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University of Genoa, via Opera Pia 13, 16145 Genoa, Italy.

Abstract

The Industry 4.0 paradigm emphasizes the crucial benefits that collaborative

robots, i.e., robots able to work alongside and together with humans, could

bring to the whole production process. In this context, a yet unreached enabling

technology is the design of robots able to deal at all levels with humans’ intrinsic

variability, which is not only a necessary element to a comfortable working

experience for humans, but also a precious capability for efficiently dealing with

unexpected events. In this paper, a sensing, representation, planning and control

architecture for flexible human-robot cooperation, referred to as FlexHRC, is

proposed. FlexHRC relies on wearable sensors for human action recognition,

AND/OR graphs for the representation of and the reasoning upon human-robot

cooperation models online, and a Task Priority framework to decouple action

planning from robot motion planning and control.

Keywords: Human-Robot Cooperation; Smart Factory; AND/OR graph;

Task Priority control; Wearable Sensing.

1. Introduction

According to the Industry 4.0 paradigm, manufacturing is expected to un-

dergo an important paradigm shift involving the nature of shop-floor environ-
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ments. One of the main ideas put forth in smart factories is getting closer to

customers, increasing their satisfaction through a high degree of personalization

and just in time goods delivery. This poses serious challenges to shop-floor op-

erators, in so far as work stress, fatigue and eventually alienation are concerned,

with repercussions also on work quality and faulty semifinished products.

Among the recommendations to reduce such drawbacks on human operators,

collaborative robots have been proposed to work alongside humans to perform

a series of tasks traditionally considered stressful, tiring or difficult [1]. Clearly,

this proposal implies a number of challenges related to human-robot interaction

both at the physical and the cognitive levels of the cooperation [2, 3, 4], which

depend also on their type [5]. Beside basic safety considerations, which are a

necessary prerequisite [6], a number of key issues must be taken into account:

sensing and human activity recognition [7], definition of suitable cooperation

models to reach certain goals [8, 9, 10], robot action planning and execution in

the presence of humans [4], and the effect of robot’s predictable behavior on the

operator well-being and performance [11], just to name a few.

Among the possible use cases where human-robot cooperation can be par-

ticularly relevant, we consider cooperative assembly as a motivating scenario. If

we focus on assemblage tasks, typically involving a small number of semifinished

pieces, a number of difficult-to-model situations arise: the order of assemblage

operations is often not strict, i.e., different sequences are possible and equally

legitimate as far as the final result is concerned; an operator and a robot engage

in a sort of turn taking process, where the robot is expected to assist and adapt

to human actions at run-time; for a fruitful cooperation to occur, the opera-

tor and the robot must understand each other actions and intentions. These

considerations can be synthesized in four functional specifications focusing on

improving the operator’s working experience [12].

F1 [Flexibility ] Operators should not be forced to follow a strict, predefined

sequence of operations, but should be allowed to decide what actions to

perform on the fly, subject to their adherence to the overall cooperation
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goals. As a consequence, robots should trade-off between providing opera-

tors with optimal suggestions about next actions to perform and reacting

appropriately when operators do not follow such instructions.

F2 [Intelligibility ] While the cooperation process unfolds, operators should

be capable of intuitively understanding robot actions and intentions, and

this may be achieved at a symbolic, linguistic level of communication.

Therefore, collaborative robots should be able to decouple action plan-

ning (whose results are meaningful for operators) from motion planning

and control, the latter hiding low-level complexities associated with robot

motions also when the workspace is partially unknown.

F3 [Adaptability ] In order for a robot to detect and classify meaningful actions

carried out by an operator, it should not be necessary different operators

undergo a specialised action modelling and adaptation process, i.e., the

robot should adapt to them without requiring an operator-specific cali-

bration process.

F4 [Transparency ] Operators should not be required to limit their freedom

as far as motions are concerned, e.g., being forced to stay in front of

a collaborative robot all the time, to have their actions duly monitored

during the cooperation process.

In this paper, a sensing, representation, planning and control architecture

for flexible human-robot cooperation, referred to as FlexHRC, is proposed.

FlexHRC deals with the specifications outlined above by design, in particular

enforcing flexibility at two different – yet related – levels.

R1 Although robots suggest actions to perform based on optimality consid-

erations and the goal to achieve, operators can choose an action without

following robot’s suggestions [13], while the robot reacts to operators and

plans for the next action accordingly [14, 15, 16].

R2 Although robot operations are well-defined in terms of motion trajecto-

ries and, above all, intended effects, reactive behaviors allow for dealing

with partially unknown or dynamic workspaces, e.g., to perform obstacle
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avoidance, without the need for whole trajectory re-planning [17, 18].

To this aim, FlexHRC implements a hybrid, reactive-deliberative human-robot

cooperation architecture for assisted cooperation [5, 19] integrating different

modules, namely: (i) human action recognition using wearable sensors, which

do not pose any constraint on operator motions, to address F4, and exploit-

ing statistical techniques for action modeling [20] to take F3 into account; (ii)

representation of human-robot cooperation models and online reasoning using

AND/OR graphs [21, 13, 10] to deal with F1; (iii) control schemes based on a

Task Priority framework to decouple human-robot action planning from robot

motion planning and control [18], therefore addressing F2.

The paper is organized as follows. Section 2 discusses related work. Cooper-

ation models and the associated sensing, reasoning and robot motion processes

are described in Section 3. Experimental results are presented and discussed in

Section 4. Conclusions follow.

2. Background

During the past few years, human-robot interaction gained much attention

in the research literature. Whilst approaches focused on cooperation consider

aspects related to natural interaction with robots, e.g., targeting human-robot

coordination in joint action [22, 23, 24], this analysis focuses on the human-

robot cooperation process from the perspective of the functional specifications

discussed above.

The problem of allowing humans and robots to perform open-ended cooper-

ation by means of coordinated activity (F1) did not receive adequate attention

so far. An approach highlighting the challenge is presented in [8], where an exe-

cution planning and monitoring module adopts two teamwork modes, i.e., when

humans and robots are equal partners and when humans act as leaders. On the

one hand, a reference shared plan is generated offline, and actions are allocated

to a human or a robot according to their capabilities. On the other hand, coor-

dination is achieved by an explicit step-by-step, speech-based, human to robot
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communication, which makes the user experience cumbersome and unnatural in

most cases.

The ability of robots to mediate between high-level planning and low-level

reactive behaviors has been subject of huge debates in the past three decades.

When it comes to human-robot cooperation, the need arises to balance the re-

quirements of reaching a well-defined goal (e.g., a joint assembly) and providing

human co-workers with as much freedom as possible. A number of conceptual

elements for joint and coordinated operations are identified in [15]. The au-

thors propose a minimalistic architecture to deal with aspects related to agents

cooperation. In particular, a formalism to define goals, tasks and their represen-

tation, as well as the required monitoring and prediction processes, is described.

The work discussed in [4] significantly extends the notions introduced in [15] to

focus on social human-robot interaction aspects (F2). The architecture makes

an explicit use of symbol anchoring to reason about human actions and cooper-

ation states. An approach sharing some similarities with FlexHRC is described

in [10]. As in the proposed approach, AND/OR graphs are used to sequence

actions for the cooperation process. However, unlike FlexHRC, action sequences

cannot be switched at runtime, but are determined offline in order to optimize

graph-based metrics. As a matter of fact, the possibility of multiple cooperation

models is provided for, although offline: optimal paths on the AND/OR graph

are converted to fixed action sequences, and then executed without any possible

variation. In a similar way, multiple cooperation models are considered in [13],

where an AND/OR graph is converted to a nondeterministic finite state machine

for representation, and later to a probabilistic graphical model for predicting

and monitoring human actions, as well as their timing.

The development of sensing and control architectures able to integrate and

coordinate action planning with motion planning and control is an active re-

search topic. However, the challenge is typically addressed to deal with cases

where planning cannot be guaranteed to be monotone, i.e., when sensory infor-

mation must be used to validate the plan during execution [25]. Its application

to human-robot cooperation tasks (F3) has not been fully addressed in the lit-
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erature. An approach in that direction is described in [26], where an integrated

approach to Monte Carlo based action planning and trajectory planning via

Programming by Demonstration is adopted in a scenario of toolbox assembly.

Concurrent activities are formalized using a Markov decision process, which

determines when to initiate and terminate each human or robot action. A

multi-objective optimization approach for solving the subtask allocation for the

project scheduling problem of HRC is introduced in [27], where an evolutionary

algorithm takes care of real-time subtask allocation. The proposed framework

considers both parallel and sequential features and logic restrictions as well as

given objectives for human and robot action time and cost, idle time, etc.

Finally, a few approaches consider the issue of allowing human operators

to retain a certain freedom of motion or action when interacting with a robot

(F4), but at the price of introducing a few assumptions in the process [28, 29].

A Bayesian framework is used in [24] to track a human hand position in the

workspace with the aim of predicting an action’s time-to-completion. The hand

must be clearly visible for the estimate to be accurate, which limits certain

motions. The opposite approach is adopted in [8], where an extended freedom

of motion is obtained resorting to speech-based communication to indicate per-

formed actions to the robot, as well as action start and end times. The obvious

drawback of this approach relies on the fact that such a communication act must

be voluntary, and therefore human stress and fatigue may jeopardize the will

to do it. A more comprehensive approach is described in [4], which integrates

human body position (determined by an external sensory system, e.g., motion

capture), deictic gestures, gaze and verbal communication to determine a num-

ber of human actions. A gesture lexicon for giving commands to other partners

in industrial environments is studied in [30]. The work investigates the gestures

commonly performed by humans to communicate with each other about part

acquisition, manipulation, and operation tasks. In the experimental evaluation,

such gestures were replicated by an industrial robot and the understanding of

human operators was measured. Both solutions rely on an external system for

human activity recognition, which may be of difficult deployment in a shop-floor
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Figure 1: The FlexHRC system’s architecture: modules and data flow.

environment, and occlusions may occur nonetheless.

From this focused analysis, it emerges that although a number of approaches

have been discussed, which take the identified functional specifications into ac-

count, they do so only partially. FlexHRC attempts to provide a holistic and

integrated solution to these heterogeneous challenges.
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3. An Architecture for Flexible Human-Robot Cooperation

3.1. System’s Architecture

FlexHRC is based on a distributed hybrid reactive-deliberative architecture,

which is conceptually described in Figure 1. The architecture integrates recog-

nition and classification of operator activities (handled by the Human Action

Recognition module in the Figure), action planning for both operators and

robots (jointly handled by the Task Representation and Planner modules in

the Figure), as well as robot motion planning and execution (handled by the

Controller module in the Figure). In particular:

• Task Representation maintains a set of models for the cooperation tasks

to be carried out, and interacts with the Planner to decide which action

an operator or a robot should execute next. Cooperation models are

represented using AND/OR graphs, described in Section 3.2.

• The Planner operates on the AND/OR graph via an ad hoc online graph

traversal procedure to determine the most appropriate sequence of actions

to ground the cooperation on, based on the graph structure. These action

sequences are encoded within graph edges, referred to as hyper-arcs. The

Planner interacts with the Human Action Recognition module and the

human operator (green loop in Figure 1) to assess and suggest human

actions, while it interacts with the Controller (along the red loop in the

Figure) to assess and suggest robot actions.

• Adopting the approach described in [20, 31], the Human Action Recogni-

tion module retrieves data from wearable devices and statistically classifies

inertial data streams according to a number of predefined gesture models.

As briefly discussed in the Introduction, the use of wearable devices to

be worn by human operators is expected to allow them to move freely in

the environment (in accordance with F4), whereas the use of statistical

classifiers should enforce the availability of gesture models not specifically

tailored for different operators (F3).
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• The Controller is tasked with robot motion control and execution, and

integrates the Task Priority control framework first discussed in [18]. The

Planner does not have access to the Controller ’s internal parameters and

inner working, thereby enforcing F1.

There is an important difference between the loop involving the Planner and

the human, and the one involving the Planner and the robot. In the first case,

the Planner simply suggests the next action to the operators, leaving them free

to execute it or not and therefore taking into account functional requirement

F1, whereas in the second case it imposes the next action for the robot to

perform. In both cases, the Planner receives a feedback, namely a gesture label

corresponding to the action carried out by the operator or an acknowledge about

the successful execution of an action by the robot.

It should be noted that FlexHRC assumes that only one operator interacts

with the robot at a time and that he/she is cooperative and unwilling to cheat on

the system. Since, as it will be evident reading the next Sections, human activity

recognition is based only on the detection and classification of certain gestures,

no guarantees about the use of specific tools can be given. For example, an

operator manually operating a screwdriver to sink a bolt, and the same operator

mimicking the gesture without holding a screwdriver appear as indistinguishable

to the system.

3.2. Representation of Cooperation Models

An AND/OR graph G(N,H) is defined as a data structure where N is a set

of n1, . . . , n|N | nodes and H is a set of h1, . . . , h|H| hyper-arcs. Nodes in N define

reachable states, whereas hyper-arcs in H define transition relationships among

states. Each hyper-arc hi ∈ H defines a many-to-one transition relationship

between a set of |c| child nodes c(hi) = (nhi,1
, . . . , nhi,|c|) and a parent node

p(hi) = nk. The child nodes of a hyper-arc are in logical and, while different

hyper-arcs with the same parent node are in logical or. Both nodes and hyper-

arcs are associated with costs, namely wn1
, . . . , wn|N| and wh1

, . . . , wh|H| . Figure
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Figure 2: A generic AND/OR graph with six nodes and three hyper-arcs: h1 and h3 are and

hyper-arcs, whereas h2 is an or hyper-arc.

2 shows an example of AND/OR graph with six nodes termed nr, n1, . . . , n5 and

three hyper-arcs, called h1, h2 and h3. Node nr is called root node. Hyper-arc

h1 establishes an and relationship between n1 and n2 towards nr, i.e., in order

to reach state nr it is necessary to have reached both n1 and n2. A similar

condition holds true for h3, which connects n4 and n5 to n1. Hyper-arc h2 is an

or relationship between the and relationship involving n1 and n2, node n3 and

nr. The semantics associated with h2 is such that in order to reach nr either

the couple n1 and n2 (via h1), or alternatively n3 must be reached first.

In FlexHRC, each hyper-arc hi models a set Ai of actions a1, . . . , a|Ai|, and

an action aj ∈ Ai can be assigned either to a human or a robot. If the order in

which to execute actions in Ai is important, Ai is defined as an ordered set such

that Ai = (a1, . . . , a|Ai|;�), i.e., a temporal sequence is assumed in the form

a1 � a2 � . . . � a|Ai|. Initially, all actions aj ∈ Ai are labeled as unfinished,

i.e., ¬e(aj). When an action aj has been executed, it is labeled as finished, i.e.,

e(aj). For all actions in Ai, if e(aj) holds then hi is done, and the notation d(hi)
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Table 1: Definition of symbols related to AND/OR graphs

Symbol Definition

n A node in the AND/OR graph

N The set of all nodes in the AND/OR graph

h A hyper-arc in the AND/OR graph

H The set of all hyper-arcs in the AND/OR graph

G(N,H) An AND/OR graph composed of the N nodes and H hyper-arcs

c(hi), p(hi) Hyper-arc hi connects child nodes c(hi) to parent node p(hi)

wni
Cost of node ni

whi
Cost of hyper-arc hi

nr The root node of the AND/OR graph

a An action associated with one or more hyper-arcs in G

Ai The set of actions associated with hyper-arc hi

e(aj) Action aj is finished when performed by an agent

d(hi) Hyper-arc hi is done when all the actions in Ai are finished

s(nk) Node nk is solved if there is at least one hyper-arc hi ∈ H such

that p(hi) = nk and d(hi) holds

s(G) The AND/OR graph G is solved if s(nr) holds

f(nk) Node nk is feasible if there is at least one hyper-arc hi ∈ H

such that p(hi) = nk and for all nodes nl ∈ c(hi), s(nl) holds

a(hi) Hyper-arc hi is active if p(hi) = nk and f(nk) holds

Ha The set of all active hyper-arcs at a given time

SG The set of all feasible nodes and active hyper-arcs in the

AND/OR graph G at a given time

P A cooperation path traversing G

cost(P ) Cost of path P

M The ordered sequence of actions corresponding to P

Pc The cooperation path followed at a given time

Mc The sequence of actions followed at a given time
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is used. If an ordering is induced, d(hi) holds if and only if also the temporal

execution sequence is satisfied.

A node can be either solved or unsolved. A node nk ∈ N is solved, specified

with s(nk), if there is at least one hyper-arc hi ∈ H such that p(hi) = nk,

d(hi) holds, and for all nl ∈ c(hi) it holds that s(nl). A node nk is unsolved

otherwise, and specified with ¬s(nk). Leaves in G, i.e., nodes nk for which there

is no hyper-arc hi ∈ H such that p(hi) = nk (as is the case of n2, n3, n4 and

n5 in Figure 2), are initialized as solved or unsolved, depending on the initial

state of the cooperation. An AND/OR graph G is traversed from leaves to the

root node nr ∈ N . When s(nr) holds, then G is solved, i.e., s(G). During the

traversal procedure, a node nk ∈ N is feasible, i.e., f(nk) holds if there is at

least one hyper-arc hi ∈ H such that p(hi) = nk and for all nodes nl ∈ c(hi)

it holds that s(nl). In this case hi is labeled as active, i.e., a(hi). Otherwise,

nk is unfeasible, i.e., ¬f(nk). Leaves that are not solved at the start of the

cooperation are initialized as feasible. While the cooperation unfolds, there is a

set of active hyper-arcs Ha ⊂ H in G.

We define the graph representation state SG as the set of all feasible nodes

and active hyper-arcs in G, i.e., possible action alternatives for the human or the

robot. A cooperation path P in G is defined as a sequence of visited nodes and

hyper-arcs. Each cooperation path is associated with a traversal cost, namely

cost(P ), which defines how effortful following P is, on the basis of the involved

nodes and hyper-arcs weights. A cooperation model M is a ordered sequence

of |M | actions, such that M = (a1, . . . , a|M |;�) ⊂ SG, corresponding to an

allowed cooperation path in G. At any given time instant, there is one current

cooperation model Mc as well as one current cooperation path Pc.

Table 1 recaps the above definitions for the reader’s ease of reference.

All available cooperation models and cooperation paths are maintained by

the Task Representation module. Algorithm 1 starts the process, loading the

description of a cooperative task to create the corresponding AND/OR graph

G and set it as unsolved. Then, all node feasibility states are determined (line

4), the set P of all possible cooperation paths P1, . . . , P|P| are generated (line

12



Algorithm 1 Setup()

Require: A description of an AND/OR graph G = (N,H)

Ensure: A data structure encoding G

1: G← loadDescription()

2: s(G)← false

3: for all n ∈ N do

4: updateFeasibility(G, n)

5: end for

6: P ← generateAllPaths(G)

7: n∗ ← findSuggestion(P)

6) and the first node to solve n∗ is determined (line 7). With reference to the

loadDescription() function, it is noteworthy that each description is made up

of three data chunks, respectively encoding2: (i) the structure of the AND/OR

graph in terms of the sets N and H, (ii) the set Ai with all actions associated

with a hyper-arc hi, as well as their temporal constraints (if any), and (iii)

a number of action-specific parameters, e.g., whether the action must be exe-

cuted by the operator or the robot, the symbolic action name (for humans) and

associated planning and control parameters (for robots).

Feasibility check is performed on each node in N . The process is described

in Algorithm 2. Feasible nodes are ignored (line 2) and leaves are set as feasible

(line 5). For all other nodes, the algorithm looks for active hyper-arcs (lines

8 to 20): if there is at least one hyper-arc h for which p(hi) = n and all child

nodes are solved, then the hyper-arc is active (line 16) and n is feasible (line 17);

otherwise, the hyper-arc is ignored (lines 9 to 14). If a node has no associated

active hyper-arcs, then it is not feasible (line 21).

2In the current version of FlexHRC, we do not use such standard formalisms as – for

example – xml to represent this information. However, current work is devoted to integrate

it with an ontology-based structure, which can be used as an appropriate formalism for data

interoperability.
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Algorithm 2 updateFeasibility()

Require: An AND/OR graph G = (N,H), a node n ∈ N

Ensure: f(n) or ¬f(n)

1: if f(n) = true then

2: return

3: end if

4: if c(n) = ∅ then

5: f(n)← true

6: return

7: end if

8: for all h ∈ H such that p(h) = n do

9: allChildNodesSolved ← true

10: for all m ∈ c(h) do

11: if s(m) = false then

12: allChildNodesSolved ← false

13: end if

14: end for

15: if allChildNodesSolved = true then

16: a(h) ← true

17: f(n)← true

18: return

19: end if

20: end for

21: f(n)← false

22: return

When Algorithm 2 is complete, the graph representation state SG is avail-

able, and it is possible to determine all available cooperation paths. This is

done by Algorithm 3, which is a variation of a depth-first traversal procedure

for AND/OR graphs. The set of cooperation paths P and an empty path P

are defined (lines 1 to 3). All nodes are initially marked as unexplored (line 5)
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Algorithm 3 generateAllPaths()

Require: An AND/OR graph G = (N,H)

Ensure: The set P of all cooperation paths

1: P ← ∅

2: P ← initNewPath()

3: P ← P ∪ P

4: for all n ∈ N do

5: e(n)← false

6: end for

7: addNode(P , nr)

8: while true do

9: if ∀P ∈ P it holds that ∀n ∈ P , e(n) = true then

10: return P

11: else

12: P, n← getUnexploredNode(P)

13: generatePath(G, n, P )

14: end if

15: end while

and the root node nr is added to path P (line 7). Then, the procedure iterates

calling Algorithm 4 on the unexplored nodes (lines 12 and 13) until all nodes

are explored and all paths defined (lines 9 and 10).

Algorithm 4 proceeds along a single cooperation path P , starting from the

current node. The cost of P is updated and the node is marked as explored

(lines 1 and 2). If the node does not have child nodes, the exploration of the

path P from node n is completed (lines 4 and 5); otherwise, if all the child

nodes of n belong to the same hyper-arc h, the hyper-arc is added to P (line 7)

and the child nodes are added to P for later exploration (line 9); finally, if the

child nodes of n belong to more than one hyper-arc, a new path is created for

each hyper-arc, as a copy of the current path (lines 15 and 16). The different

hyper-arcs and the corresponding child nodes are added to the new paths (lines

15



Algorithm 4 generatePath()

Require: An AND/OR graph G = (N,H), the current node n, a cooperation

path P

Ensure: A valid cooperation path P

1: updatePathCost(P , n)

2: e(n)← true

3: for all h ∈ H such that p(h) = n do

4: if |h| = 0 then

5: return

6: else if |h| = 1 then

7: addArc(P , h)

8: for all m ∈ c(h) do

9: addNode(P , m)

10: end for

11: return

12: else if |h| > 1 then

13: P ′ ← P

14: for all h ∈ H such that p(h) = n do

15: P ← initNewPath(P ′)

16: P ← P ∪ P

17: addArc(P , h)

18: for all m ∈ c(h) do

19: addNode(P , m)

20: end for

21: end for

22: return

23: end if

24: end for

17 and 19) for later exploration.

When these procedures end, FlexHRC is ready for online cooperation. De-
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Figure 3: A schematic description of the Human Action Recognition module.

pending on the optimal cooperation path P ∗, i.e., the one minimizing the overall

cost depending on node and hyper-arc weights, the robot may start moving or

waiting for operator actions.

3.3. Recognition and Classification of Operator Actions

As shown in Figure 1 (green loop), operator actions affect both the Human

Action Recognition and the Planner modules. The former performs gesture

recognition using inertial data collected at the operator’s wrist, whereas the

latter determines if the recognized gesture corresponds to an action in hyper-
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arcs and assesses its effects on the overall cooperation.

The Human Action Recognition module (Figure 3) employs a system for

gesture recognition and classification first described in [20, 31]. The approach

assumes two phases: an offline training phase, where a set G of g1, . . . , g|G|

gesture models are created from a training set of inertial data, and an online

phase, where operator motions are classified on the basis of the gesture models

in G. After a data filtering step to isolate gravity and body acceleration as

features, the modeling process adopts Gaussian Mixture Modeling (GMM) and

Gaussian Mixture Regression (GMR) to compute an expected regression curve

and the covariance matrix for each g ∈ G. Once the regression curve for a model

g is obtained, the number of data points in it needs not to be the same as that

in the trials in the training set, which is of the utmost importance to cope with

computational requirements in the online phase.

While the cooperation process unfolds, Human Action Recognition executes

a number of steps, in part similar to the procedure in the offline phase. Online,

once inertial data are processed to extract gravity and body acceleration fea-

tures (typically focusing on a time window depending on gesture model lengths),

gesture recognition is performed by comparing those features against the models

in G, thereby labeling data with a gesture symbol. It is noteworthy that such an

approach assumes the operator does not artificially hesitate in performing the

gesture. Two distance metrics are adopted, i.e., the well-known Mahalanobis

distance and the maximization of the so-called possibilities, to take into account

the variability associated with gesture models [31]. The Mahalanobis distance

is a statistical measure comparing a current data stream and models repre-

sented using a regression curve and the associated covariance matrices for each

point; however, it does not explicitly take into account the temporal variabil-

ity associated with gesture execution. A state of the art approach to consider

temporal variabilities is Dynamic Time Warping. In previous work [20], we pro-

posed a metric for gesture classification integrating the Mahalanobis distance

and Dynamic Time Warping. Our experiments showed that the increased com-

putational time needed to warp the two signals (the computational complexity
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Figure 4: An example of action possibility evolutions for a cooperation task.

of Dynamic Time Warping being polynomial in the data window size) does not

provide substantial classification improvements, and therefore we decided to

adopt only the Mahalanobis distance in FlexHRC to reduce delays introduced

by gesture recognition and classification. As the experiments show, the implicit

encoding of temporal differences in the covariance matrices of the gesture mod-

els is robust to small variations in the execution of the gestures to the point, in

particular, of retaining good recognition performance for the modelled gestures

even with users who did not provide recordings for the training set. Possibilities

are computed on the basis of Mahalanobis distances, as described in [31].

In FlexHRC, possibilities are used to determine which gesture has been ex-

ecuted [31]. At a given time instant, a time window contains an inertial data

pattern related to a gesture model g. The correlation between the time win-

dow and the correct gesture model is maximum when the former is in perfect

overlap with the model. Accordingly, the possibility value tends to increase,

reaches a peak and decrease afterwards. Figure 4 shows possibility values for

four gestures, using different colors (see Section 4 for a more detailed descrip-

tion). Focusing on the red pattern, the associated possibility value is zero for

the first 45 seconds, it jumps to reach almost 1, and afterwards it decreases

reaching 0 again. There might be small oscillations in possibility values, which

might cause local maxima and minima. In our case, a threshold is introduced

to find the (semi-global) maximum of the possibility pattern. When, after the
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peak, the possibility reaches the threshold value (currently set at 90% of the

peak possibility value, red dot in the Figure at 62 seconds), the corresponding

gesture g is considered as executed, subject to the fact that it corresponds to

the highest value among all other model possibilities.

Once a gesture has been detected and classified, the gesture label is for-

warded to the Planner module, which identifies the corresponding action aj

and checks whether it appears in the set of actions associated with the cur-

rently active hyper-arcs (anywhere or as next-in-sequence according to the or-

dering constraints). The set of currently active hyper-arcs is called Action-State

table; for each hyper-arc in the Action-State table:

• if action aj appears in the set of actions associated with the hyper-arc,

predicate e(aj) is set to true and the hyper-arc is kept;

• if not, the hyper-arc is marked at inactive and removed from the set of

active hyper-arcs.

On the basis of the number of active hyper-arcs after the above check, the

Planner updates the status of the cooperation:

• If there is only one active hyper-arc, along the current cooperation model

Mc, FlexHRC enters a clear mode, inferring that the cooperation is pro-

ceeding along the optimal path.

• If there is only one active hyper-arc, along a different cooperation model

with respect to the current one, FlexHRC enters a clear mode and it is

inferred that the operator switched to another cooperation model.

• If there are two or more active hyper-arcs, FlexHRC enters an ambiguous

mode and waits for further inputs (i.e., other completed actions) to repeat

the check and determine which cooperation path P in G is followed.

• If there are no active hyper-arcs, FlexHRC enters a null mode, inferring

that an unexpected action occurred, and ends the cooperation.
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Figure 5: Action-State table search and update example: red circles denote actions for which

the robot is responsible, while blue circles denote actions for which the human is responsible.

Yellow, red and green filling colors denote, respectively, ambiguous, null and clear mode of the

table search. a1−a8 are labels of actions; n1−n4 are labels of feasible nodes; and wn1 −wn4

denote the weight of each state.

The same updating mechanism occurs for actions executed by the robot, as

discussed in Section 3.5.

Once all the actions associated with a hyper-arc have been performed, the

hyperarc is marked as done and its parent node is marked as solved. Then, the

Planner informs the Task Representation module, which updates the AND/OR

graph and determines the next suggested action for operators or robots.

Figure 5 illustrates the procedure. In the Figure, each row corresponds to

an active hyper-arc, its parent node is defined on the left-hand side, and the set

of actions associated with the hyper-arc are shown in circles on the right-hand

side. Actions assigned to the human operator are shown as red circles, while

actions assigned to the robot are shown as blue circles. As an example, the top
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row shows that actions a1, a2, a3, a4 compose the set A1 of actions associated

with hyper-arc h1, that operator and robot should perform to solve node n1.

Let us assume that, at the beginning of the cooperation, the active hyper-

arcs are those shown in Figure 5 and that the hyper-arc with minimum cost is

the top one.

Depending on the sequence of operator and robot actions perceived by the

Human Action Recognition and Controller modules, we have different scenarios,

as outlined hereafter:

1. If the sequence corresponds to sequence 1, upon the recognition of operator

action a2, the Planner commands the robot to execute actions a3 and a4,

and once the latter is completed the hyper-arc is marked as done and

node n1 is solved. Upon the completion of action a3, FlexHRC is in clear

mode and it is inferred that the cooperation has followed the optimal

cooperation model.

2. If the sequence corresponds to sequence 2, after action a2, the operator

performs action a8, which does not appear in any of the active hyper-arcs.

FlexHRC thus enters the null mode and ends the cooperation.

3. If the sequence corresponds to sequence 3, after action a2, the Planner

commands the robot for the execution of action a3, along the top hyper-

arc, but the operator interrupts its execution by performing action a6.

The first two hyper-arcs become inactive, and the Planner switches to

hyper-arc h3 (which has a lower cost than hyper-arc h4) to command the

execution of a4. Upon its completion, FlexHRC is in clear mode and it is

inferred that the operator has switched cooperation model.

3.4. Planning the Next Operator or Robot Action

Whenever a node is solved and the graph state SG is updated, the next node

to solve n∗ in the current cooperation path Pc (which might have changed due

to the operator’s actions) can be defined.

This is done by Algorithm 5. The Algorithm loops indefinitely until the

root node nr is reached, and therefore s(G) holds (lines 4, 5 and 14). In the
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Algorithm 5 NextSuggestedNode()

Require: An AND/OR graph G, the last solved node n ∈ N

Ensure: An updated AND/OR graph G, the next node to solve n∗

1: loop← true

2: s(n)← true

3: while loop = true do

4: if n = nr then

5: loop← false

6: end if

7: for all m ∈ N do

8: updateFeasibility(m)

9: end for

10: updateAllPaths(P)

11: n∗ ← findSuggestion(P)

12: return

13: end while

14: s(G)← true

15: return

Algorithm 6 updateAllPaths()

Require: The set P of all cooperation paths, the last solved node n ∈ N

Ensure: An updated set P

1: Pu ← ∅

2: Pu ← findPathsToUpdate(n)

3: for all P ∈ Pu do

4: cost(P )← updateCost()

5: end for

meantime, it updates all feasibility states (lines 7-9) as well as cooperation paths

(line 10), and provides a suggested next node n∗ to solve (line 11).

Whilst feasibility updates are managed by Algorithm 2, cooperation path
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Algorithm 7 findSuggestion()

Require: The set P of all cooperation paths

Ensure: The next node to solve n∗

1: P ∗ ← findOptimalPath(P)

2: for all n ∈ P ∗ do

3: n∗ ← findOptimalNode()

4: end for

5: return

updates are done as described in Algorithm 6. The set Pu of all paths to

update is determined (line 2) as those containing the last solved node n. For

each path P , its associated cost is updated as:

cost(P ) = cost(P )− (wn + hmn − wh), (1)

where wn is the weight associated with n, hmn is the maximum weight of the

hyper-arcs connecting any parent node to n, and wh is the weight of the hyper-

arc connecting any parent node to n in P .

Suggestions for the next node n∗ are determined by the procedure in Al-

gorithm 7. The optimal cooperation path P ∗ is determined, such that it is

characterized by the minimum cost (line 1). Then, for all nodes in P ∗, the first

node n is found such that f(n) and ¬s(n) hold, which is labeled as n∗.

The hyper-arcs with n∗ as parent (i.e., within the current cooperation model),

together with all hyper-arcs with other, currently feasible nodes as parent (i.e.,

within other, admissible cooperation models) are marked as active and con-

stitute the new Action-State table, which the Planner uses to monitor and

drive the suggestions for actions, by giving highest priority to the actions in the

hyper-arc with minimum cost.

3.5. Robot Control and Action Execution

This Section describes the Task Priority framework integrated within the

Controller module (Figure 6), and elaborates on its decoupling of action plan-

ning, as performed by the Planner module, and control. The framework is
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Figure 6: A sketch of the Controller internal structure.

general and can handle multi-arm mobile manipulators, but it can be scaled

down to be used with fixed-base robots such as dual-arm manipulators. In the

following paragraphs, the robot configuration vector is referred to as c ∈ Rn

and contains the robot DOFs, e.g., joint positions and vehicle position, while

the robot velocity vector is named ẏ ∈ Rn, and represents the controls to actuate

the robot, e.g., joint velocities and vehicle velocities.

Control objectives. A control objective o expresses what the robot needs to

achieve, e.g., reaching a desired position for its end-effectors. In mathematical

terms, let us consider a scalar variable xo(c). For this variable, two broad classes

of control objectives can be defined:

1. the requirement, for t → ∞, that xo(c) = xo,0 is called a scalar equality

control objective,

2. the requirement, for t → ∞, that xo(c) < xo,max or xo(c) > xo,min is

called a scalar inequality control objective,

where xo,0 is a given reference value, whereas xo,min and xo,max serve as lower

and upper thresholds for the values scalar variables can assume. In the following,

the dependency of x on c will be dropped to ease the notation. Each control ob-

jective updates its variables, its Jacobian and the associated activation function
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(see below) based on the robot’s feedback.

Control tasks. To achieve a control objective o, a desired feedback reference

rate is defined as:

˙̄xo(xo) , γ(x∗o − xo), γ > 0, (2)

where γ is a positive gain proportional to the desired convergence rate for the

considered variable, and x∗o is a point inside the state region where o is satisfied.

The mapping between the task velocity scalar ẋo and the system velocity vector

ẏ is given by the Jacobian relationship:

ẋo = Jo(c)ẏ, (3)

where Jo(c) ∈ R1×n is the Jacobian matrix of the task. The control task τo

associated with the objective o is defined as the need of minimizing the difference

between the actual task velocity ẋo and the feedback reference rate ˙̄xo.

Activation and deactivation of control objectives. Control objectives may

or may not be relevant in a given situation. For example, if we consider the

problem of avoiding an obstacle with one of the robot’s links, then the related

task would be relevant only when the link is close to the obstacle. This task

should not over-constrain the robot whenever the link is sufficiently far away

from the obstacle. Therefore, let us define a prototype for activation functions

such that:

α(xo) = αo(xo), (4)

where αo(xo) ∈ [0, 1] is a continuous sigmoid function of a scalar objective vari-

able xo, whose value is zero within the validity region of the associated control

objective o. When a new action to execute is received, the Action Manager block

(shown in Figure 6) activates and deactivates the proper activation functions

for each control objective.

Task priority inverse kinematics. The approach of Task Priority schemes is

to define p priority levels so that: (i) each task is assigned with one priority level;

(ii) low priority tasks are inhibited from interfering with high priority ones; (iii)

different scalar objectives assigned to the same priority level can be grouped

26



in a (possibly multidimensional) control objective. Assuming a priority level k

with m scalar control tasks (and therefore m control objectives), the following

vectors and matrices are defined.

• ˙̄xk ,
[

˙̄x1,k, . . . , ˙̄xm,k

]T
is the stacked vector of all the reference rates,

where the first index indicates control objectives o1, . . . , om placed at the

priority level k.

• Jk is the Jacobian relationship expressing the current rate of change of

the k-th task vector
[
ẋ1,k, . . . , ẋm,k

]T
with respect to the system velocity

vector ẏ.

• Ak , diag(α1,k, . . . , αm,k) is the diagonal matrix of all the activation

functions in the form of (4).

With these definitions, the control problem is to find the system’s velocity ref-

erence vector ˙̄y complying with the aforementioned priority requirements. In

order to compute such a vector, a Task Priority Inverse Kinematics (TPIK)

procedure has been proposed in [18]. Here, it would suffice to describe the sin-

gle regularization and optimization step, which unfolds iteratively taking into

account all lower priority tasks. The manifold of solutions at the k level is:

Sk ,

{
arg R- min

˙̄y∈Sk−1

∥∥Ak( ˙̄xk − Jk ˙̄y)
∥∥2
}
, (5)

where Sk−1 is the manifold of solutions of all the previous tasks in the hierarchy,

with S0 , Rn. Since k is increased at each step, the recursion stops when k = p.

The notation R- min is used to highlight the fact that the minimization must be

regularized to avoid algorithm singularities during transitions between pairwise

control tasks. This regularization mechanism and the resulting TPIK algorithm

are duly reported in [18] and will be omitted here for the sake of brevity.

Control actions. From the robot control standpoint, an action a in input

to the Controller module in Figure 1 can be defined as a prioritized list of m

control objectives o1, . . . , om and the associated control tasks τ1, . . . , τm, to be

managed concurrently.
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Let us make a few examples to clarify the granularity and flexibility of the

proposed approach, where each action is described in terms of its list of control

objectives, in order of priority. A grasping action ag for a single manipulator

involves: o1) arm joint limits, o2) arm obstacle avoidance, o3) arm manipula-

bility, o4) end-effector linear position control, o5) end-effector angular position

control, and o6) arm preferred pose. A dual-arm object manipulation action ad

may involve: o1) object firm grasp kinematic constraint, o2) arms joint limits,

o3) arms obstacle avoidance, o4) arms manipulability, o5) end-effectors linear

position control, o6) end-effectors angular position control, and o7) arms pre-

ferred pose. Finally, a force regulation along a prescribed path action af for a

single manipulator could involve: o1) force regulation, o2) arm joint limits, o3)

arm obstacle avoidance, o4) alignment to the surface’s normal, o5) arm manip-

ulability, o6) end-effector path following, and o7) arm preferred pose.

Thanks to the proposed TPIK scheme, safety-oriented objectives such as

arm joint limits and arm obstacle avoidance can be given high priority in the

hierarchy, and they can be deactivated whenever irrelevant, through the use

of properly defined activation functions. This is an important difference with

respect to previous frameworks such as [32, 33], which handle only equality con-

trol objectives, or more recent frameworks such as [34], where the management

of inequality control objectives is not linear in the number of tasks. The TPIK

output, i.e., the system reference velocity vector ˙̄y, is given to the underlying

dynamic control layers for execution and tracking.

Two remarks can be made. The first is that, in principle, an action a embeds

an arbitrary number of m prioritized objectives o1, . . . , om, organized in differ-

ent hierarchies. Typically, the main difference between any two actions is the

set of objectives needed to achieve their goals and possibly other prerequisite

objectives, whereas safety-oriented tasks are common to all actions. The second

is that since actions are sequenced according to a cooperation model represented

by an AND/OR graph, each action in hyper-arcs is defined with a few control

objectives relevant to the action goal only.

Given the second remark, it is necessary to describe how transitions between
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two subsequent actions are implemented to achieve a safe – yet natural – robot

behavior. As discussed above, it is realistic to assume that actions are charac-

terized by a common set of safety-oriented objectives, and differ only by a few

action-specific objectives. For the sake of argument, let us imagine a unified list

made up of all control objectives of two actions a1 and a2, e.g., o1, . . . , om1+m2 .

It is easy to imagine how, by a simple removal of some of the control objectives,

the two initial sets can be easily determined. To do so, activation functions in

the form of (4) are modified as:

α(x,p) = αo(x)αp(p), (6)

where αp(p) ∈ [0, 1] is a continuous sigmoid function of a vector of parame-

ters p external to the control task itself. In particular, αp(p) can be conve-

niently parametrized by the two subsequent actions, as well as the time elapsed

from the start time Tstart of the current action, to obtain the desired activa-

tion/deactivation smooth transition function between sets of objectives.

Once all the actions in cooperation models are defined, such a unified list of

objectives can be easily built. Safety-oriented tasks are common to all actions,

and they will be at the same (high) priority levels. As a consequence, for such

tasks it will result that αp(p) = 1. All other tasks will be instead managed

by activation functions in the form αp(p), to activate/deactivate action-specific

and prerequisite objectives.

Whenever a robot action is successfully executed, the Planner is invoked to

update the Action-State table and define the next action.

4. Experimental Evaluation

4.1. Scenario

In order to provide a quantitative and qualitative assessment of FlexHRC,

the experimental setup comprises a dual-arm Baxter manipulator to perform

cooperative operations and an LG G watch R (W110) smartwatch worn at the

operator’s right wrist to acquire inertial data.

29



Figure 7: The AND/OR graph representation of the screwing task: different colors (blue,

black and red) indicate different action sequences the cooperation can unfold in. Hyper-arcs

costs appear beside the hyper-arcs they refer to.

Smartwatch data are collected via an LG G3 smartphone, which is paired

with the smartwatch using Bluetooth and communicates with a workstation us-

ing WiFi. The smartphone acquires inertial measurements from the smartwatch

at approximately 40 Hz via a Java application, and then forwards them to the

workstation, which computes at best effort. The ROS Indigo based architecture

runs on a 64 bit i5 2.3 GHz workstation, equipped with 4 Gb RAM, and Ubuntu

14.04.1 with kernel 3.19.0.
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As a prototypical example, a screwing task has been considered. A human

operator wearing a smartwatch and Baxter face each other on the opposite sides

of a table, where bolts, wooden plates and screwdrivers are located in a priori

known positions. The goal of the task is to sink a bolt inside a plate using a

screwdriver, and place the assembled piece in a final position on the table.

Common sense and experience lead to the identification of three different

cooperation models, referred to as Mblue, Mblack and Mred in the following

paragraphs, and represented in the corresponding AND/OR graph by three dif-

ferent paths, namely Pblue, Pblack and Pred (Figure 7). In this case, cooperation

models are structured in advance. It is noteworthy that current work is devoted

to learning cooperation paths from open-ended observations of how humans

would behave if not instructed about how to cooperate with the robot, in order

to extract the most natural interaction sequences from a human perspective.

However, this is out of the scope of the paper. The resulting AND/OR graph

has |N | = 9 states and |H| = 9 hyper-arcs. The weight associated with each

hyper-arc is specified by the estimated effort needed by an operator or a robot

to complete the corresponding actions. As described above, such an effort does

not necessarily consider only time, but may be a complex function taking into

account also operator preferences, ergonomic aspects of the operation, as well as

its intrinsic difficulty. However, such a function must be monotonic, i.e., actions

with associated low weights are to be preferred to actions characterized by high

weights within each cooperation model. For this validation scenario, values have

been a priori determined through a test campaign with expert users. As Figure

7 shows, given this weights assignment, it follows that the optimal cooperation

model is therefore Mblue, with a total expected cost of cost(Pblue) = 14.

As an example of a cooperation model, Figure 8 shows snapshots of an actual

human-robot cooperation process for the screwing task described above, which

starts with Mblue, but switches to Mblack when the operator performs the first

action (Figures 8b and 8c), which is different from the one expected in Mblue.

For this task, modeled human and robot actions are:
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8: The sequence of actions associated with Mblack, chosen after the operator decided

not to follow Mblue by performing the action initial bolt sink.

• initial bolt sink : the human sinks the bolt in the wooden plate’s counter-

sink while the plate is still located on the table (Figures 8a to 8c);

• wooden plate pick up and positioning : the robot picks the wooden plate

from a predefined position on the table and keeps it firmly using both

grippers (Figure 8d and Figure 8e);

• bolt or screwdriver pick up: the operator picks up a bolt or a screwdriver

from the table (Figure 8f);

• bolt screw : the operator sinks the bolt using the screwdriver (Figure 8g);

• screwdriver put down: the operator puts the screwdriver down on the

table (Figure 8h and Figure 8i);

• wooden plate put down: the robot puts the wooden plate down in a pre-

defined position on the table (Figure 8j and Figure 8k);

• reset pose: robot’s pose is reset (Figure 8l).
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Table 2: Recap of the reliability, robustness and flexibility experiments: number of trials (#)

for each cooperation path P , success rate (S), average time (avg) and standard deviation (std)

for completing the task successfully.

P # S [%] avg [s] std [s]

Pblue 21 95.24 79.86 3.54

Pblack 23 30.43 97.41 2.66

Pred 22 68.18 93.94 3.73

Obviously enough, other human and robot actions can be modeled, as well as

are other states in the cooperation models.

In the following, a number of cooperation experiments are discussed. In all

experiments, a trial is considered successful if the operator and the robot reach

the root state of the AND/OR graph, namely screwed plate in final position, by

means of any of the allowed paths. The operator and the robot are not allowed to

repeat the sequence of actions in a hyper-arc: if, at the first execution, actions

are not successfully accomplished, the trial is considered failed. Experiments

have been designed with three specific validation goals in mind:

• assessing reliability, robustness and flexibility of FlexHRC in terms of

cooperation success rate and possible explanations for failures;

• quantifying computational performance, in terms of latency of action

recognition and reasoning time;

• determining the Controller module’s capabilities in solving constrained

motion problems reactively, i.e., without burdening the Planner module.

4.2. Reliability, Robustness and Flexibility

In a first set of experiments, a total of 66 human-robot cooperation trials

have been conducted with a single human operator. Table 2 shows, for each

cooperation path Pblue, Pblack and Pred, the number of trials, the success rate,
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the average completion time and the standard deviation for successful cases. It

is possible to observe that not all cooperation models are equally difficult. Pblue

is characterized by a very high success rate, whereas the same does not occur for

Pblack and Pred. Both of them are characterized by a greater number of actions,

which is reflected in a higher average time needed to complete the operations.

Overall, there are 24 failures over 66 experiments, and in particular one failure

for Pblue, sixteen failures for Pblack and seven failures for Pred. As far as failures

are concerned, two of them are due to human mistakes, e.g., misinterpretation

of Planner ’s suggestions, four of them are related to communication failures

and temporary high latencies among software modules, one to a robot failure

while executing a command, whereas seventeen of them have been caused by

inaccurate recognition of the operator gestures.

A trend analysis on all experiments highlights a phenomenon related to

how humans adapt their motions in order to facilitate gesture recognition over

time. This means that inertial measurements become more correlated with

gesture models encoded using GMM and GMR as the human progresses in

performing them. The most direct consequence is that success rate increases,

whereas average completion time and standard deviation decrease. In fact, if one

looks only at the last 10 experiments per cooperation path, the success rate for

Pblack and Pred become 50% and 80%, respectively. Although adaptation can be

expected, current work is devoted to better characterize this phenomenon. As

a preliminary analysis, it can be noticed that it occurs especially for initial bolt

sink. If one looks at this model, it can be observed that it shares similarity with

other models to a high degree, such as bolt or screwdriver pick up or screwdriver

put down, mainly in the first part. After some trials, operators are able to modify

their motions to allow Human Activity Recognition to disambiguate between all

models, with an average increase in successful recognition of about 20%.

As far as robustness considerations are concerned, the system proves to

switch seamlessly among different cooperation models. Examples of such switches
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Table 3: Required reasoning, human, and robot average time percentages for successful tasks.

P avg Tao [%] avg Th [%] avg Tr [%]

Pblue 0.09 44.04 55.86

Pblack 0.09 45.93 53.97

Pred 0.09 51.94 47.95

can be observed in the accompanying video3. Here, let us focus on the switch

occurring between Pblue and Pblack in Figures 8a to 8c. At the beginning of

the cooperation, Baxter follows the optimal cooperation path, namely Pblue, by

default. It moves its right arm to perform wooden plate pick up and positioning

(Figure 8b) to reach the state Plate in screwing position. However, at the same

time, the operator decides to perform initial bolt sink, i.e., the state Plate, screw

in initial position is reached. This state is part of cooperation model Mblack,

and therefore FlexHRC sets Pblack as the current context. At this point, the

best solution involves reaching Plate, screw in screwing position, which means

for the robot to perform wooden plate pick up and positioning. Then, Mblack

unfolds from this moment on. It is noteworthy that, from the operator per-

spective, this model switch does not imply any perceivable interruption in the

operation workflow. This capability demonstrates requirement R1 described in

the Introduction.

4.3. Computational Performance

Table 2 shows, in the last two columns, the average time required to complete

cooperation models and the associated standard deviations. Overall, Pblue out-

performs Pblack and Pred in terms of required time, while the three cooperation

models are comparable in terms of determinism in execution.

3Please refer to: https://youtu.be/MZv4fUuklq8.
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Table 3 reports, for each successfully executed cooperation path, the percent-

ages of average time related to FlexHRC reasoning (Tao), and the time needed

for human operators (Th) and robot actions (Tr). The first percentage is a mea-

sure of the time needed by the AND/OR graph traversal algorithm to suggest

next actions to be performed either by the operator or the robot. Assuming a

sequence of n actions, Tao is defined as the sum of all such n− 1 contributions

(the first being set by default on the optimal path), and each contribution is

given by the difference between the time Tnext when the next action ai sugges-

tion is ready and the time Tack when an acknowledge for a previous action ai−1

is received, such that:

Tao =

n∑
i=2

Tnext(ai)− Tack(ai−1). (7)

The second percentage refers to the time spent by operators in the cooperation,

as well as the time required to detect their motion. It is noteworthy that this is a

greedy estimate of human motions, since operators may perform other motions

irrelevant for the cooperation. Let us assume that the operator performs m

actions, and let us define Th as the sum of all such m contributions, then each

contribution depends on the sum of effective human motion time and the time

needed by the Human Action Recognition module to recognize such a motion.

Therefore, Th is given by:

Th =

m∑
i=1

Trec(ai)− Tnext(ai), (8)

where Trec is the recognition instant. However, it is also necessary to take

into account cooperation model switches. Assuming to have k context switches

during a single cooperation task, an additional term to Th must be added,

which considers the interval between the time Tstart when the switching action

ai starts and the time Tnext when the next action ai+1 in the new cooperation

path is suggested, such as:

Th = Th +

k∑
i=1

Tnext(ai+1)− Tstart(ai). (9)
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Figure 9: An example of time allocation in case of Pblue.

The average time percentage of AND/OR graph traversing is in all cases less

than 0.1% of the total time. This is also due to the proposed control framework,

which does not require a computationally intensive planning in the configura-

tion space, thanks to its ability of reactively solving local obstacle avoidance

constraints.

As far as Th and Tr are concerned, it is possible to observe that they are

comparable, with the contributions of operators more evident in Pblack and Pred.

Figure 9 shows an example of time distribution for one task which follows

Pblue. The Figure shows that the majority of the time is related to either

operator or robot actions, and just a negligible part of the whole cooperation

task is related to AND/OR reasoning. The total time to perform the assembly

in this test is 82 seconds, of which 44.13% spent by the human, 55.56% spent

by the robot, and 0.09% by the Planner module.

A specific analysis of the delay introduced by the Human Action Recognition

module during cooperation tasks has been performed as well. In particular, it

is necessary to characterize the interval between the time Trec the action ai is

recognized by the module and the time Tend the action truly ends.

Figure 10 shows an example of Pblack. On the top, acceleration data along

the x axis are presented, and on the bottom the corresponding possibility trends

are shown. Operator actions are represented using different colors (black for bolt

or screwdriver pick up, red for bolt screw, blue for screwdriver put down, green
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(a) Inertial data along x axis.

(b) Trend in possibilities.

Figure 10: Delays introduced in human action recognition in one trial. Dots represent recog-

nition times; vertical dotted lines mark the moments in which human gestures actually end.

for initial bolt sink). Colored circles represent the time instants Trec at which

Human Action Recognition assesses actions, whereas vertical dotted lines show

the actual completion instants Tend, which have been determined by manually

inspecting acceleration data. In this case, the time required to recognize bolt or

screwdriver pick up, bolt screw, screwdriver put down and initial bolt sink are

approximately 1.2, 0.1, 6.1 and 2.6 seconds, respectively. Overall, around 10

out of 120 seconds of cooperation time are due to the human action recognition

delay. In all the tests, Human Activity Recognition introduces a delay accounting

for about 10% of the overall cooperation time.
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(a) (b)

Figure 11: A human operator does not have to necessarily perform actions in front of the

robot for those actions to be recognized and classified: (a) the operator performs the initial

bolt sink action in sight of the robot, (b) the operator performs the initial bolt sink action out

of sight of the robot.

Table 4: Recap of the experiments to assess the performance of human action recognition

with operators who did not contribute to the the training of the gesture models.

Action S [%] S (first) [%] S (last) [%]

bolt or screwdriver pick up 100 100 100

screwdriver put down 100 100 100

bolt screw 100 100 100

initial bolt sink 53.19 55.55 30

4.4. Performance of Human Action Recognition

In a second set of experiments, the system has been tested with 10 people

who did not participate in the training phase to evaluate whether gesture models

obtained using a specific training set are general enough to be used with more

than one operator. The age of all participants (two females, eight males) ranges

between 21 and 30 years. Each participant is required to perform 5 trials. Before

the trials, the participant is verbally instructed on how to cooperate with the

robot, an example cooperation model is shown by an experimenter, and the

participant is allowed to practice with the initial bolt sink action.

Table 4 shows the results of these experiments. In the Table, the second
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(a) (b)

Figure 12: An activity part of Pblue, when an obstacle is detected and avoided by the robot’s

elbow joint.

column indicates the overall success rate, the third column the success rate of

the first trial, and the fourth column the success rate of the last trial. Among

a total number of 50 trials, in one case the participant did not follow the in-

structions, two times the communication stopped, and 22 times the cooperation

failed because of incorrect action recognition, always, specifically, of initial bolt

sink. Indeed, initial bolt sink is not characterized by any improvement as far

as the different trials are concerned. Other actions seem more natural and are

always recognized correctly without a specific training.

As far as naturalness is concerned, it is noteworthy that FlexHRC detects

and classifies operator actions even if those are not executed within the robot

workspace or field of view. An example is shown in Figure 11.

4.5. Task Priority Control

In the experiments to evaluate the Controller module, which embeds the

Task Priority control scheme described in Section 3.5, the evaluation objective

is two-fold: on the one hand, assessing the Controller capabilities in dealing

with situations requiring reactive control, e.g., obstacle avoidance, which does

not need planning in the operational space; on the other hand, assessing its

capability of doing so without jeopardizing the overall cooperation context pro-

cess, in so far as cooperation time is concerned. To this aim, the same operator
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Figure 13: Activation function of the robot’s elbow avoidance task for the right arm: in blue

for a single-arm operation, in orange for a dual-arm operation.

of the first set of experiments performed an additional number of trials after the

introduction of obstacles in the robot’s workspace.

As an example, Figure 12 shows a cooperation task where a lateral obstacle

has been located on the right hand side of the robot. Such an obstacle would

impede the robot to perform wooden plate pick up and positioning. Therefore,

beside action-specific control objectives and tasks, an arm obstacle avoidance

objective has been introduced in the tasks hierarchy. In this particular case,

we focused on the robot’s elbow avoidance, but the proposed technique can be

employed for any frame inside the rigid body space of the manipulator. The

robot is equipped with a Kinect sensor mounted on the head to perceive the

environment. The acquired point cloud is processed by a perception module

(first described in [35, 36]), whose output is a lumped representation of the

plane approximating the wall. The control objective variable x for the arm

obstacle avoidance is defined as the norm of the vector between the origin of

the elbow frame and the closest point on the plane, which is required to be

maintained above a minimum safe threshold.
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Figure 13 shows the trend of the corresponding activation function (4) for

the arm obstacle avoidance objective, during both single-arm and dual-arm op-

erations. It is possible to observe that the activation never reaches its maximum

value, and the avoidance task is completed within the established thresholds.

Such an example shows how the Planner can focus on the generation of Carte-

sian trajectories for the end-effectors or for the object being manipulated, once

grasped by both robot grippers, without planning in the operational space, as

the underlying robot controller has the reactive capabilities to deal with (local)

avoidance of obstacles that were not taken into account in the original trajec-

tory planning. There is no observable difference on actual cooperation context

execution times due to the effect of reactive tasks. For instance, in the trial

referring to Figure 13, avg Tao = 0.06 seconds, avg Th = 54.76 seconds and avg

Tr = 44.96 seconds. Although an exhaustive experimental campaign varying

obstacle size and number has not been carried out, these preliminary results

allow us to conclude that FlexHRC complies with requirement R2 as described

in the Introduction.

5. Conclusions

In this paper, a novel architecture for human-robot cooperation is pro-

posed, which is aimed at addressing a few challenges in shop-floor environments.

FlexHRC supports a natural, intuitive, assisted and direct cooperation. On the

one hand, operator gestures implicitly drive the cooperation by executing mean-

ingful actions, and the robot flexibly and seamlessly adapts to those actions via

a number of allowed cooperation models. On the other hand, the robot con-

troller deals with all low-level complexities, e.g., to perform obstacle avoidance

in a full reactive fashion, without the need for re-planning in most cases.

FlexHRC has obviously a number of limitations, which are considered as

challenges in current research activities.

1. Inertial data models obtained via GMM and GMR can be very similar to

each other, depending on the action. This may lead to false positives, and
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requires processing as much data as possible before action recognition can

occur. To solve these ambiguities, work is currently carried out to integrate

different sensing modalities, such as RGB-D sensors and wearable suits,

as well as investigating different classification techniques. However, an

adaptation trend on the human side has been observed: people naturally

tend to move in such a way as to maximize the likelihood for their actions

to be properly recognized. This leads to a possible extension, i.e., to

include online learning capabilities to perform co-adaptation, as discussed

in [37, 38, 39, 40].

2. Actions are a priori assigned to operators or robots, depending on their

different capabilities as far as object manipulation is concerned, in a way

maybe similar to what has been done in [41]. An on the fly assignment to

the operator or the robot would increase to a great extent the flexibility

of the cooperation process.

3. Safety considerations in FlexHRC are considered only to a limited extent.

Different safety strategies including the detection of sudden, unwanted

contacts, as well as active or adaptive safety measures are investigated

extensively in the literature [42, 43]. Currently, the adoption of safety

measurements in FlexHRC is limited to the possible adoption of specific

tasks with high priority in the control framework.

4. FlexHRC does not consider activities where physical cooperation and pur-

posive contacts are chiefly needed. Currently, cooperation models take a

form of turn-taking, with a few implicit turns where physical interaction

is necessary. However, an explicit account of such tasks is of the utmost

important in a whole range of real-world shop-floor activities.

5. The use of AND/OR graphs limits the allowed cooperation paths to a few

ones, which are designed through common sense and human experience,

whereas more versatile action planning techniques may be adopted. On

the one hand, an AND/OR graph leaves to the operator the responsibil-

ity to decide which cooperation path to pursue among the allowed ones,

which makes sense in shop-floor scenarios. On the other hand, planning
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techniques are in principle more flexible, but at the expense of being un-

predictable to a large extent, and leading to non intuitive cooperation

paths, which are solely determined on the basis of plan optimality.

Finally, it is noteworthy that an important aspect to be addressed is the in-

tersection between Task Priority control, motion planning and execution, as well

as the AND/OR graph. In particular, determining what to do when gestures

are not properly recognized, or detecting when the motion controller is stuck

in a local minimum, and the development of motion or whole task re-planning

for error recovery constitute an important research topic, as demonstrated by a

number of contributions in the field [17, 25].
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