1"/>

</xs:all>

</xs:complexType>

<xs:complexType name="BU12"><xs:all/></xs:complexType>

<xs:complexType name="P9">

<xs:all>

<xs:element name="segment" type="Segment0"/>

</xs:all>

</xs:complexType>

<xs:complexType name="P13">

<xs:all>

<xs:element name="segment" type="Segment1"/>

</xs:all>

</xs:complexType>

<xs:complexType name="P6">

<xs:all>

<xs:element name="segment" type="Segment1"/>

</xs:all>

</xs:complexType>

<xs:complexType name="SA1"><xs:all/></xs:complexType>

<xs:complexType name="BU01"><xs:all/></xs:complexType>

</xs:schema>

7.1.5 Execution with 3-Segments Configuration

The modeled configuration is emulated on SegBus emulator to analyze its
performance. The emulation results of a 3 segments platform configuration
are given below, where: ‘CA’ represents the central arbiter of the platform;
‘Segment x’ represents the segment and x denotes the ID (0,1,2,3,..); ‘SAn’
represents the segment arbiter associated with segment n; ‘BUxy’ represents
the border unit between segment x and segment y; ‘TCT’ stands for total
clock ticks consumed by related device. Clock frequency of segment 0, 1, 2
and central arbiter are set as 91MHz, 98MHz, 89MHz and 111MHz respec-
tively. Here, it is important to observe that all segments are operating at
different clock frequencies as this is an important hardware feature of the
SegBus communication platform.

108

P0, Start Time = 10989ps, End Time = 75131793ps

P1, Start Time = 2758239ps, End Time = 137538324ps

P8, Start Time = 44010945ps, End Time = 141538320ps

P9, Start Time = 77087835ps, End Time = 194098707ps

P2, Start Time = 75131793ps, End Time = 196076727ps

P3, Start Time = 133648218ps, End Time = 270812916ps

P10, Start Time = 268823907ps, End Time = 272823903ps

P4, Start Time = 200466105ps, End Time = 297367980ps

P5, Start Time = 217161528ps, End Time = 342905420ps

P11, Start Time = 184253628ps, End Time = 344609488ps

P12, Start Time = 288426264ps, End Time = 400772304ps

P6, Start Time = 286609952ps, End Time = 402670248ps

P7, Start Time = 346354372ps, End Time = 458588168ps

P13, Start Time = 344548264ps, End Time = 460486112ps

P14 received last package at 461455492ps

CA TCT = 54475

Execution time = 490765275ps @ 111.00MHz

BU01:

Total input packages = 32,

Total output packages = 32

Package Received from Segment 1 = 32,

Package Transferred to Segment 1 = 0

Package Received from Segment 2 = 0,

Package Transferred to Segment 2 = 32

TCT = 2336

BU12:

Total input packages = 2,

Total output packages = 2

Package Received from Segment 2 = 1,

Package Transferred to Segment 2 = 1

Package Received from Segment 3 = 1,

Package Transferred to Segment 3 = 1

TCT = 146

Segment 0:

Packages transferred to Left = 0,

Packages transferred to Right = 32

Segment 1:

Packages transferred to Left = 0,

Packages transferred to Right = 0

Segment 2:

Packages transferred to Left = 1,

Packages transferred to Right = 0

SA0: TCT = 34849,

Total intra-segment requests = 124,

Total inter-segment requests = 32

Execution Time = 382955661ps @ 91.00MHz

SA1: TCT = 46131,

Total intra-segment requests = 137,

Total inter-segment requests = 0

Execution Time = 470720724ps @ 98.00MHz

109

SA2: TCT = 35965,

Total intra-segment requests = 0,

Total inter-segment requests = 1

Execution Time = 404066775ps @ 89.01MHz

7.1.6 Calculation of the Execution Time

The total execution time is calculated when all FUs finish their tasks (setting
the respective “Process Status Flag”), all packages are transmitted to their
relevant destinations and the grant signals of all arbiters are clear.

Consider the total time consumed by SAx (in this case, x ∈ {0, 1, 2}) to
finish all the associated jobs as tSAx

. the tSAx
is calculated by multiplying

the total clock ticks with the associated segment’s clock period.
Then, the total execution time of the application is calculated by the

taking the maximum of the total times consumed by the central arbiter and
all segment arbiters that is max (tSA1

, tSA2
, ..., tCA).

7.1.7 Emulation Results

Figure 7.6 shows the progress of each FU on a time line using a 3 segments,
linear topology with package size of 36 data items. The figure shows the
time at which any specific process finishes. For instance, process P0 finishes
the package transfers to process P1 and P8 at 75.13µs.

Figure 7.6: Progress on time of each application process in 3 segment, linear
topology with package size of 36 data items configuration.

Computed as defined above, in the given configuration, the estimated
total execution time for the application is 490.76µs. After running the same

110

partitioned-application on the real platform instance in a identical platform
configuration, an actual execution time obtained is 515.2µs. So, the emu-
lated performance results suggest the emulator is 95% accurate.

Next, by keeping the same platform configuration, but the package size is
changed to 18 data items (halve the payload). The result shows an estimated
execution time of 560.16µs. The actual figure is 600.02µs, giving an emulator
precision of around 93%.

Further, the platform configuration is then changed by shifting process
P9 from segment 0 to segment 2. The rest of the configuration kept sta-
ble, and the package size to 36 data items. The emulation estimated the
execution time of this updated configuration as 540.4µs, while the actual
execution time is 570.12µs, giving an emulator accuracy of just below 95%.

7.1.8 VHDL “Snippets” Generation

When the designer is satisfied after analyzing the emulation results. It’s time
to move to the next step of the design methodology. Here the application-
dependent control code of the platform’s arbiters are generated for a 3 seg-
ment configuration on the basis of the obtained performance levels after
emulation. These generated codes for the arbiters are then inserted into a
specific section of the related arbiters, as described in Chapter 6. Following,
the generated control code, for all three segments for a package size of 36
data items, are shown.

-- VHDL Snippet for "Segment 0"

============================

program(0) <= (guard => 0, source => 0, dest => 1,

dest_seg => 0, togrant => 0, count=16, enables=13);

program(1) <= (guard => 0, source => 1, dest => 8,

dest_seg => 0, togrant => 1, count=16, enables=2);

program(2) <= (guard => 1, source => 2, dest => 2,

dest_seg => 0, togrant => 2, count=15, enables=3);

program(3) <= (guard => 1, source => 6, dest => 9,

dest_seg => 0, togrant => 6, count=15, enables=4);

program(4) <= (guard => 1, source => 3, dest => 3,

dest_seg => 0, togrant => 3, count=1, enables=5);

program(5) <= (guard => 1, source => 4, dest => 3,

dest_seg => 0, togrant => 4, count=15, enables=6);

program(6) <= (guard => 1, source => 5, dest => 3,

dest_seg => 0, togrant => 5, count=1, enables=7);

program(7) <= (guard => 1, source => 7, dest => 3,

dest_seg => 0, togrant => 7, count=15, enables=8);

program(8) <= (guard => 1, source => 9, dest => 4,

dest_seg => 2, togrant => ToR, count=1, enables=9);

program(9) <= (guard => 1, source => 10, dest => 5,

dest_seg => 1, togrant => ToR, count=15, enables=10);

program(10) <= (guard => 1, source => 11, dest => 10,

dest_seg => 0, togrant => 11, count=1, enables=11);

program(11) <= (guard => 1, source => 12, dest => 11,

dest_seg => 1, togrant => ToR, count=15, enables=12);

program(12) <= (guard => 1, source => 8, dest => 11,

dest_seg => 1, togrant => ToR, count=1, enables=0);

111

-- VHDL Snippet for "Segment 1"

============================

program(0) <= (guard => 0, source => RFL, dest => 5,

dest_seg => 1, togrant => RFL, count=15, enables=10);

program(1) <= (guard => 0, source => RFL, dest => 11,

dest_seg => 1, togrant => RFL, count=15, enables=2);

program(2) <= (guard => 1, source => RFL, dest => 11,

dest_seg => 1, togrant => RFL, count=1, enables=3);

program(3) <= (guard => 1, source => RFR, dest => 5,

dest_seg => 1, togrant => RFR, count=1, enables=4);

program(4) <= (guard => 1, source => 13, dest => 6,

dest_seg => 1, togrant => 13, count=16, enables=5);

program(5) <= (guard => 1, source => 16, dest => 12,

dest_seg => 1, togrant => 16, count=16, enables=6);

program(6) <= (guard => 1, source => 14, dest => 7,

dest_seg => 1, togrant => 14, count=16, enables=7);

program(7) <= (guard => 1, source => 17, dest => 13,

dest_seg => 1, togrant => 17, count=16, enables=8);

program(8) <= (guard => 1, source => 15, dest => 14,

dest_seg => 1, togrant => 15, count=16, enables=9);

program(9) <= (guard => 1, source => 18, dest => 14,

dest_seg => 1, togrant => 18, count=16, enables=0);

-- VHDL Snippet for "Segment 2"

============================

program(0) <= (guard => 0, source => RFL, dest => 4,

dest_seg => 2, togrant => RFL, count=1, enables=1);

program(1) <= (guard => 1, source => 19, dest => 5,

dest_seg => 1, togrant => ToL, count=1, enables=0);

Similarly, the generated control code for the CA is mentioned below.

program(0) <= (guard => 0, source => 0, dest_seg => 2,

togrant => 0, count => 1, enables => 4);

program(1) <= (guard => 0, source => 0, dest_seg => 1,

togrant => 0, count => 30, enables => 2);

program(2) <= (guard => 1, source => 0, dest_seg => 1,

togrant => 0, count => 1, enables => 3);

program(3) <= (guard => 1, source => 2, dest_seg => 1,

togrant => 2, count => 1, enables => 0);

7.2 Discussion

Based on these experiments, the accuracy of the emulator seems to be close
to 95%. The errors are caused, mostly, by the imperfect modeling of the
timing figures of the BU to SA control communication, the synchronization
between clock domains, the granting activity of the SAs, etc. [20].

However, firstly, these figures are very low (2 to 3 clock ticks), compared
to the size of the package (36 data units). Secondly, most of these operations
do overlap with each other, or with the data transfers. A clear identification

112

of such events is impossible, hence one should accept the resulting errors. It
becomes clear that, the higher the data package size, the less impact these
figures should have in the estimation results from the emulator. This is due
to the lower number of transfers, and hence, the inaccuracies of synchro-
nization, granting, etc. actions of the SAs.

Due to one of the considerations described in Chapter 5.1, the timing
information illustrated in Figure 7.6 is not exact. This is due to the (vari-
able) leading period of time during which each process awaits for data to be
present at its input. However, as already mentioned, this does not have an
impact on the overall application performance estimation, which, of course,
includes such periods of time.

The tool helps the designer to estimate the communication bottlenecks
expressed here as the time one package has to wait in one of the BUs until
it can be delivered to the next segment. The useful period (UP) of any given
BU is expressed as the time (in clock ticks) required to load and then unload
the data package, and it amounts to twice the size of a package. However,
once a package is loaded, before unloading, the BU has to wait for a grant
signal coming from the next segment - the waiting period (WP). As discussed
and formalized in [20], WP is a non-deterministic value which may reach,
at a maximum, the package size. An average value for WP (WP) over the
number of transfers executed by a certain BU can easily be computed given
the data produced by the emulator (corresponding TCTs).

Considering the example at hand, for BU01 and BU12, the designer has
the following values (clock ticks), respectively: UP01 = 2304, TCT01 =
2336, and WP01 = 1; UP12 = 144, TCT12 = 146, WP12 = 1.

Further, Figure 7.7 illustrates the activity graph, with respect to TCT,
of 3 segments, linear topology configuration with different package sizes (18
and 36 data items).

7.3 Summary

This chapter validated the effectiveness of the proposed framework as a
whole by employing it for modeling, mapping and implementing a real ap-
plication. In the first part of the chapter, all the necessary steps of the
framework required to develop optimum solution(s) are described for the
targeted application to be executed on the SegBus platform. The chapter
showed how the SegBus DSL is utilized to model application and platform
in an easy and error-free manner.

The chapter also showed how the modeled system in DSL can be trans-
formed into XML schemes which are later used by the emulator for perfor-
mance estimation. This way, the models can be adjusted at this stage to
achieve the desired performance from the actual to be implemented system.

113

Figure 7.7: Activity graph of different platform elements in 3 Segments and
linear topology configuration for 18 and 36 bit package sizes.

Furthermore, the chapter also described how the execution schedules for
the platform’s arbiters can be generated in an automated manner from the
emulator as soon the desired system model is finalized.

In the second part of the chapter, the estimated accuracy of the emu-
lation results is discussed. The chapter also discussed the possible reasons
which cause the emulation results to slightly deviate. It has also been dis-
cussed that how to calculate various performance scores based on emulation
results. This helps the designers to identify all performance barriers in the
platform, and hence, directs them to make any necessary changes and fine
tuning in the system models at high levels of abstraction such that maximum
gains from MPSoC platform could be achieved in the final implementation.

114

Chapter 8

Conclusions

This concluding chapter of the thesis summarizes all the important con-
tributions of the proposed framework, discussed in the previous chapters.
This will give interested readers an overall view of the topics included in the
thesis.

8.1 Thesis Contributions

The main contribution of this thesis is the introduction of a model-based
development (MBD) and verification framework for a platform-based design
approach, in the context of the distributed communications architecture
known as the SegBus platform. The work is intended to provide automated
procedures for platform build-up and application mapping in a correct and
fast manner during early stages of the design process. The choice of MBD
helps the designer to address Complexity of Design (CoD) - by the intro-
duction of high-level design entry (HLDE); correctness of platform execution
(CoPE) - with the support for structured design, and correctness related as-
pects; support for design reuse - with the help of library of components.
Furthermore, it addresses the issue of designer expertise (DE) with the sup-
port of automatic code generation (ACG) as a hardware non-specialist is
now able to develop applications not being fully aware of the specifics of the
underlying hardware platform.

Within the proposed framework, in Chapter 4, the thesis firstly intro-
duced a technique to set up a graphical interface (GI) in the form of a DSL
based on a UML profile in an existing modeling tool. The GI supports
modeling and mapping of a desired application on an instance of the Seg-
Bus platform. The thesis described in the form of graphical elements the
principal structural elements of the platform and their structural relations
with the help of related DSL customization classes. A library of reusable IP
components was also introduced as part of DSL which allows the designer

115

to include and refer to pre-built functional units in the modeling environ-
ment. The GI answers especially the CoD and CoPE challenges by providing
the HLDE solution in the framework. In addition, by including the model
validation features, the GI also serves the DE challenge.

The SegBus DSL provides an environment where a designer can model
the platform and associate it with application components in a fast manner
using different configurations. It helps designers to correctly model the
application and platform and further helps in model transformation at later
stages of development process. The validation suite embedded in DSL helps
the designer rectify any problems in the models.

Secondly, in Chapter 5, the thesis also introduced an emulation technique
targeting the SegBus platform for estimating performance of the chosen
SegBus configuration. The thesis described how the XML schemes can be
generated from the models, specified in DSL, and introduced mechanism
to emulate the modeled configurations in early stages of the development
process.

The emulation-based solution enables the designer to analyze any plat-
form configuration with respect to its performance. Based on the emulation
results, it’s the job of the designer to decide which configuration is best
suited for the final implementation. Such decisions in the early stages of
design process not only improve the quality of final system in terms of per-
formance, but also improves power consumption up to some extent [36]. The
granularity level of application components can also be balanced in order
to eliminate the traffic congestion observed in certain BUs. This further
improves the overall system performance. Thus, the methodology allows a
designer to adjust the high-level design in a way to take full advantage from
the features exposed by the platform.

Finally, in Chapter 6, the thesis discussed methods for an automated
translation of the application models into “application dependent” control
code based on VHDL. The generated code is then inserted in a specific block
of (segment or central-level) arbiters as the execution schedule for a given
application. This relieves the designer from the complex job of analyzing
task sequencing in a parallel execution environment and data transfers be-
tween the platform sections. This technique addresses CoPE and DE based
on ACG.

8.2 Future Directions

The current work is solely targeted to the SegBus platform but the model-
based design principles could be applied to any MPSoC of choice. However,
there is no “one size fits all” design methodology in MPSoC domain which
is equally useful for every MPSoC. As future work, new tools have to be

116

developed as the research work switches to another MPSoC platform hereby
employing the same proposed principles. This could potentially lead towards
uniformity in the design methods when targeting the MPSoC domain.

In the context of SegBus platform, current study addresses issues re-
lated to modeling of only one application at a time and its mapping onto
an instance of the platform. The future work will also necessarily address
modeling of more than one applications at a time and their mappings onto
a single platform instance. The mapping and scheduling of the modeled
applications will be an important challenge for the future work. In addition,
extended support is expected to come in the form of arbiter code genera-
tion, for the implementation of the application schedules of more than one
application.

117

118

Bibliography

[1] A. Jantsch, H. Tenhunen. Networks on Chip. Kluwer Academic Pub-
lishers, 2003.

[2] D. D. Gajski, S. Abdi, A. Gerstlauer, G. Schirner. Embedded System
Design: Modeling, Synthesis and Verification. Springer, 2009, ISBN:
978-1-4419-0503-1.

[3] R. Chen, M. Sgroi, L. Lavagno, A. S. Vincentelli, J. Rabaey. UML
for Real: Design of Embedded Real-Time Systems. Kluwer Academic
Publisher, Norwell, 2003.

[4] A. A. Jerraya, W. Wolf. Multiprocessor System-on-Chips. Morgan Kauf-
mann Publishers, 2005, ISBN: 0-12385-251-X

[5] G. Booch, R. A. Maksimchuk, M. W. Engle, B. J. Young, J. Conallen and
K. A. Houston. Object-Oriented Analysis and Design with Applications.
3rd edition, Pearson Education, Inc., 2007, ISBN: 0-201-89551-X.

[6] D. Garlan and M. Shaw. An Introduction to Software Architecture,
in Advances in Software Engineering and Knowledge Engineering, vol.
1, edited by V. Ambriola and G. Tortora, World Scientific Publishing
Company, New Jersey, 1993.

[7] C. Jaber.High-level SoC Modeling and Performance Estimation: Appli-
cation To A Multi-core Implementation Of LTE EnodeB Physical Layer.
LAP Lambert Academic Publishing, ISBN-13: 978-3659210891, 2012.

[8] M. Fowler and K. Scott. UML Distilled. Second Edition Addison-Wesley,
ISBN: 020165783X, 2002.

[9] H. M. Deitel and Deitel & Associates, Inc., P. J. JAVA How to Program,
7th Edition. Prentice Hall, ISBN: 9780136085676, 2006.

[10] G. Booch. Object-Oriented Analysis and Design With Applications.
Addison-Wesley, 3rd edition, 2007, ISBN-13: 978-0201895513.

119

[11] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen.
Object-Oriented Modeling and Design with UML. Prentice Hall, 2nd

edition, 2004.

[12] I. Jacobson, M. Christerson, P. Jonsson and G. Övergaard. Object-
Oriented Software Engineering: A Use Case Driven Approach. Addison-
Wesley Professional, 1992.

[13] I. Jacobson, G. Booch, J. Rumbaugh. The Unified Software Develop-
ment Process Addison-Wesley Professional, 1999.

[14] B. Evjen, K. Sharkey, T. Thangarathinam, M. Kay, A. Vernet, S. Fergu-
son. Professional XML Wiley Publishing, Inc., ISBN: 978-0-471-77777-9,
2007.

[15] J. J. Thiagarajan and A. Spanias. Analysis of the MPEG-
1 Layer III (MP3) Algorithm Using MATLAB Synthesis
Lectures on Algorithms and Software in Engineering, 2011,
doi:10.2200/S00382ED1V01Y201110ASE009.

[16] K. Lahiri, A. Raghunathan, S. Dey. Design Space Exploration for Op-
timizing On-Chip Communication Architectures. IEEE Transactions on
Computer-aided Design of Integrated Circuits and Systems, vol. 23, no.
6, June 2004, pp. 952-961.

[17] C. Park, J. Jang and S. Ha. Extended Synchronous Dataflow for Effi-
cient DSP System Prototyping. Journal of Design Automation for Em-
bedded Systems, Springer Netherlands, vol. 6, no. 3, 2002, pp. 295-322.

[18] A. Molina and O. Cadenas. Functional verification: approaches and
challenges. Journal of Latin American Applied Research, vol. 37, no. 1,
2007, pp. 65-69.

[19] T. Seceleanu, V. Leppänen, O. Nevalainen. Improving the Performance
of Bus Platforms by Means of Segmentation and Optimized Resource
Allocation. The EURASIP Journal on Embedded Systems, Volume 2009
(2009), Article ID 867362, doi:10.1155/2009/867362.

[20] T. Seceleanu. The SegBus Platform - Architecture and Communication
Mechanisms. Journal of Systems Architecture, Vol. 53, Issue 4, April
2007, pp. 151-169. Doi:10.1016/j.sysarc.2006.07.002

[21] T. Kangas, P. Kukkala, H. Orsila, E. Salminen, M. Hännikäinen,
T. Hämäläinen, J. Riihimäki, K. Kuusilinna. UML-Based Multiprocessor
SoC Design Framework. ACM Transactions on Embedded Computing
Systems, vol. 5, no. 2, May 2006, pp. 281-320.

120

[22] A. Gamatié et al. A Model-Driven Design Framework for Massively
Parallel Embedded Systems. ACM Transactions on Embedded Comput-
ing Systems (TECS), vol. 10, nr. 4, article no. 39, November 2011.

[23] S. Gérard, P. Feiler, J. F. Rolland, M. Filali, M. O. Reiser, D. Delanote,
Y. Berbers, L. Pautet, I. Perseil. UML&AADL ’2007 Grand Challenges.
ACM Special Interest Group on Embedded Systems, vol. 4, nr. 4, Octo-
ber 2007, pp. 1-17.

[24] N. Genko, D. Atienza, G. D. Micheli, L. Benini. Feature-NOC emu-
lation: a tool and design flow for MPSoC. IEEE Circuits and Systems
Magazine, vol. 7, 2007, pp. 42-51.

[25] A. Sandiovanni-Vincentelli, G. Martin. Platform-Based Design and
Software Design Methodology for Embedded Systems. IEEE Design and
Test of Computers, vol. 18, no. 6, Nov./Dec. 2001, pp. 23-33.

[26] M. Vidmantas, E. Kazanavičius. Conception of a Multi-Platform Sys-
tem Software and Firmware Development Tool. Periodical of Informa-
tion Sciences, Issue 50, 2009, Vilnius University Publishing House, pp.
194-199.

[27] International Technology Roadmap for Semiconductors. 2007 Edition.

[28] T. Seceleanu, H. Tenhunen et al. Multicore Processing and ARTEMIS.
Networking session at the IST 2006 Conference, Helsinki, Finland.

[29] B. Kienhuis, E. Deprettere, K. Vissers and P. van der Wolf. An Ap-
proach for Quantitative Analysis of Application Specific Dataflow Archi-
tectures. In Application-specific Systems, Architectures and Processors
(ASAP), July 1997.

[30] B. Kienhuis, E. F. Deprettere, P. van der Wolf and K. Vissers. A
Methodology to Design Programmable Embedded Systems - The Y-
Chart Approach. Lecture Notes in Computer Science, vol. 2268, Springer
2002, pp. 18-37.

[31] R. Arora, M. Mernik, P. Bangalore, S. Roychoudhury, S. Mukkai. A
Domain-Specific Language for Application-Level Checkpointing. The
International Conference on Distributed Computing and Internet Tech-
nologies, 2008, pp. 26-38.

[32] C. Consel, H. Hamdi, L. Réveillére, L. Singaravelu, H. Yu, C. Pu. Spi-
dle: a DSL approach to specifying streaming applications. The 2nd

International Conference on Generative programming and component
engineering, 2003, pp. 1-17.

121

[33] A. Ferrari, A. Sangiovanni-Vincentelli. System design: Traditional con-
cepts and new paradigms. The IEEE International Conference on Com-
puter Design: VLSI in Computer and Processors, 1999, pp. 2Ű12.

[34] A. S. Vincentelli and J. Cohn. Platform-Based Design and Software
Design Methodology for Embedded Systems. IEEE Design and Test of
Computers, vol. 18, no. 6, 2001, pp. 23-33.

[35] A. Koudri, J. Champeau, D.Ãulagnier, P. Soulard. MoPCoM/MARTE
Process Applied to a Cognitive Radio System Design and Analysis. The
5th European Conference on Model Driven Architecture - Foundations
and Applications, 2009, pp. 277-288.

[36] T. Seceleanu et al. Application Development Flow for On-Chip Dis-
tributed Architectures. In Proceedings of the 21st IEEE International
System-on-Chip Conference (SOCC), 2008, pp. 163 - 168.

[37] E. A. Lee and D. G. Messerschmitt. Synchronous Dataflow. Proceedings
of the IEEE, vol. 75, no. 9, Sep. 1987, pp. 1235 - 1245.

[38] T. Lindroth, R. Lavinia, T. Seceleanu, N. Avessta, J. Teuhola. Building
a UML Profile for On-chip Distributed Platforms. The 30th International
Computer Software and Applications Conference (COMPSAC), 2006,
pp. 372-373.

[39] P. Liu, C. Xiang, X. Wang, B. Xia, Y. Liu, W. Wang and Q. Yao. A NoC
Emulation/Verification Framework. In Proceedings of 6th International
Conference on Information Technology: New Generations, 2009, pp. 859-
864.

[40] W. Risi, P. López, D. Marcos. HyCom: A Domain Specific Language
for Hypermedia Application Development. The 34th Annual Hawaii In-
ternational Conference on System Sciences (HICSS-34), Vol. 9, 2001,
pp. 163-168.

[41] T. Seceleanu, I. Crnkovic, C. Seceleanu. Transaction Level Control for
Application Execution on the SegBus Platform. The 33th IEEE Com-
puter Software and Application Conference (COMPSAC), 2009, pp. 537-
542.

[42] T. Seceleanu et al. MultiCast protocol for SegBus platform. In the
proceedings of NORCHIP, 2009, pp. 1-6.

[43] R. Silaghi, A. Strohmeier. Integrating CBSE, SoC, MDA, and AOP
in a Software Development Method. In proceedings of 7th International
Enterprise Distributed Object Computing Conference (EDOC), 2003,
pp. 136.

122

[44] M. Thompson, T. Stefanov, H. Nikolov, A. D. Pimentel, C. Erbas,
S. Polstra, and E. F. Deprettere. A framework for rapid system-level
exploration, synthesis, and programming of multimedia MP-SoCs. In
proceedings of 5th IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), 2007,
pp. 9-14.

[45] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra,
R. Bose, C. Zissulescu, E. Deprettere. Daedalus: Toward composable
multimedia MP-SoC design. In proceedings of 45th ACM/IEEE Design
Automation Conference (DAC), 2008, pp. 574-579.

[46] M. Waseem, L. Apvrille, R. Ameur-Boulifa, S. Coudert and R. Pacalet.
Abstract Application Modeling for System Design Space Exploration. In
proceedings of 9th EUROMICRO Conference on Digital System Design
(DSD’06), 2006, pp. 331-337.

[47] M. Waseem, L. Apvrille, R. Ameur-Boulifa, S. Coudert and R. Pacalet.
A UML-based Environment for System Design Space Exploration. In
proceedings of 13th IEEE International Conference on Electronics, Cir-
cuits and Systems (ICECS), 2006, pp. 1272-1275.

[48] S. Demathieu, F. Thomas, C. André, S. Gérard, F. Terrier. First Exper-
iments using the UML Profile for MARTE. The 11th IEEE Symposium
on Object Oriented Real-Time Distributed Computing (ISORC), May
2008, pp. 50-57.

[49] R. Thomson, S. Moyers, D. Mulvaney, V. Chouliaras. The UML-based
Design of a Hardware H.264/MPEG-4 AVC Video Decompression Core.
The 5th International UML for SOC Design Workshop, June 2008.

[50] D. Truscan, T. Seceleanu, J. Lilius, H. Tenhunen. A Model-based De-
sign Process for the SegBus Distributed Architecture. In Proceedings of
the 15th IEEE International Conference and Workshop on the Engineer-
ing of Computer Based Systems (ECBS), 2008, pp. 307-316.

[51] E. S. Shin et al. Round-robin Arbiter Design and Generation. In Pro-
ceedings of the 15th International Symposium on System Synthesis, 2002,
pp.243-248.

[52] H. Kopetz. The Complexity Challenge in Embedded System Design.
In 11th IEEE International Symposium on Object Oriented Real-Time
Distributed Computing (ISORC), 2008, pp. 3-12.

[53] E. Riccobene, A. Rosti, P. Scandurra. Improving SoC Design Flow by
means of MDA and UML Profiles. In 3rd Workshop in Software Model
Engineering (WiSME), 2004.

123

[54] G. Schelle, D. Grunwald. Onchip Interconnect Exploration for Mul-
ticore Processors utilizing FPGAs. 2nd Workshop on Architecture Re-
search using FPGA Platforms, 2006.

[55] Apache AntTM.
http://ant.apache.org/

[56] MagicDraw Open API user guide, version 17.0.
http://www.magicdraw.com/

[57] Java Programming Language.
http://java.sun.com/

[58] Object Management Group.
http://www.omg.org/

[59] Eclipse Modeling - Model-to-Text Transformation.
http://www.eclipse.org/modeling/m2t/

[60] MagicDraw UML.
http://www.magicdraw.com/

[61] Model-Driven Architecture.
http://www.omg.org/mda/

[62] Matlab - The Language of Technical Computing.
http://www.mathworks.com/

[63] SCADE Suite.
http://www.esterel-technologies.com/products/scade-suite/

[64] OMG. Object Constraint Language (OCL) 2.0 Revised Submission,
version 1.6. Jan. 2003.

[65] Unified Modeling Language Specification, version 2.2, 2009.
http://www.omg.org/spec/UML/2.2/

[66] MetaObject Facility, version 2.0, 2006.
http://www.omg.org/spec/MOF/2.0/

[67] XML Metadata Interchange, version 2.1.1, 2007.
http://www.omg.org/spec/XMI/2.1.1/

[68] Common Warehouse Metamodel, version 1.0, 2001.
Available at http://www.omg.org/

[69] The UML Profile for MARTE: Modeling and Analysis of Real-Time
and Embedded Systems.
http://www.omgmarte.org/

124

http://ant.apache.org/
http://www.magicdraw.com/
http://java.sun.com/
http://www.omg.org/
http://www.eclipse.org/modeling/m2t/
http://www.magicdraw.com/
http://www.omg.org/mda/
http://www.mathworks.com/
http://www.esterel-technologies.com/products/scade-suite/
http://www.omg.org/spec/UML/2.2/
http://www.omg.org/spec/MOF/2.0/
http://www.omg.org/spec/XMI/2.1.1/
http://www.omg.org/
http://www.omgmarte.org/

[70] Architecture Analysis & Design Language.
http://www.sae.org/

[71] POSIX Threads.
http://standards.ieee.org/findstds/interps/1003-1c-95_int/

[72] OpenMP API.
http://openmp.org/wp/

[73] Message Passing Interface (MPI).
http://www.mcs.anl.gov/research/projects/mpi

125

http://www.sae.org/
http://standards.ieee.org/findstds/interps/1003-1c-95_int/
http://openmp.org/wp/
http://www.mcs.anl.gov/research/projects/mpi

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient

Networked Many-Core Systems
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip
155. Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King

Grid
156. Anton Tarasyuk, Formal Development and Quantitative Verification of

Dependable Systems
157. Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and

Smart Spaces: Architectures, Tools and Application Development
158. Tommi J. M. Lehtinen, Numbers and Languages
159. Peter Sarlin, Mapping Financial Stability
160. Alexander Wei Yin, On Energy Efficient Computing Platforms
161. Mikołaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of

Large Software Systems
162. Maryam Kamali, Reusable Formal Architectures for Networked Systems
163. Zhiyuan Yao, Visual Customer Segmentation and Behavior Analysis – A SOM-

Based Approach
164. Timo Jolivet, Combinatorics of Pisot Substitutions
165. Rajeev Kumar Kanth, Analysis and Life Cycle Assessment of Printed Antennas for

Sustainable Wireless Systems
166. Khalid Latif, Design Space Exploration for MPSoC Architectures

167. Bo Yang, Towards Optimal Application Mapping for Energy-Efficient Many-Core
Platforms

168. Ali Hanzala Khan, Consistency of UML Based Designs Using Ontology Reasoners
169. Sonja Leskinen, m-Equine: IS Support for the Horse Industry
170. Fareed Ahmed Jokhio, Video Transcoding in a Distributed Cloud Computing

Environment
171. Moazzam Fareed Niazi, A Model-Based Development and Verification Framework

for Distributed System-on-Chip Architecture

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www. tucs.fi

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences
 • Department of Information Technology
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Division for Natural Sciences and Technology
 • Department of Information Technologies

ISBN 978-952-12-3028-8
ISSN 1239-1883

M
oazzam

 Fareed N
iazi

A
 M

odel-B
ased D

evelopm
ent and Verification Fram

ew
ork for D

istributed S
oC

 A
rchitecture

	Introduction
	The Y-chart approach
	The Model-Based Paradigm and UML
	Design and Verification Challenges
	Thesis Approach and Contributions
	Related Work
	Research Publications
	Summary of the Research Publications
	Thesis Organization
	Thesis Navigation

	The SegBus Platform
	Platform Communication
	Platform Characteristics
	Topology
	Number of Segments
	Package Size

	Platform Constraints
	Summary

	The Model-based Development and Verification Framework
	Design Methodology
	Model-Based Development Paradigm
	The Unified Modeling Language
	The Object Constraint Language
	The SegBus UML Profile
	Application Modeling using the P-SDF
	DSL for the SegBus Platform
	The SegBus Component Library
	Extensible Markup Language
	Model Transformation

	The SegBus Emulator
	The VHDL Snippets
	Summary

	SegBus DSL
	Profile Development
	DSL Customizations
	Structural Constraints
	SegBus Components Library
	Reusability Consideration
	Implementation Approach
	Plug-in Setup

	Summary

	SegBus Emulator
	Basic Concepts
	Model Transformations
	Setup for Emulation
	Implementation Approach
	Emulation and Estimation
	Summary

	The VHDL Snippets
	Significance and Usage
	Execution Schedule Generation
	Summary

	The Overall Framework
	Example using the Framework
	Application Partitioning and Modeling
	Configuring the Platform and Application Mapping
	Model Validation
	Model transformation of the example application
	Execution with 3-Segments Configuration
	Calculation of the Execution Time
	Emulation Results
	VHDL ``Snippets'' Generation

	Discussion
	Summary

	Conclusions
	Thesis Contributions
	Future Directions

	Bibliography

