Interfaces for Modular Surgical
Planning and Assistance Systems

Von der Fakultit fiir Mathematik und Informatik
der Universitit Leipzig
angenommene

DISSERTATION

zur Erlangung des Akademischen Grades

DOKTOR-Ingenieur
(Dr.-Ing.)

im Fachgebiet

INFORMATIK

vorgelegt von

Dipl.-Inform. Michael Gessat
geb. am 6. April 1979 in Bad Friedrichshall

Die Annahme der Dissertation wurde empfohlen von:

1. Prof. Dr.-Ing. Gerik Scheuermann, Institut fiir Informatik, Universitéit Leipzig

2. Prof. Dr.-Ing. Heinz Worn, Fakultit fiir Informatik, Universitidt Karlsruhe (TH)

Die Verleihung des akademischen Grades erfolgt mit Bestehen
der Verteidigung am 22.06.2010 mit dem Gesamtpridikat "magna cum laude".

"Those about the patient must present the part to be
operated upon as may seem proper, steady, in silence,
and listening to the commands of the operator.”

Hippocrates of Kos (460 — 377 BC), On The Surgery

Abstract

Modern surgery of the 21% century relies in many aspects on computers or, in a wider
sense, digital data processing. Department administration, OR scheduling, billing, and
— with increasing pervasion — patient data management are performed with the aid of
so called Surgical Information Systems (SIS) or, more general, Hospital Information
Systems (HIS).

Computer Assisted Surgery (CAS) summarizes techniques which assist a surgeon in
the preparation and conduction of surgical interventions. Today still predominantly
based on radiology images, these techniques include the preoperative determination
of an optimal surgical strategy and intraoperative systems which aim at increasing the
accuracy of surgical manipulations.

CAS is a relatively young field of computer science. One of the unsolved "teething
troubles" of CAS is the absence of technical standards for the interconnectivity of
CAS system. Current CAS systems are usually "islands of information" with no con-
nection to other devices within the operating room or hospital-wide information sys-
tems. Several workshop reports and individual publications point out that this situation
leads to ergonomic, logistic, and economic limitations in hospital work. Perioperative
processes are prolonged by the manual installation and configuration of an increasing
amount of technical devices. Intraoperatively, a large amount of the surgeons’ atten-
tion is absorbed by the requirement to monitor and operate systems. The need for open
infrastructures which enable the integration of CAS devices from different vendors in
order to exchange information as well as commands among these devices through a
network has been identified by numerous experts with backgrounds in medicine as
well as engineering.

This thesis contains two approaches to the integration of CAS systems:

e For perioperative data exchange, the specification of new data structures as an
amendment to the existing DICOM standard for radiology image management is
presented. The extension of DICOM towards surgical application allows for the
seamless integration of surgical planning and reporting systems into DICOM-
based Picture Archiving and Communication Systems (PACS) as they are in-
stalled in most hospitals for the exchange and long-term archival of patient im-
ages and image-related patient data.

e For the integration of intraoperatively used CAS devices, such as, e.g., navi-
gation systems, video image sources, or biosensors, the concept of a surgical
middleware is presented. A c++ class library, the TiCoLli, is presented which fa-
cilitates the configuration of ad-hoc networks among the modules of a distributed
CAS system as well as the exchange of data streams, singular data objects, and
commands between these modules. The TiCoL.i is the first software library for a
surgical field of application to implement all of these services.

To demonstrate the suitability of the presented specifications and their implementa-

tion, two modular CAS applications are presented which utilize the proposed DICOM
extensions for perioperative exchange of surgical planning data as well as the TiCoLi
for establishing an intraoperative network of autonomous, yet not independent, CAS
modules.

Kurzfassung

Die moderne Hochleistungschirurgie des 21. Jahrhunderts ist auf vielerlei Weise ab-
hingig von Computern oder, im weiteren Sinne, der digitalen Datenverarbeitung. Ad-
ministrative Abldufe, wie die Erstellung von Nutzungsplénen fiir die verfiigbaren tech-
nischen, rdumlichen und personellen Ressourcen, die Rechnungsstellung und — in
zunehmendem Malle — die Verwaltung und Archivierung von Patientendaten werden
mit Hilfe von digitalen Informationssystemen rationell und effizient durchgefiihrt. In-
nerhalb der Krankenhausinformationssysteme (KIS, oder englisch HIS) stehen fiir die
speziellen Bediirfnisse der einzelnen Fachabteilungen oft spezifische Informationssys-
teme zur Verfiigung. Chirurgieinformationssysteme (CIS, oder englisch SIS) decken
hierbei vor allen Dingen die Bereiche Operationsplanung sowie Materialwirtschaft fiir
spezifisch chirurgische Verbrauchsmaterialien ab.

Wihrend die genannten HIS und SIS vornehmlich der Optimierung administrativer
Aufgaben dienen, stehen die Systeme der Computerassistierten Chirugie (CAS) we-
sentlich direkter im Dienste der eigentlichen chirugischen Behandlungsplanung und
Therapie. Die CAS verwendet Methoden der Robotik, digitalen Bild- und Signalver-
arbeitung, kiinstlichen Intelligenz, numerischen Simulation, um nur einige zu nen-
nen, zur patientenspezifischen Behandlungsplanung und zur intraoperativen Unter-
stiitzung des OP-Teams, allen voran des Chirurgen. Vor allen Dingen Fortschritte in
der raumlichen Verfolgung von Werkzeugen und Patienten ("Tracking"), die Verfiig-
barkeit dreidimensionaler radiologischer Aufnahmen (CT, MRT, ...) und der Einsatz
verschiedener Robotersysteme haben in den vergangenen Jahrzehnten den Einzug des
Computers in den Operationssaal — medienwirksam — ermoglicht. Weniger promi-
nent, jedoch keinesfalls von untergeordnetem praktischen Nutzen, sind Beispiele zur
automatisierten Uberwachung klinischer Messwerte, wie etwa Blutdruck oder Sauer-
stoffséttigung.

Im Gegensatz zu den meist hochgradig verteilten und gut miteinander verwobenen
Informationssystemen fiir die Krankenhausadministration und Patientendaten-
verwaltung, sind die Systeme der CAS heutzutage meist wenig oder iliberhaupt
nicht miteinander und mit Hintergrundsdatenspeichern vernetzt. FEine Reihe wis-
senschaftlicher Publikationen und interdisziplindrer Workshops hat sich in den
vergangen ein bis zwei Jahrzehnten mit den Problemen des Alltagseinsatzes von CAS
Systemen befasst. Mit steigender Intensitidt wurde hierbei auf den Mangel an infras-
trukturiellen Grundlagen fiir die Vernetzung intraoperativ eingesetzter CAS Systeme
miteinander und mit den perioperativ eingesetzten Planungs-, Dokumentations- und
Archivierungssystemen hingewiesen. Die sich daraus ergebenden negativen Einfliisse
auf die Effizienz perioperativer Abldufe — jedes Gerdt muss manuell in Betrieb
genommen und mit den spezifischen Daten des nédchsten Patienten gefiittert werden
— sowie die zunehmende Aufmerksamkeit, welche der Operateur und sein Team auf
die Uberwachung und dem Betrieb der einzelnen Gerite verwenden muss, werden als
eine der "Kinderkrankheiten" dieser relativ jungen Technologie betrachtet und stehen

einer Verbreitung iiber die Grenzen einer engagierten technophilen Nutzergruppe
hinaus im Wege.

Die vorliegende Arbeit zeigt zwei parallel von einander (jedoch, im Sinne der Schnitt-
stellenkompatibilitét, nicht ginzlich unabhédngig voneinander) zu betreibende Ansitze
zur Integration von CAS Systemen.

e Fiir den perioperativen Datenaustausch wird die Spezifikation zusitzlicher
Datenstrukturen zum Transfer chirurgischer Planungsdaten im Rahmen des in
radiologischen Bildverarbeitungssystemen weit verbreiteten DICOM Standards
vorgeschlagen und an zwei Beispielen vorgefiihrt. Die Erweiterung des DICOM
Standards fiir den perioperativen Einsatz ermoglicht hierbei die nahtlose
Integration chirurgischer Planungssysteme in existierende "Picture Archiving
and Communication Systems" (PACS), welche in den meisten Féllen auf dem
DICOM Standard basieren oder zumindest damit kompatibel sind. Dadurch
ist einerseits der Tatsache Rechnung getragen, dass die patientenspezifische
OP-Planung in hohem Masse auf radiologischen Bildern basiert und anderer-
seits sicher gestellt, dass die Planungsergebnisse entsprechend der geltenden
Bestimmungen langfristig archiviert und gegen unbefugten Zugriff geschiitzt
sind — PACS Server liefern hier bereits wohlerprobte Losungen.

e Fiir die integration intraoperativer CAS Systeme, wie etwa Navigationssysteme,
Videobildquellen oder Sensoren zur Uberwachung der Vitalparameter, wird
das Konzept einer "chirurgischen Middleware" vorgestellt. Unter dem Namen
TiCoLi wurde eine c++ Klassenbibliothek entwickelt, auf deren Grundlage die
Konfiguration von ad-hoc Netzwerken wihrend der OP-Vorbereitung mittels
plug-and-play Mechanismen erleichtert wird. Nach erfolgter Konfiguration
ermoglicht die TiCoLi den Austausch kontinuierlicher Datenstrome sowie
einzelner Datenpakete und Kommandos zwischen den Modulen einer verteilten
CAS Anwendung durch ein Ethernet-basiertes Netzwerk. Die TiCoLi ist die
erste frei verfiigbare Klassenbibliothek welche diese Funktionalititen dediziert
fiir einen Einsatz im chirurgischen Umfeld vereinigt.

Zum Nachweis der Tauglichkeit der gezeigten Spezifikationen und deren Implemen-
tierungen, werden zwei modulare CAS Anwendungen prisentiert, welche die vorge-
schlagenen DICOM Erweiterungen zum perioperativen Austausch von Planungsergeb-
nissen sowie die TiCoLi zum intraoperativen Datenaustausch von Messdaten unter
echzeitnahen Anforderungen verwenden.

Selbstandigkeitserklarung

Hiermit erklédre ich, die vorliegende Dissertation selbstindig und ohne unzulissige
fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die angefiihrten Quellen
und Hilfsmittel benutzt und sdmtliche Textstellen, die wortlich oder sinngemif3
aus veroffentlichten oder unveroffentlichten Schriften entnommen wurden, und alle
Angaben, die auf miindlichen Auskiinften beruhen, als solche kenntlich gemacht.
Ebenfalls sind alle von anderen Personen bereitgestellten Materialen oder erbrachten
Dienstleistungen als solche gekennzeichnet.

(Unterschrift)

Acknowledgment

I deeply thank my thesis advisor, Prof. Dr. Heinz U. Lemke for invaluable assistance,
advice, and supervision. I also wish to thank Dr.-Ing. Oliver Burgert for the support he
was providing, for the discussions we had, and for the confidence he placed in me. I
also thank Prof. Dr. Gerik Scheuermann, Prof. Dr. Heinz Worn, Prof. Dr. Hans-Peter
Fahnrich, and Prof. Dr. Heyer who served as reviewers and examiners.

I thank Universitit Leipzig, the German Ministry of Education and Research, the Eu-
ropean Regional Development Fund, and the State of Saxony for the opportunities and
funding I was equipped with.

I also want to thank my colleagues, co-workers, and superiors at the Innovation Center
Computer Assisted Surgery in Leipzig who were an important source of inspiration
and critique on so many levels and occasions.

Finally, I wish to thank my familiy and friends for the personal and emotional support
during these challenging times.

Contents

List of Abbreviations vi
List of Figures viii
List of Tables xi
1 Introduction 1
1.1 Distributed Systems Lo 3

1.2 Distributed Systems in Medical Informatics 5
1.2.1 Examples of Modular CAS Systems 6

1.22 Summary 11

1.3 AimoftheThesis 11

1.4 Structure of the Thesis 12

2 State of the Art 13
2.1 A Brief History of Computer Assisted Surgery 13
2.1.1 Image Guided Surgery 13

2.1.2 Preoperative Planning 18

2.1.3 A New Paradigm: Model Guided Therapy 20

2.2 Surgical Informatics oL oo 26
2.2.1 Integrated OR solutions and projects 29

222 TIMMS 31

2.2.3 Standards and Protocols 33

3 Dataflow in CAS 39
3.1 From Workflows to Dataflows 39

3.2 Data Exchange Requirements 42

iv CONTENTS
4 Surgical DICOM 47
4.1 Identification of DICOM Work Items 48
4.2 Surface segmentation SOPClass 50
42.1 Requirementso 52

4.2.2 Surface Segmentation Class Diagram 53

4.2.3 Surface Segmentation Storage SOPClass 54

4.3 Implant Template SOP Classes 56
431 OVervIEW vt it e e e 56

4.3.2 Generic Implant Template Storage SOP Class 59

4.3.3 Implant Assembly Templates 65

4.3.4 Implant Template Groups 68

4.3.5 Implantation Plan SR Document 69

4.4 Summary e e e e e e e e e e e 71

S An Open-Source Interface for OR Integration 73
5.1 TiCoLi-AnOverview 74
5.2 TiCoLi: Basic Types 75
5.3 The API, the Core, and the Managers 77
5.3.1 The Device Manager 77

5.3.2 The Message Manager 88

5.3.3 The Attribute Manager 95

5.34 The Method Manager. 100

5.3.5 The Streaming Manager 105

54 Performance Tests 111
5.4.1 Streaming Throughput and Reliability 112

542 MessagingSpeed oL 116

5.5 Summary and Discussion 118

6 Clinical Applications 121
6.1 Transapical Aortic Valve Implantation 121
6.1.1 Computer Assisted Transapical Aortic Valve Implantation . . 126

6.1.2 Infrastructure 126

6.2 Cortical Stimulation and Mapping 132
6.2.1 TheCentral Sulcus, 132

6.2.2 Localization of the Central Sulcus 133

CONTENTS v

6.2.3 Intraoperative Mapping of the Central Sulcus 135
6.2.4 Preoperative Model Generation 138

6.3 Summary and Discussion 141

7 Conclusion & Outlook 143
7.1 Summary ... e e e e e e 143
7.2 Conclusion e e 145
7.3 Outlook 146

A Data Flow Diagrams I
A.1 Diagram Types e II

B DICOM A%
B.1 The DICOM Information Model Vv
B.2 DICOM Information Objects A%
B.3 DICOM Messageso iiiiiiin .. IX
B.4 DICOM Services v v v v v ittt i e e XII

C TiColi Protocols and Libraries XIII

D Algorithms and Implementation Details XVII
D.1 HandleSets XVII
D.2 Thread Safe Callbacks XVIII
D.3 The Gesture Detection Module XXII

E S-DICOM 10Ds XXXI
E.1 The Surface SegmentationIOD XXXI
E.2 The Implant Template IOD XXXVIII
E.3 The Implant Assembly Template IOD XLVIIT
E.4 The Implant Template GroupIOD LI

Bibliography LIIT

vi

CONTENTS

List of abbreviations

ADL
AE
API
AV
AVR

cDFD
CT
CAS
CSF

DICOM
DTI
DFD
DNS
DNS-SD

EBS
EHR

FOPL
FOR

GEHR
GOL
gPM
GUID

HIS
HL7

ICCAS

Archetype Definition Language
Application Entity (DICOM terminology)
Application Programming Interface
Aortic Valve

Aortic Valve Replacement

current Data Flow Diagram
Computed (X-ray) Tomography
Computer Assisted Surgery
Cerebrospinal Fluid

Digital Imaging and Communications in Medicine
Diffusion Tensor Imaging

Data Flow Diagram

Domain Name System

DNS Service Discovery

Electronic Billing Systems
Electronic Health Records

First Order Predicate Logic
Frame of Reference (DICOM terminology)

Good Electronic Health Records, formerly

Good European Health Records

General Ontological Language

Generic Patient Model

Globally Unique Identifier (UID in DICOM terminology)

Hospital Information System(s)
Health Level Seven

Innovation Center Computer Assisted Surgery

Vii

viii LIST OF ABBREVIATIONS

IE Information Entity (DICOM terminology)

IGS Image Guided Surgery

IHE Integrating the Healthcare Enterprise

10D Information Object Definition (DICOM terminology)
IP Internet Protocol

LIMS Laboratory Information Management System(s)
MAF Multimod Application Framework

MVR Mitral Valve Replacement

mDNS Multicast DNS

MGS Model Guided Surgery

MR, MRI Magnetic Resonance (Imaging)

NNS Nearest-Neighbor-Search

OR Operating Room

PACS Picture Archiving and Communication System
pDFD proposed Data Flow Diagram

PM Patient Model

PSM Patient Specific Model

RIM Reference Information Model

RP Rapid Pacing

RTP Real-Time Transport Protocol

SSEP Somatosensory Evoked Potential

SM Situation Model

SOP Service-Object-Pair (DICOM terminology)
S-PACS Surgical PACS

S-WF Surgical Workflow

PSM PatientSpecific Model

TA-AVI Transapical Aortic Valve Implantation

TCP Transmission Control Protocol

TiCoLi TIMMS Communication Library

TIMMS Therapy Imaging and Model Management System
TROT Target Region of Treatment

UDP User Datagram Protocol

UID Unique Identifier (DICOM Terminology)

US Ultrasound

List of Figures

1.1
1.2
1.3
1.4

2.1
22

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10
4.11

4.12

4.13
4.14

NC FESS Architecture 7
LOCALITE BrainNavigator Architecture

da Vinci® Surgical System 10
Augmented Reality in the da Vinci® Console 10
Structure of TIMMS 32
Surgical Workflow for Mitral Valve Reconstruction 35
Workflow and Dataflow for MVR 40
Current Dataflow inCAS 41
DICOM Model of the Real World Including Surfaces 51
UML Class Diagram of the Surface Segmentation 53
Surface Segmentation IOD Instance 55
Generic Workflow for Implantation Planning 57
DICOM Information Model for Implantation Planning 58

UML Class Diagram of the Generic Implant Template and its Modules 59
UML class Diagram of the Generic Implant Template 60
Relations Between Original, Replaced, and Derived Implant Templates 61
UML Class Diagram of the Generic Implant Template 2D Drawings

and 3D Models Modules L. 62
Planning Landmarks in Stented Aortic Valve Implant Templates . . . 63
UML Class Diagram of the Generic Implant Template Planning Land-

marksModule L L o 64
UML Class Diagram of the Generic Implant Template Mating Features

Module 65
UML Class Diagram of The Implant Assembly Template Module . . 67

Implant Templates, Mating Features, and an Implant Assembly Template 69

iX

LIST OF FIGURES

4.15
4.16
4.17

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8

59
5.10
5.11

5.12
5.13
5.14
5.15

5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24

6.1
6.2
6.3
6.4

Implant Template Group 70
UML Class Diagram of the Implant Template Group Module 71
Structure of a DICOM Implant Plan SR Document 71
TiCoLi Protocol Stack 75
UML Class Diagram of the TiCoLi API, Core, and Managers 78
UML Class Diagram of the TiCoLi DeviceManager and Related Classes 79
UML Sequence Diagram of Device Discovery 83
DeviceHandles 84
UML Sequence Diagram of Service Discovery 86
ServiceHandles, 87
UML Class Diagram of the TiCoLi MessageManager and Related

Classes o o i 89
UML Sequence Diagram of Session Initialization 93
Message Distribution oL Lo 95
UML Class Diagram of the TiCoLi AttributeManager and Related

Classes e 96
UML Sequence Diagram of Attribute Access 99
UML Class Diagram of the TiCoLi Method Manager and Related Classes 101
UML Sequence Diagram of a Remote Method Call 104
UML Class Diagram of the TiCoLi Streaming Manager and Related

Classes o i e e 105
Relation Between Instreams and Outstreams 107
UML Class Diagram of the TiCoLi Frame and Related Classes 108
UML Sequence Diagram of a TiCoLi Stream 110
Network Topologies for Framerate Measurements 112
Measured Framerates for TiCoLi Streaming 114
Measured Framerates for TiCoLi Streaming Through Bottleneck . . . 114
Frame Drop Ratio of TiCoLi Streams 115
Network Topologies for Message Speed Tests 117
Measured Message Transfer Times 117
Catheter Aortic Valve Implants 122
Top Level Workflow of TA-AVI 123
Transapical Implantation of Sapien Valve 124

Transapical Implantation of Embracer Valve 125

LIST OF FIGURES Xi

6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16

Al

B.1
B.2
B.3
B.4
B.5
B.6

C.1

D.1
D.2
D.3
D.4
D.5

TA-AVI Implantation Planning Results 127
Tracking of Coronary Ostiaand Stent 127
pDFD of TA-AVI 128
Digital Aortic Valve Implant Templates 131
Principal Regions of the Cortex 134
Intraoperative View Onto the Cortex 134
Phase Reversal 135
Intraoperative System Setup for Sulcus Centralis Mapping 136
Localization of the Grid Electrode and the Central Sulcus 136
SulcusMapper Vizualisation 137
Collaboration Diagram for Preoperative Cortex Model Generation . . 139
Preoperative Cortex Extraction: Sequence Diagram 140
Gane and Sarson’s DFD Notation. I
Major Structures of DICOM Information Model VI
Structure of Information Object Definitions VII
DICOM Model of the Real World VIII
DICOM Information Model IX
DIMSE Operation and Notification Flow X
DIMSE Service Primitives X
Structure of an OpenlGTLink Message XIII
UML Sequence Diagram for TiCoLi Callback Execution XIX
Architecture of the Gesture Detection Module XXIII
Point Gesture Detection State Machine XXVI
BucketSearch XXVII

Bucket Search for Loops oo XXIX

Xii LIST OF FIGURES

List of Tables

2.1 Surgical Workflows in WG24 White Paper 36
3.1 Data Types for THR, MVR, TA-AVI, NC-FESS, and BTS 45

4.1 DICOM SOP classes applicable for THR, MVR, T-AVI, NC-FESS.
and BTS 48

6.1 DICOM SOP classes for data exchange in computer assisted TA-AVI . 129

B.1 DIMSE Services XII

C.1 OpenlGTLink Header Format XIvV

E.1 Module Table for the Surface Segmentation IOD XXXI
E.2 Surface Segmentation Module Attributes XXXIII
E.3 Surface Mesh Module Attributes XXXV
E.4 Algorithm Code Macro XXXV
E5 PointsMacro XXXVI
E.6 VectorsMacro. XXXVII
E.7 Surface Mesh Primitives Macro. XXXVII
E.8 Module Table for the Generic Implant Template IOD XXXVIII
E.9 Generic Implant Template Description Module Attributes XL
E.10 Generic Implant Template Derivation and Versioning Module Attributes XLI
E.11 Generic Implant Template 2D Drawings Module Attributes XLII
E.12 Generic Implant Template 3D Models Module Attributes XLII
E.13 Generic Implant Template Mating Features Module Attributes XLIV
E.14 Generic Implant Template Planning Landmarks Module Attributes . . XLVI
E.15 Planning Landmark Point Macro XLVI
E.16 Planning Landmark Line Macro XLVII

Xiii

Xiv LIST OF TABLES
E.17 Planning Landmark Plane Macro XLVII
E.18 Module Table for the Implant Assembly Template IOD XLVIIT
E.19 Implant Assembly Template Module Attributes L
E.20 Module Table for the Implant Template Group IOD LI
E.21 Implant Template Group Module Attributes LII

Chapter 1

Introduction

Modern surgery relies on computers in many aspects ranging from department and
patient data management to preoperative planning and intraoperative assistance. Com-
puter Assisted Surgery (CAS) is a name given to a set of techniques which include the
usage of computers in the preparation or the actual conduction of surgical interven-
tions. Several key technologies which were invented during the 20™ century paved the
way for the development of CAS techniques. Besides, obviously, the invention of the
computer these technologies include tomographic and volumetric imaging as well as
advances in digital image processing and computer vision, optical and magnetic track-
ing, robotics, and physics simulation (especially mechanical simulation) based on the
Finite Element Method (FEM). The rapid progress in the development of new surgical
techniques and disciplines, especially in minimally invasive surgery, produced an in-
creasing demand for technical support of surgical perception and manipulation: with
the invention of endoscopic surgery, interventional radiology, catheter interventions,
and other minimally invasive techniques, the horizon of what is possible with surgery
was widened and at the same time the incisions through which surgeons perceive and
operate on the internal organs were constantly decreased [Jolesz, 1997]. These lim-
itations were one of the major motivations for the development of CAS systems and
techniques with the aim to augment the perceptive and dexterous capabilities of the
human operator. Driven by these factors, computer-based systems were developed for
manifold applications, including preoperative modeling and simulation systems, intra-
operative imaging, tracking, and guidance systems, robotic tools, and tool holders.

CAS is a relatively young field of computer science. During the last 15 to 30 years,
rapid progress was made in the development of CAS systems, mostly driven by re-
search projects and small businesses aiming at very specific applications or market-
niches. In the terminology of Rogers’ bell curve [Rogers, 2003], a few pioneer CAS
technologies such as surgical navigation, image based computer assisted intervention
planning, and intraoperative imaging are in the leading edge phase of innovation dif-
fusion where early majority customers begin to adopt a new technology. Other tech-
niques, such as surgery simulation, surgical robotics, and multimodal patient model-
ing, are still in the bleeding edge phase which is characterized by experimental systems
used by innovators and early adopters who are willing to take risks and to bring up

2 Chapter 1. Introduction

the required personal effort that goes along with applying a not 100% mature system
in the field. Before a technology becomes adopted by the majority of a population, the
"teething troubles", which the technophile early adopters are willing to accept, need to
be solved.

One of the unsolved "teething troubles" of CAS is the absence of technical standards
for the interconnectivity of CAS systems. During the highly innovative phase of CAS
technology and techniques, only little attention was spent on the development of tech-
nical infrastructures for the integration of CAS systems into the Operating Room (OR)
and for data exchange between the OR and external information systems. Instead, the
focus of attention lay on pushing the bar of what was technically possible to achieve
with rapidly developed prototype systems and specialized products. Research proto-
types as well as the commercially available CAS systems are at present usually "stand-
alone island of information" [Cleary & Kinsella, 2004] with no connection to other
devices within the OR, let alone hospital-wide information systems. Recent interdis-
ciplinary workshops with clinical as well as technical experts from all major industrial
countries [Jolesz & Shtern, 1992; Di Gioia et al., 1996; Cleary, 1999; Haller et al.,
2002; Cleary & Kinsella, 2004] as well as several publications in high-ranking jour-
nals , e.g. [Taylor et al., 1996; Jolesz, 1997; Jolesz et al., 2001; Deinhardt, 2003;
Patkin, 2003; Lemke & Vannier, 2006] made clear that the integration of technical
systems inside the OR into a local area network and, on a higher level, the integration
of this network with hospital-wide information systems is one of the keys to a better
pervasion of CAS.

The consensus of these publications is that the increasing pervasion of CAS technology
gives rise to ergonomic, economic, and logistic issues:

e Setup times in the OR are rising due to the increasing number of devices which
have to be set up and configured.

e Fluent OR processes are impaired by the limitations regarding access from inside
the OR to patient information which is residing in external repositories.

e The workload of surgeons, assistants, nurses, and OR technicians that comes
from the requirement to monitor and maintain technical devices has continuously
increased during the past decades. The lack of standardized and centralized user
interfaces amplifies this effect.

e The workload of the surgeons that comes from the requirement to conceive and
integrate data from various sensors and imaging modalities is continuously in-
creasing with the accelerating progress in sensor and imaging technology and
their introduction to the OR.

e The incompatibility of CAS systems forces health care provider to invest in mul-
tiple systems with similar functionalities for different use cases.

The authors of the cited reports and papers agree in the conviction that with mono-

1.1. Distributed Systems 3

lithic and highly specialized stand-alone systems these limitations cannot adequately
by overcome.

Most of the established CAS methods depend on patient images as the predominant
source of patient specific information for treatment planning, decision support, and
intraoperative guidance. In recent years, researchers have begun to complement the
image-centric view of Image Guided Surgery (IGS) by integration of non-image in-
formation and multimodal images into a comprehensive Patient Model (PM) and a
Situation Model (SM). Model Guided Therapy (MGT) [Niederlag et al., 2008] de-
pends on the ability to physically bring information from various sources together and
to logically integrate it with into a comprehensive model by fusing the data with pre-
operative data in a modeling system. This development intensifies the importance of
developing modular and flexible system architectures and open standards for system
interoperability.

The recommendations for future development in CAS given by the cited workshops
and publications can be summarized as follows:

e Define standardized file formats and transfer services for data exchange among
devices inside the OR and external repositories.

e Develop a plug-and-play mechanism including auto-configuration of distributed
CAS systems based on capability descriptions which are exchanged among the
components.

e Develop an infrastructure for the integration of sensor and image data into a
coherent representation of the patient.

These recommendations aim at the evolution from monolithic systems for specific
applications to distributed systems created by combining the functionalities of net-
worked modules. In the following section, the concept of distributed systems will be
introduced from a computer science standpoint.

1.1 Distributed Systems

Modular design is an engineering principle where the functionalities of a system are
separated into distinct entities, called modules. The separation is performed in a way
which generates modules with a minimal overlap in functionality ("Separation of Con-
cerns" [Dijkstra, 1982]). Modules are encapsulated entities, i.e. their internal logic is
hidden behind a interface definition. During the process of modularization, the inter-
faces of each module are specified. Modules are designed to realize specific function-
alities. A modular system combines the functionalities of its modules according to the
requirements of a specific use case.

Modularization is applied in software as well as in hardware development for the fol-
lowing reasons [Meyer, 2008]:

4 Chapter 1. Introduction

1. Modular systems are very flexible regarding the exchange of implementations of
single modules or the introduction of a new module without the need to modify
or exchange any of the remaining modules in the systems.

2. Modularization has the potential to break down the complexity of system devel-
opment: Instead of having a large team of developers working on one huge sys-
tem, modules can be designed, implementated, and tested separately by smaller
teams struggling with less complex tasks. This reduces the project management
effort and risk of design faults. By developing the modules in parallel by several
teams, the overall development process is potentially sped up.

3. Modularization facilitates the re-usability of source code or hardware compo-
nents. Once created, a module can be used in various systems or devices which
require the functionality the module implements.

4. Module interface specifications are well suited for standardization. This leads to
open modular system architectures, i.e. modular architectures where the module
and interface specifications are based on open standards or other public agree-
ments. Open modular architectures facilitate the integration of modules which
were built by different manufacturers.

Modularization can be performed to internally structure one software or hardware sys-
tem which contains several modules but is still developed, sold, installed, or operated
as one entity. The concept can be carried further, leading to distributed architectures
where functionalities are spread among several autonomous systems which are devel-
oped, sold, installed, and operated independently and interact via network interfaces.
Modern enterprise information systems, such as Hospital Information Systems (HIS),
are usually distributed systems including a multitude of devices and workstations.
Tasks and data can be sent from one workstation to another and special functionalities,
such as radiological image acquisition in a hospital, or data archival are performed by
specialized systems. The flexibility of distributed architectures allows systems to be
dynamically adapted to the shifting requirements systems have to comply with in a
preceding world: components can be exchanged, enhanced, or added with no or only
minimal alterations on the remaining components. From the customers’ perspective,
heterogeneity regarding the selection of devices from several manufacturers is often
an important requirement, especially when investing into an infrastructure which is
intended to be used for several decades. A distributed system which is based on an
open architecture raise no limitations in this regard. One prerequisite for such an ar-
chitecture is the existence of open standards which regulate the exchange of data and
commands between the modules.

The pitfalls of distributed architectures and open interfaces lie in the distribution of
responsibility. Especially in environments with high safety standards, such as surgery,
where systems have to be thoroughly tested in order to qualify for certification, the
integration of external functionalities provided by an unknown device requires abso-
lutely unambiguous interface definitions and well-defined quality standards. Technical

1.2. Distributed Systems in Medical Informatics 5

standards and open infrastructures which are the matter of this thesis are only one as-
pect that needs to be discussed in order to realize the idea of fully compatible digital
ORs. A legal basis is required on which the distribution of responsibilities in the event
of harmful failures can be founded and which regulates the process of certification of
modular systems. Surgical standards need to specify the way how devices are intended
to be used. Such standards have to base on evidence-based indications and counter in-
dications for the application of certain techniques.

1.2 Distributed Systems in Medical Informatics

Modern HIS as well as the department specific HIS subsystems, such as, e.g., Radiol-
ogy Information Systems (RIS) or Laboratory Information Systems (LIS) are heteroge-
neous distributed systems. The development of these systems which began in the 1970s
was enabled by the development of a number of technical standards which specifi-
cally aim at the integration of information systems for applications in healthcare. The
Health Level Seven (HL7) [HL7, Inc., 1987, 2005] standard is widely accepted among
vendors of patient data management, hospital workflow management, and billing sys-
tems. It specifies a messaging protocol which can be used to transfer patient data and
requests for clinical investigations or treatments, to report clinical findings, and for
billing purposes. HL7 is based on a rather general information model and is primarily
used to exchange information on the enterprise level. Inside the department specific
subsystems of a hospital or other healthcare provider, more specific standards regulate
the management of data and tasks as well as the storage of data. In Section 2.2.3, the
most important of these standards are presented. Among these, the DICOM (Digital
Imaging and Communications in Medicine) standard is highly relevant for CAS, espe-
cially for Image Guided Surgery (IGS). DICOM regulates the archival and exchange
of radiologic images and related information in a Picture Archiving and Communica-
tion System (PACS). IGS systems which utilize radiological images for planning or
guidance of surgical interventions usually operate on the basis of DICOM-encoded
images. Within the PACS, images and image-related information can be exchanged
between devices over a network. DICOM specifies services for the transfer of datasets
and for querying a database for datasets.

In many hospitals, the accessibility to the PACS through DICOM services is restricted
to the radiology department. Access to image data from other departments, such as the
surgical department, is usually granted through web-interfaces which do not allow na-
tive access to the data but only to rendered jpeg images. In order to obtain a complete
DICOM dataset for importing it into therapy planning software, data is usually shifted
around on CDs, DVDs, or USB storages which is an inflexible, time consuming, in-
convenient, and expensive solution. Some centers, after all, have started to give sur-
gical workstations and radiotherapy planning workstations direct access to the PACS
via DICOM network services [Mosges, 1993; Nuttin et al., 1994; Teraea et al., 1998;
Law & Huang, 2003; Sectra, 2009]. On the example of digital implantation planning
in orthopedic surgery, it could be shown that the efficiency of planning procedures is

6 Chapter 1. Introduction

fundamentally increased through direct access to the PACS database [Winter ef al.,
2002].

1.2.1 Examples of Modular CAS Systems

In the following paragraphs, three commercially available CAS systems which are
based on modular architectures are presented. Limitations in their flexibility due to
missing standards in the field of CAS are discussed. In the third example, a surgi-
cal telemanipulator, two projects are presented where the modular architecture of the
system was extended in research projects in order to add functionalities.

Navigated Control

The concept of Navigated Control (NC) has been introduced to Functional Endoscopic
Sinus Surgery (FESS) by Liith et al. [Liith ez al., 2001; Koulechov et al., 2005]. NC is
based on commercially available optical tracking technology where tracking markers
and a binocular infrared camera system are utilized to spatially register preoperative
volumetric images with the situs and to localize the position of handheld pointers. In-
stead of a pointer, The NC FESS system tracks the position of a power tool used for
cutting and suctioning in the paranasal sinuses, called shaver. According to the posi-
tion of the tool tip in patient space, a three-planar sliced 2D representation of the CT
is rendered. In addition, this position is related to a preoperatively determined work-
ing space: when the tool leaves this area, the NC control unit automatically switches
off the engine that powers the tool. The working space determined by a surgeon who
draws the boundaries of the safe area onto the CT images.

The NC system is based on a modular architecture (see Figure 1.1). It combines com-
mercially available and clinically approved modules — the tracking camera, the surgical
engine which powers the tool, and the foot pedal — with novel software and hardware
modules, namely the NC software running on a laptop PC and the NC unit, a micro-
controller utilized as central A/D interface for all devices.

Intraoperative Navigated 3D Ultrasound

The localization of vessels and the determination of the tumor boundary are two critical
tasks during brain tumor surgery. In image guided neurosurgery these structures are
identified with the means of radiology images and navigation systems or stereotactic
frames. In ENT, maxillofacial, and orthopedic surgery, one usually finds a sufficient
amount of bony, i.e. rigid, landmarks to determine a target position which is then
localized with a tracked pointer. In brain surgery, the accuracy of the spatial mapping
between patient space and image space with the means of tracked body markers is
impaired by the fact that the brain is a soft organ. As an effect of CSF outflow and
tissue resection, the target and risk structures are shifted.

One means to compensate for this effect is intraoperative imaging. Different imaging
technologies are utilized intraoperatively in neurosurgery: X-ray angiography, MRI, or
CT ultrasound are the most common, but also the usage of functional modalities like

1.2. Distributed Systems in Medical Informatics 7

Tracking Camera
Tracked Shaver 8.

Shaver
Engine

Engine Control | Navigated

o/ Control |Tracking Dat
on 7 Of it racking Data
Foot v
Pedal LapDoc™

Figure 1.1: NC FESS architecture.

PET has been reported [Jabbour et al., 2009; Vitaz et al., 1999; Okudera, 2000; Knauth
et al., 1999; Kubota et al., 2004; Chandler et al., 1982; Rygh et al., 2006; Ballanger
et al., 2009].

The LOCALITE BrainNavigator integrates intraoperative ultrasound images with pre-
operative MR images. A binocular tracking camera and attached body markers are
employed to spatially register an MR image stack, the patient, a sterile pointer, and a
tracked ultrasound probe. A volumetric US image is reconstructed from the 2D US
slices which are acquired with the tracked probe. This image is rigidly registered with
the MR image and both images are visualized in a three-planar sliced representation
which shows both modalities in a semitransparent overlay. By identifying landmarks
in both images, brain shift can be estimated by the surgeon [Lindner et al., 2003].

The components of the LOCALITE BrainNavigator and their connections are pre-
sented in Figure 1.2. The setup includes a commercially available NDI Polaris® track-
ing camera and a Siemens ultrasound device. Both systems are attached to a central
PC which runs software for volume reconstruction, patient-image registration, and vi-
sualization. The tracking system is attached through a proprietary interface. The US
images are captured from the S-Video output of the device. The latter is in principle
a standardized interface which would be accessible in most ultrasound devices. The
captured frames show the complete screen layout of the ultrasound image rather than

8 Chapter 1. Introduction

Tracking Camera

Ultrasound
Device iy

Tracked US Probe

LOCALITE
BrainNavigator
PC

Figure 1.2: LOCALITE BrainNavigator architecture.

only the ultrasound image. In order to crop the correct region from the frames, the
BrainNavigator needs to be adapted to the specific layout of the attached device.

Discussion

The NC FESS and the BrainNavigator show similar system architectures. Both setups
contain a commercially available tracking system. Both systems access the navigation
data through a proprietary interface which makes it impossible to run either of the
systems with a tracking system of a different type than they were designed with. For
a health care provider who already has tracking systems of the "wrong" type equipped
in the operating rooms, this limitation results in the requirement to invest into a second
line of systems.

The unavailability of appropriate technical standards for data exchange in such systems
makes it impossible to re-use or exchange any of the contained modules. On all levels,
from the control data exchanged in the NC system to the streaming ultrasound video,
technical standards would be required in order to transform these systems into open
architectures.

The NC FESS system is not networked with the PACS for the import of patient images
and for the archival of planning data. It imports DICOM images for intervention plan-
ning and intraoperative image guidance from storage media. The planning software

1.2. Distributed Systems in Medical Informatics 9

and intraoperative assistance software are integrated into one monolithic application.
It is not possible to import segmentation results which were generated with different
software. The exchange of planning information and patient images between two NC
laptops is only possible via storage media (CD-R, DVD-R, or flash disks).

The Localite system can be attached to a PACS network for image import through the
network. In the commercially available version of the system, the export of the recon-
structed ultrasound volume to a PACS server is not supported. A DICOM standard for
volumetric ultrasound has just recently been released in 2008. Localite did evaluate
the export of the ultrasound images as DICOM 3D US datasets in a joint project with
ICCAS in an experimental setup of an integrated OR environment in Leipzig.

Robotic Assistance in Endoscopic Surgery

Falk et al. [Falk ef al., 1999, 2000] presented an approach for totally endoscopic coro-
nary bypass graft anastomosis. This task, the surgical connection of an arterial bypass
with a coronary artery, requires a high level of dexterity. With regular endoscopic
tools — rigid lengthy devices which are introduced through incisions on the chest —
suturing the vessels was described as almost impossible [Stevens et al., 1996; Mack
et al., 1997]. The anastamosis technique proposed by Falk et al. uses the da Vinci®
telemanipulator. The da Vinci® is a robotic device which is used to steer surgical ma-
nipulators with articulated end effectors [Ballantyne & Moll, 2003]. It consists of 3
modules:

e The master console contains a binocular video display for stereoscopic endos-
copy and two handles with which a surgeon controls the motion of the surgical
instruments on the slave unit.

e The slave module is a robotic manipulator with up to three instrument arms
which can be equipped with articulated tools and an extra arm which holds a
stereo endoscope.

e The control unit translates the user input at the master unit into control signals
for the slave unit. Signal processing algorithms can be employed to filter out
tremor and for motion scaling up to a degree of 5 to 1.

With military applications of telesurgery in mind [Satava, 2003], the da Vinci® system
was developed as a modular system from the beginning. Its modular architecture facil-
itates setups, where the master and control unit are connected via a satellite or landline
connection. In several research projects, the modularity of the system was "alienated"
for the introduction of additional modules into the setup.

Voruganti et al. presented an augmented reality setup with the da Vinci® system for in-
traoperative assistance in the localization of coronary arteries [Voruganti et al., 2007].
Access to the endoscopy video signal is possible since the images are transferred via
standard S-Video cables. Voruganti et al. used a standard frame grabber card to digi-
talize the video signal into a PC, where they employed augmented reality technology

10 Chapter 1. Introduction

da Vinci §=

Figure 1.3: da Vinci® surgical system consisting of master console (left), control
module (right), and slave unit (center). The image on the bottom right shows an
articulated instrument for the da Vinci®. (Images Courtesy of Intuitive Surgical,
Inc., Sunnyvale CA, USA)

to enhance the images with overlaid visualizations of a patient specific surface model
of the coronary arteries (see Figure 1.4). The augmented frames were output via the
S-Video socket of the graphics card to the da Vinci®’s control unit.

Figure 1.4: Augmented reality in the da Vinci® master console: preopera-
tively segmented coronary arteries are superimposed to the endoscopy frames
[Trautwein et al., 2009].

1.3. Aim of the Thesis 11

Leven et al. [Leven et al., 2005] used a proprietary API which is available from Intu-
itive Surgical for limited access to the da Vinci®s control module. They presented a
setup where a miniature US probe is mounted onto one of the da Vinci®’s arms and
can be operated inside the patient to acquire ultrasound images of the internal organs.
Optical tracking technology is used to estimate the relative position and orientation be-
tween the endoscope and the ultrasound probe. The ultrasound image is superimposed
onto the stereo endoscopy images in real time so that it appears as a fan on the tip of
the probe.

Discussion

The setup by Voruganti et al. demonstrated the flexibility, a modular system design in
CAS gains from standardized interfaces. In the case of the standardized video inter-
face, they were able to interpose their AR module between the camera and the console
without the necessity for any adaptation of the da Vinci ® modules.

Leven et al. use a proprietary interface to access a limited set of functionalities which
was made accessible for external modules by Intuitive Surgical. The proprietary nature
of this API restricts the usage of the Canvas system to one telemanipulator. In order to
integrate the device with a different device, e.g. the ZEUS system, a re-design of the
interface between the US module and the controller of the telemanipulator is necessary.

1.2.2 Summary

The technical development of mechatronic devices and image processing methods has
lead to very far developed CAS systems in the past 30 years. The introduction of these
systems, especially the increased amount of imaging modalities which are utilized in
the preparation and conduction of surgery, has lead to an overhead of workload which
arises from the operation of these devices. Modular architectures are not uncommon
in CAS. The workflow in modern ORs is hampered by the lack of standardization of
interfaces for integration the modules of CAS systems in the OR and by the lack of
standardized interfaces between CAS devices and information systems in hospitals.

1.3 Aim of the Thesis

The aim of the thesis is to specify interfaces for distributed surgical planning systems
and modular intraoperative assistance systems based on open standards or specifica-
tions. This aim is reached by pursuing the following goals:

Firstly, the interfaces between preoperative planning and intraoperative system will be
investigated. The requirements will be analyzed which would have to be met in an
attempt to specify an open standard for the transfer of planning results from preoper-
atively applied planning systems to intraoperatively employed displays and assistance
systems.

12 Chapter 1. Introduction

Secondly, particular interest will be paid to the question whether the DICOM standard
can be used or extended to comply with these requirements. Use cases will be iden-
tified for which this is the case and DICOM extensions will be proposed for planning
data exchange in these use cases.

Thirdly, the intraoperative requirements to an open interface for modular CAS systems
will be investigated and existing open standards and protocols will be identified which
comply with these requirements.

Forthly, a "surgical middleware" will be specified and implemented on the basis of
these standards and protocols which enables the flexible integration of CAS modules.

Finally, the feasibility of the chosen approaches and the proposed interfaces is tested.
Therefore, modular CAS systems are developed which utilize these interfaces.

1.4 Structure of the Thesis

In Chapter 2, the historical development and actual state of the art in computer assisted
surgery in general and in surgical informatics in particular is presented and discussed
in order to clarify the theoretical and practical foundation on which the analysis, spec-
ifications, and implementations which are presented are based upon in the thesis is
based.

In Chapter 3 the requirements to an infrastructure for transfer of planning information
into the OR and to an infrastructure for communication in an intraoperative distributed
system are investigated. On the example of five interventions from cardiac, orthope-
dic, ENT, and neurosurgery it is shown how surgical workflows (see Section 2.1.3.2
can be utilized to derive these requirements. Also in Chapter 3, the differences in the
requirements between the preoperative use cases and the intraoperative use cases is
investigated. In Chapter 4 the applicability of DICOM for the transfer and storage of
surgical planning data is discussed and two DICOM extensions are presented which
were specified in this regard. Chapter 5 describes the TiCoLi, a software library for in-
traoperative data exchange and network management which is based on open standards
and open source software.

The operability of the specifications presented in Chapter 4 and 5 is proven on two ex-
amples in Chapter 6. A system for preoperative planning and intraoperative assistance
of transapical aortic valve implantation and a system for preoperative and intraopera-
tive modeling of the central sulcus for brain tumor surgery are described. Both systems
utilize the proposed DICOM extensions for storage and transfer of planning data. The
intraoperative modeling system in the second example is integrated with the TiCoLi.
In Chapter 7, a summary of the results is given and the presented specifications and
implementations are discussed with regard to the aim of the thesis. In the outlook in
Chapter 7, recommendations for future steps in the direction of standardized interfaces
for CAS systems are made.

Chapter 2

State of the Art

Computers can be found in every aspect of modern hospital work. In the domain of
surgery, the predominant applications for computers are Surgical Information Systems
(SIS) which help organizing patients, staff, equipment, rooms, and other facilities and
Computer Assisted Surgery (CAS) systems which support surgeons in preparation or
conduction of surgical interventions. The SIS is usually part of a Hospital Information
System (HIS) through which patient data, billing information, and other information
can be exchanged between departments. CAS systems, in contrast, are usually "islands
of information" [Lemke & Berliner, 2008] which require manual input and output of
information. The state of the art regarding the interconnectivity of CAS systems and
the integration of CAS systems to SIS and other information systems is presented in
Section 2.2. Beforehand, an introduction into the field of CAS is provided through a
short overview of the historic development and current technologies of CAS.

2.1 A Brief History of Computer Assisted Surgery

The utilization of computers in surgery goes back to the mid of the last century when
computers were introduced for the monitoring of vital signs in intensive care units
and during surgery. Exactly when an by whom the term "Computer Assisted Surgery"
(CAS) was coined is unclear but the event is often related to the development of surgi-
cal navigation systems in the 1970s [Schlondorff, 1998]. Today, CAS subsumes a vari-
ety of techniques for treatment planning and intraoperative assistance. In this section,
the historical development of certain aspects of CAS is presented without intending to
be exhaustive.

2.1.1 Image Guided Surgery

Visual perception is one of the limiting factors of surgery [Jolesz, 1997]. During an
intervention, the surgeon’s natural view ends at the exposed surface, while the surgical
targets usually lie beneath the exposed surfaces of the body or the exposed internal or-
gans. Furthermore, the incision through which an intervention is performed physically

13

14 Chapter 2. State of the Art

constrains the field of view, limiting the amount of anatomical reference points which
could facilitate identification of structures. The latter is intensified by the forthcoming
of minimally invasive surgery. Miniaturization of tools, progress in endoscope and
port technology and the development of new microsurgical devices lead to a continu-
ous decrease of the incisions through which surgery can be performed and thereby to
increasing limitations to the field of view. The execution of surgical maneuvers through
the proverbial "key hole" is aggravated by the limited degrees of freedom offered by
endoscopic tools and due to the leverage effect. [Scott-Conner & Berci, 1993].

Image Guided Surgery (IGS) facilitates perception with the means of imaging systems.
The history of IGS begins decades before computers were invented. Surgical planning
based on a radiological patient image was reported for the first time on January 14,
1896 in Birmingham, when a needle was removed from a ladies hand with the help
of a radiograph — 9 days after Wilhelm Conrad Rontgen’s original publication "Uber
eine neue Art von Strahlen” ("On a new kind of rays") [Rontgen, 1895; Mould, 1980].
Rontgen and his followers had transformed the fundaments of medicine in general and
surgery in particular literally over night — the importance of medical imaging in diag-
nosis, treatment, and follow up control is increasing ever since. Today, preoperative
and intraoperative images are utilized in the preparation and/or conduction of almost
every surgical non-emergency intervention. A multitude of modalities including en-
doscopy, intraoperative X-ray, MR, or ultrasound imaging are used to acquire 2D or 3D
images to extend the surgical perception beyond the limits of direct visual perception.

The following paragraph summarizes the development of the imaging technology
which is available for diagnosis, treatment planning, and intraoperative assistance in a
21% century hospital.

Diagnostic and Interventional Imaging — Past to Present

The first case of a surgical intervention which was performed under direct guidance
of a technically acquired patient image was reported in 1869 when Pantaleoni used a
modified cytoscope to cauterize hemorrhagic uterine growth [Nezhat, 2005]. Endo-
scopic techniques have since then been developed for every surgical discipline, includ-
ing among others, laparoscopic approaches in pelvic and abdominal surgery, arthro-
scopic interventions in joints, and bronchoscopic procedures in the airways. In the
late 1970s, endoscopes were first equipped with video cameras, allowing clinicians to
observe the intervention on a screen rather than through an optical lens on the scope.
The immediate advantage of video endoscopy and the reason for its invention was that
it removed many of the ergonomic limitations from endoscopy and was an enabling
technology for complex interventions [Nezhat et al., 1986]. A side effect of video en-
doscopy was that once the endoscopy images were available as electronic signals, it
was possible to use (analog and later digital) computation methods to enhance images,
extract structures from images (e.g. [Vogt et al., 2005; Kaufman & Wang, 2002]), and
augment images (e.g. [Kawamata et al., 2002; Bockhold et al., 2003; Vosburg & San
José Estépar, 2007]).

Clinical radiology emerged in the late 19" century and early 20" century. Rontgen’s

2.1. A Brief History of Computer Assisted Surgery 15

discovery, X-rays, and the invention of X-ray imaging techniques enabled physicians
to see behind the surface of patients and lead to a tremendous progress in clinical
diagnosis of fractures and diseases such as, e.g., cancer, tuberculosis and rickets. For
surgeons, radiographs quickly became a standard means in preoperative intervention
planning and in-situ orientation.

In 1971, Godfrey Newbold Hounsfield invented the CT scanner, an invention for which
he was awarded the Nobel price in 1979. The pervasion of this technology enabled di-
agnosis and planning based on 3D information rather than projective images. In the
1980s, methods from Computer Assisted Design, and Computer Assisted Manufactur-
ing (CAD/CAM) were applied for extraction of organs from CT (and later MR and
Ultrasound) images and visualization of the resulting 3D structures.

Besides X-ray images, a multitude of imaging modalities was introduced to medicine
during the last century. In 1940, Gohr and Wedekind investigated the applicability
of ultrasound for medical diagnostics [Gohr & Wedekind, 1940]. The first hand-held
B-mode ultrasound scanners became available on the market in the late 1960s. 3D
Ultrasound became available in the 1980s. In the late 1970s, the first articles were
published on the application of ultrasound as a real time imaging modality for biopsy
needle guidance in a Russian gynecology journal [Kazi et al., 1979], marking the be-
ginning of ultrasound guided surgery. Around the same time, the first report on the
application of Doppler ultrasound for the visualization of blood flow was reported by
Stevenson, Brandestini et al.[Stevenson ef al., 1979; Brandestini et al., 1979]. Inven-
tion of Intravascular ultrasound (IVUS) in the late 1980s [Yock et al., 1989] enabled
imaging of vascular stenosis and other cardiovascular morbidities in a hitherto unavail-
able quality and without the requirement for X-ray contrast agent. During cardiovas-
cular interventions, IVUS imaging is used to monitor and control the process of, e.g.,
vascular stent deployment [Nakamura et al., 1994].

In 1973, Paul C. Lauterbur invented Magnetic Resonance Imaging (MRI) [Lauterbur,
1973]. The first MR images of human anatomy were published by Hinshaw et al. in
1977 [Hinshaw et al., 1977] and the first acquisition of 3D MR images was reported
in 1982 [Muller et al., 1982]. Compared to CT, MR has a far better sensitivity for soft
tissue, making it a powerful tool in the diagnosis of diseases of the internal organs and
brain. This stands against inferior bone contrast, less temporal and spatial resolution
and spatial accuracy. Early applications of MRI for treatment planning are, e.g., Kim
and Wineberg [Kim & Weinberg, 1986] in spinal surgery, Kangarloo et al. in renal
tumor surgery [Kangarloo et al., 1986], Goldman et al. [Goldman et al., 1986] in
vascular surgery, and Fasano et al. [Fasano et al., 1986] in brain tumor treatment. In
IGS, MR was first used in planning of tumor resection, especially for liver and brain
tumors. The excellent soft tissue contrast and the fact that MR imaging has no harmful
effect on the patient or the clinical personnel lead to the development of intraoperative
MRI systems.

Nuclear medicine imaging techniques are based on the introduction of radioactive
agents into the patient. The radioactive isotope (tracer) is injected as part of a biolog-
ically active molecule. A gamma-ray sensitive scanner is rotated around the patient,

16 Chapter 2. State of the Art

similar to the X-ray detector in a CT scanner, and a volumetric image of the spatial
distribution of the radioactive agent is created. By choice of the bioactive molecule,
different physiologic or pathologic effects or processes can be visualized through this
technique. Fludeoxyglucose (FDQG), e.g., is a biochemical analog to glucose and will
be found with a high concentration in regions of high metabolic activity. FDG with a
Fluorine-18 tracer is commonly used in the acquisition of diagnostic Positron Emis-
sion Tomography (PET) images in tumor diagnostics. The concept of positron emis-
sion imaging was introduced in the 1950s by David E. Kuhl and Roy Edwards. The
concept was first applied to brain tumor detection by Brownell and Sweet at Mas-
sachusetts General Hospital in 1953 [Brownell & Sweet, 1953] to acquire projective
2D images of metabolic activity in brain tumor diagnosis. In the early 1970s, David
Chesler was the first to successfully advance this technique to tomographic imaging
[Chesler, 1971]. Today, PET and SPECT as well as 2D scintigraphy are established in
clinical routine for the depiction of metabolic processes [Abramyuk et al., 2008].

The combination of two or more imaging modalities in order to combine their advan-
tages or to compensate for their disadvantages is known as multimodal imaging. In
order to correlate the image information from different modalities, an accurate coreg-
istration of the coordinate systems of both images or volumes is required [Staemmler
et al., 1995]. There exist two principal approaches to this issue:

e The scanning procedure is taken out in a manner which results in a known re-
lation between the image frames. For this purpose, multimodal scanners, where
two modalities, e.g. CT and PET, are integrated into one device are available
[Gong et al., 2005]. Other approaches utilize tracking technology or patient
rests on which the patient is fixated and moved from one scanner to the other
to obtain a spatial relation between the isocenters of the imaging devices and
patient which is then used to coregister the images [Lindner et al., 2003].

e The images are acquired independently and are coregistered based on landmarks
or otherwise defined similarity measures [Maintz & Viergever, 1998; Zitova &
Flusser, 2003]. To facilitate the process of image coregistration, the usage of
body markers or stereotactic frames has been proposed [Hemm et al., 2005].

Multimodal imaging is to a large extent dependent on the integration of different
modality images. The advance of multimodal image analysis in treatment planning
is one of the origins of the demand for the integration of devices for imaging, patient
modeling, treatment planning, and computer assisted surgery into one comprehensive
information system [Mosges, 1993; Staemmler et al., 1995].

Stereotaxy and Surgical Navigation

Stereotaxy and Surgical Navigation are techniques which aim at correlating the phys-
ical space in which surgery takes place (in the following referred to as patient space)
with the virtual space of 3D images[Gildenberg et al., 2009]. Stereotaxy was first
applied in animal experiments in 1908 by Sir Victor Horsley and Robert H. Clarke

2.1. A Brief History of Computer Assisted Surgery 17

at University College London Hospital, UK. The device consisted of a probe holder
which was mounted in a Cartesian frame which was fixated on the specimens head.
The frame was used to exactly measure the location of landmarks on the specimen’s
skull in three dimensions. Stereotactic atlases related the position of the landmarks
to target spots inside the skull. The inter-subject variability of cranial landmarks im-
paired the accuracy of early stereotaxy devices. The first stereotactic device which
was routinely used in human neurosurgery was invented in 1947 [Spiegel et al., 1947].
Similar to the Horsley-Clarke apparatus this device based on a stereotactic atlas. In-
stead of cranial landmarks, this atlas consisted of photographic coronal slices of the
brain and localization of target points based on landmarks in the ventricular system.
This lead to higher accuracy in sub-cortical interventions. Despite these incremen-
tal improvements, the problem of inter-subject variations in the landmarks remained
to be unsolved. From 1949, Jean Talairach experimented with a stereotactic system
which included a radiographic device. X-ray images were acquired with a rectangular
wire grid in place and were used as patient-specific stereotactic atlases. This marks
the beginning of patient image guided stereotaxy. In 1978, Russel A. Brown was the
first to develop a system which used CT images to guide stereotactic surgery. Today,
the Brown-Robbers-Wells stereotactic system and similar systems are widely used in
neurosurgery, ENT surgery, radio therapy, and other applications [Galloway & Peters,
2008]. MR images are applied for stereotaxy in brain surgery since the late 1980s
[Peters et al., 1987; Pillay et al., 1992; Vindlacheruvu et al., 1999]. For multimodal
stereotaxy, special markers were developed which are visible in CT and MR images
and can therefore be used for inter-modality registration [Alesch, 1994; Cosman &
Roberts, 2002].

Surgical navigation systems, or frameless stereotaxy systems, apply various measure-
ment methods to determine the position of a surgical tool or pointing device and relate
it to coordinates in patient images. Roberts, Friets et al. were the first to track an OR
microscope using an acoustic system [Roberts ef al., 1989; Friets et al., 1989]. Kosugi,
Watanabe et al, utilized an articulated arm to acquire landmark positions and monitor
tool motion in the OR [Watanabe et al., 1987; Kosugi et al., 1988]. Both groups uti-
lized the acquired spatial information to drive visualization of CT images. Originating
in neurosurgery, frameless stereotaxy was introduced to ENT surgery in 1990 [Adams
et al., 1990]. Several design-inherent limitations of articulated arm systems moti-
vated the development of contactless systems with free-hand or handheld localizers.
In 1993, the sonic tracking concept which was already used by Roberts et al. to track
an OR microscope was applied to tracking of a small handheld probe [Barnett et al.,
1993; Reinhardt et al., 1993]. To overcome accuracy-problems of acoustical tracking
systems, optical tracking systems were developed with active infrared LED markers
[Zamorano et al., 1994; Tebo et al., 1996], passive IR reflecting markers [Wiles et al.,
2006], or passive markers with patterns in the visible light spectrum [Balachandran
et al., 2006]. Optical tracking systems require uninterrupted lines of sight between the
markers and the tracking cameras. Experiments with magnetic tracking systems which
do not require a line of sight began in 1994 [Manwaring et al., 1994]. The sensibility
of magnetic tracking systems to interfering magnetic fields as they are generated by

18 Chapter 2. State of the Art

moving metallic objects retarded the pervasion of magnetic tracking technology in ap-
plications, where optical systems are applicable in principle. Fields of application for
magnetic tracking are minimally invasive techniques with flexible needles or catheters
in interventional radiology, biopsy [Zhang et al., 2006] or endocardial interventions
[Faddis et al., 2002].

2.1.2 Preoperative Planning

Besides diagnostic applications, the instantaneous effect of the intervention of radio-
graphy and other imaging techniques was the possibility to plan surgery beforehand.
Today, there is no surgical discipline where image based intervention planning is not
part of good clinical practice standards. An overview of the employment of the differ-
ent imaging modalities in therapy planning for surgery is presented by Vannier et al.
[Vannier et al., 1996].

In many surgical disciplines, including orthopedic surgery, trauma surgery, but also in
spinal and dental surgery, the standard method for treatment planning used to be based
on hard-copy 2D radiographs or tomographies on light boxes. In the early 1990s,
the supersession of hardcopies by digital radiology image management gave rise to
digital planning applications in these disciplines. The increasing demand for 3D vi-
sualizations and 3D modeling, especially in applications which involved stereotaxy or
navigation, made computer assisted planning inevitable [Kettenbach et al., 1997].

Kikinis et. al give an introduction into techniques and applications in computer-
assisted surgical planning with 3D reconstructions [Kikinis et al., 1996]. The focus
of this article lies on the preoperative visualization of the anatomy of certain brain
structures. Other typical applications in computer assisted surgery planning are:

e Implant selection: The optimal type, size, and positioning of one or a set of
implants is determined in a patient-specific manner based on radiology images.
In computer-assisted implantation planning, the selection is performed based
on radiology images and digital implant templates. Implantation planning can
subsume the determination of bone or other tissue which need to be resected in
order to place the implant (see below under resection planning). The advantages
and disadvantages of digital implant planning have been investigated in clinical
study by Winter et al. in the scope of the SaxTeleMed program [Winter et al.,
2002].

e Access planning: The access to a surgical target, e.g. a lesion, is planned in
order to minimize the sometimes inevitable paresis induced by creating a pas-
sage through healthy tissue. An example for such an approach was presented by
Vaillant et al. in [Vaillant ef al., 1997]. Another aspect of access planning is the
preoperative determination of a target position and orientation for, e.g., a biopsy
needle in navigated or stereotactic percutaneous interventions (e.g. [Mozer et al.,
2006]).

2.1. A Brief History of Computer Assisted Surgery 19

e Path planning: The access to a situs which can be reached by following the nat-
ural cavities of the human body (the respiratory or digestive system or the blood
vessels) is planned. As an example in this respect, a system for cardiovascular
path planning is commercially available from 3mensio Medical Imaging. It cal-
culates the endovascular diameters and distribution of stenotic processes along
the arterial access to the ascending aorta starting from two entry points on the left
and right femoral artery. This information supports the surgeon in the decision
for one side to enter the vascular system and in the selection of a catheter.

e Target Region of Treatment (TROT) planning: The region of the patient’s
body in which a treatment shall be applied is determined. The definition of
a workspace, for example in Navigated Control (see Section 1.2.1), or the
determination of energy targets in radiotherapy or interventional radiology fall
into this category.

e Resection Planning: The volume and exact boundary of tissue is planned which
will be resected during surgery. In the case of lesions or focuses of infection,
planning is usually a trade-of between resection of as much malicious tissue
as possible while sparing nearby risk structures or, in general, healthy tissue.
An advanced computer-assisted planning tool which includes resection planning
for brain tumor surgery was presented by the group of Helmholtz-Institute for
Biomedical Engineering at RWTH Aachen [Bast ef al., 2006].

All of the presented techniques and approaches have in common, that they include
the extraction of higher-level information (predominantly geometric and textual infor-
mation) from image data. With the help of image processing algorithms, a surgeon,
radiologist, or other clinically trained person generates a model of the patient. The
model contains numerical measurements, geometric descriptions of structures and tra-
jectories, and other forms of patient specific knowledge which are relevant for the
specific planning task. For various applications, the information which can be directly
obtained from medical images is insufficient for determination of an optimal strategy.
Especially in cases were operating on soft tissue is involved, the physical simulation
of the outcome is required.

The integration of the planning tools and their results into a network infrastructure and
a central repository requires data structures to describe all these kinds of information.
Compared to radiology image databases in PACS, a database for surgical planning re-
sults is required to be very versatile regarding the data is contains. Besides images,
data structures are required for geometry, for descriptions of an intended course of ac-
tion (called surgical workflow), for simulation results and generic models and patient-
specific parameters on which simulation was performed, OR setup descriptions, lists
of required equipment and consumables, and other kinds of data.

20 Chapter 2. State of the Art

2.1.3 A New Paradigm: Model Guided Therapy

It is difficult to define by whom and when MGT was invented. Following the defini-
tion of a model as presented by philosophers like Stachowiak [Stachowiak, 1973] or
Wiisteneck, every abstraction of an entity, which a second entity derives or defines in
order to facilitate understanding of or control over the first entity, is a model. From
this perspective, MGS is as old as surgery itself, when considering early anatomical
drawings and the mental models surgeons construct from diagnostic data, images, and
in-situ findings. Modeling, especially shape modeling and modeling of biomechanics,
has always played a role in CAS. Early approaches in CAS incorporated the idea of a
model of the patient that goes beyond images already in the 1980s [Lemke, 1985].

The concept of modeling was introduced to computer assisted radiology and surgery in
the context of modeling the geometry of organs, lesions, or other anatomically, physio-
logically, or pathologically interesting structures from tomography images. Segmenta-
tion, i.e. the extraction of structures from images, and the extraction of surfaces which
envelope these structures were for a long time synonym to the term patient model-
ing. For an overview over segmentation and surface extraction methods, the reader
is referred to the literature, e.g. [Pham et al., 2000; Ayache et al., 1996; Rogowska,
2000]

Multimodal imaging (see above) can be seen as a progenitor of the concept of Model
Guided Therapy (MGT). In 1994, Lemke et al. described the concept of a multi-
media medical workstation with access to text, sound, graphical (1D, 2D, 3D), and
other information [Lemke ef al., 1994]. The proposed concept relies on providing a
hypertext-like relation between multimodal patient data with the aim to facilitate nav-
igation through a patient file. The HYPERMED system which was created to proof
this concept enables the user to define, alter, and delete links between patient media.
The system contains a mechanism which automatically establishes connections. The
HYPERMED terminal can be used to access and browse through the data and as a
teleconferencing system for virtual cooperation.

In 2000, the "Modeling & Simulation in Medicine: Towards an Integrated Framework"
workshop was held at the Unites States National Library of Medicine. The goal of the
meeting was to formulate a ten-year vision for research on modeling and simulation
in medicine [Higgins et al., 2001]. In the center of this vision stands the development
of an atlas of the human body which encompasses all physical scales, from molecular
processes on the nano-level up to the shape and function or organs and complete or-
ganisms. This atlas, the Integrated Digital Human, was seen as a potential basis for
predictive modeling (simulation) of biological processes, for better therapeutic assis-
tance based on the fusion of intraoperative data with models, as a gold-standard for
validation of simulation systems, for the creation of what was called a "body-double"
which serves a repository for multimodal patient information, and as a basis for high-
fidelity medical training simulators.

In the same year, the Physiome project (http://www.physiome.org/) picked
up this idea by founding an open database for the collection of models of biologi-

http://www.physiome.org/

2.1. A Brief History of Computer Assisted Surgery 21

cal processes on all scales and from multiple sciences, including biology, chemistry,
physics, and medicine [Bassingthwaighte, 2000].

In 2001, Shahidi et al. published a white paper which summarized their perspective
on the "challenges and opportunities" in the CAS research [Shahidi et al., 2001]. As
the first among seven problems which require to be solved they name the development
of techniques for generating Patient Specific Models (PSM) as a basis for treatment
planning and simulation.

In a 2008 publication, Lemke and Berliner presented a formal definition of the term
"Model Guided Therapy":

"Model Guided Therapy (MGT) is a methodology complementing Im-
age Guided Therapy (IGT) with additional vital patient-specific data. It
brings patient treatment closer to achieving more precise diagnosis, more
accurate assessment of prognosis, and a more individualized planning,
execution and validation of a specific therapy."

[Lemke & Berliner, 2008]

By Lemke’s definition, MGT is founded on two models:

e a Patient Specific Model (PSM) and
e a Situation Model (SM).

2.1.3.1 The Patient Specific Model

The PSM is a comprehensive representation of all available information about one pa-
tient. The PSM can be based on generic Patient Models (gPMs). gPMs are not patient-
specific but represent universal knowledge about aspects of the human organism. For
example, a gPM could represent the average shape of the human heart and possible
deviations from this average. During modeling, patient specific data can be utilized to
adapt a gPM to the specifics of one patient. The resulting concrete expression of the
abstract gPM is called PSM.

The PSM integrates input from various data sources, including textual information
from the patient record or other documents, 1D signals from sensors, 2D images, 3D
volumes, 3D surface models and higher-dimensional data, for instance already regis-
tered multimodal images or 3D+t data from real-time volumetric imaging modalities.
Lemke lists the following modes of a potential PSM:

e Macroscopic morphology (shape of organs, tissues)

Microscopic morphology (fiber directions, ...)
Deformation

Cardiovascular state (blood pressure, heart rate, oxygenation)

Demographic information (age, weight, ...)

Diagnosed diseases

22 Chapter 2. State of the Art

e Known genetic disposition

Known allergies

Applied medication, distribution of drugs in the body

To construct a PSM, gPMs which contain knowledge from the following disciplines
can be required [Lemke & Berliner, 2008]:

Anatomy

Physiology

Biophysics
(Bio-) Chemistry

Pharmacodynamics

Pharmacokinetics

e Genomics

Proteomics

An MGT system has to be able to collect this data from preoperative and intraoperative
data sources, temporally and spatially coregister it, and generate a PSM by fusing the
data with gPMs . Lemke points out that in order to handle the uncertainties and incon-
sistencies which are in the clinical environment inevitably gained from incomplete and
noisy data, the PSM is requiredto be based on probabilistic methods, such as Bayesian
modeling [Lemke & Berliner, 2008].

The development of one monolithic system apt to process the diverse kinds of in-
put data and implements the manifold gPMs would require an enormous effort, the
involvement of experts in all the aforementioned field from Biomedicine as well as
Computer Sciences. Such an attempt, if it were successful, would lead to a huge soft-
and hardware system which would be difficult to customize, install, maintain and ex-
tend. In an MGT system, the construction and maintenance of the PSM can only be
performed in a cooperative manner by distributed systems.

Patient Model Projects

There are several large-scale projects on a European or international level which aim
at the definition of multimodal models for utilization in simulation of physiologic and
pathologic processes and to facilitate treatment planning and assistance.

The Visible Human project NLM [1989] was founded in 1989 by the US National Li-
brary of Health with the aim to create a full-body multi-modal atlas of human anatomy.
In 1994, the original Visible Human dataset was released. It consisted of MRI, CT,
and pathologic cross-sectional images of an adult male. One year later, the Visible Fe-
male dataset was released with similar images of an adult female. The Visible Human

2.1. A Brief History of Computer Assisted Surgery 23

datasets were used by many research projects as a reference database or gold standard
for the development and evaluation of medical imaging methods.

The Physiome project [NSR , 2000] is an international effort to create a comprehensive
description of physiologic processes. Physiome aims at creating a database which re-
flects the biological processes in natural organism on various levels of detail from the
systemic view on the whole organism, down through the levels of organs, tissues, cells,
and proteins to the level of genetic processes [Bassingthwaighte, 2000]. The Physiome
database is a growing list of mathematically and otherwise formulated models of bi-
ological processes on all of these levels. For the construction of a patient model, this
collection can be seen as the building blocks of the gPM. In order to personalize the
models from the Physiome gPM to construct a PSM, the parameters for each model
need to be estimated for an individual patient.

The Physiome project emphasizes the usage of a common modeling and simulation
tool, the JSim package. This facilitates the combination of multiple specific models
into complex scenarios where the interaction between two processes on the same or on
different levels of detail is regarded.

As of August 2009, the Physiome database contains 235 models. 33 research groups
around the world are running projects which aim at extending the database or are using
models from the database in simulation, treatment planning or other applications.

2.1.3.2 The Situation Model

The SM is a comprehensive representation of all available information about the oper-
ating room, the equipment and devices in the OR, the personnel, and the intervention
itself. The situation model provides a basis for the interpretation of sensory input, and
can be utilized by an integrated OR suite to adapt the environmental parameters and
device settings in a situation-sensitive manner. Similar to the PSM, which is based
on patient-specific data and generic patient models, the SM is based on intervention-
specific status information and measurements as well as on generic models of a sur-
gical procedure, called surgical workflow. Surgical Workflows (S-WFs) contain the
universal knowledge about what can potentially happen during one kind of interven-
tion.

In [Lemke & Vannier, 2006], Lemke and Vannier describe a central "intelligence" of
a modular system residing in the workflow engine which monitors all activities in the
OR and thereby maintains the SM. The workflow engine monitors controls all technical
processes inside the OR. According to the situation, the workflow engine would, e.g.,
decide what is visible on a central display at the OR table or adjust the brighness of
the room lights.

Analysis of Surgical Workflows

Workflow modeling has its origins in manufacturing, where scientist like Frederick
Winslow Taylor and Henry Gantt began to study the organization of material flow and
the organization of work at the beginning of the 20th century. One hundred years

24 Chapter 2. State of the Art

later, at the beginning of the 21st century, workflows have evolved to be one of the
key instruments for modeling of business and productive processes in various fields
of applications. Especially in complex scenarios, where several people add to the ful-
fillment of one goal or the processing of one piece of work, workflows are commonly
accepted for planning of such processes as well as for monitoring the advance of work.

With the increasing workload and cost pressure which were felt by hospitals during the
past decades, workflow techniques were employed as a means to identify room for im-
proving efficiency. From the 1970s, medical laboratories were in the focus of intense
investigations in this regard [Shulman, 1978; Fitzgerald & Swanson, 1992], followed
by considerations on optimizing processes and personnel deployment in hospital phar-
macies [Hanna, 1983] and the question how the structural design of hospitals affects
the efficiency of operations [Skaggs, 1984]. Electronic medical records were intro-
duced to patient data management in hospitals in the 1990s as a means to streamline
processes in hospitals [Srinivasan et al., 1984]. Around the same time, workflow man-
agement was discussed in radiology in the context of exchanging worklists between a
radiology information system and the imaging modalities and diagnostic workstations
in the Picture Archiving and Communication System (PACS) [Garfagni & Klipfel,
1995; Schrader et al., 1997]. In 1993, a DICOM standard was released for the ex-
change of worklist items between workstations and imaging devices in PACS [NEMA,
1993].

In surgery, workflow analysis started as the analysis of perioperative processes around
the turn of the millennium. Delays induced by later arrival of patients, inflexible per-
sonnel and room scheduling, problems in the supply chains for tools and consumables
and long turnover-times between interventions were identifies as hindering influences
to the throughput of the OR [Alon & Schiipfer, 1999; Geldner et al., 2002]. Several
strategies were proposed to reduce these issues, including the installation of an in-
terdisciplinary OR management and the installation of an information system which
facilitates the flow of patient data, OR schedules, personnel plans, and other organi-
zational information [Riedl, 2002]. In 2005, Baumhove et al. presented evidence for
the positive effect of OR reorganization on the employees’ health, the case throughput
and the economic efficiency [Baumhove & Schroéter, 2005]. For the reduction of setup
times and the time which is lost during surgery as an effect of difficulties to access
data outside of the OR, the requirement for an integrated digital OR is identified (see
Section 2.2).

Up to the mid of the 1990s, these efforts predominantly focussed on perioperative
workflows and material flows. In the late 1990s, this focus was shifted by some groups
towards the investigation of intraoperative workflows. Workflow models of intraoper-
ative processes are created for three reasons:

e To analyze the efficiency of a whole process, an instrument, or the OR equipment
and design.

e To create a universal model of a surgical procedure with the aim to create a

2.1. A Brief History of Computer Assisted Surgery 25

situation-aware CAS system, like it is by definition an integral part of an MGS
system.

e To derive use cases for the specification of information systems and communi-
cation standards for OR integration (see Section 2.2.3).

In 2003, Warren Sandberg et al. published surgical workflows with a stronger focus on
the intraoperative procedure course [Sandberg et al., 2003]. The aim of this group was
to derive requirements for the design of an integrated digital OR suite, the Operating
Room of the Future (ORF), which was built at Massachusetts General Hospital (see
Section 2.2.1). The workflows this group presented were strictly linear. While pro-
viding a good starting point for the requirements analysis for which they were created,
they do not depict the flexibility of surgical procedures. In Section 2.2, their findings
and similar findings reported by other groups regarding the inefficiency of intraopera-
tive workflows due to limitations in the technical infrastructure will be discussed.

Situation Models based on Surgical Workflows

Research in the direction of situation-aware operating rooms or situation-aware CAS
systems is in a very early state of development. The utilization of checklists as a means
to increase safety in surgical procedures is one way to add situation awareness to the
OR. In 2004, a US-based company called Surgical Safety Institute has begun to sell
digital checklist systems which transfer the concept of standardized procedural safety
checklists from aviation to surgery. Their systems require manual input according to
a structured list of tasks from which a situation model is derived according to which
decisions can be supported. Apparently, the device is not integrated with other OR
devices, rendering it a passive monitoring tool rather than the workflow engine which
was specified by Lemke et al. as the central intelligence which acts a director in the
orchestrated interaction of modular CAS systems.

Lemke et al. pioneered into the direction of graphical representation of surgical work-
flows in the form of animated virtual OR scenes. They presented a rendering system
which creates animated video sequences from abstract workflow descriptions [Lemke
et al., 2004]. The prior aim of these animations is the visualization of recorded work-
flows for analytic purposes. Nevertheless, the system has to be noted as one of the first
if not the first to process a surgical workflow in order to drive a computational engine
(in this case a rendering engine) with the contained information.

On the 2006 conference on Computer Assisted Radiology and Surgery (CARS),
Ohnuma et al. presented a system for the intraoperative motion recognition of the
surgeon’s hand [Ohnuma et al., 2006]. The aim of their research was the development
of a robotic scrub nurse which analyzes the surgeon’s hand motions and based on a
workflow model is able to anticipate the tools which might be required by the surgeon
in the near future. Their workflow model is based on probabilistic timed automata
which are applied on large scale to describe the sequence of procedure steps as well
as on a smaller scale where elemental movements of the surgeon are described as the
basis for motion recognition. While highly specific to one particular use case and far

26 Chapter 2. State of the Art

from generally applicable as a central controller, the proposed system shows some of
the features which were defined as characteristics of an OR workflow engine.

At the same conference, Burgert, Neumuth, et al. presented their work on the fusion of
workflow models with a knowledge base which is founded on the General Ontological
Language (GOL) [Burgert et al., 2006]. This link allows computational reasoning to
be applied on surgical workflow models in order to compare or unify two workflows
and in order to validate a workflow. This concept has the potential to be the basis for
the data-driven generation of surgical workflows, where one probabilistic sequence of
actions is generated from multiple concrete observations. The value of ontologies to
describe the semantics of surgical procedures had before been investigated by Rossi
Mori et al. [Rossi Mori et al., 1997].

2.2 Surgical Informatics

"Surgical informatics is in a nascent phase as a discipline today. By
definition, surgical informatics is the collection, storage/organization, re-
trieval, sharing, and rendering of biomedical information that is rele-
vant to the care of the surgical patient. Its purpose is to seamlessly use
computer-based informatics programs to provide comprehensive and de-
cision making support to the health care team. As a result of applying sur-
gical informatics to both usual and problematic surgical cases, improved
decision making and problem solving in surgery are possible."

[Cleary & Kinsella, 2004]

Informatics has provided the theoretical insights and practical tools to structure and
to integrate the handling of patient data and organisational content (schedules, billing,
...) in many aspects of healthcare. Hospitals are heterogeneous institutions subsum-
ing several departments with differing requirements and preferences to the way data is
handled and presented. In a modern Hospital Information System (HIS), all relevant
information is archived in central digital repositories and can be exchanged between
the departments [Prokosch & Dudeck, 1995]. Specialized subsystems implemented
according to the specific needs of, e.g. radiology, laboratories, or surgical departments
are connected to the HIS. The communication between the department is based on
domain-unspecific standards such as HL7 (see Section 2.2.3). For Radiology Infor-
mation Systems (RIS) and Laboratory Information Systems (LIS), specific standards
exist (e.g. DICOM, LOINC, or VITAL) which better apply to the specifics of these
domains. Projective mapping schemes exist, which "up cast" content from the specific
domains to HL7 and other more general standards.

The analysis of perioperative workflows (see above) which was intensively performed
since the 1980s in order to increase efficiency of surgical clinics, has revealed the need
for an integrated Surgical Information System (SIS) [Alon & Schiipfer, 1999; Geldner
et al., 2002; Riedl, 2002; Sandberg et al., 2003] The focus of the SIS developments

2.2. Surgical Informatics 27

which lead to the systems which are commercially available at present lay on the orga-
nizational matters of the surgical workflow. SIS usually include modules for personnel
and room planning, for OR scheduling, and for management of supply chains for ma-
terial. HL7 can be utilized to exchange patient data or billing information between
HIS and SIS.

The management of image data, patient models, and treatment plans which are han-
dled during the preparation and conduction of surgery is not covered by these systems.
Several publications and workshop reports addressed the ergonomic and workflow lim-
itations induced by the increasing amount of high-tech devices in modern ORs which
lack a common infrastructure.

In 1999 the "Technical Requirements for Image-Guided Spine Procedures" Workshop
was held to determine the state of development for computer assisted spine surgery
and to identify limitations and challenges. The results were published in a report
which represents an excellent snapshot of the state of the art in computer assisted
surgery [Cleary, 1999]. The clinical application in the focus of the workshop was
spinal surgery, but many of the identified challenges can be regarded symptomatic for
CAS in any surgical discipline.

In 2002, the NIH/NSF workshop on Image-guided Interventions recommended the
development of an information system for the seamless integration of devices in the
OR and the installation of a standardization body for development of the technical
standards such an integrated system requires [Haller er al., 2002]. The 2004 workshop
"OR 2020 — The Operating Room of the Future" emphasized these recommendations
and substantiated them to a higher level of detail. The focus of this workshop lay on the
clinical and technical requirements for integration of CAS technology into operating
rooms. The workshop report names five themes which were identified by the workshop
participants as priority aims for the future development of CAS systems [Cleary &
Kinsella, 2004]. Two of these themes regard the development of methods in image
processing and robotics. The other three are related to the need for infrastructure and
standards:

1. Standards for devices and their use in the operating room (OR) are
sorely needed. Every aspect of OR activity today is affected by their
absence, from nonstandardized and incomplete patient records, to
varied and unstandardized imaging formats of visual information
that is needed during surgeries, [...]

2. Interoperability of devices is needed for development of a smoothly
operating OR as well as for improved surgeries. Currently, most
devices and computer systems function as stand-alone islands of in-
formation and their use requires a great deal of surgeons’ time and

effort. [...]

5. Communications issues must be addressed and aim toward at-
taining a common language, training requirements, and pro-

28 Chapter 2. State of the Art

tocols for effectively performing advanced surgeries and using
telecommunications-ready tools as needed.

[Cleary & Kinsella, 2004], pages 3 — 4

The report gives five recommendations to future development in CAS, of which the
first and the last relate to modularization and standardization:

1. Standards, standards, standards. If there was an overarching theme
of the workshop, this was it. [...]

2. Progress on the first recommendation will also enable progress on
device interoperability. [...] A "plug and play" architecture for
medical devices is also needed.

[Cleary & Kinsella, 2004], page 4

The working group which focused on standards comes to the conclusion, that they are
required on many levels: Surgically, computer assisted procedures require standards
in the sense of common practices. On the technical side, the need for standardization
is expressed in the workshop report on two different levels:

e On the application level, there is a need for standardized data formats in which
systems can exchange medial data.

e On the network and transport level, a standard is required which enables plug-
and-play functionalities in the OR.

In irregular intervals, these workshops reports document what the leading experts in
the CAS community felt to be the key research topics and obstacles in pervading com-
puter assistance in surgery. In the early 1990s, the emphasis was clearly on singular
functionalities and technologies, like imaging, image analysis, or tracking. A decade
later, many of the open issues regarding these technologies appear to be solved to a
level where systems are clinically useful and topics like integration, interoperability,
and modularization came to the fore.

As of 2005, the development of information systems, including data sources, pro-
cessing and storing units as well as visual and other output devices, has reached an
extremely high level. It is commonly agreed that the development of information sys-
tems in the field of CAS has produced technologies that have the potential to increase
patient safety and outcome quality of surgery as well as facilitate education of young
surgeons. In order to generate flexible system architectures which allow for the seam-
less integration of these systems into the OR and the information infrastructure of hos-
pitals, progress in the field of communication systems for the OR are now required.

2.2. Surgical Informatics 29

2.2.1 Integrated OR solutions and projects

The increasing urgency with which the demand for better system integration and im-
proved workflows in the OR was submitted since the 1990s has produced a number of
research projects and commercial products which offer solutions in this regard. Some
of the most ambitious or successful attempts are presented in the following.

MedNet

The MedNet project established a digital network across seven hospitals associated
with the University of Pittsburg [Simon et al., 1995]. MedNet connected ORs and
intensive care units with diagnostic and research labs. It enabled the exchange of
neurophysiological and video data as well as acoustic communication between these
sites. Through MedNet, neurologists could monitor EEG signals from patients during
surgery or intensive care and give immediate feedback to the personnel in the OR or
at the bedside. In addition, several conference and lecture halls were connected to the
MedNet to facilitate research and education. MedNet had a heterogeneous infrastruc-
ture including an Ethernet network for real-time transmission of neurophysiological
and acoustic data and an analog NTSC video routing network which also contained an
audio channel. The analog network only spanned three of the participating institutions.

MedNet implements some of the features which are required from an integrated OR:
It covers the transmission of biosignals as well as audio and video streams through a
heterogeneous infrastructure. MedNet can be seen as a proof of concept for the added
value for the quality of clinical care but also for teaching which is gained from the
integration of communication technology into the OR which builds bridges between
the "islands of information". Nevertheless, the MedNet is a hardwired setup which
connects a static set of rooms and devices. The MedNet does not show the flexibility
regarding setup and dismantling of devices and definition of novel setups.

ORF - The Operating Room of the Future

The Operating Room of the Future (ORF) project at the CIMIT center at Massachusetts
General Hospital in Boston is a highly ambitious project which aims at the construction
of a prototypical solution of a fully functional integrated OR for minimally invasive
surgery. The ORF development is based on the collaboration between academic re-
searches and clinicians at CIMIT and several medical device companies. The ORF
is meant to be a "living laboratory" in which concepts for system integration can be
tested out and their impact on the surgical workflow can be investigated. Sandberg
presented the state of development and a research agenda for the future enhancements
of the ORF in 2003 [Sandberg et al., 2003]. He summarizes that while they were able
to reduce perioperative procedure times by up to 60% in abdominal and laparoscopic
interventions, "the current state of technology is woefully unready for integration"
([Sandberg et al., 2003], page 59). He points out that in order to integrate surgical
devices it was necessary to bring traditionally competing vendors together in order to
define interfaces. Sandberg does not give away any technical details about the tech-

30 Chapter 2. State of the Art

nology which is used inside the ORF to link imaging devices, navigation devices,
displays, control panels, and a teleconferencing system together. His remark on page
59 regarding the necessity for cooperation between vendors and his vision of a future
version of the ORF in which devices are "fully compatible at the software level" while
"fully modular at the hardware level" on page 62 may suggest the assumption that the
integration is based on hand-tailored interfaces between specific devices rather than a
unified infrastructure.

In the same year, Meyer et al. presented the integration of a central patient data dis-
play in the ORF with the patient databases in the HIS [Meyer et al., 2003]. They
motivate a number of applications which could benefit from this integration, including
an RFID-based system which ensures that the right patient is in the right room at the
right time, an allergy warning system which accesses the patient’s history before drug
administration, and an integrated online ordering and reporting system. The approach
the group around Meyer follows does allow access from the OR to the databases and
infrastructures which are established in hospitals. It does not include the extension of
the capabilities of these databases and infrastructures in order to enable the storage and
transfer of data which is specific to surgery, such as surgical treatment plans.

OrthoMIT

The OrthoMIT project at RWTH Aachen aims at the development of an integrated
platform for orthopedic interventions. The focus of the project lies on intraoperative
imaging and navigation for hip-, knee-, and spinal surgery as well as trauma surgery.
One aspect of the OrthoMIT project is the development of an integrated surgical work-
station through which a surgeon has access to and control over intraoperative imaging
devices, robotic tools, tracking systems, planning systems, and other CAS modules
[Ibach et al., 2006]. As of 2006, no results in this regard were published by that group.

Commercial Integrated OR Suites

Several companies have acknowledged the surgical requirement for better integrated
and more ergonomic OR environments. As of 2006, four vendors are offering inte-
grated OR suites. Karl Storz” OR1, Olympus’ EndoAlpha, Stryker’s iSuite, and the
Brainlab Brainsuite implement a multitude of functionalities, including video routing,
PACS and HIS access, surgical navigation, intraoperative imaging, and a centralized
input/output device for visualization and interaction in the sterile field. These systems
have in common that they are not or only in some aspects based on open standards
but are integrating devices using proprietary interfaces. This limits the flexibility to
integrate additional devices into these suites once they are installed to products which
are certified by the manufacturer of the suite. Such a limitation stands in contrast to the
requirements for an open distributed infrastructure for the OR as they were postulated,
e.g., at the OR 2020 workshop (see Chapter 1).

2.2. Surgical Informatics 31

2.2.2 TIMMS

In [Lemke & Vannier, 2006] and [Lemke & Berliner, 2007], the Therapy Imaging
and Model Management System (TIMMS) was proposed as a meta architecture for
system integration in MGT. In 2007, TIMMS was accepted by the members of DICOM
Working Group 6 (Base Standard) as the reference architecture for development of
standards for the exchange of data between devices in the OR. TIMMS consists of three
kinds of components: engines, repositories and a communication backbone. Figure 2.1
shows the elements and structure of the TIMMS meta architecture.

TIMMS Engines

In computer science, an engine is a part of an information processing system which
acts independently. Engines are usually reusable components which are capable of
performing operations of a certain type. Prominent examples are the physics engine in
computer games or other software which perform all kinds of physical simulations that
are required by other components of the software. Lemke et al. identify seven engines
which provide the required capabilities of an MGS system and can be developed and
operated independently [Lemke & Berliner, 2007]:

e Intraoperative imaging and biosensors: Devices that generate patient data from
measurements. The imaging and biosensors engines provide access to the data
sources in the OR.

e Modeling: Modeling engines create patient specific models from patient data
and clinical knowledge.

e Simulation: Generic and patient specific models are used to predict the results
of surgical decisions.

e Workflow management and decision management: Software which aims to the
support of decisions by collecting, processing, and offering information about
surgical workflows.

e Visualization/Representation manager: Display of information and models.

e Intervention: Functionalities which directly relate to surgical processes, such
as the control of a telemanipulator or access to measured coordinates from a
navigation device.

e Validation: Modules which validate the performance, correctness, and consis-
tence of the models which are generated and processed by the other engines.

TIMMS Repositories
Repositories are integrated hardware and software components which store and man-
age the access to stored data and/or tools. There exist associated repositories that are

Chapter 2. State of the Art

32

SpJo2al
uonuaAIaUI
pue S|apoN

.Saseo,,
‘INg3 ‘s AM

(s18ldo
pale|nwis)
S|I9poN

uonew.ojul
pue ereq

Kdelayy papinb-japow juaned Joj UoIeJIUNWWOD [00) pUR [9poW ‘abewl erep 10} (X-IWODId U0 paseq) ainjdniiseijul | Jf

(SIWINIL) walsAs juswabeuey |9pOIN pue Bulbew| Adeiayl

|

|

|

|

|

[

|

uolneplieA

uonuaAIalu|

Jabeuep
‘day
uolyezifensip|

huswabeuep
a-+ pue 4\
10} |UIB)

uolje|nuwis

siosuasolg
pue
Buibew| Q|

Bullspon

s|00}
uorepifeA

s|00}
“IreyosN
/s@21n8@

sjeubis
pue
sabew|

S|00}
Bulepon

Structure of the Therapy Imaging and Model Management System

(TIMMS) [Lemke & Vannier, 2006].

Figure 2.1

2.2. Surgical Informatics 33

linked to the engines and unassociated repositories which are accessed from all en-
gines via the TIMMS network backbone. The associated repositories may, in addition
to their connection to an engine, be connected and accessible via the TIMMS backbone
as well.

TIMMS Backbone

The TIMMS backbone is the communication infrastructure through which the engines
retrieve data from repositories and communicate with each others. The communica-
tion over the backbone is performed with the means of standardized protocols, data
encodings, and interfaces. The backbone has to implement transmission services com-
pliant to a wide range of requirements. Real-time communication of small packages
containing status information, measurements, or control sequences for mechatronic
assistance systems need to be processed alongside with heavy data objects such as
multi-slice 3D+t images. HD Video routing between image sources, processing and
visualization engines requires real-time communication of MB-packages at a frame
rate of 25 — 60 H z. The bandwidth of requirements will in most scenarios be to wide
to be optimally supported by one single technology. In a concrete architecture, the
backbone may consist of several parallel infrastructures. This heterogeneity is to be
transparent for the engines which exchange data through the backbone on the applica-
tion level.

2.2.3 Standards and Protocols

The integration of information systems into an open infrastructure which enables the
exchange of information between system from different manufacturers depends on the
existence and pervasion of industry standards. Various standardization bodies have
published regulations for interfaces and data structures in medical informatics. In the
following, a list of standards is presented which might affect in the future or already
do affect the integration of CAS systems.

DICOM

The DICOM (Digital Imaging and Communications in Medicine) standard has evolved
to be the leading standard for storage, query and transfer of medical images since it
started its evolution in the 1980s. Nowadays image acquisition devices, PACS servers,
radiology workstations and reporting systems utilize data exchange based on the DI-
COM standard (see, e.g. [Horii & Bidgood, 1992; Yoo et al., 1997; Huang, 2004;
Dreyer et al., 2005; dcm4chee, 2005]). As imaging technology evolves with time,
the DICOM standard undergoes constant changes and extensions. In its 2008 version,
DICOM specifies data structures and services for images of various modalities, seg-
mented images and rigid as well as non-rigid spatial registration between image spaces.
With DICOM Structured Reports (DICOM SR), results of diagnostic procedures can
be represented in a structured, yet still human readable way. Recently, DICOM was
extended to implement use cases from radio therapy [Germond & Haefliger, 2001].

34 Chapter 2. State of the Art

DICOM worklist management facilitates scheduling of procedure steps in remote ma-
chines as well as notification of their execution.

The DICOM standard is maintained by the Medical Imaging & Technology Alliance
(MITA), a division of the National Electrical Manufacturers Association (NEMA). Af-
ter almost 20 years under the governance of these institutions, the International Stan-
dards Organization (ISO) made DICOM an ISO standard (ISO 12052:2006).

A brief introduction into the concepts of DICOM and DICOM nomenclature is given in
Appendix B. For deeper insights, the reader is referred to the literature, e.g. [Pianykh,
2008], or the DICOM standard publication [NEMA, 2008b].

Surgical DICOM

In 2004, the DICOM Committee, which is the legislative power in the maintenance of
DICOM, installed DICOM Working Group 24 (WG24) which aims at including sur-
gical use cases into DICOM. WG24 began its work with an analysis of requirements
for a surgical communication standard based on a collection of use cases from several
surgical disciplines as well as interventional radiology (see Table 2.1). These use cases
were presented in a white paper [H. U. Lemke (edt.), 2006] which serves WG24 as a
fundament for the selection and specification of work items. The white paper contains
detailed workflow descriptions of these surgical techniques. An example for a surgical
workflow is presented in Figure 2.2 on the example of minimally invasive mitral valve
reconstruction. In the left image, the whole procedure is visualized as a linear work-
flow on a very high level of abstraction. The right image shows one procedure step
rolled out as a more precise workflow. There, the data which is generated or required
by work steps is visualized as green parallelograms.

The white paper identifies existing DICOM SOP classes for these data objects, which
are appropriate for implementing communication and archival for those data objects
where such a SOP class could be identified. Several of the data objects for which
no SOP class could be identified could be referred to work items which were under
conduction by other DICOM working groups at the time the white paper was written.
For example, several chapters in the white paper refer to the segmentation IOD which
was not part of the standard until 2006. Finally, the white paper motivates a number
of potential new work items. Among these, data structures for polygonal surfaces and
intraoperative video exchange are addressed most often.

Health Level 7

Health Level 7 (HL7) is a standard that provides interconnectivity of Hospital Informa-
tion Systems (HIS), Laboratory Information Management Systems (LIMS), Electronic
Billing Systems (EBS) and Electronic Health Records (EHR). The most pervaded ver-
sion of HL 7 in hospital information systems of the present is version 2 which was
released in 1987. HL 7 2.x (2.1 — 2.6) specifies a protocol for message exchange be-
tween applications in health care facilities. HL 7 uses text-based encodings of content
which is described with the means of standardized key-words, codes and encodings.

2.2. Surgical Informatics

35

preparation
patient

femoral
cannulation

right anterolateral

Incision

access to
mitral valve

valve
reconstruction

close
left atrium

close

femoral incision

close right

anterolateral incision

dismantling
patient

Start
prep patient

h 4

anaesthetics
preparation

EE—
1 patient data
assistan }"—' review
patient MRT (1
v histol day befor
preparation of ¢ -
instruments coronary

angiography

r (1 day before)l
—

1 1 l

|

L*P[assistant enters OR] [surgeon enters OR]*"*1
Y !

il

I

[}
anaesthetist -

]

< | :
e
position
patient on OR table
measurement of
mitralvalve pathology

fix robotic camera
arm (ESOP)

fix left atrium

retractor arm
(]
assistant/nurse -

assistantinurse -
[sismine}-

A 4

&

cover patient with
sterile drapes

cover patient chest with

sterile plastic foil

connect suction,
diathermy, endoscope

End
prep patient

Figure 2.2: Top level workflow (left) and detailed workflow of the first work step
of mitral valve reconstruction (right) [H. U. Lemke (edt.), 2006].

Version 3 of HL 7 was released in 2006. It specifies an object-oriented Reference In-
formation Model (RIM) which explicitly models the data structures required in HIS
and the relations between these data structures. The RIM is intended to facilitate the
interpretation of messages and reduce development effort for HIS manufacturers. Mes-
sage exchange in version 3 is based on the Clinical Document Architecture (CDA), an
XML-based markup standard for the encoding of messages. The pervasion of HL 7
version 3 is only evolving very slowly, mostly due to the incompatibility with version
2 and the fact that most people are relatively satisfied by the functionalities version 2

provides.

36 Chapter 2. State of the Art

Discipline Intervention
) Minimally Invasive Mitral Valve Reconstruc-
Cardiac Surgery .
tion
Total Endoscopic Coronary Artery Bypass
Grafting
Neurosurgery Craniotomy with Navigation Support
ENT Surgery Micr'o Laryngeal S'u.rgery
Foreign Body Excision
Orthopedic Surgery Total Hip Replacement

Laparoscopic Splenectomy

Thoraco-Abdominal Surgery | Laparoscopic Cholecystectomy

Laparoscopic Nephrectomy Left

Peripheral Angiography with Intervention

Interventional Radiology CT Guided Hepatic Tumor Radio-Frequency
Ablation

Transjugular Intrahepatic Portosystemic Shunt

Table 2.1: Surgical workflows in WG24 white paper [H. U. Lemke (edt.), 2006].

VITAL /1SO 11073

The Health Informatics - Vital Signs Information Representation - VITAL standard
was released by the European Committee for Standardization (CEN) and aims at the in-
tegration of biosignal monitoring devices for data collection in intensive care units and
for telemedicine applications. VITAL specifies a Domain Information Model (DIM)
for the description of biosignals, an communication model based on the ISO/OSI layer
model and a standardized nomenclature for medical terms [ENV, 2000].

VITAL was adopted by the ISO standard "Health informatics — Point-of-care medical
device communication" (ISO 11073) [ISO, 2006]. With the exception of some proto-
type implementations (e.g. [Anagnostaki et al., 2001]), VITAL and ISO 11073 never
really were pervaded in practical applications. The major critique which was adduced
as a reason for this was the impression that both are extremely complex to implement
and far too complicated for the applications of most vendors.

Nevertheless, the information model and standardized nomenclature which is con-
tained in ISO 11073 should be considered when standardizing the semantic and semi-
otic background for the exchange of biosignals in the OR.

IHE

Integrating the Healthcare Enterprise [IHE, 2009] is an initiative by healthcare
providers and system manufacturers which aims at increasing the interoperability
between devices. IHE is not a standardization body. IHE Integration Profiles are
technical documents which propose good-practice workflows and architectures for

2.2. Surgical Informatics 37

the data exchange in different domains of healthcare in a not normative manner. IHE
makes recommendations on how existing standards should be used in a way which
optimally facilitates interoperability.

IHE is organized in technical committees which focus on one domain of application.
At the time of writing this thesis, no domain which covers the integration of perioper-
ative and intraoperative data exchange is registered.

38

Chapter 2. State of the Art

Chapter 3

Dataflow in CAS

In this chapter, the requirements for the integration of surgical planning software and
CAS modules into an information system which is based on non-proprietary interfaces
are investigated. Sandberg et al. [Sandberg et al., 2003], Burgert et al. [Burgert et al.,
2007], and DICOM Working Group 24’s white paper [H. U. Lemke (edt.), 2006] rec-
ommended an approach were these requirements are derived from surgical workflows.
Neumuth et al. have proposed and applied a method were surgical workflows are cre-
ated on the basis of actually observed surgery protocols [Neumuth ez al., 2005, 2009].
Some of the workflows presented in the white paper are based on their findings. Based
on this work and the works of Strauf3, Meixensberger, Jacobs, Blecha, et al. [Strauf}
et al., 2008; Meixensberger, 2008; Jacobs et al., 2008; Blecha et al., 2007], and addi-
tional input from clinical experts, the author analyzed the data flow requirements for
the following surgical workflows:

e Total Hip Replacement (THR)
Mitral Valve Reconstruction (MVR)
Transapical Aortic Valve Implantation (TA-AVI)

Navigated Control Functional Endoscopic Sinus Surgery (NC-FESS)

Brain Tumor Surgery (BTS)

3.1 From Workflows to Dataflows

The derivation of dataflow requirements from surgical workflow was performed in
three steps. Firstly, the information regarding data exchange which was already con-
tained in some of the workflows in an incomplete manner was amended in cooperation
with expert surgeons and with technical experts from the industry. An amended ver-
sion of the workflow from Figure 2.2 which contains the input and output data for each
work step is shown in Figure 3.1.

Secondly, the presentation of the acquired information is transformed from a process-
centric workflow model to data-centric Data Flow Diagrams (DFD, see Appendix A).

39

40 Chapter 3. Dataflow in CAS

Patient
Histor

Simulated

OR Setup

Description

Physioring
Librar

preparation
patient

femoral
cannulation

ACT

right anterolateral
incision

A

g, access to ¢
mitral valve

valve
reconstruction

close
left atrium

close right
anterolateral incision
dismantling
patient

Figure 3.1: Workflow and dataflow for mitral valve reconstruction.

Thereby, the data flow was classified according to a five-phases model. Surgical pro-
cedures are commonly described in three phases (e.g. [Sandberg et al., 2003]):

e The preoperative phase during which diagnosis and intervention planning are
performed.

e The intraoperative phase during which the intervention is conducted.

e The postoperative phase during which the OR report is written, the surgical out-
come is assessed, and the patient is monitored until dismissal.

The information systems, imaging devices, and processing workstations which are em-
ployed during these phases are, in general, disparate. Nevertheless, there is a require-
ment for the information created in one phase to be transferred into the subsequent
phase. For the analysis of the dataflow during and between the three perioperative
phases, the data exchange can be classified according to five phases of dataflow:

3.1. From Workflows to Dataflows

41

e Phase A: Preoperative images and data are transferred to the diagnostic and plan-
ning workstations.

e Phase B: Preoperatively acquired data and treatment plans are transferred into

the OR.

e Phase C: Intraoperative data exchange inside the OR.

e Phase D: Intraoperatively acquired or generated data is transferred from the OR

to systems outside of the OR.

e Phase E: Postoperative assessment and patient monitoring.

A very generic data flow diagram (DFD) for CAS is presented in Figure 3.2 on the
left. It represents the "zero-level" of granularity which is abstract enough to apply to
all the workflows which were considered. The diagram contains the exchange of data
during phases A, B, D, and E. The diagram reflects current situation as of 2006 in a
not integrated perioperative CAS scenario. The data exchange between preoperative
planning, intraoperative assistance, and postoperative follow-up is mostly based on
hardcopies or proprietary files on mobile storage media. On the right hand side of
Figure 3.2, the data flow during Phase C of computer assisted TA-AVI is presented.
The cDFDs shows to which extent the repositories and communication infrastructures
available in the HIS or RIS are used by these procedures. The solid arrows in the DFD

Modalities
Images (A,E)
Y
R
i mages® 1p1| pacs T |
Preoperative !
Phase Patient File (A)
Jo2| S/
) Findings,
T Billing & 4
H Scheduling Information '
Models, E ®)
Plans (B) !
v
2 . E
Schedule, Patient Data (B) :
Surgery [Images®) | i
E Report,
I Images,
! Models (D)
3
OR Report, Billing (E)
Postoperative
Phase Images (E)
-

l;—>Dl PACS
2.1 Elmages
Angiography | _Rotation Reconstruct Reconstructed | b Local
C-Arm Fluoroscopy DynaCT Volume Storage
: + 3D Workstation
Reconstructed SEIC?:SWCE”'
Volume olume
1 2.2 2.3
EC-Arm _—
1 Angulation___ Visualize
DynaCT Select Implant
3D Workstation Planning
H — _ Workstation /
1 3D Overlay T

H
LEluoroscopy Images _ |

! Image

/ 2.4 \4 Overlay Image '

Image Guided
Implant Placement

Central OR

\ Display)

25

Central OR

\ Display)

Valve Assessment [«

3D Ultrasound

Figure 3.2: Left: Current dataflow between pre-, intra-, and postoperative sys-
tems. Right: Dataflow between processes during TA-AVI.

42 Chapter 3. Dataflow in CAS

represent data flow for which standardized interfaces are available and implemented in
several commercially available solutions. The dotted arrows represent data flow which
is implemented via paper files or digital data exchange on the basis of proprietary
interfaces.

Thirdly, a list was generated on the basis of the DFDs which contains the required
information exchange for all five workflows. The focus of this step was limited to
phases B, C, and D. For phase A, the existing standards and interfaces in the HIS,
RIS, PACS and other clinical information systems are sufficiently covering the re-
quirements. Surgical planning workstation need to implement these standards in order
to access the information. After outputting the data which was acquired or generated
to the HIS and its subsystems in phase D, the existing information systems for inten-
sive care units, patient billing, and follow-up diagnostics are applicable in phase E.
It is a requirement, that the data which is output during phase D is encoded in a way
which facilitates further processing by the information systems which are employed
postoperatively.

In order to identify standardized means of data exchange which could be utilized to
implement the data flow during phases B, C, and D, the properties of the data which is
exchanged and the requirements to the transfer were investigated. A table was created
which classifies the data flows according to the following criteria:

e The type of the data. One of seven types was assigned: Image, geometry, biosig-
nals, structured document, text document, status, other.

e The phase(s) during which the data flow occurs.

e Data is either patient-specific or not patient specific. Patient-specific data con-
tains a reference to a particular patient, e.g. a patient ID or patient name.

e Periodically exchanged data, e.g. biosignals which are sampled in regular inter-
vals or video signals which are transmitted at a certain frame rate, is classified
as stream. Data flow which occurs singularly or multiply in arbitrary intervals,
such as user input or event notifications, is classified as message.

e Object size: the average or typical size of one data element (applies to messages).

e Bandwidth: the average or typical bandwidth which is required by a stream
(applies to streams),

3.2 Data Exchange Requirements

In Table 3.1 the list of required data flows for the five investigated surgical workflows
is presented.

43

3.2. Data Exchange Requirements

(98ed 1xau uo panunuo)) ‘S1.dg pue ‘SSHI-ON TAV-VL

AN “gHL 10J sad£], vre(:1°€ dqeL

93esSoIN qn 1 > SOX 9 [eugisorg MAIN awir], Suno[) [BLIdMY
SSHA-ON
agessaN dnN T > SOA aond snyels ‘SLd ‘IAV-VL uonensIsoy
AN YHL
weans S/HIN T > ON 9) snye1g SSHA-ON [07U0D) 90IN0S JaMOJ
wear SLg 3
1S S/HIN T > ON 9) snye1g ‘SSEA-ON MHL S9JRUIPIO0)) UONIBTIABN
weans S/AIN T > ON 9) sSmel§ SSHA-ON [euSIS [EPad 100
weans S/IAN T > ON 0 smels IAV-VL [onuoy wire-n
weans S/gIN T > ON 9 snye1s IAV-VL uone[n3uy we-))
JUAWINOOP PAIMONIS
93eSSOIN qgn o1 > SOX q o EoMHMQO@ 1oL MAN 110doy A3ojorsAydonosrg
JUSWNOOP PAINJONDS
J3esSoIN qan 1 > SOA q 10 JUAWNSOP 1X0] IAV-VL snIpey snnuuy dnIoy
Pylo 1o SSHA-ON
3esSoIN | FINOT — 9N 1 SOX dq [9uawndop paInonis ‘SLY IAV-VL uonduose dnmes JO
JuaWNd0p 1X3, AN MHL
o3essoN | N OI — dIN [SOA q Anowoan SL9 TAV-VL Suruue[d UoISIouf
19410 10
3esSoIN | FINOT — FIN 1 SO q |[7uawnoop paInjonns IAV-VL W\M\M ue[q uonejuedwy
“UAUWINJOP I1XIT,
A3BSSIIAI Ipmpueq | dyadg
J0 WIS | / IZIS ddeIdAY | Judned (s)aseld 2dAL uEsIm»o JUEN

Chapter 3. Dataflow in CAS

44

(98ed 1xou uo penunuo)) 'S1d Pue ‘SSHA-ON ‘TAV-VL YA “YHL 10 sadL1, ere(:1°¢ dqeL

(passaxd
weans | -wooun) S/gN SOX 0 a3ew] SSHA-ON AN Kdoosopug
0c > JIvd
a3essoN 451> SOA ao'd o3ew]| IAV-VL YAN punosen] +dg papIody
o3essIN a0 1> SOA ao'd oFew]| IAV-VL YA punoseny] +dg papiodey
a3esso > $9 ‘ d3ew punos
Al 4o 1 A ao I SLd -en 0+H)dE pAaonnsuodNYy
weansg (passaidutooun) SOx 0 93ew S1g punosen|n g 9AI']
S/HIN 0C — 01
93esSOI g 01 > SO d agewy IAV-VL “gHL Ke1-x ag
IAV-VL Aydei3or3ue
OBESIN a0 1> ok 0 osew YA YHL | / Adoosozong Aer-X popIrodoy
(passaxdwooun) IAV-VL Aydex
Heans S/9GIN 02 — 01 SR q osew YA YHL | -Sor3ue ; Adoosorony Aei-Y oA
SL19 ‘TAV-VL
a3esso > $9 o3ew
N 4D 1 A q I “TAIN MHL R[N
SSHA-DN YA
J3essa > $9 o3ewr
N 401 A q I IAV-VL WHL LD
93eSSOIN qgn 01 > SOX q o3ew MHL Ae1-x [en3Iq
SSHA-ON
weans S/IAN T > SOA ad [eusisorg ‘SLd TAV-VL DOH
YA ¥HL
A3BSSIII yIpmpueq | dgadg
J0 WedN)S | / IZIS AZeIdAY | JudNeJ (s)aseyd PdAL uEsIm»o JUEN

45

3.2. Data Exchange Requirements

"S.LE Pue ‘SSHA-ON ‘TAV-VL AN “dHL 10J sodA], v1e(q :1°¢ dIqeL

3eSSOIN | GINOT — dIN 1 SOX q Anouwoan) SSAA-ON oedsyIopm
93esSoIN q 001 > SOx ao‘'d AnQowoan) m,w_k\w<.m¢mrwwwwm Awojeuy JO S[OPOJA 29BJINS
J3esSoIN qgn o1 > ON q A1Quodn) mm@mﬂ.@«ﬂ W\M\M syrewpue| (¢
J3esSoN qn o1 > ON q A1QuIodn) MHL syrewpue (g
J3esSON qgn o1 > ON q A1Quodn) AM>M/M~.M% soerdway, yuerdwy ¢
98BSO qgn o1 > ON q A1Quodn) MHL soye[dway, Jueidwy g
wreans S/AdN 0T > SOA) ogew] SL19 ‘TAV-VL ¥V Joj soSew] Ae[roaQ
98BSO qgn o1 > SOX a o3ew SSAA-ON AN sjoysdeug Adoosopuyg
SA14q .
98BSO S o dp SOX a o3ew] SSHA-ON YA 09pIA Adodsopuyg papioday
A3BSSIIAI Ipmpueq | dyadg
J0 WIS | / IZIS ddeIdAY | Judned (s)aseld 2dAL uEsIm»o JUEN

46 Chapter 3. Dataflow in CAS

Phase B, the transfer of preoperative images, models, and plans, is dominated by the
exchange of documents, images, or other datasets between workstations, repositories
and intraoperative systems. The requirements to the communication infrastructure dur-
ing this phase are very similar to the requirements during phases A and E, during which
HIS, RIS, PACS, and other information systems are utilized: The importance of data
integrity and durability is superior to performance requirements. Interoperability is
important, since surgical planning software from different vendors needs to be inte-
grated. Changes of clinical practice or investments in new technologies will require
the information system to be flexible enough to allow extensions. The incidence of
integration of new systems is not very high. Therefore, thje availability of plug-and-
play functionalities is a minor requirement. In Chapter 4, new DICOM data structures
are presented which extend the domain of the DICOM standard towards storage and
transfer of surgicall planning data.

Phase C, the intraoperative phase, is dominated by soft- and hardware systems acting
and communicating simultaneously under real-time conditions. The requirements dur-
ing this phase are similar to an automation system or a video conferencing system:
Data integrity is as important as in-time delivery of data. Streaming communication
relies on guaranteed frame-rates. Intraoperative information systems are usually ad-
hoc systems, i.e. they are set up immediately before used and dismantled afterwards.
One of the key requirements to an OR infrastructure is auto-configuration of devices,
or a "surgical plug-and-play" mechanism [Cleary & Kinsella, 2004]. Inside the OR, no
long-term archives are located. Nevertheless, situations can occur, where access to ex-
ternal repositories is required in order to retrieve patient data which was not imported
during Phase B. A software library is presented in Chapter 5 acts as an application
level interface for service discovery and peer-to-peer communication inside the OR.

Chapter 4

Surgical DICOM

In order to eliminate the media disruption between preoperative diagnostics and plan-
ning and the intraoperative display and implementation of surgical plans, it is a re-
quirement to integrate the OR into the information systems which are utilized during
planning and diagnosis. For image based intervention planning, this means to build
a bridge between the OR and the PACS. Inside the PACS, images, image-related in-
formation, and commands are usually communicated with the means of the DICOM
standard. DICOM originates in diagnostic radiology. Its original intent was to act as a
vendor independent file format and network interface for storage and exchange of ra-
diology images and streamlining of radiology workflows. Its scope has been extended
to storage and transfer of treatment plans in the field of radiotherapy in the 1990s
[NEMA, 1996]. Several publications discuss the implementation of this standard in
real-world systems and its effect on the radiotherapeutic workflow [Germond & Hae-
fliger, 2001; Law & Huang, 2003; Law & Liu, 2009; Law et al., 2009]. In 2005, DI-
COM Working Group 24 (Surgery) was founded with the aim to extend the DICOM
standard with respect to use cases from computer assisted surgery. It is still a matter of
discussion inside WG 24, to which extent the DICOM standard can provide the basis
for the integration of devices in the OR (Phase C). In this chapter the focus lies on the
application of DICOM to implement the data exchange during Phases B and D, i.e. the
transfer of planning data into the OR and the export of intraoperatively recorded data
to external repositories for long-term archival. In this chapter, two work items for the
extension of DICOM are identified and the information models which were the base
for their conduction are presented. These considerations are largely based on the data
flow which was described in Chapter 3 for five concrete surgical interventions. This
practice is in good agreement with the recommendation from the DICOM Working
Group 24 White Paper [H. U. Lemke (edt.), 2006; Lemke, 2007], where an approach
is motivated which is based on existing, good-practice workflows in order to guarantee
for all standardization efforts to solve real-world problems in a fashion which matches
realistic clinical requirements.

47

48

Chapter 4. Surgical DICOM

4.1 Identification of DICOM Work ltems

The DICOM standard in its 2005 version already contains SOP classes for a large share
of the data flow during Phase B as it was presented in Chapter 3. In Table 4.1, these data
flows are listed. For those objects where this is possible, a DICOM IOD is named in
the table which could represent the object. The remaining data flows were considered
candidate work items for the extension of DICOM for transfer of preoperative data

into the OR. These data flows are:

Name

10D(s)

Implantation Plan

Incision Plan

OR Setup Description

Aortic Annulus Radius

Electrophysiology Report

(partially covered by Basic Cardiac

Electrophysiology)
Registration Spatial Registration
ECG 12-Lead / General Electrocardiogram
Digital X-ray Computed Radiography Image
CT (Enhanced) CT Image
MRI (Enhanced) MR Image
Recorded X-ray fluoroscopy / angiography | (Enhanced) XA/XRF Image
3D X-ray Enhanced XA/XRF Image
Reconstructed 3D Ultrasound Enhanced US Volume
Recorded 2D+t (Doppler) Ultrasound Ultrasound Image
Recorded 3D+t Ultrasound Enhanced US Volume
Recorded Endoscopy Video Visible Light Image
Endoscopy Snapshots Visible Light Image
2D Implant Templates -
3D Implant Templates -
2D Landmarks -
3D Landmarks -

Surface Models of Anatomy

Workspace

Table 4.1: DICOM SOP classes applicable for THR, MVR, T-AVI, NC-FESS.

and BTS (based on [Lopfe et al., 2006]).

4.1. Identification of DICOM Work ltems 49

e Implantation Plan: A patient-specific selection of implant templates, their regis-
tration to patient space as defined by preoperative images or models.

e Incision Plan: A patient-specific description, usually in geometric form, of the
intended body opening through which an intervention is performed. The incision
is determined according to preoperative images or surface models.

e OR Setup Description: A textual or structured document which lists the required
equipment and equipment settings for an intervention.

e Aortic Annulus Diameter: Diameter of the aortic root, preoperatively measured
on patient images. This value is required during TA-AVI to select the optimal
diameters of balloon catheters and aortic valve implants.

e Electrophysiology Report: The MVR workflow contains an option where atrial
arrhythmia is treated in addition to the reconstruction or replacement of the mi-
tral valve. For patients who underwent electrophysiological mapping , the fi-
nal mapping and treatment report from electrophysiology is presented during

surgery.

e 2D and 3D Implant Templates: Graphical representations of surgical implants
which are utilized during preoperative planning to select the optimal implant and
its position with respect to anatomical landmarks identified in patient images or
surface models.

e Surface Models of Anatomy: Polygonal surface representations of organs or
other structures, usually extracted from patient images.

e Workspace: The geometric definition of the space in which the shaver is intended
to operate during NC-FESS.

Of these data types, surface models of anatomy, 3D implant templates, the NC-FESS
workspace, certain aspects of the electrophysiology report, and the incision plan re-
quire a mechanism to describe geometric objects in patient space with the means of
polygonal meshes. This is a very generic requirement for which DICOM does not con-
tain a suitable data structure. The definition of a generic module for polygonal surface
meshes in DICOM was identified as the foremost work item to be pursued by Work-
ing Group 24. Together with DICOM Working Group 17 (namely Scott L. Johnson
from Philips Radiation Oncology Systems in Madison, Wisconsin, USA), the author
of the thesis was engaged with the task to specify a DICOM SOP class for storage and
transfer of surface segmentations. In Section 4.2, the resulting SOP class which was
officially added to the DICOM standard as Supplement 132 [NEMA, 2008a] in 2008
is described.

Implantation planning was selected by WG 24 to be the second most pressing work
item from that list. This includes data structures and services to describe 2D and 3D
templates as well as patient-specific implantation plans. This work item was assigned
to Working Group 24 in 2007. It was split into two work packages, of which the

50 Chapter 4. Surgical DICOM

definition of implant templates is pursued under supplement number 131 [NEMA,
2009a] by the author. The second work package regards storage and transfer of patient-
specific implantation plans and is pursued by Thomas Treichel at ICCAS in Leipzig
under supplement number 134 [NEMA, 2009b]. As of autumn 2009, both supplements
are close to being released into the final voting process during which the decision is
made about adding the proposed services and data types to the standard. The IODs
which are proposed in supplement 131 are presented in Section 4.3.

The remaining data objects fall into two classes: The OR setup description is a highly
technical document which clearly falls out of the domain of DICOM. In Chapter 3,
an infrastructure for the integration of OR systems is presented. According to the
recommendations of the OR2020 workshop and preceding meetings (see discussion
in Chapter 1), one of the features of this infrastructure is a plug-and-play mechanism
through which the components of a modular CAS system automatically identify their
peer components in the network. In this scope, the issue of setup descriptions or inte-
gration profiles will be discussed. The aortic annulus diameter and the non-graphical
aspects of the electrophysiology report are diagnostic findings which are based on im-
age information. Within DICOM, the Structured Reporting (SR) mechanism is avail-
able for transfer and archival of this kind of data. SR documents are very generically
defined and can potentially be used to encode any kind of clinical finding. The strength
of DICOM SR is the possibility to exchange image-related diagnostic findings through
the same infrastructure through which the images are exchanged rather than to require
an additional EHR infrastructure, such as it is specified by OpenEHR or other stan-
dards. The weakness of DICOM SR is its relatively low pervasion, especially outside
of radiology information systems. It is an open question which of the existing ap-
proaches should be preferably utilized to transfer diagnostic data into the OR. This
decision can only be arrived by a committee or other body including representatives of
the relevant industries as well as experts with a background in hospital management,
hospital information systems, and medicine. Potentially, the IHE (see Section 2.2.3)
initiative could be the foundation for such a panel. Within the thesis, no further regard
is spent on this topic.

4.2 Surface segmentation SOP Class

The examination of data flows in Chapter 3 and Section 4.1 revealed seven data ob-
jects for which no DICOM SOP class is applicable. Five of these data objects include
polygonal surface models. Another indicator for the importance of geometric model-
ing is their pervasion in CAS publications. During the Visualization, Image-Guided
Procedures and Display session at the SPIE Medical Imaging Conference in 2006,
for instance, 91 papers were presented of which 45 contained surface meshes [Gessat
et al., 2007].

DICOM is originally designed according to a world model which is founded in radi-
ology workflows. In Appendix B, the DICOM model of the real world is depicted as
an Entity-Relationship diagram in Figure B.3. This model contains an image Infor-

4.2. Surface segmentation SOP Class 51

mation Entity (IE) which is an abstraction of all modality specific images covered by
DICOM. In order to represent patient specific surface models, a surface IE is required
on the same level as the image IE (see Figure 4.1).

While computer scientists favour to think in abstract categories or classes, the evolution

Patient
1 1
1-n
1-n
Visit
1
1-n
Study I

Modality Performed
Procedure Steps

1

1-n

0-1 1-n
Frame of Spatially
Reference Refine

1 1-n
Equipment @

A A

Series

1-n

patially
efine, I 1

1

0-n 0-n 0-n 0-n 0-n
Fiducials I Image I SR Document I MR Spectroscopy I E%Cgcpj#‘le""rt]fd I
0-n 0-n 0-n 0-n | 0-n‘_ 0-n 0-n
Registration I Ragggstrsap Y I Pressezégiztion I Surface I Waveform I Raw Data I Vz;-\l’fgllv\ll\a/lgﬁ?ngl

Figure 4.1: DICOM model of the real world including surfaces.

52 Chapter 4. Surgical DICOM

of the DICOM standard is strictly bound to a "one use case at a time" approach. The
observation that there are several use cases which require polygonal surface models
may be a good argument to start a work item on either one of these and to pursue
it in a manner that allows re-using the geometric data structures in future use cases.
Nevertheless, adding a required IE and the according modules to the standard would
not be accepted by the DICOM Committee as a work item rationale. Instead, the work
item rationale has to be a clinical use case with real-world applications in at least one
major vendor’s commercial products. For surface models, the most promiment use
case in CAS is the storage and transfer of surface models which were derived from
patient images in a segmentation process. Surface segmentation was selected as the
"vehicle" for introducing the surface IE and, accordingly, a surface module to DICOM.

4.2.1 Requirements

The surface segmentation SOP class was specified to satisfy the following require-
ments:

e The geometric description of a surface segmentation shall be contained in a sep-
arable module that can be reused in other IODs which contain a surface de-
scription. The module has to contain mechanisms for the description of piece-
wise linear surfaces consisting of triangles or planar polygons ("facets"). Lines,
piecewise linear curves ("polylines”) and O-dimensional nodes also have to be
contained in the module.

e In most cases where surface meshes are used in clinical software, they are visu-
alized to the user of a system. In order to visualize a surface mesh, the rendering
engine requires material parameters, such as color and opacity of the surface
mesh. While DICOM usually treats the exchange of visualization parameters
separately from the representation of data, it was decided that for surfaces at
least a minimal set of rendering parameters should be part of the data IOD.

e Segmentation, surface reconstruction, and diagnosis are in some settings per-
formed on disparate systems by different users. This necessitates that surface
segmentation instances contain information describing the context of the seg-
ments along with a description of how they were derived.

e Distances between structures, volumes of structures, and other geometric pa-
rameters are calculated for various purposes. Some of these calculations require
knowledge about topographic or geometric properties of the surfaces, e.g. the
information whether the surface is "waterproof™, i.e. envelopes a finite volume.
It is required that such parameters can be stored with a surface mesh.

4.2. Surface segmentation SOP Class 53

4.2.2 Surface Segmentation Class Diagram

The class diagram in Figure 4.2 shows a model of the information which is contained
in the surface segmentation IOD as a UML class diagram. It contains the following
classes:

e The Patient, Study, Series and Equipment classes represent the DI-
COM modules which reflect the DICOM information model for patient data.

e The FrameOfReference class assigns a globally unique identifier (a UID
in DICOM context) to a spatial Frame Of Reference (FOR). When two DCOM
instances share the same FOR, the same spatial coordinate in both instances
correspond to the same location in the patient. The rigid or non-rigid registration
IODs can be used to express the spatial relations between different FORs.

e The Segment class describes one segment of the patient space. A segment
represents any kind of property which can be, e.g., an organ, an area of high
activity in a functional image, or a contrast agent bolus. The Segment class
contains a description of this property using standardized codes and in addition
free-text descriptions. A segment references one or more surfaces, i.e. a segment
can be an aggregation of more than one geometric item.

e The SegmentSurface class establishes the reference between segments and

Patient - Study - Series

Q1

FrameOfReference |1 SurfaceSegmentation L' Equipment
+UID
1 1
+arigin T
Segment

i SegmentSurface

1.* +riumber
+algorithm < +label
+soLrcelnstances L | +description

+segmentedProperty

Figure 4.2: UML class diagram of the surface segmentation.

54 Chapter 4. Surgical DICOM

the surfaces used to construct the segments. Each Segment Surface contains
a list of the DICOM instance references and descriptions of the algorithms which
were used to generate the surface.

e The Surface class describes the geometric properties of a surface mesh. Its
points P are contained in a Points object, its primitives T are contained in a
Primitives object. If present, an object of the Normals class adds a vector
to each point in P which indicates the surface normal in that point.

e The SurfaceProcessingDescription class describes the derivation of
a surface based on other surfaces. A description of the derivation algorithms
is contained in standardized codes. There is also a description of the degree of
processing and a reference to the original source.

4.2.3 Surface Segmentation Storage SOP Class

DICOM supplement 132 specifies the surface segmentation storage SOP Class, con-
sisting of a surface segmentation IOD and services to store, transfer and query in-
stances of that IOD. The modules which are contained in this IOD are listed in Ta-
ble E.1. Supplement 132 specifies two new modules which contain the actual segmen-
tation information and geometric information. A surface segmentation IOD instance
is a serialization of an object of the SurfaceSegmentation class and associated
objects according to the UML class diagram in Figure 4.2.

e The surface mesh module geometrically and topologically describes one or more
polygonal surfaces. A complete list of the attributes in this module is presented
in Table E.3. It is represented by the orange classes in Figure 4.2.

The surface mesh module is specified as a general module which is intended to
be present in IODs other than the surface segmentation IOD. For that reason, the
module does not contain any attributes which are specific to segmentation.

e The surface segmentation module adds semantics to the geometric entities spec-
ified in the surface module. A complete list of the attributes in this module is
presented in Table E.2. It module is represented by the green classes in Fig-
ure 4.2.

Included semantics are: properties represented by the surface, references to im-
age data, and algorithms used to derive the surface from the image data.

To guarantee that the description of the segment semantics is commonly understand-
able, DICOM provides standardized codes to identify properties as well as algorithms.
Where applicable, SNOMED CT codes are utilized. Where no appropriate SNOMED
CT codes exist, DICOM codes are specified in supplement 132. Figure 4.3 shows an
example of how surfaces and segments are stored in the IOD. In 2008 the development
of DICOM supplement 132 was finished. The surface segmentation SOP class was
officially published as a part of the DICOM standard in its 2010 version.

4.2. Surface segmentation SOP Class

55

Patient Module

Name: John Doe

born: January 1st, 1950

Study Date: 06.08.2008

ID: 001 sex: male
General Study Module
Study Instance UID: 1.1.1.1.1.1 Study ID: 5

Accession Number: 1

General Series Module

Modality: SEG
Series Instance UID: 1.1.1.1.1.2

Series Number: 3
Laterality: R

Frame of Reference Module

Frame of Reference UID: 1.1.1.1.1.3

Surface Mesh Module

Surface 1

Surface 4

Surface Segmentation Module

Segment Nr. | Surfaces | Label

Segmentation Type

1 1,2,3 Ossicular Bones Manual

2 4 Ductus semicirculares | Manual

Figure 4.3: Surface segmentation IOD instance.

56 Chapter 4. Surgical DICOM

4.3 Implant Template SOP Classes

In implantology, the preoperative selection of the best fitting implant and its virtual
placement in patient space is called implantation planning. Thereby, 2D or 3D radiol-
ogy images of the patient are visualized together with graphical representations of the
implants to perform planning; classically, plastic overlay foils are manually placed on
printed radiographs based on visual assessment. This technique has been applied, e.g.
in orthopedic surgery in the preparation of Total Hip Replacement (THR). In recent
years, digital planning systems, where digital templates are overlaid to digital radio-
graphs on the computer screen, emerged [Azari & Nikzad, 2008]. With 3D imaging
modalities, planning in 3D space became possible. The need for 3D planning has been
noticed for several applications, where information from 2D images is insufficient.

Generic Implantation Planning Workflow

The generic workflow for implantation planning is presented in Figure 4.4. To illustrate
the procedure, exemplary images are shown from each work step when applied for 2D
or 3D planning of THR. It consists of the following work steps:

e Radiological images are selected from a PACS server or storage medium.

e Models of the anatomical structures in the area of implantation are extracted
from the images. This step is often omitted in 2D applications.

e The user or an algorithm localizes anatomical landmarks according to which au-
tomatic implant selection and placement is performed. Purely manual planning
systems often omit this step.

e The user or the system selects an implant or set of implants which optimally
match with the anatomical or pathological situation in the patient’s body.

e The selected implant(s) is/are registered with patient anatomy.

e Based on the selection and placement of implant templates, the outcome of an
implantation can be predicted. For example, THR planning systems often au-
tomatically the change in leg length which would result from an implantation
plan.

These steps, especially the last three, are usually iterated until a satisfying planning
result is obtained.

4.3.1 Overview

DICOM WG24 organized two workshops with representatives from the implant as
well as implant planning software industry and clinical experts. Therein, the require-
ments to the extension of DICOM to include data structures and services for implan-
tation planning were determined with a focus on orthopedic and trauma surgery. An

4.3. Implant Template SOP Classes 57

Start
Planning
v

Select & Load
Images

A 4

Extract Models

A

A 4

Locate Anatomical
Landmarks

A

A 4

[Select Template(s)

A

A 4

[Register Template(s)

A
A 4

Predict Outcome

Finish
Planning

Figure 4.4: Generic workflow for implantation planning.

information model was created which contains four new IEs. The model is depicted
in Figure 4.5 According to the model, four IODs and the corresponding services were
specified:

e An implant template IOD which represents all properties of an implant which
a software or user of a software requires during implantation planning: implant
shape, clinical indications, material, . ..

e An implant assembly template UID which clarifies the compatibilities between
components in modular implants.

e An implant template group IOD which allows to build structured implant tem-
plate catalogues in order to facilitate browsing through repositories.

58 Chapter 4. Surgical DICOM

Patient I

g
1-n

Study I
i

1-n

1

1-n

. patially Frame of patially

Series i‘eﬁ”e Reference "eﬂne

1
contains

0-n ‘ 0-n | 0-n ¢ O—nt 0—n‘
Surface I 'gg?g;tggzn I Image I Fiducials I Registration I
o-n 4 0-n 1 0-n o-nf
0-n
references
1-n
A

§

Implant Template references Implant Assembly
Group Implant Template Template

Implant I~
Frame of
@ Reference

Manufacturer I

Figure 4.5: DICOM information model for implantation planning.

e Animplantation plan SR document which is the patient-specific output of a plan-
ning procedure.

DICOM supplement 131 which contains the specifications of the first three IODs.
These 10Ds are the direct result of the presented research work and are presented in
the following Sections 4.3.2—4.3.4. The forth IOD is specified in DICOM supplement

4.3. Implant Template SOP Classes 59

134 of which Thomas Treichel from ICCAS, Leipzig, Germany is the principal author.
A brief summary of its purpose and structure is presented in Section 4.3.5

4.3.2 Generic Implant Template Storage SOP Class

The generic implant template storage SOP class contains the generic implant template
IOD which specifies a data structure for implant templates as they are used in tem-
plate based implantation planning. Besides the generic SOP common module, which
contains the basic DICOM mechanisms for unique instance identification, the IOD
contains seven modules (see Table E.8). One of these is the surface module presented
in Section 4.2.3. The remaining five modules are specified in supplement 131. A com-
prehensive list of the attributes in these modules is presented in Appendix E.2. The
UML class diagram in Figure 4.6 gives on overview of the IOD and its modules. Each
of the modules is presented in detail in the following paragraphs.

Implant Template Description Module

This module contains attributes which identify an implant or describe its purpose and
intended use. The complete attributes list of the module is presented in Table E.O.
Informative documents and legal notifications addressed to the user of a template can
be included in this module as well as a list of countries or regions in which the implant
or implant template is not approved for usage. The UML class diagram in Figure 4.7
depicts the information model which was the basis for development of this module.
The ImplantTemplateDescription class is the central entity of that diagram.
It contains a human-readable name, the manufacturer assigned identfier of the
implant the template represents and size information.

Implant Template Versions and Derivation Module
Implant templates which are issued by an implant manufacturer or a contracting com-

SOP Common Surface

Description
\‘ Mating Features

Generic Implant Template /

Derivation and Versioning /‘ / \ \ Planning Landmarks

2D Drawings 3D Models

Figure 4.6: UML class diagram of the generic implant template IOD and its
modules.

60 Chapter 4. Surgical DICOM

ImplantTemplate

+soplnstanceUid: UID >

. 0.1
+originalTemplate 0.1 0 1 +replacedImplant

+derivationTemplate

ImplantTemplateDescription

+manufacturer: String

+name: String 1
L +size: String
ImplantDerivation +partNumber: String ImplantVersioning
+targetAnatomy: *CodeMacro . 5
+isOriginal: Bool +disapprovalRegions: *CodeMacro +version: String .
+overallTolerance: Float +effectiveDate: dateString

+materials: CodeMacro*
+coatings: CodeMacro*
+types: CodeMacro*
+fixationMethods: CodeMacro™*

+manufacturerNotification *\ * * / +manufacturerInformation

Encapsulated_Document

+issueDate: dateString
+summary: String
+pdfDokument: *void

Figure 4.7: UML class diagram of the generic implant template description mod-
ule and the generic implant versioning and derivation module.

pany are not under all circumstances directly delivered to the health-care providers.
Instead, several business cases were discussed during the industry workshops, where
the templates are issued through a planning software vendor and/or a PACS vendor
or integrator and where each of these entities adds information (in the form of private
tags) to the instances. In order to keep control over the origin of all instances and in
order to maintain the possibility to exchange plans across systems without exchanging
the template repository, references to the original templates from which an instance
was derived are included.

In order to fix bugs, to adjust to changing legal regulations, or for marketing pur-
poses, subsequent versions of an implant template can be released. To facilitate ver-
sion management in the software vendors’ as well as end users’ systems, a versioning
mechanism is provided. Each implant template has a version descriptor. If a pre-
ceding version exists, the ReplacedImplantReference provides the link to this
instance. This attribute can be utilized in a script which replaces outdated versions of
implant templates in groups or assembly templates. The attributes of the implant tem-
plate derivation and versioning module are presented in Table E.10. An exmple for the
reference mechanism included for versioning and derivation is depicted in Figure 4.8.

2D Drawings Module

This module adds the capability to include one or more technical 2D drawings into
an implant template instance. Technically, the polyline and line primitives from the
DICOM surface module or the DICOM encoding for geometric markups in the DI-
COM I0Ds used to describe presentation states would be viable for encoding the 2D

4.3. Implant Template SOP Classes

f issues | Implant Derivation Implant Implant
Manufacturer Template A [Template Template A1 ¥

X |
Derivation Implant |
Template

, T ORIGINAL | Original Implant DERIVED \
: Real- N Version 1 “Template Version 1 \
! World AN '
} Implant \ issues * \
om o] \update Replaced Implant Replaced Implant
1 Part i \ Template Template \
1 Number \ \
s | Implant __Derivation Implant Implant \
y Template A ¥ Template Template A1 V. |
ORIGINAL | Original Implant DERIVED o
Version 2 " Template Version 2 Vol

Original Implant
Template

Implant
Template A2 I

DERIVED :
Version 2

A issues .
PACS System issues ____---- - Software
Integrator [T Vendor

Figure 4.8: Relations between original, replaced, and derived implant templates.

drawings. Nevertheless, the industry representatives who were included in the design
process of the implant template IOD incisted on utilizing an encoding which facilitates
the export of 2D drawings from the most pervaded computer assisted design software

products. The HPGL plotter language was identified as the encoding which best fulfils
this criterion.

The implant template 2D drawings module contains a mechanism to include HPGL
documents into DICOM instances. One or more documents can be encapsulated in
one template instance. The module adds additional attributes to each drawing. These
attributes identify the direction of projection and the scaling which was applied to ren-
der the drawing. The complete attributes list of the module is presented in Table E.11

Figure 4.9 shows the information model behind this module in a UML class diagram
The green classes are represented by the 2D drawings module.

The HPGL_Document class is a container for one 2D drawing. Several of these
drawings can be contained in an ImplantTemplate instance. Besides the actual
hpglDocument which is contained as plain byte string, the HPGL_Document class
assigns an identification number and label to each drawing. The number allows for
logical references to a drawing from within or outside the same 10D instance, while
the label is intended for display to the human user of a planning software.

HPGL uses integer coordinates which refer to a -

10 mm grid on the sheet a plotter
would print on. The scaling attribute maps mms of the drawing space to real-world

62 Chapter 4. Surgical DICOM

2D_Drawing

+id: Integer
3DModels +label: String
+viewOrientation: CodeMacro
+frameOfReferencelid: UID ImplantTemplate +scaling: Float
+surfaceModelScaling: Float 0.1 * +hpglDocument: *void
+contourPenNumber: Integer

0 +recommendedRotationPoint: Float[2]
+boundingRecangle: Float[4]

1.% 1 x
SurfaceReference HPGL_PenDescription

:::g::tsﬁrrgl)o') I +penNumber: Integer

+penLabel: String
+penDescription: String

Figure 4.9: UML class diagram of the generic implant template 2D drawings
and 3D models modules.

millimeters. To give an example, a line which is 400 units long in HPGL would appear
10 mm long in the drawing. If the scaling of that drawing would be 2, this line
would represent a 20mm contour of an implant in the physical world.

In HPGL, multiple pens are used to distinguish between different types of lines, e.g.
object contours and axes of symmetry. In HPGL, these pens are identified by an integer
ID. The HPGL_Pen_Description class adds labels to the pens and distinguishes
between contour pens and non-contour pens. Contour pens are used to draw lines
which represent the actual shape of the implant. These lines should always be rendered
by a planning application, while additional information, such as planning landmarks,
lines of symmetry, points of rotation, or dimensioning pens may be hidden.

In many applications, different projective X-ray images are used for planning one case.
For each of these projections, a different 2D template is required. It is important, that
only 2D templates which represent the view on the implant from the correct direction
are overlaid to an X-ray image. To ensure the correct use of the drawings, the class
member viewOrientation assigns a SNOMED code to the document which de-
scribes the direction of projection of the X-ray images which it shall be used with. A
similar code is contained in DICOM X-ray images.

3D Models Template

For the geometric definition of 3D templates, the surface module from the surface
segmentation IOD (see Section 4.2.3) is re-used. To add semantics to the surfaces in
this module, the 3D models module is included in the implant template IOD together
with the surface module. The complete attributes list of the module is presented in
Table E.12. The orange classes in Figure 4.9 depict the information models behind
these modules.

One ImplantTemplate object can refer to several 3D_Model objects. The 3D_—
Model class adds labels to surfaces it references through their surface number which
is unique within one instance. The isContour flag distinguishes between meshes
which add to the actual shape of the implant template and should therefore always be
rendered and those that add informative content, such as axes of symmetry, directions

4.3. Implant Template SOP Classes 63

of motion or other markups. Since all surfaces defined inside one IOD instance lie by
definition in the same frameOfReference, the 3D Models module only contains
one scaling factor for all surfaces. This factor maps the units in which the points are
defined to real-world millimeters.

Planning Landmarks

Planning landmarks serve two purposes: to place and orient implant templates in re-
lation to patient images for overlay visualization and for implant selection based on
geometric constraints. A planning landmark is a point, a line, or a plane which is
defined in the same space as the implant template. During planning, these geometric
features are registered with corresponding landmarks in patient space. Examples for
planning landmarks on aortic valve implants are shown in Figure 4.10.

The planning landmarks of an implant template are a triple L = (L, L;, L,;) wherein
L, contains the point landmarks, L; contains the line landmarks and L,,; contains
the plane landmarks. Every landmark consists of a coded anatomical description
(SNOMED codes are emphasized to encode the semantics of the landmarks’ anatom-
ical equivalents) and geometric specifications. For 3D templates, point landmarks are
represented by one 3D coordinate, line landmarks are encoded as two 3D points which
define the line and plane landmarks are encoded as a 3D point on the plane and a 3D
normal vector orthogonal to the plane. If the 3D model consists of several surfaces,

A A
e,
o~ B

R

Flow YR 5
direction A
Clamp Sinus (\
PrOX|maI rim

Figure 4.10: Planning landmarks in stented aortic valve implant templates (pic-
tures courtesy of Edwards Lifesciences and Ventor Medical Technologies).

64 Chapter 4. Surgical DICOM

there is still only one 3D definition of each landmark since all surfaces are by definition
lying in the same FOR.

For 2D templates, the different projections need to be considered when adding plan-
ning landmarks to a template. Each landmark has different coordinates in different
projections. Therefore, 2D landmarks are encoded per projection: For every projec-
tion, one 2D coordinate is assigned to points and two 2D coordinates are assigned to
lines. Planes are encoded as lines describing the intersection of the plane with the
image plane. It is not required, that every landmark is present in every projection.

The complete attributes list of the generic implant template planning landmarks mod-
ule is presented in Table E.14. It is represented by the yellow classes in Figure 4.11.

PlanningLandmark
+id: Integer B ImplantT late
+description: String
+identification: *CodeMacro ’
PointLandmark PlaneLandmark LineLandmark
0.1 * 0.1\ * / \01
3DPointCoordinates 2DPointCoordinates 3DPlaneCoordinates 2DLineCoordinates 3DLineCoordinates
+point: Float[3] +point: Float[2] +origin: Float[3] +point1: Float[2] +pointl: Float[3]
+normal: Float[3] +point2: Float[2] +point2: Float[3]
*
2DLandmarkCoordinates Mawing
+point: Float[2] 1

Figure 4.11: UML class diagram of the generic implant template planning land-
marks module.

Mating Features

Implants can consist of several components. Usually, implant components are con-
structed in a way that when two components are assembled, they "snap" into one spe-
cific alignment. This alignment can have degrees of freedom to realize joints.

The implant template mating feature module contains an ordered set S = {51, ..., Sk}
of ordered sets S; = {M;, ..., M;} of mating features M;. Each mating feature M,
is described by a 4 x 4 Matrix M; = (aj,, ajy, &;, 0;), containing three orthogonal
axes ajz, ajy, @, and one origin ©; in homogeneous coordinates. Each mating fea-
ture specifies a local coordinate system. The attributes required to describe these sets

4.3. Implant Template SOP Classes 65

are contained in the generic implant template mating features module (see Table E.13)
which is represented by the yellow classes in Figure 4.12. Similar to planning land-
marks, mating features require a geometric definition in every 2D drawing according
to the angle of projection and scaling of that drawing.

When two components are assembled, the templates are arranged so that the origins
and axes of the mating features coincide. Joints can be specified by adding degrees
of freedom to mating features. The mating features are organized in sets to allow
the following restriction: In a valid assembly, at most one mating feature M; of each
mating feature set .S; of each participating component may be used.

Mating features are a tool to constrain assembly of components geometrically. In
order to build useful assemblies, an assembly template is required which contains the
information about which component can be assembled with which component. For that
purpose, a separate IOD was developed which is described in the following section.

4.3.3 Implant Assembly Templates

Implants are often not monolithic objects but consist of several components which can
be selected from several sizes and shapes. The components are assembled before or
during implantation. For implantation planning, two aspects of component assembly
are relevant. Firstly, a planning system has to know which combinations between
components are allowed and which not. Secondly, the planning system has to know
the geometric relation of the components after assembly.

The implant template IOD contains the definition of available mating features on im-

*
ImplantTemplate | g 2D_Drawing
¢ :

*

MatingFeatureSet
+id: Integer
+label: String
1. *
3DMatingCoordinates MatingFeature 2DMatingCoordinates
0.1 b
+point: Float[3] +id: Integer s +point: Float[2]
+axes: Float[9] +axes: Float[4]
*
3DDegreeOfFreedom 2DDegreeOfFreedom
9 DegreeOfFreedom " 9
+axis: Float[3] 0.1 1 - +axis: Float[2]
+range: Float[2] gC:Rntegel +range: Float[2]
1
<<enumeration>>
DofType
+TRANSLATION
+ROTATION

Figure 4.12: UML class diagram of the generic implant template mating features
module.

66 Chapter 4. Surgical DICOM

plants. These features do not contain compatibility information, e.g. the mating point
on the cone of a hip shaft contains no indication about its destiny to mate with a hip
joint head and its impossibility to mate with the screw hole in a trauma plate. Assembly
templates refer to the implant templates for which they describe possible assemblies.
To use an anlogy, implant templates define the Lego® blocks in a construction kit
while the implant assembly template represents the construction manual. The mating
features in the implant templates are used to clarify how the components are to be
assembled.

An implant assembly template A is a pair A = (C,F) consisting of an ordered
set C = {C},...,C,} of references to implant templates and a set of sextuples
F = {(¢1,i1,71, c2,12,J2)}. Each element of F' references exactly two implants
C.,,C., € C and exactly one mating feature Mj; o from exactly one mating feature set
Si1,2 in each implant. Each element of /' specifies one possible connection between the
referenced components C,, and C,, € C' using mating feature M;, from C,’s mating
feature set S;, and mating feature M;, from C,,’s mating feature set S;,. All indexes
are required to refer to elements existing in the sets.

An implant assembly is a set A= (6, 13), where C = {C1,...,C,} is an ordered set

of references to implant templates and F = {(c1,11, j1, Ca, 12, Jo) } is a set of sextuples
referencing exactly two implants C, ,C., € C and exactly one mating feature from
exactly one mating feature set in each implant. Each element of F specifies one actual
connection between the referenced components C,, and C,, € C using mating feature
M;, from C,,’s mating feature set S;, and mating feature M, from C.,’s mating fea-
ture set S;,. All indexes are required to refer to elements existing in the sets. A valid
implant assembly is an implant assembly where no more than one mating feature is
used in each mating feature set:

dfi = (c,i1,01, 2,02, 52) € F =13fa # fi:
f2 = (ClyilvjomCQai’yva)vjom.jﬁvi’yv
f2 = (Clvi&jaa0272.27j/5)vja7j57i6 .

The spatial relation between two implants C,, and C,, that are directly assembled can
be calculated as a rigid transformation using affine matrices:

Ty = M- M

C

Implant Assembly Template Storage SOP Class

The implant assembly template SOP class consists of the implant assembly template
IOD and the services necessary to store, query and retrieve instances of that IOD.
The IOD contains information describing the issuer and the clinical purpose of the
template, as well as sequences encoding the ordered sets described above. One implant
assembly template IOD instance is able to represent all combinations of components
which the issuer finds apt in order to fulfill a clinical purpose.

4.3. Implant Template SOP Classes 67

The UML class diagram in Figure 4.13 shows the information which is contained in
an implant assembly template IOD. The IOD contains the SOP common module for
unique instance reference and the implant assembly template module which is pre-
sented in Table E.19. implantAssemblyTemplates are specific to one proce-—
dureType and surgicalTechnique. The anatomical structure(s) to which the
procedure can be applied is listed in targetAnatomy. Standardized codes, such as
SNOMED CT, are defined to encode these values.

The components which are used in the assemblies specified in one instance are orga-
nized in ComponentGroups which assign roles to components. Some components,
such as a screw or plate, are generic enough to play several roles and therefore can be
part of more than one component group. Besides a 1abel, a component group has
two flags to indicate whether during planning at least one representative of a group
needs to be selected (isMandatory) and whether or not only one representative of
that group may be selected (1 sExclusive). For example, in a multi-component hip
joint assembly, the group of hip stems would be labeled both, mandatory and exclusive:
Exactly one stem component is required in a valid assembly.

The implant assembly template storage SOP class consists of the implant assembly
template IOD and the services to store, query, and retrieve instances of this IOD via
a PACS network. The IOD consists of the SOP common module and the implant
assembly template module which is specified in supplement 131. It can be looked

ImplantAssemblyTemplateVersion ImplantAsemblyTemplateDerivation

+version: String +type: String
+effectiveDate: dateString

1

+replacedImplantTemplate
0.1

ImplantAssemblyTemplate

+derivationAssemblyTemplate

+name: String

+issuer: String * Assembl
+targetAnatomy: *CodeMacro [&
+procedureType: *CodeMacro
+surgicalTechnique: String *
+pfdDescription: *void 5
MatingFeature
1"*
ComponentGroup
+label: String
+isExclusive: Bool
+isMandatory: Bool MatingFeatureSet
Tl..* i
Component
E ImplantTemplate
+id: Integeger * 1

Figure 4.13: UML class diagram of the implant assembly template module.

68 Chapter 4. Surgical DICOM

at as a serialization of the implantAssemblyTemplate class and all classes this
class aggregates. In Figure 4.13, these are the yellow classes.

In Figure 4.14, four implant templates are shown. The table in the figure represents
the relevant information contained in an assembly template. The implant to the left of
the image, a hip stem implant, contains three mating features (abbreviated MF) in one
mating feature set (abbreviated MFS). The three implants to the right, femoral head
implants in different sizes, have one mating feature in one mating feature set each.
The implant assembly template defines two component types, both mandatory and
exclusive. The assembly sequence contains three items, specifying the possibility to
mate the stem with each head. Thereby, each head connects to a different mating fea-
ture on the stem. The black double-pointed arrows in the image illustrate the specified
assemblies.

4.3.4 Implant Template Groups

In applications such as trauma surgery, the catalogue of implant templates from one
vendor can easily mount up to contain several thousand parts. In order to organize
such vast numbers of objects and in order to facilitate browsing through the cata-
logue, a grouping mechanism is provided by the implant template group 10D (see
Appendix E.4 for complete IOD and module definition).

With this mechanism, any number of implants can be referenced and ordered according
to several dimensions. In the case of metal plates as they are used in trauma surgery,
dimensions according to which the implants are orderd could be, e.g., length, thick-
ness, and number of screw holes. The operator of a planning workstation can browse
through the catalogue along these dimensions with the implant templates being vi-
sualized in patient space. Thereby, it is required that the templates keep their align-
ment with patient anatomy. Technically, it is possible that templates from different
product lines or manufacturers are in one template group. It is possible (or, by expe-
rience, likely) that these templates are defined in different frames of reference. The
implant template group provides a registration between these FORs to prevent unex-
pected "jumps" when switching between group members: each group specifies a local
coordinate system; for each template in the group, the group specifies one 2D coor-
dinate system in each HPGL document and one 3D coordinate system in the surface
representation which represents the group’s coordinate system in this template. Simi-
lar to mating features, the group coordinate system can be used to align the templates
from one group. An example for an implant template group is shown in Figure 4.15.
The figure shows four immplant templates which describe different hip stem compo-
nents. Each template is drawn according to its own local coordinate system (red). The
group definition adds a common reference coordiante system (green) to each drawing,
according to which the stems can be aligned (right image).

Figure 4.16 depicts the information model behind the implant template group module.
A ImplantTemplateGroup aggregates an arbitrary number of GroupMember

4.3. Implant Template SOP Classes 69

Mating Feature 2 Mating Feature 1
\L Implant 4
Mating Feature 3

Implant 3

Implant 2

Implant 1

Implant Assembly Template Module

Component Type Sequence

Component Type Name | isExclusive | isMandatory | Component Sequence

Stems YES YES Implant 1

Heads YES YES Implant 2, Implant 3, Implant 4

Component Assembly Sequence

Comp. 1 MES 1 MF 1 Comp. 2 MES 2 MES 2
1 1 3 2 1 1
1 1 2 & 1 1
1 1 1 4 1 1

Figure 4.14: Implant templates, mating features, and an implant assembly tem-
plate.

objects. These contain a reference to an external Implant Template and the speci-
fication of the 3D reference coordinate systems and 2D reference coordinate systems.

The VariationDimension class contains the attributes which are required to im-
plement the multidimensional ranking mechanism. Each variation dimension has a
name to identify it and contains a list of Rank objects which assigns a rank to a
GroupMember. Several members can have the same rank in one variation dimen-
sion, such as, for example, several trauma plates can have the same number of screw
holes.

4.3.5 Implantation Plan SR Document

The implant template IOD and its adjunct IODs, the implant assembly template IOD
and implant template group IOD contain information about implants which are not
specific to a patient. The information which is encoded in these IODs describes the
shape and possible or intended usage of implants. For patient specific implantation
plans, a fourth data structure and additional services are required.

Complementing supplement 131 "Implant Templates", work has been started on

70 Chapter 4. Surgical DICOM

supplement 134 "Implantation Plan SR Documents". With this supplement DICOM
Working Group 24 attempts to standardize the encoding of implantation planning
results. This data structure is based on the Structured Reporting (SR) mechanisms
[Treichel et al., 2010] in DICOM which were originally introduced for the encoding
of diagnostic findings related to radiology images.

Figure 4.17 shows the structure of the proposed DICOM implant plan SR document.
The document itself contains only little information: meta data referring the plan to
a patient and scheduled day of intervention and some descriptive text and comments.
In addition to this, the plan makes intensive use of the composite instance reference
mechanism which allows an SR to refer to DICOM SOP instances. An implant plan
SR document can refer to:

e the images and surfaces of the patient which were utilized during planning,

e the fiducials which were generated or utilized during planning,

e the implant templates which were selected during planning,

o the spatial registration instance which contains the positions and orientations of
all implant templates in relation to the frame(s) of reference of the patient images

and surfaces,

e screenshots, and visualizations of the plan.

Shaft Length

g

Fh=

o
f -
b

Figure 4.15: Implant template group. Left: Four stem components are ranked
according to stem length and neck length. Each drawing space has its own origin
(red coordinate system). The group adds matching coordinate systems (green)
which can be used to align the templates during planning (right image).

Neck Length

4.4. Summary 71

Rank * VariationDimension
+rank: Integer +name: String
i*
1 ImplantTemplateGroup
3DMatchingSystem +name: String
: 0.1 GroupMember | | « +description: String
+point: Float[3] > P — <@ issuer: String
+axes: Float[9] : g +effectiveDate: DateString
»/ 1 +version: String
e +targetAnatomy: *CodeMacro
atchingSystem .

i 1| 2D_Drawing ImplantTemplate 0.1 7 +replaced
+point: Float[2] <> i replacecioroup
+axes: Float[4]

1
ImplantTemplateGroupVersi g

+version: String

Figure 4.16: UML class diagram of the implant template group module.

|mp|c1ntc1hon
() Plon

w. - omponem Inter-Component
Implont \ List Connections
Components Assemb|y\
description

&
i
Implant Assembly
Template

Plonmng Inrrooperonve
Information Information

i

User Selected Derived Patient Data
Fiducials Fiducials Visualization

Registration

Figure 4.17: Structure of a DICOM implant plan SR document (Image courtesy
of Thomas Treichel, Universitit Leipzig, Germany).

4.4 Summary

Two DICOM work items were presented which affect the exchange of surgical plan-
ning results. The surface segmentation SOP class was developed as a means to store
and exchange geometric information which is extracted from patient images. It adds a
new class of instances, surface meshes, to the DICOM standard. This was, for two rea-

72 Chapter 4. Surgical DICOM

sons, an important prerequisite for the integration of surgical planning scenarios into
a PACS environment. Firstly, surface segmentations are frequently used in CAS ap-
plications during planning as well as intraoperatively. The surface segmentation IOD
enables the transfer of segmentation results from a planning workstation to an intra-
operative system via the PACS server. Secondly, with the surface segmentation IOD
the surface module was added to the DICOM standard. Future work items in surgery
and other fields of application which include the description of geometric content are
facilitated by this module.

The implant template SOP classes were proposed as a vendor-independent means to
encode template models of implants as they are used in implantation planning. The
supplement aims at reducing the effort for a software vendor to include templates
from different implant manufacturers into planning software as well as at enabling the
data exchange between a planning workstation and an intraoperative assistance system
through the PACS server as the centralized database for patient images and related in-
formation. The implant template SOP classes are closely related to the implantation
plan SR document, which is a patient-specific file containing the results of a planning
procedure.

Chapter 5

An Open-Source Interface for OR
Integration

The development of distributed CAS systems consisting of independent modules for
specific functionalities requires an infrastructure through which the modules exchange
data, commands, status messages, and other notifications. In this chapter a software
library is presented which acts as a surgical middleware Cleary & Kinsella [2004]
according to the following functional requirements:

e Message exchange: A messaging service is required through which systems are
able to exchange notifications, status messages, or larger data sets such as images
or models. The message service may not be scheduled, i.e. a device must be
allowed send a message to another device at any time without having to wait for a
time slot. The only restriction to the frequency, size, and time at which messages
are sent are to be the limitations which are owed to network bandwidth.

e Data streaming: For continuous exchange of data, such as transmission of videos
or biosignals, a streaming service is required. In contrast to the messaging ser-
vice, streaming connections are be based on a service-level-agreement which is
negotiated during the initialization of a session. This agreement between the
sender and the receiver of a data stream regulates the number of frames which
are sent per second and the size of each frame. A module which accepts a re-
quest to send a data stream of a certain frame rate and frame size guarantees that
it will sustain the data stream according to these parameters or at least send a
notification to the subscriber(s) of a stream when it can no longer sustain it.

e Read- and write-access to device parameters: A mechanism is required which
enables a system to grant peer systems read-only or read-write access to its in-
ternal parameters. This functionality is required to realize centralized display of
device states and remote control over the parameters of a device.

e Access to methods: An interface is required through which one system can call
a method or function in another system. This interface requires a mechanism for
the exchange of input parameters and results.

73

74 Chapter 5. An Open-Source Interface for OR Integration

e Surgical Plug-and-Play: Distributed systems require intensive setup activities
in order to establish the connections between modules. An auto configuration
mechanism is required through which modules can discover and identify each
others and exchange information about their functionalities.

The following non-functional requirements are imposed to an infrastructure which im-
plements these functionalities:

e Thread safety: The implementation of these services has to allow for accessing
these services from several threads within the application that runs the interface
as well as from several clients simultaneously. Critical code segments have to
be secured with semaphores or other techniques to prevent two threads from
accessing the same memory area or network socket at the same time.

e Stability: The interface is built to be immune to denial of service attacks. Es-
pecially in server application, there exists the risk that multiple clients request
services at the same time, flooding the interface with more requests than the
server can handle. Applications must be able to set a limit to the number of re-
quests they process at a time. The interface through which requests are received
must ensure that this limit is not exceeded.

e Performance: The delay and throughput of message and stream exchange shall
only be limited by the underlying network. For status messages, a latency of up
20 milliseconds is acceptable.

e Portability: No libraries or programming concepts shall be utilized which restrict
the compatibility of the implementation with any of the following operation sys-
tems: Windows XP, Windows 2003 Server, Linux, MacOS.

e Maintainability: The Plug-and-Play mechanism must include a human-readable
name to every device and every service offered by a device to facilitate the re-
quired user interaction during setup of a system.

5.1 TiColLi- An Overview

The TIMMS Communication Library (TiCoLi) is a c++ class library. It was developed
with the aim to provide an open source class library for peer-to-peer communication
between modules in a distributed CAS system. Software which includes the TiCoLi
library can use its API in order to act as a server and as client for message exchange,
attribute and method access, and streaming.

The communication between TiCoLi devices (i.e. devices which include the TiCoLi
and use it to cooperate with other TiCoLi devices) is based on peer-to-peer sessions.
Each session opens one TCP connection exclusively used for exchange of messages
and commands for this session. For data streaming, additional UDP sockets are re-
served per stream. Once a session is established, both systems can use all services of

5.2. TiColLi: Basic Types 75

other system, there is no clear assignment of a server and a client role for one device.
In the following text, the terms server and client are always used in the context of one
service invocation. The term server is used to identify the application which offers a
service, i.e. can send streams or grants access to its internal attributes or methods. A
client is a device which intends to invoke any of these services in a server. The same
device can be a server with regard to one service and at the same time be the client
with regard to another service. For example, a device could be the client of a server
which broadcasts a biosignals, apply signal processing to it, and act as a server which
sends notifications to its subscribers when one signal exceeds a certain threshold.

The TiCoLi is based on several standardized protocols and open source libraries. Fig-
ure 5.1 shows the TiCoLi protocol stack. The TiCoLi provides an application-level
interface to the functionalities of the underlying protocols. The protocols and toolkits
are described in Appendix C.

TiCoLi API
DICOM
n
openlGT Z Z
DICOM ik || £ || 3 || "I
Upper Layer RTCP
TCP UDP
IP
Ethernet

Figure 5.1: TiCoLi protocol stack.

5.2 TiColi: Basic Types

The TiCoLi defines a number of basic types which are used in many of the interface
functions of the API and appear in all the public classes of the library. Of these types
and classes, Condition, Handle, HandleSet, and Callback will appear in
the following sections and are therefore introduced before the functional modules are
described.

76 Chapter 5. An Open-Source Interface for OR Integration

Condition
Condition is an enum type definition which is used as return parameter for most
interface methods of the TiCoLi API. The Condition an interface method returns
is either OK if the method could successfully be executed or otherwise an appropriate
error code.

Handle and HandleSet

HandleSet is a template container class which is used internally by the TiCoLi to
organize information about the services a device offers as well as about peer devices
and the services they offer. HandleSet assigns a random integer Handle to each
device it contains. The Handles are used by an application to select services or de-
vices when calling interface methods on the TiCoLi API. The HandleSet class and
its instances can directly be reached from the application. Instead, the HandleSets
are managed internally by the member classes of the TiCoLi APIL.

Callback Functions

Callback functions are used by the TiCoLi to send notifications to the application
which initialized the TiCoLi. For example, in order to be able to receive messages
through the TiCoLi, an application assigns a pointer to a global function or member
function which the TiCoLi API shall call every time a message is received. Several
kinds of callback functions exist:

The abstract template class CallbackBase<class P> provides the generic inter-
face to a pointer to a function with the signature (P, Handle). It inherits Call-
backThreadCounter and adds the definition of a method Call (P value,
Handle handle) which is called from the TiCoLi to call the method contained
in a CallbackBase<class P> instance. Call(...) tries to increment the
thread counter before generating a CallbackThreadData<P> instance and creat-
ing a thread from which it executes the actual function the function pointer refers to.
Call(...) isthread safe.

CallbackGlobal<class p> inherits from CallbackBase<class P> and
is a concrete implementation of the callback pattern for global functions. It contains a
pointer mFuncPtr to a global function with the signature (P, Handle).

Callback<class T, class P> is a concrete implementation of the callback
pattern for class member function. It inherits from CallbackBase<class P> and
contains a pointer mInstance to an instance of the class T and a pointer mFuncPtr
to a member function of this instance with the signature (P, Handle).

VoidCallbackBase, VoidCallback, and VoidCallback<Class T> are
specialized implementations of the callback pattern for function pointers to global or
member functions with no arguments.

In order to allow multiple threads to use a callback function simultaneously and at the
same time prevent an application from being overrun by function calls, the callback
classes contain a mechanism for thread counting. Every time the callback is called, a

5.3. The API, the Core, and the Managers 77

thread is started in which the function pointer is called and a counter is incremented.
When a thread is completed, the counter is decremented. A threshold is assigned to
every callback function which limits the number of threads that are allowed to run
the function at a time. When this number is exceeded, a BUSY condition is returned.
POSIX thread mutexes are utilized to prevent threads from slipping through this limit
by ensuring that invocations of callback threads are handled one at a time.

The processing of callback calls is presented in Appendix D.2.

5.3 The API, the Core, and the Managers

The TiCoLi API is based on a modular system design (see Figure 5.2) with one cen-
tral mediator module, the TiCoLiCore and five modules which implement the five
services of the TiCoLi: autoconfiguration, message exchange, attribute access, remote
method calls, and data streaming. Each module contains a manager class which im-
plements most of the behavior of the module (see Sections 5.3.1 — 5.3.5).

Against an application which uses the TiCoLi, the whole library is hidden behind
the TiICoLiAPT class which offers an interface to all functionalities through static
methods.

The TiCoLiCore holds a static object of itself and aggregates static objects of the
five Manager classes. The core is the central distributor for messages which are
exchanged between the managers, especially when external commands received from
peer devices are processed. The interaction of the TICoLiAPT, the TiCoLiCore
and the Managers is presented below where the interface methods of the different
modules are presented.

5.3.1 The Device Manager

The device manager holds all information about the services an application is offer-
ing through the TiCoLi. In addition, the device manager obtains and stores infor-
mation about peer TiCoLi devices in the network (see Figure 5.3). The Device-
Manager stores this information in a HandleSet containing objects of the De—
viceDescriptionInternal class. Whenever a component of the TiCoLi or the
application which uses the TiCoLi requires information about an application in the
network, it accesses the device descriptions which are managed by the DeviceMan-
ager.

78 Chapter 5. An Open-Source Interface for OR Integration

TiCoLiAPI

+NullEventCallback: CallbackGlobal<Event:>
+NullVoidCallback: VoidCallbackGlobal

+Initialize TiCoLiAPI(): Condition

+RegisterDevice(name: String; type: DeviceType): Condition

+UnregisterDevice(): Condition

+DiscoverDevices(type: DeviceType, desc: map<Handle, DeviceDescription*>&): Condition

+GetDeviceDescription(deviceHandle: Handle, retCond: Condition): DeviceDescription™

+0penSession(deviceHandle: Handle, updateNotifiyCb: CallbackBase): Condition

+CloseSession(deviceHandle: Handle): Condition
+MessageTo(msg: Message, deviceHandle: Handle)

+SetDefaultMessageCallback(callback: CallbackBase<Message*>&)

+SetMessageCallback(callback: CallbackBase<Message*>&, senderDeviceHandle: Handle): Condition

+AddAttributeDescription(desc: AttributeDescription®, getCB: CallbackBase <AttributeValueBase&>&, ...): Handle

+RemoveAttributeDescription(attributeDescriptionHandle: Handle): Condition

+GetAttribute(device: Handle, attrDesc: Handle, value: &AttributeValue): Condition

+SetAttribute(device: Handle, attrDesc: Handle, value: &AttributeValue): Condition

+AddMethodDescription(desc: MethodDescription*, cb: CallbackBase&): Handle

+RemoveMethodDescription(methodDescriptionHandle: Handle): Condition

+CallMethod(deviceHandle: Handle, methodHandle: Handle, parameters: ParameterValueVector&): Condition
+AddStreamDescription(desc: StreamDescription*, startCh: voidCallbackBase&, stopCh: voidCallbackBase&): Condition

+RemoveStreamDescription(streamDescriptionHandle: Handle): Condition

+ConnectStream(serverHandle: Handle, streamHandle: Handle): Handle

+DisconnectStream(deviceHandle: Handle, streamHandle: Handle)
+GetlLastFrame(localStreamHandle: Handle, lastFrame: Frame*): Condition

+GetStreamStatus(localStreamId: Handle): Condition

+SetNextFrame(streamDescriptionHandle: Handle, nextFrame: Frame*)

TiCoLiCore

#This: TiColiCore*

+GetDeviceManager(): DeviceManager®

+GetMessageManager(): MessageManager®
+GetAttributeManager(): AttributeManager*

+GetMethodManager(): MethodManager®
+GetStreamingManager(): StreamingManager*
+CallEventCallback(event: Event&, handle: Handle): Condition
+HandleCtriMessage(ctriMessage: ControlMessage™): Condition
+ThreadedHandleCtriMessage(ctriMessage: CtriMessage*): Condition

#mDeviceManager #mAttributeManager #mMessageManager
DeviceManager AttributeManager MessageManager
#mMethodManager #mStreamingManager
MethodManager StreamingManager

Figure 5.2: UML class diagram of the TiCoLi API, core, and managers.

79

5.3. The API, the Core, and the Managers

"SOSSB[O PajR[al puk JOSBURIAQIIAQ(I'TODLL, Y} Jo wreaderp ssepd TN €°S 2InSL]

uoRIpuoy) (RUONCLIISIJWea.]S 258P ‘SIPUBH [8jpueY)UoRdLIISSJWRRISIa0 +
uonIpUay) (9 <, UORALOSIUIeS.S “SpUBK >delLl (258)SUCRALIISSUWPa.ISIS0) +
uonpuo) (PUONGLISSSIaINGLIRY 58P ‘S|pUBY 8|puely)UoRdLISSGeINglLIIYIS0 +
UoRIPUOY (1< UORAIIDSEGEINGLIRY “SjpUet>dell 258p)SUoRdLIISSqaInglIyIan +
UORIPUOY [(PUOLCLIISSTPOIBY 0582 “B)pUBH 'SlpUel JUOIIGIIISSPOLISHISD +
uoIpUo) (9 <, UORAILIDSIGPOYISY SlpUBH >doUl (2532)SUOIAIIISIFPOYISHISD +

1 swn :3jepdnusaegiseT dweissil] w-
adA]s21A8Q adA]W-
BuLng oweNw-

uondiassgssmnasa

uoipuo) :(yuondusssquealls :2sap ‘sjpuey :a|puey)uonduossguiesnsien+
uoipuo) (B < uonduossguiesns ‘e|puey>dew :3sap)suonduossguieanSisD+
uoiypuo) :(xguonduossgeInguny :2ssp ‘s|puel :a|puey)uo
uo) :(g<Londuossgsinguyy ‘s|pueH:>dew :3sap)suoly I
uoiIpuo) :(xguondLIdSIgPOLIS|Y (259p ‘BpuRH 3|puey)uoRdlSIQPOYIS WIS+
uonipuo) (<, uonduasagpoyis)y ‘s|pueH>dew :2sap)suondlosagpoyIR IR+

suondiosaguiesngui+ |

< uondudsaquieans>19§s|pueH 7

3|puUeH :3|puRH3dIAW-
19BRUT :B|PURHIUCD0ISZWI-
19005 :14o05ebEssaI|NeRQW+

|eusajuruondiidsa@adiaea

*

suondinssqpopsw+ T | <xUondLISagpoyIa Y >1989|PUeH 7

suondusssgainquuyw+ T

11959Q9INqLIY >1983|pUeH 7

S90INDQAWE
<Jeussyuruondidsa@adinag>1953|pueH

T

uonipuo) :(,ebesss|y|1) Bsw)uonduossgeoine@predun#
uonipuo) :(,ebessay|1) :Bsw)uonduossgesine@ped#
(ebBessay 1) :Bsw)abessa|y 10| pueH#

uonRIpuoy) :(S|puRH :3|pPUBHI2IASP)U0ISSIGAGRIAS ISR R3sIB3IUN

uoipuo) :(Bulig :awenisoy ‘Bulag :aweN2IAep ‘a|puRH 9|puRHRDIASP)UOISSaSAgR0INR(IRRd RISy #

uoRIpuo) (191205 34205 I;josabessayineseANISD#

uonIpug) :(1PIVO0S :1Y20S ‘B|pueH :a|puBHEdINSP)IRR0SaBeSSSINR)CIRD #

|oog :(s|pueH :3|puUBHSIIASP)3|qelIRAYSDIAS]+

suonduoss@adiasq :(uonipuoy :UoRIPUODIS. ‘S|puel :80iAsp)uondLIdssgedIAegISD+
(@<, uondudsagadinsq ‘s|pueH:>dew :dewul ‘adA|831A8(q :8dA})S80IAB(II8A0ISIO+
uonipuoy) :(4ebu] Hodlanles ‘adA| eo1aeg adAy (Bulag aweu)eoineglelsiBay+

uonipuo) :()buismoigeoinegajqeus+

JeussiuTuondisssadias((21SIedIASISadW-
|eussauTuondiasegadIneg

19beuepadiAsq

80 Chapter 5. An Open-Source Interface for OR Integration

Internal and External Device Descriptions

Device descriptions are used to identify a device in a network. The device description
of a TiCoL.i device contains a unique name, a type, and information about the network
socket through which a connection can be established. This information is exchanged
among TiCoLi devices using the zeroConf service (see Appendix C) which runs in
the background. Two classes are present in the TiCoLi to represent the descriptions.
DeviceDescription contains only a subset of the information and is handed out
to an application which requests a list of available peers through the TiCoLi API.
This abbreviated description omits all technical details in order to hide them from the
application. Each instance of DeviceDescription contains only the name and
type of one peer device together with a time stamp of its last update.

The device type is an enum for which the TiCoLi defines the following values:

e DEV_UNKNOWN: Default value assigned during instance creation.

e DEV_TCC: The TIMMS Component Controller is a central device in an OR
network which manages the available bandwidth, monitors network and system
activity, and can act as a watchdog which queries the system state of all devices
to identify technical problems.

e DEV_VIDEO: Any kind of video source, be it a camera or other imaging modal-
ity, a video processor, or a device which replays recorded videos.

e DEV_BIOSIGNAL: Any kind of biosignal source, i.e. a device which measure
directly or receives, processes, and broadcasts data about the physical state of
the patient, e.g. an ECG device.

e DEV_TRACKING: All kinds of devices which generate or receive, process, and
broadcast tracking data, e.g. a tracking camera or a stereotactic arm.

e DEV_CLIENT: Assigned by devices which receive a connection request from a
peer which does not publish a device description through zeroConf.

DeviceDescriptionInternal is used internally in the TiCoLi to represent all
properties of a peer device. The DeviceManager holds a HandleSet mPeerDe—
viceList which contains the descriptions of all known peer devices. Besides the
mPeerDevicelList, the DeviceManager contains an instance mMyDevice
which contains the name, type, and ports of the local device.

DeviceDescriptionInternal has the following member variables:

e string mName: The name of the device (inherited from DeviceDescrip—
tion)

e DeviceType mType: The type of the device (see above, inherited from De—
viceDescription)

5.3. The API, the Core, and the Managers 81

e time_t mTimeStamp: Time of the last update of this description (inherited
from DeviceDescription)

e Handle deviceHandle: Identifies the device locally. This handle is handed
out to the application to identify the peer device when calling services. Each
TiCoLi implementation in a network assigns its own Handles, i.e. the same
device can have different Handles in the lists of its peer devices (see Fig-
ure 5.5).

e Socket defaultSocket: The socket (IP address + TCP port) at which the
device accepts connection requests.

e int mZeroConfHandle: The identification number the zeroConf imple-
mentation assigned to the device. !

e const char xhostname: The DNS name or IP number of the device.

Interface Methods
For interaction with the device manager, two methods are defined in the TiCoLi API
header.

Condition RegisterDevice (...) iscalled by a server application to publish
information about itself in the network. A name and type have to be assigned. The
serverPort identifies the TCP port which shall be opened by the TiCoLi API for
connection requests. If the method is called with an invalid serverPort, the next
free port starting from 10, 000 is selected. The method returns a Condition which is
OK if the device could be registered and its presence announced to the network. Other-
wise an appropriate error code is returned. To withdraw all services from the network,
a server application calls the Condition UnRegisterDevice () method.

In order to obtain a list of registered peer devices, an application calls the Condition
DiscoverDevices (...) method. An empty std: :map container is handed to
the API by the application. The Handles and DeviceDescriptions of all known
peer devices are filled into the container. The method returns OK if the map could be
compiled and an appropriate error code otherwise.

Interaction with the Bonjour Service

The DeviceManager interacts with the Bonjour implementation of the zeroConf
standard to broadcast and receive multicast DNS/DNS-SD requests (see Appendix C).
The inclusion of the zeroConf standard in the TiCoLi is based on preliminary work
of Stefan Bohn at ICCAS who began to experimented with the idea of zeroConf for

'Both the zeroConf handle and the TiCoLi device handle uniquely identify a device. This redun-
dancy is owed to the fact that the zeroConfHandles are not compatible with the Handles used by the
HandleSet class. Since both handles only use up 32 bits of memory per device, this redundancy was
regarded acceptable and preferred to the inconsistency of using a different container class for device
descriptions than for anything else.

82 Chapter 5. An Open-Source Interface for OR Integration

device discovery in the OR after the zeroConf standard was added to the normative ref-
erences of the DICOM standard with Correction Proposal (CP) 633 in 2006. > When
initiated, the TiCoLi sends a mutlicast service discovery request to all computers in the
network. All TiCoLi devices which offer any TiCoLi services reply to the request with
a DNS-SD response. The device type "TiCoLi" is used to identify TiCoLi devices.
From these answers, the requesting TiCoLi instance compiles an initial list of known
peer devices. The DeviceManager creates instances of DeviceDescription—
Internal accordingly and stores them in the mPeerDeviceList class member.

When an application calls RegisterDevice (...), its DeviceManager uses
the Bonjour service to send a multicast message to announce its existence to the peers.
The zeroConf service running in all TiCoLi devices will receive this notification and
send a notification to the DeviceManager which updates its mPeerDevicelList
accordingly.

The processing of zeroConf events is performed by the DeviceManager in the back-
ground and is completely transparent for the application. In order to retrieve an actual
list of peer devices, the application has to call DiscoverDevices (...) on the
TiCoLi APIL. The UML sequence diagram in Figure 5.4 shows a case where a device
announces its presence to the network and is added to the mPeerDeviceList of a
peer device.

e During initialization of the TiCoLi, the API starts the zeroConf service by calling
EnableDeviceBrowsing () onthe DeviceManager dml. (1)

e dml starts the browsing service in its zeroConf instance z1 (2). The DNS
request for active peers remains unanswered, since no peers are present at this
point of time (3, 4).

e A background thread is started which continuously browses for events sent from
the zeroConf service (5).

e A second application is started and registers a device. The call is forwarded to
the DeviceManager dm2 (8), which initializes its ZeroConf instance (9)
and creates an instance ddi2 of DeviceDescriptionInternal to which
it assigns the parameters with which RegisterDevice (...) was called
(10, 11).

e The DeviceManager dm2 activates the MessageManager mm2 which
opens the default server port to enable reception of connection requests (13 —
16).

e The dm2 activates the announcement of the device description by calling Reg—
isterDevice(...) onits ZeroConf instance (17).

2CP 633 declares the utilization of multicast DNS-SD for the exchange of application entity titles,

network sockets and primary device type (e.g. "archive", "image capture”, or "film digitizer") for the
establishment of ad-hoc DICOM networks.

83

TTODLL, 9Y) YIIM AISA0DSIP 301AIP JO weiSerp aouanbas TN 'S 9IS

[43 1€

j 0e

“OPPY : 62 ﬁ N

el

<<3Y3> > /7

()somsigppe : o
: »

|

(poeqedasmedq : 5z

»
C>_nm._\mm>_6ﬂ_ +T

(ANsaysse00.dadIMRSSHIA & £2

A0:-z2

JUSWSOUNOUUE & BT
» <<peapeoiqs > [suuRyD JusAe ul paoeld
> (4=1s1B6ay=alMa5SNQ | 8T S| JusWacuUNoUUe
()so1nuasiaisibay : 4T

[EUISIUIUORdNS55(soIAaq - TIpp

3O : 9T

(rrp0sIBNIESPISIED) © b1

-
(eyoogsaniagmsuado : €1

........... =
: ct

<<aWad>> 1T S

Juopousz

(Qsuodosa7Z3zZEIYI : 6 40 [PUURLD JUaAS 3L
: spead Ajshonupuod

\i

JeoimaqisisiBay

-]

peady | 3|pueHiuang

[BUISUTUORdIDSeqao1Aaq | ZIPP

Ow.mZEmmu_Emmmzo PE ()seonagesmo.g : 7

Cmc_wa._mmu_ﬁom_nmcm_ T

JU0J0Ia7 ¢

5.3. The API, the Core, and the Managers

TSBRUBWS3IAS T TWp || TdVITooIL © 1198

Idv ps sup Idv ps sup JUoD0RZ ¢ 12

84 Chapter 5. An Open-Source Interface for OR Integration

e The Bonjour service sends a multicast message to all peers announcing the pres-
ence of a new device (19).

e The announcement is processed by the ZeroConf z1 service of apil (23,24)
and the DeviceManager information is forwarded to dm1 (25).

e dml creates a new instance ddil of DeviceDescriptionInternal
which it adds to its mPeerDeviceList (27, 30). The name, type, and
standard port of the peer device are extracted from the notification and ddi2 is
parameterized accordingly.

In Figure 5.5, the DeviceManagers of three TiCoLi devices are shown. Each con-
tains a DeviceDescriptionInternal instance mMyDevice with its own de-
scription (top row of boxes) and a description of its peers in a HandleSet (bottom
row of boxes). The Handles under which an application identifies its peers are as-
signed locally.

,Ccamera“
I

Device
Manager 1

,Tracker”
|

Device
Manger 2

.Display*
I

Device
Manger 3

Lo

156
~1racker“||,Display”

N

179
.Camera“|| ,Display*

4

197
.Tracker”||,Camera“

Peer Device

Handle
name

MyDevice

name

Figure 5.5: Device handles are assigned locally by the device managers of three
devices.

Service Descriptions

The zeroConf protocol is only used in the TiCoLi API to announce the presence of
a device in the network. The information which is included in this announcement
helps to identify a device and provides the recipient with all information it requires
to establish a connection with a peer. No information about the services a device is
offering is contained in the announcement. To overcome this limitation, the TiCoLi
contains a service discovery mechanism which complements the device discovery.

5.3. The API, the Core, and the Managers 85

The DeviceDescriptionInternal instances in the mPeerDeviceList of a
DeviceManager contain HandleSets which hold the descriptions of the services
a peer offers. Separate HandleSets are used for the attributes to which a peer grants
access, the methods which can be called on a peer, and the streams which can be
obtained from it. Instances of the classes AttributeDescription, Method-
Description, and StreamDescription are contained in these HandleSets.
The content of these descriptions is presented together with the services they describe
in Sections 5.3.3—5.3.5.

AttributeDescriptionInternal, MethodDescriptionInternal, and
StreamDescriptionInternal are classes which are instantiated by the TiCoLi
managers of a device. An appropriate instance is created by the TiCoLi at runtime for
every service an application adds to "its" TiCoLi instance. These instances contain all
the information which is required by the Manager objects in the TiCoL.i to realize the
services.

While device descriptions are automatically exchanged between all registered and lis-
tening devices in the background, the exchange of the more complex service descrip-
tions is only performed on demand. In order to obtain a service description from
one server, a client calls the interface method GetDeviceDescription(...).
Thereby the Hand1e of a previously discovered peer device is specified. If this Han—
dle is valid, the DeviceManager will send a request to the associated peer device.
The peer’s managers compile a reply message in which a description of all registered
services is contained. The requesting DeviceManager generates service descrip-
tions according to the content of the reply and adds them to the DeviceDescrip-
tionInternal instance it holds for the requested peer.

In Figure 5.6, the device discovery mechanism is presented in an UML sequence di-
agram. The displayed sequence is based on the prerequisite that app2 has already
registered itself via the the RegisterDevice (...) method and has been discov-
ered by appl. Further, the scenario requires that an AttributeDescription—
Internal adi is present in the AttributeManager of app2. adi contains
the description of an attribute of app2 to which access shall be granted through the
TiCoLi. Details about the Att ributeManager and AttributeDescriptions
can be found in Section 5.3.3.

e The client (appl) requests a service description of app2 by calling GetDe—
viceDescription(...) with the Handle its DeviceManager dml
assigned to ddi 1. The API forwards the call to dm1 (1,2).

e dml sends the request to the peer using the messaging service of the Mes—
sageManager (see Section 5.3.2) (3, 4) before it starts polling its standard
client socket for the response(5).

e On the receiver side, the message is handed to the DeviceManager dm2 after
reception (6). dm2 generates a response message to which it attaches informa-
tion about services its application is offering (7).

Chapter 5. An Open-Source Interface for OR Integration

86

"TTODLL, o) IIM AIJAOISIP 9ITAISS JO WeISeIp 2ouanbas TN :9°S 9In31
e

i m > i ,
; | : (Quonduossgsaiasgeedyn 181 T | |

UoRdiRssgaInquRY | 1pe

>
()ablssal|a0e|pueH : LT

1pe 03 spuodsaLiod

dSY NOLLJIWDS3A IDIAY3E 139 €T

()sbessa|yHaAUD) : HT

Spuodss
i : 01 03dn

()s1e1pWeledlan T

> ” ; 10} S)I2M
[] i (neposauaippksiod : 5 ; W W

DY NOLLAROSIA DIWAS 1391+ | | : _ , ,
| : | : e - | |
; : m : 190053 heysqeIAsbessaly : ¢ uonduasagadinBggIen : 7 :
, _ , _ Pos3ey : , ..
W m W : W m W (Juondinsageinaqien :
, W | | [EUISIUTIONAIRSSa=aIASd © TIPP , ,
, ! | PumUTUoRaBSageIAeE T 7ipp | | : ,
[BUIsIUIUORdIDSsaIng My | Ipe || TSbBuByaoAaq © TWp Tdde

5.3. The API, the Core, and the Managers 87

The PackDeviceDescription(...) call recourses through all Managers
to compile a response. In the example, the Att ributeManager is called (8),
which adds the handle, name, type and read-only flag of adi to the response

9).
The compiled response is returned to the sender of the request (13).

The MessageManager mml receives the message and hands it to dml for
handling (14, 17, 18).

UnpackAttributeDescriptions recurses to all managers to have them
unpack the services they are responsible for from the returned message. In the
example, the Att ributeManager aml finds an attribute described in the re-
sponse and creates an AttributeDescription adl according to message
content. adl is added to ddi1, the description of app2 in the DeviceMan-—
ager of appl (20 —23).

GetDeviceDescription() returns an upcasted pointer to the DeviceDescrip—
tionddil.

In Figure 5.7, on the left, the DeviceManager and MethodManager of an appli-
cation which controls a video camera are presented. Two methods to zoom the camera
image in and out are offered by the device through the TiCoLi. On the right side of
the same figure, the DeviceManager of an application which controls a display and
obtained the service description from the first device is presented. The Handles of
MethodDescriptions held by the DeviceManager of the display are identical

,Camera“

Device Method Device
Manager 1 Manger 1 Manger 2
155 17 176 197
,Display ,Zoom_In“ | ,.Zoom_Out" ,Camera“
17 176
LZoom_In* (,Zoom_Out®
MyDevice Peer Device myMethod peerMethod
name Handle Handle Handle
name name name

Figure 5.7: The service handles are assigned by the server. Peers identify services

with the same handle as the server does.

88 Chapter 5. An Open-Source Interface for OR Integration

to the Handles of the according MethodDescriptionInternal instances in
the camera.

5.3.2 The Message Manager

The MessageManager initiates, maintains, and terminates sessions between clients
and servers and is responsible for compiling, sending, and reception of messages. The
MessageManager uses the OpenlGTLink library (see Appendix C) to transmit mes-
sages. The MessageManager and the Message classes are depicted in an UML
class diagram in Figure 5.8.

The message service of the TiCoLi extends the functionalities of the OpenlGTLink
library for message exchange as follows:

e Acknowledged messaging: The reception of a message is acknowledged by the
recipient. This is an important feature when exchanging critical messages such
as error warnings or control commands.

e Multi-thread access: In situations where multiple threads in an application use
the messaging service at the same time, the TiCoLi prevents conflicting access
to network resources and memory.

e Session management with multiple peers: An application can communicate with
several peer applications through the same service without having to care about
their network addresses. Peers are identified by integer handles. Applications
use the handle to address messages they sent with the TiCoLi.

The Message classes

The TiCoLi messaging module contains a generic Message class and several sub
classes for messages with specific content. The TiCoLi Message class references
an instance of the OpenlGTLink Message class. In addition, the TiCoLi Message
class has the following member attributes:

e Handle mSenderHandle: the Handle of the sender of a message. This
parameter is assigned by the MessageManager of the receiver after reception.

e MessageType mMessageType the type of the message according to an
enum definition of message types (see below). MessageTypes are specific
to the different subclasses of Message and can be used to identify the correct
type before downcasting a Me s sage instance to the appropriate subclass.

e mIsACK marks messages which are sent back to the sender of a message to
acknowledge message reception. With the exception of acknowledgements, all
messages are acknowledged by the MessageManager.

89

5.3. The API, the Core, and the Managers

"SISSB[O PITR[al puk IaSeUBIARSESSOIA I'TODLL, Ay} Jo WeISeIp sse[o TIA(:8°S 913

<3 xejnw peatyyd>)asa|puey

<x<buoj pauby 1259|pueH>1a5e|p

< xosemeq|jedebessop >1a52|pueHy

PSHIVI0INRMWE T 1BsxANIPoSWE F

RSHeq|EOWE

<< 19D0SIPAIBG L }OSIURI D> 11ed >}95]puRH

+PIOA [, PIOA "232p)PEa1U 13505 IoAI9GPIGHRISE
+DIOA T, PIOA "BTEp)PEaI [15POSTISIDTETS#
*PIOA T(,PIOA 2}ep)PERI [2305 9AIaS RIS #
(4o80ess8 411D :Bsw)abessspyDya|purH#

|oog :(3|pUBH :B|PUBHRIIAGP)XSINIIZPOSHI0UN 2

|oog :(3|pUeH :3]pURHRJIAS)XBIN IR0 0T #
L12D0SUBID) :123p0s ', asegebessaly :Dsw)sbessaypeAUCD #
(3lpueH :3|pUeHBDSPNIZPOSIUBID]I0d#

(3|pueH :3|puRHINGP)1BXD0SIB/IBS||Od #

(6uoT :IN0BWNYBNOSIUBIDPIS|Od

(13¥posanIaspis]jod#

paubisun :dwejsype ‘a|pueH :a|pueHdIAP)ebesSe D YPUIS £
uonipuc) :(yebessayjonuo) :Bsw)eyposynejsgeiAd|dey
uonipuo) :(yabessapjonuo) :Bsw)abessaly| 3| pueH#

1D (183051305950 #
uonIpuo) :(419XD0SIBAIRS 13HDOS)IBP0SESO #
(esposiualppisaso#

pucy (3205 :323P0s)iRN0SIURIDPISURdO #
UomIpUOY :(3|PUBH :3|PUBHADIASP)IZPOGISO|) #

U0) :(3[PUBH :3[pUBHADIABP “J3B3)UT :Hod ‘BUL)S 3WBLISOLIPOSIUaIDUd0 #
puc) :(s|pueH :a|pueHedirep “Jebaju] :pod)iposieniasusdO
uonipuc) :()1e3posserataspisusdo+

u0D :(2[PURH :3|PURHEIINAP)UOISS3SSO|D+
Ipuod :(a|pueH :3|pueHeDINGp)UOISSISURAD+
uonipuo) :(xgasegypeq)ieDabesssly peq|ea)ioeq|ledsbesssnep@es+

uonipuo) :(3|pueH :ediAsUspuUas “gasegypeq|e)abessaly peq|edppeq|edebesssies+

uonipuo) :(1ebaur npaw | Ajdea ‘sbessajy|ojuo) :abessaw ‘s|pueH :1ssp)lexposynejsgeinsbesssy+
uonipuo) :(1abayur :Inpawi e ‘ abessayy :abessaw ‘ajpueH :153p)o | abessap+

4o0essaly

uopnipuo) (B

Bsposw

«PloA :()Jzjuiod RIS +
()sJejeogeiR00| Y +

Jabayu :()ezisabewIsWNOAQNSIED+
1a69u] :()sziISebewe +

(186e)u] :8)uelpuTyeS+

1abayuy :(1sbajur :adAy)azISIRIRISIR D+
Jabaqut :()adA | IeeasIes+

(4eBayu] :adAy)edA | JrjeDSIRS +
(+1P0d 10)S[PULIONISD +

120SIRAIBSPISW A

Bupis :()Bumssneisieg +
(6uLns :15)6ULISSNPISIAS +

(buns :dweu)sweNIOLTRS +

(BuoT :3poagns)apoqnsies+

Buns :(JewenioLTe+
6uoT :()apodansE9+

Jabajug :()aponiea+

ARPOSIUBIDPISW i

T xeInwpeauyd (XeNI0SIuBINPIS W+
¥ xaNW peasyid XSINISHI0SIBAIBSPISW+
1963)U] 1H0dIRAIBSPISW+

Jabeuepabessop

T (xxJ20H :0)S[WIONIS+ (1aba3u :3p02)ap0oDIES+
(xJeoy :d)uiblLQR9+
(ol :dyuibuoies+ abessapsnels
(4320 :s)bupedsien+
(xR0 :s)Bupedsyes+ ; -
(,43631U7 ;4o *,19633UT :WIP)BWN|OAGNSIT + n?__wmwwﬂ __mm_”_m:w ;_wmmwwf__w_ ..wu;w__mf___mm____mwww
(40b23u] 110 ‘4 1ebalu] (WIp)BWNOAGNSIBS+ nd amnoard ‘._mmE.E xu_r_._mcn:mm+
. * : Xpiur
i (21an0q :d ‘el XpOWIORD +
2 - i (4ab3yur :53|6ueL | Ou)s3|BuRL | JOIRGLINNIAG+
oabessopabew] Jafiaju :()sa|buell | JOIBqUWINNIRD+
- (4abaju] :53U10dOU)SIUI0dIOIBGLUNNIRS+
1363)UT :()SIUIOGJ0 1GNNGB!
13peaHBsw# . Ul :()SIUI0JOIBqUINNIZD+
JIapeayobessap Bs|yw «2lanoq :sejfuen] w
! +31qnoq :sjulodwi#
Jabsyu] :ssjbuelsjoNw
Burng :()sLeNsDINeIBD+ R Jabeyu] :sjulodoNw#
T Pposianias . (gbuLns :slWeU)3WENEIINB IS+
1 obessopejeghjod
adA | abessa|y :adA | a1 '
D0SIUBI joog HDvs[w+
o O abessaly :adA | abessay L+ B (L
3JpUBH :3|PUBHIZPUAGIEIOTLI+
st k| abessap
1 :(JApogepedun+
D un :()Apogyped+
1pos asegafiessapy i ur :()ezIspedipogieg +
umu_uamTl PUBLILIOD YD :pUBLULOD W+ 1191Apogabessaneleq
Buo :dweisyyyw+ |-
Jur1omusdo UORIPUOD [UORIpUCDW+

3JpURH :3|pUBHW+

abessapn)

90 Chapter 5. An Open-Source Interface for OR Integration

Message Types

The following values can be assigned to the mMessageType of a Message.

e UNKNOWN: Default type assigned to all messages where the type is not (yet)
specified.

e STATUS: A status message which contains two integer status codes, a status
string, and an error string. The status codes are inherited from the OpenlGTLink
status codes. The semantics of the status subcode is defined by the application.

e IMAGE: A message which contains a 2D or 3D image.
e POLYDATA: A message which contains a triangular mesh.
e POSITION: Contains a single point in 3D space.

e TRANSFORM: Contains a rigid affine transformation in 3D space in quaternion
representation.

e CTRL: Special message type for control messages exchanged internally between
two instances of the TiCoLi (see below).

Interface Methods

To send a message through an established session, a peer application has to create an
instance of the Message class or an appropriate subclass and call the MessageTo—
(...) method onthe TiCoLiAPI. A valid Handle which specifies the recipient of
the message, a pointer to a Me s sage instance and a timeout for the acknowledgement
have to be set by the calling application. The ackTimeout is an important parameter,
since the MessageTo (.. .) method will wait until the acknowledgement is received
or the timeout is passed. The thread which called the MessageTo (...) method
will not continue before either happened. The MessageManager does allow several
threads to wait for acknowledgements simultaneously.

On the side of the message recipient, the MessageManager will acknowledge mes-
sage reception and forward the received messages through a messageCallback
function the application sets during initalization of the TiCoLi. Ctr1Messages are
not forwarded to the application but handed to the TiCoLiCore: :HandleCon-
trolMessage (. ..) method which forwards the message to the appropriate Man-—
ager object (see below).

Translation to OpenlGTLink Messages

The TiCoLi MessageManager utilizes the OpenlGTLink library for message trans-
port. For transfer through the OpenlGTLink service, the TiCoLi: :Message in-
stances are translated into igt1: :Message instances.

Thereby, the content of a TiCoLi: :Message which does not fit into the header
specification of an igtl: :Message (see Appendix C) is appended to the body of

5.3. The API, the Core, and the Managers 91

the message before it is sent. Translation is encapsulated in the Pack () method
present in the TiCoLi : : Message class and its subclasses:

e TiCoLi::StatusMessages and TiCoLi: :ImageMessages need no
translation, since these classes have direct equivalents in the OpenlGTLink
classes igtl::StatusMessage and igtl::ImageMessage which
handle packing and unpacking of the message body.

e The content of TiCoLi::CtrlMessage and TiCoLi: :PolyDataMes-—
sage instances is compiled into a byte stream by the sender, sent in the data
block of an OpenlGTLink message, and reconstructed from the byte stream by
the receiver.

Message transport

After the message has been compiled, the MessageManager selects the socket
through which the connection with the receiver has been established and sends the
message. To prevent several threads to send messages through the same socket at
the same time, the MessageManager holds a semaphore for each socket. Be-
fore ClientSocket::Send(...) is called, the MessageManager: :Mes—
sageTo (...) method waits for that semaphore to be free and then blocks it until
it finishes sending the message. The POSIX Threads p_mutex_t class is used as
semaphore.

The MessageManager maintains several igtl: :Socket instances for network
access:

e mSocketSet is a HandleSet containing socket connections with peer de-
vices. The MessageManager maintains exclusive peer-to-peer session with
devices in the network. Sessions are either initiated per local request through
the TiCoLiAPT or per remote request through the network. A session consists
of a serverSocket which is opened by the MessageManager on the side
which initiates a session and a client Socket which is opened by the Mes—
sageManager which accepts a connection request. The process of connection
establishment is visualized in Figure 5.9.

e mStdServerSocket is opened when an application calls RegisterDe—
vice (...). Itis held open until UnRegisterDevice () is called. This
socket can be used by any peer device to initialize a session. During initalization
of the TiCoLi, this socket is opened and a thread is started which continuously
polls it for incoming messages. The socket is exclusively used for service dis-
covery and message initalization. The implementation of the socket listener dis-
cards all incoming messages other than Ct r1Messages with mCommand ==
GET_SERVICE_DESCRIPTION_RQ or mCommand == CONNECT_ MES-
SAGE_SOCKET_ROQ.

e mStdClientSocket is opened when an application establishes a connec-
tion with the mStdServerSocket of a peer application. This connection

92

Chapter 5. An Open-Source Interface for OR Integration

is opened to either send a request for a device description or to send a request
to open a message session (see above). In the first case, the connection is held
open after sending for the requested device to send the reply. In the second case,
the standard socket connection is closed after the request has been sent. The
recipient of the request will open a messaging session with the sender and reply
acknowledge through this socket.

Session Initialization

The message manager is responsible for establishing and maintaining messaging ses-
sions. All data messages and the most Ct r1Messages require an established session
between the sender and the receiver. The only messages which can be sent without an
established session are those messages which are exchanged during the handshake
which is performed to identify a peer device and initialize a session with it. In Fig-
ure 5.9, the internal process of session initialization is shown:

The application appl calls OpenSession (...) with the local Handle of
app2. The API forwards the call to the MessageManager mm1. (1,2)

The manager opens a server socket and starts a listening thread (3). This socket
will be used for the peer-to-peer connection with app?2 if session initialization
is successful.

mml locks a mutex, opens its stdClientSocket (5), sends a CONNECT
_MESSAGE_SOCKET_RQ to the default port of the peer (6) and closes the
stdClientSocket (7). After sending, mm1l will wait for the mutex to be
unlocked or a timeout of 30 seconds to pass.

The polling thread which listens to the stdServerSocket of app2 converts
the incoming message (9), identifies it to be of the correct type and calls the
HandleCtrlMessage (...) function (10).

appl is added to the device list of the DeviceManager (11, 12) The server
opens a ClientSocket and starts a listening thread (13). This socket is as-
sociated with the already opened socket of app1 to build the exclusive peer-to-
peer connection. All further message exchange between appl and app2 will
be performed through this connection.

mm?2 sends a CONNECT_MESSAGE_SOCKET_RSP through the successfully es-
tablished connection (14, 15) and an event is sent to app2 (17,18,20).

mm1 receives the response (16, 19), checks whether it comes from a known
device (21, 22) and sends an acknowledgement (23,24,25) to mm2 (26,28,32).

93

5.3. The API, the Core, and the Managers

ﬁ

(peq|

eoUBATW, ¢ O

"UOTIBZI[BNITUT UOISSas I'JOD1], Jo weiSelp aouanbas AN :6°S 2In31g

(

()abessanpiD! mﬁn €

)ebessapanuc) : 87 I

fr xanw sypojun [

A0 - e

E
f uoRaUU0D Jaad-0)-13ad eIn Juas ﬁ ol

()ebess

()=bessalf

Q3123NNOD LN A3

(ppeqy

(pesposiuslpusdo : €1

(JuoissasAga u_wmn__ﬂm_umm IT

03

eueAg|e] : /T (o

4

1Bessal 7|

'WPVPUSS - €7

[H2AUOD 6T

18AIB5]|0d 9T

()aDessapL)3IPURH : €€
()obessa)

WHIDR[PURH & TE

pealy | abesssjy|njajpueHLes mJ‘w
 I—

20

€

(JebesssiyinDs|pusHpapesIy) - /2

MO Te

.

dSY1IHD0S 39y
()o1abessal : pT

[

Gessal|1D?|pUeH : 0T

)obessapBAUO) 6

123005103
1RO IBABSPIS]IOd | 8 (neposy

553W_1D3NNOD : 6T

(s1qepieayaomneq - TZ

f uolpsuued J83d-0}-198d BIA JUsS

[DP3Ses0D *

[ERRI=RIT

s)epos)|nejaQ BIA UBS

(nexposius)|

(exposyne

53IW1DINNOD : 9

opIsusdo : §

Isqeinsbessay © ¢

X@)NW Jo 3o

10} }jem 0} suIBaq

X3)NW S0

-

un 1o Jnoawn

MO - sE

ISEEqNE) © 299

(neposientasuadp : & -

JuoisseguadQ : 7

A0 1 9¢

i(uoissasuadp

SI0DIMODIL - T2

-

Tage

94 Chapter 5. An Open-Source Interface for OR Integration

e After sending the ACK, mml initiates a thread in the TiCoLiCore for han-
dling of the received Ctr1Message. This is the standard procedure for all
CtrlMessages which are received via a peer-to-peer port. By handling the
message in a separate thread, the MessageManager can go back to polling
its sockets instead of waiting for the handling to be finished. In the case of an
CONNECT_MESSAGE_SOCKET_RSP, the TiCoLiCore assigns the handling
to the MessageManger which handles the event by unlocking the mutex and
returning OK (27, 29, 31, 33, 34)

e The thread which was waiting for the socket to be unlocked reacts by acknowl-
edging successful session initialization to appl (35, 36).

Control Messages

Control messages are exchanged to establish sessions, invoke services, and acknowl-
edge message reception. Unlike all other message types, these messages are not public,
i.e. an application cannot create them. Control messages are not handed to the appli-
cation through the messagecallback but are processed internally by the TiCoLi
Managers. Control messages contain a Ct r1Command, which identifies a specific
service primitive. Depending on the nature of the command, a Ctr1Message, can
contain additional data to parameterize the command.

The following CtrlCommands are defined for communication between the
DeviceManagers of two TiCoLi instances:

e UNKNOWN_CMD: Default value assigned to control messages during creation.

e GET_SERVICE_DESCRIPTION_RQ: A client’s requests to a server to send its
complete service description.

e GET_SERVICE_DESCRIPTION_RSP: A server’s response to the GET_SER—
VICE_DESCRIPTION_RQ. If the request could not be processed for any rea-
son, the response contains a Condit ion which indicates the nature of the error.

e DEVICE_MODIFIED. When the service description of a device changes, it
sends a notification to all devices it has an open session with. The notification
does not contain the updated description.

The following Ctr1Commands are defined for communication between the Mes-
sageManagers of two TiColLi instances:

e CONNECT_MESSAGE_SOCKET_RQ: a client’s request for a new session. The
client’s TiCoLi automatically selects an unused TCP port and includes the port
number in the request.

e CONNECT_MESSAGE_SOCKET_RSP: a server’s response to the connection re-
quest. After opening the TCP connection, this message is sent via the new con-
nection. If the connection could not be established, the response is not sent.

5.3. The API, the Core, and the Managers 95

e DISCONNECT_NOTIFY: Before an application closes a session it notifies the
peer application of that session.

e ACK: Whenever a message is received and successfully parsed, the TiCoLi au-
tomatically sends an acknowledgement. Note: Only message reception is ac-
knowledged. An ACK neither implies that the TiCoLi or the application to which
the message is forwarded could make any sense of the message nor that the re-
cipient reacts to it in any way.

Additional control messages are defined for requesting stream connections, access to
attributes, calling of methods and the responses to these requests. These messages will
be described together with the services in the sections below. The MessageMan-—
ager hands Ctr1Messages to the HandleCtrlMessage (.. .) method of the
TiCoLiCore from where they are forwarded to the appropriate manager, depending
on the Ct r1Command (see Figure 5.10).

................ —| TiCoLiAPI —{ Application

Message
Type?
Streaming
C Manager
IGTL::Message | Message TiCoLiCore o
Manager
m
m Attribute
a Manager
n
d
? Method
Manager

Figure 5.10: Message distribution inside the TiCoLi.

5.3.3 The Attribute Manager

The AttributeManager class implements all methods required to exchange at-
tribute values between two TiCoLi applications. In Figure 5.11, the AttributeM-
anager class and related classes are depicted.

Attribute Service Descriptions

The AttributeManager aggregates instances of the AttributeDescrip-
tionInternal class. Each of these instances contains the properties of one
attribute the application has added to the manager for publication in the network and

96 Chapter 5. An Open-Source Interface for OR Integration

AttributeDescriptionInternal

-mSetCallback: CallbackBase<AttributeValueBase&>*
-mGetCallback: CallbackBase<AttributeValueBase&>*

#item B

#Copy(source: AttributeDescription*)

#CallGetCallback(value: AttributeValueBase*, callerHandle: Handle): Condition
#SetGetCallback(getCallback: CallbackBase <AttributeValueBase&:>&) 1| -mDescriptions
#CallSetCallback(value: AttributeValueBase*, callerHandle: Handle): Condition
#SetSetCallback(setCallback: CallbackBase<AttributeValueBase&:>8&)

< <friend>>

v AttributeM:
AttributeDescription ributeManager

#mN - Stri -mlIsWaitingForResponse: Bool

#mTaml-?.A "!gg - -mRspWaitingMutex: pthread_mutex_t
GUEE ttributeType -mSetCondition: Condition

#isReadOnly: Bool

GetAttributeN st +GetAttributeValue(deviceHandle: Handle, attributeHandle: Handle, value: AttributeValueBase&): Condition
+GetAtiributeName(): String 1 +SetAttributeValue(deviceHandle: Handle, attributeHandle: Handle, value: AttributeValueBase&): Condition

+GetAttributeType(): AttributeType desc: AttributeDescription, getCb: Callback lueBase&>, ...): Handle
:és:eadOnly(): Bos(itlanc,e()' ol -mWaitingAttribute +RemoveAttributeDescription(attributeDescriptionHandle: Handle): Condition

o o e > " +attributeTypeToString(type: AttributeType): String
$LVelldInstance{val: AributeYelucBaset): Condlton #CallGetMethod(attributeDescriptionHandle: Handle, clientHandle: Handle): Condition

opy(source: Attributel CEEE) #CallSetMethod(attributeDescriptionHandle: Handle, clientHandle: Handle, msg: CtrMessage*): Condition

#SefAﬁf!gufeName("a"f'e- 5F£”9> +PackAttributeDescriptions(msg: CtriMessage*): Condition
#SetattributeType(type: AttributeType) +UnpackAttributeDescriptions(msg: CtriMessage*, aDescSet HandleSet<AttributeDescription*>*): Condition
#SetReadOnly(readOnly: Bool) #HandleCtriMessage(msg: CtrMessage): Condition

\ generates

AttributeValueBase

#mAttributeDescriptionHandle: Handle

+GetAttributeDescriptionHandle(): Handle 1
Attrib jptic - Handle): Condition -mReceivedAttributeValue

(
+GetValueType(): AttributeType
4C

first: bool): Condition
Ct first: bool): Condiition

AttributeValue

-mValue: U
-mTimeStamp: time_t

+GetTimeStamp(): time_t

+GetValue(value: U&)

+SetValue(value: U)

+GetAttributeDescriptionHandle(): Handle

+SetAttributeDescriptionHandle(handle: Handle): Condition

+GetValueType(): AttributeType

#Copy(source: AttributeValueBase): Condition

#SetTimeStamp(msec: Long)

) Ctrll geg, first: Bool): Condition

ly(msg: Ctrl geg, first: Bool): Condition

Figure 5.11: UML class diagram of the TiCoLi AttributeManager and related
classes.

callback pointers to set- and get-methods for the attribute. The instances of this class
are only held internally by the Att ributeManager of a server.

The AttributeDescription is a superclass of AttributeDescription—
Internal. It does not contain the callback pointers. AttributeDescription
instances are used in the AttributeManager object of a TiCoLi instance to rep-
resent the attribute services of peer devices. AttributeDescriptions are ex-
changed during service discovery. The class contains the following member variables:

e string mName: The name of the attribute. The name is set by the application
which shares the attribute.

e AttributeType mType: The type of the attribute. The type is selected from
an enum type defition (see below).

e bool mIsReadOnly a Boolean which distinguishes read-only from read-
write attributes.

Attribute Types
The TiCoLi attribute service offers the following attribute types:

5.3. The API, the Core, and the Managers 97

e AT_UNKNOWN: Standard type assigned during construction and to attribute de-
scriptions which could not be parsed correctly.

e AT BOOL: Boolean attributes with values true and false.

e AT_TINT: signed 32 bit Integers between —23! and 23! — 1.

e AT_SHORT: signed 16 bit Integers between —2'° and 2% — 1.

e AT_LONG: signed 64 bit Integers between —25% and 253 — 1.

e AT_UNSIGNED_INT: unsigned 32 bit Integers between 0 and 232 — 1.

e AT_UNSIGNED_SHORT: unsigned 16 bit Integers between 0 and 216 — 1.
e AT_UNSIGNED_LONG: unsigned 64 bit Integers between 0 and 264 _ 1.

e AT_DOUBLE: double-precision floating point numbers according to the IEEE-
754 standard [IEEE, 1985].

e AT_STRING: character string of arbitrary length.

The attribute service does not contain a mechanism for constructing complex data
types by composing these types in a record-like structure.

AttributeValue Classes

The AttributeValueBase class and its subclasses hide the implementation de-
tails of attribute value exchange from the application. AttributeValueBase is
an abstract interface which contains declarations of all type-unspecific functionalities.
AttributeValue<class U> is the templated definition of an attribute value of
any of the types the TiCoLi1 supports (see above). These classes are used at the inter-
face between an application and the TiCoLi API to exchange attribute values.

To indicate to which AttributeDescription an AttributeValue belongs,
AttributeValueBase contains the Handle mAttributeDescription-
Handle parameter.

The GenerateValueInstance () of AttributeDescription can be used
to generate an AttributeValue (see below). Condition IsValidIn-
stance (...) canbe called on an AttributeDescription to check whether
an AttributeValue belongs to an AttributeDescription.

The classes contain protected methods for compilation and parsing of messages which
are utilized during Ct r1Message packing and unpacking and templated Get- and
SetValue methods for the application to conveniently access the encapsulated at-
tribute value.

Interface Methods
To publish an attribute value, a server has to create an AttributeDescription
instance and by calling the constructor Att ributeDescription(...) and then

98 Chapter 5. An Open-Source Interface for OR Integration

call the method Handle AddAttributeDescription(...). Callback func-
tions for read- and write-access to the attribute have to be specified by the application.
No setCallback isrequired for read-only Attributes. The method returns the Han—
dle which the AttributeManager assigned to the added description. The appli-
cation can use this handle to withdraw the description at a later point in time by calling
Condition RemoveAttributeDescription(...).The Handle is part of
the ServiceDescription which is sent to peer devices. Peers use the Handle
to refer to a specific attribute when requesting access to it.

To access an attribute in a server, a client has to create an appropriate container
for the value by calling GenerateValueInstance () on the Attribut-
eDescription of that attribute. The method is templated so that it creates
instances of the correct subtype. For example, GenerateValueInstance ()
will generate an instance of AttributeValue<double> when called on an
AttributeDescription with type == AT_DOUBLE. The client can then
access the attribute by calling GetAttributevValue (...) or SetAttribute-
Value (...), respectively on its TiCoLiAPI. The API will forward this call to
its AttributeManager which will send a request to the server and wait for the
response.

Control Messages
The following CtrlCommands are defined for communication between the
DeviceManagers of two TiCoLi instances:

e GET_ATTRIBUTE_RQ: A client’s request for the actual value of an attribute.
The request contains the server-side Hand1le of the attribute.

e GET_ATTRIBUTE_RSP: A server’s response to an GET_ATTRIBUTE_RQ. If
possible, the response contains the attribute value. A Condition is contained
which is OK if attribute access was successful and an appropriate error code
otherwise.

e SET_ATTRIBUTE_RQ: A client’s request for the actual value of an attribute.
The request contains the server-side Handle of the attribute and the value the
client wants to set.

e SET ATTRIBUTE_RSP: A server’s response to a SET_ATTRIBUTE_RQ. A
Condition is contained which is OK if attribute access was successful and an
appropriate error code otherwise.

Example
The UML sequence in Figure5.12 diagram depicts the internal processing of a Se—
tAttribute (...) call on the TiCoLi API. For the sakes of space and clarity, the

session initialization and service discovery phases are omitted in the diagram.

99

5.3. The API, the Core, and the Managers

"$S900€ AInqLIIE I'TOD1], Jo weIderp douanbas TN 'S NS

<<honsep>> ¢£g
A0 - g€
A0 - TE 7
X)Jebessapy|u1D8|puey : (f xenw Buiyiem syoojun
u O¥ 31Ny 135 : 67
< <Aonsap>> gz
L doisz P . :
T MO 9z A0 - LT
4 j
P (BeAD €7 ™
()agoundu, : 7z e Riid (Preq)edes|ed : 0z
MO 6T
()Apogabessapasied : 8T
L1
AAmEm._quv ST ()eoueibulaniepsiessusy : b1 >
E IN0SWI3 JO PaP0o|UN Bq 03 X8INUl
SAEASINUY © A ()ebessapaesie : £ Buniem 1oy Buniem spels
()abessay 1103 puey ﬁu&‘ |
OY 3LNanllY 135 1T | PO 01 j
>
xanw Buniem syoo| (ApogeBessap=iesausn : 6
(JerjeAmINGUIYIRS : 8 (PneARINGS 7
1
ﬁ 7 IOl
—lf
” i (Jenjepres < g
2
€
<<91edd¥> ¢
: (Jeoueisurenjepsielsuss) : T
SNEASINGUY © TA
7ade || Ssegrpedie) T ¢ | | IdVITODIL - ¢8 || [eUSIUIUoRdHos3gaingUny ¢p TSBRUBNSINQUAY © TWe | UoRdiDsSgangrmy « 1€ || TdVrooiL - 1¢ || Tdde

100 Chapter 5. An Open-Source Interface for OR Integration

e appl generates an instance v1 of AttributeValue by calling Generat-
eValuelnstance () onits AttributeDiscription d2 and assignes a
value to that instance (1 — 6).

e The API call SetAttributevalue(...) 1is forwarded to the At-
tributeManager aml which creates a Ct r1Message with the SET_AT-
TRIBUTE_RQ command. The message is handed to v1 which packs its content
into the body before the message is sent to the peer (7 — 11). am1 locks a mutex
and goes to a busy waiting state until the mutex is unlocked or a timeout is
reached.

e Sending, reception, and acknowledgement of the message with the Message—
Managers of both TiCoLi instances are omitted in the diagram.

e Handling of the received Ct r1Message is delegated to am2 (12, 13), which
calls GenerateValuelInstance () on d2 to generate v2 (14 — 17). v2
extracts the sent attribute value from the message body (18, 19). The request to
set the attribute is handed through to app2 via the mSetCallback instance
associated with d2 (20 —22). app2 gets the designated attribute value from v2
(23) and returns OK. v2 is deleted afterwards (28).

e The returned Condition, (OK in the example) is put as an argument into the
SET_ATTRIBUTE_RSP message which is sent to am1 (29).

e The MessageManager starts a thread in which it calls HandleCtr1Mes—
sage () on aml. The response is parsed and the mutex is unlocked (30).The
next time the thread in which SetAttributeHandling(...) isrunning
checks the mutex, it will registers the successful execution of the request and
returns OK (31,32).

e appl deletes v1 (33).

5.3.4 The Method Manager

The MethodManager class implements all functions required to exchange method
calls and return values between two TiCoLi applications. Figure 5.13 shows the
MethodManager and other classes related to the remote method service.

Method Service Descriptions

The method manager aggregates instances of the MethodDescriptionInternal
class. Each of these instances represents one method the application grants access
to via the TiCoLi. Only abbreviated versions of these descriptions are sent to peer
applications as part of the GET_SERVICE_DESCRIPTION_RSP messages during
service discovery. The MethodDescription which is sent to the peers and handed
out to the applications "behind" the peer TiCoLi instances contain for each method:

101

5.3. The API, the Core, and the Managers

"S3SSB[O paje[al pue I9SBUBRAPOYISIA I'TOD1L], 9U) JO wieiSeIp sse[d TA(€T°S 9IS

uoiipuo) (Buoq paubisun :anjeA ‘1aB3ju] i1)aneAIRS+
uonipuo) :(buoq psubisun :snjeay ‘Jsbsiul :1)snjeAlsD+
uonipuo) :(Moys paubisun :snjea “isbajuf :1)anjeples+
uonipuo) :(Hoys paubisun :anjeay “sbeiu] (1)anjeAlso+
uonipuo) :(4ebs3u paubisun :anjea ‘463Ul :1)3n|eAISS+
uonipuo) :(uebsjuy paubisun :anjeay ‘1sbaiu :1)enjepleD+
uonipuo) :(bulns :anjeA ‘1abaju] :1)an|eAIRS+

uonipuo) :(bulns :enjeay ‘isbayu] :1)anjeplsD+

uonduosa@ainquUny

(jo0g :uImSysI)uINISYS[ISS+
(edA=InqLmy :adAy)edA] Is1sweiedlas#
(BuLs :aweu)sweNlalweRIRgISS#
(yuonduossqisisweled :80inos)Adodn#

uonipua) :(s|qnoq :anjea ‘1ebayu] :1)anjeAres+
uonipuo) :(s|qnoq :anjeay “4ebanu] (1)anjeAISD+
uonipuo) :(buo :anjea “1eabau] :1)anjeAIRS+
uonipuo) :(BuoT :anjeay ‘4ab33u] (1)anjeAIRD+
uoRIpuUo) :(1oys :anjeA L4ebau] :1)en|eAISS+
uonipuo) :(1oys :anjeay “1sbaiu] :1)snjeplsn+
uonipuo) :(4absjur enjea sebeau] :1)anjeAres+

asegonjeplalaweleq

OAjugpesysi#

uo) :(xSsegan|eplsisiueIed :SN|RA)SOUBISUIPI[RAST+
43segsn|eAsINguUNY :()sourisuIsnjeAsIRIBUSD+
joog :()udnaysI+

adA1=Inquaay :()sdA LIssweledisn+

buLns :()swepssisweledisn+

anjepsINqUIY

uonipuo) :(4ebsu] :enjeay “4sbalu] :1)enjeAIsD+
uonipuo) :(joog :anjea “1sbayu] :1)an|epIeS+
uonipuo) :(joog :anjeag “usbeiul :1)snjepso+ |0 T

400N |eAlojaweled

SJ91aWRIRJUINISYPIAIRISY W #

asegan|eAanqLY

uonipuo) :(sbessalyn) :bsw)sbesss|yiDs|pueH #

uoRIpuo) :(x<xuondusssgpoyisiy>3ese|pueH :3e5asequ ‘4abesssiy|) :Bsw)suondusssgpoyisedun+
uonipuo) :(xobesssiy10 :bsw)suondLossgpoyisinoed#

uonipuo) :(4sbesss|ynY :abesssw)poyis|ppReg|ed]ed#

uonipuo) :(s|pueH :s|pueHuonduassgpoylsw)uoidiiossgpoyisyerowsy +

s|pueH :(g<I018ASN[RAISIBWEIRY >35Eg)DR||2D MaRq||ed ‘uondunssgpoLis|y :3s8p)uondudssgpoyIsWpPPY +
uonipuo) :(1g10309/\anjeAlSISWEIR (S1ajaweled ‘a|pueH :3|pueHpOYIPW ‘S|pueH :3|pURHSJIASP)POYIBW|[RD+

|00q :uinjaysi+

Losaglajoweled

<uonduosaglajaweled >10}09A
1 [sIe1BWRIRdW A

(Bulng :Bweu)sweNpoyIBNISS#

(xuonduasagpoylaly :321nos)AdoDd#

uonIpuUo) :(4J01PSASN|RAISISIIEIRY 1DSA[RA)I010SASN|RAPIRAST+
wlopapanieplalawelry :()iopapsn|jeARIRIBUSD+

Jebeyuy :()siesweledjOlsquinNIeo+

POASIBURIZMUL 4 Jabauy :(,uondussagisiswele :353p)3)sWeRIRdppY+

UORIPUCY :UORIPUCD|EDW+

Joog :ssuodssyJo4Buniepsiw+

Jabeueppoyiapy

1 | suondiosaquig

Luondusagiasweled ((1ebaju] :1)ieBweledlan+
Bulnis :()sweNpoyls|ISD+

<la]aweled >1sl| siajauleledui+
BuliS :aWeNpPOUIBW-

uondiosagpoyisiW

(<4013 [EAlRIRWRIRY > 35Rg3DR]|[e))R eDe5 #
UonIpuo) :(3|pUeH :3|puRHIS||Ed ‘4 J0133ASN|eAlSIBWIRIRY (SIS1BWeled)ydRq||eD|[eD#

<Jeulayuruondidsagpoyla |y >1952|puey

|euwsajuuondiosagpoyiay

102 Chapter 5. An Open-Source Interface for OR Integration

e string mName: The name of the method. The name can be freely chosen by
the application.

e vector<ParameterDescription*> mParameters: A vector con-
taining the declaration of the input and output parameters of the method (see
below).

e mEstimatedRuntime: An estimate of the number of seconds the caller of a
method has to wait for the result.

In addition to these parameters, the MethodDescriptionInternal held by a
server’s MethodManager contains a function pointer to the method of application
which it shall call when a client requests to call the method. The signature of this
method is required to be (ParameterValueVector*, Handle).

Parameter Descriptions and the ParameterValueVector

The ParameterDescription class is a subclass of the Att ributeDescrip-
tion class. It is used to specify the input and output parameters of a method. The
declaration of ParameterDescription adds the attribute bool mIsReturn to
the AttributeDescription which distinguishes between input and output pa-
rameters. Otherwise, the ParameterDescription class behaves exactly as the
AttributeDescription class does.

As the AttributeValue classes provide an interface to the value of an attribute,
the ParameterValue classes provide an interface to the value of a parameter. The
specification and implementation of these classes is identical apart from the different
names.

The ParameterValueVector class is a container class which aggregates all pa-
rameters of one method. The container is implemented as a vector, i.e. as a
linked list of dynamic length which allows indexed access to the contained items. The
MethodDescription class contains a method which generates a Parameter—
ValueVector of correct length and with the correct parameter types for the method
it describes. This class is used to exchange parameter values between the TiCoLi API
and the applications which calls a method through the TiCoLi or which contains the
called method.

Interface Methods

To make a method available for other devices in the network, a server creates and
parameterizes a MethodDescription and adds the required input and output pa-
rameters to it. The interface method AddMethodDescription (...) method of
the TiCoLi API is used to add the description to the MethodManager. Thereby, a
callback pointer to a function of the application has to be specified.

To call a method in a server, a client has to create an appropriate Parameter—
ValueVector object by calling GenerateValueVector () on the Method-
Description of the method it wishes to call. After filling in all the input values

5.3. The API, the Core, and the Managers 103

in the ParameterValueVector, the client calls CallMethod(...) on the
TiCoLi API.

When the MethodManager of a server receives a valid request to execute a method,
it unpacks the contained ParameterValueVector and calls the callback function
with that vector. The application has to read all input parameters from the vector,
execute the method and fill the results into the ParameterValueVector which is
packed into the response message (see below) by the Met hodManager.

Control Messages
The following CtrlCommands are defined for communication between the
MethodManagers of two TiCoLi instances:

e CALL_METHOD_RQ: a client sends a request to execute a method to a server.
The message contains the handle of that method and an appropriate Parame-
terValueVector.

e CALL_METHOD_RSP: after executing a requested method, the server sends a
response containing the status of the execution and, if executed successful, a
ParameterValueVector with updated return parameters.

Example
The UML sequence diagram in Figure 5.14 depicts the internal processing of a Call-
Method (.. .) call on the TiCoLi APIL In the example, a method is called which has

one input and one output parameter. For the sakes of space and clarity, the session
initialization and service discovery phases are omitted in the diagram.

e appl generates a ParameterValueVector by calling Generateval-
ueVector () onthe MethodDescription md. Value instances for both the
input and the output parameters are generated and returned ina std: : vector
container (1 — 8). The application assigns a value to the input parameter p1 (9,
10).

e The API call CallMethod (...) isforwarded to the MethodManager ml
which creates a Ct r1Message with the CALL_METHOD_RQ command. p1l is
attached to the body of that message before it is sent to the peer (13 — 15). mm1
locks a mutex and goes to a busy waiting state until the mutex is unlocked or a
timeout is reached.

e Sending, reception, and acknowledgement of the message in the MessageM-
anagers of both applications are omitted in the diagram.

e Handling of the received Ct r1Message is delegated to mm2 (16, 17), which
generates a ParameterValueVector by calling GenerateParameter—
Vector on mdi (18 — 25) The value of p3, the input parameter, is extracted

Chapter 5. An Open-Source Interface for OR Integration

mm2 : Metf

appl md : MethodDescription mmi
! | al : TiCoLIAPT i| v1 : ParameterValueVector p2 : ParameterValue
13: Generat;eVa\uEVectur) 2 <<create>>;

pl : Parametervalue |

4 <<create>>!
>

12 : lcalMethod() |

13 : Gerler |)

41| locks waiting mutex Iﬁ H

waits for mutex to be unlocked or timeout 5

45 | ParseMessageBody()

15 : CALL |

ETHOD_RQ

t | mdi : MethodDescriptionInternal

ETHOD_RSP

46: 0K

2 |1

: ndleCtrIMassag:e()

1 [unlocks waiting mutex L

cb : Callback pgl

V2 : ParameterValueVector

p4 : ParameterValue ‘

D3 : Parametervalue |:

16: Hand\eCtr\M-lssagE(J

7 : CallCallbackMethod()

18 : GenerateValueVector() '
P 19 <<create>>

30 : callCallback()
lback
>

?1 (AR ¢ 32 : mFunpt

|33 : Setvdlue()

e
-
ad

38 { GenerateMessageBody() |

S B B I

40 <<destroy>>!

>
-

41 <<destroy>>

42: <<destroy=> |

X

Figure 5.14: UML sequence diagram of a TiCoLi remote method call.

from the request (26, 27). The validity of the generated and parameterized vec-
tor is approved (28, 29) and the callback is executed with v2 as argument (31 —
32). After executing the method, the application app2 assigns its result to p4
(33, 34) before returning OK (35 — 37).

e m2 prepares a CALL_METHOD_RSP message to which’s body p4 is added (38,
39) before v2 is deleted (40 — 42) and the message is sent back to appl (43).

e The incoming Ct r1Message is delegated to mm1 (44). The returned Param-—
eterValue is unpacked (45, 46) and the mutex is unlocked.

5.3. The API, the Core, and the Managers

105

e The waiting thread finds the mutex unlocked and acknowledges successful
method execution and result reception to appl (47, 48).

e appl gets the result value from p2 (49, 50).

5.3.5 The Streaming Manager

The St reamingManager of the TiCoLi holds all information about the streams an
application is offering or actually broadcasting as well as of the streams it is receiving
from peer applications. The member attributes and functions of the St reamingMan-
ager and its associated classes are shown in Figure 5.15. The St reamingManager
holds a HandleSet<StreamDescriptionInternal>. In this container, the
information about the streams the local device is offering through the TiCoLi is or-
ganized. Additional HandleSets organize the outbound and inbound streams the
manager is currently sending or receiving.

StreamDescription

-mStreamName: String
-mType: StreamType
-mFramesPerSecond: Integer
+mBandwidth: Long

+GetStreamName(): String
+GetStreamType(): StreamType
+GetFramesPerSecond(): Integer
+GetBandwidth(): Integer
+Copy(source: StreamDescription*)
#SetStreamName(name: String)
#SetStreamType(type: StreamType)
#SetFramesPerSecond(fps: Integer)
#SetBandwidth(bw: Long)

-mFrame/ 1

1
Lt

-mStreamDescription

Frame

#mbDataSize: Long
#mData: void*

#mTimeStamp: time_t
#mFramenumber: Long

-mFrame/ 1

0.1

StreamDescriptionInternal

-mOutStreams: HandleSet<OutStream>
+mReadwrite: pthread_mutex_t
+mRead: pthread_mutex_t
+mReadCount: Integer
+mStartCallback: VoidCallbackBase™
+mStopCallback: VoidCallbackBase*
+mlListeners: Short

+Copy(source: StreamDescription*)

+GetFrame(): Frame*

+UnLockReadAccess()

#SetFrame(frame: Frame*): Condition
#CallStartCallback(): Bool
#SetStartCallback(startCallback: VoidCallbackBase&)
#CallStopCallback()

-LockReadWriteAccess()

-UnLockReadWriteAccess()

-LockReadAccess()

+SetStopCallback(stopCallback: VoidCallbackBase&)

1

*_4: dl

InStream

-mServerHandle: Handle
-mServerSideHandle: Handle
-mSocket: Socket

HandleSet<Instream>

+GetFrame(): Frame*
+GetStreamDescription(): StreamDescription*
+GetServerHandle(): Handle
+GetServerSideHandle(): Handle

+Start(): Condition

+mInStreams | 1

RTPStreamReceiver

StreamingManager

0.1

-mStreamDescriptions: HandleSet<StreamDescriptionInternal>
-inStreams: HandleSet<InStream>
-mFrame: Frame

+ConnectStream(serverHandle: Handle, streamDescriptionHandle: Handle): Handle
+GetlLastFrame(streamHandle: Handle, lastFrame: Frame*): Condition

+GetStreamStatus(streamHanlde: Handle): Condition

+DisconnectStream(streamHandle: Handle): Condition

+AddStreamDescription(desc: StreamDescription*, startCb: voidCallbackBase, stopCb: voidCallbackBase): Handle
+RemoveStreamDescription(streamDescriptionHandle: Handle)

+SetNextFrame(streamDescriptionHandle: Handle, nextFrame: Frame*): Condition

+HandleStreamEvent(ev: Event&): Condition

+StreamTypeToString(type: StreamType): String

#StreamWasDisconnected(streamHandle: Handle, serverHandle: Handle)
#EstablishConnection(streamDescriptionHandle: Handle, socket: Socket, clientHandle: Handle): Condition
#CutConnection(streamHandle: Handle, callingClientHandle: Handle): Condition
#DisconnectAll(clientHandle: Handle): Condition

#PackStreamDescriptions(msg: ControlMessage*): Condition

#UnpackStreamDescriptions(msg: ControlMessage*, sDescSet: HandleSet<StreamDescription*>*): Condition
#HandleCtrIMessage(msg: CtrlMessage)

N

OutStream

+mClientHandle: Handle
+mSocket: Socket

1| DataEncoderInterface

+GetStreamDescription(): StreamDescriptionInternal* [~

+GetClientHandle(): Handle

1
DataStreamTransporter

+Start(): Condition

Figure 5.15: UML class diagram of the TiCoLi StreamingManager and related

classes.

106 Chapter 5. An Open-Source Interface for OR Integration

Stream Descriptions

The StreamDescription class contains all information a device sends to a peer
device to describe a stream it is able to send. St reamDescriptions are exchanged
between the sender and receiver of a stream and are the service level agreement on
which the streaming connections are founded. A StreamDescription contains
the name of a stream, its St reamType (see below), framerate and required band-
width for transmission. StreamDescriptions are exchanged through the device
discovery service implemented in the DeviceManager.

The StreamDescriptionInternal class contains all information a de-
vice stores internally about a stream it is able to send to one or more recipients.
StreamDescriptionInternal inherits from StreamDescription and
adds the following class members:

e A callback pointer to a functions in the application which the Streaming-
Manager calls when the first client connects to a stream.

e A callback pointer to a functions in the application which the Streaming-
Manager calls when the last client disconnects a stream.

e A number of mutexes and counters required to regulate read- and write access
to the frames in a stream.

e The next frame which is to be sent by all outbound streams which refer to a
StreamDescriptionInternal.

Instreams and Outstreams

The InStream class is created by the StreamingManager of an application
which receives a stream. An InStream aggregates decoders and interface classes
for reception of RTP streams. An InStream has a Handle and aggregates a
Frame instance into which the decoder stores the last decoded frame. To facilitate
the communication between peer MessageManagers, an InSt ream contains the
Handle of the associated Out St ream on the server side.

Instances of the OutStream class are created and managed by a StreamDe-
scriptionInternal. Several OutStreams can be instantiated of the same
StreamDescriptionInternal in order to allow multiple clients to listen to
a stream. OutStreams aggregate encoders and interface classes for sending RTP
streams. An OutStream has a Handle. The Frame of outbound streams is not
stored in the Out St ream instances but in the StreamDescriptionInternal
instance to which an Out St ream referes. This saves memory and memcopy opera-
tions. To facilitate peer-to-peer communication between St reamingManagers, an
Out St ream contains the Handle of the receiver’s InSt ream.

In Figure 5.16, a scenario is presented where two devices receive video streams from an
application which controls a video camera. Both receivers’ St reamingManagers
created an InStream to receive the streams. The St reamDescriptionInter—
nal on the server side created and manages the according Out St reams.

5.3. The API, the Core, and the Managers 107

156 L Device | |Streaming
Manager 1 Manger 1 “
,Camera“ 9 9
‘ Streaming
18 3 Manger 2
Video’ 39
: l
18
. . v
T Wl S o o][
,Camera“ 9 9 <) 88
| |
18 88
Video’ 169 1«
MyDevice Peer Device StreamDesc StreamDescint OutStream InStream
| name | Handle Handle Handle Handle Handle
name hame name ClientHandle | |ServerHandle

Figure 5.16: Two devices, a display and a recorded, receive a video stream from
a camera.

Encoding and Decoding of RTP Streams

Different encoders are required for different kinds of streamed data. Video data, e.g.,
requires compression in an mpeg or other video encoder, whereas sensor data will be
transmitted uncompressed and therefore without any added noise. The UML class
diagram in Figure 5.17 shows the relations between frames, encoders, decoders, and
sessions. The design and implementation of the encoders and their interaction with
the jRTP library are based on the works of Arun Voruganti from ICCAS in Leipzig,
Germany.

Interface Methods

To add a stream to its services, a server application has to create a St reamDe—
scription instance and parameterize it accordingly. By calling Handle
AddStreamDescription(...), the stream is added to the Streaming-
Manager. The function returns the Handle which the StreamingManager
assigned to the added description. The server application can use this handle to
withdraw the description at a later point in time by calling Condition Re-
moveStreamDescription(...). All connections with clients will be cut if a
StreamDescription is withdrawn.

Chapter 5. An Open-Source Interface for OR Integration

108

"SOSSB[O PAR[QI puk SwelJ TODLL, Y Jo weiderp sse[d TN LTS IS

uoBpUOD :(JBlDA0IS+

ur (Mousnbaupab+
(2w rsdy)Mousnba.yes+

uoRIpUOD ((I8Y208 [18Y20s US| ILIEIS+
(P0BJISJULISPOI3GEIEQ F2IRLIUIIFP UYL+

uopipuo) :(Meniegdois+
UORIPUO) :()INISSIEIS+
UOLIPUOD (3 B0ELBIUTISPOIUTFEIE(FIBPOIUS ISAIISHUI+

Jan1B0ayueaSEIEq

SS2UPPYLACIALY PPYdu-

J3A1209YWeanNsd 1y

J9)iodsuel | weanseieq

uoissiuisuR.I] 1d¥ H

uoIssaSd I

uoissagdy-

o

WNDISOIE 1S = adAlsweiw+

|ooq uni+
Ul sn3eIs+

Ui :sdy+

SSUPPYPAIdLY HPPYd+
sweleduolssiwsuel | pAdaNd LY isweledsueli+
SULIRIBdUOISSSSd 1Y ‘SWeledssas+

03QIA"LS = 2dAlsweljwy

aweijjeubis

Joplodsued | weansd 1y

BweiospIp

20BHAULISPOIIP-

SoIAsp-

([1[J=Ignop xugew)Xue|yuonewosuRl | 135+

(voueld [awey)eieqginn +
(Jeregssea0ig+
(12b623uT “yt08)) RAX USBIPUT 19ZIS IOl FBIEP)eIeGIIS+

|00g :3|qISIASI+
3|qnoq :ewbis+

[¥l=1gneq :ucnejuaLo+
[g]e|gnoq :uomisod+
ONDDYHL LS = 3dA | sweijwy

sweljbuppes)

soeLIBIULIBpOSgEIEq

(yowelq :awel)ereP o+

Buo :oNawel4snoiraid+

sleussuTuondiossquieals (asaguealIs+

1spooagaweljbupper)

swelqw-
awelquw

(y®we.g :a01nos)Aden+

«PIOA tEjRqQU

W buon :szigeleqUIZ A_ll

Buo :aquinuaLel W #
7 awn dweysawi] wg

awesy

adAlawelquw

ONDODVYL 1S+
WNDISOIE 1S+

03QIA LS+
NMONMNN™LS+

adAjweans
< <uopesWNU> >

(Mapoouzdoys+

(epoouzriers+

uoipuo) :()pyepsi+

buo7 :(equinysuel4320+

2 8wy (awegaui 1eb+

Jab2yur :()oziseregiob

1263uy (e ceyep)eregieb+

uonipuo) :(buo] :ouy ‘¥ swn :dunsswn “grebayu] :8zis ‘L 1ey) teynq)eleqsb+

OWeRld 1ISjUIcdIWRI U+

soepIBlULISpOdLIEIEQ

Buo :opawei4snoinaid-
ucRIpUO) :pIjeA-
sleussuuondinssquuieass assquieasis-

Japoouzowelybunpel)

5.3. The API, the Core, and the Managers 109

Once a stream is started, the server application has to feed data into the stream by call-
ing SetNextFrame (...). To connect to a stream, a client calls Handle Con-
nectStream(...). The Handle of the new InStream is returned. With this
handle, the client application can refer to the stream for access to received frames by
calling Condition GetLastFrame (...) or to terminate the connection by
calling DisconnectStream(...).

Neither client nor server needs to specify or maintain network sockets for the con-
nection. Selection of free ports and establishment of the RTP connection are hidden
behind the TiCoLi API.

Stream Synchronization

The streaming service of the TiCoLi takes the task of synchronizing the generation
of frames with the sending frequency of the stream from the application. All Out-
St reams run by a server will send frames to their recipients at exactly the frame rate
which is specified in the St reamDescriptions of these streams, regardless of the
rate at which the application assigns new frame data. If a server application sets frames
faster than they are actually sent by an Out St ream, some frames will be skipped. If
a server application falls behind the pace at which an Out St ream sends frames, the
last frame will be sent again and again until the application provides new data.The re-
cipient of a stream is able to detect both skipped frames and double-posted frames by
comparing the frame numbers of the incoming frames.

On the recipient’s side, the TiCoLi API de-synchronizes the stream. Internally, threads
are running which grab and process every frame in time (provided that there are suf-
ficient hardware resources to do so) and make it available in the mFrame object of
the InStream. The client application can access that frame in an asynchroneous
manner by calling the Get LastFrame (.. .) function on the API which will return
NO_NEW_DATA if no frames were received since the last call.

Control Messages
The following CtrlCommands are defined for communication between the
StreamingManagers of two TiCoLi instances:

e CONNECT_STREAM_RQ: A clients requests a new streaming connection with a
server. The message contains the socket which the client has opened to receive
the stream.

e CONNECT_STREAM_RSP: A server reports on processing of a CONNECT
_STREAM_RQ to the requesting peer. If the stream could successfully be
initialized, the message contains the socket from which the server starts sending
the frames. Otherwise, an error code is contained.

e DISCONNECT_STREAM: A client with an open streaming connection informs
a server that it will no longer be listening.

110 Chapter 5. An Open-Source Interface for OR Integration

e DISCONNECT_STREAM_NOTIFY: A server informs a client with an open
streaming connection that it will stop sending the stream.

Example

The UML sequence diagram in Figure 5.18 depicts the internal processing of initializa-
tion and maintenance of a stream in the TiCoLi. Device discovery, service registration,
and the retrieval of the service description are omitted in the diagram.

e appl requests a streaming connection with server app2 by calling Con-
nectStream(...) with the appriate Handles identifying app2 and the
StreamDescription sd (1). The call is forwarded to the St reaming-

appl apil : TiCoLiAPT dml : D sm2 : St api2 : TiColiAPT cb2 : Callback [app2
slisw ‘ sd : Streambeseription sdi : StreamDescriptioninternal ‘ 2 : TicoliCore chl : VoidCallback
1 uConr
i)
3 mD 0
[LJ
4 5 : CONNECT |STREAM_RQ

6 : HandlleCtrIMessage(

locks mutex and
begins waiting for timeout
or unlock

N

os : OutStream —
: EstablishConhection()

; 8 <<cfeate>>
Lt
] .

10 : Start()

-4
11 ¢ GatStreamType()
A2
Sender thread < T
is started 3 : GetFrampsPerSecond()
14
S ; 15

16 : CallStartCallback()
-

is : InStream 17 : Call()
» : *mFuncPtr()
L

21

[20 : StartSending
23 : CONNECT| STREAM_RSE -
0] 27 1 *miFuncPtr

) 25 ; CallEventCallback(
K

24 : HpndleCtriMessapel)
unlocks mutex Iﬁ L 6 : CallEventCallbacl
[wemmeel | [] ol
g 20 P L
™ T
31 U =
)

s . [Receiver thread
33 : GatStreamType(is started
[3% ‘35 : SetNextFiame()

37 36 ™
38 - | 39
- ! 40;: GetFrame(}

42 ; GhtLastF d : :
a: rﬂfﬂﬂ()= 43 ; GetlasiFrame() 45 : Getframe() : 44| FL s

l L
48 : 0f Ué”‘m‘ U J
SCRIEEEEEECEEEEE N b T

.............. i 48 1 OK

: GetFrpme() 52i: GetFrame():

50 : GetlasiFrame() 51)
= _|
HNO_NEW_DATA 57| F1 58 : SetlextFiame()
56 : G _HEW_DATA — 153 : NO_NEV{_DATA = - =
80 : GetlastFrame() | 61 : GetLastFrane() 62 : GetFrame() L]
‘ '| 64 GetFrame()!
6p :|NO_NEW_DATA, L :

66 : NO_NEW_DATA 7 63 : NO_NEW_DATA
ki : : 68| F2 PSR
67 T 69 : SetMextFiame()

72 : GetFrame() i
"‘L J I_! 7

77.: GetFrame();

79)F3 S
78 ;

Figure 5.18: UML sequence diagram of a TiCoLi stream.

5.4. Performance Tests 111

Manager sl which obtains a pointer to sd from the DeviceManager
(2 — 4), composes an appropriate CtrlMessage with the command CON-
NECT_STREAM_RQ, and sends it to the peer (5). s1 will wait up to 30 seconds
the mutex to be unlocked.

e On the server side, the received Ct r1Message is forwarded to the St ream-
ingManager sm2 (6,7). An OutStream os is created (8, 9) and added to
the StreamDescriptionInternal sdi’s outstreams. When started, os
retrieves all relevant parameters from sdi (10 — 15) and initializes an RTP ses-
sion.

e The startCallback of sdi is called. The application starts to generate
frames and assign them to the outbound streams (16 — 22).

e A CONNECT_STREAM_RSP is sent to the client (23). The response contains
the network address of the socket from which the server will send the stream.

e The MethodManager of the client receives the response and creates an In—
St ream instance according to the St reamDescription sd.

e The streaming connection is established and the Out St ream begins to send
frames at a rate according to the value of mFrameRate in sdi (41, 54, 65, 76).

e The server application calls SetNextFrame on sdi to assign new frame data
to the stream. The server application does not have to set frames at the exact
transmission rate. The encoder classes handle situations where frames are set
too often or not often enough. As an example, in step 54, the same frame is sent
by the encoder which had already been sent in step 41, because the application
did not assign new data in the meantime.

e The client application calls Get LastFrame (.. .) for pull-access to an In—
St ream. The incoming frames are not buffered, i.e. only the very last received
frame can be obtained by appl. GetLastFrame (...) returns NO_NEW
_DATA when no new frame was received since the last call (see steps 52 and
62).

5.4 Performance Tests

The TiCoLi API was tested with respect to the performance of the messaging and the
streaming services. The following success criteria were defined for the tests:

1. Status messages are delivered instantaneously, i.e. within less than 20 ms re-
gardless of the network load.

2. Given sufficient network bandwidth, the streaming service delivers frames at the
intended frame rate,

112 Chapter 5. An Open-Source Interface for OR Integration

3. The TiCoLi does not add latency to frame and message delivery more than
20 ms. For instance, delivery of a 10 M B message may not take longer than
8020 ms over a 10 M bit network.

5.4.1 Streaming Throughput and Reliability

In a first series of experiments the reliability of the streaming service was tested. For
these tests, a server application was implemented which sends a stream at an adjustable
framerate and frame size. A client was implemented which continuously queries the
TiCoLiAPI for new frames and measures the delay between frames with a temporal
resolution of 1 ms. A log file is created which contains for every frame the time which
passed between reception of this and the previous frame. After a test period of 60
seconds, the log is stored and the mean and variance of the frame rate during the test
period can be computed from the log entries. The experiment was conducted with two
different setups and a variety of frame rates and frame sizes. Beginning witha 1 Hz
stream of 1 kByte frames, both parameters were independently increased up to 64 H z
and 64 kByte, resulting in a maximum bandwidth of 32 Mbit/s for one stream.

In the first series of experiments, four servers and four clients were connected via
a dedicated fully switched 1 Gbit/s network (see Figure 5.19, right). The servers
were equipped with 100 Mbit/s network interface cards, in the clients, 1 Gbit/s
network interface cards were used. The nominal frame rates and frame sizes of all
four servers were kept identical in all trials. The mean and variance of the effective
framerate measured all four clients were recorded according to the description above
with 81 different stream parameters with bandwidths ranging from 8 kbit/s per stream

I 1 Gbit/s Port 3 100 Mbit/s Port I 1 Gbit/s Port @ 100 Mbit/s Port
Stream Stream Stream Stream Stream Stream Stream Stream
Server 1 Server 2 | | Server 3 | | Server 4 Server 1 Server 2 | | Server 3 | | Server 4

100 Mbit

Bottleneck

Switch 1

Stream Stream Stream Stream Stream Stream Stream Stream
Client 1 Client 2 Client 3 Client 4 Client 1 Client 2 Client 3 Client 4
f f f f f f
P Ne—— — N~ — [

t t t t t t t t

Figure 5.19: Network topologies for framerate measurements. Left image: with
bottleneck; right image: without bottleneck.

5.4. Performance Tests 113

to 32 Mbit /s per stream. The experiment showed that the RTP implementation which
is used in the streaming service limits the framerate to 64 Hz and the framesize to
64 kBytes including the RTP header. Within these limits no stream can be established
with a bandwidth higher than 32 Mbit/s.

Figure 5.20 shows for all four clients and all 81 settings the quotient of the measured
framerate and the nominal framerate. Over the fully switched network, the average
framerate measured in the streaming clients was in the worst case by less than 0.5%
below the nominal value, which will for most applications be sufficient. The average
framerate is a measure for the servers’ capability to generate frames and the availability
of sufficient network bandwidth. With 32 Mbit/s streams in a fully switched network
the maximum network load was at 32%.

In order to investigate the behavior of the streams under a condition where the available
bandwidth of the network is insufficient for transmission of all streams, a second series
of experiments was conducted. Therein, a second network switch was added to the
setup which introduced a 100 Mbit/s bottleneck through which all four streams had
to pass (see Figure 5.19, left). The same 81 settings were run with this setup. The
scatterplots in Figure 5.21 show for all four clients and all 81 settings the quotient of
the measured framerate and the nominal framerate.

By definition, the quality of a streaming connection is not only characterized by the
throughput, i.e. the average frame rate. In real-time conditions, clients rely on frames
being delivered at regular intervals. The reliability of a streaming interface is charac-
terized by the ratio of frames which are not delivered in time. The hardness of real-time
conditions, i.e. the tolerance which is acceptable in the intervals between two frames,
depends on the application. The acquired frame intervals were filtered according to
different tolerances ranging from 1% to 50% of the nominal frame periods: frames
which were not delivered within the tolerated delay were considered dropped. The
frame drop ratio was calculated as a function of nominal frame rate and frame rate
tolerance as the quotient of dropped frames and sent frames. The frame drop ratios for
TiCoLi streams at framerates between 1 and 91 H z are presented in Figure 5.22

Up to a framerate of 12 H z, the frame drop ratio is below 0.1% even for a minimal
tolerance. Streams with framerates of 24 H z and higher showed a significant frame
drop ratio at tolerance levels below 10%. Expressed in milliseconds, this means that
all frame drop ratios were on an acceptable level when the tolerated frame delay was
above 3 ms.

This observation can be explained with the sampling rate at which the client measured
the frame intervals. The timing interval of Microsoft Windows XP which cannot be set
to a period below 1 ms introduces a deterministic jitter to the handling of frames in the
streaming interface as well as to the measuring process performed in the experiment.

At 24 Hz, e.g., the nominal frame interval is 41.7 ms. A tolerance level of 3% relates
to a tolerated delay of 1.25 ms, which rounds to 1 ms in integer arithmetic. The
sampling rate of the time measurement and the thread scheduler, which are both at
1 ms are too long for accurately generating a frame period of 1 ms. Based on the
Nyquist-Shannon sampling theorem, the shortest integer period which can accurately

114

Chapter 5. An Open-Source Interface for OR Integration

@112
o112
mos1 12 e 12
o608 O
00406 1 00408 1
m0204 mo204
o002
08 @002 0s
06 06
04 04
1Hz 2 1Hz 02
32Hz 0 32Hz 0
B4 as}
56 n o2
o X
B4 Hz 2 3290 me ke 64 Hz P S
5 18588 g BEoa§
1 ke KB Ea B
kB -
o112
. [LEX]
o 12 00608 12
oos08 00406
00406 1 mo204
m0204 002
mo-0:2 08
0.6
04
1Hz . 1Hz
32 Hz 1} 32Hz
64)
g 8=
B4 Hz 0 82 40 F g kB P
s 182 5B p 22 =ag¥
1 wg KB e it
kg kB —

Figure 5.20: Average framerate divided by nominal framerate in fully switched

o2 o112
[LEX] [LEE]
O06-08 00608 12
O04-06 00406
moz04 m02.04 4
o032 Do02
08
0.8
04
1Hz 1Hz 02
32Hz mU
o=
64 Hz m o2 =3ed
M e
&
= o 2«
@112 @112
Lol 12 moa1
EOSCS 00608
00406 00.4.05
moz04 mo2.04
002 .
1 Hz 1Hz
ua]
oo 8=
n 2 =252%
m m o = 5 o F
x = o L o™

Figure 5.21: Average framerate divided by nominal framerate in a setup with a

bottleneck.

5.4. Performance Tests 115

50.00%
45.00% - —1Hz L
40.00% 3Hz
35.00% 12Hz g

 so0o% —24 Hz

— 0, -

£ 30.00% \\ —

& 2500% \ \ —32 Hz [

£ 20.00% —56Hz [
15.00% \ \ 91 Hz 1
10.00% ,%Pi

5.00% =
0.00% N —
1% 10% 100%
Tolerance

Figure 5.22: Frame drop ratio of TiCoLi streams with different framerates as a
function of frame interval tolerance.

be generated is 3 ms. All frame drop ratios are well below 1% when applying a
tolerance of 3 ms.

Discussion

The TiCoLi streaming service was tested with four streams which were transmitted
through two different network setups. In a fully switched setup as well as in a case
where the streams were sent through a bottleneck, the rate at which frames were re-
ceived were acceptable as long as the bandwidth through each network segment was
below the capacity of the segment. For the setup with bottleneck, the nominal frame-
rates could not be sustained when four sending streams with a bandwidth of 25 Mbit/s
per stream or more. With these measurements it is shown that the limit to the overall
throughput of the TiCoLi streaming service is the bandwidth limit of the underlying
network infrastructure. Within these limits, 98% of frames are delivered in time when
allowing for a 5% variance in the frame intervals.

Another limitation of the streaming service is the maximum frame size of 64 M Byte
(including the RTP overhead) which is a limit set by the jRTP library. Should use cases
require larger frames, improvements on the encoders and decoders of the TiCoLi could
overcome this limit by decomposition of large frames into multiple packets which are
reassembled after reception.

The presented performance tests were conducted with raw data streams as they are
used, e.g., in tracking. The TiCoLi contains dedicated encoders and decoders for video
streaming which apply on-the-fly mpeg4 compression. The computational complexity
of these decoders and encoders potentially limits the maximum framerate at which the
TiCoLi API can push packets into the RPT service on the server side as well as the rate
at which the TiCoLi API is able to decode received packets to video frames. As soon
as the video streaming module of the TiCoLi API on which Arun Voruganti is working
is finished, the maximum throughput of this module requires further experiments.

116 Chapter 5. An Open-Source Interface for OR Integration

5.4.2 Messaging Speed

In a second series of experiments, the throughput and delay of the messaging service
was investigated. Therefore, two TiCoLi applications were implemented, the Mes-
sageTimer and the MessageResponder. The MessageResponder accepts messaging
connects from any peer. The application contains a callback method for incoming
messages which sends every incoming message back to the sender. The only alteration
the MessageResponder does to the messages is the assignment of an actual time stamp.

The MessageTimer connects to the MessageResponder. Triggered by user input, it will
start sending a series of messages to the MessageResponder. It sends one message and
waits for the reply. The time which passes after calling the MessageTo () method
on the TiCoLi API until the message callback function is called by the TiCoLi API
delivering the response is measured on the scale of 1 ms. The measured periods
represent twice the delivery time of the message through the network. This value is
written into a log file before the next message is sent. After 100 log entries, the program
terminates. The average and mean of the message delivery time were calculated from
the log file.

The MessageTimer was implemented in two versions. The StatusMessageTimer sends
small status messages with only a few hundred kBytes of data per message. With a
network speed of at least 100 Mbit /s, the delivery of such small messages should ac-
tually happen instantaneously and the delivery period is therefore difficult to measure.
Instead of measuring the delivery and return period for one message, the StatusMes-
sageTimer measures the time it took to send, receive, send back, and receive 100 status
messages.

The PolydataMessageTimer sends PolyDataMessages containing 100, 000 points
and 99, 998 triangles. With three 64 bit floating point numbers per point and three
32 bit integer indices per triangle, each polydata message adds up to 3, 600, 042 Bytes
including the header. Additional overhead has to be factored in from the TCP/IP over
Ethernet network. The maximum segment size for data exchange through TCP/IP over
Ethernet is 1,500 Bytes, including at least 40 Bytes of TCP header. The polydata
message is split into at least 2, 466 segments. Each segments adds at least 78 bits of
overhead (> 40 Bytes TCP/IP headers, 26 Bytes Ethernet header, 12 Bytes Ethernet
frame gap), resulting in an overall transmission of > 3,792, 390; Bytes per message.

The efficiency of the message transfer was tested with both MessageTimers under var-
ious conditions. Similar to the streaming experiments, two setups were used (see Fig-
ure 5.23). In both setups, three streaming servers and three streaming clients were
running streams at adjustable bandwidths in order to measure the effect of network
load from other sources onto the transfer durations. The first setup consisted of a fully
switched network, in the second setup a 100 Mbit/s bottleneck was introduced.

During all experiments, the network load of all channels was monitored on an addi-
tional computer which accessed the statistics of the network switch via SNMP. This
served the purpose of validating the generated network load and as a means to iden-

5.4. Performance Tests

117

[1 Gbit/s Port I 100 Mbit/s Port

Message | | Stream Stream Stream
Respondr.| | Server 2 | | Server 3 | | Server 4

Start!

Stream
Client 4

Stream
Client 3

Message | | Stream
Timer Client 2

dt |
R Network =

Monitor

t t

I 1 Gbit/s Port £ 100 Mbit/s Port

Message | | Stream Stream Stream
Respondr.| | Server 2 | | Server 3 | | Server 4

Switch 1

 |Message | | Stream Stream Stream
Timer Client 2 Client 3 Client 4

dt I
— Network | [~—=—==

Monitor

t t

Figure 5.23: Network topologies for message speed tests. Left image: with bot-
tleneck; right image: without bottleneck.

tify any unexpected network load which could influence the measured transfer dura-
tions. Different streaming parameters were adjusted to generate network noise between
24 kbit/s and 96 Mbit/s. In Figure 5.24, the average time for delivery of the polydata
message (the mean of the measured delays for one stream configuration divided by 2)
through the bottleneck with different network loads is shown.

The baseline duration for transmission of the polydata message through an unloaded
network was 348 ms. Above a network load of 24 Mbit/s, The duration increased

600

Polydata Message Delivery Times

500

400

P——

£ 300

/_—\//

Plok Area

200

= Dslivery Time

100

0 10 20 30 40

50 60 70 80 90 100
Network Load (MBit/s)

Figure 5.24: Measured message transfer duration for polydata messages as a

function of network load.

118 Chapter 5. An Open-Source Interface for OR Integration

roughly linearly with increasing network load when sending the streams and the mes-
sages through on bottleneck up to a value of 480 ms when competing with 96 M bit /s
of streamed data on the network. In the fully switched case, the network load from
the streams had no measurable impact onto the message transfer durations. For status
messages, the average transfer duration was between 4 and 5 ps per message - aver-
aged over one hundred messages. This value was almost unaffected by the network
load even up to 56 Mbit/s and stays below 10 us even for very high network loads
close to 100%.

Discussion

The network bandwidth was limited by the bottleneck to theoretical upper boundary
of 100 Mbit/s. This resulted in a theoretical lower boundary for sending the poly-
data message of 289 ms per direction. For the status messages, the theoretical lower
boundary for delivery through the network lay in the area of 1 — 10 us.

The sampling rate of the run time measurement was 1 ms. Regardless of the network
load, the status messages were sent to the server and back in less than 10 s, which is
regarded to be a good approximation for "instantaneous" message delivery.

With no network load interfering with the transmission through a 100 Mbit network,
the polydata messages were delivered in approximately 348 ms, which exceeds the
theoretical lower boundary by 59 ms or 20 %. This is owed to the fact, that either
the Windows API, or one of the network hardware components limited the maximum
bandwidth for one transfer to < 90 Mbit/s. This was observed for all TiCoLi trans-
missions, but also for network folder access or other kinds of network transmissions.
Under this premise, the lower temporal boundary for the polydata message to be trans-
ferred is 322 ms. The measured transfer delay exceeds this value by 26 ms or 8%.
Considering that this period contains the transfer of the data to and form the networks
card, as well as compiling and parsing of a 3.4 M B message, this delay is regarded to
be acceptable.

5.5 Summary and Discussion

With the TiColLi, a software library was presented which can be used by applications to
establish sessions for exchange of data and commands through an IP - based network.
The library implements the discovery of compatible devices in the network and the
exchange of service descriptions between peers and the establishment of peer-to-peer
sessions. With the TiCoLi, messages as well as streams can be exchanged between
applications once a session is established. Applications can use the TiCoLi to grant
peer applications access to internal methods and parameters.

A series of experiments was conducted with the aim to measure the capabilities and
limitations of the library regarding the speed of data transfer and the level to which the
streaming service complies to real-time conditions. The identified limits in stream and
message data throughput and accuracy of frame timing where close to the bandwidth

5.5. Summary and Discussion 119

limits of the underlying Ethernet network which was 100 Mbit/s and the timing res-
olution of the operating system which was 1 ms. The experiments revealed possible
instabilities of frame rates when sending high-bandwidth streams and large messages
through the same network segment.

Outlook

The TiColLi is intended to be an evolving library which is continuously extended and
adapted to the requirements of the applications which use it. As of autumn 2009, a
state in the development is reached where the session initialization and the handshakes
for service invocation are ready to use. The managers and the core of the TiCoLi which
are responsible for the handling of all services are finished and went through an initial
round of tests. The TiCoL.i is already used in one project where an intraoperative mod-
ular setup is integrated with the TiCoLi (see Section 6.2). This project was intended as
a test run of all services and marks an important milestone in the development of the
TiCoLi.

With the core components ready, the TiCoLi can now only evolve based on the input
of users. It is planned to release the library into the public domain as an open source
project and to advertise is utilization in research projects. The following short-term
extensions are currently planned for the TiCoLi:

Bandwidth management: Reduction of the impact of message transfer to the frame
drop ratio of streams is the most pressing target regarding the performance of the li-
brary. Two approaches are being discussed. One possible solution would be to make
use of the Quality of Service (QoS) bits which can be set in the header of an IP packet
in order to priorize the packet of other packets when handled by a network switch. In
addition, the Resource Reservation Protocol (RSVP) could be included into the hand-
shake performed to initialize a stream. This protocol allows two peers in a network to
reserve a certain amount of bandwidth along one fixed route through the network. Both
QoS and RSVP are not part of the original publication of the IPv4 standard. As it is
not uncommon when dealing with internet standards, there exist differing implemen-
tations of both mechanisms in different networking hardware components and some
routers or switches don’t implement them at all.

The second approach is the integration of a central management node into the TiCoLi
network which regulates the assignment of bandwidth on the application layer. The
TIMMS Component Controller (TCC) which is developed by Stefan Bohn at ICCAS
on the basis of the TiCoLi could play that role. A functionality is planned for imple-
mentation in the TCC which allows TiCoLi devices to request and reserve bandwidth
for peer-to-peer communication. A mechanism in the messaging service is then re-
quired which limits message transfer to the assigned bandwidth.

Definition of additional frame and message classes: In its current version, the
TiCoLi contains message types for the exchange of commands, images, triangular
meshes, and status messages. The streaming service offers frame classes for tracking
and video streams as well as an unspecific frame class which can be used to stream bulk
data. In Chapter 3, requirements to the exchange of information between devices in

120 Chapter 5. An Open-Source Interface for OR Integration

the OR were derived from surgical workflows. In order to comply with these require-
ments, at least a streaming service for biosignals is required. Additional use cases
might require additional frame and message types, e.g. for streaming of compressed
or uncompressed audio data in telemedicine.

Security features: an authentication mechanism during session initialization and a
mechanism that validates the origin of a message or frame through a checksum or
public-key cryptographic mechanism is considered. With these mechanisms, an appli-
cation could restrict its services to a user group, or a group of devices. The uses cases
and requirements for such mechanisms are not fully understood at present and addi-
tional research needs to be invested in this regard. One of the security aspects which
need to be considered during session initialization is the authentication of the correct
TiCoLi software versions in both peers in order to assure compatibility.

Scripted Device Descriptions: In the actual version of the TiCoLi, the service de-
scription for each service is generated and parameterized by the application. The de-
veloper of an application is required to hand-code these definitions in the source code
of the application resulting in lengthy and obfuscated intialization routines. In order
to facilitate the development process and the code quality of TiCoLi applications, a
scripting mechanism is planned which outsources the definition of the service descrip-
tion to an xml-file which is parsed by the TiCoLi on startup. A graphical tool will
assist the developer of a system in generating this file.

Chapter 6

Clinical Applications

In this chapter, the application of the proposed DICOM SOP classes and the TiCoLi
infrastructure to integrate the modules for two CAS applications is presented. In Sec-
tion 6.1, a planning system for transcatheter aortic root implantation is presented. The
system is using DICOM services to retrieve image data from a PACS server and from
an angiography systems. It utilizes the implant template query and storage services to
obtain 3D models of stented valves from a repository. Planning results are exported us-
ing the surface segmentation storage and implantation planning SR document storage
services. In Section 6.2, a CAS system for localization of a critical neuroanatomi-
cal landmark, the central sulcus, is presented. The application includes several pre-
and intraoperatively used modeling systems which are interconnected using DICOM
services as well as the TiCoL.i.

6.1 Transapical Aortic Valve Implantation

Stenosis of the Aortic Valve (AV) is the most common acquired valvular heart defect
with more than 12, 000 cases per year (2007) in Germany. Patients are usually between
60 and 80 years old [Morgan, Jr. ef al., 2001]. If untreated, aortic valve stenosis is
attributed with a high mortality.

Surgical valve replacement is the only definitive therapeutic strategy in aortic steno-
sis, indicated in presence of severe symptomatic disease with a valve orifice area of
1 ¢m? or less [Bonow et al., 2006]. Hospital mortality of AV surgery is reported in
the literature between 3% and 4% in patients without cardiovascular co-morbidities
[Bonow et al., 2006]. Current conventional surgical techniques consist of partial or
complete sternotomy (opening of the chest) with extracorporeal circulation and car-
dioplegic arrest. In parallel with an overall increasing life expectancy more and more
elderly patients are being diagnosed with aortic stenosis. These patients have high
operative risk levels. Besides age, there are additional perioperative risk factors as
low ejection fraction, pulmonary hypertension, respiratory dysfunction or renal failure.
These co-morbidities are associated with an increased perioperative risk, particularly
for mortality.

121

122 Chapter 6. Clinical Applications

Transapical Aortic Valve Replacement (TA-AVI) is an important treatment option for
such high-risk patients. It is a minimally invasive technique for the deployment of
stented bioprostheses, i.e. a prosthesis consisting of three leaflets crafted from bovine
pericardial tissue that are sewn into a metal stent (see Figure 6.1). For implantation,
the stent is crimped onto a catheter to a low profile. Through small incisions in the
chest and the cardiac apex, the catheter is inserted into the left ventricle. The catheter
tip is positioned within the aortic root, where the stent is expanded to deploy the valve.
The procedure is performed on the beating heart, avoiding the use of extracorporeal
circulation.

Figure 6.1: Sapien (left) and Embracer (right) valve implants.

In Figure 6.2, the top level workflow of TA-AVI is presented. It contains the following
work steps:

e Preparation: During preparation of TA-AVI, the patient is anesthetized and a
pigtail catheter for contrast agent injection is brought into the ascending aorta
through a femoral arterial access. Through the femoral vein, a guide wire is
brought close to the right atrium. This guide wire is important for quick start-up
of the heart-lung machine if unforeseen events during the intervention require
the conversion to a classic surgical approach with extracorporeal circulation.

e Transapical Access: Through a small incision on the chest, the intercostal space
between the fifth and the sixth rib is exposed and extended to grant access to
the apex. An incision on the apex is made and a so called purse-string suture
[Kouchoukos et al., 2003] is prepared for closure of the incision after the inter-
vention. A sheath through which guide wires and catheters will be brought into
the ventricle is inserted through the incision.

e Apical Wire Placement: A guide wire is inserted through the sheath into the

6.1. Transapical Aortic Valve Implantation 123

Start
TAP-AVI

s N
Preparation
_ J
\ 4
(A
Transapical access

A 4

4[Apical wire placment]7

[Balloon valvoplasty }

Valve implantation

\ 4
[Transapical sheath insertion }

&
Xenograph valve positioning

A 4

—[Xenograph valve implantation]7

A

[Closure]
End
TAP-AVI

Figure 6.2: Top level workflow of TA-AVL

aorta, usually up to well beyond the aortic arch. Along the guide wire, a balloon
catheter is inserted and positioned inside the aortic valve.

e Balloon Valvuloplasty: Under rapid pacing (see below), the balloon on the tip of
the catheter is inflated, dilating the aortic root and aortic valve.

e Transapical Sheath Insertion: The sheath through which the aortic valve implant
will be delivered is inserted through the apex. Through the sheath, a catheter

with the valve mounted on the tip is brought into the aortic root.

e Xenograft Valve Positioning: Under X-ray fluoroscopy guidance, the crimped

124 Chapter 6. Clinical Applications

implant is positioned. When in place, the valve is deployed, either with another
balloon dilatation or by releasing a self-expansion mechanism of the implant.

e Valve Assessment: With the means of contrast enhanced X-ray angiography
and 3D+t Doppler ultrasound images, the functionality of the implanted valve is
verified.

e Closure: When the valve is in place and the position and function of the implant
have been checked, all sheaths and catheters are removed and the incisions are
closed.

Different types of valves are available with different designs and different deployment
mechanisms. For this work, two types of valves are considered which are described in
the following paragraphs.

Sapien Valve

The Sapien valve consists of three xenograft leaflets which are sewn into a metal stent
(see Figure 6.1, left). The stent and the valve are crimped to a low profile around a
balloon catheter. This catheter is steered into the aortic root. The valve is placed in the
aortic annulus. The diameter of the stent is selected to be 1 mm —2 mm larger than the
diameter of the ventriculoarterial junction. This leads to a tight press fit between stent
and aortic root. The metal of the cage is engraved into the vascular and ventricular
wall. Once the stent is inflated, it cannot be retraced or repositioned. (see Figure 6.3).
For placement of the valve, there exists a very short target area between the proximal
end of the aortic root and the level of the coronary ostia

,gwde wire

W4 N ROCHIH
\'»" { a' \‘dn
o

valvar leaflet

purse-string suture

sheath

Figure 6.3: Transapical implantation of the Sapien valve.

6.1. Transapical Aortic Valve Implantation 125

Embracer Valve

The Embracer valve consists of a soft metal stent carrying the actual xenograft valve
leaflets. Attached to the stent, three Nitinol [Buehler ef al., 1963] support arms reach
down from the commissures. Like the original valvar leaflets, the xenograft leaflets are
attached to the stent in a semilunar fashion. Nitinol is a highly elastic alloy from Nickel
and Titanium. When the valve is crimped to low profile for insertion through the apex,
the support arms are deformed. They act like springs, when the sheath holding the stent
together is removed and unfold the valve to its original shape. After implantation, the
support arms are embedded inside the aortic leaflets (see Figure 6.4).

Figure 6.4: Transapical implantation of the Embracer valve (images courtesy
Ventor Medical Ventor Medical Technologies).

Limitations

TA-AVI has been performed on high-risk patients more than 1,000 times in selected
medical centers with a success rate well above 90%. Nevertheless, there are some
difficulties about this technique which makes it hard to learn and perform. Literature
names a number of adverse events and complications which can occur during TA-AVI,
including valve dislocation, coronary occlusion, paravalvular leakage, stress-induced
disorder of stimulus conduction, and vascular or septal injuries [Walther et al., 2008;
Al Ali et al., 2008; Clavel et al., 2009; Wong et al., 2009; Himbert et al., 2009; Al-
Attar et al., 2009].

Accurate placement of the implant is an important factor to reduce the incidence of
these events. Therefore, positioning of the stented valve before deployment of the
valve is the most critical work step of the intervention. The following limitations were
identified regarding this work step:

e The angiography sequences describe the geometric situation insufficiently due
to the fact that they consist of projective 2D images.

126 Chapter 6. Clinical Applications

e The X-ray contrast of the myocardium, the vessels, the valve and the blood is
very low. In particular, the coronary ostia are hard to perceive. Injection of
contrast agent solves this issue for a few seconds, but the contrast agent affects
the patient’s kidneys and should therefore only be applied at a minimal dosage.

e The exact shape of the valve after the inflation is not visible in the X-ray images.
The folded metal stent is clearly visible even without any contrast agent, but it
will change its shape during inflation. The surgeon has to estimate the resulting
shape.

In addition to the intraoperative limitations regarding valve positioning under image
guidance, the selection of the optimal implant is important. It is expected, that a num-
ber of valve types in different shapes and sizes will be available for TA-AVI in the
near future. Similar to implantation planning routines in orthopedic and other fields of
surgery, a preoperative planning procedure needs to be defined according to which the
selection for an implant type and size can be made.

6.1.1 Computer Assisted Transapical Aortic Valve Implan-
tation

Systems for enhanced intraoperative imaging, computer assisted planning, and com-
puter assisted valve placement are being developed by several vendors and research
centers. From Siemens Healthcare, a volumetric angiography system is available
which enables intraoperative 3D imaging of the aortic root. A digital planning system
was developed which extracts a surface model of the aortic root from the volumetric
angiography images and virtually places a three-dimensional implant template inside
the model (see Figure 6.5) [Gessat et al., 2009]. It is intended to work together with
an intraoperative image based tracking system which is being developed by Mohamed
Karar [Karar et al., 2009]. This system intraoperatively tracks the position of the aortic
root and the stented valve and will be able to compare the actual position of the valve
with the planned target position.

Commercial systems with similar functionalities are available from 3mensio Medical
Imaging [3Mensio, 2009] and Paieon Inc. [Paieon, 2009]. Neither the 3mensio nor the
Paieon system is able to import modeling or planning results in other than a proprietary
format and do not produce output data in a standardized manner. Both systems can be
regarded as monolithic. The ICCAS approach is based on open interfaces with the aim
to design and implement independent systems for treatment planning and treatment
support and to embed these systems into an open infrastructure.

6.1.2 Infrastructure

The planning software as well as the intraoperative guidance software is built for ap-
plication in the OR. Both systems need to exchange data with intraoperative image

6.1. Transapical Aortic Valve Implantation 127

Figure 6.5: Implantation planning with Sapien implant template.

The contrast agent iz detected

Figure 6.6: Intraoperative image-based tracking of the coronary ostia and the
stent [Karar et al., 2009].

128

Chapter 6. Clinical Applications

sources and displays. The data flow diagram in Figure 6.7 summarizes the data ex-
change between the modules. Both DICOM and the TiCoLi can be applied to imple-

ment this dataflow.

1. \ Reconstructed
- Volume
Angiography Rotation | Reconstruct Reconstructed D1 Local
C-Arm Fluoroscopy DynaCT Volume 7| PACS
Implant
\ 3D Workstation / SY——— Templates
Volume“
Reconstructed 4.
Volume
C-Arm Segmentation
Angulation
\ 4 .
N Segmentation
2.0 =
Visualize Segmentation
DynaCT /‘75"*"\0
3D Workstation : N
ey Implantation |
Planning
Planning System /—
Implant Target
3D Overlay Position
v _Image 4
Ié 3.0 \ Prosthesis and / 6.0 \
- Target Position -
Overla
Fluoroscopy Images _| Implant Valve |« y Landmark
Tracking
Angiography Tracking System/
\ System /
Recorded Angiography Scenes
Surgeon \
/ 70 = Implantation Plan
comments » Data Archival
Recorded Angiography Scenes AN /
Implantation Plan OR Report
Reconstructed
Volume
4 4
Hostpital Hospital
D2 D3
PACS EHR

Figure 6.7: Proposed dtaflow diagram for computer assisted TA-AVI.

6.1. Transapical Aortic Valve Implantation 129

Data exchange during planning phase

For exchange of large datasets, implant templates, and implantation planning results
during implantation planning, DICOM transfer services are employed. This allows
for long-term archival of the results on a PACS server after the intervention and made
access to the radiology images from the DynaCT workstation possible without any
adaptations on the workstation. Table 6.1 provides an overview of the SOP classes
which are utilized in the setup for data exchange between the workstation performing
the volume reconstruction, the planning and modeling application, an implant template
repository, and a local PACS server.

Parameter | Type Content / Description Transfer Service

Angiography | Image Recorded X-ray angiogra- | X-Ray Angiographic Im-
phy scenes. age Storage

DynaCT Image Reconstructed volume | X-Ray 3D Angiographic

(3D) showing the morphology | Image Storage or CT Im-

of the aortic root age Storage

Valve Surface Implant Templates used | Generic Implant Template

Model for planning Storage

Segmentation Image Segmented shape of the | Segmentation Image Stor-
aortic root age

Surface Surface Segmented surface of the | Surface Segmentation

Segmenta- aortic root Storage

tion

Landmarks | Geometry | Points and planes repre- | Spatial Fiducials Storage
senting relevant features of
the aortic root

Registration | Matrices | The transformations which | Spatial Registration Stor-
register the implant tem- | age
plate with the patient data

Implantation | Report Collection of the implanta- | Implant Planning SR Doc-

Plan tion planning results ument Storage

Table 6.1: DICOM SOP classes for data exchange in computer assisted TA-AVI.

The planning software implements both DICOM SOP classes which were presented in
Chapter 4. The surface segmentation which is derived from the volumetric angiogra-
phy image is exported to a PACS server with the surface segmentation storage service.
The implant templates are encoded as implant template IODs. The software uses the
DICOM toolkit DCMTK [DICOM @OFFICE, 2005] for communication with DICOM
nodes and for parsing of DICOM instances.

In order to test the integration of the modules, an experimental PACS server was de-
veloped which implements the query and retrieve SOP classes for both the implant
template IOD and the surface segmentation IOD. Several open source PACS servers

130 Chapter 6. Clinical Applications

were available for this attempt. The inclusion of the surface segmentation IOD into the
DCMA4CHEE server [dcm4chee, 2005], for example, did not require any alterations on
the server other than adding the SOP class UID to its registry. For implant templates,
the integration would have required intensive alterations on the internal database struc-
ture on which the DCM4CHEE server is based. The problem was that the server would
not accept any instances which do not contain a patient identification which is man-
dated by the database in every entry. The DICOM toolkit was used to implement
a minimal implant template C-Find / C-Move / C-Store service class provider
which acts a DICOM implant template repository.

Digital Aortic Valve Implant Templates

The implant template SOP class (see Section 4.3) is utilized to represent the shape and
relevant properties of the aortic valve implants . In order to create DICOM instances
compliant with the specification from that supplement, surface models of the implants
were transformed into DICOM encoding and the additional information required to
fully specify the templates was acquired by manual measurement and from the product
catalogs.

Both available implant types were modeled. The planning landmarks which were
added to the implant templates were selected according to the anatomical landmarks
according to which the implants are intraoperatively positioned.

The implant templates which describe the Sapien valves contain the following planning
landmarks:

e The longitudinal axis of the implant is encoded as a line landmark ay.
e The distal rim of the implant is marked by three point landmarks r;.
e Each commissure of the valve is marked by a point c,;.

e The proximal rim of the implant is marked by three point landmarks r,.

The following planning landmarks are provided in the implant template instance of the
Embracer implant

e The bottoms or sinuses of the valve’s support arms b,;.

The tips of the struts s;.

The longitudinal axis pointing is encoded as a line landmark ay.

The proximal rim of the implant is marked by three point landmarks r,,;.

The distal rim of the implant is marked by three point landmarks r;.

Figure 6.8 shows both templates and the planning landmarks.

6.1. Transapical Aortic Valve Implantation 131

Distal I’Imi———’ t
o

-~ Commisure
Flow / U v\
direction b \\%
Clamp Sinus (\
/
PrOX|maI rim

Figure 6.8: Digital aortic valve implant templates with planning landmarks (Pho-
tographs courtesy of Edwards Lifesciences and Ventor Medical Technologies).

Data exchange for image guided implantation

During the intervention, when the image-based tracking systems track the current loca-
tion of the stent and the target regions, real-time exchange of video data and tracking
coordinates is required. The streaming service in the TiCoLi could be used for this
purpose. The video signal from the angiography C-arm therefore needs to be captured
by computer through a frame-grabber which is connected to one of the video outputs
of the device. The C-arm’s acquisition parameters which are required for 2D-3D regis-
tration, such as the angle of projection and magnification factor, can also be sent to the
TiCoLi network with the streaming service. Therefore, an available software interface
for reading the device parameters from a dedicated bus would need to be encapsulated
into a TiCoLi application. At present, the integration of these modules can only be pre-
sented as a concept, since the tracking module has not yet reached real-time capability
and is therefore not ready for integration and clinical use.

Data exchange during reporting and storage of results

After the intervention, all the data which seems relevant for long-term follow-up and
documentation in the patient’s health record can be sent from the local PACS to the
hospital’s central PACS. This requires a network connection between both domains
and the necessary access rights for the OR devices and personnel on the PACS server.

132 Chapter 6. Clinical Applications

6.2 Cortical Stimulation and Mapping

Brain surgery, especially brain tumor resection, is a task which presents various chal-
lenges to a surgeon. One such task is the confident identification of critical areas of the
cerebral cortex. Intentional or unintentional injury of the motor cortex, i.e. the region
which is responsible for generation of impulses controlling the execution of voluntary
muscle motion, would set the patient at risk of potentially irreversible mobility im-
pairments. To avoid unintentional damage, intraoperative localization of critical areas
is an important task during surgical resection of tumors, especially tumors which are
close to the motor cortex. Besides indirect methods, such as functional MRI [Bel-
liveau et al., 1991] in combination with Diffusion Tensor Imaging (DTI) [Le Bihan
et al., 2001] which are employed preoperatively to identify the functional areas in the
surroundings of the tumor, there exist direct methods for intraoperative localization
of certain functional areas. One is surgery with local anesthesia, where the patient is
sedated but awake and asked to perform tasks which are known to be affected by neu-
rons in the cortex areas the surgeon wants to identify. For interventions close to regions
which are associated with visual perception or word formation, the patient is asked to
name objects which are presented to him on picture cards [Meyer et al., 2001]. Such
procedures expose the patient to high levels of stress but are sometimes the only vi-
able approach to guide the surgeon past critical structures involved, e.g., in the neural
process of speech.

The motor cortex can be localized through neurophysiological measurements. In open
brain surgery, Somatosensory Evoked Potentials (SSEPs) are used to identify cortex
regions. Thereby, electrical stimuli are induced at the peripheral nerves on the ex-
tremities. Electrodes which are placed on the cortex measure the electrical response
of the cortex cells [Woolsey et al., 1979; Gregorie & Goldring, 1984; Eisner, 2001;
Romstock et al., 2002].

6.2.1 The Central Sulcus

The central sulcus, i.e. the fissure on the cerebral cortex between the precentral and the
postcentral gyrus (see Figure 6.9), is an important landmark in brain surgery. It sepa-
rates two very important functional areas: the primary motor cortex which is respon-
sible for voluntary motion and the primary somatosensory cortex which is responsible
for haptic perception [Seeger & Zentner, 2002].

The anatomical localization of the central sulcus is well described [Gray, 1918; Tre-
pel, 2004; Diitzmann, 2009]. Nevertheless it can be difficult during brain surgery to
identify the central sulcus among the sulci which are visible in the situs. One reason
for this is that only a small portion of the cortex is exposed which makes it harder for
the surgeon to relate the visible landmarks with the overall structure of the brain. The
other reason is that due to tissue shift which is induced by a nearby tumor, the localiza-
tion and course of the central sulcus in one particular patient can diverge strongly from
the average expectation. In Figure 6.10, a typical view through the OR microscope

6.2. Cortical Stimulation and Mapping 133

onto the cortex is shown the dashed line identifies the central sulcus among the sulci
which are visible in the patient.

6.2.2 Localization of the Central Sulcus

For the intraoperative identification of the central sulcus, a special measuring method
is employed after the skull and dura are opened. It makes use of an effect called
phase reversal which can be observed across the central sulcus: When evoking an
SSEP on an extremity, a response can be measured on the somatosensory and, due
to electrical feedback effects, also on the motor cortex. The waveform of the evoced
potentials is received inverted in the motor cortex (see Figure 6.11). Linear arrays
of electrodes, called grid electrodes are placed directly on the cortex to measure the
reaction potentials induced by the SSEPs. In Figure 6.10, the grid electrode is visible
on the cortex. Between the electrodes which are on either side of the central sulcus, a
phase reversal can be measured. The identification of the phase reversal is done by a
neurologist. The transfer of the measuring results to the situs is done mentally by the
surgeon.

In IGS systems, such as the Brainlab Vector Vision® or the Localite Neuronavigator
systems, preoperative MR images are used to support the surgeon in localizing the
central sulcus. The reliability of these systems is impaired by the deformation of the

brain during surgery ("brain shift"). Three major reasons for brain shift are [Trantakis
et al., 2003]:

e The way the patient is laid, seated or otherwise positioned on the OR table is usu-
ally different from the position he or she was in when the images were acquired.
This leads in a different resulting gravity vector for the brain.

e The stabilizing effect of the cerebrospinal fluid (CSF) which usually fills the
ventricular system, i.e. a system of cavities inside the brain, decreases when the
dura is opened and parts of the CSF flow out.

e The internal tension of the brain tissue which is compressed due to the growth
of the tumor is released when the skull is opened and the brain expands.

Limitations

With the available technology, neurosurgeons and neurologists are able to identify ar-
eas on the exposed neurocortex. There is no established technique which combines
the sensory output with the, highly relevant, information about the location of its ac-
quisition. The task of correlating the information with the preoperative findings in an
MR image, in order to, e.g., validate a plan or estimate brain shift, is left to the sur-
geon who has to mentally translate between both worlds — the real-world situs and the
virtual planning model.

134 Chapter 6. Clinical Applications

TEMPO?J‘L A
sulew?

.tem 4\

Figure 6.9: Principal regions of the cortex. The central sulcus separates the motor
cortex (red) and the somatosensory cortex (blue) [Gray, 1918].

Figure 6.10: Intraoperative view onto the cortex.

6.2. Cortical Stimulation and Mapping 135

Figure 6.11: Acquired action potentials from a 4-electrode grid. Phase reversal
is between the second and the third electrode.

6.2.3 Intraoperative Mapping of the Central Sulcus

With the existing surgical navigation technology, geometric information about cortex
areas obtained from preoperative images can be spatially related to real-world coordi-
nates in the OR, neglecting tissue shift. With the existing neurophysiological sensors,
areas on the exposed cortex can be identified in situ. In this section, a system is de-
scribed which combines both technologies in order to provide the neurosurgeon with
an intraoperative generated model of the central sulcus which is visualized in combi-
nation with a preoperative surface model of the neurocortex. The system allows for
accurate distinction between the pre- and postcentral gyrus and can be used to locally
estimate the accuracy of navigation based on preoperative data. The system is de-
veloped at ICCAS in Leipzig including the works of Daniel Streitbiirger, Dr. Rafael
Mayoral, Stefan Franke, and the author as well as of Prof. Jiirgen Meixensberger and
Dr. Christos Trantakis from University Hospital Leipzig. The concept of the work and
first results were presented in 2009 [Streitbiirger et al., 2009].

Functionalities and Modules In Figure 6.12 the setup of the system for intraop-
erative mapping of the central sulcus is presented. The core component of this setup
is the NeuroMapper application. It collects tracking information about the position of
the patient and a handheld pointer. The handheld pointer is utilized by the surgeon to

136 Chapter 6. Clinical Applications

Tracking Camera
Tracked Pointer

T Patient Marker

\

Neuro | Phase Reversal _
Workstation | Tracking
: Server
T &
D MRI SulcusMapper -
PACS @D? O Pointer
Server SurfaceSeg \9@ o Position

Point Gestures | Gesture
* = r — - — Detection
Loop Gestures | Module

—— —_—— —
TiColLi Stream TiColLi Messages DICOM C-Store

Figure 6.12: Intraoperative system setup for sulcus centralis mapping.

indicate the positioning of the grid electrode used to pick up the SSEP signals on the
cortex. This information is combined with input from a diagnostic workstation about
whether and between which electrodes phase reversal was observed by the neurologist
or a trained nurse. In Figure 6.13, a schematic drawing visualizes the process of point
wise identification of the central sulcus and piecewise linear interpolation of its course
is shown. The tracking algorithm is able to extrapolate the point on the cortex which
corresponds with a phase reversal even if the grid was pushed forward underneath the

Figure 6.13: Localization of the grid electrode and the central sulcus.

6.2. Cortical Stimulation and Mapping 137

skull beyond the rim of the trepanation. An example for the intraoperative tracking
result acquired with the presented system is shown in Figure 6.14

The SulcusMapper has access to a PACS server from where it receives preoperative
MR images and models of the patient’s anatomy (see Section 6.2.4). Intraoperatively,
the SulcusMapper interacts with three additional software modules which are running
on separate PCs:

e The Gesture Detection Module is a generic low-level module which is used to
monitor the motion of a tracked object, e.g. the handheld pointer, and to detect
gestures which are performed with the device. The module is able to connect
to tracking data servers in the network, monitor one or more of the objects a
server tracks and notify a third application, in this case the SulcusMapper, when
a gesture was performed. In its current version, the gesture detection module is
able to detect two gestures which are sufficient for the presented setup.

The first gesture is used to indicate a certain point in space, e.g. a landmark on
the patient or on the grid electrode. The gesture detection module assumes a
point gesture every time a monitored object was kept still for a certain period.
The length of this period can be configured.

The second gesture is a closed loop which can be utilized to circumscribe a re-
gion. A closed loop gesture is assumed by gesture detection module every time
the path of a tracked object self-intersects. A lower boundary can be set for the
minimal trip length of the circumscribed loop in order to filter out unintended

Figure 6.14: Visual representation of the central sulcus and the trepanation in the
SulcusMapper.

138 Chapter 6. Clinical Applications

small loops due to tremor during point gestures.

The gesture detection module is initialized and stopped by a peer using the re-
mote method service of the TiCoLi. Two methods are made available which are
called by a peer to start and to stop a monitoring job. Detected gestures are sent
to the peer which initialized a job with a TiCoLi PolydataMessage.

The internal logic of the gesture detection module is presented in Appendix D.3.

e For online visualization of the pointer position in relation to the preoperative
and intraoperative models, the unprocessed tracking stream is received from the
same server which is the source of tracking data for the gesture detection module.
The Tracking Server is a generic module which can access tracking cameras of
different kinds and provide the tracking coordinates they deliver through a uni-
form interface. The tracking server offers TiCoLi streams for every object the
attached navigation system is tracking. In the presented setup for mapping of
the sulcus centralis, the tracking server offers two streams: one for the hand-
held pointer and one for the patient tracker which is fixed at the patient’s head.
The SulcusMapper connects to both streams, whereas the gesture detection
module only connects to the stream with the position of the handheld pointer.

e The neurophysiology workstation from where the result of the SSEP measure-
ment is sent. In the present state of development, the workstation is not directly
integrated into the setup. Instead, the neurophysiology nurse has to manually in-
put the result of the measurement. The information is sent to the SulcusMapper
via the messaging service of the TiCoLi.

The data exchange between all modules through one Ethernet network was possible
without any limitations regarding bandwidth, data losses, or difficulties during auto-
configuration. During all tests in the laboratory as well as in the operating room, both
tracking streams were sent and received at the nominal framerate of 20 / z which is the
framerate at which the NDI Polaris tracking system generates coordinates. Network
latencies where not perceivable. The streams where in no measurable way affected by
the messages which were sent from the gesture detection module. During setup, no
user interaction is required: the NeuroMapper, the gesture detection module, and the
streaming server are plugged into the network which assigns IP addresses to all three
devices. The gesture detection module automatically establishes a connection with the
streaming server. The NeuroMapper automatically identifies the streaming server and
the gesture detection module and registers itself as a client with both peers.

6.2.4 Preoperative Model Generation

In order to extrapolate the shape of the flexible electrode as it is pushed forward under-
neath the skull, and for visualization of the sulcus mapping result, the SulcusMapper
requires a surface model of the neurocortex and the skull. These surfaces are preopera-
tively extracted from a T1 weighted MRI image with a segmentation tool published by
the FMRIB Center of the University of Oxford, called the Brain Extraction Tool (BET)

6.2. Cortical Stimulation and Mapping 139

[Jenkinson et al., 2005]. The BET runs in a Linux environment and requires images in
the NifTI-1 file format [NifTI, 2005] as input and generates a triangular surface which
it stores in the vtk file format [Schroeder et al., 2004].

In order to integrate the BET into a perioperative workflow with minimal user in-
teraction, the the Brain Extraction Service Provider was developed. The software is
intended to run as a background process on a server which automatically starts the
extraction of the cortex model from MR images as soon as they are available. The
system is able to send and receive DICOM as well as TiCoLi Messages. The BET
service provider interacts with a second module, the BET Server which runs on the
same hardware as the Brain Extraction Tool. 1t exchanges TiCoLi messages with the
Brain Extraction Service Provider and is able to read and write NifTI-1 files as well as
vtk files. In Figure 6.15, all software components and their connections are presented.

DICOM DICON

I Setvice B . rJ[_ ‘J[- . . « d .
o e ramn extraction service provider
=
":IF-
x'¥]
T [tnage Polydata
% message message
—
@
= Braimm Extraction
= BETServer
Tool

BET2 |BETSurf

NIfTI-1

WVTE Mesh

Figure 6.15: Collaboration diagram for preoperative cortex model generation.

The UML sequence diagram in Figure 6.16 gives an overview on the interaction be-
tween the modules:

e A scheduling workstation (scheduler) sends name and ID of the patients for
whom segmentation is required to the BESP (1).

e The PACS server sends an InstanceAvailable message to the BESP using
the DICOM service N-EVENT-REPORT (2, 3).

140 Chapter 6. Clinical Applications

jua)
m
Ly
gl

ImageSource PACS Server Scheduler BET Server

1 : AddPatientToWatchlist

2 MR _Series

3 1 Instancefvailable

4 CheckWatchlist()
5 GetSeries

6 : MR_Series

{7 Conwert_DCM_To_IGTL()

; | BET
8 1 ImageMessage 3

|9 Convert IGTL_To_NIFTI()
- <<create> >
10 ; StartSegmentation()

11 : Result

; ; 12+ CorvertyTK_To_IGTL() |
13 ! PolyDataMessage ’7
i i 14 ; Corvert IGTL_To DCM() | i
15 1 SurfaceSegmentation_Series

Figure 6.16: Preoperative cortex extraction: sequence diagram.

e The BESP checks whether the images belong to one of the patients it is waiting
for and whether the instances are MR images. In this case, the BESP retrieves
the instances from the PACS server (5, 6).

e The BESP sends the images to the BETServer as a TiCoLi ImageMessage (7,
8).

e The BETServer stores the images in the NIfTI-1 format on the local hard disk
and runs the BET (9, 10).

o After segmentation, the BET stores the resulting surface mesh on the local hard
disk. The BETServer loads the surface and sends it to the BESP in a TiCoLi
PolyDataMessage (11, 12, 13).

e The BESP generates a valid DICOM surface segmentation instance from the
received surface mesh and the patient information in the original MR images.
The surface segmentation instance is sent to the PACS server (14, 15).

Although it is running in a preoperative setup, the BESP is a prototype for a bridging
device which connects a TiCoLi network with a PACS network. The BESP receives
notifications and data from the PACS via DICOM services and translates the received
data into TiCoLi messages which it forwards to a TiCoLi peer. Output data is received
from TiCoLi peers, translated into DICOM instances and sent to the PACS server. This

6.3. Summary and Discussion 141

pattern is one of many possible solutions to embed an intraoperatively used, distributed
CAS system to into the PACS.

6.3 Summary and Discussion

Two applications were presented which utilize the presented methods for data ex-
change and system integration in clinically motivated projects. The first application
uses the proposed DICOM SOP classes for exchange of surgical planning data in a
pre- or perioperative planning scenario. The second application uses a combination
of both, DICOM and TiCoLi messages to integrate an automatic segmentation tool, a
scheduling workstation, and an intraoperative modeling system with the patient image
database of the PACS. The intraoperative modeling system consists of several modules
which interact in real-time using TiCoLi services. The throughput and latency of the
TiCoLi transfer services was sufficient for intraoperatively using the modeling system.

In both applications, the surface segmentation IOD was used to exchange surface mod-
els between two applications. One limitation which constrained the level of automation
in the exchange of data lay, in both cases, in the difficulty of the receiving application
to identify the surface segmentation instance which to import. In situations where more
than one instance was available for one patient on the PACS, the software required user
input in order to select the correct one. To work around that problem, the segmentation
systems in both setups use code names for segment labels by which the receiving ap-
plications were able to identify the correct surface segmentation instances. In order to
solve this issue, a standardized mechanism for the identification of a DICOM instance
which was generated during surgical planning and shall be used intraoperatively for a
certain purpose is required.

For implantation planning results, such a mechanism is present in the implantation
planning SR document. The instances of this definition are specific to one patient, one
intervention type (identified through a standardized code), and one scheduled inter-
vention date. A CAS system which has access to the OR schedule can automatically
retrieve these instances for the next patient during OR turnover without the need for
human interaction. The SR document contains references to all relevant data on the
PACS.

The general applicability of DICOM SR for the representation of surgical planning
results was noted by Treichel et al. [Treichel er al., 2010]. For future work items
concerned with the storage and transfer of surgical planning results, the combination
of IODs and SRs is recommended:

e The SR Document relates to one scheduled intervention. It contains references
to patient images and models as well as to models of tools, devices, procedure
steps, etc. and a coded identification of the planned procedure type.

e The models are represented by IOD instances which are defined independently
from specific surgical interventions.

142 Chapter 6. Clinical Applications

The seamless integration of TiCoLi application is also restricted by the absence of
semantic standards. The service discovery mechanism of the TiCoLi in its actual ver-
sion provides only the syntactical framework for autoconfiguration: with the service
discovery mechanism, a technical description of the capabilities of a device can be ex-
changed. The device description contains a name and a rather unspecific type together
with the network address at which the device can be contacted. The service-specific
descriptions contain predominantly technical parameters, e.g. the framerate and frame
size in the case of streams, together with a free-text name of the stream. In the pre-
sented systems, this mechanism did save a lot of setup effort: network addresses were
generated and exchanged without any user interaction.

Nevertheless, the identification of a server required human interaction or a mutual
agreement between two devices about their device names and service names. For fully
automatic device discovery and identification, a mechanism for describing the seman-
tics of a device or a service is required which is based on standardized codes. No such
coding scheme exists which completely covers the concepts required to describe the
domain of surgical device integration. Efforts are required to specify such a termi-
nology. Thereby, existing coding schemes and standards from other fields of medical
informatics might be adapted or extended for specification of codes on several levels
of the device description:.

e For pathological concepts and laboratory findings, SNOMED and LOINC pro-
vide (almost) comprehensive terminologies which are continuously adapted to
the needs of evolving technologies. For the labeling of biosignals in streams
as well as in attribute descriptions and method parameter descriptions these ter-
minologies could provide a starting point. Similar to the manner in which the
DICOM standard refers to SNOMED and LOINC concepts for labeling of diag-
nostic findings, a coding scheme could be added to the service descriptions of
the TiCoLi to identify biomedical content.

e For the description of image sources, a nomenclature for imaging modalities is
required. The DICOM context group CID 29 ("Acquisition Modality") could be
a good starting point for this nomenclature.

e Finally, a terminology is required for the identification of system parameters to
which access is granted for remote monitoring and control as well as for opera-
tors, functions, and algorithms which are activated through the method service
of the TiCoLi. The definition of a comprehensive and practicable descriptive
scheme requires intensive research into the direction of an ontology for CAS
functionalities, systems, and parameters. ISO 11073 (Point of Care Medical
Device Communication) specifies a mechanism, a domain information model,
and a nomenclature for the identification of device parameters in intensive care
units. This standard could provide a good starting point for the development of
a similar mechanism for surgical devices.

Chapter 7

Conclusion & Qutlook

7.1 Summary

Pre- and Intraoperative Requirements

In Chapter 3, the functional requirements for inter-device communication in modular
CAS systems were investigated. Surgical workflows were the starting point for the
analysis of dataflow during preoperative preparation and planning as well as during in-
traoperative assistance. It appeared that during preoperative planning, versatile infor-
mation which is stored in the HIS or its subsystems, predominantly the PACS and the
patient health record, is utilized: an integrated planning system requires access to these
systems through an adequate infrastructure for data exchange. This infrastructure is re-
quired to be accisble from each operating room in order to transfer preoperative data
to intraoperatively used CAS systems. As it was pointed out in numerous publications
(see Chapter 1), such an infrastructure is required to be based on open standards for
data exchange and system integration. Only an infrastructure which facilitates inter-
device communication across vendor boundaries delivers the required convergence of
information, thereby giving rise to synergetic effects earned from the possibility to
freely exchange input data, generated models, and planning results between systems.
These effects help to make every-day clinical work more efficient and accurate.

The TIMMS meta architecture was cited as a potential reference model for such an
architecture. TIMMS was specified with an intraoperative application in mind. It was
argued in Chapter 3 that the differing requirements for pre- and intraoperative data
exchange suggest the design of two separate information systems: a Surgical PACS
(S-PACS) for preoperative planning (and postoperative follow-up and reporting) and
the TIMMS for intraoperative system integration as a more interactive system with
properties similar to an industrial field bus. An important feature to be kept in mind
when designing both the S-PACS and the TIMMS is the interconnectivity between the
domains.

S-DICOM

DICOM contains data structures for patient images as well as for textual or other de-

143

144 Chapter 7. Conclusion & Outlook

scriptive content which relates to image data. The majority of the information which
was found in the dataflow in Chapter 3 is images or geometric data or related to either
or both. In Chapter 4, DICOM is identified to be a suitable basis for a data storage and
exchange standard for the perioperative data transfer. Nevertheless, the existing data
structures which in DICOM do not fully cover all requirements which were identified
for preoperative data exchange. Several data objects are listed in Chapter 4 for which
DICOM does not contain applicable SOP classes.

Two new DICOM data structures were presented in Chapter 4. Both were defined
in order to facilitate the storage and transfer of surgical planning data. The surface
segmentation [OD (see Section 4.2) has already been adopted by the DICOM standard
in 2008. The implant template and implantation planning IODs which were presented
in Section 4.3 are as of January 2010 still being edited by the DICOM working groups
6 and 24. A final version of the supplement is planned to be released for voting before
summer 2010.

Intraoperative Infrastructure

In contrast to preoperative planning workflows, the data exchange between intraop-
eratively used CAS systems is characterized by real-time transmissions and flexible
setups. Three criterions were postulated according to which an OR network infras-
tructure has to be designed:

e The elicitation, transmission, and conflation of in-sitfu measurements (ranging
from 1D signals to 3D volumetric images) in real-time and the combination of
these with pre-operatively generated models are fundamental to the concept of
MGS.

e The concept of OR integration or the so called surgical cockpit requires the pos-
sibility to monitor and control OR devices through virtual interfaces with which
they exchange status information and control signals via the network infrastruc-
ture in the OR.

e In most hospitals, ORs are multi-purpose facilities in which different kinds of
interventions are performed and which are often shared among surgical special-
ties. Only in rare cases will the configuration of devices and device settings
which are required for two consecutive interventions be identical. OR turnover
time is already a critical issue with regard to hospital efficiency. The increasing
amount of technical devices utilized in modern ORs and the advance in connec-
tivity between devices is expected to add to the complexity of OR setup proce-
dures. A network infrastructure for integration of OR technology has to provide
assistance during the configuration of an OR setup.

In Chapter 5, a software library was presented which has been developed to meet these
requirements. The TiCoLi is based on open-source libraries and open standards. It pro-
vides a comprehensive set of functionalities according to the requirements postulated

7.2. Conclusion 145

in the final report of the OR 2020 workshop an other publications (see Section 2.2 and
above) which it makes accessible through a uniform APIL.

In section 5.4 the results of a series of experiments was reported in which the perfor-
mance and reliability of the presented infrastructure were investigated. No limitations
could be identified to the throughput, latency, and reliability of the transfer services
other than the limits which were inherited from the network infrastructure and operat-
ing system. Under conditions with high network traffic, the requirement for a network
load management service was identified as a means to assure in-time delivery of stream
frames.

A release of the TiCoLi into the public domain as an open-source software library is
planned. This step aims at including designers, programmers, and users from other
research centers than ICCAS into the development process of the library and to em-
phasize the utilization of the TiCoLi for module integration in research projects.

7.2 Conclusion

Researchers, clinicians, and industry agree about the potential that lies in the integra-
tion of surgery information systems, intraoperative assistance systems, and informa-
tion systems used during post-operative follow up. Several international conventions
recommended the design of a comprehensive information system which enables the
fluent exchange of information between all departments and devices which directly or
indirectly affect the perioperative workflow. This information system is expected to in-
crease efficiency, outcome qualities and patient safety during all stages of patient care.
The convergence of radiology information systems, picture archiving and communi-
cation systems, and computer assisted diagnosis systems which could be witnessed
during the last decades demonstrates these effects.

The integration of the OR into the hospital-wide information systems for patient-data
management is feasible. The DICOM standard is a viable basis for the exchange of
planning data between the PACS and the OR. Additional DICOM data structures are
required to fully cover the requirements of surgical planning, but the service classes
and paradigms of the DICOM standard are consistent with these requirements.

The intraoperative data exchange via an Ethernet-based network is possible within
reasonable constraints and technical boundaries regarding the reliability of transfer
speeds. Using professional network hardware and when operating at bandwidths well
below the limitations of the network, a high reliability of streaming data exchange
could be measured. In a modern 1 G Bit network, most applications will adhere to this
restriction. The feasibility of streaming under extreme conditions, such as very large
bandwidth requirements for uncompressed stereo HD video or biosignals with high
sampling rates above 100 Hz ! was not sufficiently investigated. For use cases which

'Electrocardiograms are, e.g., acquired at samling rates of up to 8000 Hz. In order to stream this
data through the TiCoLi, it would either have to be downsampled by, e.g. a sliding average filter, or sent
in packets containing several hundret samples.

146 Chapter 7. Conclusion & Outlook

require such data transmission, the necessity may arise to complement the TiCoLi
infrastructure with parallel communication infrastructures using dedicated Ethernet
networks or other technology (such as analog or digital video routing). The modular
software design of the TiCoL.i facilitates the inclusion of interfaces to such infrastruc-
tures. The interaction with an additional infrastructure could be conducted by either
adding a new class of services managed by a new Manager class or by adding new
Frame or Message classes which are transmitted over specialized Encoder classes
or a dedicated message socket.

Besides technical issues, such as the definition of data structures, the seamless integra-
tion of CAS systems into an information system requires a deep understanding of the
semantics of the domain. In order to unambiguously describe the services of a device,
an ontology is required which describes the tools, devices, and processes (technical
as well as clinical) and their relations. Neumuth, Jannin, Raimbault, et al. [Jannin &
Morandi, 2007; Neumuth et al., 2009; Raimbault er al., 2009] proposed methods for
creating models of surgical procedures from observations and applying these models
during surgical planning. Mudunuri et al. presented an ontological framework for the
description of tools, procedure steps, personnel, and devices [Mudunuri et al., 2007].
These and similar approaches have to potential to be the basis for the required ontol-
ogy. In order to develop internationally accepted and expert-reviewed ontologies, an
open database, a reviewing process, and a community which actively adds and reviews
database content are required.

The legal, political, and social implications of the introduction of modular system
architectures with shared functionalities into the surgical domain are manifold. The
distribution of legal responsibility is at present an open issue. An open infrastructure
allows for setups which include devices from different vendors. Whether and how such
a setup can receive certification and clearance for clinical application on a patient is
unclear. The scientific community which is promoting the development of integrated
ORs must strike a balance between convincing legislators, clinical societies, as well as
the general public and adjusting their aims to the basic conditions imposed by these
groups.

7.3 Outlook

Computer assisted surgical planning is at present predominantly based on image data.
On this basis, the storage of planning results in the PACS and their transfer into the
OR with DICOM services is standing to reason given that the required data structures
are added to the DICOM standard. DICOM Working Group 24 has been established
for that purpose and has begun, with increasing support from the industry and other
DICOM working groups, to bring DICOM supplements based on surgical use cases
through the standardization process. Continuing effort will be required to proceed in
that direction and to begin working on additional work items for other use cases in
surgical planning.

7.3. Outlook 147

The definition of the implant template IOD and the implantation planning SR docu-
ment which will soon be brought to conclusion was only possible with the inclusion of
several experts from the implant and implant planning industries. The extension of the
work of DICOM Working Group 24 into other fields of surgical planning will require
a comparable amount of input from the affected industries and clinicians.

Recent research projects in surgical planning go beyond image-based analysis of cases
and include physical and physiological models into the decision process. These works
require repositories for complex mathematical description of tissue behavior, biochem-
ical, and biophysical processes. PACS may not be the optimal information system for
handling this kind of information and DICOM may not be the optimal choice for a
standard for storage and transfer of such data. The Physiome project has established a
database scheme and a description language for physiological models. Surgical plan-
ning workstations of the future will have to be able to interact with such repositories,
as well as with the patient data repositories in the HIS and PACS.

The formation of standardization bodies and the participation of the key players from
healthcare, research, and medical device industry in these bodies are inevitable for the
development and pervasion of technical standards for integrated ORs. For the periop-
erative storage and transfer of patient data, the DICOM standard and DICOM Working
Group 24 provide a good basis in this regard. For intraoperative data exchange, no ded-
icated standard or standardization committee exists. Technical standardization bodies
exist for certain aspects of intraoperative data exchange in CAS systems, such as the
X3D consortium (which is maintaining an internet standard for exchange and visual-
ization of 3D data) and the ISO Technical Committee 184/SC2 "Robots and Robotic
Devices". The ISO has issued a call for experts in order to build a study group in med-
ical care robots which will hold its first meeting in February, 2010. To improve the
interaction between these and other standardization bodies and initiatives, efforts are
currently made to start an IHE domain for surgery.

Appendix A

Data Flow Diagrams

Data Flow Diagrams (DFDs) [Gane & Sarson, 1979] are a modeling method in soft-
ware engineering with which the exchange of information between the entities of a
system is depicted. One DFD usually describes the flow of information which is ex-
changed to perform one action or within one use case. DFDs are directed graphs with
three kinds of nodes:

e FExternal Entities are objects outside the system which act as sources and/or des-
tinations of the system’s inputs and outputs.

e Processes take data as input and generate output data based on the input data.

e Data storages are entities which store information.

In principle, data flow diagrams are not restricted to digital data processing. Real-
world processes where data exchange is done physically in the form of paper-based
documents which are stored in filing cabinets can as well be modeled using data flow
diagrams.

There exist different notations for DFDs. In this thesis, the notation of Gane and
Sarson[Gane & Sarson, 1979] is used. It has the following elements:

e FExternal Entities are represented by closed rectangles and are labeled with a
speaking name.

e Processes are represented by rounded rectangles, are labeled with a speaking
name, and contain a unique identifier (ID). The user or system who or which
is involved in the process is named in the lower part of the node. DFDs are
often modeled on several layers of abstraction where the internal structure of
one process in a diagram is described by another DFD in more detail. To clarify
the level of abstraction of a DFD, the process IDs in a sub-workflow contain
references to their parent process: 1.e., the sub processes of a process with the
ID 1 would be identified by the IDs 1.1,1.2,....

Appendix A. Data Flow Diagrams

Data storages are depicted as open rectangles. They are labeled with speaking
names and identified by IDs which usually consist of the capital letter 'D’ and a
unique number.

Data flow between nodes is modeled as directed edges (arrows) between nodes
which are labeled with speaking names to describe the content of the data which
is exchanged along the edge.

The elements of the Gane and Sarson notation for DFDs are shown in Figure A.1. The
figure contains the abstract definition of the elements of the notation and an example.
The example depicts the way orders might be handled in a simple order management
system:

The customer hands in a filled in order form to a sales manager.

The sales manager checks the order for consistency.

Approved orders are send to the storage, unapproved orders are returned to the
customer.

Order processing is done by a packaging employee who takes orders from the
order storage and sends the ordered goods to the customer.

The lower DFD in the figure is a fine-specification of process 1 in the upper diagram.

A.1

Diagram Types

DFDs were originally introduced as a means of system specification in software en-
gineering. Following the DFD modeling process, for each system which is specified,
five types of diagrams are required:

A Context DFD where the whole system is represented on a very high level
of abstraction as one single process connected via data flows with all external
engines.

Current physical DFDs capture the actual way an existing system is handling
data to fulfill a purpose.

Current logical DFDs are an abstraction of the current physical DFDs where the
way data is managed in an existing system is described from a perspective which
neglects the underlying technology.

Proposed logical DFDs model the new design which is proposed to enhance
the way, the system handles the data to fulfill the purpose. Again, the logical
proposed DFDs are modeled from a technology-independent point of view.

Proposed physical DFDs depict the way the new system handles data in a more
detailed fashion which already contains details about the technology which shall
be used to implement that data flow.

A.1. Diagram Types 1]

(P)

rocess |d

External Entity Data Data

Name Flow Process Name Q=T S

Flow 11d| Name

A 4

\ User)

1

Order Check Order [2eRroved Order j iy | 5 qers

A 4

—> Customer

*

unapproved Sales Manager

Order

2

Ordered Goods Order

Process Order |«

\ Packaging)

1.

Product

order .| Check Product |, Numbers Product
> < D2
Numbers Catalogue

\ Sales Manager)

Customer

A

A 4

/ 1.2 < Prices

unapproved
Order

Check Prices

approved Order

Sales Manager D1| Orders

Figure A.1: Elements of the DFD notation of Gane and Sarson. Above: Abstract
definition. Middle: Top Level Example. Below: Sub-DFD for process 1.0.

For the design of complex software systems, the DFD software design process has
shown to be not flexible enough. On a high level of detail, the process of drawing and
documenting DFDs will soon grow out of hand and it has been observed, that there
is nearly no correlation between DFDs and the program code which is created in the
implementation phase of software development. Nevertheless, on a high level of ab-
straction, when the overall handling of information between systems or subsystems
needs to be visualized, DFDs still can be viable tools [Ambler, 2004]. In Chapter 3
of this thesis, DFDs are utilized to depict the information flow between TIMMS en-
gines in planning situations and during intra-operative support to identify necessary
connections and interfaces. For the fine-specification of the interfaces, more flexible
and operable means of modeling are utilized, like UML class diagrams and UML in-
teraction diagrams.

Appendix A. Data Flow Diagrams

Appendix B

DICOM

B.1 The DICOM Information Model

DICOM specifies data structures, the so called Information Object Definitions (10Ds),
and services for handling of information objects. A service definition together with
the specification of the information object to which the service applies is called a Ser-
vice Object Pair, also called service object pair class (SOP class). SOP-Classes are
the elements of DICOM data exchange: every activity performed using DICOM is the
instantiation of one SOP class. From a database point of view, a SOP class Instance is
a transaction. From a software engineering point of view, each SOP-Class implements
one use case. The relation between services and objects is expressed in the fundamen-
tal DICOM information model (see Figure B.1). SOP classes are specified in part 4
of the DICOM standard. Each SOP class is identified by a globally unique identifier
(UID).

B.2 DICOM Information Objects

Part 3 of the DICOM specification contains Information Object Definitions (IODs).
An IOD is an object-oriented abstraction of information objects which represent real-
world objects. IODs are standardized definitions that assure that different applications
share a common view of the information objects they exchange. The term IOD is not
an actual data set representing a specific entity of the real world, but rather a common
specification about how data sets are to be constructed which represent real-world
objects. In a sense, IODs are similar concepts as classes are in object-oriented ter-
minology. DICOM distinguishes between normalized I0Ds which represent a single
class of real-world objects, such as one patient, and composite IODs which represent
a number of related classes, such as an image which is part of a study that has been
acquired from one patient with a particular imaging device.

Inside I0Ds, DICOM attributes describe the properties of real-world entities. The

Vv

Vi Appendix B. DICOM

Service Class
Specification

specifies related

SOP Class(es)

1

¢ 1 + 1
1 1 Information
Service Group Object

Definition
1 1
w
n . n
DIMSE Services Attributes

or Media Storage
Services

Figure B.1: Major structures of DICOM information model [NEMA, 2008b].

attributes of DICOM are specified in part 6 of the standard. For each attribute, DICOM
specifies

e a unique identifier, called its tag, which consists of two 64-bit numbers written
in brackets separated by commas (1234,5678),

e a data type, called Value Representation (VR),

e and the cardinality, called Value Multiplicity (VM), which can be any positive
integer or a (not necessarily bounded) interval of non-negative integers.

The 28 different VRs of DICOM are specified in part 5 of the standard. DICOM
contains VRs for signed and unsigned integer and floating point numbers of different
lengths and precisions, character strings of different maximal lengths, but special VRs
for certain purposes, like the person name, age string, or Unique ID VRs
with very specific rules of representation and a specific semantic meaning. Part 5
of DICOM specifies rules for encoding attributes of each VR when storing DICOM
instances.

DICOM IODs aggregate attributes to specify information objects for specific use

B.2. DICOM Information Objects VI

cases. It is common (and actually intended) that the same attribute occurs in several
10Ds.

To facilitate readability and extendibility, the DICOM standard organizes the attributes
of IODs in modules and macros which can be reused across the standard. Macros con-
tain attributes and can contain other macros. Modules contain attributes and macros.
IODs are combinations of modules (see Figure B.2).

10D
Module
Attribute
+Tag Macro
+4F.
+4[

Figure B.2: Aggregation of attributes to IODs via modules and macros.

DICOM Model of the Real World

The content of DICOM Information Objects is based on a model of the real word.
The model identifies the relevant real-world entities and their relations. The model
which is depicted in Figure B.3 shows the model of the part of the world which is
considered by DICOM for radiology workflows. DICOM contains separate world
models for handling of print jobs and management of procedure steps. For a complete
specification of these models, the reader is referred to the DICOM standard which can
be obtained online from [NEMA, 2008b].

DICOM Information Model

The DICOM information model is derived from the DICOM model of the real world.
The entities of this model are IODs which represent the entities of the model of the
real world. The model shown in Figure B.4 is modeled from a radiology point of

VIl Appendix B. DICOM

Patient

Study I

¥ 1n
nprise
of.
1-n
A

Modality Performed
Procedure Steps

v 1

contains

1-n

Frame of 0-1 1

Reference Refines

1 1-n
Equipment @
A A A

Series

1-n

< Spatially >
4

1

contains

0-n 0-n 0-n 0-n 0-n
A A A A
Fiducials Image I SR Document MR Spectroscopy Encapsulated
Document
wo_n 0-n | 0-n 3 0n J' 0-n v 0-n

Registration Radiotherapy Presentation Waveform Raw Data Real World
Objects State Value Mapping

Figure B.3: DICOM model of the real world [NEMA, 2008b].

view. DICOM contains additional information models for radiotherapy IODs and other
IODs, like the IOD which describes a requested hardcopy print job.

B.3. DICOM Messages IX

Patient IOD

references

Modality Performed
Proc. Step 10D

1
references

b 4 1
@@

0-n | 0-n i 0-n J 0-n 0-n
Fiducials Presentation Waveform I0D I Raw Data IOD Real World
10D State 10D Value Map. 10D
yO0-n ,L 0-n v 0-n v 0-n 0-n v 0
Registration [l |Radiotherapy IODs image 10D SR Document MR Spectroscopy Encapsulated
10D See Figure 7.2¢c 10D 10D Document IOD

Figure B.4: DICOM information model [NEMA, 2008b].

B.3 DICOM Messages

Part 7 of the DICOM standard specifies the messages which are exchanged between
DICOM Applications Entities (AEs), i.e. software systems which implement DICOM
to communicate with other software systems. DICOM specifies a set of primitives, the
so called DICOM Message Service Elements (DIMSE), from which complex services
are composed. DICOM distinguishes between C-Services which apply to composite
IODs and N-Services which apply to normalized IODs.

A DIMSE-service user is an application which is able to send and receive DICOM
messages. For each service, there is an invoking and a performing DIMSE-service
user. During one complex interaction, these roles can change between the applica-

X Appendix B. DICOM

tions several times: For each DIMSE service, the roles are distributed according to
Figure B.5.

Invoking . Performing
DIMSE-Service-User Operatlon DIMSE-Service-User
-
DIMSE-Service-User DIMSE-Service-User
(Role b) (Role a)
-

Performing Notification Invoking

DIMSE-Service-User DIMSE-Service-User

Figure B.5: DIMSE operation and notification flow [NEMA, 2008b].

DICOM services are acknowledged services. Each service invocation is handled using
two-ways communication: The invoking DIMSE-service user sends a request-message
to the performing DIMSE-service user. After performing the requested service, the
performing DIMSE-service user sends a response message to the invoking DIMSE-
service user. The generic sequence of DIMSE service primitives which are exchanged
to negotiate one DIMSE service is shown in Figure B.6.

Request . Message
W (Command Request)
e and Associated Data In
Message o pr\ﬂ\\“\'e
(Command Response) ‘M
T and Associated Data
Ve - - — = — =T

Invoking DIMSE- Performing
DIMSE-Service-User Service-Provider | DIMSE-Service-User

Figure B.6: DIMSE service primitives [NEMA, 2008b].

DIMSE Services
Part 7 of DICOM specifies the DIMSE services listed in Table B.1.

Name Group Type Description

B.3. DICOM Messages

Xl

C—STORE

DIMSE-C

operation

Invoked by DIMSE-service user to
request the storage of a DICOM
composite SOP instance at a peer
DIMSE-service user.

C-GET

DIMSE-C

operation

Invoked by DIMSE-service user to
fetch one or more composite SOP
instances from peer DIMSE-service
user.

C-MOVE

DIMSE-C

operation

Invoked by DIMSE-service user to
request a peer DIMSE-service user
to send one or more composite SOP
instances to a third DIMSE-service
user.

C-FIND

DIMSE-C

operation

Invoked by DIMSE-service user to
match a set of attributes with the
SOP instances managed by the per-
forming DIMSE-service user. The
result is a list of instances that com-
ply with the query attributes.

C-ECHO

DIMSE-C

operation

Invoked to verify the end-to-end
communication with the peer
DIMSE-service user.

N-EVENT-
REPORT

DIMSE-N

notification

Invoked by a DIMSE-service user
to notify another DIMSE-service
user about any event regarding a
SOP-Instance. Like all DIMSE-
services, this service is confirmed,
1.e. a response is expected for ev-
ery request which indicates that the
request has been received.

N-GET

DIMSE-N

operation

Invoked by a DIMSE-service user
to request information retrieval
from a peer DIMSE-service user.

N-SET

DIMSE-N

operation

Invoked by a DIMSE-service user
to request the modification of in-
formation by a peer DIMSE-service
user.

N-ACTION

DIMSE-N

operation

Invoked by a DIMSE-service user
to request execution of an action by
a peer DIMSE-service user.

Xl

Appendix B. DICOM

N-CREATE DIMSE-N | operation | Invoked by a DIMSE-service user

to request the creation of a SOP
class instance by a peer DIMSE-
service user.

N-DELETE DIMSE-N | operation | Invoked by a DIMSE-service user

to request the a peer DIMSE-
service user to delete a SOP class
instance.

Table B.1: DIMSE services.

B.4 DICOM Services

Part 4 of the DICOM Standard specifies service classes and specific services for the
different I0Ds specified in part 3 of DICOM. Of the different service classes which
are specified by DICOM, the applications discussed in this work utilize the following:

e Storage: The storage service class specifies an application-level mechanism for

transfer of information objects. It allows one application to send (store) infor-
mation objects to another application. Part 4 of the standard defines one storage
service for every IOD specified in part 3.

Query/retrieve: The Q/R service class specifies on application-level mechanism
that allows one application to query another application for instances using at-
tribute lists as query keys. For each IOD, a query/retrieve service is specified.
The specifications include the attributes one can query for. The 2uery/retrieve
services make use of the C_FIND, C_GET, and C_MOVE operations.

Structured Reporting Storage: An extension of the standard storage service class
which extends the capabilities of the SCU and SCP toward exchanging struc-
tured report instances.

Instance Availability Notification: The instance availability notification service
class is utilized to send updates on the availability of instances to peer applica-
tions. The calling application calls the N-Create operation to send the notifica-
tion to the receiver of the message.

Appendix C

TiColLi Protocols and Libraries

OpenlGTLink

The OpenlGTLink protocol defines message-based data exchange. The protocol and
an implementation of the protocol can be obtained from http://www.na-mic.
org/Wiki/index.php/OpenIGTLink.

OpenlGTLink enables the exchange of messages from one application through an
TCP/IP based network to another application. The object-oriented implementation
distinguishes between differet types of messages to facilitate interpretation of incom-
ing messages. The exchange of messages is not based on a connection handshake,
session initialization, or other prior - any application can send a message at any time to
every peer of which it knows the TCP/IP socket address. Each message which is sent
is independent of all other messages which have been exchanged or will be exchanged
between these or other applications in the network.

A universal message format is specified: Each message consists of a 58 bytes long
header and a body of arbitrary length. The structure of an OpenlGTLink message and
the internal structure if the message header are shown in Figure C.1. The content of
the header of an OpenlGTLink message is described in Table C.1.

Header (58 Bytes) l

V| Type Device Name Time Stmp | Body Size | CRC64

Figure C.1: Structure of an OpenlGTLink message.

The body of an OpenlGTLink message can either be a command or data. In principle,
the length of the Body can be anything between zero and whatever the underlying hard-
and software are able to address. OpenlGTLink specifies seven commands, but allows
extension of the protocol by additional commands. Data messages can contain any

Xl

http://www.na-mic.org/Wiki/index.php/OpenIGTLink
http://www.na-mic.org/Wiki/index.php/OpenIGTLink

XV Appendix C. TiCoLi Protocols and Libraries

Field Bytes Type Description

\Y 2 Unsigned Short | Protocol Version Number

TYPE 12 Character String | Name of body data type

DEVICE_NAME | 20 Character String | Unique name of the sending
device

TIME_STAMP 8 Unsigned Integer | Message time stamp

BODY_SIZE 8 Unsigned Integer | Length of message body in
bytes

CRC 8 Unsigned Integer | 64 bit CRC checksum for

message body

Table C.1: Format of an OpenlGTLink message header.

of the standard data types for which OpenlGTLink specifies encodings or any other
byte stream the sender and receiver of the message have a common understanding for
that goes beyond the OpenlGTLink specifications. Since OpenlGTLink is an open
source project, users of the library are intended to extend both, data and command
specifications for their applications and commit their additions to the project.

RTP

The Real-Time Transport Protocol (RTP) was introduced in 1996 by RFC 1889 as an
internet standard for continuous transmission of audio and video data streams for end-
to-end communication. In 2003, the original specification was replaced by RFC 3550.
RTP is an application-layer protocol which facilitates packet-based data exchange via
the User Datagram Protocol (UDP) transport layer. RTP consists of two components,
the Data Transfer Protocol and the RTP Control Protocol (RTCP) which enables the
exchange of reception quality feedback and synchronization messages. Since the un-
derlying transport layer, UDP, does not have any session management, RTP requires
session management on the application layer. Before an RTP session can be initialized,
the sender and receiver need to negotiate the session parameters. RTP does not specify
how this negotiation shall be done. Several protocols can be utilized for that purpose,
among which the Session Description Protocol (SDP) and the Real Time Streaming
Protocol (RTSP) are the most common. In the TiCoLi, an implementation of the RTP
protocol which was published by Jori Liesenborgs is used. The package can be ob-
tained from http://research.edm.uhasselt.be/~jori/page/index.
php?n=CS.Jrtplib.

Service Discovery and Auto Configuration

The ZeroConf protocol facilitates the automatic configuration of an IP-based net-
work without they need central network management entities, such as DHCP and DNS
servers. ZeroConf specifies solutions to three major issues one needs to deal with in
order to establish a computer network based on the IP:

http://research.edm.uhasselt.be/~jori/page/index.php?n=CS.Jrtplib
http://research.edm.uhasselt.be/~jori/page/index.php?n=CS.Jrtplib

XV

1. Automatic Address Assignment: In order to identify systems in a network, the
need to select or be assigned unique addresses. Methods for the automatic se-
lection of IP addresses are part of the specification of the Internet Protocol in
both versions, P4 as well as IP6. There exists a special address space which
was dedicated for automatically assigned addresses by the Internet Assigned
Numbers Authority (IANA). In principle, the link-local addressing for IPv4 net-
works method goes as follows: A computer selects an arbitrary IP address in
the address block between 169.254.1.0 and 169.254.254.255 and tests, whether
the address has already been registered by another computer. If a collision is
detected, the system has to try other addresses until it finds a vacant one.

2. Name resolution: In the absence of a Domain Name System (DNS) Server, the
participating computers in a network need to create, update and distribute a list
which maps hostnames and addresses by themselves. The idea behind the mul-
ticast DNS (mDNS) protocol is that every computer holds its own list of DNS
records. When a system needs to resolve a hostname it does not have a record
for, it sends a DNS request via a special UDP socket (224.0.0.251:5353) to all
computers which are connected to the network. In order to keep the network
traffic which originates from this service as low as possible, mDNS specifies
how multicast-DNS requests which are sent to the computers in one network
segment are to be handled and how clients and servers shall behave to reduce the
number of redundantly sent requests and replies.

3. Service Discovery: Computer networks are usually built for the purpose of data
exchange between systems and for making available functionalities of one sys-
tem for other systems in the network. One prominent example for the latter are
network printers to which every computer in a network can send print-jobs. Ser-
vice discovery is a mechanism where devices in a network exchange information
about the services they are offering. The DNS-Service Discovery (DNS-SD)
protocol specifies how DNS service messages are used to describe the services
a system is offering. The description contains a service type which is to be se-
lected from a normative list. Each service type is associated with one protocol.

The TiCoLi uses the BonjourSDK implementation which is an implementation
of the zeroConf specification by Apple Computer Inc. The BonjourSDK can be
obtained from http://developer.apple.com/networking/bonjour/
download/.

Network Time Protocol
The Network Time Protocol (NTP) is an application layer protocol which facilitates
synchronization of the system clocks of devices in a network. It is designed to compen-
sate for network latencies which are a common problem in packet-switched domains,
such as IP based networks.

NTP is based on a hierarchical client-server architecture with highly reliable clocks
(such as atomic clocks) on the highest level which is also called Stratum 0. On the first

http://developer.apple.com/networking/bonjour/download/
http://developer.apple.com/networking/bonjour/download/

XVI Appendix C. TiCoLi Protocols and Libraries

level, Stratum 1, there are computers which are directly attached to Stratum O clocks.
Stratum 1 systems are often called time servers. Systems in lower levels (Stratum 7,
n € [2,255]), send NTP requests to Stratum n — 1 systems. Usually, a Stratum n
system send requests to more than one Stratum n — 1 system and interact with other
Stratum n systems. NTP uses a modified form of Marzullo’s Algorithm [Marzullo,
1984] to create a statistically optimal estimation of the system time from the answers
it receives from its peer Stratum 7 and n — 1 systems.

Inside the TiCoLli, the system time of all components needs to be synchronized. NTP
is used to ensure synchronization between the devices in one setup. It is proposed that
one system in the OR acts as time server for the other devices. An example for such a
setup is given in [Bohn et al., 2009].

Appendix D

Algorithms and Implementation
Details

D.1 HandleSets

The HandleSet class is a container class used internally by the TiCoLi Core and
Managers to store information about local and peer services. In principle, the Han—
dleSet is a vector container which identifies each element of the vector with a hashed
integer Handle. The Handle uniquely identifies one element within the container.
HandleSet has the following public methods:

e Allocate (unsigned int size) empties the container and reserves
s1ze number of fields.

e Handle Add(T &item, Handle handle, bool replace) adds
an item to the container. If handle==0, a random handle is assigned. The
container is resized if no free field is found. If handle!=0, this handle is
assigned to the item when it is added. If an item exists with the same handle,
it is replaced when replace==true. In all cases, the Handle under which
the item is stored in the container is returned, if adding was successful. Zero is
returned otherwise.

e bool GetItem(Handle handle, T &item) assigns the item stored un-
der handle to item. Returns false if handle cannot be resolved.

e bool HasItem(Handle handle) returns true if an item exists in the
container with the given Handle and false otherwise.

e Handle FindFirst (T &item) Returns the Handle of the first item in
the container and assigns this item to item.

e bool Remove (Handle handle) removes the item with given Handle
from the container if such an item exists. Returns false if handle cannot be
resolved.

XVII

XVII

Appendix D. Algorithms and Implementation Details

void RemoveAll () The container is emptied.

unsigned int GetSize () The size of the container is returned. Since the
container can contain empty fields, this number is not to be misinterpreted as the
number of contained items.

unsigned int GetNumberOfItems () The number of used fields in the
container is returned. This number can be less than the size of the container.

HandleSetIt InitTraversal () Creates an iterator with which the con-
tainer can be accessed sequentially. The iterator points to first item in the con-
tainer after creation.

bool GetNextItem (T &item,HandleSetIt &it) Returns the item
the iterator it currently points at and moves the iterator to the next item or to
an invalid item if no next item exists in the container. Returns false if called
with an iterator that points to an invalid item.

Handle GetCurrentHandle (HandleSetIt &it) Returns the Han—
dle of the item the iterator it currently points at.

D.2 Thread Safe Callbacks

In Listings D.1 — D.3, the process of thread safe callback invocation is presented as
c++ code. The sequence diagram in Figure D.1 shows how the methods interact on the
example of a message callback.

The application, represented by anApplicationClass creates an instance
messageCallback<appClass, Message > which points to its message
handling method and sets the MessageManager of the TiCoLi (see below) to
sending incoming messages to this function (1,2).

In the event of an incoming message, the MessageManager calls Call () on
messageCallback (3,4).

messageCallback::Call() calls startCallback() to check,
whether not too many threads already are currently operating on this callback.
The return value OK indicates that the counter could be successfully incremented

(5.6).

A thread is created which takes care of method execution. Call () is finished
and returns OK to the MessageManager which can from this point on proceed
with what ever he was doing besides handling this incoming message (7,8). All
following steps happen within cbThread

D.2. Thread Safe Callbacks XIX

e cbThread calls messageCallback::startCallbackThread (—
ywhich calls CallFromThread () from where the member function of
anAppli-cationClass is actually called. (9,10,11).

e After the function is executed, CallFromThread () ends and startCall-
backThread () calls StopCallback () to decrement the thread counter
before the thread is destroyed (12,13,14).

anApplicationClass : appClass messageCallback : CallBack<appClass,Message> theMessageManager

RS InitMessageManager()
-

2 <<create>>

3 : SetDefaultMessageCallback()

L 4:0K U

5 : PollClientSocket()
-t

6: Call()

-

7 : startCallback()

------------ |

:

80K cbThread : pthread t
9<<create>>
10 : OK

11 : StartCallbackThread()

. 12 : CallFromThread() -~

13 : *mFuncPtr()

14

mCount-- ﬁ ,,,,,,,,,,,,,,,

L
A

15 : StopCallback()

<<destroy>>

Figure D.1: UML sequence diagram for TiCoLi callback execution.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

XX Appendix D. Algorithms and Implementation Details

// A construct required for handing the required data into a
thread which executes a callback

template <class P>

class CallbackThreadData

{

public:

CallbackThreadData (P v,Handle h,void =*t)

:value (v)

handle=h;
This=t;

P value;
Handle handle;
void *This;

b g

//Counts the number of threads which run one callback method.
class CallbackThreadCounter
{
protected:
static pthread_mutex_t mCountMutex;
static unsigned char mCount;
static unsigned char mCountMax;
//Try to increment the counter
static TiCoLi::Condition StartCallback ()
{
Condition result=BUSY;
pthread _mutex_lock (&mCountMutex) ;
if (mCount<mCountMax)
{
mCount++;
result=0K;
}
pthread_mutex_unlock (&mCountMutex) ;
return result;
}
//Decrement the counter
static void StopCallback ()
{
pthread_mutex_lock (&mCountMutex) ;
mCount——;
pthread _mutex_unlock (&mCountMutex) ;
}
bi

Listing D.1: Internal Class Specifications for Callback Handling. Constructors
and destructors are omitted.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

D.2. Thread Safe Callbacks XXI

//Bbstract Interface to CallbackMethods
template<class P>
class CallbackBase : public CallbackThreadCounter
{
public:
virtual Condition Call (P value,Handle handle)
{
if (IsNull())
return DOESNT_EXIST;
Condition c=StartCallback(); //try to increment thread
counter
if (c!=0K)
return c;
pthread_mutex_lock (&mCallMutex); //gets unlocked in
CalledFromThread ()
//create the thread and return OK
pthread_t cbThread;
CallbackThreadData<P> xthreadData=new CallbackThreadData<P
> (value, handle, this);
pthread_create (&cbThread,NULL, &CallbackBase<P>::
startCallbackThread, threadData) ;
return OK;

virtual bool IsNull() = 0;
virtual CallbackBase =*SpawnCopy () = 0;
protected:

//called from the thread to execute the method

static voidx startCallbackThread(void =*data)

{
CallbackThreadData<P> xtData=(CallbackThreadData<P>x*)data;
CallbackBase<P> *xThis=(CallbackBase<P>x)tData->This;
This—>CallFromThread (tData->value, tData->handle) ;
//After the function is executed, the thread returns here.
delete tData;
StopCallback (); //decrement thread counter
return NULL;

virtual void CallFromThread (P value,Handle handle) = 0;

pthread mutex_t mCallMutex;
}i

Listing D.2: CallbackBase class. Constructors and destructors are omitted.

20

21

22

XXl Appendix D. Algorithms and Implementation Details

template <class T, class P>
class Callback : public CallbackBase<P>
{
public:

virtual bool IsNull ()

{
return (mFuncPtr==NULL) | | (mInstance==NULL) ;

protected:
//This calls the function pointer.
void CallFromThread (P value,Handle handle)
{
pthread_mutex_unlock (&mCallMutex) ;
mInstance->*mFuncPtr (value, handle) ;

}

protected:
void (T::+mFuncPtr) (P,Handle); //Pointer to a function
declared in T
T+ mInstance; //Pointer to an instance of T
bi
}

Listing D.3: Callback class. Constructors and destructors are omitted.

D.3 The Gesture Detection Module

Figure D.2 shows the architecture of the gesture detection module. It contains a ring
buffer of configurable length and seven components. The Gesture Detection Job Con-
trol module is the central controlling entity which instantiates and controls the other
modules. For each tracked object the software is monitoring, it creates one Detection
Job, which creates instances of five modules:

e A Ring Buffer buffer for short-term storage of received tracking coordinates,

e a Coordinates Listener which acts a TiCoLi streaming client to receive the coor-
dinates and store them in the buffer,

e one module for the detection of each of the two gestures,

o and the Result Message Sender which sends notifications to all registered clients
whenever a gesture was detected.

D.3. The Gesture Detection Module XX

The coordinates listener, result message sender, as well as the point and loop detection
modules are implemented to run in separate threads which access the ring buffer as a
shared memory interface.

Ring Buffer

The ring buffer is the central data structure through which the gesture detection classes
get access to the received tracking frames. The buffer has a fixed length and is accessed
through iterators which traverse the buffer step by step. The iterators are implemented
cyclically: when one iterator reaches the end of the buffer, it is reset to the beginning of
the buffer. This results in a ring-topology where the elements of the buffer are written
and re-written periodically.

Semaphores ensure that the coordinate listener is not getting write-access to fields as
long as a read-iterator is reading data from that field. Multiple read iterators are given
access to one field.

Coordinates Listener

The coordinates listener is a TiCoLi streaming client receiving tracking coordinates
from any tracking module attached to the TiCoLi infrastructure. It is created and ini-
tialized by the detection job which provides it with the name of the tracking device
and the stream offered by this device to which the listener connects. Once the con-
nection is established, the stream listener will write all tracking data it receives to the

Gesture Detection
Job Control
Create,
| Destroy
Start,Stop | Detection
Status Job Status
Buffer Start
Point Stop

Detection

- Coordinates
Read Access Write Access .
Listener

Loop
Detection

\G«estures

Result
Message
Sender

Frame # [timestamp| Position (Orientation| Error

Figure D.2: Architecture of the gesture detection module.

XXIV Appendix D. Algorithms and Implementation Details

ring buffer. The stream listener only frames which are labeled visible, i.e. frames
which contain valid tracking information. Invalid frames are skipped.

Point Gesture Detection
The point detection thread searches the buffer for periods with minimal changes in

the position. The point detection module is a state machine with two states (see Fig-
ure D.3):

e The initial state waits for a situation, where N € N consecutive positions are
within a small radius r ("Ap < r"). In that event, the machine switches to the
second state.

e The second state is left, when an input point is found with ("Ap > r").

The distances A are calculated according to a weighted mean p; which is calculated
from consecutive points which do not break the and its standard error ¢; are initialized
with the position and standard deviation of the first incoming point. Both are adjusted
from incoming points p; and their standard deviations o; in a simplified Kalman ap-
proach (see [Kalman, 1960]), where the z,y, and 2 coordinates are treated separately
and no system-inherent motion is modeled. Listing D.4 shows the point detection
algorithm.

The loop (lines 24 —44) in DetectPoint continuously reads the buffer. All new
measurements are processed in the Kalman filter implementation Kalman(...).
There, the distance between the new point and the actual estimate of the mean is cal-
culated (line 6) and compared with a global cutoff-distance (line 7). If the new point is
close enough to its predecessors, the innovation covariance S and optimal Kalman gain
K are calculated and mean and sigma are updated according to Kalman’s theorem.
The Kalman (.. .) method returns t rue, if the new point was close to the mean and
false otherwise.

The state machine from Figure D.3 is implemented in the loop in DetectPoint
by altering the flag isWaiting and the counter foundSimilar. In the waiting
state, foundSimilar is incremented whenever a point newPoint is processed
and Kalman (mean, sigma, newPoint, newSigma) == true, i.e. if the new
point is close to the acutal mean estimation. Otherwise, the counter will be reset to
zero and the model is reinitialized with newPoint and newSigma as new estima-
tion. A point gesture is assumed, when N consecutive points are lying within the
cutoffdistance around their mean. In that event, the state machine performs
the transition into the second state, in which it waits for the end of the point gesture,
i.e. until a point is processed which is further away from the actual mean than the
cutoffdistance. In that event, the last estimated mean is output and the machine
returns to the initial state where it waits for a new point gesture to begin.

Loop Gesture Detection
The loop detection thread implements the search for closed (or almost closed) loops

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

D.3. The Gesture Detection Module XXV

bool Kalman (doublex mean, doublex sigma, doublex nextPoint,
double* nextSigma, double cutOffDist) {
double yI[3]; //Innovation

y[0] = nextPoint[0] - mean[O0];
y[1l] = nextPoint[l] - mean[l];
y[2] = nextPoint[2] - mean[2];

double dist = sqrt(y[0]+y[0]+y[1l]xy[1l]l+y[2]*y([2]);
if (dist < cutOffDist) { //Point is close to predecessor(s)
for (int i = 0; i < 3; 1i++) {
//Calculate Innovation Covariance and Optimal Kalman Gain
double S sigma[i] + nextSigma;
double K sigmal[i] / S;
//Update mean an sigma

mean = mean + KxY;
sigma = (1 - K) *x sigma}
return true;}
return false;}

DetectPoint (double cutoff) {
bool isWaiting = true;

int foundSimilar = 0;
double mean[3] = {0,0,0};
double sigma[3] = {FLOAT_MAX,FLOAT_MAX,FLOAT_MAX};

double newPoint[3],newSigmal[3];
while (!mStop) {
if (newPointAvailable (newPoint,newSigma)) {
if (isWaiting) {
if (Kalman (mean, sigma, newPoint, newSigma, cutoff)
foundsimilar++;
else {
foundsimilar = 0;
mean = newMean;
sigma = newSigma; }
if (foundsimilar > N)
isWaiting = false;
} else {
if (!Kalman (mean, sigma, newPoint,newSigma)) {
SendPointGestureToReceivers (mean, sigma) ;
foundsimilar = 0;
isWaiting = true;
mean = newPoint;
sigma = newSigma; }
} else
sched_yield() ;

Listing D.4: Point Gesture Detection.

XXVI Appendix D. Algorithms and Implementation Details

nrSimilarPts = N / *”

N

~

/ Wait for beginning Wait for end
of point gesture of point gesture
ifAp<r:

= Uis ifAp<r:
nrSimilarPts++ Update mean & sigma
Update mean & sigma else

else _
nrSimilarPts = 0 report mean & sigma

Qush mean & sigma / !Iush mean & sigma /

Ap >r [/ “mean,sigma”

Figure D.3: Point gesture detection state machine.

in the received data. Loops are sequences of points which self-intersect or nearly
self-intersect after showing some relevant motion. Le., sequences P = (po,...,Pn)
where py ~ p,, and Ip; € P : ||po, pi|| >> 0. The first criterion describes the self-
intersection property of loops, the second criterion ensures, that point gestures are not
misinterpreted as loops.

The detection of self-intersections is a Nearest-Neighbor-Search (NNS) problem. NNS
problems are defined as follows:

Given a set of n points P = {pg...pn_1} C R3, a metric L (p1,p2) —
[€ R, and a query point q, identify the index i of the point p; with:
L(q,pi) < L(q,p;)Vj € [0;n—1].

There exist variants of this definition for problems, where all neighbors which lie
within a certain radius, or a constant number k of points which are the closest to
the query point (k-NNS problems) are to be found. Other variants limit the search
for the nearest neighbor to a cutoff distance. Donald E. Knuth gives a comprehensive
overview on NNS problems in [Knuth, 1998].

Evidentially, the algorithmic complexity of NNS problems is €2 (n) or O (logn) if
preprocessing of the points P is allowed. Despite this theoretical worst case boundary,
algorithms have been developed which solve the problem at average with constant
(O (1)) effort, i.e. in other scenarios than the worst case, such algorithms perform
much better than the theoretical boundary. Algorithms based on the cell technique
[Bentley & Friedman, 1979] have been proved to solve NNS Problems in constant

D.3. The Gesture Detection Module XXVII

time for point sets which are equally distributed [Bentley ez al., 1980]. In contrast to
other algorithms (for instance algorithms which are based on subdividing trees), the
preprocessing effort for bucket search algorithms is linear and the algorithms can be
applied in dynamic scenarios, i.e. with continuously updated point clouds. Bucket
search algorithms divide the search-space into a regular array of buckets B = {B;}
which form a tessellation of the search space. The tessellation is chosen so that a
function ¢ (p) — N exists which assigns a point to a bucket. Tessellations are chosen
which are easy to compute, usually rectangular patterns or other patterns where ¢ is
basically a rounding-operator. Each bucket 5; contains a data structure which contains
the points p; with ¢ (p;) = j. Filling all n points p; € P into the bucket array B takes
an effort linear in n.

Figure D.4 shows an example of the NNS search with a bucket algorithm on a rectan-
gular grid. A query for the nearest neighbor of a point q is performed by identifying the
bucket B; which contains q and finding the nearest neighbor among the points which
are in that bucket (step 1). If the bucket is empty, the closest bucket B is searched
which is not empty and the nearest neighbor is identified among Bj’s points (steps
2—4). When a closest point p; is found, either in B; or By, all other buckets which
potentially contains points closer than p; and have not been already visited need to be
tested for closer points (step 5). It can be shown, that for equally distributed points p;
and n buckets, at average O (1) buckets are visited when searching the nearest neigh-
bor of any point q [Bentley ef al., 1980]. In situations where more than one point lies

.pi * ° . * ° . * o.
TN]
@p o e}
b [] b [] b []
1 2 3
[) [) °
[)
(0]
b [) [) @ [)
4 5 6

Figure D.4: Example for NNS with bucket search: The query point q is sorted
into the two-dimensional bucket array (1) and the closest not-empty bucket is
identified (2—4) and the nearest neighbor p to q is identified in the bucket. All
buckets which lie under the circle around q through p are tested for closer neigh-
bors (5). p* is identified as the closest neighbor to q (6).

XXVII Appendix D. Algorithms and Implementation Details

in one bucket, the NNS problem has to be solved for the points in one bucket when
evaluating the distance function for a bucket. An optimal algorithm, i.e. an algorithm
with a computational complexity of O (nlogn) has to be applied within the buckets in
order to limit the worst-case behavior of bucket search to O (nlogn).

For the detection of loops, the NNS problem is adjusted as follows:

In a infinite sequence of points P = {py, p1, P2, - - .}, identify for every
point p; the first point p;_j, j € |a,n] which is closer to p; under the
Euclidean metric d (p1, p2) than a threshold § € R with a € [1,n] being
the smallest integer for which d (p;, Pi—a) > ¢ with a cutoff constant ¢ €
R.

The search is performed with a bucket search algorithm with the following adaptations:

e Each bucket is a cuboid with constant dimensions ¢, ¢, c..

e Inside each bucket b, only one position py is stored. When multiple input points
are sampled in the same bucket b, the mean of their positions is stored.

e A bidirectionally linked list contains all buckets which contain a position in the
order in which they were visited. The elements of that list are called e, the bucket
one element e referrs to is called e.b. The oldest element of that list is called the
tail of the list, the newest element is called the its head.

e Each element e of that list contains a flag 1eftBehind which is set when the
position p.; stored in b.e has or has had a distance larger than ¢ from the head. In
Figure D.5, this property is represented in the color of the nodes: Nodes which
are close to the head of the sequence are white, those points which have been
left behind are black.

e Points which are added to the buffer are continuously added to both data struc-
tures, the bucket array and the bidirectional list. All new points are labeled
leftBehind = false. Whenever a new point is added, the 1eftBehind
flag is updated for the points where it needs to be updated.

e Points which are removed from the buffer are also removed from the bucket
array and the bidirectional list.

e When a point p; is added, its closest neighbor p; within the radius 0 is identified
which is labeled 1eftBehind = true. When such a point is identified, the
sequence of points between p; and p; is forwarded to the result message thread
for output as a detected loop gesture. All elements but p; are then removed from
the bucket array and the list.

The "condensation" of all points which fall into the same bucket to their mean position
results in a subsampling of the input points. It was introduced to rule out the search
effort added by the identification of the nearest neighbor inside one bucket. Potentially,
this results in two problems:

D.3. The Gesture Detection Module XXIX

N
N

| 6/

Figure D.5: Bucket search on the nodes of a bidirectional list to identify loops.

e Misclustering. That happens, when the path of the tracking coordinates inter-
sects one bucket twice. Instead of adding a new item to the bidirectional list,
the position of the existing item is altered. The topology of the list does then no
longer match with the real topology of the path it approximates.

e Aliasing: Due to the low-pass property of the positions in the buckets, the inter-
section test may miss intersections or report "near misses" as intersections.

Both effects can easily be compensated or reduced to a negligible level by choosing a
bucket size well below the intersection threshold c.

Detection Job Control

The Gesture Detection Module can monitor several tracking streams at once. For
each tracked object, a detection job is initialized which contains its own ring buffer,
stream receiver, gesture detection threads, and response message sender. The central
controller object of the software is the detection job control which generates, maintains
and destroys the detection jobs. This module acts a remote method server in the TiCoLi
network. The following methods can be called by remote applications:

e AddDetectionJob A new detection job is initialized. The calling applica-
tion has to specify the tracking module and stream name as well as the numeric

XXX Appendix D. Algorithms and Implementation Details

parameters of the gesture detection algorithms. The calling device will auto-
matically be added to the detection job’s receivers list, i.e. it will receive status
messages whenever a gesture has been detected.

e AddReceiver A remote application adds itself to the receivers list of an exist-
ing detection job.

e RemoveReceiver a remote application removes itself from the list of re-
ceivers of an existing detection job. The job will be closed when the last ap-
plication withdraws.

e SendJobList alist of the currently running Detection Jobs is sent to the caller
of this method.

The detection job instances which are initialized by the detection job control creates,
initializes and maintains its receiving, monitoring and sending threads. When one of
the threads encounters problems, an event-handling method in he detection job will
be called. Possible events are connectivity problems in the stream receiver or gesture
detection threads which were overrun by the incoming tracking information, i.e. the
reading-iterator of one gesture detection thread was lapped by the writing-iterator of
the stream receiver. The detection job and detection job control initialize the appropri-
ate reactions to such events (notification of receivers, adaptation of frame rate, attempt
to re-connect, termination of job,...).

Appendix E

S-DICOM 10Ds

E.1

The Surface Segmentation 10D

IE Module Usage
Patient Mandatory
Patient Specimen Optional
Clinical Trial Subject Optional
General Study Mandatory
Study Patient Study Optional
Clinical Trial Study Optional
General Series Mandatory
Series Segmentation Series Mandatory
Clinical Trial Series Optional
Frame of Refer- | Frame of Reference Mandatory
ence
Equipment General Equipment . Mandatory
ir;llllilnced General Equip- Mandatory
Surface Segmentation Mandatory
Series Surface Mesh Mandatory

Common Instance Reference

Required if the surface has
been derived from another
SOP Instance

SOP Common

Mandatory

Table E.1: Module table for the surface segmentation IOD.

XXXI

XXXI

Appendix E. S-DICOM I0Ds

Attribute Name

Type

Attribute Description

> Include ’Content Identification Macro’

Segment Sequence

1

Describes the segments that are contained
within the data. One or more Items shall be
present.

> Segment Number

Identification number of the segment.
Uniquely identifies a segment within the
SOP Instance.

> Segment Label

User-defined label identifying this segment.
This may be the same as the Code Meaning
of the Segmented Property Type Code Se-
quence.

> Segment Description

User-defined description for this segment.

> Segment Algorithm Type

Type of algorithm used to generate the seg-
ment. Enumerated Values are:
AUTOMATIC = calculated segment
SEMIAUTOMATIC = calculated segment
with user assistance

MANUAL = user-entered segment

> Include ’General Anatomy

Macro’

> Segmented Property Cat-
egory Code Sequence

Sequence defining the general category of
this segment. This sequence shall contain
one item.

>> Include Code Sequence Macro’

> Segmented Property Type
Code Sequence

1

Sequence defining the specific property type
of this segment. This sequence shall contain
one item.

>> Include Code Sequence Macro’

> Surface Count 1 The number of surfaces which comprise this
segment. Shall be greater than zero.

> Referenced Surface Se- | Sequence referencing the surfaces composed

quence to construct this segment. The number of
Items shall equal the value of Surface Count.

>> Referenced Surface 1 Identifies the Surface Number within the

Number Surface Sequence to which this reference ap-
plies.

>> Segment Surface Gener- 1 A description of how this segment surface

ation Algorithm Identifica-
tion Sequence

was derived.

>>> Include ’Algorithm Identification Macro’

Table E.2: Surface segmentation module attributes. (Continued on next page)

E.1. The Surface Segmentation I0D XXXIII
Attribute Name Type | Attribute Description
>> Segment Surface 2 A Sequence that identifies the set of In-

Source Instance Sequence

stances by their SOP Class/Instance pair that
were used to derive this segment surface.
Zero or more items shall be included in this
Sequence.

>>> Include ’SOP Instance Reference Macro’

Table E.2: Surface segmentation module attributes.

Attribute Name

Type

Attribute Description

Number of Surfaces

1

Number of surfaces contained in the In-
stance. Shall be 1 or more. Shall be the same
as the number of Items in Surface Sequence.

Surface Sequence

The surfaces that are described within the
data. There shall be Number of Surfaces
Items in the sequence.

> Surface Number

Identification number of the surface.
Uniquely identifies a surface within this
SOP instance. Shall start at a value of 1, and
increase monotonically by 1.

> Surface Comments

User-defined comments describing the sur-
face.

> Surface Processing

Specifies whether the surface has been mod-
ified subsequent to the original generation of
the surface. Enumerated Values:

YES

NO

> Surface Processing Ratio

2C

The Ratio of Remaining points to Original
points after processing. Required if Surface
Processing is YES.

> Surface Processing De-
scription

A textual description of the surface process-
ing performed.

> Surface Processing Al-
gorithm Identification Se-
quence

2C

Describes the processing method. Required
if Surface Processing is YES.

>> Include ’Algorithm Identification Macro’

Table E.3: Surface mesh module attributes. (Continued on next page)

XXXIV

Appendix E. S-DICOM I0Ds

Attribute Name

Type

Attribute Description

> Recommended Display
Grayscale Value

A default single gray unsigned value in
which it is recommended that the maximum
pixel value in this surface be rendered on a
monochrome display. The units are speci-
fied in P-Values from a minimum of 0000H
(black) up to a maximum of FFFFH (white).
Note: The maximum P-Value for this At-
tribute may be different from the maximum
P-Value from the output of the Presentation
LUT, which may be less than 16 bits in
depth.

> Recommended Display
CIELab Value

A default triplet value in which it is recom-
mended that the surface be rendered on a
color display. The units are specified in PCS-
Values, and the value is encoded as CIELab.

> Recommended Presenta-
tion Opacity

Specifies the opacity in which it is recom-
mended that the surface be rendered.

> Recommended Presenta-
tion Type

Specifies the presentation type in which it is
recommended that the surface be rendered.

> Finite Volume

Indicates, whether the surface represents a
solid ("waterproof") object with an outside
and an inside. Enumerated Values:

YES = Contains a finite volume

NO = Does not contain a finite volume
UNKNOWN = Might or might not contain a
finite volume

> Manifold

Indicates whether the surface is describing
an n-1 dimensional manifold in the underly-
ing n-dimensional vector space. Enumerated
Values:

YES = Manifold in every point

NO = Does contain non-manifold points
UNKNOWN = Might or might not contain
non-manifold points

> Surface Points Sequence

The point positions representing vertices of
the surface. Only one item shall be permitted
in the sequence.

>> Include ’Points Macro’

Table E.3: Surface mesh module attributes. (Continued on next page)

E.1. The Surface Segmentation IOD XXXV

Attribute Name Type | Attribute Description

> Surface Points Normals 2 The normals on the surface for each point.

Sequence Only one item shall be permitted in the se-
quence.

>> Include "Vectors Macro’ The Number of Vectors shall equal Number
of Points in this Surface Sequence Item .The
Vector Dimensionality shall be 3.
If Finite Volume is YES, the normals of the
vertices shall point toward the outside of the
object. If Finite Volume is not YES, the
direction of the normals shall be consistent
where possible.

> Surface Mesh Primitives 1 Only one item shall be permitted in the se-

Sequence

quence.

>> Include ’Surface Mesh

Primitives Macro

The primitives’ indices shall not exceed

Number of Points in this Surface Sequence
Item.

Table E.3: Surface mesh module attributes.

Attribute Name

Type

Attribute Description

Algorithm Family Code Se-
quence

1

The family of algorithm(s) that best de-
scribes the software algorithm used. Only
one item shall be permitted in the sequence.

> Include Code Sequence Macro’

Algorithm Name Code Se-
quence

3

The code assigned by a manufacturer to a
specific software algorithm. Only one item
shall be permitted in the sequence.

>> Include ’Code Sequence Macro’

Algorithm Name 1 The name assigned by a manufacturer to a
specific software algorithm.

Algorithm Version 1 The software version identifier assigned by
a manufacturer to a specific software algo-
rithm.

Algorithm Parameters 3 The input parameters used by a manufacturer

to configure the behavior of a specific soft-
ware algorithm.

Table E.4: Algorithm code macro.

XXXVI

Appendix E. S-DICOM I0Ds

Attribute Name

Type

Attribute Description

Number Of Points

Specifies the number of points in the point
set.

Point Coordinates Data

Byte stream containing all points as single
precision floats in an x-y-z order.

Point Position Accuracy

A single standard deviation of the error for
all the points’ spatial positions. The units
shall be the same as the units of the coor-
dinate system in which the point coordinates
are specified.

Average Point Distance

The average point distance of the point set. It
is given by the average of the distances to the
nearest neighbor over all points. The units
shall be the same as the units of the coordi-
nate system in which the point coordinates
are specified.

Maximum Point Distance

The maximum distance of one point to its
nearest neighbor. The units shall be the
same as the units of the coordinate system
in which the point coordinates are specified.

Points Bounding Box Coor-
dinates

Two 3D locations defining the cuboid bound-
ing box, parallel to the coordinate system
axes, encompassing the point set.

Axis of Rotation

A 3D location that combined with Center of
Rotation specifies the preferred axis of rota-
tion of this object.

Center of Rotation

1C

A 3D location defining the preferred center
of rotation for this point set. Required if Axis
of Rotation is present. May be present other-
wise.

Table E.5: Points macro.

Attribute Name Type | Attribute Description

Number of Vectors 1 The number of vectors in the Vector Coordi-
nate Data.

Vector Dimensionality 1 The dimensionality of the underlying vector

space.

Table E.6: Vectors macro. (Continued on next page)

E.1. The Surface Segmentation IOD XXXVII

Attribute Name Type | Attribute Description

Vector Accuracy 3 A single standard deviation for all the vec-
tors’ coordinates. The units shall be the
same as the units of the coordinate system
in which the vector coordinates are specified

Vector Coordinate Data 1 A data stream of coordinates encoded as sin-
gle precision floats in an x-y-z order.

Table E.6: Vectors macro.

Attribute Name

Type

Attribute Description

Vertex Point Index List

2

Byte stream containing a list of point indices
where each index defines one vertex primi-
tive.

Edge Point Index List

Byte stream containing a list of point indices
where each pair of consecutive indices define
one line primitive.

Triangle Point Index List

Byte stream containing a list of point indices
where each triple of consecutive indices de-
fine one triangle primitive.

Triangle Strip Sequence

All Triangle Strips in this Surface. Zero or
more Items shall be present.

> Primitive Point Index List

Byte stream containing a list of point indices
which define one primitive.

Triangle Fan Sequence

All Triangle Fans in this Surface. Zero or
more Items shall be present.

> Primitive Point Index List

Byte stream containing a list of point indices
which define one primitive.

Line Sequence

All Lines in this Surface. Zero or more Items
shall be present.

> Primitive Point Index List

Byte stream containing a list of point indices
which define one primitive.

Facet Sequence

All Facets in this Surface. Each sequence
Item describes one facet. Zero or more Items
shall be present.

> Primitive Point Index List

Byte stream containing a list of point indices
which define one primitive.

Table E.7: Surface mesh primitives macro.

XXXVIII

Appendix E. S-DICOM I0Ds

E.2 The Implant Template IOD

IE Module Usage
Gener}c ‘ Implant Template Mandatory
Description
Geger1g Implant .Ter.nplate Mandatory
Implant Template | Derivation and Versioning
. Required if Generic Implant
Gener.w Implant Template 2D Template 3D Models Module
Drawings .
is not present
Generic Implant Template 3D Required if Generl.c Implant
Template 2D Drawings Mod-
Models .
ule is not present.
Generic Implant Template .
Mating Features Optional
Generic Implant Template .
Planning Landmarks Optional
SOP Common Mandatory
Required if Generic Implant
Surface Mesh Surface Mesh Template 3D Models Module
is present.

Table E.8: Module table for the generic implant template [OD.

Attribute Name Type | Attribute Description

Manufacturer 1 Name of the manufacturer that produces the
implant.

Implant Name | The (product) name of the implant.

Implant Size 1C | The size descriptor of the component. Shall
be present if the component exists in differ-
ent sizes and the size number is not part of
the name or identifier. May be present other-
wise.

Implant Part Number 1 The (product) identifier of the implant.

Implant Target Anatomy Se- 3 Sequence that identifies the anatomical re-

quence

gion the implant is to be implanted to.One
or more Items shall be present.

> Include Code Sequence Macro’

Table E.9: Generic implant template description module attributes. (Continued

on next page)

E.2. The Implant Template IOD XXXIX

Attribute Name Type | Attribute Description

Notification from Manufac- | 1C | Required if the manufacturer has issued a

turer Sequence critical notification, recall, or has obsoleted
the implant or implant template.One or more
Items shall be present.

> Information Issue Date 1 Date information was issued.

> Information Summary 1 Summary of the information.

> MIME Type of Encapsu- 2 The type of the encapsulated document

lated Document stream described using the MIME Media
Type (see RFC 2046).Mime Type shall be
"application/pdf

> Encapsulated Document 2 Encapsulated Document stream, containing
a document encoded according to the MIME
Type.
The complete manufacturer notification de-
scribing the template.

Information From Manufac- 3 One or more Items shall be present in the se-

turer Sequence quence.

> Information Issue Date 1 Date information was issued.

> Information Summary 1 Summary of the information.

> MIME Type of Encapsu- 2 The type of the encapsulated document

lated Document stream described using the MIME Media
Type (see RFC 2046). Mime Type shall be
"application/pdf"

> Encapsulated Document 3 Encapsulated Document stream, containing
a document encoded according to the MIME
Type.
The complete manufacturer information.

Implant Regulatory Disap- | 1C | Sequence containing countries and regions

proval Code Sequence

in which the implant is not approved for us-
age. Required if the implant has been disap-
proved in a country or a region. If present,
one or more Items shall be present in the se-
quence.

> Include 'Code Sequence Macro’

Overall Template Spatial
Tolerance

2

Tolerance applying to all measurements, lo-
cations and dimensions in this Implant Tem-
plate

Table E.9: Generic implant template description module attributes. (Continued

on next page)

XL

Appendix E. S-DICOM I0Ds

Attribute Name

Type

Attribute Description

Materials Code Sequence

A code sequence specifying the materials the
implant was built from. One or more Items
shall be present in the Sequence.

> Include Code Sequence Macro’

Coating Materials Code Se-
quence

1C

Required if the implant is coated. A code se-
quence specifying the materials the implant
is coated with. One or more Items shall be
present in the Sequence.

> Include 'Code Sequence Macro’

Implant Types Code Se-
quence

1

Sequence containing a coded description of
the type of implant the template reflects. One
or more Items shall be present in the Se-
quence.

> Include 'Code Sequence Macro’

Fixation Method Sequence

1

The method which will be used to fixate the
implant in the body. Only a single Item shall
be permitted in this sequence.

> Include Code Sequence Macro’

Table E.9: Generic implant template description module attributes.

Attribute Name

Type

Attribute Description

Implant Template Version

1

The version code of the implant template. If
Implant Type is DERIVED, this shall have
the same value as the Implant Template Ver-
sion of the manufacturer’s implant template
from which this instance was derived.

Effective Date 1 Date and time from which this Instance is or
will be valid.
Replaced Implant Template 1C | Reference to the Implant Template which is

replaced by this template. Shall be present if
this Instance replaces another Instance. Only
one Item may be present.

> Include "SOP Instance Reference Macro’

Implant Type

1

Indicates whether the Implant Template is
derived from another Implant Template.
Enumerated Values:

ORIGINAL

DERIVED

Table E.10: Generic implant template derivation and versioning module at-
tributes. (Continued on next page)

E.2. The Implant Template IOD XLI
Attribute Name Type | Attribute Description
Original Implant Template 1C | Reference to the Implant Template Instance

with Implant Type ORIGINAL from which
this Instance was ultimately derived. Shall
be present if Implant Type is DERIVED.
Only one Item may be present.

> Include 'SOP Instance Reference Macro’

Derivation Implant Tem-

plate

1C

Reference to Implant Template Instance
from which this Instance was directly de-
rived. Shall be present if Implant Type is
DERIVED. Only one Item may be present.

> Include 'SOP Instance Reference Macro’

Table E.10: Generic implant template derivation and versioning module at-

tributes.

Attribute Name Type | Attribute Description

HPGL Document Sequence 1 The 2D template representations of this im-
plant. If present, one or more Items shall be
present in the sequence.

> 2D Drawing ID | Identification number of the HPGL Docu-
ment. Uniquely identifies a HPGL Docu-
ment within this SOP instance. Shall start
at a value of 1, and increase monotonically
by 1.

> HPGL Document Label 3 Label assigned to that document.

> View Orientation Code 1 Coded description of the direction of view

Sequence

represented by this 2D template. This se-
quence shall contain one item.

>> Include ’Code Sequence Macro’

> View Orientation Modi- 3 Direction Cosines of the view direction rep-

fier resented by the 2D template relative to the
base direction defined in the View Orienta-
tion Code Sequence

> HPGL Document Scaling 1 Conversion factor [real world mm/printed
mm] See

> HPGL Document 1 The HPGL document as a plain byte stream.
See

> HPGL Contour Pen Num- 1 Number of pen used in the encapsulated

ber

HPGL document for outlines.

Table E.11: Generic implant template 2D drawings module attributes. (Contin-

ued on next page)

XL

Appendix E. S-DICOM I0Ds

Attribute Name

Type

Attribute Description

> HPGL Pen Sequence

Sequence containing labels for each pen
used in the encapsulated HPGL Document.
Shall contain one item per pen used in the
HPGL document.

>> HPGL Pen Number 1 Number of the pen in the HPGL document

>> HPGL Pen Label 1 Label of that pen.

>> HPGL Pen Description 3 Description of the kind of information drawn
with this pen.

> Recommended Rotation 1 Point around which the 2D template is ro-

Point tated in manual planning.

> Bounding Rectangle 1 Coordinates of the smallest rectangle paral-

lel to the paper axes that contains the whole
drawing.

Table E.11: Generic implant template 2D drawings module attributes.

Attribute Name

Type

Attribute Description

Frame of Reference UID

1

Identifies a Frame of Reference for this com-
ponent.

tor

Contour Surface Number | 1C | Surface Number of the surface that repre-

Reference sents the shape of the implant. Shall only
be present if Number of Surfaces is present.

Surface Model Parameter | 1C | Required if Number Of Surfaces is present.

Sequence Shall contain one Item per Item in the Sur-
face Sequence

> Referenced Surface Num- 1 Reference to a Surface Number present in

ber the Surface Sequence

> Surface Model Label 1 Label for this surface.

Surface Model Scaling Fac- | 1C | Scaling factor [mm/Surface unit] Shall only

be present if Number of Surfaces is present.

Table E.12: Generic implant template 3D models module attributes.

Attribute Name

Type

Attribute Description

Mating Feature Sets Se-
quence

3

Defines a number of feature sets used to
combine the implant with other implants. If
present, one or more Items shall be present
in the Sequence.

Table E.13: Generic implant template mating features module attributes. (Con-

tinued on next page)

E.2. The Implant Template IOD

XLIN

Attribute Name

Type

Attribute Description

> Mating Feature Set ID

1

Identification number of the set. Uniquely
identifies a mating feature set within this
SOP instance. Shall start at a value of 1, and
increase monotonically by 1.

> Mating Feature Set Label

Label of the feature set.

> Mating Feature Sequence

The mating features of the set. One or more
Items shall be present in the Sequence.

>> Mating Feature ID

Identification number of the mating feature.
Uniquely identifies a mating feature within
this Sequence Item.

>> 3D Mating Point

1C

Origin of the contact system Required if
Mating Feature 2D Coordinates Sequence
is not present and Contour Surface Num-
ber Reference is present. May be present if
Mating Feature 2D Coordinates Sequence is
present and Contour Surface Number Refer-
ence is present.

>> 3D Mating Axes

1C

Direction cosines of the contact system Re-
quired if 3D Mating Point is present.

>> Mating Feature 2D Co-
ordinates Sequence

1C

Sequence containing the coordinates of the
mating feature in the HPGL documents. Re-
quired if 3D Mating Point is not present and
HPGL Document Sequence is present. May
be present if 3D Mating Point is present and
HPGL Document Sequence is present. If
present, one or more Items shall be present
in the sequence.

>>> Referenced 2D Draw-
ing ID

Reference to a 2D Drawing ID present in the
HPGL Document Sequence. Shall be unique
within the sequence.

>>> 2D Mating Point

Origin of the contact system

>>> 2D Mating Axes

Direction cosines of the contact system

>> Mating Feature Degree
of Freedom Sequence

Sequence containing the degrees of freedom
in this mating feature. If present, one or
more [tems shall be present in the Sequence.

Table E.13: Generic implant template mating features module attributes. (Con-

tinued on next page)

XLIV

Appendix E. S-DICOM I0Ds

Attribute Name

Type

Attribute Description

>>> Degree of Freedom ID

Identification number of the degree of free-
dom. Uniquely identifies a degree of free-
dom within this Sequence Item. Shall start
at a value of 1, and increase monotonically
by 1.

>>> Degree of Freedom 1 Indicates the type of the degree of freedom.

Type Enumerated Values
TRANSLATION
ROTATION

>>> Degree of Freedom | 1C | Direction cosines of the axis of the degree

3D Axis of freedom in the FOR of the template. See
C.X.1.1.4 Required if 3D Mating Point is
present.

>>> 3D Range of Freedom | 1C | 2 floats defining an interval for this degree
of freedom. See C.X.1.1.4 Required if 3D
Mating Point is present.

>>> 2D Degree of Free- | 1C | Sequence containing the geometric specifi-

dom Sequence cations of the degrees of freedom for this
HPGL Document. Required if Mating Fea-
ture 2D Coordinates Sequence is present. If
present, one or more Items shall be present
in the sequence.

>>>> Referenced 2D 1 Reference to a 2D Drawing ID present in the

Drawing ID HPGL Document Sequence. Shall be unique
within the sequence.

>>>> Degree Of Freedom 1 Direction cosines of the axis of the degree of

2D Axis freedom.

>>>> 2DRange of Free- 1 Interval of freedom for this degree of free-

dom

dom.

Table E.13: Generic implant template mating features module attributes.

Attribute Name

Type

Attribute Description

Planning Landmark Point
Sequence

3

Sequence containing point landmarks. If
present, one or more Items shall be present
in the sequence.

> Include ’Planning Landmark Point Macro”

Table E.14: Generic implant template planning landmarks module attributes.

(Continued on next page)

E.2. The Implant Template IOD XLV

Attribute Name Type | Attribute Description

> Planning Landmark ID 1 Identification number of the planning land-
mark. Uniquely identifies a planning land-
mark within this SOP instance. Shall start at
a value of 1, and increase monotonically by
1.

> Planning Landmark De- 3 Description of the purpose or intended use of

scription this landmark.

> Planning Landmark Iden- 2 Coded Description of the real-world point

tification Sequence

which is represented by this landmark. If
present, one or more items shall be present
in the sequence.

>> Include ’Code Sequence Macro’

Planning Landmark Line
Sequence

3

Sequence containing line landmarks. If
present, one or more Items shall be present
in the sequence.

> Include ’Planning Landmark Line Macro”

> Planning Landmark ID 1 Identification number of the planning land-
mark. Uniquely identifies a planning land-
mark within this SOP instance. Shall start at
a value of 1, and increase monotonically by
1.

> Planning Landmark De- 3 Description of the purpose or intended use of

scription this landmark.

> Planning Landmark Iden- 2 Coded Description of the real-world line

tification Sequence

which is represented by this landmark. Shall
contain one or more Items if present.

>> Include ’Code Sequence Macro’

Planning Landmark Plane
Sequence

3

Sequence containing plane landmarks. If
present, one or more Items shall be present
in the sequence.

> Include ’Planning Landmark Plane

Macro”

> Planning Landmark ID

1

Identification number of the planning land-
mark. Uniquely identifies a planning land-
mark within this SOP instance. Shall start at
a value of 1, and increase monotonically by
1.

> Planning Landmark De-
scription

Description of the purpose or intended use of
this landmark.

Table E.14: Generic implant template planning landmarks module attributes.

(Continued on next page)

XLVI

Appendix E. S-DICOM I0Ds

Attribute Name

Type

Attribute Description

> Planning Landmark Iden-
tification Sequence

Coded Description of the real-world plane
which is represented by this landmark. Shall
contain one or more Items if present.

>> Include ’Code Sequence Macro’

Table E.14: Generic implant template planning landmarks module attributes.

Attribute Name

Type

Attribute Description

2D Point Coordinates Se-

quence

1C

Sequence containing the 2D coordinates of
the point in the HPGL documents. Required
if 3D Point Coordinates is not present and
HPGL Document Sequence is present. May
be present if 3D Point Coordinates is present
and HPGL Document Sequence is present. If
present, one or more Items shall be present in
the Sequence.

> Referenced 2D Drawing 1 Reference to a 2D Drawing ID present in the

ID HPGL Document Sequence. Shall be unique
within the sequence.

> 2D Point Coordinates 1 Coordinates of the point in the HPGL docu-
ment. Coordinates are measured in millime-
ters of the printing space.

3D Point Coordinates 1C | 3D Coordinates of the point. Required if 2D

Point Coordinates Sequence is not present
and Contour Surface Number Reference is
present. May be present if 2D Point Coordi-
nates Sequence is present and Contour Sur-
face Number Reference is present.

Table E.15: Planning landmark point macro.

Attribute Name

Type

Attribute Description

2D Line Coordinates Se-
quence

1C

Sequence containing the 2D coordinates of
the line in the HPGL documents. Required
if 3D Line Coordinates is not present and
HPGL Document Sequence is present. May
be present if 3D Line Coordinates is present
and HPGL Document Sequence is present. If
present, one or more Items shall be present in
the Sequence.

Table E.16: Planning landmark line macro. (Continued on next page)

E.2. The Implant Template IOD XLVII

Attribute Name Type | Attribute Description

> Referenced 2D Drawing 1 Reference to a 2D Drawing ID present in the

ID HPGL Document Sequence. Shall be unique
within the sequence.

> 2D Line Coordinates 1 Coordinates of the line in the HPGL docu-
ment. Coordinates are measured in Millime-
ters of the printing space.

3D Line Coordinates 1C | 3D Coordinates of the line. Required if 2D

Line Coordinates Sequence is not present
and Contour Surface Number Reference is
present. May be present if 2D Line Coordi-
nates Sequence is present and Contour Sur-
face Number Reference is present.

Table E.16: Planning landmark line macro.

Attribute Name

Type

Attribute Description

2D Plane Coordinates Se-
quence

1C

Sequence containing the 2D coordinates of
the plane’s intersection with the HPGL doc-
uments. Required if 3D Plane Origin is not
present and HPGL Document Sequence is
present. May be present if 3D Plane Origin
is present and HPGL Document Sequence is
present. If present, one or more Items shall
be present in the Sequence.

> Referenced 2D Drawing
ID

Reference to a 2D Drawing ID present in the
HPGL Document Sequence. Shall be unique
within the sequence.

> 2D Plane Intersection

2D Coordinates of the intersection of the
plane with the projection plane. Coordinates
are measured in Millimeters of the printing
space.

3D Plane Origin

1C

3D Coordinates of the plane origin. Re-
quired if 2D Plane Coordinates Sequence
is not present and Contour Surface Num-
ber Reference is present. May be present if
2D Plane Coordinates Sequence is present
and Contour Surface Number Reference is
present.

3D Plane Normal

1C

3D Coordinates of the plane normal. Re-

quired if 3D Plane Origin is present.

Table E.17: Planning landmark plane macro.

XLV

Appendix E. S-DICOM I0Ds

E.3 The Implant Assembly Template IOD

IE Module Usage
Implant Assem- | Implant Assembly Template | Mandatory
bly
Template SOP Common Mandatory

Table E.18: Module table for the implant assembly template IOD.
Attribute Name Type | Attribute Description
Implant Assembly Template 2 A name given to the assembly described in
Name this instance.
Implant Assembly Template 1 The person or organization who issued the
Issuer assembly template.
Effective Date 1 Date from which on this Instance is valid
Implant Assembly Template 2 The version code of the Implant Assembly
Version Template.
Replaced Implant Assembly | 1C | Reference to the Implant Assembly Tem-

Template

plate which is replaced by this Instance.
Shall be present if this Instance replaces an-
other Instance. If present, exactly one Item
shall be present in the Sequence

> Include 'SOP Instance Reference Macro’

Implant Assembly Template 1 Indicates whether the Implant Assembly
Type Template is derived from another Instance.
Enumerated Values:
ORIGINAL
DERIVED
Original Implant Assembly | 1C | Reference to the Implant Assembly Tem-

Template

plate Instance with Implant Assembly Tem-
plate Type ORIGINAL from which this In-
stance was ultimately derived. Shall be
present if Implant Assembly Template Type
is DERIVED. If present, exactly one Item
shall be present in the Sequence

> Include "SOP Instance Reference Macro’

Table E.19: Implant assembly template module attributes. (Continued on next

page)

E.3. The Implant Assembly Template 10D XLIX
Attribute Name Type | Attribute Description
Derivation Implant Assem- | 1C | Reference to the Implant Template Instance

bly Template

from which this Instance was directly de-
rived. Shall be present if Implant Assem-
bly Template Type is DERIVED. If present,
exactly one Item shall be present in the Se-
quence

> Include 'SOP Instance Reference Macro’

Implant Assembly Template
Target Anatomy Sequence

1

Sequence that identifies the anatomical re-
gion the implant assembly is to be implanted
to. One or more Items shall be present in the
Sequence.

> Include Code Sequence Macro’

Procedure Type Code Se-
quence

1

Coded description of the procedure by which
the assembly is implanted. One or more
Items shall be present in the Sequence.

> Include Code Sequence Macro’

Surgical Technique 3 Name of the surgical technique associated
with this assembly template.

> MIME Type of Encapsu- 2 The type of the encapsulated document

lated Document stream described using the MIME Media
Type (see RFC 2046). Mime Type shall be
"application/pdf

> Encapsulated Document 2 Encapsulated Document stream, containing
a document encoded according to the MIME
Type. PDF description of the surgical tech-
nique.

Component Types Sequence 1 Sequence containing sets of component of
which the assembly is constructed. One or
more Items shall be present in the Sequence.

> Component Type Label | Label assigned to that type of component.

> Exclusive Component 1 When YES only one sequence item of Com-

Type

ponent Sequence may be used in a valid as-
sembly. Defined Terms:

YES

NO

Table E.19: Implant assembly template module attributes. (Continued on next

page)

Appendix E. S-DICOM I0Ds

Attribute Name

Type

Attribute Description

> Mandatory Component
Type

When YES, at least one sequence item of
Component Sequence must be used in a valid
assembly. Defined Term:

YES

NO

> Component Sequence

Sequence containing references to implant
templates used in the assembly. One or more
Items shall be present in the Sequence.

> Include 'SOP Instance Reference Macro’

>> Component ID 1 Assigns an identification number to that In-
stance for local references. Uniquely identi-
fies a referenced Implant Template Instance
within this SOP instance. Shall start at a
value of 1, and increase monotonically by 1.

Component Assembly Se- 3 Sequence containing information about how

quence to connect the implants from the component
groups. If present, one or more Items shall
be present in the Sequence.

> Component 1 Referenced 1 Component ID of the first component of this

ID connection.

> Component 1 Referenced 1 Identifies the Mating Feature Set ID within

Mating Feature Set ID the Mating Feature Set Sequence of Compo-
nent 1 to which this reference applies.

> Component 1 Referenced 1 Identifies the Mating Feature ID within the

Mating Feature ID referenced Mating Feature Sequence Com-
ponent 2 to which this reference applies.

> Component 2 Referenced 1 Component ID of the second component of

ID this connection.

> Component 2 Referenced 1 Identifies the Mating Feature Set ID within

Mating Feature Set ID the Mating Feature Set Sequence of Compo-
nent 2 to which this reference applies.

> Component 2 Referenced 1 Identifies the Mating Feature ID within

Mating Feature ID

the referenced Mating Feature Sequence in
Component 2 to which this reference applies.

Table E.19: Implant assembly template module attributes.

E.4. The Implant Template Group 10D

LI

E.4 The Implant Template Group IOD

IE Module Usage

Implant Template | Implant Template Group Mandatory

Group SOP Common Mandatory

Table E.20: Module table for the implant template group 10D.

Attribute Name Type | Attribute Description

Implant Template Group 1 Name of this group.

Name

Implant Template Group 3 Description of purpose or intent of this

Description group.

Implant Template Group Is- 1 Person or organization which issued this

suer group.

Effective Date 1 Date from which on this Instance is valid.

Implant Template Group 2 The version code of the Implant Template

Version Group.

Replaced Implant Template | 1C | Reference to the Implant Template Group

Group which is replaced by this Instance. Shall be
present if this Instance replaces another In-
stance. Only one Item may be present.

> Include "SOP Instance Reference Macro’

Implant Template Group 3 Sequence that identifies the anatomical re-

Target Anatomy Sequence gion the implant is to be implanted to. One
or more Items shall be present.

> Include 'Code Sequence Macro’

Implant Template Group
Members Sequence

1

Contains references to all Implant Template
SOP instances which are part of this group.
One or more items shall be present.

> Include 'SOP Instance Reference Macro’

> Implant Template Group
Member ID

1

Assigns an identification number to that In-
stance for local references. Uniquely identi-
fies a referenced Implant Template Instance
within this SOP instance. Shall start at a
value of 1, and increase monotonically by 1.

Table E.21: Implant template group module attributes. (Continued on next page)

LIl

Appendix E. S-DICOM I0Ds

Attribute Name Type | Attribute Description

> 3D Implant Template 3 Shall only be present if Number of Surfaces

Group Member Matching is present in the Instance referenced by Ref-

Point erenced Implant Template UID.

> 3D Implant Template | 1C | Required if 3D Implant Template Group

Group Member Matching Matching Point is present.

Axes

> Implant Template Group 3 Shall only be present if HPGL Document

Member Matching 2D Coor- Sequence is present in the Instance refer-

dinates Sequence enced by Referenced Implant Template UID.
If present, one or more Items shall be present
in the sequence.

>> Referenced 2D Drawing 1 Reference to a 2D Drawing ID present in the

ID HPGL Document Sequence of the Instance
which is referenced by Referenced Implant
Template UID. Shall be unique within the se-
quence.

>> 2D Implant Template 1 2D Coordinates of the matching point in the

Group Member Matching referenced drawing

Point

>> 2D Implant Template 1 2D Coordinate of the matching axes in the

Group Member Matching referenced drawing

Axes

Implant Template Group 1 Sequence that lists all Variation Dimensions

Variation Dimension Se- that are covered by this group. One or more

quence items shall be present.

> Implant Template Group 1 Descriptive name of the variation dimension.

Variation Dimension Name

> Implant Template Group 1 Defines the order in which the implant group

Variation Dimension Rank members are sorted according to this dimen-

Sequence sion.

>> Referenced Implant 1 Identifies one implant group member by

Template Group Member ID reference to one Implant Template Group
Member ID. Shall be unique within this Im-
plant Template Group Variation Dimension
Rank Sequence.

>> Implant Template 1 Indicates the rank of this Implant Template

Group Variation Dimension
Rank

in this Variation Dimension. In one Implant
Template Group Variation Dimension Rank
Sequence there may be more then one Im-
plant Templates with the same rank.

Table E.21: Implant template group module attributes.

Bibliography

3Mensio. 2009. 3Mensio Valves. http://www.3mensio.com/. [Online; ac-
cessed 10-December-2009].

Abramyuk, A. M., Haase, M. G., & Abolmaali, N. D. 2008. Tumorbildgebung: Mor-
phologisch - Funktionell - Metabolisch - Molekular. Pages 25-35 of: Niederlag, W.,
Lemke, H. U., Meixensberger, J., & Baumann, M. (eds), Modellgestiitzte Therapie.
Health Academy.

Adams, L., Krybus, W., Meyer-Ebrecht, D., Rueger, R., Gilsbach, J.M., Moesges, R.,
& Schloendorff, G. 1990. Computer-assisted surgery. IEEE Computer Graphics
and Applications, 10(3), 43-51.

Al Ali, A. M., Altwegg, L., Horlick, E. M., Feindel, C., Thompson, C. R., Cheung, A.,
Carere, R. G., Humphries, K., Ye, J., Masson, J. B., & Webb, J. G. 2008. Preven-
tion and management of transcatheter balloonexpandable aortic valve malposition.
Catheterization and Cardiovascular Interventions, 72(4), 573-578.

Al-Attar, N., Ghodbane, W., Himbert, D., Rau, C., Raffoul, R., Messika-Zeitoun, D.,
Brochet, E., Vahanian, A., & Nataf, P. 2009. Unexpected complications of transapi-
cal aortic valve implantation. Annals of Thoracic Surgery, 88(1), 90-94.

Alesch, F. 1994. A Simple Technique for Making a Stereotactic Localiser Both CT
and MRI Compatible. Acta Neurochirurgica, 127, 118—120.

Alon, E., & Schiipfer, G. 1999. Operationssaal-Management. Anaesthesist, 48, 689—
697.

Ambler, S. W. 2004. The Object Primer : Agile Model-Driven Development with UML
2.0. 3rd edn. Cambridge University Press.

Anagnostaki, A., Pavlopoulos, S., & Koutsouris, D. 2001. XML and the VITAL
Standard: The Document-oriented Approach for Open Telemedicine Applications.
Pages 77-81 of: Proc. of MEDINFO.

Ayache, N., Cinquin, P., Cohen, I., Cohen, L., Leitner, F., & Mongar, O. 1996. Seg-
mentation of Complex Three-Dimensional Medical Objects: A Challenge and a

Requirement for Computer-Assisted Surgery Planning and Performance. Chap. 8,
pages 59-76 of: Taylor, R. H., Lavallée, S., Burdea, G. C., & Mosges, R. (eds),

LI

http://www.3mensio.com/

LIV BIBLIOGRAPHY

Computer Integrated Surgery - Technology and Clincal Applications. The MIT
Press.

Azari, A., & Nikzad, S. 2008. Computer-assisted implantology: historical background
and potential outcomes - a review. International Journal of Medical Robotics and
Computer Assisted Surgery, 4(2), 95-104.

Balachandran, R., Labadie, R. F., & Fitzpatrick, J. M. 2006. Validation of a fiducial
frame system for image-guided otologic surgery utilizing BAHA bone screws. Pages
518-521 of: Proc. of 3rd IEEE International Symposium on Biomedical Imaging:
Nano to Macro.

Ballanger, B., van Eimeren, T., & Strafella, A. P. 2009. Diagnostic PET in Image
Guided Neurosurgery. Springer. Chap. 22, pages 308-323.

Ballantyne, G. H., & Moll, F. 2003. The da Vinci telerobotic surgical system: the vir-
tual operative field and telepresence system. The Surgical Clinics of North America,
83(6), 1293-1304.

Barnett, G. H., Kormos, D. W., Steiner, C. P., & Weisenberger, J. 1993. Intraoperative
localization using an armless, frameless stereotactic wand. Journal of Neurosurgery,
78(3), 510-514.

Bassingthwaighte, J. B. 2000. Strategies for the physiome project. Annals of Biomed-
ical Engineering, 28(8), 1043-1058.

Bast, P., Popovic, A., Wu, T., Heger, S., Engelhardt, M., Lauer, W., Radermacher,
K., & Schmieder, K. 2006. Robot- and computer-assisted craniotomy: resection
planning, implant modelling and robot safety. The International Journal of Medical
Robotics and Computer Assisted Surgery, 2(2), 168—178.

Baumhove, O., & Schroter, K.-H. 2005. Gesundheitstordernde Aspekte bei der Reor-
ganisation einer zentralen Operationsabteilung. Gesundheitswesen, 67(2), 112-116.

Belliveau, J. W., Kennedy, Jr., D. N.., McKinstry, R. C., Buchbinder, B. R., Weis-
skoff, R. M., Cohen, M. S., Vevea, J. M., Brady, T. J., & Rosen, B. R. 1991. Func-
tional mapping of the human visual cortex by magnetic resonance imaging. Science,
254(5032), 716-719.

Bentley, J. L., Weide, B. W., & Yao, A. C. 1980. Optimal Expected-Time Algorithms
for Closest Point Problems. ACM Trans. Math. Softw., 6(4), 563-580.

Bentley, J. Louis, & Friedman, J. H. 1979. Data Structures for Range Searching. ACM
Comput. Surv., 11(4), 397-409.

Blecha, S., Lindner, D., Neumuth, T., Trantakis, C., Burgert, O., & Meixensberger, J.
2007. Workflow von intrakraniellen Hirntumoroperationen ohne und mit Neuron-
avigation. Pages 259-262 of: CURAC Proceedings.

BIBLIOGRAPHY LV

Bockhold, U., Bisler, A., Becker, M., Miiller-Wittig, W., & Voss, G. 2003. Augmented
Reality for Enhancement of Endoscopic Interventions. Page 97 of: Proc. of IEEE
Virtual Reality Conference.

Bohn, S., Lessnau, M., & Burgert, O. 2009 (June). Systems Monitoring and Diagnosis
of Digital Operating Room (DOR) Equipment using Supervisory Control and Data
Acquisition (SCADA) Technology. Pages 146—147 of: Lemke, Heinz U., Inamura,
Kiyonari, Doi, Kunio, Vannier, Michael W., & Farman, Allan G. (eds), International
Journal of Computer Assisted Radiology and Surgery, vol. 4, supp. 1.

Bonow, R. O., Carabello, B. A., & Chatterjee, K. 2006. ACC/AHA 2006 Guidelines
for the management of patients with valvular heart disease: Executive summary.
Circulation, 114, 450-527.

Brandestini, M.A., Howard, E.A., Eyer, M. amd Stevenson, J.G., & Weiler, T. 1979.
Visualization of intracardiac defects by M/Q mode echo/Doppler ultrasound. Cir-
culation, 60(2), 12.

Brownell, G.L., & Sweet, W.H. 1953. Localization of brain tumors with positron
emitters. Nucleonics, 11, 40-45.

Buehler, W. J., Gilfrich, J. V., & Wiley, R. C. 1963. Effect of Low-Temperature Phase
Changes on the Mechanical Properties of Alloys near Composition TiNi. Journal of
Applied Physics, 34(5), 1475-14717.

Burgert, O., Neumuth, T., Lempp, F., Mudunuri, R., Meixensberger, J., Strau}, G.,
Dietz, A., Jannin, P., & Lemke, H.U. 2006 (June). Linking top-level ontologies and
surgical workflows. In: International Journal of Computer Assisted Radiology and
Surgery, vol. 1, supp. 1.

Burgert, O., Neumuth, T., Gessat, M., Jacobs, S., & Lemke, H. U. 2007. Deriving
DICOM surgical extensions from surgical workflows. In: Horii, S. C., & Andriole,
K. P. (eds), SPIE Medical Imaging: PACS and Imaging Informatics. Presented at
the SPIE Conference, vol. 6516, paper 651604.

Chandler, W. F., Knake, J. E., McGillicuddy, J. E., Lillehei, K. O., & Silver, T. M.
1982. Intraoperative use of real-time ultrasonography in neurosurgery. Journal of
Neurosurgery, 57(2).

Chesler, D. A. 1971. Three-dimensional activity distribution from multiple positron
scintigraphs. Journal of Nuclear Medicine, 12, 347-348.

Clavel, M. A., Webb, J. G., Pibarot, P., Altwegg, L., Dumont, E., Thompson, C., De
Larochelliere, R., Doyle, D., Masson, J. B., Bergeron, S., Bertrand, O. F., & Rodés-
Cabau, J. 2009. Comparison of the hemodynamic performance of percutaneous and

surgical bioprostheses for the treatment of severe aortic stenosis. Journal of the
American College of Cardiology, 53(20), 1883—-1891.

LVI BIBLIOGRAPHY

Cleary, K. R. 1999. Technical Requirements for Image-Guided Spine Procedures -
Workshop Report. Tech. rept. ISIS Center, Department of Radiology, Georgetown
University Medical Center.

Cleary, K. R., & Kinsella, A. 2004. OR2020 The Operating Room of the Future -
Workshop Report. Tech. rept. ISIS Center, Department of Radiology, Georgetown
University Medical Center.

Cosman, Eric R., & Roberts, Theodore S. 2002. CT and MRI visible index markers for
stereotactic localization. Patent US. 6,419,680 B1.

dcmdchee. 2005. Open Source Clinical Image and Object Management. http://
www .dcmédchee . org. [Online; accessed 26-October-2009].

Deinhardt, M. 2003. Manipulators and integrated OR systems - requirements and
solutions. Minimally Invasive Therapy and Allied Technologies, 12(6), 284 — 292.

Di Gioia, A. M., Kanade, T., & Wells, P. 1996. Final Report For The Second Interna-
tional Workshop On Robotics And Computer Assisted Medical Interventions. Pages
69-101 of: Computer Aided Surgery, vol. 2.

DICOM @OFFICE. 2005. DCMTK - DICOM Toolkit. http://dicom.offis.
de/dcmtk.php.de. [Online; accessed 27-April-2009].

Dijkstra, E. W. 1982. EWD 447: On the role of scientific thought. Selected Writings
on Computing: A Personal Perspective, 60—66.

Dreyer, K. J., Hirschorn, D. S., Thrall, J. H., & Mehta, A. 2005. PACS: A Guide to the
Digital Revolution. 2 edn. Springer. ISBN 0387260102.

Diitzmann, S. 2009. BASICS Neurochirurgie. 1. edn. Miinchen, Jena: Elsevier Urban
& Fisher. ISBN 978-3-437-42486-1.

Eisner, W. 2001. Elektrophysiologisches Neuromonitoring in der Neurochirurgie.
Journal fiir Neurologie, Neurochirurgie und Psychiatrie, 2(3), 38-55.

ENV. 2000. ENV 13734 - Health informatics — Vital signs information representation.

Faddis, M. N., Blume, W., Finney, J., Hall, A., Rauch, J., Sell, J., Bae, K. T., Talcott,
M., & Lindsay, B. 2002. Novel, Magnetically Guided Catheter for Endocardial
Mapping and Radiofrequency Catheter Ablation. Circulation, 106(12), 2980-2985.

Falk, V., Gummert, J. F., Walther, T., Hayase, M., Berry, G. J., & Mohr, F. W. 1999.
Quality of computer enhanced totally endoscopic coronary bypass graft anastomo-

sis - comparison to conventional technique. European Journal of Cardio-Thoracic
Surgery, 15(3), 260-265.

Falk, V., Diegeler, A., Walther, T., Banusch, J., Brucerius, J., Raumans, J., Autschbach,
R., & Mohr, E. W. 2000. Total endoscopic computer enhanced coronary artery by-
pass grafting. European Journal of Cardio-Thoracic Surgery, 17(1), 38—45.

http://www.dcm4chee.org
http://www.dcm4chee.org
http://dicom.offis.de/dcmtk.php.de
http://dicom.offis.de/dcmtk.php.de

BIBLIOGRAPHY LViI

Fasano, V. A., Urciuoli, R., Ponzio, R. M., & Lanotte, M. M. 1986. The effects of new
technologies on the surgical management of brainstem tumors. Surgical Neurology,
25(3), 219-226.

Fitzgerald, G., & Swanson, J. 1992. Measuring the effects of laboratory automation:
The power of empirically derived models. The Journal of Automatic Chemistry,
14(2), 55-57.

Friets, E.M., Strohbehn, J.W., Hatch, J.F., & Roberts, D.W. 1989. A frameless stereo-
taxic operating microscope for neurosurgery. [EEE Transactions on Biomedical
Engineering, 36(6), 608-617.

Galloway, R., & Peters, T. 2008. Overview and History of Image-Guided Interventions.
Springer US. Chap. 1, pages 1-21.

Gane, C., & Sarson, T. 1979. Structured Systems Analysis : Tools and Techniques.
Englewodd Cliff, New Jersey: Prentice-Hall, Inc.

Garfagni, H., & Klipfel, B. 1995. Integrating HIS and PACS: The DICOM Solution.
Pages 438—444 of: Proceedings on the International Symposium on Computer As-
sisted Radiology.

Geldner, G., Eberhart, L. H. J., Trunk, S., Dahmen, K. G., Reissmann, T., Weiler, T.,
& A.Bach. 2002. Effizientes OP-Management. Anaesthesist, 51, 760-767.

Germond, J. F., & Haefliger, J. M. 2001. Electronic dataflow management in radio-
therapy: routine use of the DICOM-RT protocol. Journal de la Société francaise de
Cancer radiothérapie, S(supp 1), 172— 180.

Gessat, M., Zachow, S., Lemke, H. U., & Burgert, O. 2007 (June). Geometric Meshes
in Medical Applications - Steps towards a Specification of Geometric Models in
DICOM. In: Lemke, H. U., Inamura, K., Doi, K., Vannier, M. W., & Farman, A. G.
(eds), International Journal of Computer Assisted Radiology and Surgery, vol. 2,

supp. 1.

Gessat, M., Merk, D. R., Falk, V., Walther, T., Jacobs, S., Nottling, A., & Burgert,
0. 2009. A Planning System for Transapical Aortic Valve Implantation. In: Miga,
M. L., & Wong, K. H. (eds), SPIE Medical Imaging: Visualization, Image-guided
Procedures and Modeling. Presented at the SPIE Conference, vol. 7261, paper
7261-24.

Gildenberg, P. L., Lozano, A. M., Krauss, J. K., Hamani, C., Linderoth, B., Benabid,
A. L., Seigneuret, E., Broggi, G., Franzini, A., & Velasco, F. 2009. Textbook of
Stereotactic and Functional Neurosurgery. Springer. ISBN 978-3-540-69959-0.

Gohr, H., & Wedekind, T. 1940. Der Ultraschall in der Medizin. Klinische Wochen-
schrift, 19(2), 25-29.

LVIII BIBLIOGRAPHY

Goldman, A. P., Kotler, M. N., Scanlon, M. H., Ostrum, B., Parameswaran, R., &
Parry, W. R. 1986. The complementary role of magnetic resonance imaging,next
term doppler echocardiography, and computed tomography in the diagnosis of dis-
secting thoracic aneurysms. American Heart Journal, 111(5), 970-981.

Gong, S. J., O’Keefe, G. J., & Scott, A. M. 2005. Comparison and Evaluation of
PET/CT image registration. Pages 1599—1603 of: Proc. of the IEEE Annual Con-
ference on Engineering in Medicine and Biology, vol. 27.

Gray, H. 1918. Anatomy of the human body. 20. edn. Philadelphia: Lea & Febiger.
ISBN 1-58734-102-6.

Gregorie, E. M., & Goldring, S. 1984. Localization of function in the excision of
lesions from the sensorimotor region. Journal of neurosurgery, 61(6), 1047-1054.

H. U. Lemke (edt.). 2006. White Paper of DICOM Working Group 24. [Work in
progress, obtain draft through Working Group 24.].

Haller, J. W., Clarke, L., & Hamilton, B. 2002. Report of the NIH/NSF Group on
Image-Guided Interventions. Tech. rept. National Cancer Institute, National Insti-
tute of Biomedical Imaging and Bioengineering, National Science Foundation.

Hanna, K. J. 1983. Graphic analysis of pharmacy workload as a management tool.
Hospital Pharmacy, 18(6), 299-301.

Hemm, S., Rigau, V., Chevalier, J., Picot, M. C., Bauchet, L., El Fertit, H., Rodriguez,
M.-A., Cif, L., Vayssiere, N., Zanca, M., Baldet, P., Segnarbieux, F., & Coubes,
P. 2005. Stereotactic Coregistration of 201T]1 SPECT and MRI Applied to Brain
Tumor Biopsies. The Journal of Nuclear Medicine, 46(7), 1151-1157.

Higgins, G., Athey, B., Burgess, J., Champion, H., ef al. 2001. Final Report ofthe
Meeting "Modelling & Simulation in Medicine: Towards an Integrated Framework".
Computer Aided Surgery, 6, 32-39.

Himbert, D., Descoutures, F., Al-Attar, N., Iung, B., Ducrocq, G., Détaint, D., Bro-
chet, E., Messika-Zeitoun, D., Francis, F., Ibrahim, H., Nataf, P., & Vahanian, A.
2009. Results of transfemoral or transapical aortic valve implantation following a

uniform assessment in high-risk patients with aortic stenosis. Journal of the Ameri-
cal College of Cardiology, 54(4), 303-311.

Hinshaw, W. S., Bottomley, P. A., & Holland, G. N. 1977. Radiographic thin-section
image of the human wrist by nuclear magnetic resonance. Nature, 270, 722-723.

HL7, Inc. 1987. Health Level Seven (HL7) Version 2.x.
HL7, Inc. 2005. Health Level Seven (HL7) Version 3.

Horii, S. C., & Bidgood, W. D. 1992. PACS mini refresher course. RadioGraphics,
12, 537-548.

BIBLIOGRAPHY LIX

Huang, H. K. 2004. PACS and Imaging Informatics: Basic Principles and Applica-
tions. 2 edn. Wiley-Liss. ISBN 0471251232.

Ibach, B., Zimolong, A., Portheine, F., Niethard, F.U., & Radermacher, K. 2006 (June).
Integrated medical workstations for Computer Integrated Smart Surgery (CISS) -
state of the art, bottlenecks and approaches. In: International Journal of Computer
Assisted Radiology and Surgery, vol. 1, supp. 1.

IEEE. 1985. IEEE754 - IEEE Standard for binary floating-point arithmetic. http://
754r.ucbtest.org/standards/754.pdf. [Online; accessed 25-October-
2009].

IHE. 2009. Integration the Healthcare Enterprise. www . 1he . net. [Online; accessed
03-December-2009].

ISO. 2006. ISO 11073 - Health informatics — Point-of-care medical device communi-
cation.

Jabbour, P., Tjoumakaris, S., & Rosenwasser, R. 2009. Angiography, MRA in Image
Guided Neurosurgery. Springer. Chap. 21, pages 299-305.

Jacobs, S., Merk, D. R, Holzey, D., & Falk, V. 2008. Modellbasierte Therapie in der
Herzchirurgie. Pages 132—139 of: Niederlag, W., Lemke, H. U., Meixensberger, J.,
& Baumann, M. (eds), Modellgestiitzte Therapie. Health Academy.

Jannin, P., & Morandi, X. 2007. Surgical models for computer-assisted neurosurgery.
Neurolmage, 37, 783-791.

Jenkinson, M., Pechaud, M., & Smith, S.M. 2005. BET2: MR-based estimation of
brain, skull and scalp surfaces. Eleventh Annual Meeting of the Organization for
Human Brain Mapping.

Jolesz, F. A., & Shtern, F. 1992. The operating room of the future. Report of the Na-
tional Cancer Institute Workshop, "Imaging-Guided Stereotactic Tumor Diagnosis
and Treatment". Investigative Radiology, 27(2), 326-328.

Jolesz, F. A, Nabavi, A., & Kikinis, R. 2001. Integration of Interventional MRI with
Computer-Assisted Surgery. Journal of Magnetic Resonance Imaging, 13, 69 —77.

Jolesz, F.A. 1997. Image-guided procedures and the operating room of the future.
Radiology, 204(3), 601-612.

Kalman, R. E. 1960. A New Approach to Linear Filtering and Prediction Problems.
Transactions of the ASME—Journal of Basic Engineering, 82(Series D), 35-45.

Kangarloo, H., Dietrich, R. B., Ehrlich, R. M., Boechat, M. 1., & Feig, S. A. 1986.
Magnetic resonance imagingnext term of wilms tumor. Urology, 28(3), 203-207.

http://754r.ucbtest.org/standards/754.pdf
http://754r.ucbtest.org/standards/754.pdf
www.ihe.net

LX BIBLIOGRAPHY

Karar, M. E., Chalopin, C., Merk, D. R., Jacobs, S., Walther, T., Falk, V., & Burgert, O.
2009. Localization and tracking of aortic valve prosthesis in 2D fluoroscopic image
sequences. In: Miga, M. 1., & Wong, K. H. (eds), SPIE Medical Imaging: Visual-
ization, Image-guided Procedures and Modeling. Presented at the SPIE Conference,
vol. 7261, paper 7261-1Q.

Kaufman, A., & Wang, J. 2002. 3D Surface Reconstruction from Endoscopic Videos.
Pages 61-74 of: Linsen, L., Hagen, H., & Hamann, B. (eds), Visualization in
Medicine and Life Sciences. Mathematics and Visualization. Springer Berlin Hei-
delberg.

Kawamata, T., Iseki, H., Shibasaki, T., & Hori, T. 2002. Endoscopic Augmented
Reality Navigation System for Endonasal Transsphenoidal Surgery to Treat Pituitary
Tumors: Technical Note. Neurosurgery, 50(6), 1393—1397.

Kazi, Z., Bakharev, V.A., & Stygar, A.M. 1979. Znachenie ul’trazvukovogo issle-
dovaniia pri biopsii khoriona po geneticheskim pokazaniiam (Value of the ultra-
sonic studies in biopsy of the chorion, according to genetic indicators). Akusherstvo
i ginekologiia, 8, 29-31.

Kettenbach, J., Jolesz, F. A., & Kikinis, R. 1997. Surgical Planning Laboratory: a new
challenge for radiology? Pages 855-860 of: Proceedings of the 11th International
Symposium and Exhibition of Computer Assisted Radiology and Surgery.

Kikinis, R., Gleason, P. L., & Jolesz, F. A. 1996. Surgical Planning Using Computer-
Assisted Three-Dimensional Reconstructions. Chap. 8, pages 147-154 of: Taylor,
R. H., Lavallée, S., Burdea, G. C., & Mosges, R. (eds), Computer Integrated Surgery
- Technology and Clincal Applications. The MIT Press.

Kim, K. S., & Weinberg, P. E. 1986. Magnetic Resonance Imaging of a Spinal Ex-
tradural Arachnoid Cyst. Surgical Neurology, 26, 249-252.

Knauth, M., Wirtz, C. R., Tronnier, V. M., Aras, N., Kunze, S., & Sartor, K. 1999.
Intraoperative MR Imaging Increases the Extent of Tumor Resection in Patients
with High-Grade Gliomas. AJNR Am J Neuroradiol, 20(9), 1642-1646.

Knuth, D. E. 1998. Sorting and Searching. Second edn. The Art of Computer Pro-
gramming, vol. 3. Reading, Massachusetts: Addison-Wesley.

Kosugi, Y., Watanabe, E., Goto, J., Watanabe, T., Yoshimoto, S., Takakura, K., &
Ikebe, J. 1988. An articulated neurosurgical navigation system using MRI and CT
images. IEEE Transactions on Biomedical Engineering, 35(2), 147-152.

Kouchoukos, N., Blackstone, E., Doty, D., Hanley, F., & Karp, R. 2003.
Kirklin/Barratt-Boyes Cardiac Surgery. 3rd edn. Churchill Livingstone.

Koulechov, K., Strauf3, G., Richter, R., Trantakis, C., & Liith, T. 2005. Mechatronical
assistance for parnasal sinus surgery. In: Lemke, H. U., Inamura, K., Doi, K.,

BIBLIOGRAPHY LXI

Vannier, M. W., & Farman, A. G. (eds), Computer Assisted Radiology and Surgery,
vol. 19.

Kubota, T., Takeuchi, H., Handa, Y., & Sato, K. 2004. Application of mobile CT
for neurosurgical operation and stereotactic radiotherapy. International Congress
Series, 1259, 397 — 407.

Lauterbur, P.C. 1973. Image Formation by Induced Local Interactions: Examples
Employing Nuclear Magnetic Resonance. Nature, 242, 190-191.

Law, M. Y. Y., & Huang, H. K. 2003. Concept of a PACS and imaging informatics-
based server for radiation therapy. Computerized Medical Imaging and Graphics,
27(1), 1-9.

Law, M. Y. Y., & Liu, B. 2009. DICOM-RT and Its Utilization in Radiation Therapy.
Radiographics, 29(3), 655— 667.

Law, M. Y. Y., Liu, B., & Chan, L. W. 2009. Informatics in radiology: DICOM-RT-
based electronic patient record information system for radiation therapy. Radio-
graphics, 29(4), 961- 972.

Le Bihan, D., Mangin, J.-F., Poupon, C., Clark, C. A., Pappata, S., Molko, N., &
Chabriat, H. 2001. Diffusion tensor imaging: Concepts and applications. Journal
of Magnetic Resonance Imaging, 13(4), 534-546.

Lemke, H. U. 1985. The Third Dimension. Pages 628—634 of: Proceedings on the
International Symposium on Computer Assisted Radiology.

Lemke, H. U. 2007. Summary of the white paper of DICOM WG24 "DICOM in
Surgery’. In: Horii, S. C., & Andriole, K. P. (eds), SPIE Medical Imaging: PACS
and Imaging Informatics. Presented at the SPIE Conference, vol. 6516, paper
651603.

Lemke, H. U., & Berliner, L. 2007. Specification and design of a Therapy Imaging
and Model Management System (TIMMS). In: Horii, S. C., & Andriole, K. P.
(eds), SPIE Medical Imaging: PACS and Imaging Informatics. Presented at the
SPIE Conference, vol. 6516, paper 651602.

Lemke, H. U., & Berliner, L. 2008. Modellgestiitzte Therapie, patientenspezifis-
ches Modell und modellbasierte Evidenz. Pages 13-24 of: Niederlag, W., Lemke,
H.U., Meixensberger, J., & Baumann, M. (eds), Modellgestiitzte Therapie. Health
Academy, vol. 13.

Lemke, H. U., & Vannier, M. W. 2006. The operating room and the need for an IT
infrastructure and standards. International Journal of Computer Assisted Radiology
and Surgery, 1(3), 117-121.

LXII BIBLIOGRAPHY

Lemke, H. U., Faulkner, G., & Krauss, Ma. 1994. Developments Towards Multimedia
Medical Workstations. Computerized Medical Imaging and Graphics, 18(2), 61 —
67.

Lemke, H. U., Trantakis, C., Kochy, K., Miiller, A., Straul}, G., & Meixensberger, J.
2004. Workflow analysis for mechatronic and imaging assistance in head surgery.
International Congress Series, 1268, 830 — 835. CARS 2004 - Computer Assisted
Radiology and Surgery. Proceedings of the 18th International Congress and Exhibi-
tion.

Leven, J., Burschka, D., Kumar, R., Zhang, G., Blumenkranz, S., Dai, X., Awad, M.,
Hager, G. D., Marohn, M., Choti, M., Hasser, C., & Taylor, R. H. 2005. DaVinci
Canvas: A Telerobotic Surgical System with Integrated, Robot-Assisted, Laparo-
scopic Ultrasound Capability. Pages 811-818 of: Duncan, J., & Gerig, G. (eds),
Proc. of Medical Image Computing and Computer-Assisted Intervention - MICCAL.
Lecture Notes in Computer Science, vol. 3749/2005.

Lindner, D., Trantakis, C., Schmidtgen, A., Grunst, G., Arnold, S., & Meixensberger,
J. 2003. Iterative neuronavigation using 3D ultrasound—a feasibility study. Pages
619 — 624 of: Proceedings on the International Symposium on Computer Assisted
Radiology and Surgery, vol. 17.

Lopfe, A., Stoeckle, U., & Joskowicz, L. 2006. White Paper of DICOM Working Group
24 - Chapter 5: Workflow and Medical Imaging in Orthopaedic Surgery. [Work in
progress, obtain draft through Working Group 24.].

Liith, T., Bier, J., Bier, A., & Hein, A. 2001. Verfahren und Gerdtesystem zum Materi-
alabtrag oder zur Materialbearbeitung. Patent DE. 101 17 403 C2. 2001.

Mack, M., Acuff, T., Yong, P., Jett, G. K., & Carter, D. 1997. Minimally invasive
thoracoscopically assisted coronary artery bypass surgery. European Journal of
Cardio-Thoracic Surgery, 12, 20-24.

Maintz, J. B., & Viergever, M. A. 1998. A survey of medical image registration.
Medical Image Analysis, 2(1), 1-36.

Manwaring, K. H., Manwaring, M. L., & Moss, S. D. 1994. Magnetic field guided
endoscopic dissection through a burr hole may avoid more invasive craniotomies. A
preliminary report. Acta Neurochirurgica. Supplement, 61, 34-39.

Marzullo, K. A. 1984. Maintaining the Time in a Distributed System: An Example of a
Loosely-Coupled Distributed Service. Stanford University, Department of Electrical
Engineering.

Meixensberger, J. 2008. Modellbasierte Therapie — Einfluss und Auswirkungen auf
das Betitigungsfeld des Chirurgen. Pages 271-277 of: Niederlag, W., Lemke,
H. U., Meixensberger, J., & Baumann, M. (eds), Modellgestiitzte Therapie. Health
Academy.

BIBLIOGRAPHY LXII

Meyer, B. 2008. Modularity. Prentice Hall. Chap. B.3, pages 1-21.

Meyer, F. B., Bates, L. M., Goerss, S. J., Friedman, J. A., Windschitl, W. L., Duffy,
J. R., Perkins, W. J., & O’Neill, B. P. 2001. Awake craniotomy for aggressive

resection of primary gliomas located in eloquent brain. Mayo Clinic Proceedings,
76(7), 677-687.

Meyer, M., Levine, W. C., Brzezinski, P., Robbins, J., Lai, F., Spitz, G., & Sand-
berg, W. S. 2003. Integration of Hospital Information Systems, Operative and Peri-
operative Information Systems, and Operative Equipment into a Single Information
Display. Page 1054 of: Proc. of AMIA 2005 Symposium.

Morgan, Jr., G. E., Mikhail, M. S., & Murray, Michael J. 2001. Clinical Anaesthesiol-
0gy. Mcgraw-Hill Professional. ISBN 0-838-51553-3.

Mould, R. F. 1980. A history of X-rays and radium with a chapter on radiation units:
1895-1937. 1PC Building & Contract Journals, Sutton :.

Mozer, P., Leroy, A., Y. Payan and, J. Troccaz, Chartier-Kastler, E., & Richard, F.
2006. Computer-assisted access to the kidney. The International Journal of Medical
Robotics and Computer Assisted Surgery, 1(4), 58—66.

Mosges, R. 1993. New trends in head and neck imaging. European Archives of Oto-
Rhino-Laryngology, 250, 317-326.

Mudunuri, R., Neumuth, T., Strau}, G., Dietz, A., Meixensberger, J., & Burgert, O.
2007 (June). SOCAS - Surgical Ontologies for Computer Assisted Surgery. In:
Lemke, H. U., Inamura, K., Doi, K., Vannier, M. W., & Farman, A. G. (eds), Inter-
national Journal of Computer Assisted Radiology and Surgery, vol. 2, supp. 1.

Muller, R.N., Marsh, M.J., Bernardo, M.L., & Lauterbur, P.C. 1982. True 3-D imag-
ing of limbs by NMR zeugmatography with off-resonance irradiation. European
Journal of Radiology, 3(suppl. 1), 286-290.

Nakamura, S., Colombo, A., Gaglione, A., Almagor, Y., Goldberg, S. L., Maiello, L.,
Finci, L., & Tobis, J. M. 1994. Intracoronary ultrasound observations during stent
implantation. Circulation, 89(5), 2026-2034.

NEMA. 1993. DICOM Supplement 10: Basic Worklist Management - Modality. ftp:
//medical .nema.org/medical/dicom/final/suplO_ft.pdf. [On-
line; accessed 03-December-2009].

NEMA. 1996. DICOM Supplement 11: Radiotherapy Information Objects. ftp://
medical.nema.org/medical/dicom/final/supll_ft.pdf. [Online;
accessed 25-October-2009].

NEMA. 2008a. DICOM Supplement 132: Surface Segmentation. ftp://medical.
nema.org/medical/dicom/final/supl32_ft.pdf. [Online; accessed
30-October-2009].

ftp://medical.nema.org/medical/dicom/final/sup10_ft.pdf
ftp://medical.nema.org/medical/dicom/final/sup10_ft.pdf
ftp://medical.nema.org/medical/dicom/final/sup11_ft.pdf
ftp://medical.nema.org/medical/dicom/final/sup11_ft.pdf
ftp://medical.nema.org/medical/dicom/final/sup132_ft.pdf
ftp://medical.nema.org/medical/dicom/final/sup132_ft.pdf

LXIV BIBLIOGRAPHY

NEMA. 2008b. Digital Imaging and Communications in Medicine (DICOM). http:
//dicom.nema.org. [Online; accessed 25-October-2009].

NEMA. 2009a. DICOM Supplement 131: Implant Templates.
http://www.dclunie.com/dicom-status/status.html#

Supplement sByNumber. [Online (work in progress); accessed 30-October-
2009].

NEMA. 2009b. DICOM Supplement 134: Implant Planning SR Doc-
ument. http://www.dclunie.com/dicom-status/status.html#
Supplement sByNumber. [Online; accessed 30-October-2009].

Neumuth, T., Pretschner, A., Trantakis, C., Fischer, M., Lemke, H. U., & Burgert, O.
2005. Workflow-analysis of Surgical Interventions in ENT and Neurosurgery. Pages
85-86 of: Computer Aided Surgery around the Head - 3rd International Symposium
Proceedings, vol. 258.

Neumuth, T., Jannin, P., StrauB3, G., Meixensberger, J., & Burgert, O. 2009. Validation
of Knowledge Acquisition for Surgical Process Models. Journal of the American
Medical Informatics Association, 16, 72-80.

Nezhat, C. 2005. Nezhat’s History of Endoscopy. http://laparoscopy.
blogs.com/endoscopyhistory/. [Online; accessed 18-September-2009].

Nezhat, C., Crowgey, S., & Garrison, C. 1986. Surgical treatment of endometriosis via
laser laparoscopy. Fertility and Sterility, 45(6), 778-783.

Niederlag, W., Lemke, H.U., Meixensberger, J., & Baumann, M. (eds). 2008. Mod-
ellgestiitzte Therapie. Health Academy, vol. 13.

NifTI. 2005. Neuroimaging Informatics Technology Initiative: NifTI-1 Data Format.
http://nifti.nimh.nih.gov/. [Online; accessed 27-April-2009].

NLM. 1989. The Visible Human Project. http://www.nlm.nih.gov/
research/visible/visible_human.html. [Online; accessed 10-
December-2009].

NSR . 2000. The Physiome Project. http://www.physiome.org. [Online;
accessed 10-December-2009].

Nuttin, B., Knauth, M., Gybels, J., Verbeeck, R., Vandermeulen, D., Michiels, J.,
Suetens, P., & Marchal, G. 1994. How does the stereotactic workstation help the
neurosurgeon? Stereotactic and functional neurosurgery, 63(1-4), 71-22.

Ohnuma, K., Masamuneb, K., Yoshimitsua, K., Sadahiroa, T., Vainc, J., Fukuia, Y., &
Miyawakia, F. 2006 (June). Timed-automata-based model for laparoscopic surgery
and intraoperative motion recognition of a surgeon as the interface connecting the
surgical scenario and the real operating room. In: International Journal of Computer
Assisted Radiology and Surgery, vol. 1, supp. 1.

http://dicom.nema.org
http://dicom.nema.org
http://www.dclunie.com/dicom-status/status.html#SupplementsByNumber
http://www.dclunie.com/dicom-status/status.html#SupplementsByNumber
http://www.dclunie.com/dicom-status/status.html#SupplementsByNumber
http://www.dclunie.com/dicom-status/status.html#SupplementsByNumber
http://laparoscopy.blogs.com/endoscopyhistory/
http://laparoscopy.blogs.com/endoscopyhistory/
http://nifti.nimh.nih.gov/
http://www.nlm.nih.gov/research/visible/visible_human.html
http://www.nlm.nih.gov/research/visible/visible_human.html
http://www.physiome.org

BIBLIOGRAPHY LXV

Okudera, H. 2000. Intraoperative angiography for emergency cerebrovascular surgery
using an exclusively developed radiolucent Sugita head frame and fixation. Journal
of Clinical Neuroscience, 7(6), 539 — 541.

Paieon. 2009. C-THV. http://www.paieon.com. [Online; accessed 10-
December-2009].

Patkin, M. 2003. What surgeons want in operating rooms. Minimally Invasive Therapy
and Allied Technologies, 12(6), 256—262.

Peters, T. M., Clark, J., Pike, B., Drangova, M., & Olivier, A. 1987. Stereotactic Surgi-
cal Planning with Magnetic Resonance Imaging, Digital Subtraction Angiography
and Computed Tomography. Applied Neurophysiology, 50(1-6), 33 — 38.

Pham, D. L., Xu, C., & Prince, J. L. 2000. A Survey of Current Methods in Medical
Image Segmentation. Annual Review of Biomedical Engineering, 2, 315-338.

Pianykh, O. S. 2008. Digital Imaging and Communications in Medicine (DICOM): A
Practical Introduction and Survival Guide. Springer. ISBN 978-3-540-74570-9.

Pillay, P. K., Barnett, G., & Awad, 1. 1992. MRI-guided stereotactic placement of

depth electrodes in temporal lobe epilepsy. British Journal of Neurosurgery, 6(1),
47-53.

Prokosch, H.U., & Dudeck, J. 1995. Hospital Information Systems: Desgin and De-
velopment Characteristics; Impact and Future Architecture. Medical Artificial In-
telligence, vol. 2.

Raimbault, M., Jannin, P., Morandi, X., Riffaud, L., & Gibaud, B. 2009. Models of
surgical procedures for multimodal image-guided neurosurgery. Studies in Health
Technology and Informatics, 95, 50-55.

Reinhardt, H.F., Horstmann, G.A., & Gratzl, O. 1993. Sonic stereometry in microsur-
gical procedures for deep-seated brain tumors and vascular malformations. Neuro-
surgery, 32(1), 51-57.

Riedl, S. 2002. Modernes Operationsmanagement im Workflow Operation. Chirurg,
73, 105-110.

Rontgen, W. C. 1895. Uber eine neue Art von Strahlen (Vorliufige Mittheilung). In:
Sitzungsberichte der Wiirzburger Physik.-medic. Gesellschaft 1895. Verlag der Sta-
hel’schen k. Hof- u. Univers.-Buch- u. Kunsthandlung.

Roberts, D. W., Strohbehn, J. W., Hatch, J. F., Murray, W., & Kettenberger, H. 1989.
A frameless stereotaxic integration of computerized tomographic imaging and the
operating microscope. Journal of Neurosurgery, 65(4), 545-549.

Rogers, E. M. 2003. Diffusion of Innovations. 5 edn. New York, London, Toronto,
Sydney: The Free Press.

http://www.paieon.com

LXVI BIBLIOGRAPHY

Rogowska, J. 2000. Overview and Fundamentals of Medical Image Segmentation.
Chap. 5, pages 69-86 of: Bankman, 1. (ed), Computer Integrated Surgery - Tech-
nology and Clincal Applications. Academic Press.

Romstock, J., Fahlbusch, R., Ganslandt, O., Nimsky, C., & Strauf}, C. 2002. Locali-
sation of the sensorimotor cortex during surgery for brain tumours: feasibility and
waveform patterns of somatosensory evoked potentials. British Medical Journal,
72(2), 221-229.

Rossi Mori, A., Gangemi, A., Steve, G., Consorti, F., & Galeazzi, E. 1997. An On-
tological Analysis of Surgical Deeds. Pages 361-372 of: Proceedings of the 6th
Conference on Artificial Intelligence in Medicine in Europe.

Rygh, O. M., Nagelhus Hernes, T. A., Lindseth, F., Selbekk, T., Brostrup Miiller, T., &
Unsgaard, G. 2006. Intraoperative navigated 3-dimensional ultrasound angiography
in tumor surgery. Surgical Neurology, 66(6), 581 — 592.

Sandberg, W. S., Ganous, T. J., & Steiner, C. 2003. Setting a Research Agenda for
Perioperative Systems Design. Surgical Innovation, 10(2), 57-70.

Satava, R. M. 2003. Robotic Surgery: from past to future - a personal journey. The
Surgical Clinics of North America, 83(6), 1491-1500.

Schlondorff, G. 1998. Computer-assisted surgery: Historical remarks. Computer
Aided Surgery, 3(4), 150-152.

Schrader, U., Kotter, E., Pelikan, E., Zaif3, A., Timmermann, U., & Klar, R. 1997. Crit-
ical Success Factors for a Hospital-wide PACS. Proceedings of the AMIA Annual
Fall Symposium, 439—-443.

Schroeder, W., Martin, K., & Lorensen, B. 2004. The Visualization Toolkit: An Object-
Oriented Approach to 3D Graphics. 3 edn. Kitware, Inc.

Scott-Conner, C. E. H., & Berci, G. 1993. Unsolved problems in endoscopic surgery.
Surgical Endoscopy, T, 281-282.

Sectra. 2009. Sectra preoperative planning solution. http://www.sectra.com/
medical/orthopaedics/. [Online; accessed 25-October-2009].

Seeger, W., & Zentner, J. 2002. Neuronavigation and Neuroanatomy. Wien-New York:
Springer. ISBN 978-3-211-83741-2.

Shahidi, R., Clarke, L., Bucholz, R. D., Fuchs, H., Kikinis, R., Robb, R. A., & Vannier,
M. W. 2001. White Paper: Challenges and Opportunities in Computer-Assisted
Interventions January 2001. Computer Aided Surgery, 6, 176 — 181.

Shulman, G. 1978. Semi-automatic Data Processing in Clinical Chemistry. Clinical
Biochemistry, 11(4), 143-147.

http://www.sectra.com/medical/orthopaedics/
http://www.sectra.com/medical/orthopaedics/

BIBLIOGRAPHY LXVII

Simon, R., Krieger, D., Znati, T., Lofink, R., & Sclabassi, R. J. 1995. Multimedia
MedNet. Computer, 28(5), 65-73.

Skaggs, R. L. 1984. Hospital design to support greater operating efficiency. Health
Care Strategic Management, 2(12), 11-16.

Spiegel, E., Wycis, H., Marks, M., & Lee, A. 1947. Stereotactic apparatus for opera-
tions on the human brain. Science, 106, 349 — 350.

Srinivasan, P., Vignes, G., Venable, C., Hazelwood, A., & Cade, T. 1984. From chart
tracking to workflow management. Proceedings of the Annual Symposium on Com-
puter Application in Medical Care, 884—8877.

Stachowiak, H. 1973. Allgemeine Modelltheorie. Springer. ISBN 3-211-81106-0.

Staemmler, M., Brill, R., Mezer, J.U., & Gersonde, K. 1995. Principles of multimodal
imaging. Minimally Invasive Therapy and Allied Technologies, 4, 293 — 299.

Stevens, J. H., Burdon, T. A., Peters, W. S., Siegel, L. C., Pompili, M. F., Vierra, M. A.,
St. Goar, E. G., Ribakove, G. H., Mitchell, R. S., & Reitz, B. A. 1996. Minimally
invasive thoracoscopically assisted coronary artery bypass surgery. The Journal of
Thoracic and Cardiovascular Surgery, 113(3), 567-573.

Stevenson, J.G., Brandestini, M.A., Weiler, T., Howard, E.A., & Eyer, M. 1979. Digital
multigate Doppler with color echo and Doppler display - Diagnosis of atrial and
ventricular septal defects. Circulation, 60(2), 205.

StrauB3, G., Lemke, H. U., & Liidth, T. 2008. Modellbasierte Automation in der
HNO-Chirurgie - Konzeptvorstellung und Anwendungsbeispiele. Pages 119—131
of: Niederlag, W., Lemke, H. U., Meixensberger, J., & Baumann, M. (eds), Mod-
ellgestiitzte Therapie. Health Academy.

Streitbiirger, D.-P., Franke, S., Gessat, M., & Mayoral, R. 2009. Ein modulares Assis-
tenzsystem zur intraoperativen Lokalisation des Sulcus Centralis bei Tumorresek-
tionen nahe des Motorkortex. In: To appear in: Informatik 2009 - Im Fokus das
Leben. Lecture Notes in Informatics.

Taylor, R. H., Lavallée, S., Burdea, G. C., & Mosges, R.h (eds). 1996. Introduction.
The MIT Press. Pages xiii—xix.

Tebo, S. A., Leopold, D. A., Long, D. M., Zinreich, S. J., & Kennedy, D. W. 1996. An
optical SD digitizer for frameless stereotactic surgery. IEEE Computer Graphics
and Applications, 16(1), 55-64.

Teraea, S., Miyasakab, K., Fujitab, N., & Shiratob, H. 1998. A hospital-wide PACS:
7 year experience and new development. Computer Methods and Programs in
Biomedicine, 57(1-2), 5-12.

LXVIII BIBLIOGRAPHY

Trantakis, C., Tittgemeyer, M., Schneider, J.-P., Lindner, D., Winkler, D., StrauB, G.,
& Meixensberger, J. 2003. Investigation of time-dependency of intracranial brain
shift and it’s relation to the extent of tumour removal using intraoperative MRI.
Neurological Research, 25(1), 9—-12.

Trautwein, K., Voruganti, A., Grunert, R., Korb, W., Jacobs, S., & Falk, V. 2009. Eval-
uation of surgical cartographic navigation system for endoscopic bypass grafting on
heart phantoms. Pages 297-298 of: International Journal of Computer Assisted
Radiology and Surgery, vol. 4, supp. 1.

Treichel, T., Liebmann, P., Burgert, O., & Gessat, M. 2010. Applicability of DICOM
Structured Report for the Standardized Exchange of Implantation Plans. [Interna-
tional Journal of Computer Assisted Radiology and Surgery, 5(1), 1-9.

Trepel, M. 2004. Neuroanatomie—Struktur und Funktion. 3. edn. Miinchen, Jena:
Elsevier Urban & Fisher. ISBN (978-)3-437-41297-3.

Vaillant, M., Davatzikos, C., Taylor, R. H., & Bryan, R. N. 1997. Computer-assisted
access to the kidney. Pages 467476 of: Proc. of CVRMed-MRCAS’97.

Vannier, M. W., Marsh, J. L., Wang, G., Christensen, G. E., & Kane, A. A. 1996.
Surgical imaging systems. Surgical Technology International, S, 35—42.

Vindlacheruvuy, R. R., Casey, A. T. H., & Thomas, D. G. T. 1999. MRI-guided stereo-
tactic brain biopsy: a review of 33 cases. Surgical Neurology, 13(2), 143 — 147.

Vitaz, T. W., Gaskill-Shipley, M., Tomsick, T., & Tew, Jr., J. M. 1999. Utility,
Safety, and Accuracy of Intraoperative Angiography in the Surgical Treatment of
Aneurysms and Arteriovenous Malformations. American Journal of Neuroradiol-
0gy, 20(8), 1457-1461.

Vogt, F., Kriiger, S., Winter, M., Niemann, H., Hohenberger, W., Greiner, G., & Schick,
C.H. 2005. Erweiterte Realitidt und 3-D Visualisierung fiir minimal-invasive Opera-
tionen durch Einsatz eines optischen Trackingsystems. Pages 217-221 of: Meinzer,
H.-P., Handels, H., Horsch, A., & Tolxdorff, T. (eds), Bildverarbeitung fiir die Medi-
zin 2005. Informatik aktuell.

Voruganti, A., Mayoral, R., Jacobs, S., Grunert, R., Moeckel, H., & Korb, W. 2007.
Surgical cartographic navigation system for endoscopic bypass grafting. Pages
1467-70 of: Proc. of Annual International Conference of the IEEE Engineering
in Medicine and Biology Society., vol. 1.

Vosburg, K. G., & San José Estépar, R. 2007. Natural Orifice Transluminal Endoscopic
Surgery (NOTES): An Opportunity for Augmented Reality Guidance. Pages 485—
490 of: Proc. of Medicine Meets Virtual Reality.

Walther, T., Falk, V., Kempfert, J., Borger, M. A., Fassl, J., Chu, M. W., Schuler, G.,
& Mohr, F. W. 2008. Transapical minimally invasive aortic valve implantation; the
initial SOpatients. European Journal of Cardiovascular Surgery, 33(6), 983-988.

BIBLIOGRAPHY LXIX

Watanabe, E., Watanabe, T., Manaka, S., Mayanagi, Y., & Takakura, K. 1987. Three-
dimensional digitizer (neuronavigator): new equipment for computed tomography-
guided stereotaxic surgery. Surgical Neurology, 27(6), 543-547.

Wiles, A. D., Thompson, D. G., & Frantza, D. D. 2006. Accuracy assessment and
interpretation for optical tracking systems. Pages 421-432 of: Galloway, R. L.
(ed), SPIE Medical Imaging: Visualization, Image-Guided Procedures, and Display.
Presented at the SPIE Conference, vol. 5367.

Winter, A., Haufe, G., Groh, P, Pirtkien, R., & Hentschel, B. 2002. Modellprogramm
SaxTeleMed, Evaluation (Ebene 3). Evaluierungsschwerpunkt 1: Einsatz der digi-
talen Bildbearbeitung und Bildkommunikation fiir die prdaoperative Planung. Tech.
rept. Universitit Leipzig, Institut fiir Medizinische Informatik, Statistik und Epi-
demiologie.

Wong, D. R., Boone, R. H., Thompson, C. R., Allard, M. E,, Altwegg, L., Carere,
R. G., Cheung, A., Ye, J., Lichtenstein, S. V., Ling, H., & G., Webb J. 2009. Mitral
valve injury late after transcatheter aortic valve implantation. Journal of Thoracic
and Cardiovascular Surgery, 137(6), 1547-1549.

Woolsey, C. N., Erickson, T. C., & Gilson, W. E. 1979. Localization in somatic sen-
sory and motor areas of human cerebral cortex as determined by direct recording of
evoked potentials and electrical stimulation. Journal of neurosurgery, 51(4), 476.

Yock, P. G., Linker, D. T., White, N. W., Rowe, M. H., Selmon, M. R., Robertson,
G. C., Hinohara, T., & Simpson, J. B. 1989. Clinical applications of intravascular
ultrasound imaging in atherectomy. International Journal of Cardiac Imaging, 4,
117-125.

Yoo, S. K., Kim, K. M., Kim, N. H., Huh, J. M., Chang, B. C., & Cho, B. K. 1997.
Design of a medical image processing software for clinical-PACS. Yonsei Medical
Journal, 38(4), 193-201.

Zamorano, L. J., Nolte, L., M., Kadi A., & Z., Jiang. 1994. Interactive Intraoperative

Localization Using an Infrared-Based System. Stereotact Funct Neurosurg, 63, 84—
88.

Zhang, H., Banovac, F.,, Lin, R., Glossop, N., Wood, B. J., Lindisch, D., Levy, E., &
Cleary, K. 2006. Electromagnetic tracking for abdominal interventions in computer
aided surgery. Computer Aided Surgery, 11(3), 127-136.

Zitova, B., & Flusser, J. 2003. Image registration methods: a survey. Image and Vision
Computing, 21, 977-1000.

	Contents
	List of Abbreviations
	List of Figures
	List of Tables
	1 Introduction
	1.1 Distributed Systems
	1.2 Distributed Systems in Medical Informatics
	1.2.1 Examples of Modular CAS Systems
	1.2.2 Summary

	1.3 Aim of the Thesis
	1.4 Structure of the Thesis

	2 State of the Art
	2.1 A Brief History of Computer Assisted Surgery
	2.1.1 Image Guided Surgery
	2.1.2 Preoperative Planning
	2.1.3 A New Paradigm: Model Guided Therapy

	2.2 Surgical Informatics
	2.2.1 Integrated OR solutions and projects
	2.2.2 TIMMS
	2.2.3 Standards and Protocols

	3 Dataflow in CAS
	3.1 From Workflows to Dataflows
	3.2 Data Exchange Requirements

	4 Surgical DICOM
	4.1 Identification of DICOM Work Items
	4.2 Surface segmentation SOP Class
	4.2.1 Requirements
	4.2.2 Surface Segmentation Class Diagram
	4.2.3 Surface Segmentation Storage SOP Class

	4.3 Implant Template SOP Classes
	4.3.1 Overview
	4.3.2 Generic Implant Template Storage SOP Class
	4.3.3 Implant Assembly Templates
	4.3.4 Implant Template Groups
	4.3.5 Implantation Plan SR Document

	4.4 Summary

	5 An Open-Source Interface for OR Integration
	5.1 TiCoLi - An Overview
	5.2 TiCoLi: Basic Types
	5.3 The API, the Core, and the Managers
	5.3.1 The Device Manager
	5.3.2 The Message Manager
	5.3.3 The Attribute Manager
	5.3.4 The Method Manager
	5.3.5 The Streaming Manager

	5.4 Performance Tests
	5.4.1 Streaming Throughput and Reliability
	5.4.2 Messaging Speed

	5.5 Summary and Discussion

	6 Clinical Applications
	6.1 Transapical Aortic Valve Implantation
	6.1.1 Computer Assisted Transapical Aortic Valve Implantation
	6.1.2 Infrastructure

	6.2 Cortical Stimulation and Mapping
	6.2.1 The Central Sulcus
	6.2.2 Localization of the Central Sulcus
	6.2.3 Intraoperative Mapping of the Central Sulcus
	6.2.4 Preoperative Model Generation

	6.3 Summary and Discussion

	7 Conclusion & Outlook
	7.1 Summary
	7.2 Conclusion
	7.3 Outlook

	A Data Flow Diagrams
	A.1 Diagram Types

	B DICOM
	B.1 The DICOM Information Model
	B.2 DICOM Information Objects
	B.3 DICOM Messages
	B.4 DICOM Services

	C TiCoLi Protocols and Libraries
	D Algorithms and Implementation Details
	D.1 HandleSets
	D.2 Thread Safe Callbacks
	D.3 The Gesture Detection Module

	E S-DICOM IODs
	E.1 The Surface Segmentation IOD
	E.2 The Implant Template IOD
	E.3 The Implant Assembly Template IOD
	E.4 The Implant Template Group IOD

	Bibliography

