6 research outputs found

    A comparison study of the numerical integration methods in the trajectory tracking application of redundant robot manipulators

    Get PDF
    Differential kinematic has a wide range application area in robot kinematics. The main advantage of the differential kinematic is that it can be easily implemented any kind of mechanisms. In differential kinematic method, Jacobian is used as a mapping operator in the velocity space. The joint velocities are required to be integrated to obtain the pose of the robot manipulator. This integration can be evaluated by using numerical integration methods, since the inverse kinematic equations are highly complex and nonlinear. Thus, the performances of the numerical integration methods affect the trajectory tracking application. This paper compares the performances of numerical integration methods in the trajectory tracking application of redundant robot manipulators. Four different and widely used numerical integration methods are implemented to the trajectory tracking application of the 7-DOF redundant robot manipulator named PA-10 and simulation results are given

    Inverse kinematics of a 6 DoF human upper limb using ANFIS and ANN for anticipatory actuation in ADL-based physical Neurorehabilitation

    Full text link
    Objective: This research is focused in the creation and validation of a solution to the inverse kinematics problem for a 6 degrees of freedom human upper limb. This system is intended to work within a realtime dysfunctional motion prediction system that allows anticipatory actuation in physical Neurorehabilitation under the assisted-as-needed paradigm. For this purpose, a multilayer perceptron-based and an ANFIS-based solution to the inverse kinematics problem are evaluated. Materials and methods: Both the multilayer perceptron-based and the ANFIS-based inverse kinematics methods have been trained with three-dimensional Cartesian positions corresponding to the end-effector of healthy human upper limbs that execute two different activities of the daily life: "serving water from a jar" and "picking up a bottle". Validation of the proposed methodologies has been performed by a 10 fold cross-validation procedure. Results: Once trained, the systems are able to map 3D positions of the end-effector to the corresponding healthy biomechanical configurations. A high mean correlation coefficient and a low root mean squared error have been found for both the multilayer perceptron and ANFIS-based methods. Conclusions: The obtained results indicate that both systems effectively solve the inverse kinematics problem, but, due to its low computational load, crucial in real-time applications, along with its high performance, a multilayer perceptron-based solution, consisting in 3 input neurons, 1 hidden layer with 3 neurons and 6 output neurons has been considered the most appropriated for the target application

    Artificial neural network-based kinematics Jacobian solution for serial manipulator passing through singular configurations

    Get PDF
    Singularities and uncertainties in arm configurations are the main problems in kinematics robot control resulting from applying robot model, a solution based on using Artificial Neural Network (ANN) is proposed here. The main idea of this approach is the use of an ANN to learn the robot system characteristics rather than having to specify an explicit robot system model. Despite the fact that this is very difficult in practice, training data were recorded experimentally from sensors fixed on each joint for a six Degrees of Freedom (DOF) industrial robot. The network was designed to have one hidden layer, where the input were the Cartesian positions along the X, Y and Z coordinates, the orientation according to the RPY representation and the linear velocity of the end-effector while the output were the angular position and velocities for each joint, In a free-of-obstacles workspace, off-line smooth geometric paths in the joint space of the manipulator are obtained. The resulting network was tested for a new set of data that has never been introduced to the network before these data were recorded in the singular configurations, in order to show the generality and efficiency of the proposed approach, and then testing results were verified experimentally

    Inverse Kinematic Analysis of Robot Manipulators

    Get PDF
    An important part of industrial robot manipulators is to achieve desired position and orientation of end effector or tool so as to complete the pre-specified task. To achieve the above stated goal one should have the sound knowledge of inverse kinematic problem. The problem of getting inverse kinematic solution has been on the outline of various researchers and is deliberated as thorough researched and mature problem. There are many fields of applications of robot manipulators to execute the given tasks such as material handling, pick-n-place, planetary and undersea explorations, space manipulation, and hazardous field etc. Moreover, medical field robotics catches applications in rehabilitation and surgery that involve kinematic, dynamic and control operations. Therefore, industrial robot manipulators are required to have proper knowledge of its joint variables as well as understanding of kinematic parameters. The motion of the end effector or manipulator is controlled by their joint actuator and this produces the required motion in each joints. Therefore, the controller should always supply an accurate value of joint variables analogous to the end effector position. Even though industrial robots are in the advanced stage, some of the basic problems in kinematics are still unsolved and constitute an active focus for research. Among these unsolved problems, the direct kinematics problem for parallel mechanism and inverse kinematics for serial chains constitute a decent share of research domain. The forward kinematics of robot manipulator is simpler problem and it has unique or closed form solution. The forward kinematics can be given by the conversion of joint space to Cartesian space of the manipulator. On the other hand inverse kinematics can be determined by the conversion of Cartesian space to joint space. The inverse kinematic of the robot manipulator does not provide the closed form solution. Hence, industrial manipulator can achieve a desired task or end effector position in more than one configuration. Therefore, to achieve exact solution of the joint variables has been the main concern to the researchers. A brief introduction of industrial robot manipulators, evolution and classification is presented. The basic configurations of robot manipulator are demonstrated and their benefits and drawbacks are deliberated along with the applications. The difficulties to solve forward and inverse kinematics of robot manipulator are discussed and solution of inverse kinematic is introduced through conventional methods. In order to accomplish the desired objective of the work and attain the solution of inverse kinematic problem an efficient study of the existing tools and techniques has been done. A review of literature survey and various tools used to solve inverse kinematic problem on different aspects is discussed. The various approaches of inverse kinematic solution is categorized in four sections namely structural analysis of mechanism, conventional approaches, intelligence or soft computing approaches and optimization based approaches. A portion of important and more significant literatures are thoroughly discussed and brief investigation is made on conclusions and gaps with respect to the inverse kinematic solution of industrial robot manipulators. Based on the survey of tools and techniques used for the kinematic analysis the broad objective of the present research work is presented as; to carry out the kinematic analyses of different configurations of industrial robot manipulators. The mathematical modelling of selected robot manipulator using existing tools and techniques has to be made for the comparative study of proposed method. On the other hand, development of new algorithm and their mathematical modelling for the solution of inverse kinematic problem has to be made for the analysis of quality and efficiency of the obtained solutions. Therefore, the study of appropriate tools and techniques used for the solution of inverse kinematic problems and comparison with proposed method is considered. Moreover, recommendation of the appropriate method for the solution of inverse kinematic problem is presented in the work. Apart from the forward kinematic analysis, the inverse kinematic analysis is quite complex, due to its non-linear formulations and having multiple solutions. There is no unique solution for the inverse kinematics thus necessitating application of appropriate predictive models from the soft computing domain. Artificial neural network (ANN) can be gainfully used to yield the desired results. Therefore, in the present work several models of artificial neural network (ANN) are used for the solution of the inverse kinematic problem. This model of ANN does not rely on higher mathematical formulations and are adept to solve NP-hard, non-linear and higher degree of polynomial equations. Although intelligent approaches are not new in this field but some selected models of ANN and their hybridization has been presented for the comparative evaluation of inverse kinematic. The hybridization scheme of ANN and an investigation has been made on accuracies of adopted algorithms. On the other hand, any Optimization algorithms which are capable of solving various multimodal functions can be implemented to solve the inverse kinematic problem. To overcome the problem of conventional tool and intelligent based method the optimization based approach can be implemented. In general, the optimization based approaches are more stable and often converge to the global solution. The major problem of ANN based approaches are its slow convergence and often stuck in local optimum point. Therefore, in present work different optimization based approaches are considered. The formulation of the objective function and associated constrained are discussed thoroughly. The comparison of all adopted algorithms on the basis of number of solutions, mathematical operations and computational time has been presented. The thesis concludes the summary with contributions and scope of the future research work

    Reconfigurable Validation Model for Identifying Kinematic Singularities and Reach Conditions for Articulated Robots and Machine Tools

    Get PDF
    Automation has led to industrial robots facilitating a wide array of high speed, endurance, and precision operations undertaken in the manufacturing industry today. An acceptable level of functioning and control is therefore vital to the efficacy and successful implementation of such manipulators. This research presents a comprehensive analytical tool for downstream optimization of manipulator design, functionality, and performance. The proposed model is reconfigurable and allows for modelling and validation of different industrial robots. Unique 3D visual models for a manipulator workspace and kinematic singularities are developed to gain an understanding into the task space and reach conditions of the manipulator\u27s end-effector. The developed algorithm also presents a non-conventional and computationally inexpensive solution to the inverse kinematics problem through the use Artificial Neural Networks. Application of the proposed technique is further extended to aid in development of path planning models for a uniform, continuous, and singularity free motion
    corecore