8,926 research outputs found

    Flexible human-robot cooperation models for assisted shop-floor tasks

    Get PDF
    The Industry 4.0 paradigm emphasizes the crucial benefits that collaborative robots, i.e., robots able to work alongside and together with humans, could bring to the whole production process. In this context, an enabling technology yet unreached is the design of flexible robots able to deal at all levels with humans' intrinsic variability, which is not only a necessary element for a comfortable working experience for the person but also a precious capability for efficiently dealing with unexpected events. In this paper, a sensing, representation, planning and control architecture for flexible human-robot cooperation, referred to as FlexHRC, is proposed. FlexHRC relies on wearable sensors for human action recognition, AND/OR graphs for the representation of and reasoning upon cooperation models, and a Task Priority framework to decouple action planning from robot motion planning and control.Comment: Submitted to Mechatronics (Elsevier

    How can we make sense of smart technologies for sustainable agriculture? - A discussion paper

    Get PDF
    This paper discusses the challenges of assessing the benefits and risks of new digital technologies, so-called ‘smart technologies’ for sustainable agri-food systems. It builds on the results of a literature review that was embedded in a wider study on future options for (sustainable) farming systems in Germany. Following the concepts of Actor-Network-Theory, we can conceive of smart technologies in agriculture as networks that can only be understood in their entirety when considering the relationships with all actors involved: technology developers, users (farmers, consumers and others), data analysts, legal regulators, policy makers, and potential others. Furthermore, interaction of the technology and its implementers with nature, such as plants, entire landscapes, and animals, need to be taken into consideration. As a consequence, we have to deal with a highly complex system when assessing the technology – at a time where many of the relevant questions have not been sufficiently researched yet. Building on the FAO’s SAFA guidelines, the paper outlines criteria against which smart technologies could be assessed for their potential to contribute to a sustainable development of agri-food systems. These include aspects of governance, ecology, economy and social issues. We draw some tentative conclusions on the required framework conditions for implementation of digital technology, in particular from the perspective of sustainable agriculture. These are aimed at fuelling further discussion about the potentials and risks of the technology

    Application of JXTA-overlay platform for secure robot control

    Get PDF
    In this paper, we present the evaluation and experimental results of secured robot control in a P2P system. The control system is based on JXTA-Overlay platform. We used secure primitives and functions of JXTA-Overlay for the secure control of the robot motors. We investigated the time of robot control for some scenarios with different number of peers connected in JXTA-Overlay network. All experiments are realised in a LAN environment. The experimental results show that with the join of other peers in the network, the average time of robot control is increased, but the difference between the secure and unsecure robot control average time is nearly the samePeer ReviewedPostprint (published version

    Coordination Demand in Human Control of Heterogeneous Robot

    Get PDF

    Embodied Evolution in Collective Robotics: A Review

    Full text link
    This paper provides an overview of evolutionary robotics techniques applied to on-line distributed evolution for robot collectives -- namely, embodied evolution. It provides a definition of embodied evolution as well as a thorough description of the underlying concepts and mechanisms. The paper also presents a comprehensive summary of research published in the field since its inception (1999-2017), providing various perspectives to identify the major trends. In particular, we identify a shift from considering embodied evolution as a parallel search method within small robot collectives (fewer than 10 robots) to embodied evolution as an on-line distributed learning method for designing collective behaviours in swarm-like collectives. The paper concludes with a discussion of applications and open questions, providing a milestone for past and an inspiration for future research.Comment: 23 pages, 1 figure, 1 tabl

    Teams organization and performance analysis in autonomous human-robot teams

    Get PDF
    This paper proposes a theory of human control of robot teams based on considering how people coordinate across different task allocations. Our current work focuses on domains such as foraging in which robots perform largely independent tasks. The present study addresses the interaction between automation and organization of human teams in controlling large robot teams performing an Urban Search and Rescue (USAR) task. We identify three subtasks: perceptual search-visual search for victims, assistance-teleoperation to assist robot, and navigation-path planning and coordination. For the studies reported here, navigation was selected for automation because it involves weak dependencies among robots making it more complex and because it was shown in an earlier experiment to be the most difficult. This paper reports an extended analysis of the two conditions from a larger four condition study. In these two "shared pool" conditions Twenty four simulated robots were controlled by teams of 2 participants. Sixty paid participants (30 teams) were recruited to perform the shared pool tasks in which participants shared control of the 24 UGVs and viewed the same screens. Groups in the manual control condition issued waypoints to navigate their robots. In the autonomy condition robots generated their own waypoints using distributed path planning. We identify three self-organizing team strategies in the shared pool condition: joint control operators share full authority over robots, mixed control in which one operator takes primary control while the other acts as an assistant, and split control in which operators divide the robots with each controlling a sub-team. Automating path planning improved system performance. Effects of team organization favored operator teams who shared authority for the pool of robots. © 2010 ACM

    The Operation of Autonomous Mobile Robot Assistants in the Environment of Care Facilities Adopting a User-Centered Development Design

    Get PDF
    The successful development of autonomous mobile robot assistants depends significantly on the well-balanced reconcilements of the technically possible and the socially desirable. Based on empirical research 2 substantiated conclusions can be established for the suitability of "scenario-based design" (Rosson/Carroll 2003) for the successful development of mobile robot assistants and automated guided vehicles to be applied for service functions in stationary care facilities for seniors.User-Centered Technology Development, Knowledge-Transfer, Participative Assessment Methods, Robotics

    User-centered design of a dynamic-autonomy remote interaction concept for manipulation-capable robots to assist elderly people in the home

    Get PDF
    In this article, we describe the development of a human-robot interaction concept for service robots to assist elderly people in the home with physical tasks. Our approach is based on the insight that robots are not yet able to handle all tasks autonomously with sufficient reliability in the complex and heterogeneous environments of private homes. We therefore employ remote human operators to assist on tasks a robot cannot handle completely autonomously. Our development methodology was user-centric and iterative, with six user studies carried out at various stages involving a total of 241 participants. The concept is under implementation on the Care-O-bot 3 robotic platform. The main contributions of this article are (1) the results of a survey in form of a ranking of the demands of elderly people and informal caregivers for a range of 25 robot services, (2) the results of an ethnography investigating the suitability of emergency teleassistance and telemedical centers for incorporating robotic teleassistance, and (3) a user-validated human-robot interaction concept with three user roles and corresponding three user interfaces designed as a solution to the problem of engineering reliable service robots for home environments
    • 

    corecore