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Abstract

Differential kinematic has a wide range application area

in robot kinematics. The main advantage of the differential 

kinematic is that it can be easily implemented any kind of 

mechanisms.  In differential kinematic method, Jacobian is 

used as a mapping operator in the velocity space. The joint 

velocities are required to be integrated to obtain the pose of 

the robot manipulator. This integration can be evaluated by 

using numerical integration methods, since the inverse 

kinematic equations are highly complex and nonlinear. 

Thus, the performances of the numerical integration 

methods affect the trajectory tracking application. This 

paper compares the performances of numerical integration 

methods in the trajectory tracking application of redundant 

robot manipulators. Four different and widely used 

numerical integration methods are implemented to the 

trajectory tracking application of the 7-DOF redundant 

robot manipulator named PA-10 and simulation results are 

given. 

1. Introduction

Redundant robot manipulators have wide range application 

areas in many robotic applications such as obstacle avoidance, 

singularity avoidance, complex manipulation, service robots and 

humanoids [1, 2, 3 and 4]. The main advantage of redundant 

robot manipulators is that their configurations offer the potential 

to overcome many difficulties by increased manipulation ability 

and versatility [5 and 6]. However the redundant robot 

manipulators have many advantages, they have quite complex 

control structures and suffer from singularity problem. 

A fundamental research task of redundant robot manipulation 

is to find out the appropriate way to control the system of 

redundant robot manipulator in the work space at any stage of 

the trajectory tracking. This control can be achieved by using 

dynamic or kinematic models based solutions. However a

dynamic model based solutions give more realistic results than 

kinematic based solutions, they have quite complex structures. 

Therefore, kinematic model based solutions are generally used 

in many robotic applications which do not require force and 

torque controls. 

Differential kinematic is one of the most important solution 

methods to cope with the redundancy problem [7, 8]. The main 

advantage of the differential kinematic is that it can be easily 

implemented any kind of mechanism.  Also, accurate and 

efficient kinematic based trajectory tracking applications can be 

easily implemented by using this method. Jacobian is used as a 

velocity mapping operator which transforms the joint velocities 

into the Cartesian linear and angular velocities. A highly 

complex and nonlinear inverse kinematic problem can be 

numerically solved by just inversing the Jacobian matrix 

operator. However, differential kinematic based solutions can be 

easily implemented any kind of mechanisms, it has some 

disadvantages. The first one is that differential kinematic based 

solutions are locally linearized approximation of the inverse 

kinematic problem [9]. The second one is that it has heavy 

computational calculation and big computational time because 

of numerical iterative approach [10]. And the last disadvantage 

of this method is that, it requires numerical integration which 

suffers from numerical errors, to obtain the joint positions from 

the joint velocities [11]. The numerical integration of joint 

velocities to compute joint positions causes a numerical drift 

which in turn corresponds to a task space error [12-13]. An 

effective inversion of differential kinematics mappings can be 

realized by adopting the so-called closed-loop inverse 

kinematics algorithms which are based on the use of a feedback 

correction term on the task space error [14]. However the drift-

phenomena can be overcome by using the closed-loop inverse 

kinematic algorithm, the performance of the algorithm is still 

extremely affected by the chosen numerical integration method.

In this paper, a performance analysis of the numerical 

integration methods in the trajectory tracking application of the 

redundant robot manipulators is presented in detail. Two single-

step numerical integration methods which are called Euler 

Integration and Runge-Kutta 4 and also two multi-step 

numerical integration methods which are called Predictor & 

Corrector, and Adams-Moulton methods are implemented into 

the differential kinematic based solution of the trajectory 

tracking application of the redundant robot manipulators. These 

methods are compared with respect to computational efficiency 

and accuracy. Simulation results are given in section V. This 

paper is also included the differential robot kinematics in section 

II, numerical integration methods in section III, trajectory 

tracking algorithms in section IV. Conclusions and future works 

are drawn in the final section.

2. Differential Kinematic Model

It is very hard even impossible to find the analytical solutions 

of the inverse kinematic problem of the redundant robot 

manipulators except the limited special structures or very easy 

mechanisms. Therefore, differential kinematic based solution of 

the inverse kinematic problem of the redundant robot 

manipulators is widely used [15]. In the differential kinematic 

based solution, a velocity mapping which transforms the 

Cartesian linear and angular velocities of the robot 

manipulator’s end effector into the joint velocities, is used as 

follows,
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where 1 2 nq q q1 2 n1 2 n1 2q q1 21 2q nq indicates the joint angles and 

1 2 nq q q1 2 n1 2 n1 2q q1 21 2q q qq q q1 21 2q q1 21 2 nqnq indicates the joint velocities.
gJ q

indicates generalized inverse of the Jacobian matrix and tipV

indicates the linear and angular velocities of the robot 

manipulator’s end effector. 

Jacobian can be obtained by using analytical or geometric 

approaches which can be found in many basic robotic books 

[16-17]. The joint angles can be found by integrating the joint 

velocities given by

0 0

t t
gdt J dt

0 00 00 00 00 0

t tt tt tt tt t

J dt
t tt t

gJ dgJ dJ dg
tipq q q Vdt J dq qdt J d (2)

3. Numerical Integration of the Joint Velocities

The joint angles are obtained by numerically integrating the 

joint velocities. Therefore, the chosen numerical integration 

method extremely affects the computational efficiency and 

accuracy of the differential kinematic based trajectory tracking 

algorithm. 

Here, several numerical integration methods are introduced. 

These integration methods can be divided into two main 

different approaches. These are single-step numerical integration 

methods which called Explicit Euler Integration and Runge-

Kutta 4 and multi-step numerical integration methods which 

called Euler Trapezoidal Predictor & Corrector, and Adams 

Moulton methods. The formulations of these integration 

methods are as follows, [18-19]

3.1 Explicit Euler Integration Method

Explicit Euler integration is the simplest numerical integration 

method. It can be formulated as follows

1k k kt t t tk k kk k kk k kk k k1t tk k kk k kk k kk k k1t tk k kk k kk k k1k k kt tk k kt tk k kk k kt tk k kk k kk k kk k kk k kt tt tt tk k kk k kk k kk k kq q qk k kt tt tt tt tt tk k kk k kk k kk k kk k kk k k . (3) 

where g
k k kt J t tk k k

g
k k kt tg
k k kk k ktipq q V

g
q qk k kt Jk k kk k kt Jt Jt J g

k k kk k kk k kk k k (4) 

The strengths of this method are that it can be easily 

implemented and also it has a very computationally light

equation. However, the accuracy of this method is quite poor. 

3.2 Runge-Kutta 4 Method

The formulation of the fourth order Runge-Kutta numerical 

integration method is as follows, 
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This method requires four calculations of the generalized 

inverse Jacobian for each step, so that the computational load of 

this method is higher than Explicit Euler Integration method.

This extra computation improves the numerical integration 

results and the solutions which are more accurate and stable than 

Explicit Euler Integration method based solutions, can be 

derived by using this method. 

3.3 Euler Trapezoidal Predictor & Corrector Method

Euler Trapezoidal Predictor & Corrector method is an 

algorithm that proceeds in two steps. In the first step, a rough 

approximation of the desired quantity is calculated. And the 

second step, the initial approximation is refined using another 

means. The formulation of this method is as follows,

1 1
ˆ

2
k k k k

t
t t t t1 11 11 1

2
k k kk k kk k kk k k k1 11 1

2
1 11 1t tk k kk k kk k kk k kk k k1 1t tk k kk k kk k kk k k1 1

t
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t
1 11 11 11 11 1t tt tt tk k kk k kk k kk k kk k kk k k1 11 11 11 11 11 11 1q q q qt t1 1k1 11 1t tkk1 11 11 11 1t tt tt tt tt tt tt t1 11 11 11 1t tt tt tt tk k kk k kk k k1 11 11 11 11 11 11 1t tˆt tt t1 1t tt t1 11 1           (8)

where ˆ
ktq̂ ktq are the predicted joint velocities in which

                          1
ˆ ˆ ˆ
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Euler Trapezoidal Predictor & Corrector method is also 

requires two computation of the generalized inverse of Jacobian 

operator so that the computational load increases. It gives more 

accurate and stable results than Euler Integration method.

3.4 Adams-Moulton Method (Fourth Order)

Adams-Moulten is a widely used multi-step implicit numerical 

integration method. Here, Adams-Bashforth algorithm is used in 

the numerical integration of the predicted joint velocities and 

Adams-Moulton algorithm is used in the numerical integration 

of the corrected joint velocities. It can be formulated as follows,

Predictor Algorithm (Adams-Bashforth Algorithm)

If 1kt t1t tt tt tt t1 , then 1
ˆ ˆ ˆ
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If 4kt t4t tt tt tt tt t4 , then 
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Corrector Algorithm (Adams Moulton Method)

If 1kt t1t tt tt tt t1 then, 1 1
ˆ

2
k k k k

t
t t t t

2
k k kk k kk k k k1 11 11 11 1

2
1 11 1t tk k kk k kk k kk k kk k k1 1t tk k kk k kk k kk k k1 1

t
k1 11 11 11 11 11 1t tt t

t
1 11 11 11 11 11 11 11 1t tt tt tt tk k kk k kk k kk k kk k k1 11 11 11 11 11 11 1q q q qt tt tt tt tˆ t tt tt tt tt tt tk k kk k kk k k1 11 11 11 1t tt tkt tkkt tt tt tt tt tt t (15)

If 2kt t2t tt tt t then, 

1 1 1
ˆ5 8

12
k k k k k

t
t t t t t1 1 1

12
k k kk k kk k kk k k k k1 1 11 1 11 1 11 1 11 1 1

12
1 1 11 1 1t tk k kk k kk k kk k k1 1 1t tk k kk k kk k k1 1 1

t
5 8t t5 8t t1 1 11 1 11 1 11 1 11 1 11 1 11 1 1t t5 8t t 5 8

t
5 85 81 1 11 1 11 1 11 1 11 1 11 1 11 1 1t tt t t t5 8k k kk k kk k kk k kk k k1 1 11 1 11 1 11 1 11 1 11 1 11 1 15 81 1 11 1 11 1 11 1 11 1 11 1 11 1 15 8q q q q q5 85 85 85 85 85 8ˆ5 8ˆ5 85 85 85 85 85 85 85 85 85 85 85 85 85 81 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 15 85 85 8t t t1 1 11 1 11 1 1k k1 1 11 1 1t t tk kk k1 1 11 1 11 1 11 1 11 1 1t tt tk kk kk k1 1 11 1 11 1 11 1 11 1 11 1 1            (16)

If 3kt t3t tt tt tt tt t3 then, 

1 1 1 2
ˆ9 19 5

24
k k k k k k

t
t t t t t t 2

24
k k kk k kk k kk k k k k k1 1 11 1 11 1 11 1 1

24
1 1 11 1 1t tk k kk k kk k kk k k1 1 1t tk k kk k kk k kk k k1 1 1

t
9 19 59 19 5t t 21 1 11 1 11 1 11 1 11 1 11 1 19 19 5t t 9 1

t
9 19 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 1t tt tt tt t 9 19 5k k kk k kk k kk k kk k kk k k1 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 19 19 51 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 19 1q q q q q q9 19 19 19 19 19 1ˆ9 1ˆ9 19 19 19 19 19 19 19 19 19 19 19 19 19 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 19 19 19 19 59 59 59 5 t t9 59 5 2k k kt tt tt t9 59 5k k kk k k1 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 1t tt tt t9 59 59 5k k kk k kk k kk k kk k kk k k1 1 11 1 11 1 11 1 19 59 59 59 59 59 51 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 1

(17)

where ˆ
ktq̂ ktq are the predicted joint velocities             

Here, we use the fourth order Adams-Moulten algorithm that

is the most widely used one. This method requires two step 

backward values of joint velocities and one step forward 

predicted joint velocities. It also requires two computations of 

generalized inverse of Jacobian operator for each step so that 

computational load increases. This extra computation improves 

the numerical integration results and the solutions which are 

more accurate than Adams-Bashforth based solutions, can be 

derived by using this method. 

4. Trajectory Tracking Application

The trajectory tracking application of the redundant robot 

manipulator is implemented by using the following two 

simulink block diagrams which are shown in figures 1 and 2. 

The first one shows us the trajectory tracking application by 

using the explicit numerical integration methods which are Euler 

Integration, and Runge-Kutta 4. In this application, a desired 

trajectory is generated for the end effector of the robot arm in 

the Desired Trajectory block and it is transferred to the Jacobian 

block. In the Jacobian block, the joint velocities are obtained by 

using the velocity mapping. Then the joint velocities are 

transferred to the Numerical Integration block. In the Numerical 

Integration block, explicit numerical integration methods are 

used to obtain the joint angles and these angles are transferred to 

the Forward Kinematics block. In the Forward Kinematics 

block, we obtain the pose of the robot manipulator’s end 

effector and each robot manipulator’s joints. The pose of the 

each robot manipulator’s joints are required to obtain the 

Jacobian operator iteratively and the pose of the end effector is 

required to obtain the Jacobian operator iteratively and also the 

closed-loop kinematic structure. The closed loop inverse 

kinematic solution which can be shown in figure 1 is used to 

cope with the drift phenomena [14]. The second simulink block 

diagram shows us the trajectory tracking application by using 

the implicit numerical integration methods which are Euler 

Trapezoidal Predictor & Corrector and Adams-Moulton

numerical integration methods. In the second simulink diagram, 

both trajectory tracking algorithms are obtained by using the 

first simulink diagram. 

Fig.1. Simulink Block Diagram of Trajectory Tracking 

Simulation Application

Fig.2. Simulink Block Diagram of Predictor Based Trajectory 

Tracking Simulation Application

5. Simulation Results

PA-10 redundant robot manipulator is used for the 

simulation studies. PA-10 robot arm features an articulated arm 

with 7 degrees of freedom for high flexibility. It spreads a wide 

range area in many robot applications. The simulation study of 

the trajectory tracking application is performed by using Matlab 

and the animation application is performed by using virtual 

reality toolbox (VRML) of Matlab which can be seen in figure 

3. 

Fig.3. PA-10 Robot arm animation in virtual reality toolbox 

A circular trajectory tracking application is implemented by 

using the proposed numerical integration methods and the 

algorithms are compared with respect to their computational 

efficiency and accuracy. The computational efficiency is very 

important requirement in the real time numerical integration 

applications. The computational efficiency results can be seen in 

figure 4.
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Fig.4. Simulation times of the numerical integration methods

algorithms (second)

As it can be seen from the figure 4 the most computationally 

efficient method is Euler integration and the least 

computationally efficient method is Runge-Kutta 4. Accuracy is 

the other important requirement in the numerical integration 

applications. The accuracy results of the proposed numerical 

integration methods are given in the figures 5, 6, 7 and 8.

Fig.5. Total orientation and position errors (radian and meter) of 

the end effector for the Explicit Euler Integration method and 

the sampling rates are (a) 100t 100t ms (b) 10t 10t ms

Fig.6. Total orientation and position errors (radian and meter) of 

the end effector for the Runge-Kutta 4 and the sampling rates 

are (a) 100t 100t ms (b) 10t 10t ms

Fig.7. Total orientation and position errors (radian and meter) of 

the end effector for the Euler Trapezoidal Predictor & Corrector 

method and the sampling rates are (a) 100t 100t ms (b) 10t 10t
ms

Fig.8. Total orientation and position errors (radian and meter) of 

the end effector for the fourth order Adams-Moulten method

and the sampling rates are (a) 100t 100t ms (b) 10t 10t ms

As it can be seen from the figures 5, 6, 7 and 8, the most 

accurate method is Runge-Kutta 4 and the least accurate method 

is Euler integration. Euler Integration based solution gives poor 

accuracy results in the trajectory tracking application. The 

results of this method can be seen in the figure 5. Small 

sampling rates which increase the computational loads of the 

trajectory tracking algorithm should be used to improve the 

accuracy of the numerical integration method.

Fig.9. Total orientation and position errors (radian and meter) of 

the end effector at sampling rates 1t 1t s for (a) Explicit Euler 

Integration (b) Runge-Kutta 4

Fig.10. Total orientation and position errors (radian and meter) 

of the end effector at sampling rates 1t 1t s for (a) Euler 

Trapezoidal Predictor & Corrector (b) Adams-Moulten

Beside the accuracy, sampling rate of the numerical 

integration method affects the stability of the system. If the 

sampling rate of the numerical integration method is too big
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then, the system may be unstable. The instability depends on 

both of the sampling rate and chosen numerical integration 

method. As it can be seen from the figure 10 Explicit Euler 

Integration based solution makes the system unstable and the

errors get bigger when the sampling rate is 1t 1t second.

However, the result of Runge-Kutta 4 based solution is stable 

and the error is about
410 4

. In figure 11, the performance of the 

Euler Trapezoidal Predictor & Corrector and Adams-Moulton 

numerical integration methods can be seen when the sampling 

rate is 1t 1t second. As it can be seen from the figure 11, both 

of the numerical integration methods give poor accuracy results 

at 1t 1t second, however they still satisfy the stability.

6. Conclusion

In this paper, we analyzed the performance of numerical 

integration methods in the trajectory tracking application of the

redundant robot manipulators. The performance of the trajectory 

tracking algorithm is drastically affected by the chosen 

numerical integration method. For instance, more accurate and 

more computationally efficient trajectory tracking algorithm can 

be obtained by changing the numerical integration methods. 

Even, the trajectory tracking algorithm may become unstable

because of the chosen numerical integration method. Here, we 

compared four different numerical integration methods with 

respect to computational efficiency and accuracy. Among these 

methods, Runge-Kutta and Adams-Moulton numerical 

integration methods give satisfactory results. When we compare 

the Runge-Kutta and Adams-Moulton methods, Runge-Kutta 

based algorithm gives more accurate and stable results however; 

they require extra computation. Thus, the Adams-Moulton 

method is more computationally efficient than Runge-Kutta 

method. In the trajectory tracking application, Runge-Kutta 

based algorithm gives quite satisfactory results when the 

sampling rates are high. As the sampling rates increase, 

computational load of the trajectory tracking algorithm 

decreases. However Runge-Kutta based algorithms require extra 

computations and they have high computational load, the 

satisfactory results at high sampling rates may reduce even 

eliminate this disadvantage. 
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