232 research outputs found

    Medical SLAM in an autonomous robotic system

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-operative morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilities by observing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted instruments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This thesis addresses the ambitious goal of achieving surgical autonomy, through the study of the anatomical environment by Initially studying the technology present and what is needed to analyze the scene: vision sensors. A novel endoscope for autonomous surgical task execution is presented in the first part of this thesis. Which combines a standard stereo camera with a depth sensor. This solution introduces several key advantages, such as the possibility of reconstructing the 3D at a greater distance than traditional endoscopes. Then the problem of hand-eye calibration is tackled, which unites the vision system and the robot in a single reference system. Increasing the accuracy in the surgical work plan. In the second part of the thesis the problem of the 3D reconstruction and the algorithms currently in use were addressed. In MIS, simultaneous localization and mapping (SLAM) can be used to localize the pose of the endoscopic camera and build ta 3D model of the tissue surface. Another key element for MIS is to have real-time knowledge of the pose of surgical tools with respect to the surgical camera and underlying anatomy. Starting from the ORB-SLAM algorithm we have modified the architecture to make it usable in an anatomical environment by adding the registration of the pre-operative information of the intervention to the map obtained from the SLAM. Once it has been proven that the slam algorithm is usable in an anatomical environment, it has been improved by adding semantic segmentation to be able to distinguish dynamic features from static ones. All the results in this thesis are validated on training setups, which mimics some of the challenges of real surgery and on setups that simulate the human body within Autonomous Robotic Surgery (ARS) and Smart Autonomous Robotic Assistant Surgeon (SARAS) projects

    Image guided robotic assistance for the diagnosis and treatment of tumor

    Get PDF
    The aim of this thesis is to demonstrate the feasibility and the potentiality of introduction of robotics and image guidance in the overall oncologic workflow, from the diagnosis to the treatment phase. The popularity of robotics in the operating room has grown in recent years. Currently the most popular systems is the da Vinci telemanipulator (Intuitive Surgical), it is based on a master-slave control, for minimally invasive surgery and it is used in several surgical fields such us urology, general, gynecology, cardiothoracic. An accurate study of this system, from a technological field of view, has been conducted addressing all drawbacks and advantages of this system. The da Vinci System creates an immersive operating environment for the surgeon by providing both high quality stereo visualization and a human-machine interface that directly connects the surgeon’s hands to the motion of the surgical tool tips inside the patient’s body. It has undoubted advantages for the surgeon work and for the patient health, at least for some interventions, while its very high costs leaves many doubts on its price benefit ratio. In the robotic surgery field many researchers are working on the optimization and miniaturization robots mechanic, while others are trying to obtain smart functionalities to realize robotic systems, that, “knowing” the patient anatomy from radiological images, can assists the surgeon in an active way. Regarding the second point, image guided systems can be useful to plan and to control medical robots motion and to provide the surgeon pre-operative and intra-operative images with augmented reality visualization to enhance his/her perceptual capacities and, as a consequence, to improve the quality of treatments. To demonstrate this thesis some prototypes has been designed, implemented and tested. The development of image guided medical devices, comprehensive of augmented reality, virtual navigation and robotic surgical features, requires to address several problems. The first ones are the choosing of the robotic platform and of the image source to employ. An industrial anthropomorphic arm has been used as testing platform. The idea of integrating industrial robot components in the clinical workflow has been supported by the da Vinci technical analysis. The algorithms and methods developed, regarding in particular robot calibration, based on literature theories and on an easily integration in the clinical scenario, can be adapted to each anthropomorphic arm. In this way this work can be integrated with light-weight robots, for industrial or clinical use, able to work in close contact to humans, which will become numerous in the early future. Regarding the medical image source, it has been decided to work with ultrasound imaging. Two-dimensional ultrasound imaging is widely used in clinical practice because is not dangerous for the patient, inexpensive, compact and it is a highly flexible imaging that allows users to study many anatomic structures. It is routinely used for diagnosis and as guidance in percutaneous treatments. However the use of 2D ultrasound imaging presents some disadvantages that require great ability of the user: it requires that the clinician mentally integrates many images to reconstruct a complete idea of the anatomy in 3D. Furthermore the freehand control of the probe make it difficult to individuate anatomic positions and orientations and probe repositioning to reach a particular location. To overcome these problems it has been developed an image guided system that fuse 2D US real time images with routinely CT or MRI 3D images, previously acquired from the patient, to enhance clinician orientation and probe guidance. The implemented algorithms for robot calibration and US image guidance has been used to realize two applications responding to specific clinical needs. The first one to speed up the execution of routinely and very recurrently procedures like percutaneous biopsy or ablation. The second one to improve a new completely non invasive type of treatment for solid tumors, the HIFU (High Intensity Focused Ultrasound). An ultrasound guided robotic system has been developed to assist the clinician to execute complicated biopsies, or percutaneous ablations, in particular for deep abdominal organs. It was developed an integrated system that provides the clinician two types of assistance: a mixed reality visualization allows accurate and easy planning of needle trajectory and target reaching verification; the robot arm equipped with a six-degree-of-freedom force sensor allows the precise positioning of the needle holder and allows the clinician to adjust, by means of a cooperative control, the planned trajectory to overcome needle deflection and target motion. The second application consists in an augmented reality navigation system for HIFU treatment. HIFU represents a completely non invasive method for treatment of solid tumors, hemostasis and other vascular features in human tissues. The technology for HIFU treatments is still evolving and the systems available on the market have some limitations and drawbacks. A disadvantage resulting from our experience with the machinery available in our hospital (JC200 therapeutic system Haifu (HIFU) by Tech Co., Ltd, Chongqing), which is similar to other analogous machines, is the long time required to perform the procedure due to the difficulty to find the target, using the remote motion of an ultrasound probe under the patient. This problem has been addressed developing an augmented reality navigation system to enhance US guidance during HIFU treatments allowing an easy target localization. The system was implemented using an additional free hand ultrasound probe coupled with a localizer and CT fused imaging. It offers a simple and an economic solution to an easy HIFU target localization. This thesis demonstrates the utility and usability of robots for diagnosis and treatment of the tumor, in particular the combination of automatic positioning and cooperative control allows the surgeon and the robot to work in synergy. Further the work demonstrates the feasibility and the potentiality of the use of a mixed reality navigation system to facilitate the target localization and consequently to reduce the times of sittings, to increase the number of possible diagnosis/treatments and to decrease the risk of potential errors. The proposed solutions for the integration of robotics and image guidance in the overall oncologic workflow, take into account current available technologies, traditional clinical procedures and cost minimization

    Medical SLAM in an autonomous robotic system

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-operative morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilities by observing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted instruments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This thesis addresses the ambitious goal of achieving surgical autonomy, through the study of the anatomical environment by Initially studying the technology present and what is needed to analyze the scene: vision sensors. A novel endoscope for autonomous surgical task execution is presented in the first part of this thesis. Which combines a standard stereo camera with a depth sensor. This solution introduces several key advantages, such as the possibility of reconstructing the 3D at a greater distance than traditional endoscopes. Then the problem of hand-eye calibration is tackled, which unites the vision system and the robot in a single reference system. Increasing the accuracy in the surgical work plan. In the second part of the thesis the problem of the 3D reconstruction and the algorithms currently in use were addressed. In MIS, simultaneous localization and mapping (SLAM) can be used to localize the pose of the endoscopic camera and build ta 3D model of the tissue surface. Another key element for MIS is to have real-time knowledge of the pose of surgical tools with respect to the surgical camera and underlying anatomy. Starting from the ORB-SLAM algorithm we have modified the architecture to make it usable in an anatomical environment by adding the registration of the pre-operative information of the intervention to the map obtained from the SLAM. Once it has been proven that the slam algorithm is usable in an anatomical environment, it has been improved by adding semantic segmentation to be able to distinguish dynamic features from static ones. All the results in this thesis are validated on training setups, which mimics some of the challenges of real surgery and on setups that simulate the human body within Autonomous Robotic Surgery (ARS) and Smart Autonomous Robotic Assistant Surgeon (SARAS) projects

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    AUGMENTED REALITY AND INTRAOPERATIVE C-ARM CONE-BEAM COMPUTED TOMOGRAPHY FOR IMAGE-GUIDED ROBOTIC SURGERY

    Get PDF
    Minimally-invasive robotic-assisted surgery is a rapidly-growing alternative to traditionally open and laparoscopic procedures; nevertheless, challenges remain. Standard of care derives surgical strategies from preoperative volumetric data (i.e., computed tomography (CT) and magnetic resonance (MR) images) that benefit from the ability of multiple modalities to delineate different anatomical boundaries. However, preoperative images may not reflect a possibly highly deformed perioperative setup or intraoperative deformation. Additionally, in current clinical practice, the correspondence of preoperative plans to the surgical scene is conducted as a mental exercise; thus, the accuracy of this practice is highly dependent on the surgeon’s experience and therefore subject to inconsistencies. In order to address these fundamental limitations in minimally-invasive robotic surgery, this dissertation combines a high-end robotic C-arm imaging system and a modern robotic surgical platform as an integrated intraoperative image-guided system. We performed deformable registration of preoperative plans to a perioperative cone-beam computed tomography (CBCT), acquired after the patient is positioned for intervention. From the registered surgical plans, we overlaid critical information onto the primary intraoperative visual source, the robotic endoscope, by using augmented reality. Guidance afforded by this system not only uses augmented reality to fuse virtual medical information, but also provides tool localization and other dynamic intraoperative updated behavior in order to present enhanced depth feedback and information to the surgeon. These techniques in guided robotic surgery required a streamlined approach to creating intuitive and effective human-machine interferences, especially in visualization. Our software design principles create an inherently information-driven modular architecture incorporating robotics and intraoperative imaging through augmented reality. The system's performance is evaluated using phantoms and preclinical in-vivo experiments for multiple applications, including transoral robotic surgery, robot-assisted thoracic interventions, and cocheostomy for cochlear implantation. The resulting functionality, proposed architecture, and implemented methodologies can be further generalized to other C-arm-based image guidance for additional extensions in robotic surgery

    Augmented reality (AR) for surgical robotic and autonomous systems: State of the art, challenges, and solutions

    Get PDF
    Despite the substantial progress achieved in the development and integration of augmented reality (AR) in surgical robotic and autonomous systems (RAS), the center of focus in most devices remains on improving end-effector dexterity and precision, as well as improved access to minimally invasive surgeries. This paper aims to provide a systematic review of different types of state-of-the-art surgical robotic platforms while identifying areas for technological improvement. We associate specific control features, such as haptic feedback, sensory stimuli, and human-robot collaboration, with AR technology to perform complex surgical interventions for increased user perception of the augmented world. Current researchers in the field have, for long, faced innumerable issues with low accuracy in tool placement around complex trajectories, pose estimation, and difficulty in depth perception during two-dimensional medical imaging. A number of robots described in this review, such as Novarad and SpineAssist, are analyzed in terms of their hardware features, computer vision systems (such as deep learning algorithms), and the clinical relevance of the literature. We attempt to outline the shortcomings in current optimization algorithms for surgical robots (such as YOLO and LTSM) whilst providing mitigating solutions to internal tool-to-organ collision detection and image reconstruction. The accuracy of results in robot end-effector collisions and reduced occlusion remain promising within the scope of our research, validating the propositions made for the surgical clearance of ever-expanding AR technology in the future

    Interfaces for Modular Surgical Planning and Assistance Systems

    Get PDF
    Modern surgery of the 21st century relies in many aspects on computers or, in a wider sense, digital data processing. Department administration, OR scheduling, billing, and - with increasing pervasion - patient data management are performed with the aid of so called Surgical Information Systems (SIS) or, more general, Hospital Information Systems (HIS). Computer Assisted Surgery (CAS) summarizes techniques which assist a surgeon in the preparation and conduction of surgical interventions. Today still predominantly based on radiology images, these techniques include the preoperative determination of an optimal surgical strategy and intraoperative systems which aim at increasing the accuracy of surgical manipulations. CAS is a relatively young field of computer science. One of the unsolved "teething troubles" of CAS is the absence of technical standards for the interconnectivity of CAS system. Current CAS systems are usually "islands of information" with no connection to other devices within the operating room or hospital-wide information systems. Several workshop reports and individual publications point out that this situation leads to ergonomic, logistic, and economic limitations in hospital work. Perioperative processes are prolonged by the manual installation and configuration of an increasing amount of technical devices. Intraoperatively, a large amount of the surgeons'' attention is absorbed by the requirement to monitor and operate systems. The need for open infrastructures which enable the integration of CAS devices from different vendors in order to exchange information as well as commands among these devices through a network has been identified by numerous experts with backgrounds in medicine as well as engineering. This thesis contains two approaches to the integration of CAS systems: - For perioperative data exchange, the specification of new data structures as an amendment to the existing DICOM standard for radiology image management is presented. The extension of DICOM towards surgical application allows for the seamless integration of surgical planning and reporting systems into DICOM-based Picture Archiving and Communication Systems (PACS) as they are installed in most hospitals for the exchange and long-term archival of patient images and image-related patient data. - For the integration of intraoperatively used CAS devices, such as, e.g., navigation systems, video image sources, or biosensors, the concept of a surgical middleware is presented. A c++ class library, the TiCoLi, is presented which facilitates the configuration of ad-hoc networks among the modules of a distributed CAS system as well as the exchange of data streams, singular data objects, and commands between these modules. The TiCoLi is the first software library for a surgical field of application to implement all of these services. To demonstrate the suitability of the presented specifications and their implementation, two modular CAS applications are presented which utilize the proposed DICOM extensions for perioperative exchange of surgical planning data as well as the TiCoLi for establishing an intraoperative network of autonomous, yet not independent, CAS modules.Die moderne Hochleistungschirurgie des 21. Jahrhunderts ist auf vielerlei Weise abhängig von Computern oder, im weiteren Sinne, der digitalen Datenverarbeitung. Administrative Abläufe, wie die Erstellung von Nutzungsplänen für die verfügbaren technischen, räumlichen und personellen Ressourcen, die Rechnungsstellung und - in zunehmendem Maße - die Verwaltung und Archivierung von Patientendaten werden mit Hilfe von digitalen Informationssystemen rationell und effizient durchgeführt. Innerhalb der Krankenhausinformationssysteme (KIS, oder englisch HIS) stehen für die speziellen Bedürfnisse der einzelnen Fachabteilungen oft spezifische Informationssysteme zur Verfügung. Chirurgieinformationssysteme (CIS, oder englisch SIS) decken hierbei vor allen Dingen die Bereiche Operationsplanung sowie Materialwirtschaft für spezifisch chirurgische Verbrauchsmaterialien ab. Während die genannten HIS und SIS vornehmlich der Optimierung administrativer Aufgaben dienen, stehen die Systeme der Computerassistierten Chirugie (CAS) wesentlich direkter im Dienste der eigentlichen chirugischen Behandlungsplanung und Therapie. Die CAS verwendet Methoden der Robotik, digitalen Bild- und Signalverarbeitung, künstlichen Intelligenz, numerischen Simulation, um nur einige zu nennen, zur patientenspezifischen Behandlungsplanung und zur intraoperativen Unterstützung des OP-Teams, allen voran des Chirurgen. Vor allen Dingen Fortschritte in der räumlichen Verfolgung von Werkzeugen und Patienten ("Tracking"), die Verfügbarkeit dreidimensionaler radiologischer Aufnahmen (CT, MRT, ...) und der Einsatz verschiedener Robotersysteme haben in den vergangenen Jahrzehnten den Einzug des Computers in den Operationssaal - medienwirksam - ermöglicht. Weniger prominent, jedoch keinesfalls von untergeordnetem praktischen Nutzen, sind Beispiele zur automatisierten Überwachung klinischer Messwerte, wie etwa Blutdruck oder Sauerstoffsättigung. Im Gegensatz zu den meist hochgradig verteilten und gut miteinander verwobenen Informationssystemen für die Krankenhausadministration und Patientendatenverwaltung, sind die Systeme der CAS heutzutage meist wenig oder überhaupt nicht miteinander und mit Hintergrundsdatenspeichern vernetzt. Eine Reihe wissenschaftlicher Publikationen und interdisziplinärer Workshops hat sich in den vergangen ein bis zwei Jahrzehnten mit den Problemen des Alltagseinsatzes von CAS Systemen befasst. Mit steigender Intensität wurde hierbei auf den Mangel an infrastrukturiellen Grundlagen für die Vernetzung intraoperativ eingesetzter CAS Systeme miteinander und mit den perioperativ eingesetzten Planungs-, Dokumentations- und Archivierungssystemen hingewiesen. Die sich daraus ergebenden negativen Einflüsse auf die Effizienz perioperativer Abläufe - jedes Gerät muss manuell in Betrieb genommen und mit den spezifischen Daten des nächsten Patienten gefüttert werden - sowie die zunehmende Aufmerksamkeit, welche der Operateur und sein Team auf die Überwachung und dem Betrieb der einzelnen Geräte verwenden muss, werden als eine der "Kinderkrankheiten" dieser relativ jungen Technologie betrachtet und stehen einer Verbreitung über die Grenzen einer engagierten technophilen Nutzergruppe hinaus im Wege. Die vorliegende Arbeit zeigt zwei parallel von einander (jedoch, im Sinne der Schnittstellenkompatibilität, nicht gänzlich unabhängig voneinander) zu betreibende Ansätze zur Integration von CAS Systemen. - Für den perioperativen Datenaustausch wird die Spezifikation zusätzlicher Datenstrukturen zum Transfer chirurgischer Planungsdaten im Rahmen des in radiologischen Bildverarbeitungssystemen weit verbreiteten DICOM Standards vorgeschlagen und an zwei Beispielen vorgeführt. Die Erweiterung des DICOM Standards für den perioperativen Einsatz ermöglicht hierbei die nahtlose Integration chirurgischer Planungssysteme in existierende "Picture Archiving and Communication Systems" (PACS), welche in den meisten Fällen auf dem DICOM Standard basieren oder zumindest damit kompatibel sind. Dadurch ist einerseits der Tatsache Rechnung getragen, dass die patientenspezifische OP-Planung in hohem Masse auf radiologischen Bildern basiert und andererseits sicher gestellt, dass die Planungsergebnisse entsprechend der geltenden Bestimmungen langfristig archiviert und gegen unbefugten Zugriff geschützt sind - PACS Server liefern hier bereits wohlerprobte Lösungen. - Für die integration intraoperativer CAS Systeme, wie etwa Navigationssysteme, Videobildquellen oder Sensoren zur Überwachung der Vitalparameter, wird das Konzept einer "chirurgischen Middleware" vorgestellt. Unter dem Namen TiCoLi wurde eine c++ Klassenbibliothek entwickelt, auf deren Grundlage die Konfiguration von ad-hoc Netzwerken während der OP-Vorbereitung mittels plug-and-play Mechanismen erleichtert wird. Nach erfolgter Konfiguration ermöglicht die TiCoLi den Austausch kontinuierlicher Datenströme sowie einzelner Datenpakete und Kommandos zwischen den Modulen einer verteilten CAS Anwendung durch ein Ethernet-basiertes Netzwerk. Die TiCoLi ist die erste frei verfügbare Klassenbibliothek welche diese Funktionalitäten dediziert für einen Einsatz im chirurgischen Umfeld vereinigt. Zum Nachweis der Tauglichkeit der gezeigten Spezifikationen und deren Implementierungen, werden zwei modulare CAS Anwendungen präsentiert, welche die vorgeschlagenen DICOM Erweiterungen zum perioperativen Austausch von Planungsergebnissen sowie die TiCoLi zum intraoperativen Datenaustausch von Messdaten unter echzeitnahen Anforderungen verwenden

    Medical robots with potential applications in participatory and opportunistic remote sensing: A review

    Get PDF
    Among numerous applications of medical robotics, this paper concentrates on the design, optimal use and maintenance of the related technologies in the context of healthcare, rehabilitation and assistive robotics, and provides a comprehensive review of the latest advancements in the foregoing field of science and technology, while extensively dealing with the possible applications of participatory and opportunistic mobile sensing in the aforementioned domains. The main motivation for the latter choice is the variety of such applications in the settings having partial contributions to functionalities such as artery, radiosurgery, neurosurgery and vascular intervention. From a broad perspective, the aforementioned applications can be realized via various strategies and devices benefiting from detachable drives, intelligent robots, human-centric sensing and computing, miniature and micro-robots. Throughout the paper tens of subjects, including sensor-fusion, kinematic, dynamic and 3D tissue models are discussed based on the existing literature on the state-of-the-art technologies. In addition, from a managerial perspective, topics such as safety monitoring, security, privacy and evolutionary optimization of the operational efficiency are reviewed

    Investigating Ultrasound-Guided Autonomous Assistance during Robotic Minimally Invasive Surgery

    Get PDF
    Despite it being over twenty years since the first introduction of robotic surgical systems in common surgical practice, they are still far from widespread across all healthcare systems, surgical disciplines and procedures. At the same time, the systems that are used act as mere tele-manipulators with motion scaling and have yet to make use of the immense potential of their sensory data in providing autonomous assistance during surgery or perform tasks themselves in a semi-autonomous fashion. Equivalently, the potential of using intracorporeal imaging, particularly Ultrasound (US) during surgery for improved tumour localisation remains largely unused. Aside from the cost factors, this also has to do with the necessity of adequate training for scan interpretation and the difficulty of handling an US probe near the surgical sight. Additionally, the potential for automation that is being explored in extracorporeal US using serial manipulators does not yet translate into ultrasound-enabled autonomous assistance in a surgical robotic setting. Motivated by this research gap, this work explores means to enable autonomous intracorporeal ultrasound in a surgical robotic setting. Based around the the da Vinci Research Kit (dVRK), it first develops a surgical robotics platform that allows for precise evaluation of the robot’s performance using Infrared (IR) tracking technology. Based on this initial work, it then explores the possibility to provide autonomous ultrasound guidance during surgery. Therefore, it develops and assesses means to improve kinematic accuracy despite manipulator backlash as well as enabling adequate probe position with respect to the tissue surface and anatomy. Founded on the acquired anatomical information, this thesis explores the integration of a second robotic arm and its usage for autonomous assistance. Starting with an autonomously acquired tumor scan, the setup is extended and methods devised to enable the autonomous marking of margined tumor boundaries on the tissue surface both in a phantom as well as in an ex-vivo experiment on porcine liver. Moving towards increased autonomy, a novel minimally invasive High Intensity Focused Ultrasound (HIFUS) transducer is integrated into the robotic setup including a sensorised, water-filled membrane for sensing interaction forces with the tissue surface. For this purpose an extensive material characterisation is caried out, exploring different surface material pairings. Finally, the proposed system, including trajectory planning and a hybrid-force position control scheme are evaluated in a benchtop ultrasound phantom trial
    • …
    corecore