1,886 research outputs found

    The large‐scale freshwater cycle of the Arctic

    Get PDF
    This paper synthesizes our understanding of the Arctic\u27s large‐scale freshwater cycle. It combines terrestrial and oceanic observations with insights gained from the ERA‐40 reanalysis and land surface and ice‐ocean models. Annual mean freshwater input to the Arctic Ocean is dominated by river discharge (38%), inflow through Bering Strait (30%), and net precipitation (24%). Total freshwater export from the Arctic Ocean to the North Atlantic is dominated by transports through the Canadian Arctic Archipelago (35%) and via Fram Strait as liquid (26%) and sea ice (25%). All terms are computed relative to a reference salinity of 34.8. Compared to earlier estimates, our budget features larger import of freshwater through Bering Strait and larger liquid phase export through Fram Strait. While there is no reason to expect a steady state, error analysis indicates that the difference between annual mean oceanic inflows and outflows (∼8% of the total inflow) is indistinguishable from zero. Freshwater in the Arctic Ocean has a mean residence time of about a decade. This is understood in that annual freshwater input, while large (∼8500 km3), is an order of magnitude smaller than oceanic freshwater storage of ∼84,000 km3. Freshwater in the atmosphere, as water vapor, has a residence time of about a week. Seasonality in Arctic Ocean freshwater storage is nevertheless highly uncertain, reflecting both sparse hydrographic data and insufficient information on sea ice volume. Uncertainties mask seasonal storage changes forced by freshwater fluxes. Of flux terms with sufficient data for analysis, Fram Strait ice outflow shows the largest interannual variability

    AtlantOS Workshop Report

    Get PDF
    Report of AtlantOS-OECD Scoping Workshop on the Economic Potential of Data from Ocean Observatorie

    Capacities and Gap analysis

    Get PDF
    Analysis of the capacities and gaps of the present Atlantic Ocean Observing Syste

    Doctor of Philosophy

    Get PDF
    dissertationPeriodic temperature measurements in the DOI/GTN-P Deep Borehole Array on the western Arctic Slope of Alaska have shown a strong near-surface permafrost warming over the last 40 years, particularly since ∼ 1990. Due to the manner in which these deep wells were drilled, the portion of the observed permafrost warming caused by climate change has remained unclear. Other factors that have strongly influenced temperatures near the wellbores include the heat deposited into permafrost during drilling and local-landscape changes associated with drilling operations (creation of reserve pits and drill pads). Multidimensional heat-transfer models capable of assessing the magnitude of the drilling and local-landscape disturbances near the wellbores have not been available. For the western Arctic Slope, such models must be capable of simulating heat-transfer processes in layered fine-grained mudrocks whose thermal properties are highly nonlinear due to the occurrence of unfrozen water at temperatures well below 0°C. An assessment of the drilling and landscape-change effects also requires knowledge of the specific thermophysical properties occurring at the well sites. Little information has been available about these properties on the western Arctic Slope. To establish the portion of the observed permafrost warming related to drilling and landscape-change effects, multidimensional (2-D cylindrical, 3-D cartesian) numerical heat-transfer models were created that simulate heat flow in layered heterogenous materials surrounding a wellbore, phase changes, and the unfrozen water properties of a wide range of fine-grained sediments. Using these models in conjunction with the borehole temperature measurements, the mean thermophysical properties of permafrost rock units on the western Arctic Slope were determined using an optimization process. Incorporation of local meteorological information into the optimization allows a more refined estimate of the thermal properties to be determined at a well site. Applying this methodology to the East Simpson #1 well on the Beaufort Sea coast (70°55.046'N, 154°37.286'W), the freezing point of permafrost is found to be -1.05°C at this site and thermal diffusivities range 0.22-0.40 × 10 -6 m2 s-1. Accounting for the drilling and landscape-change effects, tundra adjacent to East Simpson is found to have warmed 5.1 K since the mid-1880s. Of this, 3.1 K (60%) of the warming has occurred since 1970

    RV Knorr Cruise KN200-4, 13 Apr-03 May 2011. RAPID Mooring Cruise

    Get PDF
    This report describes the mooring operations conducted during RV Knorr cruise KN200-4 between 13 April and 3 May 2011. These mooring operations were completed as part of the United Kingdom Natural Environment Research Council (NERC) funded RAPID-WATCH Programme to monitor the Atlantic Meridional Overturning Circulation (MOC) at 26.5°N. The primary purpose on this cruise for the UK team was to service the RAPID Western Boundary moorings while the US teams worked on the Western Boundary Time Series project and the RAPID-MOCHA Western Boundary moorings. Cruise KN200-4 was from Port Everglades, Florida to Port Everglades, Florida and covered the Western Boundary moorings deployed on RB0901 and OC459. This cruise was the ninth annual refurbishment of the Western Boundary section of an array of moorings deployed across the Atlantic in order to continuously observe the MOC. This array will be further refined and refurbished during subsequent years. The instruments deployed on the array consist of a variety of current meters, bottom pressure recorders, and CTD loggers, which, combined with time series measurements of the Florida Straits Current and wind stress estimates, will be used to determine the strength and structure of the MOC at 26.5°N. (http://www.noc.soton.ac.uk/rapid

    Expedition Programme PS138

    Get PDF

    Global in situ observations of essential climate and ocean variables at the air–sea interface

    Get PDF
    The air–sea interface is a key gateway in the Earth system. It is where the atmosphere sets the ocean in motion, climate/weather-relevant air–sea processes occur, and pollutants (i.e., plastic, anthropogenic carbon dioxide, radioactive/chemical waste) enter the sea. Hence, accurate estimates and forecasts of physical and biogeochemical processes at this interface are critical for sustainable blue economy planning, growth, and disaster mitigation. Such estimates and forecasts rely on accurate and integrated in situ and satellite surface observations. High-impact uses of ocean surface observations of essential ocean/climate variables (EOVs/ECVs) include (1) assimilation into/validation of weather, ocean, and climate forecast models to improve their skill, impact, and value; (2) ocean physics studies (i.e., heat, momentum, freshwater, and biogeochemical air–sea fluxes) to further our understanding and parameterization of air–sea processes; and (3) calibration and validation of satellite ocean products (i.e., currents, temperature, salinity, sea level, ocean color, wind, and waves). We review strengths and limitations, impacts, and sustainability of in situ ocean surface observations of several ECVs and EOVs. We draw a 10-year vision of the global ocean surface observing network for improved synergy and integration with other observing systems (e.g., satellites), for modeling/forecast efforts, and for a better ocean observing governance. The context is both the applications listed above and the guidelines of frameworks such as the Global Ocean Observing System (GOOS) and Global Climate Observing System (GCOS) (both co-sponsored by the Intergovernmental Oceanographic Commission of UNESCO, IOC–UNESCO; the World Meteorological Organization, WMO; the United Nations Environment Programme, UNEP; and the International Science Council, ISC). Networks of multiparametric platforms, such as the global drifter array, offer opportunities for new and improved in situ observations. Advances in sensor technology (e.g., low-cost wave sensors), high-throughput communications, evolving cyberinfrastructures, and data information systems with potential to improve the scope, efficiency, integration, and sustainability of the ocean surface observing system are explored

    Quarterly literature review of the remote sensing of natural resources

    Get PDF
    The Technology Application Center reviewed abstracted literature sources, and selected document data and data gathering techniques which were performed or obtained remotely from space, aircraft or groundbased stations. All of the documentation was related to remote sensing sensors or the remote sensing of the natural resources. Sensors were primarily those operating within the 10 to the minus 8 power to 1 meter wavelength band. Included are NASA Tech Briefs, ARAC Industrial Applications Reports, U.S. Navy Technical Reports, U.S. Patent reports, and other technical articles and reports
    corecore