
Accepted Manuscript

The COMPLEX reference framework for HW/SW Co-Design and Power Man‐

agement Supporting Platform-Based Design-Space Exploration

Kim Grüttner, Philipp A. Hartmann, Kai Hylla, Sven Rosinger, Wolfgang Nebel,

Fernando Herrera, Eugenio Villar, Carlo Brandolese, William Fornaciari,

Gianluca Palermo, Chantal Ykman-Couvreur, Davide Quaglia, Francisco

Ferrero, Raúl Valencia

PII: S0141-9331(13)00122-1

DOI: http://dx.doi.org/10.1016/j.micpro.2013.09.001

Reference: MICPRO 2072

To appear in: Microprocessors and Microsystems

Please cite this article as: K. Grüttner, P.A. Hartmann, K. Hylla, S. Rosinger, W. Nebel, F. Herrera, E. Villar, C.

Brandolese, W. Fornaciari, G. Palermo, C. Ykman-Couvreur, D. Quaglia, F. Ferrero, R. Valencia, The COMPLEX

reference framework for HW/SW Co-Design and Power Management Supporting Platform-Based Design-Space

Exploration, Microprocessors and Microsystems (2013), doi: http://dx.doi.org/10.1016/j.micpro.2013.09.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.micpro.2013.09.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.micpro.2013.09.001

The COMPLEX reference framework for HW/SW Co-Design and
Power Management Supporting Platform-Based Design-Space Exploration

Kim Grüttnera, Philipp A. Hartmanna, Kai Hyllaa, Sven Rosingera, Wolfgang Nebelb, Fernando Herrerac,
Eugenio Villarc, Carlo Brandolesed, William Fornaciarid, Gianluca Palermod, Chantal Ykman-Couvreure,

Davide Quagliaf, Francisco Ferrerog, Raúl Valenciag

aOFFIS – Institute for Information Technology, Oldenburg, Germany
bCarl von Ossietzky University Oldenburg, Germany

cUniversidad de Cantabria, Santander, Cantabria, Spain
dPolitecnico di Milano, Italy

eIMEC, Belgium
fEDALab s.r.l. - Networked Embedded Systems, Verona, Italy

gGMV Aerospace and Defence S.A.U - Madrid, Spain

Abstract

The consideration of an embedded device’s power consumption and its management is increasingly important nowa-
days. Currently, it is not easily possible to integrate power information already during the platform exploration phase.
In this paper, we discuss the design challenges of today’s heterogeneous HW/SW systems regarding power and com-
plexity, both for platform vendors as well as system integrators.

As a result, we propose a reference framework and design flow concept that combines system-level power op-
timization techniques with platform-based rapid prototyping. Virtual executable prototypes are generated from
MARTE/UML and functional C/C++ descriptions, which then allows to study different platforms, mapping alter-
natives, and power management strategies.

Our proposed flow combines system-level timing and power estimation techniques available in commercial tools
with platform-based rapid prototyping. We propose an efficient code annotation technique for timing and power
properties enabling fast host execution as well as adaptive collection of power traces. Combined with a flexible
design-space exploration (DSE) approach our flow allows a trade-off analysis between different platforms, mapping
alternatives, and optimization techniques, based on domain-specific workload scenarios. The proposed framework
and design flow has been implemented in the COMPLEX FP7 European integrated project.

Keywords:
HW/SW Timing and Power Estimation, Virtual Prototyping, Design-Space Exploration, Power Management

1. Introduction

Increasing computing power and shrinking sizes of
processing elements allow more and more functional-
ity to be realized within embedded systems. In earlier
times embedded systems have only implemented sim-
ple functions, but today complete systems, also known

Email addresses: gruettner@offis.de (Kim Grüttner),
nebel@informatik.uni-oldenburg.de (Wolfgang Nebel),
evillar@teisa.unican.es (Eugenio Villar),
fornacia@elet.polimi.it (William Fornaciari),
ykman@imec.be (Chantal Ykman-Couvreur),
davide.quaglia@edalab.it (Davide Quaglia),
fferrero@gmv.com (Francisco Ferrero)

as System-on-a-Chip (SoC), can be implemented on a
single chip. In the past a lot of effort has been spent
on characterizing and estimating hard- as well as soft-
ware parts of the SoC [1, 2]. For both of them relatively
good techniques and tools exist, hence their properties
and characteristics are well known and well understood.

In large and complex SoCs, components of the sys-
tem, such as hardware, software, memory, and inter-
connect, cannot be considered separately. They must
be considered together while interacting to capture the
entire system behavior [3, 4, 5]. For analysis of the dy-
namic behavior this implies a behavioral simulation of
all system components and their interaction, also with
their environment. This is essential for power and tim-

Preprint submitted to Microprocessors and Microsystems August 27, 2013

http://ees.elsevier.com/micpro/viewRCResults.aspx?pdf=1&docID=1459&rev=2&fileID=75160&msid={1D69E4AE-C2D4-449C-A3B6-56A89EA0B6F1}

ing estimations. For specific platforms, proprietary sim-
ulation environments are available for both timing and
power models (see Section 2). But a common and open
framework, suitable for a large range of platforms and
designs is still missing. Such a framework would allow
comparing different platform characteristics and thus
rapid prototyping and design space exploration. Per-
formance bottlenecks and power peaks within the entire
system could be identified in early design phases, where
modifications of the system are easier and more afford-
able than in later phases.

In this paper we present a new design flow con-
cept and propose a framework that combines system-
level power optimization techniques with platform-
based rapid prototyping. For the proposed approach we
focus on the derivation of an executable virtual proto-
type of an embedded HW/SW systems right after func-
tional specification, partitioning, and mapping to an im-
plementation platform. Execution or simulations of this
prototype allow decisions concerning architecture, per-
formance, power, and price, early in the development
process. The challenges we need to face in today’s Elec-
tronic System Level (ESL) design-flow, including ex-
isting point tools that are able to address single design
issues, are presented in Section 2. The proposed frame-
work, that is the result of the COMPLEX European
project [6], follows a unified system-level specification
for HW and SW, but utilizes different estimation tech-
niques for custom HW and SW, as well as pre-defined
IP components. Since good stand-alone solutions for
each of these parts exist, Section 3 presents our con-
cept that unifies state-of-the-art tools and techniques in
a common design-flow. Section 4 presents different in-
dustrial use-case aware customizations of the proposed
design-flow. Conclusions are drawn in Section 5, which
sums up our concept and points out following work.

2. Requirements, existing tools & related work

This section aims at defining requirements (high-
lighted as R1-8) for early system specification, model-
ing, and simulation at ESL. In this sense, we are giving
a brief overview of commercial tools and related work.

Generally, embedded system design is a sequence of
design decisions that finally leads to an implementation.
These decisions are made with regard to the functional
and extra-functional system requirements. These need
to be captured and tracked during the entire design flow.
All dimensions (e. g. functional, timing, power, perfor-
mance, memory, area, etc.) of the design space need to
be explored in order to estimate the costs of the final
system implementation. For this purpose a dependable

and accurate model of the future system and workload
scenario, prior to heavy investments in HW and SW
development is necessary. In our approach we focus
on the enrichment of virtual execution platforms with
extra-functional properties. In the proposed approach,
we do not address an automated path to implementation
or automatic synthesis of physical platforms, yet.

Today’s virtual prototyping platforms are provided
for early software development and functional test-
ing. These platforms are often built using SystemC
TLM-2.0 interfaces at AT (Approximately Timed) or LT
(Loosely Timed) abstraction. Today these platforms are
used for functional software development and software
stack configuration. Most virtual platforms are target-
ing mainly functional and loose timing aspects in early
software development. Power dissipation or the func-
tional effects of dynamic power management strategies
cannot be taken into consideration, and thus cannot be
explored at early design stages.

Code generation in Model-Driven Engineering
(MDE), high-level synthesis techniques for custom HW,
and abstraction of existing components to system-level
descriptions are key enablers for unified system-level
simulation approaches [7] and need to be urgently com-
bined with the virtual prototyping platform approach
as mentioned above. We want to consider functional,
power and timing behavior on system-level under ex-
plicit partitioning and mapping to a specific implemen-
tation platform (R1). This requires:

1. a formal system-level specification to be linked
with functional and extra-functional requirements
to be checked during the entire design process,

2. an executable model that can be derived automat-
ically from the formal specification model, which
is capable to simulate large sequences of domain-
specific workloads in an acceptable time,

3. the representation and annotation of extra-
functional information (timing and power) in the
executable specification.

For today’s embedded HW/SW systems this cannot
be done on RT-level anymore, due to high simulation
complexity. The requirements of the proposed frame-
work [8], along with point-tools (as described in [9])
that fulfill some of these requirements, are subdivided
into four categories discussed below:

2.1. MDE and Executable Specification
The complexity and size of current systems are in-

creasing, which may well lead to longer development

2

times and integration challenges. In the contrary, time-
to-market constraints are tighter and there is a larger in-
cidence of extra-functional demands (i.e. power con-
sumption, real-time behavior). Therefore, it is neces-
sary to provide mechanisms that permit the separation
of the functional and extra-functional concerns in or-
der to better master the complexity of current embed-
ded systems. The adoption of the Model-Driven En-
gineering (MDE) principles improves the separation of
concerns in the specification, i.e. functional from extra-
functional concerns, and the application from the plat-
form [10]. It enables the distribution of the specification
task among designers, and a parallel development of the
specification, e.g. one designer can describe the appli-
cation, while other, the platform. The designer should
operate on an executable specification that enables the
same functional description for HW and SW (R2). This
is permitted by definition of a common specification
language at system level, a unique, well-defined parallel
programming paradigm and the formulation of HW/SW
partitioning through different platform mappings. The
communication model should be abstracted from plat-
form communication resources and enable the remap-
ping to different communication infrastructures (R3).

Following a component-based approach is highly de-
sirable in a HW/SW design as it improves the product
organization, its reusability and modularity. In this ap-
proach, the component represents an elemental unit for
architectural mappings, which simplifies the analysis of
the system extra-functional attributes and facilitates the
design space exploration.

The system specification follows the platform-based
design (PBD) approach [11, 12], that separates the ap-
plication, the hardware platform and the mapping of the
application to resources of the hardware platform. This
is compatible to the MDE principles, known from the
area of software engineering, where the specification of
the system’s functionality and the platform should be
done separately. The functional properties of the sys-
tem should be specified in the application specification.
Extra-functional properties like the deadline of applica-
tion tasks or the use of different IP cores, target technol-
ogy, maximum chip area, etc. which influence timing
and power dissipation need to be specified separately.
Some widely used commercial available tools and lan-
guages for parallel executable system specification are:
LabView, Matlab/Simulink & Stateflow, Rhapsody &
Statemate, Esterel SCADE, and C/C++/SystemC-based
approaches. For adding extra-functional properties dif-
ferent UML profiles, like MARTE, have been proposed.
All of these tools, modeling languages and profiles al-
ready offer a direct path to implementation for embed-

ded HW/SW systems. However, the effects of these im-
plementations in terms of timing behavior and power
consumption can hardly be analyzed. [13] proposes an
interesting approach to power efficient system design
using UML generated executable models. The use of
the MDE principles in the design of HW/SW systems
and standard modeling languages like UML allows the
definition of modeling methodologies that are based on
the separation of functional and extra-functional con-
cerns and the specification of both hardware and soft-
ware system. This is convenient in a context where
system engineers need to produce a specification of the
embedded systems suitable for early design stages (e.g.
functional verification, design space exploration). In-
deed, it can also serve as an unambiguous design re-
quirement specification for hardware and software de-
signers in later phases of the design.

Moreover, the use of modeling languages like UML
provides an unambiguous way of documenting the sys-
tem architecture (i.e. both hardware and software)
where a set of diagrams provide a mean to illustrate the
different system facets that are for the interest of the
designer. Through extensive tool support, from UML
model editors to model-to-model and model-to-text, the
automatic generation of system executable specifica-
tions is enabled. As it was mentioned above, such au-
tomation not only saves time, but also leverages a uni-
fied approach once the coherence between the UML
model and the executable model can be better ensured.

However, UML itself does not provide the necessary
semantics to model extra-functional properties. The use
of the MARTE profile gives some of the required se-
mantics (i.e. target technology, area, task deadlines),
while others related to the DSE must be provided by
means of UML profiling mechanisms.

Finally, modern dynamic performance estimation
techniques (i.e., native simulation, virtualization) en-
able the generation of fast executable performance mod-
els, suitable for feeding a design exploration loop.

2.2. Estimation and Representation of Extra-
Functional Properties

Following the PBD approach enables a separation of
application and execution platform. The mapping de-
scribes a binding of the application to allocated execu-
tion, communication, and memory resources of the plat-
form. All these mapping decisions have an influence on
the system properties including the correct behavior in
terms of timing, power, and costs.

In this paper we focus on timing and power dissi-
pation aspects, referred to as implementation artifacts

3

of the execution platform, consisting of processing el-
ements, memories, and interconnect. As mentioned in
the previous paragraph several tools exist that are able
to generate a C/C++/SystemC implementation of the be-
havior of the system. This representation shall be a
common starting point to perform analysis and code op-
timizations under consideration of constraints induced
by the chosen target platform and user-defined parame-
ters.

Current extra-functional property estimation tech-
niques can be classified into four groups:

Simulation-after-synthesis-based methods: Hard-
ware performance can be evaluated by simulating the
synthesized description that a high-level synthesis tool
generates [14]. During recent years, several commer-
cial HLS tools have become available [15, 16, 17, 18].
These tools can synthesize a register transfer level
(RTL) model from a behavioral description (usually a
C/C++ code), although it is frequently necessary to
manually rewrite the source code. After high-level syn-
thesis with specific constraints/directives, the RTL de-
scription has to be simulated with a test-bench to obtain
estimations. This approach (simulation-after-synthesis)
produces very accurate results since a real hardware
implementation is evaluated with a test-bench, thus it
is normally used as a reference performance model by
other hardware performance analysis techniques. How-
ever, it requires high execution times to synthesize and
simulate the model with different constraints/directives.

Static performance analysis: Most hardware esti-
mation works presented in the literature are based on
static source code analysis [19, 20, 21]. In this type
of approach, a Control and Data Flow Graph (CDFG)
is normally generated from the behavioral system de-
scription. This graph models static data dependencies
and enables the estimation of the execution time without
simulation. However, software languages like C/C++

normally include constructions that may generate dy-
namic data dependencies (for example, pointers), thus
only a grammar subset of these languages can be effi-
ciently evaluated using static analysis techniques. Ad-
ditionally, different synthesis constraints or input test
patterns produce different estimation results, thus some
static performance analysis methodologies provide esti-
mation bounds instead of a single value [19, 21]. They
typically generate an upper limit (Worst-Case Execu-
tion Time, WCET) and/or a lower limit (Best-Case
Execution Time, BCET). Static performance analysis
tools normally use simplified/relaxed versions of high-
level synthesis algorithms or probabilistic approaches.
They can also estimate area [21] and clock period [22].
Static performance estimation techniques typically pro-

vide speedups of about two orders of magnitude (x100)
compared with the simulation-after-synthesis approach.
The typical estimation error ranges from 20% to 30%
[22].

Model-based approaches: Model-based estima-
tion techniques use parameterized functions to evalu-
ate hardware performance of pre-defined or Intellectual
Property (IP) modules. They normally estimate area,
power [23], clock cycle and state-number/latency [24].
These techniques provide very fast estimations because
they only have to execute the estimation function with
the particular configuration parameters of the current
instantiation of the pre-defined/IP modules. Addition-
ally, a very time consuming methodology that normally
requires a very large number of synthesis processes is
needed to derive the parameterized functions. Using
mathematical techniques, such as linear regression and
curve fitting techniques, these methodologies adjust the
parameterized models with the estimation parameters.
Some approaches [24] try to predict hardware perfor-
mance of different types of hardware modules using a
common methodology. The main disadvantage of these
approaches is the high estimation error (between 69 %
and 108 % [24]).

Trace-based techniques: Trace-based techniques
can also be used to provide hardware performance anal-
ysis [25]. In this approach, a trace is generated dur-
ing source-code execution (simulation-based approach).
This trace is used to identify data-dependencies and op-
eration sequences. After trace generation, an estimation
tool schedules the operations using similar techniques
to the static analysis approach but it can only estimate
one possible implementation. This technique can sup-
port dynamic dependencies but it cannot be easily inte-
grated into a co-simulation environment. Additionally,
the trace size limits the use of this technique to low-
medium size estimation problems.

The system’s timing and power dissipation need to be
studied under domain specific workload scenarios (R4).
For the assessment of the system’s overall power dissi-
pation, average or typical cases are usually more impor-
tant than worst case workloads. Concerning real-time
requirements worst-case execution times (WCET) need
to be studied instead of average case execution times.
For an overall system characterization both kinds of
analysis need to be performed for the software, custom
hardware, communication, and pre-existing IP compo-
nents (R5).

Power and timing estimation of full-custom HW
(ASIC) (R5.1) depends on several design parameters
like micro-architecture size and design, level of parallel
processing, layout implications but it also depends on

4

run-time characteristics like activity, frequency, or dy-
namic power management policies. Transistor technol-
ogy also has major impact on dynamic and static power
values as well as on timing. Additionally, the environ-
mental temperature has major impact on HW’s power
and in extreme case may force the chip to slow down.
The timing and power estimation of ASIC hardware un-
der consideration of these aspects have gained in impor-
tance and are addressed by today’s industrial high-level
synthesis tools, such as [16, 17, 18, 15].

Pre-existing hardware IP component’s (R5.2) extra-
functional properties are hard to obtain. If available
these properties can be taken from a data sheet or in
the worst case they need to be estimated manually. Due
to IP protection this can become a time consuming task.
After estimation the next challenge is to represent and
back-annotate these extra-functional properties in exe-
cutable functional models, representing the correspond-
ing IP blocks in an overall system simulation. For this
purpose power state machines can be used, but never-
theless these models are neither standardized nor part of
today’s system-level design languages and ESL tools.

Estimation of embedded software’s power and tim-
ing (R5.3) is complicated due to processor attributes
like pipelining, branch prediction, superscalar architec-
tures, and out of order execution. Additionally, power
and timing of the processor depends on external influ-
ences such as memory stalls, interrupts, task switches,
and operation system calls. To cover these aspects dur-
ing power estimation vendor specific or generic instruc-
tion set simulators (ISS) as ARMulator or SimpleScalar
with augmented power models are used. For SW WCET
analysis static analytical methods are used instead of
simulative approaches. AbsInt’s aiT WCET analysis
tool is used by the industry and allows easy integration
with existing executable specification environments like
Esterel’s SCADE Suite.

Estimation of extra-functional properties for HW/SW
communication (R5.4) depends on the implemented
functionality, the partitioning into embedded SW and
custom HW and its mapping to execution units, and
finally the data dependencies induced by the provided
use-case. Using the SystemC-TLM methodology al-
lows vendor specific provision of bus models. These
models can be implemented on different levels of gran-
ularity, from abstract atomic transitions, over the con-
sideration of request and transfer phases, down to a bus-
cycle accurate view. Timing of communication should
be encapsulated in dedicated communication models
and should reflect the communication protocol’s behav-
ior as well as data dependent effects, such as transac-
tion lengths. For an appropriate communication power

model the situation is more difficult, since the vendor
of the bus model does not necessarily have information
about its implementation and its influencing parameters
for the power model. To this end the bus vendor will
not be able to provide a power model, but the API of the
bus-functional model shall offer extension points for the
platform developer.

A realistic system contains all these types of compo-
nents. They must be considered together to observe the
influences of their interaction (R6). Thus, a holistic es-
timation combines individual estimation results for em-
bedded SW, custom HW, IP components, and HW/SW
communication, to allow a simulation and estimation
of the overall system behavior and its extra-functional
properties. Such an approach uses existing and highly
specialized tools to characterize individual parts of the
system. Typical estimation approaches, as mentioned
above, provide models for the underlying HW. The chal-
lenge is to use information from these low-level models
for creating higher-level models that can be combined
with the behavior in a functional simulation.

The COMPLEX reference framework enables the
combination of different system components and de-
scribe a set of alternative power models for each.

Embedded processors: Several techniques have
been developed for modeling processor power con-
sumption at the system level. The complexity of these
models vary, depending on the volume of, and fre-
quency with which, information is extracted from a sim-
ulation model of the processor. Table 1 lists several al-
ternatives, in decreasing order of computational effort.
In the first model, for every clock cycle, the complete
pipeline state of the processor is captured, and the com-
bination of instructions found in the different stages is
used to estimate power consumption [26, 27]. In the
second model, for each cycle, only the instruction that
is currently being executed is extracted [28]. In the third
model, over discrete time intervals, only the number
of instructions of different predefined types is counted
to compute total energy or average power [28]. The
fourth approach, software energy macro-modeling, in-
volves monitoring code sequences of larger granular-
ity (e.g., function calls) [29]. The fifth and simplest
power model we consider is based on parameters such
as power modes, operating voltage, and frequency [28].

On-Chip Buses: Numerous models have been pro-
posed for estimating the power consumption of global
buses. Examples of such power models that we have
considered in our framework are listed in Table 1. In
the first approach, on every cycle, transition activity is
examined on individual bus lines, and is used to esti-
mate power, using transmission line models that capture

5

deep sub-micron effects, and effects of the drivers and
repeaters [30]. In the second model, for each cycle, ag-
gregate transition activity is used to estimate power con-
sumed on global buses, using a lumped capacitance to
model driver, repeater, line, and parasitic capacitances.
The third model is an analytical one, in which over a cer-
tain time interval, the number and types of bus transac-
tions are monitored, and used to estimate average transi-
tion activity, which can then be used to estimate average
power.

Caches/Memories: Cache power models include
those that are targeted towards cycle-level simulation
environments [26], as well as more efficient analytical
models that are targeted towards exploring alternative
cache architectures [31, 32]. For our framework, we
consider the two models listed in Table 1. In the first
model, on every access to the cache, the power con-
sumed by the cache is computed based on the type of
access (read/write), the result of the access (hit/miss),
and transition activity on the bit and word lines. In the
second model, over a certain time interval, statistics that
capture the number and types of cache accesses are used
as inputs to an analytical model that computes average
cache power, using lumped capacitances for different
cache components, and estimated transition activity.

Custom Hardware: Power analysis of hardware,
including both custom hardware, as well as standard
components such as memory controllers, timers, and
other peripherals, has traditionally been performed at
the logic- and register-transfer levels (RTL). Recently,
advances have been made in estimating the power con-
sumed at the cycle-accurate functional and behavioral
levels [33, 34, 35]. While each abstraction level in it-
self represents a potential trade-off between power es-
timation accuracy and computational effort, approaches
based on logic-/RT-level power estimation are unaccept-
ably slow for system simulation.

2.3. System Simulation Including Extra-Functional
Properties

Fast system simulation is important due to the rais-
ing system complexity (R7). Today most state-of-the-art
mobile embedded systems like phones, cameras, mu-
sic and video players are using complex HW and SW,
including operating systems and middleware. Virtual
prototypes that are used for the simulation of these sys-
tems can no longer be executed on a cycle-accurate ISS
connected via a cycle accurate bus model to a regis-
ter transfer (RT) level representation of custom HW. To
boost simulation performance virtual platform simula-
tors allow to abstract from certain HW platform details,
like the cycle-accurate representation of a processor’s

HW Power model Accu. Eff.
component

Processor 1 Pipeline state aware ++ - -
2 Instruction-level + -
3 Analytical, o o

Instruction-class based
4 Function-level - +

macro-models
5 Mode-based - - ++

Interconnect 1 Distributed RC models + -
2 Lumped capacitance o o
3 Analytical, - +

transaction based

Cache/memory 1 Structure-aware, + -
access level

2 Analytical, - +

access-statistics based

Hardware 1 Gate-level + -
2 Register-transfer level o o
3 Cycle-accurate - +

functional level

Table 1: Power models for system-level power estimation (Accu. =

Accuracy, Eff. = Effectiveness in terms of (simulation) speed)

instruction set or cycle accurate communication models.
Some works have been proposed in the past for trans-
lating RTL VHDL and Verilog models into C/C++ de-
scriptions, targeting verification of HW models via sim-
ulation [36, 37, 38, 39, 40, 41, 42]. Furthermore, today’s
virtual platform simulators make use of native host sys-
tem execution to speed-up simulation [43]. Concern-
ing the representation of extra-functional properties, re-
lated work is mainly focused on power analysis. In [44],
Power State Machines have been proposed for the first
time in system-level modelling. Since dynamic energy
consumption emerges from activity, in [45] a concept is
presented where activity is observed at the communica-
tion interfaces. With Powersim [46] the model does not
have to be changed because a modified SystemC simu-
lation kernel is used. In [47] a system-level model that
separates architecture and functional application model
is presented. The application model is mapped on the
platform model, which includes a model for the en-
ergy consumption. Nevertheless, the raise of abstrac-
tion and its gain in execution speed comes at the cost
of a loss in accuracy. But depending on the applica-
tion characteristics, workload scenarios, and of course
the system issue under investigation, a certain loss in
accuracy is acceptable. A simulation framework should
offer the possibility to switch between different simula-
tion granularities for both power and timing. Commer-
cial available simulation platforms are ARM RealView
& MaxSim, Mentor Graphics Vista, Synopsys Virtual-

6

izer & CoMET and METeor, Cadence System Develop-
ment Suite, Wind River Simics and Open Virtual Plat-
form [48]. Concerning networked embedded systems
no appropriate tools are available in the ESL domain
to simulate also the networking aspects. Currently de-
signers are forced to use co-simulation with pure net-
work simulators like NS-2 [49], OPNET [50] or OM-
NET [51]; the co-simulation slows down the entire sim-
ulation.

2.4. Design-Space Exploration
Platform-based design approach is widely used to

meet time-to-market constraints [11]. In this scenario,
the basis for designing novel systems is to have plat-
form with lots of parameters that can be exposed to the
designer to enable finding the best HW/SW architec-
ture that meets the application requirements. The tun-
ing phase of platform configuration, hardware-/software
partitioning, scheduling, and mapping on the platform
resources is called Design Space Exploration (DSE).

In the past, this phase has been mainly done by us-
ing manual approaches guided by the designer experi-
ence. Nowadays this possibility is becoming unfeasi-
ble for two main reasons: the first deals with the time
needed for the exploration phase, while the second one
with the performance unpredictability of novel parallel
architectures.

Regarding the first reason, the exploration phase
should be guided, but cannot be performed by the de-
signer because it requires too much time. In computer
architecture research and development, simulation still
represents the main tool to predict the performance of
alternative architectural design points. If we consider a
cycle-accurate system-level simulation, it requires a lot
of simulation time and this time will continue to grow
due to the increment of system complexities [52]. For
this reason, the exploration of the design alternatives
can exceed the practical limits even if the number is not
so large [53]. This means that DSE requires being auto-
matic and efficient in terms of optimization algorithms
and predictive models, reducing the number of simu-
lations to be done and thus saving time (R8). More-
over, novel HW/SW architectures continue to grow both
in terms of number of interacting components and in
terms of tunable parameters exposed to the designer.
This makes the impact of novel parameter configura-
tions difficult to predict, even when the designer knows
the target applications and architecture. Furthermore,
multiple competing objectives (e.g. Power and Perfor-
mance) result in searching for multi-objective optima
(Pareto solutions). In this context, the key challenges
are to support the designer in a more systematic way

through the design space exploration phase, in particu-
lar: 1st by decoupling the simulation infrastructure from
the design space exploration environment with analysis
support, 2nd to efficiently face the DSE search by us-
ing novel optimization strategies coupled with predic-
tive models, and 3rd to combine exploration of hardware
and software parameters considering both the design-
time and run-time tuning of the target platform. Despite
of some effort have been spent from the community in
all the three directions, such as [54, 55], [53, 56, 57] and
[58, 59] respectively, the problem is far to be solved.

2.5. Integrated Framework

To the best of our knowledge, there is no integrated
framework available that enables the estimation and
simulative analysis of timing and power properties from
a HW/SW independent executable specification model
under manual mapping constraints, as described above.
The goals of our presented approach are:
• Interface to model-driven SW design entry us-

ing MARTE/UML and the industry standard Mat-
lab/Stateflow model-based design environment,
• combination and augmentation of well-established

commercial ESL synthesis and analysis tools into
a seamless design flow enabling performance and
power aware virtual prototyping from a combined
HW/SW perspective,
• fast simulation and assessment of functional and

extra-functional (time and power) properties of the
entire system after platform mapping with scalable
accuracy,
• framework for dynamic adaptation to changing

context and transparent optimization of platform
resource usage,
• multi-objective HW/SW co-exploration to assess

the design quality and to optimize the system plat-
form with respect to extra-functional properties.

3. Proposed concept

The design framework proposed in the COMPLEX
project is illustrated in Figure 1. As presented in Sec-
tion 2 we follow the PBD approach with a separation of
application a©/ e©, architecture d©/ g©, and mapping de-
scription c©. The architecture/platform consists of pre-
existing IP components like processors, buses, hardware
accelerators and memories, while the application de-
scribes how these resources are used to implement cer-
tain system functionality. For the specification of dif-
ferent domain-specific application workload scenarios,

7

executable

application

model

system

input

stimuli

pre-optimized

power

controller

Hardware/Software task separation

Custom Hardware

Estimation

generation of

executable power &

timing model

Software

Estimation

generation of

executable power &

timing model

virtual system generator with

TLM2 interface synthesis

timing & power aware executable

virtual system prototype in SystemC simulation

trace

B
A

C
+

+

B
A

C
+

+

H
W

 t
a

s
k
s

S
y
s
te

m
C

e f

h

i j

l

m n o

e
s

ti
m

a
ti

o
n

 &
 m

o
d

e
l

g
e

n
e

ra
ti

o
n

s

im
u

la
ti

o
n

e
x

p
lo

ra
ti

o
n

 &
 o

p
ti

m
iz

a
ti

o
n

S
W

 t
a

s
k
s

e
x

e
c

u
ta

b
le

 s
p

e
c

if
ic

a
ti

o
n

visualization/

reporting

tool

trace

analysis tool

p
o

w
e

r/
p

e
rf

o
rm

a
n
c
e

m
e

tr
ic

s

user
exploration &

optimization

tool

p

q

r

MARTE

PIM

(Platform

Independent

Model)

user

constrained

HW/SW sep.

& mapping

MARTE

PDM

(Platform

Description

Model)
c

parameters for

new design space

instance

d
e

s
ig

n
 s

p
a

c
e
 d

e
fi
n
it
io

n

design space instance

parameters
t

a d

M
D

A

d
e

s
ig

n
 e

n
tr

y

• functional reimplementation

• hardware/software

 partitioning/separation

• runtime management

• embedded software/compiler

 optimizations

• IP platform selection &

 configuration

• memory

 configuration/management

 (static & dynamic)

• custom hardware synthesis

 constraints

use-cases

architecture/platform

description

(IP-XACT)

pre-existing IP &

virtual component

Models (with

power & timing)

g

S
y
s
te

m
C

b

k

re
p

re
s
e

n
ts

/

im
p

le
m

e
n

ts

s

Figure 1: The COMPLEX Reference Framework

specified as use-cases b© we propose to generate a sys-
tem input stimuli specification f© for triggering the exe-
cutable system model.

The most important property of the proposed frame-
work is that timing and power characterization is sep-
arated from application specification and development.
This separation allows platform providers to offer tim-
ing and power characterized virtual platform component
models (IPs) k©. Together with the estimated custom
HW i© and SW components j© a timing and power
aware executable virtual system prototype n© can be
generated.

Based on the simulation trace o©, obtained from exe-
cuting the generated platform model, analysis tools p©

can either generate a report or a visualization of the
power consumption per system component over time
q©. The application of metrics on the trace is used to

drive an automatic or semi-automatic exploration and
optimization process r© that modifies different design
parameters t© in a pre-defined design-space s©. These

parameters can be applied on the MDA design entry
model, executable SystemC model, or the estimation
and model generation tools.

The following sections give a more detailed descrip-
tion the different phases of our proposed rapid prototyp-
ing framework.

3.1. MDA Design Entry

The COMPLEX modeling entry is supported by
the COMPLEX UML/MARTE modeling methodology
[60, 61] that includes a tool set fully integrated in the
Eclipse framework [62]. This tool set automates the
generation of the code which serves to generate the per-
formance executable model. The UML/MARTE spec-
ification models both the system and the input stimuli
environment. Among all the features, the following will
be described in the next paragraphs:
• Viewpoints for separation of functional and extra-

functional concerns
• Component-based design approach

8

• Explicit support for Design-Space Exploration
(DSE)

Viewpoints. The COMPLEX UML/MARTE methodol-
ogy enables the specification of the different facets of
the system in different model viewpoints. The COM-
PLEX model viewpoints are the Data Model View, the
Functional View, the Communications and Concurrency
(CC) View, the Platform View, the Architectural View,
and the Verification View. These views enable separa-
tion of concerns and thus raise the level of abstraction
as each view focuses on a specific aspect of interest of
the system. The COMPLEX UML/MARTE methodol-
ogy also defines the relationships among these views,
and a workflow which guarantees them. This enables
the designer to build a synthetic model (avoiding pos-
sible redundancies and thus coherence checks) and en-
ables a cooperative workflow where the application and
platform can be captured in parallel. The separation
of concerns is given at several levels of the model de-
sign. The system (i.e. application mapped onto platform
resources) is separated from the environment. Within
the system model, the platform specification (i.e. pro-
cessing resources, operating system) is separated from
the model of the application. Finally, within the ap-
plication, data structures, functionality (interfaces and
classes) and application components are also separately
captured. The extra-functional properties of the appli-
cation are specified on the CC view, while the platform
extra-functional properties are described in the Plat-
form view. The Architectural view provides information
about the allocation of application components onto the
platform components and the DSE parameters and met-
rics can be reflected.

Component-based design. The COMPLEX UML/-
MARTE methodology follows also a component-based
approach. At the application level, the designer pack-
ets the functionality within application components in
the CC View. A system application is captured as a
component, and instances of application components
are used to capture the application architecture. This
component represents the Platform Independent Model
(PIM) according to the MDA paradigm. The platform
architecture is captured in the Platform view by means
of instances of SW and HW platform components, e.g.
RTOS component instances, and instances of HW pro-
cessor components. This architecture represents the
Platform Description Model (PDM) according to the
MDA paradigm. The component is the elemental unit
used in the COMPLEX UML/MARTE methodology for
deploying functions onto processing resources (i.e. mi-

croprocessors, FPGA) in the Architectural view. For
instance, application components can be mapped onto
the platform components which represent processing re-
sources.

Use-cases, scenarios, verification. Finally, the COM-
PLEX UML/MARTE methodology allows designers to
specify the input stimuli in a separated view, the Ver-
ification view. As mentioned, this view supports the
specification of a set of environmental components and
how they connect with the system component. This
view provides a description of the interactions (through
sequence diagrams) among the environmental compo-
nents and the system component as the sequence of or-
dered messages in the context of a use case scenario.
Timing information and ordering constraints among en-
vironment events are captured in the sequence dia-
grams, so that it enables the documentation and gen-
eration of realistic use cases. This is crucial for the
dynamic performance estimation enabled by the exe-
cutable model derived from the UML/MARTE system
model. The methodology enables the definition of mul-
tiple scenarios that represent different use cases of the
system. Designers may choose any scenario from those
modeled in the Verification view to generate the perfor-
mance executable model and explore the design space.

Support of Design-Space Exploration. The COM-
PLEX UML/MARTE methodology has been explic-
itly designed for supporting design space exploration.
Specifically, the methodology supports the specification
of a design space, i.e., a set of design solutions, rather
than a single design. The description of such design
space is enabled by means of defining: a set of architec-
tural mappings (allocation space),a range of values for
platform attributes (parameters of the space), and sev-
eral platform architectures (architecture space).

In order to specify this design space, the methodology
relies on the MARTE profile and proposes new stereo-
types for the missing semantics (i.e. DSE, IP-XACT
concepts), which are proposed as a necessary enhance-
ment of current capabilities of MARTE for embed-
ded system design. Moreover, the COMPLEX UML/-
MARTE methodology supports also explicit constraints
and rules that can be used by the designers to limit the
space of solutions to those that are of main interest. The
methodology also supports the specification of system
local metrics. In contrast to global system metrics, such
as total power consumption, system dependent metrics
depend on each specific system model. For example,
the latency metric for servicing a specific function of an
application component or the miss rate of the instruc-

9

tion cache of a given processor of the platform. This
feature provides a capability of paramount importance:
all the aspects of the system with some impact on its
final performance: application and platform, SW and
HW, architectures and architectural mappings, compo-
nent attributes and different types of metrics, form now
part of the DSE loop and therefore can be optimized at
once, under a real holistic approach.

3.2. Executable Specification

The output of the MDA entry is an executable model
generated from the PIM. The PDM is used to gener-
ate a structural platform model with virtual processing,
memory, and communication elements. These are used
to model the resource constraints of the execution plat-
form. The generated executable specification (Algo-
rithm Domain), platform description model (Architec-
ture Domain), and platform mapping are shown in Fig-
ure 2(a).

Executable application model. In our executable appli-
cation description model we perform a separation of
behavior (computation) and protocol (communication).
Our concurrent building blocks are tasks or processes
that contain a behavioral and a protocol part. The be-
havior part describes the function or algorithm to be ex-
ecuted, written in sequential C/C++ code. This descrip-
tion is independent from an implementation in either
HW or SW. Behaviors can be composed of functions
and describe a pure sequential execution order. This en-
ables reuse of existing software descriptions. Moreover,
the tools mentioned in Section 2.1 allow synthesis to
a C/C++ representation. An abstract task describes a
”‘Runnable”’ i. e. a process. Each abstract task contains
a single behavior. Abstract tasks can either be active or
passive. An active task starts running immediately af-
ter its activation and can either be blocked through a
communication request or when its computation is fin-
ished. An active task can be (self) triggered again after a
certain amount of time (time triggered task, or periodic
task). Passive tasks can only be triggered by active tasks
through explicit requests. A passive task cannot trigger
itself and it cannot trigger any other passive task.

The protocol part describes communication among
behaviors. It is realized through a port that allows active
tasks to call service on another passive task’s behavior.
These calls are blocking, i. e. the caller’s behavior can
be continued after the service call has been completed.
When multiple active tasks are requesting a service call
of the same passive task a scheduling action is required.
More details about this can be found in [63, 64]. These

service calls abstract from a certain communication pro-
tocol implementation in either HW or SW.

System input stimuli. In order to examine and analyze
the parallel application description model under a cer-
tain workload scenario, it needs to be stimulated accord-
ingly. The system stimuli might originate from user in-
teraction or communication with other components that
are part of the system’s environment. These stimuli
describe use-case scenarios and can be derived from a
UML/MARTE use-case specification or from an envi-
ronment model in Matlab/Simulink.

User constrained HW/SW separation & mapping. The
user-constrained HW/SW separation and mapping de-
fines the binding of tasks from the application model
to execution resources of the architecture/platform de-
scription model. Active and passive tasks can be
mapped to execution resources, while passive tasks can
only be mapped to memories.

Architecture/Platform description. The platform de-
scription model is composed independently from the
application model. It is a pure structural and extra-
executable representation of the execution platform con-
sisting of execution resources (like SW processors,
DSPs or ASICs), memories, communication resources
(like shared buses), and pre-existing IP components.
In addition, constraints that have a direct influence on
the timing and power consumption are represented in
the component’s meta-description. For SW processors
it is the instruction set architecture (ISA) including its
pipeline behavior, power modes, data and instruction
cache models, and bus interfaces. For custom HW the
used RT component library, and for communication re-
sources scheduling policies for shared media have to be
specified.

3.3. Estimation & Model Generation

In order to allow a fast simulation and estimation, we
create annotated C/C++/SystemC code. This annotated
code contains information about the timing and power
of each component. Power and timing information for
each of them is obtained using existing and sophisti-
cated tools as mentioned in Section 2.2.

As depicted in Section 2 a realistic system consists
of components of different type e. g., custom hard- and
software as well as IP-components, like communication
infrastructure. Each component is estimated individu-
ally, using an appropriate tool. Based on the estimation
an augmented version of the component is created, con-
taining a power and timing model of the component.

10

Bus

µP/µC

Bus

IF

Bus

IF

Bus

Arbiter

RAM

T0

T2

T1

S1

S0

PPC

HW1

HW0

TLM

mapping

Behavior Model Architecture Model

cutsom hardware &

software estimation

behavior

protocol

high-level

Synthesis

or software

cross-

compilation

parallel application description

architecture/

platform description

timing & power aware executable TLM model

Bus

IF

Bus

IF

I D

Mem

timing & power aware executable RTL model

IP Components Custom HW/SW

Components

TLM

component

library:

- initiator, target

- memory

- router

IP & virtual

component models

(with power &

timing annotations)

timing &

power

properties

target

arch.

proper-

ties

virtual

platform

generation

PPC

Mem

T0 T1

T2
S0

S1

S1

(shared)

data

virtual

platform

gener-

ation

power/timing

estimation

and back-

annotation

Platform

dependent

Behavior

Model

(a) Example of an Executable Specification and a Platform Mapping

Timing and power

annotated

HW module

Synthesizable

RT-level Verilog

C
o
n
tr

o
l
a
n
d
 d

a
ta

 f
lo

w
 g

ra
p
h

Basic block

identification &

time/power annotation

RT-level power

characterization

Power

model

library

Behavioral Synthesis
- Scheduling

- Allocation

- Binding

- Module selection

- Controller synthesis

- RTL floorplanning

Abstract

task (C/C++)

Constraints +

Component

library

Task

stimuli

(b) HW estimation flow

LLVM-Based Front-end (Static Modeling)

C Source

code

Target Processor

Library

LLVM Intermediate

Representation

Static

Model

Instrumentation

Instrumented

LLVM code

Tracing, Back-end and Postprocessing

Back-annotated

Source Code

Estimates and

Analysis Reports

(c) SW estimation flow

Figure 2: The proposed virtual prototyping approach with timing and power back-annotation flows

From these annotated components a virtual prototype is
generated. This prototype is used to estimate the power
and timing of the overall system. In the next four para-
graphs we describe these steps in more detail.

Hardware/Software task separation. Depending on the
user-defined mapping, each behavior of the parallel ap-
plication description is estimated with an appropriate
technique. The tools, used for HW & SW estimation
and characterization, perform a simulation-based esti-
mation. Thus, each component must be simulated and
characterized individually. The system is split into indi-
vidual components. The surrounding system serves as
testbench/test environment during the simulation. This
way we can simulate each component individually and
still obtain estimates, which correspond to the behavior
of the overall system.

Custom Hardware estimation. Timing and power esti-
mation of application specific hardware designs can be
done at nearly every level of abstraction from transistor-
up to behavioral level at ESL. Since we address behav-
ioral tasks that are mapped to hardware and are meant
to be implemented in custom ASIC hardware, we only
address behavioral-level estimation here [65].

To consider the challenges of ASIC power-modeling
mentioned in Section 2 we combine synthesis with
cycle-accurate simulation at RT-level and a subsequent
phase of basic-block identification and power/timing
annotation. Although extensive power estimation at RT-
level is very time consuming and thus not applicable in
HW/SW co-simulation, it can be used as characteriza-
tion approach for higher level estimation. This is why
we apply lower-level estimation provided by the OFFIS
PowerOpt tool to a small but typical testbench and

derive cycle-averaged power estimates. These power
values will then be further abstracted to basic block
level and annotated to the internal control- and dataflow
graph-representation (CDFG, see Figure 2(b)). We dif-
ferentiate between dynamic and static power as well as
its source (e. g., functional units, controller, or clock
tree). Leakage power at RT-level is nearly indepen-
dent on data pattern [66] (variation of 15 %) and thus
it mainly depends on elapsed time whereas dynamic
power depends on the testbench stimuli. In addition the
delay is annotated to each basic block which is fixed and
can be statically derived from the cycle count within the
scheduled CDFG and the frequency. In the last step we
export the CDFG to a timing and power annotated Sys-
temC module. The overall HW-estimation flow is pre-
sented in Figure 2(b).

The presented custom hardware timing and power es-
timation technique supports the creation of virtual pro-
totypes for embedded full-custom hardware modules.
Based on the automatically generated cycle-accurate
functional description at register transfer level a char-
acterization of the module is performed and a high-
level, C++-based virtual prototype is generated. It is
augmented with RT level accurate power and timing
information. First experiments on data intensive hard-
ware accelerators show a fast and accurate estimation
of power properties with a total error of about 3.6% and
a speed-up of approximately 516 compared to an RT-
level estimation, while obtaining cycle accurate timing
information [67]. These properties support early design
space exploration.

Software estimation. At the intermediate level of the
COMPLEX tool chain, and integrated with software
generation, hardware model characterization and de-

11

sign space exploration, the detailed software estimation
tool set SWAT (SoftWare Analysis Toolset) plays a key
role. Its main goal is to provide more accurate and de-
tailed performance and energy estimates with respect
to those obtained using higher-level and more abstract
models [68].

The purpose of SWAT is to provide methodology and
tools to estimate performance and energy requirements
of embedded software, conveying the advantages of ISS
approaches and dynamic approaches, and mitigating
their disadvantages. The SWAT approach is based on a
statistical analysis and characterization of an intermedi-
ate assembly-level code representation, instrumentation
and execution on the host machine. The most significant
novelties of the proposed methodology are:
• The methodology does not require to execute an

ISS, even in those cases where the software is re-
quired to interface to the external world, e.g. to
hardware peripherals on the target SoC. Suitably
designed stubs can be developed and seamlessly
integrated with power FSMs models.
• The performance and energy consumption models

of the target microprocessor can be derived in al-
most completely automatic way by means of a spe-
cific set of tools that are part of SWAT. The accu-
racy of such models depends on the accuracy of the
basic figures available for the target core.
• The intermediate code (LLVM) is very close to the

target assembly code, but still sufficiently abstract
to allow for a source-level analysis. The analy-
sis performed on the intermediate code, thus, com-
bines efficiency, accuracy and flexibility.
• Execution on the host machine does not require the

entire hardware of the target system, reducing costs
and times of the analysis.

The SWAT modeling approach can be split into three
main phases:

1. Target machine modeling. Timing and energy con-
sumption characteristics of the target architecture
need to be modeled in a suitable mathematical
form to feed the remaining phases of the flow. The
first step, thus, consists in building this instruction-
set model. This is done only once for each target
platform.

2. Source code modeling. The second modeling
phase is aimed at decoupling the influence of the
static structure of the source code (i. e. its seman-
tics) both from the specific target architecture and,
most notably, from the specific input run-time data.

3. Dynamic behavior modeling. The dynamic be-
havior is accounted by performing a basic-block
profiling at intermediate-representation level (i. e.

LLVM code). Such a profiling can be accom-
plished by executing the code on a host machine,
possibly resorting to some support libraries that
model hardware devices.

4. Post-processing. A final phase combines all the
models and derives timing and energy estimates
of a specific (or a set of) execution. Beyond a
wide range of statistics concerning static and dy-
namic properties of the application, this last phase
back-annotates performance figures directly on the
original source code. This is especially valuable to
support the application developer in the subsequent
optimization phase.

Each phase has been studied accurately and sound math-
ematical models have been built as a foundation. A sim-
plified view of the resulting estimation flow is depicted
in Figure 2(c).

The methodology has been applied to several bench-
marks and the estimates compared with the most accu-
rate available figures, i. e. those obtained with a target-
specific, power-enabled instruction-set simulator [69].
The absolute estimation errors obtained on a set of sev-
eral benchmarks ranges from less than 2% up to to 13%,
with an average of 6%. The SWAT estimation flow has
been proven to be much more efficient than ISS-based
analysis, namely more than 400 times faster1. This
speed-up, combined with a satisfactory accuracy, allows
to integrate the SWAT methodology within a design-
space exploration framework, in particular the MOST
DSE engine.

Pre-existing IP & virtual component models. Despite
custom HW and SW, preexisting or third-party compo-
nents must be considered. Models for communication
infrastructure like buses are provided by different ven-
dors and typically are provided as parameterizable soft-
macros, allowing an adaption to the system to be build.
The macros already contain timing information but typ-
ically no information about power. Thus, communica-
tion power is estimated based on the TLM-2.0 transport
calls. Calculation accounts for the size of transferred
data, type of access, as well as duration of the commu-
nication. Interruptions and re-arbitration events are also
considered and must be delivered by the communication
model.

General IP components delivered by third-party ven-
dors cannot be estimated like custom HW and SW com-
ponents. System-level representatives of these IP’s are
typically provided as black-box executable models (e. g.

1These results refer to a ReISC III core with 1.0 V power supply
and operating at 50 MHz.

12

API to a compiled object-file). These black-box mod-
ules typically contain timing but no power information.
In order to obtain at least approximated power values a
simple wrapper or monitor is used, which monitors the
components in- and output. This information is used
to control a power state machine (PSM) [70] inside the
monitor. Power states and power values of the PSM are
either obtained from the component’s data-sheet or esti-
mated manually.

Latest results on an abstraction methodology for gen-
erating time- and power-annotated TLM models from
synthesizable RTL descriptions can be found in [71].
The proposed techniques allow the integration of exist-
ing RTL IP components into virtual platforms for early
software development and platform design, configura-
tion, and exploration. With the proposed approach, IP
models can be natively integrated into SystemC TLM-
2.0 platforms and executed 10-1000 times faster com-
pared to state-of-the-art RTL simulators. The abstrac-
tion methodology guarantees preservation of the behav-
ior and timing of the RTL models. Target technology
dependent power properties of IP components are rep-
resented as power state-machines and integrated into the
abstracted TLM models. The experimental results show
a relative error less than 10% of the abstracted model’s
power consumption compared to state-of-the-art RTL
power simulators [72].

Virtual system generation. During generation of the
virtual system annotated source from f© as well as the
selected models from i© are combined to a virtual pro-
totype. The example in Figure 3(a) shows the virtual
platform model obtained from the mapping specified in
Figure 2(a). The timing and power annotated execution-
models are integrated with timing and power character-
ized platform models. In the example in Figure 3(a)
these platform models are: a TLM-2.0 router with
bus protocol and power model, and a system memory
model. For the integration of the annotated task behav-
ior with the TLM communication network we provide
communication interface (IF) templates. These inter-
faces translate the function calls of the active tasks into
TLM transaction containers. For passive tasks we syn-
thesize a memory interface which decouples the TLM
transactions from the activation of the behavior. That
means the transaction is stored in the memory com-
pletely, before the passive task is activated. These inter-
face templates are timing and power characterized for
the chosen platform.

3.4. Simulation

Pre-optimized power controller. The pre-optimized
power controller implements a framework for dynamic
adaptation to changing context and transparent opti-
mization of platform resource usage [58]. It follows a
distributed and hierarchical approach. On the one hand,
a Global Resource Manager (GRM) is loaded on the
host processor of the platform. It is a software task run-
ning in parallel with the application. It is a middleware
providing a bridge between the application, the user and
the platform. It conforms to practices of each Local Re-
source Manager (LRM) in each platform IP core (e.g.,
HW block or SW processor). It is used to adapt both
platform and application at run time and to find global
and optimal trade-offs in application mapping based on
a given optimization goal. On the other hand, each IP
core can execute its own resource management without
any restriction, through an LRM. Such an LRM encap-
sulates the local policies and mechanisms used to initi-
ate, monitor and control computation on its IP core.

In contrast to the collaboration between the GRM and
the LRMs, the GRM collaboration with application and
user is visible to the application developer and is per-
formed as follows. First, the QoS requirements and
the optimization goal are set by the user. The goal is
then translated into an abstract and mathematical func-
tion, called utility function (e.g., performance, power
consumption, battery life, QoS weighted combination
of them). Then, at run time, the GRM manages and
optimizes the application mapping taking into account
the possible application configurations explored at de-
sign time, the platform resources currently available, the
QoS requirements, and the utility function.

Timing & power aware executable virtual system pro-
totype in SystemC. During system execution the anno-
tated timing and power information is collected. De-
pending on the workload model different execution
paths, leading to different timing and power values, are
possible. After simulation, the collected information
can be illustrated in a power-over-time diagram or can
be used for a power-breakdown. Our annotations can
be traced at different levels of granularity to allow a
user-defined trade-off between performance and accu-
racy. Figure 3(b) depicts the different timing and power
evaluation levels.

On the most abstract level we only consider analysis
on task granularity. This can be easily performed be-
tween active and passive tasks with blocking communi-
cation relation. Execution time and power of the passive
task can simply be inlined and accumulated with time

13

S0

Behavior: sequential

untimed C/C++/SystemC

Protocol

Behavior

Behavior Model

T0

T1

T2

PPC

IB
M

 P
L

B

custom HW

Architecture Model

ISA, pipeline, cache

behavior/strategy

data & address

width, protocol,

scheduling policy

max. area,

target

technology,

Clock

frequency,

Vdd

target technology,

Clock frequency, Vdd

Mapping Description

T0 -> CPU0

T1 -> HW0

T2 -> HW1

S0 -> MEM0

S1 -> HW0, HW1

CPU0 HW0

executable specification

in SystemC

Mem
S1

CPU0
HW0

Platform dependent Behavior Model (Virtual System Prototype)

C

C

IF IF
C

C
T

L
M

 2
 R

o
u

te
r

(I
B

M
 P

L
B

 P
ro

to
c
o

l)

PPC custom HW

IF

Memory

Mem

SystemC TLM2

SW Initiator Wrapper

with SW Power Model

T0 T1

Communication

Graph representation

of T0 with explicit

communication

nodes. (C)

Computation nodes

contain power and

timing annotations

that trigger the power

model. Instructions &

Data are fetched from

a local memories (I &

D Memory). Their

timing and power

contributions are part

of computation node

annotations.

Shared memory

model from virtual

component repository

with Power State

Machine (PSM)

model.

Communication

Graph representation

of T1. Contains

parallel execution

obtained from

behavioral synthesis.

Power and execution

time annotated in

Computation Nodes

trigger power model.

TLM initiator socket TLM target socket

D

Mem

I

Mem

S0

S1’ ⊆ S1

custom HW

HW1

executable specification

in SystemC

IF C Mem

T2 HW1

SystemC TLM2

custom HWTarget

Wrapper with register

interface and HW

Power Model

MEM0

MEM0

BUS0

BUS0

S1’ ⊆ S1

IP-XACT description

S

W
 P

o
w

e
r

M
o

d
e

l

custom HW

H

W
 P

o
w

e
r

M
o

d
e

l

H

W
 P

o
w

e
r

M
o

d
e

l

PSM PSM
TLM2 Router

with Power State

Machine (PSM)

model.

(a) Virtual Platform generated from example shown in Figure 2(a)

C

Process

Graph

Com-

munication

Graph

Control Data

Flow Graph

C
Communi-

cation

Computation

Basic Block

Condition

true false

Shared

Data

Port

Interface

per basic block:

1) # cycles

2) average

switched

capacitance

(b) Annotations

Figure 3: Example of a Virtual Platform Model

and power of the active task. The next level of gran-
ularity works on communication granularity. Power
and timing of computation nodes in the communication
graph are accumulated and only traced at the time points
of communication. For a deeper analysis of the timing
and power behavior traces on basic block granularity of
a CDFG is also possible.

CPU HW1

HW2

BUS

NET IF

CHANNEL

NODE

PROTOCOL

Figure 4: Network View: the virtual platform of a networked embed-
ded system is simulated together with a model of the network.

A possible new simulation view provided by the
COMPLEX project is the so-called Network View de-
picted in Figure 4 and enabled by the SystemC Network
Simulation Library (SCNSL) [73]. It is an extension
of SystemC to allow modeling packet-based networks
such as wireless networks, Ethernet, and field bus. It

supports the simulation of packet transmission, recep-
tion, contention on the channel and wireless path loss.

The advantages of SCNSL are:

• simplicity: a single language/tool, i. e. SystemC, is
used to model both the system (i. e. CPU, memory,
peripherals) and the communication network;
• efficiency: faster simulations can be performed

since no external network simulator is required;
• re-use of SystemC IP blocks
• scalability: support of different abstraction levels

in the design description
• openness: several tools available for SystemC can

be exploited seamlessly
• extensibility: the use of standard SystemC and the

source code availability guarantee the extensibility
of the library to meet design-specific constraints

According to Figure 4, the traditional virtual plat-
form, made of CPU, HW blocks and bus, can be ex-
tended by wrapping it into a network node exchanging
packets with other nodes through a channel by using
well-known protocols such as IEEE 802.15.4. All these
elements are provided by SCNSL as traditional Sys-
temC blocks. SCNSL also allows improving timing and
power analysis by introducing the effect of communica-
tions which have a direct impact on timing behavior and
power consumption of the system under design [74].

14

3.5. Exploration & Optimization

The Exploration and Optimization phase creates a
feedback loop between the performance estimation part
(including MDA Design Entry, Executable Specifica-
tion, Estimation & Model Generation and Simulation
phases) and the parameters configuration of the target
system. In particular, the loop is closed by acquiring
the system simulation traces to be post processed be-
fore being presented either to the user or to an automatic
framework for exploration and optimization. Then, ac-
cording to the information gathered by the previous sim-
ulation, a new HW/SW system configuration will be se-
lected within the design space. In the next paragraph we
describe these steps in more detail.

Simulation trace. Our proposed simulation and tracing
framework supports different granularities for each task.
Moreover, it is possible to define certain regions of in-
terest in the sequential behavior of a task that can be
investigated down to basic block granularity.

Trace analysis. The simulation and analysis of timing
and power traces allows an evaluation of the chosen ap-
plication mapping, the performance of the architecture
and the effects of the synthesis constraints. Different
design configurations or iterations with adjusted map-
ping, platform composition and constraints allow multi-
objective design-space exploration.

Visualization & reporting. The visualization and re-
porting step in the proposed framework has in charge
the presentation of the results coming from the trace
analysis phase into a readable format for the designer.
This phase is necessary to have the designer driving the
exploration loop. Moreover, this phase includes also
the visualization of the analysis coming from the ex-
ploration loop done by using the MOST tool.

Exploration & optimization. Starting from the defini-
tion of the design space, the exploration and optimiza-
tion step iteratively generates an instance of the design
space based on the knowledge acquired by the post-
processing of the simulation traces of previous selected
configurations. The exploration phase is a step in the
design flow that is needed for surfing the design space
(changing the system parameters) in order to find the
optimal system configurations among all the possible al-
ternatives that are part of the design space. Moreover,
the design space exploration loop is also used to de-
termine some knowledge about the system parameters
(such as the main effects, interaction effects) and design
space (such as, configuration distribution with respect

to the system performance). This phase can be done by
using a user centric DSE or an automatic DSE phase.
The goal in using an automatic design space exploration
and optimization tool is in the fact that it should be able
to automatically interact with system models in order
to avoid the intervention of the designer for the DSE
phase (except for the analysis of the results) once the tar-
get problem is formally defined. The automatic design
space exploration tool used within the project is called
MOST, and the interfaces used to interact with the other
components of the design flow are those presented in
[54]. On the other side, the usage of a user centric DSE
flow is needed when a detailed analysis of the system
behavior is necessary (e.g. trace analysis or time behav-
ior), once the problem cannot be formally defined or it
is not easy to be defined, or when the automatic mod-
ification of the parameters on the system model is not
possible or requires a larger modeling effort.

Design space definition. The design space is defined by
the list of tunable parameters available on the HW/SW
platform. Moreover, it includes the set of possible val-
ues of each parameters and the rules defining some cuts
within the design space eventually due to interferences
between parameters. The design space definition repre-
sents the degrees of freedom that the designer or an au-
tomatic tool can have for tuning the HW/SW platform.

Design space instance parameters. A design space in-
stance is a valid configuration of parameters within the
design space defined before selected or by the designer
or by an automatic tool. It is composed of a value for
each parameter of the design space, ranging within the
set of available levels. Those values will be used to
fill the right parameter values in several stages of the
design-flow (see Figure 1). In the project, the list of
parameters ranges at the MDA Design Entry and Ex-
ecutable Specification levels from functional reimple-
mentation to mapping of HW/SW tasks and IP selec-
tion, while at Estimation and Model Generation level
from IP and memories configuration to selection of em-
bedded software optimizations and run-time manage-
ment strategies.

4. Use-Cases aware design flow customization

The proposed reference design flow can be cus-
tomized for different industrial use-cases (UC). Figure 5
visualizes three different configurations of the COM-
PLEX reference design flow, as shown in Figure 1.
The following Sections will briefly describe the differ-
ent use-cases and the application of the proposed flow.

15

12.04.201

3

executable

SystemC™ model

custom SW

estimation

simulation

trace

S
y
s
te

m
C

 e
s
ti

m
a
ti

o
n

 &
 m

o
d

e
l

g
e
n

e
ra

ti
o

n

s
im

u
la

ti
o

n

e
x
p

lo
ra

ti
o

n
 &

 o
p

ti
m

iz
a
ti

o
n

e
x
e
c
.
s
p

e
c
.

Multi-Objective

Design Space

Exploration

Framework

design space

instance

parameters

M
D

E
 e

n
tr

y

architecture/

platform

description

IP

components

at specification

level

functional Virtual Platform (VP)
model of target SoC

software timing &
power estimation

(incl. memory

sub-system)

timing &

power
pre-

charac-
terized IP

power management
strategies, memory

access &
organization

network simulation

MATLAB/Simulink Stateflow

model of control algorithm
power management

Design-Space
Exploration

(DSE)

trace to DSE
conversion

timing and power annotated

Virtual Platform model

of target SoC

(a) UC1: Networked control system 12.04.201

3

power

controller

s
im

u
la

ti
o

n

e
x

p
lo

ra
ti

o
n

 &
 o

p
ti

m
iz

a
ti

o
n

custom HW
with

power
manage-

ment

e
x

e
c

.
s

p
e
c

.
e

s
ti

m
a

ti
o

n
 &

 m
o

d
e
l

g
e

n
e

ra
ti

o
n

functional Virtual Platform (VP)
model of target SoC

C/C++ task model

and power management model

timing &

power
pre-

charac-
terized IP

custom Hardware
and Software

timing & power
estimation

Design-Space
Exploration

(DSE)

trace to DSE
conversion

timing and power
annotated

Virtual Platform
model

of target SoC

HW/SW partitioning

for timing/power
trade-off

platform, IP and
power management

configuration

(b) UC2: Battery powered multi-core system 12.04.201

3

executable

SystemC™ model

s
im

u
la

ti
o

n

e
x

p
lo

ra
ti

o
n

 &
 o

p
ti

m
iz

a
ti

o
n

architecture/

platform

description

at specification

level

UML/MARTE executable
system model

M
D

E
 e

n
tr

y

e
x

e
c

.
s

p
e
c

.
e

s
ti

m
a

ti
o

n
 &

 m
o

d
e
l

g
e

n
e

ra
ti

o
n

Design-Space
Exploration

(DSE)

trace to DSE
conversion

timing property
checks of different
platform mappings
and configurations

UML/MARTE system
specification model

timing annotated

Virtual Platform model

of target SoC

software timing
estimation

(incl. memory

sub-system)

timing

pre-
charac-

terized IP

(c) UC3: Real-time system

Figure 5: Different configurations of the COMPLEX reference design flow

4.1. Use-Case 1 – Networked embedded system

Industrial requirements on the COMPLEX flow are
an optimal software mapping solution for real-time, low
power applications based on pre-existent hardware low
power techniques, methods to build a power aware HW
virtual platform, and the possibility to easily integrate
the COMPLEX flow into an industrial state-of-the art
design flow.

The Application comes from the health care domain.
It is a virtual machine oriented to data processing in
body sensor networks. A node of this application is
able to perform some computations (such as max, min,
median, etc.) based on collected data sets from sen-
sors. The parameters of these computations (called
”features”) such as sampling rate, window, shift of data
set, etc. can be tuned and the features can be activated
or deactivated depending on the application demands.
Parameter tuning and activation/deactivation of features
can be done at run time. One prominent application of
this virtual machine will be to detect body movements,
for example to monitor the health state of an elderly pa-
tient.

The Platform is the ReISC SoC, a project developed
at STMicroelectronics, with a 32-bit RISC core oper-
ating at up to 50 MHz, embedded memories, and an
extensive range of enhanced I/Os and peripherals. A
comprehensive set of power-saving mode allows the de-
sign of low-power applications. The CPU of the SoC
executes the application SW, operating system (FreeR-
TOS), drivers, and interrupt service routines. The use-
case consists of a wireless sensor network (WSN) sce-
nario, with multiple ReISC SoCs connected via radio.
All nodes and the radio channel are simulated using the
SCNSL network simulator.

Application mapping starts from a Stateflow descrip-
tion of the application, that will be translated in Sys-
temC using HFSuite and ported to the ReISC SoC run-
ning FreeRTOS [75].

Goal of the evaluation is to reach a configuration with
minimum power consumption respecting real-time con-
straint, by acting to different power management strate-
gies (clock gating, power island) and memory access
optimization. Software power management policies are
driven by traffic congestion reproduced by using the net-
work simulator [74].

4.2. Use-Case 2 – Battery powered multi-core system

Industrial requirements are assisted HW/SW separa-
tion with automatic generation of HW wrappers, effi-
cient handling of communications between automati-
cally generated modules of the design, fast simulation,
possibility to observe impact of platform and applica-
tion parameters on power and timing.

The application provides a modular solution for
audio-driven activity monitoring in the context of a
battery-powered surveillance application. Its set of pro-
cessing modules can be dynamically activated accord-
ing to the evolving environmental conditions.

The hardware platform is a homogeneous MPSoC
platform, with a main processing unit (PU) acting as
host, controlling different slave/co-processing units that
can be either software processors or custom hardware
accelerators. For power management different power is-
lands (one power island for each PU) exist.

The application mapping allows the possibility to se-
lect the power-island state of each PU, where the host
and audio monitoring PUs are always active. The Cen-
tral and Global Resource managers handle application

16

and platform configurations at run-time. The quality of
service of the system is configurable from 1 to 4 micro-
phones with a variable set of features.

Goal of the evaluation is to demonstrate the efficiency
of the COMPLEX flow, from SystemC specifications to
DSE optimization. Moreover, this evaluation shall show
the complementary nature of design-time and run-time
optimizations. The demonstrator aims at highlighting:
• relevance of HW/SW separation decisions and ef-

ficiency of generated code
• performance of the virtual platform: simulation

speed vs. accuracy of estimates
• flexibility of the Design Space Exploration tool:

multi-objectives optimization
• efficiency of the Global Resource Manager: qual-

ity of service adaptation to maximize battery life-
time

4.3. Use-Case 3 – Model-based space application

Industrial requirements are support of model-driven
design combined with design-space exploration of em-
bedded HW/SW systems and evaluation of the COM-
PLEX design flow and tools, with a special focus on the
model-based design tools and transformation engines.

The application is an object survey, tracking and
imaging system in the context of the Space Situational
Awareness (SSA) in a star tracer satellite system. For
evaluation in COMPLEX a simplified version of the real
system has been chosen, that consists of the following
main functional blocks:
• Image processing: image acquisition, image trans-

formations and image clutter filtering
• Object survey, tracking, and hazard analysis
• GPS SW receiver: signal acquisition, FFT, corre-

lation, channel tracking, as well as navigation and
position measurements

The application is represented as UML/MARTE Plat-
form Independent Model (PIM).

The platform consists of three processing boards,
each of them is equipped with a processor from the
ARM family. Boards are interconnected via serial
buses. The GPS SW module can access HW accelera-
tors to perform computation intensive tasks like an FFT.
The execution platform is represented as UML/MARTE
Platform Description Model (PDM).

The application mapping is represented as UML/-
MARTE Platform Specific Model (PSM). It defines the
allocation space and design space constraints. The PIM,
PDM, and PSM are used to generate an executable
model for design-space exploration through the follow-
ing transformations:

• UML/MARTE to executable application model
• UML/MARTE to DSE loop configuration and al-

location space definition
• UML/MARTE to executable environment/test-

bench model
In a second step, after design-space exploration, an
executable Virtual Platform can be generated through
UML/MARTE to IP-XACT and IP-XACT to SystemC
transformation steps.

Specifically, the UML/MARTE COMPLEX flow
[60] developed for the use case 3 has demonstrated that
additional improvements to the general exploration flow
described in the previous section are possible. Specifi-
cally, the UML/MARTE COMPLEX flow removes the
MDA entry from the DSE loop, and avoids the recom-
pilation of the executable performance model for each
iteration. This way, a significant speed-up of the DSE
loop is achieved.

Goal of the evaluation is the assessment of high-
level functional analysis combined with performance
and power estimation, under usage of techniques for ex-
ploration of the optimal architecture based on UML/-
MARTE models. Virtual platform reference implemen-
tations will be used for comparison of metrics from dif-
ferent timing and power estimation techniques, i.e. ISS
simulator versus high-level estimation techniques.

5. Conclusion

In this paper we presented the COMPLEX reference
framework and design flow allowing rapid virtual pro-
totyping of heterogeneous embedded HW/SW systems
under consideration of timing and power aspects. The
presented approach enables a UML/MARTE design en-
try with automatic generation of an executable SystemC
model. The extra-functional estimation flow considers
custom hard- and software as well as third party IP com-
ponents. For each of these different types we use state-
of-the-art commercial tools, inducing satisfying esti-
mates for individual components. A generated virtual
prototype allows a fast and unitary simulation of the
complete system’s functional and extra-functional prop-
erties, which helps the designer to identify and eliminate
performance bottlenecks and power peaks. Thus, a fast
and early trade-off between different design alternatives
becomes feasible. To support an efficient exploration
we have extended our flow by a feedback loop, allowing
guided iterations through different configurations, map-
pings, power management policies, etc. Based on the
industrial use-cases [60, 58, 74] we are convinced that
the overall framework will integrate existing approaches

17

and point-tools, into a common and unified flow for tim-
ing and power aware rapid prototyping.

Acknowledgment

The authors would like to thank all partners involved
in the COMPLEX FP7 European Integrated Project
[6], funded by the European Commission under Grant
Agreement 247999.

References

[1] L. Zhong, S. Ravi, A. Raghunathan, N. Jha, RTL-Aware Cycle-
Accurate Functional Power Estimation, Computer-Aided De-
sign of Integrated Circuits and Systems, IEEE Transactions
on 25 (10) (2006) 2103 –2117. doi:10.1109/TCAD.2005.

859504.
[2] B. Sander, J. Schnerr, O. Bringmann, ESL power analysis of

embedded processors for temperature and reliability estima-
tions, in: Proceedings of the 7th IEEE/ACM international con-
ference on Hardware/software codesign and system synthesis,
CODES+ISSS ’09, ACM, New York, NY, USA, 2009, pp. 239–
248. doi:10.1145/1629435.1629469.

[3] N. Bansal, K. Lahiri, A. Raghunathan, S. T. Chakradhar, Power
Monitors: A Framework for System-Level Power Estimation
Using Heterogeneous Power Models, in: Proceedings of the
18th International Conference on VLSI Design held jointly with
4th International Conference on Embedded Systems Design,
VLSID ’05, IEEE Computer Society, Washington, DC, USA,
2005, pp. 579–585. doi:10.1109/ICVD.2005.138.

[4] N. Dhanwada, I.-C. Lin, V. Narayanan, A power estima-
tion methodology for SystemC transaction level models, in:
Proceedings of the 3rd IEEE/ACM/IFIP international confer-
ence on Hardware/software codesign and system synthesis,
CODES+ISSS ’05, ACM, New York, NY, USA, 2005, pp. 142–
147. doi:10.1145/1084834.1084874.

[5] H. Lebreton, P. Vivet, Power Modeling in SystemC at Transac-
tion Level, Application to a DVFS Architecture, in: Symposium
on VLSI, 2008. ISVLSI ’08. IEEE Computer Society Annual,
2008, pp. 463 –466. doi:10.1109/ISVLSI.2008.71.

[6] The COMPLEX project (FP7-247999), COdesign and power
Management in PLatform-based design space EXploration.
URL http://complex.offis.de

[7] A. Sangiovanni-Vincentelli, Is a Unified Methodology for
System-Level Design Possible?, IEEE Design and Test of Com-
puters 25 (4) (2008) 346–357.

[8] G. Palermo, C. Brandolese, F. Ferrero, F. Herrera,
G. Schomaker, C. Brunzema, K. Grüttner, K. Hylla, B. Van-
thournout, D. Quaglia, L. Lavagno, M. Poncino, E. Vaumorin,
C. Couvreur, S. A. Butt, Definition of application, stimuli and
platform specification, and definition of tool interfaces, Tech.
Rep. COMPLEX/PoliMi/R/D1.2.1/1.1, COMPLEX project
deliverable (Oct. 2010).
URL http://complex.offis.de/docs/8

[9] D. Densmore, R. Passerone, A. Sangiovanni-Vincentelli, A
Platform-Based Taxonomy for ESL Design, IEEE Design and
Test of Computers 23 (5) (2006) 359–374.

[10] D. C. Schmidt, Model-driven engineering, Computer – IEEE
Computer Society 39 (2) (2006) 25.

[11] A. Sangiovanni-Vincentelli, G. Martin, Platform-Based Design
and Software Design Methodology for Embedded Systems,
IEEE Design and Test of Computers 18 (6) (2001) 23–33.

[12] A. Sangiovanni-Vincentelli, Quo Vadis SLD: Reasoning about
Trends and Challenges of System-Level Design, Proceedings of
the IEEE 95 (3) (2007) 467–506.

[13] Y. Vanderperren, W. Dehaene, A Model Driven Development
Process for Low Power SoC Using UML, Springer, 2005.

[14] A. Lakshminarayana, S. Ahuja, S. Shukla, Coprocessor design
space exploration using high level synthesis, in: Quality Elec-
tronic Design (ISQED), 2010 11th International Symposium on,
2010, pp. 879–884. doi:10.1109/ISQED.2010.5450474.

[15] Synopsys, Synphony High-Level Synthesis, http:

//www.synopsys.com/Systems/BlockDesign/HLS/

Pages/default.aspx.
[16] Calypto Design Systems, Catapult, http://calypto.com/

en/products/catapult/overview.
[17] Cadence, C-to-silicon compiler, http://www.cadence.com/

products/sd/silicon_compiler/pages/default.aspx.
[18] Forte Design Systems, Cynthesizer, http://www.forteds.

com/.
[19] M. Holzer, M. Rupp, Static Estimation of Execution Times

for Hardware Accelerators in System-on-Chips, in: System-
on-Chip, 2005. Proceedings. 2005 International Symposium on,
2005, pp. 62–65. doi:10.1109/ISSOC.2005.1595645.

[20] M. Sangeetha, J. RajaPaul Perinbam, Revathy, Hardware Esti-
mation and Synthesis for a Codesign System, in: Signal Process-
ing, Communications and Networking, 2007. ICSCN ’07. Inter-
national Conference on, 2007, pp. 189–194. doi:10.1109/

ICSCN.2007.350728.
[21] M. B. Abdelhalim, S. Habib, Fast FPGA-based area and latency

estimation for a novel hardware/software partitioning scheme,
in: Electrical and Computer Engineering, 2008. CCECE 2008.
Canadian Conference on, 2008, pp. 000775–000780. doi:10.
1109/CCECE.2008.4564641.

[22] B. Dwivedi, A. Kejariwal, M. Balakrishnan, A. Kumar, Rapid
Resource-Constrained Hardware Performance Estimation, in:
Rapid System Prototyping, 2006. Seventeenth IEEE Interna-
tional Workshop on, 2006, pp. 40–46. doi:10.1109/RSP.

2006.33.
[23] L. Deng, K. Sobti, C. Chakrabarti, Accurate models for estimat-

ing area and power of FPGA implementations, in: Acoustics,
Speech and Signal Processing, 2008. ICASSP 2008. IEEE Inter-
national Conference on, 2008, pp. 1417–1420. doi:10.1109/
ICASSP.2008.4517885.

[24] R. Meeuws, Y. Yankova, K. Bertels, G. Gaydadjiev, S. Vassil-
iadis, A. Heterogeneous, S. Development, A quantitative predic-
tion model for hardware/software partitioning, in: in Proceed-
ings of 17th International Conference on Field Programmable
Logic and Applications (FPL07, 2007, p. 5.

[25] P. Bjuréus, M. Millberg, A. Jantsch, FPGA resource and tim-
ing estimation from Matlab execution traces, in: Proceedings of
the tenth international symposium on Hardware/software code-
sign, CODES ’02, ACM, New York, NY, USA, 2002, pp. 31–36.
doi:10.1145/774789.774797.
URL http://doi.acm.org/10.1145/774789.774797

[26] D. Brooks, V. Tiwari, M. Martonosi, Wattch: A framework
for architectural-level power analysis and optimizations, In Pro-
ceedings of the 27th Annual International Symposium on Com-
puter Architecture (2000) 83–94.

[27] W. Ye, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, The de-
sign and use of simplepower: a cycle-accurate energy estima-
tion tool, in: Proceedings of the 37th Annual Design Automa-
tion Conference, DAC ’00, ACM, New York, NY, USA, 2000,
pp. 340–345. doi:10.1145/337292.337436.
URL http://doi.acm.org/10.1145/337292.337436

[28] A. Sinha, A. Chandrakasan, JouleTrack - A Web Based Tool for
Software Energy Profiling, Proceedings on Design Automation

18

http://dx.doi.org/10.1109/TCAD.2005.859504
http://dx.doi.org/10.1109/TCAD.2005.859504
http://dx.doi.org/10.1145/1629435.1629469
http://dx.doi.org/10.1109/ICVD.2005.138
http://dx.doi.org/10.1145/1084834.1084874
http://dx.doi.org/10.1109/ISVLSI.2008.71
http://complex.offis.de
http://complex.offis.de
http://complex.offis.de
http://complex.offis.de/docs/8
http://complex.offis.de/docs/8
http://complex.offis.de/docs/8
http://dx.doi.org/10.1109/ISQED.2010.5450474
http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/default.aspx
http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/default.aspx
http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/default.aspx
http://calypto.com/en/products/catapult/overview
http://calypto.com/en/products/catapult/overview
http://www.cadence.com/products/sd/silicon_compiler/pages/default.aspx
http://www.cadence.com/products/sd/silicon_compiler/pages/default.aspx
http://www.forteds.com/
http://www.forteds.com/
http://dx.doi.org/10.1109/ISSOC.2005.1595645
http://dx.doi.org/10.1109/ICSCN.2007.350728
http://dx.doi.org/10.1109/ICSCN.2007.350728
http://dx.doi.org/10.1109/CCECE.2008.4564641
http://dx.doi.org/10.1109/CCECE.2008.4564641
http://dx.doi.org/10.1109/RSP.2006.33
http://dx.doi.org/10.1109/RSP.2006.33
http://dx.doi.org/10.1109/ICASSP.2008.4517885
http://dx.doi.org/10.1109/ICASSP.2008.4517885
http://doi.acm.org/10.1145/774789.774797
http://doi.acm.org/10.1145/774789.774797
http://dx.doi.org/10.1145/774789.774797
http://doi.acm.org/10.1145/774789.774797
http://doi.acm.org/10.1145/337292.337436
http://doi.acm.org/10.1145/337292.337436
http://doi.acm.org/10.1145/337292.337436
http://dx.doi.org/10.1145/337292.337436
http://doi.acm.org/10.1145/337292.337436

Conference (2001) 220–225.
[29] T. K. Tan, A. Raghunathan, G. Lakshminarayana, N. Jha, High-

level software energy macromodeling, Proceedings on Design
Automation Conference (2001) 605–610.

[30] P. P. Sotiriadis, A. P. Chandrakasan, A bus energy
model for deep submicron technology, IEEE Trans.
Very Large Scale Integr. Syst. 10 (3) (2002) 341–350.
doi:10.1109/TVLSI.2002.1043337.
URL http://dx.doi.org/10.1109/TVLSI.2002.

1043337

[31] M. B. Kamble, K. Ghose, Analytical energy dissipation mod-
els for low-power caches, in: Proceedings of the 1997 in-
ternational symposium on Low power electronics and design,
ISLPED ’97, ACM, New York, NY, USA, 1997, pp. 143–148.
doi:10.1145/263272.263310.
URL http://doi.acm.org/10.1145/263272.263310

[32] T. Givargis, F. Vahid, J. Henkel, S. Member, Evaluating Power
Consumption of Parameterized Cache and Bus Architectures
in System-on-a-Chip Designs, IEEE Trans. VLSI Systems 9
(2001) 500–508.

[33] R. Mehra, J. Rabaey, Behavioral Level Power Estimation and
Exploration, in: in Proc. Int. Wkshp. Low Power Design, 1994,
pp. 197–202.

[34] L. Kruse, E. Schmidt, G. Jochens, A. Stammermann, A. Schulz,
E. Macii, W. Nebel, Estimation of lower and upper bounds on
the power consumption from scheduled data flow graphs, IEEE
Trans. Very Large Scale Integr. Syst. 9 (1) (2001) 3–15. doi:

10.1109/92.920813.
URL http://dx.doi.org/10.1109/92.920813

[35] L. Zhong, S. Ravi, A. Raghunathan, N. K. Jha, Power
estimation for cycle-accurate functional descriptions of hard-
ware, in: Proceedings of the 2004 IEEE/ACM International
conference on Computer-aided design, ICCAD ’04, IEEE
Computer Society, Washington, DC, USA, 2004, pp. 668–675.
doi:10.1109/ICCAD.2004.1382659.
URL http://dx.doi.org/10.1109/ICCAD.2004.

1382659

[36] DVM, http://aldec.com.
[37] VHDLC, http://ostatic.com.
[38] FreeHDL-V2CC, http://linux.die.net/man/1/

freehdl-v2cc.
[39] W. Snyder, P. Wasson, D. Galbi, Verilator - Convert Verilog

code to C++/SystemC, http://www.veripool.org/wiki/
verilator.

[40] W. Stoye, D. Greaves, N. Richards, J. Green, Using RTL-to-
C++ Translation for Large SoC Concurrent Engineering: A
Case Study, IEEE Electronics Systems and Software 1 (1)
(2003) 20–25.

[41] Carbon Model Studio, http://carbondesignsystems.

com/.
[42] R. Görgen, J.-H. Oetjens, W. Nebel, Transformation of Event-

Driven HDL Blocks for Native Integration into Time-Driven
System Models, in: Proceedings of the Forum on specification
and Design Languages (FDL’2012), 2012.

[43] F. Bellard, Qemu, a fast and portable dynamic translator, in:
Proc. of the USENIX Annual Technical Conference, 2005, pp.
41–46.

[44] L. Benini, R. Hodgson, P. Siegel, System-level power estima-
tion and optimization, in: International Symposium on Low
Power Electronics and Design, ISLPED’98, ACM, Monterey,
CA, USA, 1998, pp. 173–178.

[45] C. Walravens, Y. Vanderperren, W. Dehaene, ActivaSC: A
highly efficient and non-intrusive extension for activity-based
analysis of SystemC models, in: 46th ACM/IEEE Design Au-
tomation Conference (DAC’2009), 2009, pp. 172–177.

[46] M. Giammarini, S. Orcioni, M. Conti, Powersim: Power Es-
timation with SystemC, in: Solutions on Embedded Systems,
Vol. 81 of Lecture Notes in Electrical Engineering, 2011, pp.
285–300. doi:10.1007/978-94-007-0638-5_20.

[47] M. Streubühr, R. Rosales, R. Hasholzner, C. Haubelt, J. Te-
ich, ESL Power and Performance Estimation for Heterogeneous
MPSoCs Using SystemC, in: Forum on specification and De-
sign Languages (FDL’2011), Oldenburg, Germany, 2011.

[48] Open Virtual Platforms (OVP) portal (2013).
URL http://www.ovpworld.org/

[49] S. McCanne, S. Floyd, NS Network Simulator – version 2, URL:
http://www.isi.edu/nsnam/ns.

[50] C. Zhu, O. Yang, J. Aweya, M. Ouellette, D. Montuno, A com-
parison of active queue management algorithms using the OP-
NET Modeler, IEEE Communications Magazine 40 (6) (2002)
158–167.

[51] Varga, A. OMNET++, OMNET++. OMNET++ Manuals,
URL: http://www.omnetpp.org.

[52] M. Chidester, A. George, Parallel simulation of chip-
multiprocessor architectures, ACM Trans. Model. Comput.
Simul. 12 (3) (2002) 176–200. doi:10.1145/643114.

643116.
URL http://doi.acm.org/10.1145/643114.643116

[53] G. Palermo, C. Silvano, V. Zaccaria, ReSPIR: a response
surface-based Pareto iterative refinement for application-
specific design space exploration, Trans. Comp.-Aided Des. In-
teg. Cir. Sys. 28 (12) (2009) 1816–1829. doi:10.1109/TCAD.
2009.2028681.
URL http://dx.doi.org/10.1109/TCAD.2009.2028681

[54] C. Silvano, W. Fornaciari, G. Palermo, V. Zaccaria, F. Cas-
tro, M. Martinez, S. Bocchio, R. Zafalon, P. Avasare, G. Van-
meerbeeck, C. Ykman-Couvreur, M. Wouters, C. Kavka, L. On-
esti, A. Turco, U. Bondi, G. Marianik, H. Posadas, E. Villar,
C. Wu, F. Dongrui, Z. Hao, T. Shibin, MULTICUBE: Multi-
objective Design Space Exploration of Multi-core Architectures,
in: 2010 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), 2010, pp. 488 –493.

[55] S. Bleuler, M. Laumanns, L. Thiele, E. Zitzler, PISA - A Plat-
form and Programming Language Independent Interface for
Search Algorithms (2003).
URL citeseer.ist.psu.edu/bleuler03pisa.html

[56] G. Mariani, G. Palermo, V. Zaccaria, C. Silvano, OSCAR: An
Optimization Methodology Exploiting Spatial Correlation in
Multicore Design Spaces, Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on 31 (5) (2012) 740–
753. doi:10.1109/TCAD.2011.2177457.

[57] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski, M. Schulz,
Efficiently exploring architectural design spaces via predictive
modeling, Proceedings of the 12th international conference on
Architectural support for programming languages and operating
systems 40 (5) (2006) 195–206. doi:http://doi.acm.org/
10.1145/1168917.1168882.

[58] C. Ykman-Couvreur, P. A. Hartmann, G. Palermo, F. Colas-
Bigey, L. San, Run-time Resource Management based
on Design Space Exploration, in: International Confer-
ence on Hardware/Software Codesign and System Synthesis,
CODES+ISSS’2012, Tampere, FI, 2012.

[59] G. Mariani, V. Sima, G. Palermo, V. Zaccaria, C. Silvano,
K. Bertels, Using multi-objective design space exploration to
enable run-time resource management for reconfigurable ar-
chitectures, in: Design, Automation Test in Europe Confer-
ence Exhibition (DATE), 2012, 2012, pp. 1379–1384. doi:

10.1109/DATE.2012.6176578.
[60] F. Herrera, H. Posadas, P. Penil, E. Villar, F. Ferrero, R. Va-

lencia, An MDD Methodology for Specification of Embed-

19

http://dx.doi.org/10.1109/TVLSI.2002.1043337
http://dx.doi.org/10.1109/TVLSI.2002.1043337
http://dx.doi.org/10.1109/TVLSI.2002.1043337
http://dx.doi.org/10.1109/TVLSI.2002.1043337
http://dx.doi.org/10.1109/TVLSI.2002.1043337
http://doi.acm.org/10.1145/263272.263310
http://doi.acm.org/10.1145/263272.263310
http://dx.doi.org/10.1145/263272.263310
http://doi.acm.org/10.1145/263272.263310
http://dx.doi.org/10.1109/92.920813
http://dx.doi.org/10.1109/92.920813
http://dx.doi.org/10.1109/92.920813
http://dx.doi.org/10.1109/92.920813
http://dx.doi.org/10.1109/92.920813
http://dx.doi.org/10.1109/ICCAD.2004.1382659
http://dx.doi.org/10.1109/ICCAD.2004.1382659
http://dx.doi.org/10.1109/ICCAD.2004.1382659
http://dx.doi.org/10.1109/ICCAD.2004.1382659
http://dx.doi.org/10.1109/ICCAD.2004.1382659
http://dx.doi.org/10.1109/ICCAD.2004.1382659
http://aldec.com
http://ostatic.com
http://linux.die.net/man/1/freehdl-v2cc
http://linux.die.net/man/1/freehdl-v2cc
http://www.veripool.org/wiki/verilator
http://www.veripool.org/wiki/verilator
http://carbondesignsystems.com/
http://carbondesignsystems.com/
http://dx.doi.org/10.1007/978-94-007-0638-5_20
http://www.ovpworld.org/
http://www.ovpworld.org/
http://doi.acm.org/10.1145/643114.643116
http://doi.acm.org/10.1145/643114.643116
http://dx.doi.org/10.1145/643114.643116
http://dx.doi.org/10.1145/643114.643116
http://doi.acm.org/10.1145/643114.643116
http://dx.doi.org/10.1109/TCAD.2009.2028681
http://dx.doi.org/10.1109/TCAD.2009.2028681
http://dx.doi.org/10.1109/TCAD.2009.2028681
http://dx.doi.org/10.1109/TCAD.2009.2028681
http://dx.doi.org/10.1109/TCAD.2009.2028681
http://dx.doi.org/10.1109/TCAD.2009.2028681
file:citeseer.ist.psu.edu/bleuler03pisa.html
file:citeseer.ist.psu.edu/bleuler03pisa.html
file:citeseer.ist.psu.edu/bleuler03pisa.html
citeseer.ist.psu.edu/bleuler03pisa.html
http://dx.doi.org/10.1109/TCAD.2011.2177457
http://dx.doi.org/http://doi.acm.org/10.1145/1168917.1168882
http://dx.doi.org/http://doi.acm.org/10.1145/1168917.1168882
http://dx.doi.org/10.1109/DATE.2012.6176578
http://dx.doi.org/10.1109/DATE.2012.6176578

ded Systems and Automatic Generation of Fast Configurable
and Executable Performance Models, in: International Confer-
ence on Hardware/Software Codesign and System Synthesis,
CODES+ISSS’2012, Tampere, FI, 2012.

[61] F. Ferrero, R. Valencia, F. Herrera, E. Villar, L. Lavagno,
D. Quaglia, System specification methodology using MARTE
and Stateflow, Tech. Rep. COMPLEX/GMV/R/D2.1.1/1.1,
COMPLEX project deliverable (Dec. 2010).
URL http://complex.offis.de/docs/11

[62] F. Herrera, P. Peñil, E. Villar, F. Ferrero, R. Valen-
cia, L. Lavagno, D. Quaglia, SystemC generation
tools from MARTE and Stateflow, Tech. Rep. COM-
PLEX/UC/P/D2.1.2/1.0, COMPLEX project deliverable
(Jun. 2011).
URL http://complex.offis.de/docs/21

[63] K. Grüttner, C. Grabbe, F. Oppenheimer, W. Nebel, Object Ori-
ented Design and Synthesis of Communication in Hardware-
/Software Systems with OSSS, in: Proceedings of the SASIMI
2007, 2007.

[64] K. Grüttner, H. Andreas, P. A. Hartmann, A. Schallenberg,
C. Brunzema, OSSS - A Library for Synthesisable System Level
Models in SystemCTM (2008).
URL http://www.system-synthesis.org

[65] K. Hylla, P. González, P. Sánchez, F. Herrera, Final report on
custom hardware estimation and model generation, Tech. Rep.
COMPLEX/OFFIS/P/D2.4.2/1.0, COMPLEX project deliver-
able (Jan. 2012).
URL http://complex.offis.de/docs/33

[66] D. Helms, G. Ehmen, W. Nebel, Analysis and Modeling of
Subthreshold Leakage of RT-Components under PTV and State
Variation, Proceedings on International Symposium on Low
Power Electronics and Design.

[67] K. Hylla, P. A. Hartmann, D. Helms, W. Nebel, Early Power &
Timing Estimation of Custom Hardware Blocks based on Au-
tomatically Generated Combinatorial Macros, in: C. Haubelt,
D. Timmermann (Eds.), MBMV, Institut für Angewandte
Mikroelektronik und Datentechnik, Fakultät für Informatik und
Elektrotechnik, Universität Rostock, 2013, pp. 147–158.

[68] C. Brandolese, G. Palermo, W. Fornaciari, H. Posadas, F. Her-
rera, P. Peñil, E. Villar, F. Ferrero, R. Valencia, B. Vanthournout,
Final report on embedded software estimation and model gener-
ation, Tech. Rep. COMPLEX/PoliMi/R/D2.2.2/1.0, COMPLEX
project deliverable (Jan. 2012).
URL http://complex.offis.de/docs/31

[69] C. Brandolese, W. Fornaciari, Software Energy Optimization
Through Fine-Grained Function-Level Voltage and Frequency
Scaling, in: International Conference on Hardware/Software
Codesign and System Synthesis, CODES+ISSS’2012, Tampere,
FI, 2012.

[70] D. Lorenz, P. A. Hartmann, K. Grüttner, W. Nebel, Non–
invasive Power Simulation at System–Level with SystemC, in:
International Workshop on Power and Timing Modeling, Op-
timization and Simulation, PATMOS’2012, Newcastle upon
Tyne, UK, 2012.

[71] D. Lorenz, K. Grüttner, N. Bombieri, V. Guarnieri, S. Boc-
chio, From RTL IP to Functional System-Level Models
with Extra-Functional Properties, in: International Confer-
ence on Hardware/Software Codesign and System Synthesis,
CODES+ISSS’2012, 2012.

[72] S. Bocchio, P. A. Hartmann, D. Lorenz, D. Quaglia, Final report
and tools on platform IP components estimation and model gen-
eration, Tech. Rep. COMPLEX/ST-I/P/D2.3.2/1.1, COMPLEX
project deliverable (May 2012).
URL http://complex.offis.de/docs/34

[73] SystemC Network Simulation Library v.2 (2012).

URL http://sourceforge.net/projects/scnsl

[74] P. Sayyah, M. Lazarescu, D. Quaglia, E. Ebeid, S. Boc-
chio, A. Rosti, Network-aware Design-Space Exploration of a
Power-Efficient Embedded Application, in: International Con-
ference on Hardware/Software Codesign and System Synthesis,
CODES+ISSS’2012, Tampere, FI, 2012.

[75] P. Sayyah, F. Stefanni, L. Lavagno, D. Quaglia, SystemC model
generation for realistic simulation of networked embedded sys-
tems, in: 15th Euromicro Conference on Digital System Design,
DSD’2012, Cesme-Izmir, TR, 2012.

20

http://complex.offis.de/docs/11
http://complex.offis.de/docs/11
http://complex.offis.de/docs/11
http://complex.offis.de/docs/21
http://complex.offis.de/docs/21
http://complex.offis.de/docs/21
http://www.system-synthesis.org
http://www.system-synthesis.org
http://www.system-synthesis.org
http://complex.offis.de/docs/33
http://complex.offis.de/docs/33
http://complex.offis.de/docs/33
http://complex.offis.de/docs/31
http://complex.offis.de/docs/31
http://complex.offis.de/docs/31
http://complex.offis.de/docs/34
http://complex.offis.de/docs/34
http://complex.offis.de/docs/34
http://complex.offis.de/docs/34
http://sourceforge.net/projects/scnsl
http://sourceforge.net/projects/scnsl

Chantal Ykman-Couvreur is mathematician. She first worked at PHILIPS
Research Laboratory of Belgium, from November 1979 until June 1991. Her
main activities were concentrated on information theory and coding,
cryptography, and multi-level logic synthesis for VLSI circuits. She
joined IMEC in September 1991. At IMEC, her main research projects
have been synthesis of asynchronous control circuits, dynamic memory
management and task concurrency management at the system
level, multi-processor SoC design. She is currently active in run-time
management for embedded multi-core platforms.

http://ees.elsevier.com/micpro/download.aspx?id=75104&guid=7595a982-fa71-40ec-9c7f-c5b1483d5899&scheme=1

Davide Quaglia received his PhD in Computer Engineering from Politecnico di Torino (Italy) in 2003.
Currently he is Assistant Professor at the Computer Science Department of the University of Verona
(Italy). His current research interests include Networked Embedded Systems, Networked Control
Systems, Cyber-Physical Systems. He is also co-founder and active project leader of EDALab s.r.l., a
spin-off company of the University of Verona.

http://ees.elsevier.com/micpro/download.aspx?id=75106&guid=b91223e2-84a6-4681-836a-52a8ae84fdd3&scheme=1

Prof. Eugenio Villar got his Ph.D. in Electronics from the University of
Cantabria in 1984. Since 1992 is Full Professor at the Electronics Technology,
Automatics and Systems Engineering Department of the University of Cantabria
where he is currently the responsible for the area of HW/SW Embedded Systems
Design at the Microelectronics Engineering Group. His research activity has
been always related with system specification and modeling. His current
research interests cover system specification and design, MPSoC modeling
and performance estimation using SystemC and UML/Marte. He is author of more
than 130 papers in international conferences, journals and books in the area
of specification and design of electronic systems. Prof. Villar served in
several technical committees of international conferences like the VHDL
Forum, Euro-VHDL, EuroDAC, DATE, VLSI-SoC and FDL. He has participated in
several international projects in electronic system design under the FP5, FP6
and FP7, Itea, Medea-Catrene and Artemis programs. He is the representative
of the University of Cantabria in the ArtemisIA JU.

http://ees.elsevier.com/micpro/download.aspx?id=75108&guid=591a0cf8-7b7b-4b81-b19d-89b87394dcac&scheme=1

Francisco Ferrero studied Telecommunications Engineering at the Carlos III
University of Madrid. He has been involved in several projects related with
avionics and embedded software for the aeronautics industry. He is the technical
responsible in IDEFIX, an European R&D programme for the definition,
analysis and exercise of the development process for an Integrated Modular
Avionics (IMA) system based on STANAG 4626 standards. Currently he is involved
in various activities related to the development, integration and qualification
of ASAAC applications, and analysis of tool frameworks to support IMA
development. He is experienced with modelling tools for analysing of system
configuration and resource provision.

http://ees.elsevier.com/micpro/download.aspx?id=75109&guid=238574cb-56df-4fc7-9f88-72059eebc74a&scheme=1

Kim Grüttner received a Diploma degree in Computer Science from Carl von
Ossietzky University Oldenburg, Germany in 2005, and is currently working
on his PhD thesis on “Application Mapping and Communication Synthesis for
Object-Oriented Platform Based Design”. He joined OFFIS research institute
in 2005 and worked in the European projects ICODES and ANDRES. Since 10/2008
he is manager of the “Hardware/Software Design Methodology” group, and the
technical coordinator of the COMPLEX European integrated project. His research
interests are system-level design languages, system synthesis methodologies,
and modeling of extra-functional properties at system-level.

http://ees.elsevier.com/micpro/download.aspx?id=75111&guid=8911f3a5-aa21-4090-a1dc-48b39aef9d8e&scheme=1

William Fornaciari is Associate Professor at Politecnico di Milano,
Dipartimento di Elettronica e Informazione. He published six books and
over 150 papers in international journals and conference proceedings,
collecting four best paper awards, one certification of appreciation
from IEEE and holds two international patents on low power design solutions.
Since 1993 he is member of program and scientific committees and chair of
international conferences in the field of computer architectures, EDA and
system-level design.
Since 1997 has been involved in 11 EU-funded international projects and
he has been part of the pool of experts of the Call For Tender No.964-2005
– WING – Watching IST INnovation and knowledge, studying the impact of FP5
and FP6 expenditure for the EC, in the perspective to support the
identification of FP7 and Horizon2020 research directions.
He is also project reviewer for the European Commission and national
research bodies in Europe. During the last 20 years he has worked as
consultant for both management and technical issues for many ICT industries,
gaining a relevant experience in technology transfer and product development.
His current research interests include embedded systems design methodologies,
real-time operating systems, energy-aware design of sw and hw, runtime
management of resources, reconfigurable computing and wireless sensor networks,
design and optimization of multi-core systems, NoC design and optimization,
reliability.

http://ees.elsevier.com/micpro/download.aspx?id=75113&guid=5889e804-b105-4b6d-8d8d-4b46a33cae6c&scheme=1

Wolfgang Nebel holds a Dipl.-Ing. degree in Electrical Engineering from the
University of Hanover and a Dr.-Ing. degree from the Computer Science
Department of the University of Kaiserslautern. In 1987 Nebel joined Philips
Semiconductors, Hamburg, and worked as software engineer, CAD project manager
and finally became CAD software development manager. In 1993 he was appointed
to the professorship VLSI design at the department of computer science at the
Carl von Ossietzky University of Oldenburg. From 1996 to 1998 he served as
Dean of his department. Additionally since 1998 Nebel has been a member of the
executive board of the OFFIS research center, an institute for information
technology which is associated with Oldenburg University. From January 2001
December 2002 Nebel served as vice-president of Oldenburg University. Since
June 2005 he has been chairman of the OFFIS - Institute for Information
Technology. Wolfgang Nebel is and has been involved in several international
conferences as program chair or a general chair. He is also active in several
additional program committees and professional organizations (IEEE Fellow).
His research interest are methodologies and tools for embedded system design,
in particular: object oriented HW/SW specification and synthesis as well as
design for low power.

http://ees.elsevier.com/micpro/download.aspx?id=75115&guid=44ceb0b5-85b8-4934-8802-511a392205dc&scheme=1

http://ees.elsevier.com/micpro/download.aspx?id=75103&guid=301b4639-4570-4cad-b59a-da5bece7ab21&scheme=1

http://ees.elsevier.com/micpro/download.aspx?id=75105&guid=2d47b7ab-05d8-46d0-8f5d-208f1871b7fa&scheme=1

http://ees.elsevier.com/micpro/download.aspx?id=75107&guid=a3573f21-7a7d-4184-bef2-2dfa5eb4b78a&scheme=1

http://ees.elsevier.com/micpro/download.aspx?id=75110&guid=9eb8fb98-cd3b-4d77-8b58-f824dff54a24&scheme=1

http://ees.elsevier.com/micpro/download.aspx?id=75112&guid=60299af3-1ab2-4297-a576-d7dcba1fb20d&scheme=1

http://ees.elsevier.com/micpro/download.aspx?id=75114&guid=b1f76576-a86d-4f16-bb22-7df1cb96f952&scheme=1

