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 ABSTRACT 

Automation has led to industrial robots facilitating a wide array of high speed, 

endurance, and precision operations undertaken in the manufacturing industry 

today. An acceptable level of functioning and control is therefore vital to the 

efficacy and successful implementation of such manipulators. This research 

presents a comprehensive analytical tool for downstream optimization of 

manipulator design, functionality, and performance. The proposed model is 

reconfigurable and allows for modelling and validation of different industrial 

robots. Unique 3D visual models for a manipulator workspace and kinematic 

singularities are developed to gain an understanding into the task space and reach 

conditions of the manipulator’s end-effector. The developed algorithm also 

presents a non-conventional and computationally inexpensive solution to the 

inverse kinematics problem through the use Artificial Neural Networks. 

Application of the proposed technique is further extended to aid in development of 

path planning models for a uniform, continuous, and singularity free motion.  
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 CHAPTER 1 

INTRODUCTION 

1.1 Background 

Automation has led to industrial manipulators facilitating a wide array of 

operations such as assembly, inspection, material handling, processing etc. undertaken in 

the manufacturing industry today. A comprehensive set of robot structures have since 

been designed and built to fulfill the industry needs. These multi-Degrees of Freedom 

(DOF) structures are highly complex in their form and control. Most manipulators used in 

the industry today are articulated with six or more rotational joints. This structural form 

provides the manipulators with a great deal of flexibility, dexterity, and an ability to reach 

every specific coordinate of their workspace in more than one configuration. An 

acceptable level of functioning and control is therefore vital to the efficacy and successful 

implementation of industrial manipulators since the aforementioned tasks are highly 

repetitive and in many cases not apt for humans.  

The initial steps in integrating manipulators, when planning for automation, 

includes their placement in an industrial setup based on the tasks they are required to 

perform. This is in direct correlation to the work envelope of each individual manipulator 

which dictates the working boundary of that manipulator. The total workspace of any 

multi-DOF manipulator is a finitely bounded 3-D space which is topologically complex 

and extremely challenging to visualize. In this total workspace, the true reachable 

workspace of a manipulator is a combination of various 3-D subset(s) that may or may 

not be mutually exclusive but are always collectively exhaustive.  Each of these subset(s) 

is representative of range of joint configurations of such a manipulator. It is therefore 

important to assess and analyze the work envelope that defines the reachability and 

functionality of a manipulator. This assessment subsequently helps to identify and map 

user requirements to specific needs for automation.  

A manipulator interacts with its environment (work envelope) through control of 

its joint space. The joint space of a manipulator entails all possible joint configurations of 

that manipulator. A 3-D work envelope is mapped in Cartesian space by the position and 

1 
 



 

orientation (pose) of a manipulator’s tool (end-effector) for every configuration in its 

joint space. Industrial tasks and processes are seldom built to be accessible within a pre-

positioned manipulator’s work envelope. On the contrary, the positioning of a 

manipulator in a work cell is determined to ensure accessibility of tasks and processes it 

is intended to serve. An inverse mapping from the Cartesian space to a manipulator’s 

joint space is thus required and is a challenging aspect of robot control.  

The inverse mapping helps devise a control algorithm for a set of tasks to be 

accomplished by a manipulator. Numerous techniques such as use of teach pendants, 

robot simulation software, manual trial and error etc. are currently used in the industry for 

determining joint configurations that may produce a required tool pose for a task. All 

these techniques utilize conventional geometric, iterative or analytical methods to 

develop a solution to the problem of positioning a manipulator’s end-effector. Often, the 

development of a closed form solution to this problem may be mathematically complex 

and computationally expensive, or may not even be possible. These limitations can be 

overcome by use of non-traditional approaches such as Artificial Neural Networks 

(ANNs). ANNs can identify and predict non-linear trends amongst data sets with and 

acceptable level of accuracy which makes them suitable for such an application.  

In development of control algorithms, there often arise configurations where two 

or more joints of a manipulator no longer independently control the position and 

orientation of a manipulator’s end-effector [1]. These configurations give rise to loci of 

subset(s) in a manipulator’s work envelope known as kinematic singularities. 

Singularities are hard to visualize and plan around since they might exist in one or more 

configurations for any point in a manipulator’s work envelope. For example, if a point 

(x,y,z) can be reached by a manipulator in ten different configurations, two of those ten 

joint configurations might be singular. Kinematic singularities arise because of the 

physical structure and attributes of a manipulator, and the relations between its joints. It is 

therefore important to design and build manipulators that can successfully avoid or 

minimize singularity configurations. This ensures robustness and accuracy of operations 

in manipulators [2]. 

2 
 



 

Experimenting with variability in manipulator design is a challenging problem 

since most manipulators used in the industry today are flexible 5/6-axis articulated 

robotic arms (with rotational joints). These robotic arms are inspired from the human 

arms and their ability to rotate, position, and orient hands as shown in Figure 1 [3]. 

 

Figure 1: Articulated Robot Arm Inspired from a Human Arm [3] 

Not many industrial manipulator designs exist that incorporate different joint 

types other than rotational joints. The use of articulated serial link robot arms in the 

industry today has evolved from gantry systems that could only be manipulated linearly 

along coordinate axes. The shift from traditional gantry (x-y-z) systems proved beneficial 

given the capability of flexible robot arms and their ability to handle complex tasks. 

However, through extensive research work and understanding into the functioning of 

flexible manipulators, the need for hybrid structures that incorporates a kinematic 

configuration of robot arms in conjunction with traditional Cartesian robots is realized.  

Industrial manipulator manufacturers and developers provide specialized 

simulation software packages such as Workspace, RobotStudio, RobotSim, MotoSim 

etc., which can only analyze one or more specific classes of articulated manipulators. 

However, such software lack the capability of providing the user the freedom to 

reconfigure the functionality based on the structure of a manipulator. These software are 

primarily analytical tools rather than design tools, and simply simulate pre-programmed 
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work envelopes and trajectories. Existing software also only allow the users to change the 

range of joints for a robot configuration thereby adding to or limiting the reach of a 

manipulator’s end-effector. The software also do not allow for any major change in 

topology and or volume of the work envelope. This inhibits the development of possible 

manipulator designs that may be specifically tailored and better suited to a customer 

need. The trend towards flexible manufacturing requires automation that can adapt to the 

same level of flexibility with decreasing cycle times and lead times, while increasing 

production capacity and quality [4]. It is therefore important to have manipulators that 

can adapt to a wide variety of tasks and processes with an acceptable level of 

functionality and control. 

1.2 Research Purpose 

Manipulators performance is critical to any industrial application. Manipulators 

however experience several challenges with respect to their performance that arise from 

their kinematic structure, reach limits within their workspace (work window), singularity 

conditions etc. A comprehensive analytical tool is therefore needed to optimize 

manipulator design and functionality without the need for extensive computation and 

planning. The purpose of this research is to develop a visual and analytical tool for the 

study of industrial manipulators. The methodology used for the development of this 

research tool is presented in Figure 2 below.  

 

Figure 2: Research Methodology 
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This research provides an understanding of manipulator workspace where singularity 

conditions are identified and visually represented for an insight into the true work 

window. A robust inverse kinematic model is also developed using ANNs that provides a 

singularity free end-effector path through the workspace of the manipulator. The 

developed tool is capable of realizing the following tasks: 

1. Reconfigurability:  A virtual design tool capable of altering its computational 

capabilities for various 6-DOF (6 axis) manipulator configurations. The physical 

structure of a manipulator represented using its joints and link configurations can 

be postulated and or edited by the user. These configuration parameters can be 

based on any specific functionality requirements. The design tool will aid the 

analyses of any possible combinations of two manipulator joints types, namely, 

revolute (rotational) and prismatic (translational).   

2. Workspace: A design tool that is capable of virtually generating, in 3-D space, 

and altering the topology and volume of a manipulator’s work envelope based on 

the manipulator’s kinematics structure. The reach parameters of a manipulator’s 

tool (end-effector) could also be controlled using this tool by constraining the 

joint limits. This design tool will subsequently aid in development of tool path 

generation, path planning, travel path validation and optimization of reach 

conditions within robot work cell(s).  

3. Inverse Kinematics: A design tool that is capable of computing a robust inverse 

kinematic solution for any input manipulator configuration provided by the user. 

The model will be able to present a solution that is computationally inexpensive 

unlike traditional geometric, iterative and analytical methods. The task will be 

achieved using non-conventional techniques (ANNs) that will predict an inverse 

kinematic solution within an acceptable confidence interval (90th-95th percentile).  

4. Jacobian Matrix: A design tool that is capable of computing a Jacobian matrix for 

aid in analysis and control of manipulator motion. This Jacobian matrix will also 

aid in determination of kinematic singularities. The design tool can also be used 

as a basis for development of dynamic equations of motion, and transformation of 

forces and torques from the manipulator’s end-effector to its joints [5]. 
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5. Kinematic Singularity: A design tool that is capable of visually identifying loci of 

all singular points in a manipulator’s workspace. The developed model can 

analyze and document every possible manipulator configuration for kinematic 

singularities. This will aid in development of a robust, continuous and singularity 

free control algorithm. 

6. Path Planning: A design tool that is capable of providing a singularity free end-

effector path through the workspace of a manipulator. The model can determine 

an error window in the joint space of the manipulator to provide a bounding space 

for inherent singularity. 

1.3 Research Limitations 

A mathematical model is developed in MATLAB platform for this research. All 

kinematic models i.e. the physical structure of manipulator joints and links have been 

visually represented in MATLAB through the use of robotic toolbox [6]. The model aids 

a user in development of the aforementioned research tasks. The following constraints 

define the limitations on the computational capability of the model: 

1. Maximum Permissible Number of Joints (DOF): Six  

2. Manipulator Type: Open Ended Kinematic Chains 

3. Joint Types Permissible: Revolute (Rotational) and Prismatic (Translational) 
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 CHAPTER 2 

LITERATURE REVIEW 

Significant research has been dedicated in the past towards the modelling of industrial 

manipulators. Majority of this research focuses on development and optimization of 

manipulator design and functionality in an industrial setting. A manipulator, because of 

its kinematic structure and joint configuration, poses inherent challenges such as 

kinematic singularities, complex inverse kinematic solution(s), trajectory planning, and 

travel path validation. Addressing such issues is therefore important for enhancing the 

robustness and accuracy of industrial manipulators. This chapter focuses on recent and 

notable developments in the field of industrial robotics which include manipulator 

modelling, traditional and non-conventional approaches to tackling the inverse 

kinematics problem, manipulator workspace generation, and singularity avoidance.  

2.1 Manipulator Kinematics and Modelling Techniques 

Yoshikawa [7] has proposed a measure of manipulability of robotic mechanisms for 

positioning and orienting end-effectors. Optimal postures and working positions have 

subsequently been defined for different manipulators from the viewpoint of its 

manipulability. The best postures and designs have been described as bearing 

resemblance to the human arms and fingers. The research paper provides an insight into 

the design and functionality of orthogonal, polar and cylindrical coordinate manipulators. 

It however does not focus on techniques to avoid non-optimal poses. Elkady, 

Mohammed, and Mohammed [8] have extended Yoshikawa’s work to develop a new 

algorithm for measuring and optimizing the manipulability index of industrial 

manipulators. The technique is tested on PUMA 560 robot where a visual representation 

of the entire workspace is provided as a subset of varying manipulability. The research is 

significant for determining the most dexterous regions in a manipulator workspace. 

Pamanes and Zeghloul [9] have presented a technique for the optimal placement of 

robotic manipulators for a prescribed task using multiple kinematic criteria. An 

optimization problem is presented for this placement that takes into account several 

constraints such as upper and lower bounds, points in a path taken, number of joints etc. 

7 
 



 

The paper however does not address any collision avoidance techniques in the 

manipulator environment.  

Work conducted by Djuric, Saidi, and ElMaraghy [10] demonstrates a multi-DOF 

kinematic structure consisting of both rotational and translational joints. A novelty 

methodology called n-GKM is presented by the author(s) which helps in developing an n-

DOF global kinematic chain model. The research paper considers all possible kinematic 

structures in a 3 dimensional space, which is further divided into eight subspace and three 

planes. The paper provides the readers with a complete description of the D-H parameters 

and a visual representation of the multi DOF joints suitable for both robotic arm and 

multi axis CNC machines. The evaluation of this model is shown using all possible 

combinations of 2DOF kinematic structures i.e. RR, TT, RT, and TR. Computation of 

both forward and inverse kinematics for the n-GKM methodology has been demonstrated 

using the automatic separation method (ASM).  

Laura and Khosla [11] have presented a Reconfigurable Modular Manipulator 

Systems (RMMS) method on automatically generating the kinematics of reconfigurable 

manipulators. The paper presents algorithm(s) for computation of forward and inverse 

kinematics of reconfiguring manipulators independent of the number, joint type, and 

shape of modules present. The model developed is applicable to redundant systems as 

well. The paper however does not focus on development of a reconfiguring structure 

using the proposed algorithm. Paredis and Khosla [12] have addressed the issue of 

determining the optimal manipulator configuration for any specific task using RMMS. 

The research addresses the kinematic design problem by developing an analytical 

solution for the inverse kinematics problem for a 2 DOF manipulator. Global 

optimization procedure is used to minimize the penalty of a manipulator design thereby 

resulting in an optimal kinematic configuration. The work presented however is only 

applicable to non-redundant manipulators.  

Djuric and Urbanic [13] have also proposed a reconfigurable robot-based system for 

material deposition applications involving 2 ½ axis and 2 ½ axis + 2 axis tool paths. 

Various multi-action tool motions have been considered for development of four different 

robot based platforms. Reconfigurable parameters, K1 and K2, have been introduced in 
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modelling of the 2 DOF robot platform that help control the positive direction of each 

joint. The research paper provides an insight into the 2DOF manipulator response using 

the reconfigurable controller and factor(s) while suggesting investigation into higher 

DOF models. Several other research projects have also utilized the kinematic modelling 

methodology for multi-axis machine tools and its CNC applications.  Xu et al. [14] have 

also presented a novel technique for modelling five axis machine tools using a 

methodology similar to the one used for modelling articulated robots using D-H 

parameters. This modelling technique is applied to CNC machines as the machine 

structure is treated as a single kinematic chain. A combination of two separate kinematic 

chains are used to model a single cutter chain which is considered as the end-effector for 

this structure. Since the machined surface depends on the path of the cutter (end-effector), 

trajectory planning is considered crucial for improving the process efficiency. Such 

modelling techniques allow for a unified structure that provides an in-depth exploration 

into the flexibility of five-axis machine tools. Work conducted by Du, Zhang, and Hong 

[15] provides a similar modelling technique for a three axis NC machine tool. The 

kinematic modelling is used to assess the geometric errors of CNC machine tools using a 

cross grid encoder. The error model encompasses the rotational and translational error 

component using an error transformation matrix of the machine tool.  This method has 

been proven superior to traditional error component identification methods. The authors 

suggest using the novel technique for CMM’s and other higher axis machine tools as 

well.  

Lee and ElMaraghy [16] have emphasized the use of CAD based offline 

programming and analysis systems for robotic manipulators. ROBOSIM, a system 

developed for this research, determines the end-effector path, velocity calculations and 

singularity checks. Simulation of manipulator motion on computer workstations to tune 

any errors in the trajectory before real time implementation is proposed. Several 

advantages of offline programing have been put forth such as elimination of the need to 

have direct access to a robot, decreased production downtime, increase productivity, 

storage of data for posterity, and development of different task strategies. Disadvantages 

to offline programming include matching the simulation model to real time work 

environment, and the tedious task of creating a graphical CAD database. 
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2.2 Manipulator Workspace 

Ceccarelli and Vinciguerra [17] have analyzed the workspace of a general open 

kinematic chain with four rotational joints by examining the effect of link parameters on 

its characteristics with the use of cross-sections. The authors emphasized the fact that 

three characteristics are important in evaluation of workspace, namely, the cross section, 

the volume and the existence of holes and voids. An algebraic formulation was developed 

for the robot’s workspace from the envelop generation geometry. The workspace of the 

manipulator was theoretically calculated as the union of all toroidal surface workspaces 

by rotation of joint angles along each z-axis with respect to its base frame. The 

investigation found that the workspace of the manipulator was mostly affected by the 

ratio of the link lengths because of their ability to present voids and holes, and its twist 

angles. This technique is beneficial in analysis and synthesis of manipulators with 

rotational joints. Ottaviano, Husty and Ceccarelli [18] have presented a novel analysis on 

the workspace of industrial manipulators based on the level set reconstruction of their 

workspace. The method allows for determining the topologies of workspace of different 

manipulators based on their kinematic properties. Various numerical examples of 

orthogonal, ortho-parallel etc. manipulator types have been presented with singularities 

for surface S. The singularities of graph S are presented as singular configurations of the 

manipulator where it experiences more than normal singularity.  

Liang and Ceccarelli [19] have also provided a parametric study and a classification 

procedure on all possible topologies of the feasible workspace of a general two revolute 

manipulator. The authors have selected four arbitrary boundary points on the torus 

workspace for generating design equations. However the method for selection of these 

arbitrary points for a feasible workspace is presented as an open ended problem. A 

classification approach was applied to compute all topologies of feasible workspace. 

Three different sub-regions for these topologies are then identified and analyzed to 

characterize workspace capabilities of 2R manipulators. Malek et al. [20] have presented 

an analytical technique for determining the boundary to a serial manipulator’s workspace 

and any voids, if present, in that workspace. Voids in a workspace are identified by 

closed boundaries for which the acceleration form provides output normal to the outside 

of the enclosed surrounding space. A quadratic form has been devised for analyzing these 
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voids that are based on the acceleration analyses of the end-effector over singular 

surfaces. Such voids are identified as non-reachable spaces by a manipulator’s end-

effector. Voids and boundary conditions are identified in 3-D space for a 4R manipulator 

to demonstrate the robustness of the developed technique. The technique promises an 

effective method for analyzing workspace of serial manipulators.  

A similar technique has been presented by Bohigas et al. [21] where a branch and 

prune technique isolates a set of singularities. These singularities are classified based on 

their correspondence to motion impediments in the manipulator workspace.  The 

technique distinctly identifies all singularities and workspace topologies with any barriers 

present. The method is advantageous over other techniques because of its ability to 

converge higher dimensional boundary points without prior knowledge of the 

manipulator workspace. Goyal and Sethi [22] have determined the workspace of an RV-

M1 Mitsubishi manipulator modelled using Denavit-Hartenberg parameters through use 

of MATLAB’s robotics toolbox. The paper emphasizes that the workspace of a 

manipulator impacts its design, placement, and dexterity, and explores the method of 

finding singularity sets using the Jacobian rank deficiency conditions. These singularity 

sets when substituted in wrist accessible output set(s) of the robot, helped in 

determination of the workspace boundary. Examples of singularity sets at different 

configurations of the above mentioned manipulators are provided along with a visual 

representation in MATLAB. 

Djuric et al. [23] have presented a technique to develop the functional and reachable 

workspace of serial 6 DOF manipulators for determining the effective travel path regions. 

The paper puts forth advantages of workspace visualization such as the ability to 

comprehensively assess manipulator configurations at design and redesign stages etc. A 

work window algorithm for the FANUC 6R family is provided along with singularity 

visualization at certain manipulator configuration(s). The research paper provides an 

evaluation of reduction in the work window of different manipulators at specific 

singularity joint configurations. Work done by Urbanic and Gudla [24] presents an 

estimation of the functional workspace of a manipulator using kinematic modelling and 

shape analyses. The outer boundary curves for an ABB IRB-140 manipulator are assessed 
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for functional workspace of a desired end-effector and tool orientation. Advantages of 

this technique include an understanding of the joint reach feasibility prior to on-site 

setups in a manufacturing environment.  Djuric and Urbanic [25] have presented a similar 

technique for building reconfigurable alternatives and assessing the systems design 

through the use of functional workspace of manipulators. Since the work envelop does 

not allow for the operational feasibility of a manipulator, work window is introduced as a 

parameter that allows the kinematic structure to function under pre-defined conditions.  

The work window is graphically mapped at different tool orientations to compare the 

feasibility of operations for multiple kinematic chains in a manufacturing cell.  

Alameldin et al. [26] have presented another technique for computation of 3D 

workspace of redundant manipulators. An algorithm is proposed as a hybrid between 

direct manipulator kinematics and screw theory. Screw theory is incorporated because of 

its ability to compute workspace points in pre-specified directions and no requirement for 

edge detection of boundary workspace unlike direct kinematics. The disadvantages of 

using screw theory presented are its exponential computation cost per point in the 

manipulator workspace, and the inability to identify holes and voids. Zein, Wenger, and 

Chablat [27] have presented an exhaustive study on the workspace topologies of 

orthogonal manipulators that have at least one D-H parameter as zero. Manipulators are 

classified in categories based on criteria such as size of feasible workspace subsets, 

existence and size of voids etc. 21 different categories are identified for 3R manipulators. 

The research is useful in analyzing the functional workspace of manipulators and 

identification of classes based on industrial needs. The research however is not practical 

for manipulators with higher DOF and for manipulators involving a combination of both 

translational and rotational joints.   

Most workspace models presented in this section do not take into account the 

reconfigurability in design that may be introduced while analyzing the manipulator 

workspace. All workspace model(s) are based on pre-defined manipulator parameters and 

structural configurations. A need is therefore recognized for development of a tool that 

can generate and identify feasible workspace topologies for varying DOF open kinematic 

chains while accommodating combinations of different joint types.   
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2.3 Manipulator Singularity and Avoidance Techniques 

Kim et al. [28] have presented a novel technique called the Task Reconstruction 

method that provides a solution to kinematic and algorithmic singularities. The method 

not only provides a singularity free trajectory but also guarantees task performance. The 

proposed method involves three tuning parameters in the reconstructed form of the 

desired task that allows for the formulation of a path through unknown singularities. 

Although, acceptable performance is achieved in cases involving only maximum of two 

subtasks. Another method of interest is presented by Liu and Zhang [29], where a 

damping reciprocal restrains or controls the joint velocities of a PUMA type of robot near 

singular points. The authors have demonstrated a technique for decomposing the inverse 

kinematics problem into subgroups with a trade-off in accuracy of velocity components 

in partial directions of the end-effector. According to this optimized method, the 

algorithm not only controls the sudden extreme changes in velocities near singular 

regions, it also helps to reduce the tracking of the end-effector. This method is highly 

beneficial in reducing the anomalies associated with manipulator singular positions. 

Zhunqing, Hairong, and Yuefa [30] have presented an algorithm for singularity control 

where line varieties and reciprocal screw theories are used to produce a full rank Jacobian 

matrix. The full rank allows singularity free motions when mapping from task space to 

joint space of a manipulator. Simulation results are provided for a PUMA robot 

demonstrating smooth velocity through singular regions. Similar analysis has been 

conducted by Fang and Lung-Wen [31] , and Hu et al. [32] where linearly dependent 

rows and columns of the manipulator Jacobian are isolated to allow feasible mapping 

between Cartesian and task space.  

Pai and Leu [33] have presented a technique for symbolic computation and study of 

singularities for decoupled manipulators. An algebraic condition for genericity for three 

joint robots is presented using Jacobian determinants. The proposed method helps in 

mapping singularities as smooth manifolds in the joint space of the manipulator. A 

characterization of orientation singularities is provided in this paper for any arbitrary 

number of joints. It is observed that the robot is only generic if no adjacent joints of the 

manipulator are parallel.  Djuric et al. [34] have provided a visual representation of the 

singularity zones through manipulation of fundamental kinematic equations. The 
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proposed technique helps in understanding singularity conditions for robot work cells and 

aids in travel path generation and manipulator layouts. Decoupling of Jacobian based on 

wrist and forearm joints is used to generate a loci of singular points for the FANUC 

family of manipulators. Also, the effect of link lengths on the topology of singular space 

is presented. This method is highly beneficial in analyzing the mechanical structure of a 

manipulator as means of singularity reduction. Huo and Baron [35] have developed a 

redundancy-resolution (RR) algorithm for optimizing the joint space trajectory of 6R arc 

welding manipulators. The authors have proposed a decomposition in the required 

instantaneous twist of a welding electrode in two orthogonal components. The symmetry 

axis of the electrode allows the two components to lie in either task space or redundant 

space. This technique efficiently optimizes the joint space trajectory and can be extended 

to tasks that require less than 6 6 DOF in their tool frame.  

Stanisic and Duta [36] have provide a novel design of symmetrically actuated double 

pointing systems (SADPS) for eliminating singularities from manipulator wrists. The 

design includes two serially connected spherical pointing systems with a common center. 

The constraint functions of the developed system reduces the independent DOF to two 

thereby resulting in a symmetry of motion for the corresponding links in each pointing 

system of the double system structure. Superior dexterity of the SADOS system is also 

observed with a two or three DOF singularity and interference free manipulator wrist. 

Cheng et al. [37] have provided a technique (SICQP) to minimize the tracking errors in 

the singularity direction for a PUMA 560 robot. The method decomposes the workspace 

of the manipulator in singular and non-singular directions to provide extra redundancy to 

achievable directions. This method is effective and efficient in solving the inverse 

kinematic problem but requires decoupling of three-dimensional sub-problems. 

Unlike traditional methods that depend on analysis of the Jacobian for computation 

of kinematic singularities, Ahmad and Luo [38] have considered inverse kinematic 

relationships to form triangular equations that reveal the structural properties of the 

manipulator and the Cartesian configurations of the end-effector where the manipulator is 

singular. This technique allows for computation of singularity states in terms of Cartesian 

parameters of the end-effector even when the joint offset angles are not zero or ninety 
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degrees. The method helps in trajectory verification of non-singular regions without the 

need for computing an inverse kinematics solution. It also helps in coordination of 

redundant robots. Analysis of less than twelve DOF redundant arms is also possible using 

this technique by splitting an arm into two sets of six DOF and/or less that six DOF 

manipulators. A higher accuracy of motion is observed with use of this method and the 

results are useful in trajectory verification and redundancy coordination in Cartesian 

space. Chiaverini and Egeland [39] have also presented a technique to handle the problem 

associated with singularities in six-joint manipulators. This techniques allows for 

successful removal of undesired commanded motions and presents an exact inverse 

kinematic solution for the remainder part which can be used for both off-line planning 

and real-time control. The authors have emphasized the problem in development of an 

algorithm apart from the traditional use of inverse of the Jacobian that supports both 

robustness and high accuracy of the manipulator. The method first determines degenerate 

directions corresponding to the singularities, after which a marginal window is defined 

around that singular region where the manipulator is treated as being singular. An inverse 

kinematic solution is then found for the remainder space that has minimum error and 

norm in end-effector coordinates and joint space respectively. Interpolation technique is 

finally used in the previously determined degenerate directions for a continual solution to 

the manipulator motion. This method demonstrated promising results for a 3R industrial 

manipulator with a trajectory through the wrist singularity and can be successfully used 

for similar manipulator configurations.  

Work done by Yigit, Burghartm & Woern [40] demonstrates the development of 

alternate configurations to avoid singularities of a human like robotic arm. Yigit et al. 

solved the inverse kinematic problem by using a closed form solution and attempted to 

develop configurations that would avoid singularities. However, this approach resulted in 

loss of the reachable workspace of the robotic arm. The kinematic singularity was 

avoided by use of a combination of restriction and elongation of the arm segments to 

compensate for the loss in workspace.  

Majority of the work provided in singularity analysis and avoidance techniques 

involves either manipulation of the Jacobian, restriction of joint motion or development 
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of new geometric method(s) to ensure smooth end-effector velocity through singular 

regions. A major drawback to these techniques is the complexity in modelling and much 

need priori knowledge of theoretical concepts. A need is therefore recognized for a 

simplified algorithm that can provide equally promising results but in fraction of the 

computation time. Also, the discussed techniques require some kind of manipulation with 

the physical geometry and/or joint configuration of the robots being studied. A solution to 

introducing such variation to a manipulator design is, however, not presented with any of 

the theoretical techniques.  

2.4 Inverse Kinematics using Artificial Neural Networks 

Prior research has proven ANNs as an important tool in robot path planning and 

control by successfully providing a solution to the inverse kinematics problem. The 

network accuracy using ANNs, however, has been a common problem encountered by 

various researchers in determining a solution. Kozakiewicz, Ogiso, and Miyake [41] have 

proposed a partitioned neural network architecture to improve the accuracy for an inverse 

kinematic problem. The partitioned layer, also referred to as the pre-processing layer, 

helped to divide the entire network into individual smaller networks where the weights of 

each partitioned network could be attenuated by concentrating on only one output. The 

network achieved high prediction accuracy for position joints but exhibited higher errors 

for orientation joints. Further work was suggested to obtain accurate learning and 

prediction results for the entire range of joints, especially the orientation joints. Lou and 

Brunn [42] have introduced an iterative approach for computing the inverse kinematic 

problem using ANNs with an offset error compensation method to improve the accuracy 

of the derived solution. The methodology was implemented since an offset error always 

existed when taking the iterative approach which had different values for each required 

end-effector position. The error compensation improved the accuracy of the network by 

reducing the average error from 4 to 0.001 percent for a 2 DOF manipulator. The work 

was extended in a two stage process to 6 DOF manipulators because of computing 

limitations. Ahmad and Guez [43] also used an iterative approach using ANNs to find the 

final predicted solution within a specified tolerance. The iterative process provided a two-

fold increase in the computational efficiency of a 3 DOF planar robot and the PUMA 560 

robot.   
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Yildirim and Eski [44] have presented a feed-forward neural network architecture 

with five different learning techniques namely, Online Back Propagation (OBP), Online 

Back Propagation Random (OBPR), Batch Back Propagation (BBP), Delta Bar Delta 

(DBD), and Quick Propagation (QP). These learning techniques were used to predict pre-

defined target kinematic parameters of a PUMA 560 robot. It was determined from this 

study that QP was the best learning technique to update network weights. Here, the 

output(s) of the network exactly matched the target values with a root mean square 

(RMS) error of 0.21345. The drawback to this technique was the fact that robot(s) 

without wrist offsets lack rotational capabilities and did not have a closed form inverse 

kinematic solution. Therefore, this technique could only be implemented as a single-stage 

network.  

Koker et al. [45] have also validated neural network as a tool for computing the 

inverse kinematics of a three joint robots. The developed network was able to predict the 

joint angles to its corresponding Cartesian (X,Y,Z) co-ordinates within an acceptable 

error range. Hasan et al. [46] have addressed the problem of kinematic control through 

singularity zone(s) by development of an ANN model that learns the characteristic of the 

robot system rather than specifying an explicit system model. The discussed model has 

Cartesian co-ordinates (X,Y,Z) of the end-effector, orientation angles (R,P,Y), and linear 

velocity of a 6 DOF robot as network inputs, and angular position and velocity as the 

network outputs. The maximum error percentages for the experimental data set 

introduced to this network were determined to be 6.72% for the Z-coordinate and 5.79% 

for the Y-orientation. This network model can be implemented for any serial manipulator 

with a reasonable accuracy. However, the paper did not explore different network 

topologies to further investigate the error reduction in the network. 

Bingul, Ertunc, and Oysu [47] have explored three different end-effector orientation 

types, namely, homogeneous transformation matrix, Euler angles, and equivalent angle 

axis for training the ANN. The method is validated on a 6R manipulator with wrist offset. 

The results are satisfactory with errors as high as 10 degrees of data resolution. Feng, 

Yao-nan, and Yi-min [48] have presented a new algorithm called extreme learning 

machine (ELM) that randomly chooses input weights and analytically determines the 
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output weights in a single hidden layer feed-forward ANN. The proposed method 

provides good generalization performance, fast learning, and improved precision in 

development of an inverse kinematic solution.  

ANNs provide a quicker response, and have proven to be useful for multiple 

satisfactory solution(s) to the inverse kinematics problem with real-time adaptive control 

[45] [46]. An inherent challenge with this technique has been the attempts in increasing 

the accuracy of the developed network. In the past, kinematic data from manipulators has 

demonstrated high variation and lower fitting rates when processed through ANNs.  

Moreover, every ANN architecture is tailored towards a specific configuration or class of 

robots. For example, a specific ANN model might only be able to provide an acceptable 

level of accuracy for non-wrist partitioned manipulators. An approach thus needs to be 

developed to tailor the kinematic data of a manipulator along with the ANN architecture 

for a universally acceptable model. Also, limited research exists that utilize ANNs as a 

technique for coping with kinematic singularities by either providing a robust inverse 

kinematic solution or by developing a path planning model for avoiding singularity 

zones.  
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 CHAPTER 3 

INDUSTRIAL ROBOTICS 

Any electro-mechanical device operating under computer control with some degree of 

autonomy can generally be referred to as a robot. An industrial robot, however, as defined 

by International Organization for Standardization (ISO 8373) is “An automatically 

controlled, reprogrammable, multipurpose manipulator programmable in three or more 

axes, which may be either fixed in place or mobile for use in industrial automation 

applications” [49]. Industrial robots used in the industry today have evolved from a union 

of teleoperators and Computer Numerical Control (CNC) machines [5].  They serve their 

purpose by substituting as labour for tasks that are impractical, undesirable, and repetitive 

for humans. The need for these industrial robots came into being from capital-intensive, 

large volume, and high precision manufacturing required in the automotive, and electrical 

goods industries [50]. According to 2012 statistics by the International Federation of 

Robotics (IRF), the worldwide market value for industrial robot systems is approximately 

$26 billion with a high number of robot density (industrial robots per 10,000 persons 

employed) in countries such as Korea (396), Japan (332), Canada (103) etc. [51]. 

Robots in the industry today have evolved since then to handle more complex tasks 

and adapt to different applications such as assembly, welding, machining, etc. that require 

high endurance, speed, and precision. The uses of industrial robots based on the type of 

industry and their applications are presented in Figure 3 and Figure 4. Handling of 

materials and process along with welding and soldering operations constitute the majority 

of applications of robots in the industry today. The physical structure and attributes of 

these industrial robots greatly vary on the nature of tasks they are required to perform. 

Industrial robot performance has significantly increased over the past few decades. 

Robots can now be controlled with an acceptable level of safety standards and 

performance which allows for human-robot collaboration in the same workplace [50]. 

This symbiosis has expanded the scope of industrial robots to other application areas and 

industries. Industrial robots are thus being required to have some level of flexibility and 

reconfigurability for such integration.  
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Figure 3: Use of Industrial Robots by Industry [52] 

 

Figure 4: Use of Industrial Robots by Application [52] 
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3.1 Hardware and Software 

Most industrial robots (manipulators) include some basic hardware and software 

components as seen in Figure 5. These components constitute the electro-mechanical 

framework, and the computer control or ‘Artificial Intelligence’ of the robot.   

The Hardware components for a common industrial robotic system can be divided into 

the following five categories: 

1. Robotic Arm: The robot arm constitutes the mechanical part of the robot and 

consists of joints, links, motors (actuators), sensor, shafts, gears, end-effector(s) 

etc. 

2. Teach Pendant: The teach pendant is a remote device used to operate the robot 

manually. It serves as a user input device to feed commands to the robot. 

3. Robot Controller: The robot controller constitutes all control circuits consisting of 

microprocessors, motors, sensor, electronics, interface connectors and power units 

for the robot arm to function. 

4. Interface Computer: The interface computer is the program storage unit of the 

manipulator. It serves as a user interface between the operator and the controller. 

5. System Software: The systems software constitutes the programmed data stored 

on the robot’s memory chips. The different codes and functions here help convert 

sensor information into actuator commands thus providing the robot with 

‘artificial intelligence’. [53] 

 
Figure 5: Industrial Robot Components 
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3.2 Symbolic Representation of Joints and Links 

A robot manipulator’s physical setup consists of sequence of links connected by 

different joints that form a kinematic chain. Combination of various joint types such as 

revolute, prismatic, twisting, ball and socket etc. are often used to interconnect links in 

industrial manipulators. This research addresses two commonly used joints, namely: 

1. Revolute (Rotational): A revolute joint provides relative rotation about a single 

axis between two links. A revolute or rotational joint can be represented by the 

symbol ‘R’, with a joint variable ‘θ’. The joint variable for a revolute joint 

determines the angular range or motion for that joint. Figure 6 demonstrates a 

kinematic chain with three rotational joints. 

2. Prismatic (Translational): A prismatic joint provides relative translation along a 

single axis between two links. A prismatic or translational joint can be represented 

by the symbol ‘T’, with a joint variable ‘d’. The joint variable for a prismatic joint 

determines the linear range of motion for that joint. Figure 7 demonstrates a 

kinematic chain with three translational joints. 

                                   

          Figure 6: Rotational Joint(s)                                         Figure 7: Translational Joint(s) 

In building the reconfigurable model for this research, both rotational joint(s) (R) and 

translational joint(s) (T) are represented using a common joint variable, ‘q’. A common 

joint variable (Equation 1) helps the model to adapt to the reconfiguring structure of a 
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manipulator without the need for changing subsequent parameters and equations. It also 

aids in the manipulation of the Jacobian matrix and development of manipulator 

workspace and singularity space. The use of this variable will be demonstrated 

subsequent chapters. 

 𝑞𝑞𝑖𝑖 =  {  𝜃𝜃𝑖𝑖         𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟𝑎𝑎𝑎𝑎 𝑗𝑗𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑗𝑗
𝑑𝑑𝑖𝑖  𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑓𝑓𝑎𝑎𝑟𝑟𝑗𝑗𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟𝑎𝑎𝑎𝑎 𝑗𝑗𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑗𝑗 (1) 

3.3 Manipulator Classification 

For an understanding of the manipulator workspace and kinematic singularities, it is 

important to first recognize the basic manipulator types used in the industry today. Nearly 

all industrial manipulators in use have six or less DOF (≤ six independent joints). Of 

these joints, the first three joints form the arm of the robot and the latter the wrist.  This is 

because a minimum of three joints are required to position (in X,Y,Z) the end-effector of 

a manipulator. Industrial manipulators are broadly classified in five different categories 

based on their forearm’s mechanical structure, namely; 

1. Linear (Cartesian and Gantry) (TTT): Linear manipulators are the most basic type 

of manipulators with three translational joints. Each joint allows a translation in 

one of the X, Y, or Z axis to position the end-effector. Linear manipulators are 

majorly used for pick and place, and handling applications.  

2. Articulated (RRR): Articulated manipulators are the most common type of 

manipulators used in the industry today since they provide the greatest relative 

flexibility, and increased dexterity in a compact space. These robots have three 

rotational joints and are majorly used for operations such as welding, painting, 

assembly etc.  

3. Spherical or Polar (RRT): Spherical or Polar manipulators derive their name from 

the fact that their axes form the spherical or polar coordinate system. These robots 

have two initial rotational joints and a third translational joint. Major applications 

of these robots are in the welding and casting industry.  

4. SCARA (RRT): Selective Compliance Articulated Robot Arm (SCARA) 

manipulators are robots with two parallel rotational joints and a third translational 
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joint. This allows a robot to provide compliance in a plane. These robots are 

majorly used for pick and place work. 

5. Cylindrical (RTT): Cylindrical manipulators derive their name from the fact that 

their axes form the cylindrical coordinate system. These robots have an initial 

rotational joint and two subsequent translational joints. Major applications of 

these robots are in the assembly, welding and casting industry.  

A basic kinematic structure of the aforementioned manipulators is provided in Figure 8 

below: 

 

Figure 8: Kinematic Structures of Basic Manipulator Types [54] 
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3.4 Manipulator End-Effector Types and Application 

As defined by the United States Occupational Safety and Health Administration 

(OSHA), a manipulator’s end-effector is “An accessory device or tool specifically 

designed for attachment to the robot wrist or tool mounting plate to enable the robot to 

perform its intended task. (Examples may include gripper, spot-weld gun, arc-weld gun, 

spray- paint gun, or any other application tools.) [54].” 

The forearm (first 3 joints) of the robot is responsible for positioning the end-effector 

while the wrist of the robot is responsible for orienting the end-effector. Not all industrial 

robots however, have an arm and wrist configuration. Many manipulator designs exist or 

can be generated with no wrist configuration as seen in Case study 10.2 in Chapter 10. 

The DOF for orienting an end-effector are determined by the DOF of the wrist [5]. A 

wrist configuration may have up to 3 DOF, namely: 

1. Yaw: A counter-clockwise rotation about the z-axis.  

2. Pitch: A counter-clockwise rotation about the y-axis. 

3. Roll: A counter-clockwise rotation about the x-axis [55]. 

Figure 9 demonstrates a commonly used spherical wrist configuration. The spherical 

wrist effectively aids in decoupling the position and orientation of an end-effector [5]. 

                   

  Figure 9: Spherical Wrist Configuration                            Figure 10: Different Gripper End-Effectors [56] 
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The end-effector is the most critical part of the robot that performs the robot’s 

intended function. A considerable amount of engineering work is therefore dedicated to 

the design and build of end-effectors. The mechanical structure of the end-effector 

depends on the type of application it is used for. End-effectors vary from simple open and 

close grippers used in material handling to complex tools for machining and performing 

tasks. Figure 10 above demonstrates three different types of gripper type end-effectors.  
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 CHAPTER 4 

MATHEMATICAL CONCEPTS 

Understanding of some key mathematical concepts such as Degrees of Freedom 

(DOF), representation of position and orientation in Cartesian space, frame 

transformations, etc. is important before modelling of open-ended kinematic chains. The 

following sections in this chapter cover some of these important concepts.  

4.1 Degrees of Freedom (DOF) 

The number of Degrees of Freedom for any industrial manipulator is the number of 

axes of movement for that manipulator. This movement can be either a rotation about an 

axis if the joint is rotational (R), or it can be a translation along an axis if the joint is 

translational (T). It is however important to realize that the number of joints may not 

always equal to the Degrees of Freedom for a manipulator. For example, two rotational 

joints in a manipulator might rotate about a single axis. This cancels out one additional 

Degree of Freedom which would have been possible had both the joints not been rotating 

about the same axis.  

The number of Degrees of Freedom required by a manipulator is determined by task 

required of the manipulator. As such, six Degrees of Freedom are required to locate any 

object in 3-D space. Three of these DOF represent the position of the object while the rest 

determine the orientation of the object in space. Therefore, depending on the positioning 

and orientation of a part, appropriate number of DOF are built into the manipulator for 

easier control. Manipulators with more than six Degrees of Freedom are referred to as 

redundant manipulators. These manipulators have additional DOF for increased mobility 

and flexibility [57]. An example of a redundant robot is the Canadarm. Figure 11 

demonstrates an object defined using six degrees of freedom in 3-D space. 
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Figure 11: DOF of an Object in 3-D Space 

4.2 Representation of Position and Orientation 

Kinematic modelling of manipulators requires all links to be considered as rigid 

bodies. Coordinated frames are then rigidly (fixed location) attached as reference to these 

rigid bodies. These coordinate frames help in determining the position and orientation of 

any one frame with respect to another frame by means of frame transformations in 3-D 

space.  

 

Figure 12: Object Frame with respect to Base Frame 

For example, in Figure 12, the position (P matrix) of any object (Object Frame F1) in 

space with respect to another object (Base Frame F0) is defined using the X, Y, and Z 

28 
 



 

Cartesian coordinates as presented in Equation 2. Similarly, orientation (rotation matrix, 

R) of any Object Frame F1 with respect to Base Frame F0 in 3-D space is defined using 

three rotational angles (α, β, γ) around each reference axis (Figure 11). Here, α is the 

rotation about x-axis, β is the rotation about y-axis, and γ is the rotation about z-axis. 

These rotational angles collectively represent nine rotational elements as presented in 

Equation 3 [57]. 

 
𝑃𝑃10 =  �

𝑝𝑝𝑥𝑥
𝑝𝑝𝑦𝑦
𝑝𝑝𝑧𝑧
� 

 

(2) 

 𝑅𝑅10 =  �
𝑥𝑥1. 𝑥𝑥0 𝑦𝑦1. 𝑥𝑥0 𝑧𝑧1. 𝑥𝑥0
𝑥𝑥1. 𝑦𝑦0 𝑦𝑦1.𝑦𝑦0 𝑧𝑧1.𝑦𝑦0
𝑥𝑥1. 𝑧𝑧0 𝑦𝑦1. 𝑧𝑧0 𝑧𝑧1. 𝑧𝑧0

� =  �
𝑓𝑓11 𝑓𝑓12 𝑓𝑓13
𝑓𝑓21 𝑓𝑓22 𝑓𝑓23
𝑓𝑓31 𝑓𝑓32 𝑓𝑓33

� (3) 

 

The position and orientation, collectively called the ‘pose’, can thus be defined using 9 

rotational elements and 3 position elements. These elements will subsequently be used as 

inputs for ANNs in determining an Inverse Kinematics solution.  

4.3 Frame Transformation 

In kinematic modelling, it is important to have an understanding of the position and 

orientation of the manipulator’s end-effector with respect to the base of the manipulator. 

This kind of modelling requires the computation of position and orientation of a point in 

3-D space from a previously known position and orientation of that point. For example, 

consider a point ‘W’ in Figure 13.  The coordinate vector representing point W with 

respect to F1 is given by Equation 4 as: 

 𝑞𝑞1 =  �
𝑎𝑎1
𝑏𝑏1
𝑐𝑐1
� (4) 

   

It is then required to determine the coordinate vector that represents the point W with 

respect to F0 given by Equation 5. 
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 𝑞𝑞0 =  �
𝑎𝑎0
𝑏𝑏0
𝑐𝑐0
� (5) 

From Figure 13, and Equation 5 the resultant vector 𝑣𝑣 is determined in Equation 6. 

 𝑣𝑣 = 𝑝𝑝 + 𝑢𝑢 (6) 

   

Substituting the vectors by their position are orientation, the position and orientation of v 

is obtained in Equation 7  

 𝑣𝑣 =  𝑞𝑞0 =  �
𝑓𝑓11 𝑓𝑓12 𝑓𝑓13
𝑓𝑓21 𝑓𝑓22 𝑓𝑓23
𝑓𝑓31 𝑓𝑓32 𝑓𝑓33

�  �
𝑎𝑎1
𝑏𝑏1
𝑐𝑐1
� + �

𝑝𝑝𝑥𝑥
𝑝𝑝𝑦𝑦
𝑝𝑝𝑧𝑧
� =  𝑅𝑅10𝑞𝑞1 +  𝑃𝑃10 (7) 

 

 

Figure 13: Frame Transformation 

It can therefore be conclude that the position and orientation of a point W with respect to 

F0, can be defined by a simple frame transformation as represented in Equation 8. 

 𝑞𝑞0 = 𝑇𝑇10 𝑞𝑞1 (8) 

   

where the transpose matrix 𝑇𝑇10, transforms coordinate vectors from frame F1 to F0 [57].  
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4.4 Roll, Pitch and Yaw (RPY) Angles 

Another way of representing the rotation matrix R, is through the Roll, Pitch and Yaw 

(RPY) angles represented by R(γ, β, α). These angles define the rotation of an object 

(Figure 11) through successive canonical rotations about the coordinate axes. Here, 

1. Roll: Roll is counter-clockwise rotation of α about the x-axis. 

2. Pitch: Pitch is counter-clockwise rotation of β about the y-axis. 

3. Yaw: Yaw is a counter-clockwise rotation of γ about the z-axis.  

It is important to note that these rotations are performed in the order of roll given by 

Rx(α), then pitch given by Ry(β), and finally yaw given by Rz(γ). The final rotation matrix 

however, is obtained by multiplying the angles in the order of yaw, pitch, and roll. This is 

because of the backward sequence of multiplication in frame transforms. The individual 

rotations and the final rotation matrix are provided in Equations 9, 10, 11, and 12.  

 𝑅𝑅𝑧𝑧(γ) =  �
cos(γ) −sin (γ) 0
sin(γ) cos (γ) 0

0 0 1
�     (9) 

   

  𝑅𝑅𝑦𝑦(β) =  �
cos(β) 0 sin (β)

0 1 0
−sin (β) 0 cos (β)

�   (10) 

   

 𝑅𝑅𝑥𝑥(α) =  �
1 1 0
1 cos (α) −sin (α)
0 sin (α) cos (α)

�   (11) 

   

 R = R(γ,β,α) =  𝑅𝑅𝑧𝑧(γ) .𝑅𝑅𝑦𝑦(β) .𝑅𝑅𝑥𝑥(α) (12) 

   

The elements of this rotation matrix, R can then be manipulated to calculate the roll pitch 

and yaw angles. Table 1 below provides a solution to computing RPY angles from the 

rotation matrix, R: 
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Table 1: Computing RPY Angles from Rotation Matrix 

 For R(3,1) ≠  ±1 For R(3,1) = -1 If R(3,1) = 1 

α atan2 (

𝑅𝑅(3,2)
cos (β)
𝑅𝑅(3,3)
cos (β)

 ) atan2 �
𝑅𝑅(1,2)
𝑅𝑅(2,2) � + γ atan2 �

−𝑅𝑅(1,2)
𝑅𝑅(2,2)  � + γ 

β atan2 (
−R(3,1)

±�1 − (𝑅𝑅(3,1))2
 ) pi/2 -pi/2 

γ atan2 (

𝑅𝑅(2,1)
cos (β)
𝑅𝑅(1,1)
cos (β)

 ) Arbitrary Arbitrary 

 

For the purpose of this research, the orientation of the end-effector was defined 

using both RPY angles and through 9 individual rotational elements of the rotation 

matrix, R. However, through the development of the reconfigurable model, it was 

realized that superior results were achieved for ANNs when using elements of the 

rotation matrix, R (Equation 3), in computation of an inverse kinematics solution. The 

RPY angles provide a consolidated overview of an objects orientation with respect to a 

coordinate frame and are easier to document. For this reason, the orientation of an end-

effector is usually represented using its RPY angles.  
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 CHAPTER 5 

KINEMATIC MODELLING OF MANIPULATORS 

This research addresses the kinematic modelling of open ended kinematic chains that 

are widely used in the industry today. As previously mentioned, the kinematic modelling 

of manipulators requires frame transformation of coordinate frames attached to each link 

of the manipulator. These frame transformations help us to determine the forward 

kinematic solution for a manipulator. A forward kinematics solution helps determine the 

final position and orientation of the manipulator end-effector with its base for any 

possible combination of the manipulator’s joint variable(s) (q). The forward kinematics 

solution can then be manipulated geometrically, analytically, or iteratively to derive an 

inverse kinematic solution. An inverse kinematic solution helps determine the values of 

all joint variable that would produce a required position and orientation of the 

manipulator’s end-effector.  

Any manipulator with n joints, has exactly n+1 links, since each joint connects two 

links of a manipulator.  Therefore, any joint i, when actuated moves the link i, where the 

location of joint i is determined by link i-1 [5]. All joint variables, as previously 

mentioned are represented by ‘q’. Thus any joint qi can assume the value of θi if the joint 

is rotational, or di if the joint is translational.  

As standard convention, a Cartesian coordinate frame F0 is rigidly attached to the 

base (i.e. link i-1) of the manipulator. All subsequent frame transformations for the 

manipulator are performed by referencing this frame F0 to other coordinate frames.  

Cartesian coordinate frames are attached to each link of a robot, starting with the base 

frame all the way to the end-effector. The position and orientation of each frame can be 

expressed through the homogeneous transformation matrices. It is important to note that 

all frames are rigidly attached to each link. This assumption is made so that the position 

and orientation of a manipulator’s end-effector can be determined with respect to any 

particular frame of interest, and is always constant irrespective of the configuration of the 

manipulator. [5] For example, a SCARA (RRT) robot (Figure 14) is kinematically 

modelled in Figure 15. 
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Figure 14: SCARA Robot [58] 

 

Figure 15: Kinematic Modelling of SCARA Robot 

5.1 Denavit-Hartenberg (D-H) Parameters 

Denavit-Hartenberg (D-H) parameters are set of standardized rules that are used in 

defining Cartesian coordinate frames attached to the manipulator links. These parameters 

help define position and orientation of one frame with respect to its preceding frame.  
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Figure 16: D-H Parameters. Adapted from [53] 

  

The D-H parameters for defining the pose of any coordinate frame i (F1) with respect to 

its preceding frame i-1 (F0) are comprised of the following four parameters (see Figure 

16):  

1. Link Offset (di): It is the distance measured along Z0 axis to the point of 

intersection of X1 axis and Z0 axis. 

2. Link Angle (θi): It is the angle between X0 axis and X1 axis measured in a plane 

normal to Z0. 

3. Link Length (ai): It is the distance between Z0 axis and Z1 axis measured along  

X1 axis. 

4. Link Twist (αi): It is the angle between Z0 axis and Z1 axis measured in a plane 

normal to X1 axis [5]. 

The direction of Link Angle and Link Twist is determined using the right hand rule. It is 

important to note that the D-H parameters are implemented in the order of sequence of di, 

θi, ai, and αi respectively. The homogeneous transformation matrix between two 

successive links is defined using their D-H parameters. For example, the kinematic model 
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of the SCARA robot in Figure 15 is developed using D-H parameters presented in Table 

2 below: 

Table 2: D-H Parameters of SCARA Robot 

Robot: SCARA (RRT) 

Joint 

D-H parameters 
Lower 

Joint 

Limit 

Upper 

Joint 

Limit 

Link 

Offset 

(mm) 

Joint 

Angle 

(rad) 

Link 

Length 

(mm) 

Twist 

Angle 

(rad) 

1 d1 = 1 θ1 = θ1 a1 = 225 α1 = 0 -2.22 2.22 

2 d2 = 1 θ2 = θ2 a2 = 225 α2 = 0 -2.53 2.53 

3 d3 = d3 θ3 = 0 a3 = 225 α3 = 0 -297 -97 
 

5.2 Homogeneous Frame Transformations 

The homogenous transformation matrices help define rigid motions of Cartesian 

coordinate frames in a matrix formulation. A general structure of a homogenous 

transform matrix, 𝐴𝐴𝑖𝑖𝑖𝑖−1  is represented in Equation 13 below.  

 𝐴𝐴𝑖𝑖𝑖𝑖−1 =  �𝑅𝑅3𝑥𝑥3 𝑃𝑃3𝑥𝑥1
000 1 � (13) 

   

In kinematic modelling, the top left corner of the homogeneous transform matrix 

represents the rotation matrix (𝑅𝑅3𝑥𝑥3), the top right corner represents the position matrix 

(vector 𝑃𝑃3𝑥𝑥1), the zeroes represent perspective and 1 represents the scaling factor. The 

matrix A represents the pose elements of frame i with respect to frame i-1. A basic 

homogeneous transformation matrix is computed from the D-H parameters using 

Equation 14. 

 𝐴𝐴𝑖𝑖𝑖𝑖−1 = 𝑇𝑇𝑓𝑓𝑎𝑎𝑟𝑟𝑗𝑗(𝑍𝑍,𝑑𝑑𝑖𝑖) 𝑅𝑅𝑓𝑓𝑟𝑟(𝑍𝑍,𝜃𝜃𝑖𝑖) 𝑇𝑇𝑓𝑓𝑎𝑎𝑟𝑟𝑗𝑗(𝑋𝑋, 𝑎𝑎𝑖𝑖) 𝑅𝑅𝑓𝑓𝑟𝑟(𝑋𝑋,𝛼𝛼𝑖𝑖) (14) 

   

 Here, the sequence of multiplication is followed in the order of D-H parameters. The 

sequence being translation of 𝑑𝑑𝑖𝑖  in Zi-1 axis, rotation of angle 𝜃𝜃𝑖𝑖  about the Zi-1 axis, 
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translation of 𝑎𝑎𝑖𝑖 in direction of Xθ axis, and lastly the rotation of angle 𝛼𝛼𝑖𝑖 about the Xi 

axis. These individual rotations and translations are represented in Equations 15-18.  

 𝑇𝑇𝑓𝑓𝑎𝑎𝑟𝑟𝑗𝑗(𝑍𝑍,𝑑𝑑𝑖𝑖) =  �

1 0 0 0
0 1 0 0
0 0 1 𝑑𝑑𝑖𝑖
0 0 0 1

� (15) 

   

 𝑅𝑅𝑓𝑓𝑟𝑟(𝑍𝑍,𝜃𝜃𝑖𝑖) =  �

cos (𝜃𝜃𝑖𝑖) −sin (𝜃𝜃𝑖𝑖) 0 0
sin (𝜃𝜃𝑖𝑖) cos (𝜃𝜃𝑖𝑖) 0 0

0 0 1 0
0 0 0 1

� (16) 

   

 𝑇𝑇𝑓𝑓𝑎𝑎𝑟𝑟𝑗𝑗(𝑋𝑋,𝑎𝑎𝑖𝑖) =  �

1 0 0 𝑎𝑎𝑖𝑖
0 1 0 0
0 0 1 0
0 0 0 1

�  (17) 

   

 𝑅𝑅𝑓𝑓𝑟𝑟(𝑋𝑋,𝛼𝛼𝑖𝑖) =  �

1 0 0 0
0 cos (𝛼𝛼𝑖𝑖) −sin (𝛼𝛼𝑖𝑖) 0
0 sin (𝛼𝛼𝑖𝑖) cos (𝛼𝛼𝑖𝑖) 0
0 0 0 1

�  (18) 

 

Substituting Equations 15 – 18 in Equation 14, 𝐴𝐴𝑖𝑖𝑖𝑖−1 can be represented as: 

 𝐴𝐴𝑖𝑖𝑖𝑖−1 =  �

cos (𝜃𝜃𝑖𝑖) −cos (𝛼𝛼𝑖𝑖)sin (𝜃𝜃𝑖𝑖) sin(𝛼𝛼𝑖𝑖)sin (𝜃𝜃𝑖𝑖) 𝑎𝑎𝑖𝑖cos (𝜃𝜃𝑖𝑖)
sin (𝜃𝜃𝑖𝑖) cos (𝛼𝛼𝑖𝑖)cos (𝜃𝜃𝑖𝑖) −sin (𝛼𝛼𝑖𝑖)cos (𝜃𝜃𝑖𝑖) 𝑎𝑎𝑖𝑖sin (𝜃𝜃𝑖𝑖)

0 sin (𝛼𝛼𝑖𝑖) cos (𝛼𝛼𝑖𝑖) 𝑑𝑑𝑖𝑖
0 0 0 1

�   (19) 

 

The homogenous transformation matrix from Equation 19 is representative of all four D-

H parameters and determines the pose for frame Fi with respect to Fi-1. 𝐴𝐴𝑖𝑖𝑖𝑖−1  is of 

considerable significance because of its use in computation of the forward kinematics 

equation(s) and determination of complete workspace for a manipulator.  
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5.3 Joint Space  

The joint space or configuration space of a manipulator is the set of all possible 

combinations of joint variables for a manipulator. Each joint variable of a manipulator 

has a defined range of motion that is represented as a vector. The combinations of these 

vectors in order of their joints defines the joint space of the manipulator. The number of 

vector(s) in the joint space is equal to the number of joints in a manipulator. For a 

manipulator with n joints and a range of i values for each joint configuration, the joint 

vectors can be defined with Equation 20. The joint space is then defined by Equation 21 

as 𝑟𝑟𝑛𝑛 sets of these vectors.   

 𝑞𝑞𝑛𝑛 =  [𝑞𝑞𝑛𝑛1 𝑞𝑞𝑛𝑛2 … 𝑞𝑞𝑛𝑛𝑖𝑖 ]𝑇𝑇 (20) 

   

 𝑞𝑞 =  [𝑞𝑞1 𝑞𝑞2 … 𝑞𝑞𝑛𝑛]𝑇𝑇 (21) 

 

For example, for a SCARA (RRT, n=3) robot, if all joint variables assume 10 values 

each, then the joint space for that manipulator will have 1000 (103) sets of Equation 22. 

 𝑞𝑞 =  [𝜃𝜃1 𝜃𝜃2 𝑑𝑑3]𝑇𝑇 (22) 

   

5.4 Cartesian Space 

The Cartesian space, 𝑣𝑣 of a manipulator is the set of all possible combinations of 

position and orientation of the manipulator’s end-effector. The Cartesian space has 6 

DOF since it can always be represented by 3 position vectors and 3 orientation vectors 

(RPY angles) as represented by Equation 23.  

 𝑣𝑣 =  [𝑥𝑥 𝑦𝑦 𝑧𝑧 𝛼𝛼 𝛽𝛽 𝛾𝛾]𝑇𝑇 (23) 

   

Since the position and orientation of the end-effector is determined by the joint 

configuration of a manipulator, all sets in Cartesian space can be mapped back to at least 

one set in the manipulator’s joint space. Since homogenous transformation matrices 

represent the pose of a manipulator’s end-effector, they are used to define Cartesian space 
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of a manipulator. The developed reconfigurable model for this research uses elements 

from the pose matrices for improved ANN performance as described in Chapter 6.  

5.5 Forward Kinematics 

Forward kinematics for rigid manipulators is concerned with the computation of a 

manipulator’s end-effector position and orientation for every known possible 

combination of its joint variables. Forward kinematic computations are straightforward 

and there always exist a forward kinematic solution for a manipulator in its joint space. 

For any n-link manipulator, the forward kinematic computation can be mapped from a 

configuration set in the joint space to a point in the Cartesian space of the manipulator 

using Equation 24. 

 𝐽𝐽𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 𝑆𝑆𝑝𝑝𝑎𝑎𝑐𝑐𝑆𝑆 (𝑞𝑞1,𝑞𝑞2, 𝑞𝑞3 … 𝑞𝑞𝑛𝑛  )  
𝑓𝑓
→ 𝐶𝐶𝑎𝑎𝑓𝑓𝑟𝑟𝑆𝑆𝑗𝑗𝑟𝑟𝑎𝑎𝑟𝑟 𝑆𝑆𝑝𝑝𝑎𝑎𝑐𝑐𝑆𝑆 (𝛼𝛼𝑛𝑛, 𝛽𝛽𝑛𝑛, 𝛾𝛾𝑛𝑛, 𝑝𝑝𝑥𝑥, 𝑝𝑝𝑦𝑦, 𝑝𝑝𝑧𝑧) (24) 

 

The forward kinematic equation(s) are computed using the homogeneous transformation 

matrices. These matrices are multiplied in succession to obtain the homogenous 

transformation for joint i with respect to frame, F0, as seen in Equation 25.  

 𝐴𝐴𝑖𝑖0 =  𝐴𝐴10 .𝐴𝐴21  .𝐴𝐴32. …𝐴𝐴𝑖𝑖𝑖𝑖−1 =  �

𝑟𝑟𝑥𝑥 𝑏𝑏𝑥𝑥 𝑟𝑟𝑥𝑥 𝑝𝑝𝑥𝑥
𝑟𝑟𝑦𝑦 𝑏𝑏𝑦𝑦 𝑟𝑟𝑦𝑦 𝑝𝑝𝑦𝑦
𝑟𝑟𝑧𝑧 𝑏𝑏𝑧𝑧 𝑟𝑟𝑧𝑧 𝑝𝑝𝑧𝑧
0 0 0 1

�  𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟 = 1,2. . ,𝑘𝑘   (25) 

   

where n, b, and t represent orientation vectors for defining the orientation of link k. For 

example, for a SCARA robot (RRT) (Figure 15), we obtain the forward kinematic 

equations by multiplying all three individual homogenous matrices in Equation 19.   

𝐴𝐴30

=  �

cos (𝜃𝜃1 + 𝜃𝜃2) −sin (𝜃𝜃1 + 𝜃𝜃2) 0 450 ∗ cos(𝜃𝜃1 + 𝜃𝜃2) + 225 ∗ cos (𝜃𝜃1)
sin (𝜃𝜃1 + 𝜃𝜃2) cos (𝜃𝜃1 + 𝜃𝜃2) 0 450 ∗ sin(𝜃𝜃1 + 𝜃𝜃2) + 225 ∗ sin(𝜃𝜃1)

0 0 1 𝑑𝑑3 + 2
0 0 0 1

�   
(26) 
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The forward kinematics equation (Equation 26) here can now be substituted with the joint 

variable ranges from Table 2 to obtain the position and orientation of the SCARA robot’s 

end-effector thereby defining its work envelop or complete workspace. It is important to 

note that the position and orientation of the end-effector is found with respect to the base 

frame, F0, of a robot. 

5.6 Workspace and Taskspace 

The workspace of an industrial manipulator is a manifold of all points reachable by 

the manipulator’s end-effector. Each point in a manipulator’s workspace can be realized 

in at least one position and orientation configuration. The topology and volume of the 

workspace is determined by the mechanical structure of a manipulator and its joint 

configurations. The workspace is divided into two categories: 

1. Dexterous Workspace: The dexterous workspace is a collection of all points in a 

manipulator’s workspace that the end-effector can reach in all possible 

orientations. For example, if the joint configuration allows the manipulator to be 

oriented in all of its possible 10 orientations at a point ‘P’ in 3-D space. The point 

P is then said to be a part of the dexterous workspace of a manipulator. 

2. Reachable Workspace: The reachable workspace is the collection of all points in a 

manipulator’s workspace that the end-effector can reach in at least one 

orientation. For example, if the joint configuration of the manipulator allows the 

manipulator to be oriented in only 2 of its possible 10 orientations at a point ‘Q’. 

The point Q is the said to be a part of the reachable workspace of the manipulator. 

The dexterous workspace of the manipulator is therefore a subset of the reachable 

workspace of a manipulator. [2] 

The workspace of the manipulator is formulated using the forward kinematics 

equation(s) of the manipulator in Equation 25. Each point in the workspace is 

representative of the position matrix of the manipulator. The reconfigurable model 

presented in this research helps visually map the workspace of any manipulator 

configuration. This analysis helps to understand and appropriately modify a 

manipulator’s geometric properties and its associated mechanisms for a desired 

workspace topology and volume. A sound understanding of the workspace also helps in 

40 
 



 

path planning for the end-effector through the manipulator’s taskspace. Appendix A 

provides the third angle orthographic projections and an isometric view of the SCARA 

(RRT) robot’s workspace discussed previously in this text.  

The taskspace of a manipulator on the other hand is determined by the task required 

of the manipulator’s end-effector. The taskspace has a varying dimensionality which is 

determined by the Degrees of Freedom needed to accomplish a task. The maximum 

dimension of the task space is 6 since the position and orientation of any object can be 

defined using 6 DOF. For example, if a manipulator is only concerned with positioning 

its end-effector regardless of the orientation, the task space for that manipulator has a 

dimension of 3. It is important to note that the joint space of the manipulator should be 

equal to its task space for a realizable inverse kinematic solution.  

5.7 Inverse Kinematics 

The inverse kinematics problem is related to the joint space of the industrial 

manipulators and depends strictly on the structure and configuration of a given 

manipulator. The end-effector of a manipulator works in Cartesian space but the actuators 

required to control the individual links work in its joint space. Thus, the computation of 

these joint variables from the end-effector position and orientation in Cartesian space is 

known as the inverse kinematics problem and is an essential tool for control of 

manipulators. For any n-link manipulator, the inverse kinematic computation can be 

mapped from the Cartesian space to the joint space of the manipulator using Equation 27. 

 𝐶𝐶𝑎𝑎𝑓𝑓𝑟𝑟𝑆𝑆𝑗𝑗𝑟𝑟𝑎𝑎𝑟𝑟 𝑆𝑆𝑝𝑝𝑎𝑎𝑐𝑐𝑆𝑆 (𝛼𝛼𝑛𝑛,𝛽𝛽𝑛𝑛, 𝛾𝛾𝑛𝑛,𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦,𝑝𝑝𝑧𝑧) 
𝑓𝑓−1
�� 𝐽𝐽𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 𝑆𝑆𝑝𝑝𝑎𝑎𝑐𝑐𝑆𝑆 (𝑞𝑞1,𝑞𝑞2, 𝑞𝑞3 … 𝑞𝑞𝑛𝑛  ) (27) 

 

The equations for computing an inverse kinematic solution are generated by comparing 

and analyzing Equation 25 with a forward kinematics solution for any manipulator. For 

example, the inverse kinematic equation(s) for a SCARA robot with a known forward 

kinematic solution can be analyzed from Equation 28 – Equation 32.   

 𝑟𝑟𝑥𝑥 =  cos (𝜃𝜃1 + 𝜃𝜃2) (28) 
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 𝑟𝑟𝑦𝑦 =  sin (𝜃𝜃1 + 𝜃𝜃2) (29) 

  𝑝𝑝𝑥𝑥 =  450 ∗ cos(𝜃𝜃1 + 𝜃𝜃2) + 225 ∗ cos (𝜃𝜃1) (30) 

   

 𝑝𝑝𝑦𝑦 =  450 ∗ sin(𝜃𝜃1 + 𝜃𝜃2) + 225 ∗ sin(𝜃𝜃1) (31) 

   

 𝑝𝑝𝑧𝑧 =  𝑑𝑑3 + 2 (32) 

 

An inverse kinematics problem is therefore a reverse computation of the forward 

kinematics problem. The inverse kinematics solution for planar, and 3 or less DOF can be 

easily determined through some geometric, algebraic, and or analytical manipulations. 

However, with increasing DOF, the inverse kinematics problem proves to be 

mathematically complex and computationally expensive. With increasing DOF, 

kinematic decoupling of joint variables is often challenging and a closed form solution 

may not always be possible.  For algebraic manipulations, the expressions for the joint 

variables are primarily determined from the x, y, and z coordinates of the position vector. 

Since, it is possible to have more than one solution to a coordinate point, it can be 

challenging to obtain inverse kinematic solutions for higher DOF manipulators. For 

example, four possible inverse kinematic solution(s) of a PUMA 560 robot are presented 

in Figure 17 below.  

 

Figure 17: Four Different Inverse Kinematic Solution for PUMA 560 Robot [59] 
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The formulation of an inverse kinematic solution has a wide range of applications 

in the field of robotics. Most of the problems involving a robotic manipulator deal with 

orienting and positioning the end-effector in the Cartesian space. An efficient way to 

control the end-effector is through effective control of the actuated joints of the robot, 

which lie in the manipulator’s joint space. It is therefore essential to map the Cartesian 

space constraints into the robot’s joint space using inverse kinematics computations [60]. 

In cases where a closed form solution is not possible, a numerical method might be 

utilized to determine a possible set of solutions for the joint variables. There has been 

extensive research in the field of robotics for developing inverse kinematic solution(s) for 

specific robot models, configurations, and types. However, no universal model for 

computation of the inverse kinematics problem exists which can provide a solution with 

an acceptable level of accuracy. This research addresses the issue of developing a non-

conventional technique of addressing this problem through the use of ANNs using 

discrete data sets.   
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 CHAPTER 6 

ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks (ANNs) are biologically inspired mathematical models 

that learn from their environment, similar to the neurons in the human nervous system. 

These mathematical models consist of multiple interconnected neurons that act as 

adaptive, and generally non-linear learning machines [61] [62]. The neurons in an ANN 

are its processing elements that help approximate any finite non-linear model to 

determine the relationship between its dependent and independent variables. The 

interconnectivity of these neurons defines the topology of an ANN.   

ANNs are used for a variety of tasks including classification, clustering, prediction 

etc. This is because these networks can acquire and store knowledge through a defined 

learning process. [62] A feed-forward back-propagation multilayer perceptron (MLP) 

neural network model with supervised learning technique is used for this research to 

address the inverse kinematic problem in industrial manipulators. The results from this 

model are further discussed in the cases studies presented in Chapter 10. An 

understanding into the network architecture and its function are presented in this chapter 

to help realize the configuration of an optimum network used for this research.  

6.1 Trade-off between Generalization and Accuracy 

Generalization is the capability of an ANN to negate the effect of noise or any 

peculiarities that might be present within a dataset. Generally, a robust network with a 

good generalization capability provides a well fitted curve through the training data set. 

As a general rule, the simpler the network architecture, the better is its generalization 

capability. An accurate network on the other hand has a superior fit to training data than a 

network with good generalization capability. However, the trade-off here is the 

complexity and brittleness of a network. A brittle network is only tailored to the specific 

dataset it was trained on. Such a network lacks the capability of generalizing similar 

dataset(s). It is therefore important to optimize the degree of complexity of the neural 

network for a model that is both accurate and generalizes well [63].  
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6.2 Network Architecture 

A basic ANN architecture consists of data inputs that are connected to neurons. The 

neurons process this input information and provide data outputs. All information in an 

ANN flows through the connections between these inputs, neurons, and outputs. These 

connections are scaled by adjustable parameters called weights, wij [61]. The weights of a 

neural network impart flexibility to the network thereby helping it to adapt and learn the 

pattern(s) in a data set. The bias (generally assumed a value of 1) in a network represents 

the factors that are not accounted for by the input variables 

A Multi-Layer Perceptron (MLP) network architecture is used in this research 

because of its capability to perform complex prediction tasks. Figure 18 represents a 

general MLP architecture. Here, n represents the number of inputs, m represents the 

number of neurons in the hidden layer, xn represents the input variables, z represents 

network output, anm represents the weight from the nth input variable to the mth neuron in 

the hidden layer, bm represents the weight from the mth neuron in the hidden layer to the 

output layer, a0m represent the bias to the mth neuron in the hidden layer, b0 represents the 

bias to the output layer, and σ, and f(.) represent the activation functions used in the 

neurons.  

 

Figure 18: Multi-Layer Perceptron Architecture [62] 
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The network learning can be described in the following stages: 

1. Stage 1: The hidden neurons sum the weighted inputs and pass them through the 

activation function.  

2. Stage 2: The outputs from the hidden layer are fed to the output layer with a 

second set of weights and a bias.  

3. Stage 3: The output layer passes the weighted sum of its inputs through a linear or 

non-linear activation function to the network’s output.  

The output(s) from the output layer make up the network outputs(s). The network 

output(s) are subsequently analyzed for network performance and errors.  

6.3 Network Learning 

A feed-forward back-propagation batch learning with a supervised learning 

technique is used to train the network.   A feed-forward network structure only allows a 

unidirectional flow of data through the network. The flow of data is usually from the 

input layer through the hidden layer, and finally to the output layer. Feedback loops or 

cycles are not permitted in a feed-forward network.  

Learning for an ANN is the adjustment of its weights and biases to minimize error in 

the network.  A back-propagation learning type is used in the network developed for this 

research. Back-propagation of error allows the network to calculate the error at each 

output and adjust the value of weights that caused the error accordingly, thereby reducing 

the overall error in the network. The effect of each weight on the error is determined by 

the value of the weight and the error on the unit above [63]. The error is thus back-

propagated through the network for optimization of the weights such that if the same 

dataset is provided to the network again, the error is lower than the previous result. The 

error indicator considered for the network performance is the mean squared error (MSE) 

value represented in Equation 33. The MSE value determines the accuracy of prediction 

over all the training patterns for a given network 

 𝐸𝐸 =  
1

2𝑁𝑁
�(𝑟𝑟𝑖𝑖 − 𝑧𝑧𝑖𝑖 )2
𝑁𝑁

𝑖𝑖

 (33) 

46 
 



 

where, E is the MSE value, 𝑟𝑟𝑖𝑖  is the target for the ith training pattern, 𝑧𝑧𝑖𝑖 is the predicted 

output for the ith training pattern, and N is the total number of training patterns. A batch 

learning technique involves the network learning after the entire data set has been 

presented to it, or more simply when one whole epoch is run. “An epoch refers to a single 

pass of all input patterns in a perceptron during the training phase [62].” The network 

computes a resultant error gradient with respect to weights from the average of error 

gradients from each point in the dataset. The error is minimized in the direction of the 

descent indicated by this resultant gradient. [62] 

A supervised learning technique trains the network by providing a target to the 

network along with its corresponding input during training phase. This allows the 

network to be exposed to a known response. The network subsequently learns the system 

behaviour under specific conditions characterized by the data presented to it [64]. The 

Levenberg-Marquardt (LM) learning algorithm is used here to adjust and update the 

weights of the network. LM is a hybrid learning technique based of the Gradient Descent 

and Newton’s method. The algorithm as presented in Equation 34, helps to train a 

network to attain a global minimum error by minimizing the first derivatives or gradients 

to zero [62]. This training algorithm is known to demonstrate superior performance and 

efficiency by adjusting the learning rate of the network repeatedly. [65] 

 𝛥𝛥𝑤𝑤𝑚𝑚 =  −  
𝑑𝑑𝑚𝑚

𝑑𝑑𝑚𝑚𝑠𝑠 +  𝑆𝑆𝜆𝜆
 (34) 

 

where, 𝑑𝑑𝑚𝑚 is the first derivative of error, 𝑑𝑑𝑚𝑚𝑠𝑠  is the second derivative of error, and λ is the 

damping factor.  

6.4 Activation Function 

Activation functions are the processors of data in a neuron and help the weights in 

the network identify and learn trends in a dataset. These functions can help introduce 

non-linearity into the network which allows the network to process complex, and non-

linear datasets. Activation functions in the hidden layer(s) are non-linear continuous 

functions. The continuity of these functions allows them to be differentiable. This 
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property aids in the adjustment of the network weights during backpropagtion of errors 

[62]. Generally, non-linear sigmoid functions are used as processors in MLPs [61]. The 

sigmoid function class can be classified in three common non-linearities, namely, 

logistic, hyperbolic tangent, and threshold functions. The logistic function (Equation 35) 

constrains the input data within a range of [0, 1] and is represented by Figure 19. The 

activation function, used for this research, for the network’s hidden layer is the 

hyperbolic tangent function given in Equation 36. 

 logsig(𝑢𝑢) =  
1

1 + 𝑆𝑆−𝛽𝛽𝛽𝛽
 (35) 

   

 tanh(𝑢𝑢) =  
1 − 𝑆𝑆−2𝛽𝛽

1 +  𝑆𝑆−2𝛽𝛽
 (36) 

   

where, β is the slope parameter, and u is any value from a dataset. Hyperbolic tangent 

functions constrain the data from [-1, 1] as seen from Figure 20. Unlike the logistic 

function, this function is beneficial when the data set to be trained has both positive and 

negative values in its input dataset and target dataset. The data can then be normalized 

before being fed to the network for an improved performance. It is also important to note 

that an asymmetric hyperbolic tangent function leads to a faster learning by requiring 

fewer number of patterns presented to it than non-symmetric logistic function [63]. 

 

                        Figure 19: Logistic Function                   Figure 20 : Hyperbolic Tangent Function [62] 
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A threshold activation function maps the data based on a predefined threshold, t. 

If the input value is above the threshold, then the output is t1. If the input value is below 

the threshold, the output value is t0. The threshold function acts as a binary classifier and 

is best suited for clustering, and pattern recognition applications. Figure 21 represents a 

threshold function with t1=1, and t0=0 given by Equation 37. 

 𝑟𝑟ℎ𝑓𝑓𝑆𝑆𝑗𝑗ℎ𝑓𝑓𝑎𝑎𝑑𝑑(𝑢𝑢) = { 𝑟𝑟0        𝑟𝑟𝑓𝑓 𝑟𝑟𝑟𝑟𝑝𝑝𝑢𝑢𝑟𝑟 < 0
 𝑟𝑟1        𝑟𝑟𝑓𝑓 𝑟𝑟𝑟𝑟𝑝𝑝𝑢𝑢𝑟𝑟 > 0   (37) 

 

 

                   Figure 21: Threshold Function                                     Figure 22: Linear Function 

The output from a neuron using any activation function, f, is given by Equation 38. 

 𝑁𝑁𝑆𝑆𝑢𝑢𝑓𝑓𝑓𝑓𝑟𝑟 𝑂𝑂𝑢𝑢𝑟𝑟𝑝𝑝𝑢𝑢𝑟𝑟 = f (�𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗 + 𝑏𝑏
𝑛𝑛

𝑗𝑗=1

) (38) 

   

The output layer on the other hand uses a linear activation function given by 

Equation 39, as its processing unit. Unlike the hyperbolic tangent function, the linear 

activation function (Figure 22) does not constrain the data but rather scales it linearly. 

This helps attain a true output value with respect to the network input.  

 𝑓𝑓(𝑢𝑢) =  𝑢𝑢 (39) 
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6.5 Data Pre-Processing and Post Processing 

Data pre-processing is an important step in the data mining process. The quality of 

data and its results can significantly be improved with the correct pre-processing 

techniques. One such technique, normalization, has been used here for the development 

of an inverse kinematic solution using ANNs. The physical attributes of a manipulator 

dictate its D-H parameters. These parameters are often a different scale than the joint 

variable ranges of the manipulator. The difference in scale may mask the effect of one 

variable on another. Normalization of data is therefore essential to scale all input and 

target datasets in a pre-defined range. The pre-defined range used for training the network 

is [-1, 1]. This guarantees a stable convergence of weights and biases. Normalization also 

helps to identify the true effect of any one variable on another variable. Two 

normalization techniques, namely, min-max normalization (Equation 40), and z-score 

normalization (Equation 41) have been applied to the dataset(s) used for training the 

network.   

 𝑋𝑋′ = 𝑎𝑎+(𝑋𝑋−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)(𝑏𝑏−𝑎𝑎)
𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

   or, (40) 

   

  𝑋𝑋′ =
𝑋𝑋 −  𝑋𝑋�
𝜎𝜎

 (41) 

   

where, 𝑋𝑋 denotes any value in the data set, 𝑋𝑋′ denotes the normalized value of 𝑋𝑋, a = -1, 

b = 1, 𝑋𝑋�  = mean of the given variable, 𝜎𝜎  is the standard deviation of the dataset, 

𝑋𝑋𝑚𝑚𝑎𝑎𝑥𝑥 ,𝑎𝑎𝑟𝑟𝑑𝑑 𝑋𝑋𝑚𝑚𝑖𝑖𝑛𝑛 are the maximum and minimum values in the dataset respectively.  

The network outputs from a normalized input set are also normalized. All values in the 

output data set therefore need to be reverted to scale. The scale for de-normalizing an 

output dataset is determined from the range of target dataset supplied to the network.  

6.6 Division of Data 

The ANNs for this research were developed with the aid of the Graphical User 

Interface (GUI) Neural Network (NN) Toolbox in the MATLAB environment. For 
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training a network, all data was divided at random into three mutually exclusive and 

collectively exhaustive categories, namely: 

1. Training Set: The training set is a percentage of the original data provided to a 

network to adjust the weights of the network during training. The training set used 

for this research accounts for 80% of the original data selected at random by the 

NN Toolbox.  

2. Validation Set: The validation set is a percentage of the original data provided to a 

network to minimize over fitting. The validation set verifies if an increase in 

accuracy over the training set yields an accuracy in the validation set as well. The 

network starts over fitting if the accuracy over the training set increases while the 

accuracy over the validation set decreases or remains constant. The training of a 

network should be stopped at this point. For this research, the validation set 

accounts for 10% of the original data selected at random by the NN Toolbox. 

3. Testing Set: The testing set is a percentage of the original data provided to a 

network to independently measure the networks performance and prediction 

capability after training has commenced. For this research, the testing set accounts 

for 10% of the original data selected at random by the NN Toolbox [66]. 

It is important to note that a data division percentage of 80-10-10 was chosen for the 

input data set over the MATLAB default percentage of 70-15-15. This configuration was 

selected since the ANN yielded a superior performance when compared to the default 

configuration. Better performance was achieved since the network was able to train over 

a larger dataset range while the validation and testing dataset performance remained 

constant.  

6.7 Network Prediction Capability 

After learning commences, input(s) from a known input-target dataset are introduced 

to the trained ANN. The network is simulated over the inputs to obtain network outputs. 

These outputs are the predicted values from the trained network. The outputs are 

compared with the known targets for errors in prediction. The relative percentage error in 

prediction is calculated, for a target dataset with no zero values, using Equation 42. 
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 𝐸𝐸𝑃𝑃 =  
𝑟𝑟𝑖𝑖 − 𝑧𝑧𝑖𝑖
𝑟𝑟𝑖𝑖

 𝑋𝑋 100 (42) 

   

where, 𝐸𝐸𝑃𝑃 is the percentage error in prediction, 𝑟𝑟𝑖𝑖 is the ith target value of the dataset, and 

𝑧𝑧𝑖𝑖 is the ith output from the ANN. If the target dataset contains values that are zero, a 

percentage error cannot be computed since the numerator in Equation 42 would require 

division with 0. In such cases, absolute error is computed using Equation 43. 

 𝐸𝐸𝐴𝐴 = |𝑟𝑟𝑖𝑖 − 𝑧𝑧𝑖𝑖| (43) 

   

where, 𝐸𝐸𝐴𝐴 is the absolute error in prediction. It is important to note that the absolute error 

requires reverting values back to scale if the input dataset had previously been 

normalized.  

6.8 Inverse Kinematics using Artificial Neural Networks 

Inverse kinematics problem are classified as ill-posed problems in modelling of 

ANNs. An ill-posed problem is characterized by a consistent mapping of a single input on 

one or more output(s). In such a case, the network learning averages all possible solutions 

thereby yielding a poor performance [63]. In the case of industrial manipulators, when 

mapping the end-effector position and orientation to the joint variable configuration of a 

manipulator, an ill-posed problem is experienced. The problem arises because of several 

joint configurations producing the same end-effector pose. The network thus generalizes 

the dataset to produce an outcome with low accuracy.  

This research presents ANNs as a non-conventional approach in solving the inverse 

kinematic problem in industrial manipulators. ANNs can be used in development of a 

robust and singularity free inverse kinematic solution. Figure 23 presents the network 

architecture used for this research. The network uses a dataset of 12 inputs which 

represent the position of the end-effector (𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦,𝑝𝑝𝑧𝑧 ), and the orientation of the end-

effector ( 𝑟𝑟𝑥𝑥, 𝑟𝑟𝑦𝑦,𝑟𝑟𝑧𝑧 , 𝑏𝑏𝑥𝑥,𝑏𝑏𝑦𝑦, 𝑏𝑏𝑧𝑧 , 𝑟𝑟𝑥𝑥, 𝑟𝑟𝑦𝑦, 𝑟𝑟𝑧𝑧 ) from the forward kinematics equations. The 

targets and network outputs are the configurations of the joint variables 

(𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3, 𝑞𝑞4, 𝑞𝑞5, 𝑞𝑞6) that produce the input position and orientation.  
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Figure 23: ANN Architecture for Inverse Kinematics Problem 

6.8.1 Challenges in developing an ANN Architecture 

The network architecture was initially designed with only 6 inputs 

(𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦,𝑝𝑝𝑧𝑧 ,𝛼𝛼,𝛽𝛽, 𝛾𝛾) as the rotation matrix was consolidated into its corresponding RPY 

angles. This architecture demonstrated a far lower performance compared to using all 9 

elements of the rotational matrix. This is because the network learning increasing with an 

increase in input parameters for a given number of outputs. The increase in 6 additional 

parameters help better define the joint configurations and the error can be generalized 

over a wider range of dataset. Figure 43 (Appendix A) shows the outputs of the network 
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(blue) completely superimposed on the network targets (green) thereby indicating a 

perfectly trained network for a SCARA Robot.  

An inherent challenge while developing the ANN model for this research was 

availability of target data (joint variable configurations) for any assumed position and 

orientation of the manipulator’s end-effector. Previously known target data is required for 

supervised learning as well as in the computation of errors in prediction (𝐸𝐸𝑃𝑃). Due to the 

unavailability of inverse kinematic solution(s) for most industrial manipulators, a forward 

kinematics solution was first developed for each manipulator type. An input dataset was 

developed with the joint configurations used for the forward kinematic computation with 

the outputs from the forward kinematic computation as network inputs. These network 

outputs were subsequently compared with the targets for evaluating network 

performance. 

Accuracy of the network was another challenge faced while developing an 

optimized network. It was observed that large amounts of data decreased the performance 

of the network because of the increase in complexity of the data set. For example, for a 6 

DOF robot with 10 joint values for each joint variable configuration, 1 million joint 

configurations and their corresponding end-effector pose configurations were generated. 

The network learning process therefore involved processing of 18 million joint 

configurations (12 inputs + 6 outputs). Due to computational limitations (Intel® Core™ 

i7-3770 CPU @ 3.40 GHz processor, 16.0 GB RAM), such large data could not be 

processed through the Neural Network Toolbox in MATLAB. This data set was broken 

down into subsets by taking a smaller range of values within a single joint variable for 

ease of processing. Three different approach were experimented with to obtain a higher 

network performance, namely: 

1. Restructuring the ANN: Altering the ANN architecture was the first approach 

taken to solve the aforementioned problem.  This involved addition of neurons in 

the hidden layer as well as addition of several other hidden layers each with 

varying number of neurons. The network performance, however, did not 

substantially increase after 55 neurons in the first hidden layer. Restructuring the 

network henceforth only increased the complexity of the network. A single hidden 
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layer (SHL) network architecture with the least amount of complexity and 

comparable performance was therefore considered optimal.  

2. Different Learning Techniques: Different learning techniques apart from feed-

forward back propagation were tested for an increase in network performance. 

These techniques involved Elman back propagation, generalized regression, 

cascade forward back propagation etc. A feed forward back propagation network, 

however, provided the least amount of error in the system, and with a superior 

performance amongst all compared techniques.  

3. Reducing the Dataset Complexity: Instead of splitting a large data set into subsets, 

smaller datasets were created with fewer joint configurations. This helped reduce 

the complexity of the dataset by significantly decreasing the learning required by 

the network. An optimal number of three joint configurations for each joint 

variable (729 joint and pose configurations) demonstrated superior results over 

any other approach taken to improve the network accuracy. The computation time 

of the network also decreased substantially with this approach. The trade-off for 

this approach was that only a range of 3 joint variable values could be trained with 

the developed network at any given time. Different classes of joint configuration 

therefore need to be developed when using this method. Chapter 10 presents case 

studies on two different manipulator configurations with an inverse kinematic 

solution for each manipulator type. 

6.8.2 Generalization and Accuracy of the ANN Model 

ANNs provide promising results in development of inverse kinematic solution(s). 

Moreover, the complexity of a solution is decreased since complicated coupled equations 

from iterative methods are not explored. ANNs also greatly reduce the computation time 

required for development of a solution as compared with other traditional geometric, 

iterative, and analytical methods. A challenge with ANN models, however, is the 

accuracy of a developed network. An acceptable level of accuracy is needed to make 

confident predictions. A model with an optimized complexity is required for an accurate 

model with good generalization capability. 
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Before modelling a dataset in Neural Networks, we assume that there is some 

acceptable level of noise present. Noise may arise from presence of singularities, error 

due to approximation etc. Since, reliable predictions for such a model cannot be made 

beforehand, the model needs to possess an optimal generalization ability (Figure 24), in 

order to prevent over fitting (Figure 25) or under fitting (Figure 26) due to high or low 

model flexibility.  

               

Figure 24: ANN with good generalization [62]            Figure 25: Over-fitted ANN with high flexibility [62] 

 

             Figure 26: Under-fitted ANN with low flexibility [62] 

For improving generalization, the network’s DOF need to be lowered, which is 

achieved by reducing the number of free parameters, or the weights to each hidden 

neuron. These hidden neuron weights are directly proportional to the flexibility of the 

network. Reducing the number of neurons thus reduces over fitting. One has to be careful 

since excessive reduction in hidden neurons causes the model to under fit. In an early 

stopping approach, if the weights are allowed to grow enough during training and then 

training is stopped, it is possible to restrain the network from over fitting.  A performance 

plot provides the epoch at which the lowest validation performance is achieved. After this 

point, over fitting sets into the model and the validation performance increases with 
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training. If weights are taken for the network at an optimal point where the validation 

performance is best, the network would fit sufficiently but not too close, which is an 

indication of a well-trained model [62]. 

Figure 27 represents the ANN model used in development of an inverse kinematic 

solution for the previously mentioned SCARA (RRT) robot. Using trial and error, it is 

observed that an ANN with 55 neurons in a hidden layer provides the optimal network 

generalization and accuracy. For training the network, a sample input and target data set 

was created from the forward kinematics model of SCARA Robot. Each joint variable 

was split in 25 equal sections over its range as given by Table 15 in Appendix A. The 

joint space of the manipulator therefore consisted of 15625 joint combinations (253) 

which were used as network targets.  Each of these combinations produced an end-

effector pose which were used as network inputs.  Table 3 provides a summary of the 

performance indicators for the trained ANN.  

 

Figure 27: ANN Architecture for SCARA Robot 

 

Table 3: ANN Performance Indicators for SCARA Robot 

S. No. ANN Network Indicator Result 
1 Total Epochs 501 
2 Epoch for Best Validation Performance 501 
3 Overall Regression (R) Value 1 
4 Mean Square Error (MSE) 0.0000009 
5 Training Performance 0.0000009 
6 Testing Performance 0.0000010 
7 Validation Performance 0.0000010 
8 Error Histogram Center (Bell Curve) -0.000072 
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The best validation performance, as seen from Figure 40 (Appendix A), was 

obtained at epoch 501. The network training was manually aborted at epoch 501 since 

excellent network performance was achieved.  The regression plot in Figure 41 

(Appendix A) demonstrates a fitness between the network outputs and target values. A 

perfect fit is indicated by a regression (R) value of 1. A perfect fit is achieved since all 

points in the network input data are unique. Moreover, an ill-posed problem is not 

encountered since every point in the input dataset is mapped to exactly one corresponding 

target data. Figure 43 (Appendix A) provides a comparison between the network outputs 

and targets for q1, q2, and q3 as a solution to the inverse kinematics problem. It is 

observed that the outputs and targets for q1, q2, and q3 completely superimposed on each 

other. This indicates a robust inverse kinematics solution for the SCARA manipulator.  

The network performance indicator, MSE, has an extremely low value of 0.0000009 

(assume zero). A low MSE value indicates a good accuracy of prediction. The individual 

performance values for the training, testing, and validation dataset are extremely low and 

are around the MSE value as well. The error histogram in Figure 42 (Appendix A) 

determines the frequency of errors concentrated over a range. A well fit network has the 

maximum frequency of errors around zero. In the network trained for SCARA robot, the 

maximum errors in all training, validation, and testing dataset are concentrated at -

0.000072. The error histogram here displays a perfect normal distribution (bell shaped 

curve) centered nearly at zero, thereby depicting a 95% and above confidence interval in 

prediction of joint variables. 
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 CHAPTER 7 

JACOBIAN: VELOCITY KINEMATICS 

The Jacobian matrix is an essential tool in the analysis and control of manipulator 

motion. It is used in several aspects of robot manipulation including trajectory and path 

planning, singularity analysis, derivation of dynamic equations of motion etc.  A Jacobian 

is the first derivative of the pose matrix of a manipulator. Mathematically, it defines the 

Cartesian linear and angular end-effector velocity relationship to a manipulator’s joint 

variable velocities in its joint space. The Jacobian matrix thus computes the end-effector 

motion and Cartesian velocity caused by the actuation and rate of change of joints of a 

manipulator [57]. The derivation of a manipulator’s Jacobian is highly dependent on the 

kinematic structure of the manipulator and its joint configurations. It is therefore essential 

to model a Jacobian that can adapt to changing kinematic structure(s) of any manipulator 

type. Two common techniques to model the Jacobian are the Newton-Euler Recursive 

method and the Vector Cross Multiplication (VCM) method.  This research utilizes the 

Newton-Euler Recursive (NER) method because of its capability to be extended for 

calculation of dynamics equations of motion for a manipulator. During the course of this 

research, it was also realized that the NER method provides seamless integration into the 

development of a reconfigurable model without the need for assessment of several 

additional parameters when compared to the VCM method.   

7.1 Newton Euler Recursive Method 

The computation of the Newton-Euler Recursive equation(s) begin with defining the 

rotation matrix and the position matrix from the forward kinematics equations of a 

manipulator (Equation 25). The rotation matrix, its transpose, and the position matrix that 

define the orientation of a frame Fi with respect to Fi-1 are represented in Equations 44-46 

respectively.  

 𝑅𝑅𝑖𝑖𝑖𝑖−1 =  �
cos (𝜃𝜃𝑖𝑖) −cos (𝛼𝛼𝑖𝑖)sin (𝜃𝜃𝑖𝑖) sin(𝛼𝛼𝑖𝑖)sin (𝜃𝜃𝑖𝑖)
sin (𝜃𝜃𝑖𝑖) cos (𝛼𝛼𝑖𝑖)cos (𝜃𝜃𝑖𝑖) −sin (𝛼𝛼𝑖𝑖)cos (𝜃𝜃𝑖𝑖)

0 sin (𝛼𝛼𝑖𝑖) cos (𝛼𝛼𝑖𝑖)
�  𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟 = 1,2, … ,𝑟𝑟 (44) 

   

 𝑅𝑅𝑖𝑖−1𝑖𝑖 =  �𝑅𝑅𝑖𝑖𝑖𝑖−1�
𝑇𝑇
 (45) 
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 𝑃𝑃𝑖𝑖𝑖𝑖−1 =  �
𝑎𝑎𝑖𝑖cos (𝜃𝜃𝑖𝑖)
𝑎𝑎𝑖𝑖sin (𝜃𝜃𝑖𝑖)

𝑑𝑑𝑖𝑖
�   𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟 = 1,2, … , 𝑟𝑟 (46) 

   

The angular and linear velocity vectors are subsequently determined for all joint 

variables. These joint rate vectors are the first derivatives of the joint variables and are 

defined in Equation 47 and Equation 48. 

 �̇�𝜃𝑖𝑖𝑖𝑖−1 =  �
0
0
𝜃𝜃�̇�𝚤
�  𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟 = 1,2, … ,𝑟𝑟     𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟𝑎𝑎𝑎𝑎 𝑗𝑗𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑗𝑗 (47) 

 �̇�𝑃𝑖𝑖𝑖𝑖−1 =  �
0
0
𝑝𝑝�̇�𝚤
�  𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟 = 1,2, … , 𝑟𝑟     𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑓𝑓𝑎𝑎𝑟𝑟𝑗𝑗𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟𝑎𝑎𝑎𝑎 𝑗𝑗𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑗𝑗  (48) 

   

The next step involves determining the angular velocities ( 𝜔𝜔𝑖𝑖
0 𝑖𝑖 ), and linear velocities 

( 𝜈𝜈𝑖𝑖0 𝑖𝑖 ), of each link, i, based on the joint variable type. Equations 49-50 represent the 

angular velocities for rotational and translational joint types, and Equations 51-52 

represent the linear velocities for rotational and translational joint types. 

 𝜔𝜔𝑖𝑖
0 𝑖𝑖 =  𝑅𝑅𝑖𝑖−1𝑖𝑖  � 𝜔𝜔𝑖𝑖−1

0  𝑖𝑖−1 + �̇�𝜃𝑖𝑖𝑖𝑖−1�   𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟𝑎𝑎𝑎𝑎 𝑗𝑗𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑗𝑗         (49) 

   

 𝜔𝜔𝑖𝑖
0 𝑖𝑖 =  𝑅𝑅𝑖𝑖−1𝑖𝑖  � 𝜔𝜔𝑖𝑖−1

0  𝑖𝑖−1 �            𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑓𝑓𝑎𝑎𝑟𝑟𝑗𝑗𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟𝑎𝑎𝑎𝑎 𝑗𝑗𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑗𝑗        (50) 

   

 𝜈𝜈𝑖𝑖0 𝑖𝑖 =  𝑅𝑅𝑖𝑖−1𝑖𝑖 𝜈𝜈𝑖𝑖−10𝑖𝑖−1 +  𝜔𝜔𝑖𝑖
0 𝑖𝑖 X �𝑅𝑅𝑖𝑖−1𝑖𝑖 𝑃𝑃𝑖𝑖𝑖𝑖−1�         𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟𝑎𝑎𝑎𝑎 𝑗𝑗𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑗𝑗   (51) 

   

 
𝜈𝜈𝑖𝑖0 𝑖𝑖 =  𝑅𝑅𝑖𝑖−1𝑖𝑖 𝜈𝜈𝑖𝑖−10  𝑖𝑖−1 + 𝜔𝜔𝑖𝑖−1

0  𝑖𝑖−1 X �𝑅𝑅𝑖𝑖−1𝑖𝑖 𝑃𝑃𝑖𝑖𝑖𝑖−1� +  𝑅𝑅𝑖𝑖−1𝑖𝑖 �̇�𝑃𝑖𝑖𝑖𝑖−1                         

                                                                        𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑓𝑓𝑎𝑎𝑟𝑟𝑗𝑗𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟𝑎𝑎𝑎𝑎 𝑗𝑗𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑗𝑗   
(52) 

   

After computation of angular and linear velocities for the last link of the manipulator, the 

generalized velocity vector (𝑉𝑉) of the end-effector is computed using Equation 53. 

60 
 



 

 𝑉𝑉 =  �𝜈𝜈𝜔𝜔�  (53) 

   

For example, for a 6 DOF manipulator, the generalized velocity vector is a 6x6 matrix 

represented by Equation 54. 

 𝑉𝑉 =  �
𝜈𝜈60 6

𝜔𝜔6
0 6 � (54) 

   

The Jacobian matrix, J(q), of a manipulator with respect to its end-effector is calculated 

from the generalized velocity vector(𝑉𝑉) by extracting the joint velocity vector(s), �̇�𝑞. The 

joint velocity vectors vary depending on the type of joint for each link as represented in 

Equation 55.  

 �̇�𝑞𝑖𝑖𝑖𝑖−1 = {  
�̇�𝜃𝑖𝑖𝑖𝑖−1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟𝑎𝑎𝑎𝑎 𝑗𝑗𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟

�̇�𝑃𝑖𝑖𝑖𝑖−1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑓𝑓𝑎𝑎𝑟𝑟𝑗𝑗𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟𝑎𝑎𝑎𝑎 𝑗𝑗𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟
 (55) 

 

The Jacobian matrix, J(q), is represented in Equation 56. 

 𝑉𝑉 = 𝐽𝐽(𝑞𝑞) �̇�𝑞 (56) 

   

This Jacobian matrix can further be divided into two submatrices representing the 

Jacobian for linear velocities,𝐽𝐽𝜈𝜈 and the Jacobian for angular velocities, 𝐽𝐽𝜔𝜔 , as represented 

in Equation 57. 

 𝐽𝐽(𝑞𝑞) =  �𝐽𝐽𝜈𝜈𝐽𝐽𝜔𝜔
�  (57) 

   

The dimension of the Jacobian matrix is dependent on the number of joints of a 

manipulator, n, and the dimension of the task space, t. For an n-DOF manipulator, the 

Jacobian matrix has a dimension of txn. Since most industrial manipulators are required 

to position as well as orient its end-effector, the dimension of the task space is generally 

6. The dimension of the manipulator Jacobian is therefore usually 6xn. In such as case, 

the dimensions of both 𝐽𝐽𝜈𝜈 and 𝐽𝐽𝜔𝜔 will be 3xn.  
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The Jacobian matrix with respect to the base frame, F0, is calculated using the Equation 

58. 

 𝐽𝐽(𝑞𝑞)𝐵𝐵 = 𝑅𝑅𝑛𝑛 
0  𝐽𝐽(𝑞𝑞) (58) 

   

where, n is the number of joints in a manipulator, and 𝑅𝑅𝑛𝑛 
0   represents the rotation matrix 

defining the orientation of the end-effector with respect to the base frame of the 

manipulator. Once computed, 𝐽𝐽(𝑞𝑞)𝐵𝐵 is further analyzed for any kinematic singularities 

present in the manipulator. For example, for a SCARA (RRT) manipulator previously 

discussed in this text, the generalized velocity vector,𝑉𝑉 and the Jacobian matrix in the 

base frame, F0, are represented by Equations 59-60 respectively. 

 𝑉𝑉 =  𝐽𝐽(𝑞𝑞) �̇�𝑞 =  

⎣
⎢
⎢
⎢
⎢
⎡

225 ∗ sin (𝜃𝜃2) 0 0
225 ∗ cos(𝜃𝜃2) + 450 450 0

0 0 1
0 0 0
0 0 0
1 1 0⎦

⎥
⎥
⎥
⎥
⎤

�
𝜃𝜃1̇
�̇�𝜃2
�̇�𝑝3
� (59) 

   

 𝐽𝐽(𝑞𝑞)𝐵𝐵 = 

⎣
⎢
⎢
⎢
⎢
⎡−450 ∗ sin(𝜃𝜃1 + 𝜃𝜃2) − 225 ∗ sin (𝜃𝜃1) −450 ∗ sin(𝜃𝜃1 + 𝜃𝜃2) 0

450 ∗ cos(𝜃𝜃1 + 𝜃𝜃2) + 225 ∗ cos (𝜃𝜃1) 450 ∗ cos(𝜃𝜃1 + 𝜃𝜃2) 0
0 0 1
0 0 0
0 0 0
1 1 0⎦

⎥
⎥
⎥
⎥
⎤

 (60) 

 

7.2 Wrist Partitioned Manipulators 

Consider a general 6-DOF articulated industrial manipulator with a forearm 

configuration in its first 3 joints, and a wrist configuration in its last 3 joints. If the 

velocity reference point is considered as the center of the manipulator’s wrist, the 

Jacobian matrix, 𝐽𝐽(𝑞𝑞)𝐵𝐵, can be further simplified into another matrix, 𝐽𝐽𝑊𝑊, with 4 sub-

matrices as represented in Equation 61 [67].   

 𝐽𝐽(𝑞𝑞)𝐵𝐵 = 𝐽𝐽𝑊𝑊 =  �𝐽𝐽11 𝐽𝐽12
𝐽𝐽21 𝐽𝐽22

� (61) 
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Here, 𝐽𝐽11 , and 𝐽𝐽22  are 3X3 matrices can that can be individually analyzed for 

decoupling singularities. Often in some manipulator geometries where the last three joint 

variables only affect the orientation of the end-effector,  𝐽𝐽12 will be a zero matrix of a 

dimension 3x3. This zero block matrix simplifies the decoupling process which is 

discussed further in detail in Chapter 8. The simplification of the manipulator Jacobian 

(J(𝑞𝑞) in any frame) into sub-matrices can help identify the relations between the forearm 

and wrist configurations, and the linear and angular velocity vectors [57] using Equations 

62-67.  

 𝐽𝐽11𝑞𝑞�̇�𝑎 = �
𝐽𝐽(𝑞𝑞)11 𝐽𝐽(𝑞𝑞)12 𝐽𝐽(𝑞𝑞)13
𝐽𝐽(𝑞𝑞)21 𝐽𝐽(𝑞𝑞)22 𝐽𝐽(𝑞𝑞)23
𝐽𝐽(𝑞𝑞)31 𝐽𝐽(𝑞𝑞)32 𝐽𝐽(𝑞𝑞)33

� �
𝑞𝑞1̇
�̇�𝑞2
�̇�𝑞3
� (62) 

   

 𝐽𝐽12𝑞𝑞�̇�𝑏 = �
𝐽𝐽(𝑞𝑞)14 𝐽𝐽(𝑞𝑞)15 𝐽𝐽(𝑞𝑞)16
𝐽𝐽(𝑞𝑞)24 𝐽𝐽(𝑞𝑞)25 𝐽𝐽(𝑞𝑞)26
𝐽𝐽(𝑞𝑞)34 𝐽𝐽(𝑞𝑞)35 𝐽𝐽(𝑞𝑞)36

� �
𝑞𝑞4̇
�̇�𝑞5
�̇�𝑞6
� (63) 

   

  𝐽𝐽21𝑞𝑞�̇�𝑎 = �
𝐽𝐽(𝑞𝑞)41 𝐽𝐽(𝑞𝑞)42 𝐽𝐽(𝑞𝑞)43
𝐽𝐽(𝑞𝑞)51 𝐽𝐽(𝑞𝑞)52 𝐽𝐽(𝑞𝑞)53
𝐽𝐽(𝑞𝑞)61 𝐽𝐽(𝑞𝑞)62 𝐽𝐽(𝑞𝑞)63

� �
𝑞𝑞1̇
�̇�𝑞2
�̇�𝑞3
� (64) 

   

  𝐽𝐽22𝑞𝑞�̇�𝑏 = �
𝐽𝐽(𝑞𝑞)44 𝐽𝐽(𝑞𝑞)45 𝐽𝐽(𝑞𝑞)46
𝐽𝐽(𝑞𝑞)54 𝐽𝐽(𝑞𝑞)55 𝐽𝐽(𝑞𝑞)56
𝐽𝐽(𝑞𝑞)64 𝐽𝐽(𝑞𝑞)65 𝐽𝐽(𝑞𝑞)66

� �
𝑞𝑞4̇
�̇�𝑞5
�̇�𝑞6
� (65) 

   

  𝜈𝜈 =  𝐽𝐽11𝑞𝑞�̇�𝑎 + 𝐽𝐽12𝑞𝑞�̇�𝑏 (66) 

   

  𝜔𝜔 =  𝐽𝐽21𝑞𝑞�̇�𝑎 +  𝐽𝐽22𝑞𝑞�̇�𝑏  (67) 

 

For example, for any wrist partitioned Cartesian manipulator, 𝐽𝐽12 =  𝐽𝐽21  = 0, thereby 

verifying that the linear velocity of the end-effector is independent of the rotational joints 

in the manipulator’s wrist. Also, the angular velocity is independent of the first three 

translational joints [57]. 
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 CHAPTER 8 

KINEMATIC SINGULARITIES 

The American National Standard for Industrial Robots and Robot Systems – Safety 

Requirements (ANSI/RIA R15.06-1999) defines kinematic singularity as “a condition 

caused by the collinear alignment of two or more robot axes resulting in unpredictable 

robot motion and velocities” [68]. A manipulator’s performance is therefore greatly 

depreciated at or near singular regions. It is thus crucial to understand the functionality 

and reachable workspace, void of any singularities, for a manipulator’s enhanced 

performance in an industrial setting [2]. 

Kinematic singularities in manipulators arise due to a loss of DOF in its end-effector 

[2]. At such an instance, two or more joints of a manipulator do not independently control 

the position and orientation of the end-effector [1]. For example for a SCARA (RRT) 

manipulator, the singularity region is marked red in color in Figure 28 below and Figure 

38 (Appendix A). At these singular regions, the position and orientation of the SCARA 

manipulator is only controlled by one rotational joint and one translational joint.  

 

Figure 28: Singularity Space of SCARA Robot 

64 
 



 

Kinematic Singularities are of particular interest for the following reasons: 

1. Knowledge about singularities provides an insight into the reachable and 

functional workspace for the end-effector of a manipulator.  

2. Singular configurations (boundary singularities) may sometimes help define the 

boundary of the manipulator’s workspace. 

3. Singularity can be used as design tool for defining the joint limits and the 

mechanical structure of a manipulator. 

4. Singularities help determine configurations for unattainable directions of motion.  

5. At singular configurations, small motion of the manipulator’s end-effector may 

cause a large movement in the joint variables.  

6. At or near singular configurations, the control algorithm of a manipulator fails, 

resulting in large joint velocities and accelerations for the smooth operation of the 

manipulator.  

7. Singular configuration may correspond to non-unique, zero or infinite inverse 

kinematic solutions to a manipulator [69] [5] [2].  

During manipulator control, singularity conditions may arise during the inverse 

mapping from the manipulator’s Cartesian space to its joint space [70]. By modifying 

Equation 56, it can be seen that the joint velocity vector of the manipulator in its joint 

space, can be mapped to the generalized velocity vector of the manipulator in Cartesian 

space using Equation 68. 

  �̇�𝑞 = [𝐽𝐽(𝑞𝑞)]−1 𝑉𝑉 (68) 

   

Singularities can therefore be mathematically determined by analyzing the inverse 

of the Jacobian matrix for the manipulator being studied. From a mathematical 

standpoint, singularities arise as a local or instantaneous phenomena from the rank 

deficiency of the Jacobian matrix [69]. To realize a solution to Equation 68, the Jacobian 

matrix of a manipulator should be non-singular, and be of a rank equal to the dimension 

of the joint velocity vector and generalized velocity vector. One method of analyzing a 

kinematic singularity is through the computation of the determinant of an nxn subset, 𝐽𝐽𝑛𝑛 

of the manipulator Jacobian, where n represents the number of joints. A square subset is 
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analyzed for a non-square Jacobian (with 6 or less DOF) since an inverse of a non-square 

matrix does not exist. Mathematically, the inverse of a Jacobian matrix is represented in 

Equation 69. 

 [𝐽𝐽(𝑞𝑞)]−1 =  
𝐶𝐶𝑗𝑗𝑖𝑖

|𝐽𝐽(𝑞𝑞)|
 (69) 

   

where, 𝐶𝐶𝑗𝑗𝑖𝑖  represents a matrix of cofactors (adjugate matrix) of the Jacobian being 

analyzed, and |𝐽𝐽(𝑞𝑞)| represents its determinant. For a non-invertible singular Jacobian, 

the determinant of the matrix is zero as represented in Equation 70. 

 𝑆𝑆𝑟𝑟𝑟𝑟𝑆𝑆𝑢𝑢𝑎𝑎𝑎𝑎𝑓𝑓 𝐽𝐽𝑎𝑎𝑐𝑐𝑓𝑓𝑏𝑏𝑟𝑟𝑎𝑎𝑟𝑟: |𝐽𝐽(𝑞𝑞)| = 0 (70) 

   

For the SCARA (RRT) manipulator, the 3x3 subset of its Jacobian matrix being analyzed 

is the Jacobian matrix of linear velocities in base frame, 𝐽𝐽𝑣𝑣(𝑞𝑞)𝐵𝐵 represented by Equation 

71. The determinant of this Jacobian is represented by Equation 72: 

 𝐽𝐽𝑣𝑣(𝑞𝑞)𝐵𝐵 = �

−450 ∗ sin(𝜃𝜃1 + 𝜃𝜃2) − 225 ∗ sin (𝜃𝜃1) −450 ∗ sin(𝜃𝜃1 + 𝜃𝜃2) 0
450 ∗ cos(𝜃𝜃1 + 𝜃𝜃2) + 225 ∗ cos (𝜃𝜃1) 450 ∗ cos(𝜃𝜃1 + 𝜃𝜃2) 0

0 0 1
0 0 0

�  (71) 

   

 |𝐽𝐽𝑣𝑣(𝑞𝑞)𝐵𝐵| = 101250 ∗ sin (𝜃𝜃2) (72) 

 

The determinant of the Jacobian,|𝐽𝐽𝑣𝑣(𝑞𝑞)𝐵𝐵| assumes the value 0 when 𝜃𝜃2  = 0 or pi 

radians. Since pi radians does not lie in the joint space of the manipulator (see Table 2), 

the singular condition for this robot arises when its second joint variable reaches 0 

radians. In this case, the singular space is on the boundary of the manipulator because at 

𝜃𝜃2 = 0 radians, the arm of the manipulator is fully extended and cannot move any farther 

from its base. 
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8.1 Types of Singularities 

With respect to general wrist partitioned industrial manipulators, kinematic 

singularities can be classified based on the joint configuration(s) of the manipulator. The 

two most common types of kinematic singularities are: 

1. Forearm Singularity: In wrist partitioned 6 DOF manipulators, forearm 

singularities arise because of the motion of the forearm caused by first three joints 

of the manipulator. These singularities are often experienced at the workspace 

boundary of the manipulator when the manipulator arm is fully extended or 

retracted. Arm singularities are therefore sometimes referred to as boundary 

singularities or internal singularities based of the arm configuration. Forearm 

singularities can be identified by analyzing the 𝐽𝐽11 subset of the Jacobian matrix 

for a manipulator. A forearm singularity can be mathematically represented using 

Equation 73.  

 |𝐽𝐽11 | = 0 (73) 

   

For a wrist partitioned SCARA robot, a forearm singularity is observed at 𝜃𝜃2 = 0 

or pi radians (Equation 72), as seen in Figure 38 (Appendix A). At this 

configuration, the arm of the manipulator is at its maximum radial distance from 

the base of the manipulator as seen from Figure 29 below.  

  
                       Figure 29: SCARA Robot                                              Figure 30: PUMA 560 Robot                         
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2. Wrist Singularity: In wrist partitioned 6 DOF manipulators, wrist singularities 

arise because of the motion of wrist cause by the last three joints of the 

manipulator. When two of the three rotational joints of the wrist become collinear, 

their equal and opposite rotation about their individual axis cancels out any 

possible change in orientation of the end-effector [5]. These types of singularities 

can only be excluded from the joint space by imposing restrictions on the joint 

variables. Wrist singularities can be identified by analyzing the 𝐽𝐽22 subset of the 

Jacobian matrix for a manipulator. A wrist singularity can be mathematically 

represented using Equation 74.  

 |𝐽𝐽22 |  =  0 (74) 

   

For example, for a PUMA 560 robot in Figure 30, a wrist singularity is observed 

at 𝜃𝜃5 = 0 or pi radians, where the axis of the fourth and the sixth joint become 

collinear. A wrist singularity is challenging to visually analyze, since an 

orientation at a specific point in the Cartesian workspace of a manipulator may be 

realizable in multiple wrist configurations. It is possible that only a few of those 

wrist configuration(s) are singular. 

 

   Figure 31: PUMA Wrist Singularity [66]        

68 
 



 

The corresponding position of the end-effector, however would still be 

represented as being singular. Figures 31 and 32, show all points in the workspace 

(black in color) of the PUMA 560 robot as singular points (red in color) since 𝜃𝜃5 

= 0 is realizable at every point in the robot’s workspace.    

 

Figure 32: PUMA Wrist Singularity (Top View) [66] 

The decoupling of singularities for wrist partitioned manipulators can therefore reduce 

the computational time and effort in calculating singular configurations. For a 

manipulator with 𝐽𝐽12 = 0, the Jacobian matrix and its singularity condition can thus be 

represented using Equations 75 and 76, respectively.  

 𝐽𝐽(𝑞𝑞)𝐵𝐵 = 𝐽𝐽𝑊𝑊 =  �𝐽𝐽11 03𝑋𝑋3
𝐽𝐽21 𝐽𝐽22

� (75) 

   

 |𝐽𝐽(𝑞𝑞)𝐵𝐵| = |𝐽𝐽11||𝐽𝐽22| (76) 

8.2 Singularity Free Geometric Path Planning 

Geometric path planning is the task of defining a set of Cartesian co-ordinates that 

define the end-effector’s path between two known coordinates in a manipulator’s 

workspace. Path planning is an important part in intelligent control of manipulators, and 

involves generating an optimized and collision free path through the manipulators’ 

69 
 



 

workspace [71]. Path planning for industrial manipulators can be categorized in three 

different categories, namely: 

1. Point-to-Point (P2P) Path: Point-to-Point path planning involves generating a path 

between two discrete points within the manipulator’s workspace. The path 

generation using this method may vary for any spatial location of the initial and 

ending point. 

2. Controlled Path: Controlled path planning involves a manipulator’s end-effector 

following a predictable or controlled path through its workspace. The coordinates 

of the path are pre-determined based on the manipulator’s task. 

3. Continuous Path: Continuous path planning involves storing a close succession of 

spatial points in the controller’s memory from any teaching sequence. The path 

defined in the teaching sequence is then replayed from the memory for a defined 

task. [54] 

Singularities are inherent to any manipulator’s geometry and design. Development of 

a singularity free geometric path for an end-effector is important for robust manipulator 

control. P2P path planning is often challenging since a path generated might involve 

maneuvering a manipulator’s end-effector through singularity zone(s). Singularities can 

truly be eliminated from a manipulator’s workspace by imposing restriction on the range 

of motion of its joint variables (in joint space). One solution to the problem of path 

planning thus involves defining a path around the singularity zone(s).  A path around any 

singularity zone may involve: 

1. Avoiding a singular point in the manipulator’s workspace completely. For 

example, a non-singular point, P1, is chosen over a singular point P0 in a path 

being defined. 

2. Maneuvering the end-effector through a singular point in a non-singular joint 

configuration. For example, if a point, P2, is singular in joint configuration qa, but 

not in joint configuration qb, then configuration qb is selected while maneuvering 

the end-effector through point P2. 
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ANNs are presented here as a non-conventional technique to aid in a singularity free 

end-effector path generation. An ANN is previously trained for development of an 

inverse kinematic solution for a specific manipulator configuration (Section 6.8). A data 

set in Cartesian space consisting of known singularity points is then simulated over the 

trained network for outputs. The output(s) from the ANN model are compared to the 

known joint variable configuration(s) for singular points in the manipulator’s workspace. 

The comparison helps visually identify a singularity error window which can be 

developed in joint space of a manipulator for avoiding singularities.  

For example, for the SCARA (RRT) robot, a set of known 625 singularity points 

(each point with 3 position variables and 9 orientation variables) is normalized between [-

1,1]. This normalized dataset is simulated over the inverse kinematic model for the 

SCARA robot. The ANN output, predicted joint variables, are reverted to scale and 

compared for error with the theoretical known joint variables of each of the 625 

singularity points. Table 4 below shows the absolute error between the predicted joint 

variable values and the theoretical joint variable values for 5 sample points. 

Table 4: Theoretical vs. Predicted Joint Variable Error 

Sample 
No. 

Joint Variable 
(Known) 

Joint Variable 
(Predicted) 

 Absolute Error 

E(q1) 
(rad) 

E(q2) 
(rad) 

E(q3) 
(mm) q1 

(rad) 
q2 

(rad) 
q3 

(mm) 
q1 

(rad) 
q2 

(rad) 
q3 

(mm) 
1 -2.22 0.00 -280.33 -2.22 0.00 -280.34 0.00 0.00 0.00 
2 -1.66 0.00 -205.33 -1.66 0.00 -205.33 0.00 0.00 0.00 
3 1.48 0.00 -272.00 1.48 -0.01 -272.00 0.00 0.01 0.00 
4 1.11 0.00 -163.67 1.11 0.00 -163.67 0.00 0.00 0.00 
5 0.74 0.00 -230.33 0.74 0.00 -230.34 0.00 0.00 0.00 

 

Table 5: Max. and Min. Error in Joint Variable Prediction 

 Predicted vs. Theoretical Joint Variables 
Absolute Error q1 (rad) q2 (rad) q3 (mm) 

Maximum 0.00 0.01 0.00 
Minimum 0.00 0.00 0.00 
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An absolute error value is chosen since the joint variables assume the value 0 at 

some points. A relative percentage error for such a point would not be possible (error 

would be infinite). The maximum and minimum error in all joint variables for all 625 

points are presented in Table 5 above.  

The theoretical (red) and predicted (blue) joint variables are mapped to their 

respective Cartesian space in Figure 33 below. It can be observed that that the predicted 

singularity is well superimposed over the theoretical singularity with barely any error. 

Moreover, there is very minimalistic deviation from the outer boundary of the workspace 

where the manipulator singularity exists. The predicted singularity is exactly able to map 

the radial distance of the theoretical singularity, thereby confirming a robust and well 

trained ANN.  

A comparison of each of the predicted vs. theoretical joint variable values for 

singularity is presented in Figure 44 (Appendix A). Minimal deviation is observed 

between the predicted joint values and the theoretical values at the extremes of the joint 

angle range as seen from the Joint Variable 1 graph. This error arises because of the 

lowered generalization capability of a high DOF ANN model. A majority of the deviation 

from theoretical values in Joint Variable 2 is observed between [-0.01, 0.02] radians. 

This confirms the ability of the ANN to accurately predict the singularity condition for a 

manipulator. The predicted value for Joint Variable 3 is very accurately mapped since it 

is a translational joint and does not control the orientation of an end-effector. This 

reduces the variables in Cartesian space needed to be mapped to the joint space, thereby 

increasing ANN model accuracy.  
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Figure 33: Predicted vs. Theoretical Singularity (Top View) 

An error window for each joint variable can therefore be formulated in joint space 

when planning the path of an end-effector in Cartesian space using the developed ANN 

model. The error window is determined by adding and subtracting the absolute maximum 

error from the joint variable values of its respective class. Using this technique, a 

boundary to the joint variable values contributing to the kinematic singularity in the 

manipulator workspace can be determined. For example, for the SCARA manipulator, the 

error window for Sample 1(Table 4) is defined in Table 6 below: 

Table 6: Error Window for Path Planning 

 

The end-effector path can therefore be planned around these error windows. For 

example, when the q2 approaches a value close to a range [-0.01, 0.01] rad, an alternate 

path is taken by the second joint to avoid the oncoming singularity configuration. This 

technique is especially beneficial when prior singularity conditions for a manipulator are 

unknown.  

q3 (mm)

-2.22

Error Window

Upper Limit

Lower Limit
 -2.22 ± 0.00 0 ± 0.01  -280.33 ± 0.00

Sample 1

-2.22

0.01 -280.33

-280.33-0.01

q1 (rad) Error Window q2 (rad) Error Window

73 
 



 

 CHAPTER 9 

RECONFIGURABLE MODEL 

The purpose of this research is the development of a reconfigurable tool for modelling 

of industrial manipulators that can adapt to changes from user based inputs. The 

mechanical structure along with the joint configurations decides the functionality of any 

industrial manipulator. Functionality of a manipulator incorporates: 

1. Dexterity: Dexterity of a manipulator is its ability to perform a range of tasks in 

different ways. 

2. Flexibility: Flexibility of a manipulator is its generalized ability to adapt to 

planned or anticipated tasks.  

3. Reconfigurability: Reconfigurability is the ability of a manipulator to alter its 

modules and configuration for a specific task. 

The mathematical model (Appendix D) developed for this research can be 

reconfigured and tailored to accommodate various kinematic structures. The ability of the 

model to compute various parameters based upon change in structure and configuration 

allows the user to evaluate different functional aspects of any manipulator type. Various 

manipulator designs, including the ones that are unexplored, can therefore be studied, 

evaluated, and optimized with the use of this model. The MATLAB platform is used to 

code the mathematical model. MATLAB was chosen because of its user-friendly 

interface, ease of data analysis, and availability of a Neural Network Toolbox for ANN 

computations. The mathematical model is currently built for up to six joint (6 DOF) 

industrial manipulator types. It can however, be expanded with ease to model higher 

DOF. The mathematical model, presented in Figure 34 below, requires the following in 

inputs: 

1. Joint Type: The model requires the user to specify each joint as rotational or 

translational in their order of sequence. The type and sequence of inputs can be 

altered by the user depending on the configuration of the manipulator needed. 
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2. D-H Parameters: The mathematical model requires the user to input all D-H 

parameters required to model the manipulator configuration of interest, as well as 

the range of motion for all joint variables.  

 

                                                             Figure 34: Reconfigurable Model 
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Based on the user inputs, the model successfully computes and evaluates the following: 

1. Forward Kinematics Solution:  The model first computes all individual 

homogenous transformation matrices, ‘A(i-1)(i)’, for a manipulator. The 

transformation matrices are subsequently used to develop a forward kinematics 

homogeneous matrix ‘A0(n)’. This matrix is stored in symbolic form which 

allows manipulation of its position and orientation matrix equation(s) at a later 

stage. The user can input any joint configuration set value at this stage to obtain a 

forward kinematics solution.  

2. 3-D Workspace: The model starts by splitting the range of each joint variable into 

a set of values defined by an interval called ‘steps’. For example, if the value for 

steps is 3, each joint variable will have 3 joint values. The values in a range are 

randomized to prevent formation of classes in a continuous dataset. Dividing data 

into classes will have a much lower accuracy since the ANN may generalize 

output data to average the classes. Additionally, it also prevents ANN training at 

the same orientation of the end-effector.  The model forms the manipulator’s joint 

space by making all possible combinations of each joint variable. For example, 

for a 6 DOF manipulator, if each joint assumes 3 values in its range, the total 

combinations of 6 joints will be 729 (36). Each of the joint angle set in the joint 

space of the manipulator is mapped to its Cartesian space, and the position and 

rotation matrices are determined. The values from these matrices defines the 3-D 

position and orientation of the end-effector. The position of each point is plotted 

to obtain the complete workspace of the manipulator. For example, 729 joint 

configurations would provide 729 Cartesian coordinates that are represented as 

the complete workspace. During 3-D plotting of the workspace, the model 

eliminates all similar points based on their (X, Y, Z) values. This is done to 

prevent model memory from overloading if the number of points that define the 

workspace are large.    

3. Inverse Kinematics Solution: The position and orientation of each point in the 

manipulator workspace defines the inputs for the inverse kinematics ANN model. 

The corresponding joint space of the network inputs defines the network targets.  

All inputs and targets are pre-processed by being normalized using either min-
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max or z-score normalization before being fed to the ANN. The ANN model 

architecture used for this research has 55 fixed neurons in its hidden layer with 

hyperbolic tangent activation function since this configuration provides an 

optimal model generalization and accuracy.  The network is trained on predefined 

parameters after which the network’s performance indicators and plots are 

generated. The outputs from the ANN are stored and reverted to scale. Absolute 

error is defined at this stage between the network outputs and the targets. The 

error plots for each joint variable are generated to give the user an understanding 

of variation in prediction of each joint variable. 

4. Jacobian Matrix: The reconfigurable model defines all angular and linear velocity 

vectors for each joint variable of the manipulator. Newton Euler Recursive 

Method calculations are subsequently carried out to determine the Jacobian of 

linear and angular velocity elements for the end-effector with respect to the base 

frame of the manipulator. If the manipulator is wrist-partitioned, sub-matrices J11 

and J22 are determined from the Jacobian matrix for decoupling of forearm and 

wrist joints respectively.  

5. 3-D Singularity Space: The model computes all kinematic singularity conditions 

present in the manipulator configuration by analyzing its Jacobian. The joint 

variable combinations that produce singularities are subsequently identified. The 

joint space of the manipulator is modified with the newly determined joint 

variable combinations that produce these singularities.  The new joint space is 

mapped to its corresponding Cartesian space using the manipulator’s forward 

kinematics equations. The new position and orientation matrices developed help 

visually identify the loci of kinematic singularities present in the manipulator 

workspace. All singular points are identified in the color red.  

6. Path Planning Model: Once singular points are visually identified, the position 

and orientation of each singular point is normalized and simulated over the 

previously developed inverse kinematics model. The simulation results are 

compared to the joint variable combinations (targets) previously determined while 

developing the singularity space. The absolute error between network output and 

target for each joint variable helps determine an error window around each 
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singular configuration in joint space. During path planning, this model can be 

effectively used to avoid singular conditions. A boundary to the loci of singular 

points is determined using the error window which can help refrain the end-

effector from accessing certain part(s) of the manipulator’s workspace in specific 

joint configurations. The error plots for each joint variable are generated to give 

the user an understanding of variation in prediction of each joint variable that 

causes singularity.  

The complete workspace and singularity space models of the manipulator are 

developed using a step size of 10. The reconfigurable model thus determines 1 million 

(106) joint configurations and their respective position and orientation matrices. Such 

large amounts of data (18 million variables) cannot be processed through Neural Network 

Toolbox for MATLAB because of computational constraints. A smaller step size is 

therefore chosen for all neural network models. In determining the amount of data to be 

processed for the inverse kinematics and path planning model, various step sizes such as 

3, 4, 5 etc. were experimented with. A step size of 3 provided the most accurate ANN 

model results over any other step size chosen. The accuracy with a smaller step sized 

increased because of the reduced level of complexity in the dataset. A step size of 3 was 

therefore selected as the default step size for developing ANN models. A drawback to a 

smaller step size is the need for defining classes of inverse kinematics solution(s) for any 

manipulator configuration.  For example, a step size of 3 will only provide 729 points in 

the manipulator workspace that can be used as inputs to an ANN model. Thus an inverse 

kinematics solution that caters only to a specific subset (729 points) of the total 

workspace can be determined at any given point. New joint variable values are thus 

needed to define another inverse kinematics solution for a different subset of the 

workspace and so forth. The complete inverse kinematics model for a manipulator is 

determined by unifying individual classes of solutions developed. It is important to note 

that the task space for a manipulator may only involve certain paths(s) of actual 

mechanical work. For example, a welding robot may only be required to weld along a 

curvilinear path defined by a string of points. It is therefore justified to develop inverse 

kinematic model(s) that can encompass certain required points of work.  
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 CHAPTER 10 

CASE STUDIES AND RESULTS 

For the purpose of this research, the robustness of the developed model is tested on 

two different kinematic structures namely: 

1. 6 DOF Industrial Robot: A FANUC M16iB/20 robot is chosen for this study since 

the kinematic structure (RRRRRR) of this robot has a wrist configuration in its 

last 3 joints. Wrist partitioned robots are the most common types of manipulators 

used in the industry today. FANUC M16iB/20 (Figure 35) is a popular industrial 

manipulator used for several material handling applications.  

2. 6 Axis CNC Machine: A multi-axis CNC was chosen for this study for two 

purposes. Firstly, to test the robustness of the developed algorithm when 

analyzing a kinematic structure with a combination of both rotational and 

translational joint types. Secondly, to show the wide range of applications of the 

developed model. The reconfigurable model is able to analyze any 6 axis machine 

structure that can be kinematically modelled such as the 6 Axis CNC (RRRTTT) 

(Figure 36).  

  

            Figure 35: FANUC M16iB/20 Robot [72]                          Figure 36: 6 Axis CNC Machine 
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10.1  6 DOF Industrial Robot: FANUC M16iB/20 

Note: All results for the FANUC M16iB robot are presented in Appendix B. 

A kinematic model of the FANUC M16iB/20 robot, provided in Figure 46 

(Appendix B), is first generated to analyze the configuration of the manipulator. Table 16 

represents the D-H parameters used to model the manipulator along with the range of 

motion for each rotational joint. To generate the manipulator’s total workspace and to 

compute its corresponding singularity space, a step size of 10 was chosen that yielded 106 

joint configurations. Each of these configurations when processed through the forward 

kinematics equation, A06 (Appendix B MATLAB Output), yielded the same number of 

configurations in Cartesian space. The joint angle range for each joint with a step size of 

10 is represented in Table 17. Out of the 1 million points generated, it was observed that 

the Cartesian space had only 100,000 unique points based on their (X, Y, Z) coordinates. 

This implies that the model generated 10 orientation configurations per coordinate point 

in the manipulator’s workspace.  

The complete 3-D workspace of the FANUC manipulator has a spherical topology 

and is represented in Figure 47. From the top view of the total workspace (Figure 48), a 

cylindrical void is observed exactly in the middle of the spherical workspace. This void 

area is inaccessible by the end-effector of the FANUC manipulator. From the top, front 

and, right view, it is observed that the total workspace fans out from a center point with 

the number of spokes equal to the steps used to build the workspace. This implies that all 

possible combinations of each set of joint variables produce a subset spoke of the 

manipulator workspace.  If the step size were increased, the workspace would not 

demonstrate any voids between its spokes but would still have a void in the center.  

Since the robot is wrist partitioned, both subsets, J11 and J22, are analyzed for 

forearm and wrist singularities, respectively, as seen from Appendix B (MATLAB 

Outputs). Kinematic singularity condition for the FANUC M16iB robot is only observed 

at the manipulator wrist and is represented in Equation 77. 

 𝑆𝑆𝑟𝑟𝑟𝑟𝑆𝑆𝑢𝑢𝑎𝑎𝑎𝑎𝑓𝑓𝑟𝑟𝑟𝑟𝑦𝑦 𝐶𝐶𝑓𝑓𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟 ∶  𝜃𝜃5 = 0 (77) 
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Figure 49 represents the total workspace and singularity space for the FANUC 

manipulator. At first look, minimal singularity space (red coloured points) is observed 

since only singularities at workspace boundaries are visible. From Figure 50, which 

represents the total singularity space, it is observed that the majority of the kinematic 

singularity (internal) is present within the manipulator workspace. For computation of an 

inverse kinematics solution, a random subset of joint configurations with a step size of 3 

is chosen from the joint space of the manipulator. Table 18 represents the joint angles 

values used for training the ANN. The model reruns on the new joint configurations and 

first develops a subset of the total workspace and singularity space as represented in 

Figure 51.  The Cartesian space configuration of this subset workspace is normalized and 

provided to the network as inputs. The joint angle configurations are normalized and 

provided as targets. It can be seen from Figure 52 that an inverse kinematics solution for 

the robot being studied is computed in merely 6 seconds and 23 epoch runs. The error 

histogram from Figure 53 shows the concentration of errors from the trained network at a 

fairly low value of 0.0205. The error histogram demonstrates a good normalization curve 

with majority errors between the ranges of ±0.4. The regression plot from Figure 54, 

shows an overall R value of 98.68% thereby indicating a well-trained network. Best 

validation performance for this network was reached at epoch 17 as seen from Figure 55. 

The validation fail check was reached at epoch 23 as seen from Figure 56. Here, the 

network gradient and learning rate (mu) curve for the network can also be observed for 

each epoch run. The inputs and bias to the hidden and output layer are provided in 

Appendix B. A summary of the ANN Inverse Kinematic results are provided in Table 7. 

Table 7: ANN Results for FANUC M16iB/20 

S.No. ANN Network Indicator Result 
1 Total Epochs 23 
2 Epoch for Best Validation Performance 17 
3 Overall Regression (R) Value 0.9868 
4 Mean Square Error (MSE) 0.0198 
5 Training Performance 0.0105 
6 Testing Performance 0.0638 
7 Validation Performance 0.0505 
8 Error Histogram Center (Bell Curve) 0.0205 
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A comparison between the network outputs and targets (joint configurations) is 

presented in Figure 57. The network is very accurate in predicting the first 3 joints of the 

manipulator. It is observed that the predicted outputs of the network almost superimpose 

on the target values. However, some variation is observed in Joints 4, 5, and 6 which 

form the wrist of the manipulator. This variation arises due to the generalization 

properties of the developed ANN. The purpose of an ANN is to determine a generalized 

trend between the input and output parameters of a given manipulator, rather than 

mapping exact points which leads to an over-fitted model. It is important to realize that 

multiple wrist configurations may exist for every given set of position coordinates 

(X,Y,Z) in the input data set. These wrist configurations primarily contribute to the 

orientation of the manipulator’s end-effector. For each set of unique position coordinates, 

the wrist can therefore assume a specific set of joint configurations. As a result, during 

the training phase, the ANN network attempts to predict a generalized model for Joints 4, 

5, and 6 for these multiple wrist configurations. Hence, when a new input set of 

parameters is introduced to the network, the network attempts to predict an overall 

generalized result for the last three joints based on their average thereby reducing 

network accuracy. One method to increase the network accuracy is to generate an input 

dataset that has only one orientation associated with a unique coordinate point. This will 

map one single point in Cartesian space to only one combination of joint value set 

thereby increasing the network accuracy. Figure 58 represents a plot of absolute residual 

errors between aforementioned networks outputs and targets due to the network 

generalization.  

To develop a path planning model, the singularity points from the subset 

Cartesian space are simulated over the trained network to provide predicted joint angle 

configurations for singularity. Figure 59 represents a comparison between the ANN 

predicted and theoretical joint configurations. It is observed that there is minimalistic 

error between the predicted and theoretical values for the first 3 joints. Although, there is 

noticeable error in joint prediction for the last three joints. This error can be ignored 

because the path of a manipulator can be determined irrespective of the orientation 

(controlled by wrist joints) of its end-effector. High network accuracy is achieved for the 

first three joints that are responsible for controlling the position of the end-effector in 
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wrist partitioned robots. This can be seen from Figure 60 which represents the absolute 

residual errors between the predicted and theoretical joint configurations.   The predicted 

joint variables are mapped to their corresponding Cartesian space and compared with the 

singularity values as represented in Figure 61.  It is observed that the predicted singularity 

of the model is fairly accurate when compared to the theoretical singularity. This 

validates the robustness of the path planning model as well as the robustness of the 

developed inverse kinematic model using ANNs. The absolute errors in joint space 

between ANN predicted and theoretical joint angle configurations are presented in Table 

8. Table 10 represents the maximum and minimum errors in joint prediction which help 

define an error window (Table 9) to aid in path planning. 

Table 8: Sample Theoretical vs. Predicted Joint Variable Error 

Sample 
No. 

Joint Variable 
(Known) 

Joint Variable 
(Predicted) 

 Absolute Error 

E(q1) 
(rad) 

E(q2) 
(rad) 

E(q3) 
(rad) q1 

(rad) 
q2 

(rad) 
q3 

(rad) 
q1 

(rad) 
q2 

(rad) 
q3 

(rad) 
1 1.65 1.80 3.37 1.64 1.74 3.35 0.00 0.06 0.02 
2 1.44 -0.09 0.52 1.45 -0.12 0.57 0.02 0.03 0.05 
3 0.87 -0.58 0.52 0.86 -0.50 0.46 0.01 0.07 0.06 

          

Sample 
No. 

Joint Variable 
(Known) 

Joint Variable 
(Predicted) 

 Absolute Error 

E(q4) 
(rad) 

E(q5) 
(rad) 

E(q6) 
(rad) q4 

(rad) 
q5 

(rad) 
q6 

(rad) 
q4 

(rad) 
q5 

(rad) 
q6 

(rad) 
1 -2.32 0.00 3.09 -1.82 -0.24 -0.12 0.50 0.24 3.21 
2 -3.09 0.00 -2.28 -2.49 0.20 -0.08 0.60 0.20 2.20 
3 -2.32 0.00 1.65 -2.38 -0.03 1.61 0.06 0.03 0.04 
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Table 9: Sample Error Window for Path Planning 

 

Table 10: Max. and Min. Error in Joint Variable Prediction 

 Predicted vs. Theoretical Joint Variables 
Absolute 

Error 
q1 

(rad) 
q2 

(rad) 
q3 

(rad) 
q4 

(rad) 
q5 

(rad) 
q6 

(rad) 
Maximum 0.12 0.14 0.17 2.20 1.50 4.40 

Minimum 0.00 0.00 0.00 0.02 0.00 0.08 
Average 0.022 0.058 0.056 0.56 0.46 1.5 

 

10.2   6 Axis CNC Machine 

Note: All results for the 6 Axis CNC Machine are presented in Appendix C. 

A 6 Axis CNC machine with a rotary table and an X,Y,Z axis tool with a rotating 

axis is chosen for this study. A common example of such a CNC machinery is the high 

speed precision milling CNC machines used in the industry today.  A kinematic model of 

the CNC machine, provided in Figure 62 (Appendix C), is first generated to analyze and 

accurately model the configuration of the machine. The tool of the machine is considered 

as the end-effector of a manipulator, the tool axes of motion are represented by 3 

translational joints and a rotational joint. The rotary table of the CNC machine is 

represented by 2 rotational joints. The individual components are clubbed and modelled 

as an open kinematic chain with 6 DOF (RRRTTT). The developed kinematic chain 

(CNC manipulator) emulates the behaviour of the CNC machine with respect to its 

function.   

Error Window

Upper 
Limit 1.65 ± 

0.12

1.77
1.80 ± 0.14

1.94
 3.37 ± 0.17

3.54

Lower 
Limit

1.53

Sample 1 q1 (rad) Error Window q2 (rad) Error Window q3 (rad)

1.66 3.20

Sample 1 q4 (rad) Error Window q5 (rad) Error Window q6 (rad) Error Window

7.49

Lower 
Limit -4.52 -1.50 -1.31

Upper 
Limit  -2.32 ± 

2.2

-0.12
0 ± 1.50

1.50
 3.09 ± 4.40
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Table 19 represents the D-H parameters used to model the CNC manipulator 

along with the range of motion for each joint variable. Similar to the previous case study, 

a step size of 10 was chosen to generate the manipulator’s total workspace and to 

compute its corresponding singularity space which yielded 106 joint configurations. Each 

of these configurations when processed through the forward kinematics equation, A06 

(Appendix C MATLAB Outputs), yielded the same number of configurations in 

Cartesian space. The joint variable range for each joint with a step size of 10 is 

represented in Table 20. Out of the 1 million points generated, it was observed that there 

were no repeated points based on the X, Y, Z coordinate values, and therefore the 

Cartesian space consisted of a set of unique 1 million configurations.  

The complete 3-D workspace of the CNC manipulator, represented in Figure 63, 

has a topology of a spirally coiled gastropod shell flattened at one end. From the top and 

front view of the total workspace (Figure 64), a void towards the center as well as the 

flattened end of the workspace can be seen. This void area is inaccessible by the end-

effector of the CNC manipulator.  

Since the CNC manipulator does not have wrist configuration, the Jacobian in the 

base frame is analyzed for any kinematic singularities that may be present as seen from 

Appendix C (MATLAB Outputs). A kinematic singularity condition for the CNC 

manipulator is only observed when the second joint assumes a specific value thereby 

cancelling the effect of the first and third joints on one another. The singularity condition 

is represented in Equation 78. 

 𝑆𝑆𝑟𝑟𝑟𝑟𝑆𝑆𝑢𝑢𝑎𝑎𝑎𝑎𝑓𝑓𝑟𝑟𝑟𝑟𝑦𝑦 𝐶𝐶𝑓𝑓𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟 ∶  𝜃𝜃2 = 0 (78) 

   

Figure 65 represents the total workspace and singularity space for the CNC 

manipulator. From this figure, the singularity space for the manipulator is only observed 

as a single coiled path (red colour) at the boundary of the workspace. From Figure 66, 

which represents the total singularity space, it is observed that internal singularities are 

also present in the manipulator workspace. The total singularity space for the CNC 

manipulator is therefore a planar subsection of the total workspace that extends along the 

z-axis. Analysis of such visual representations of the singularity zone(s) is useful in 
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evaluating and enhancing manipulator functionality and performance. The task space 

manipulators can therefore be planned for by taking into account the singularity space 

and not just the total workspace of the manipulator.  

For computation of an inverse kinematics solution, a random subset of joint 

configurations with a step size of 3 is chosen from the joint space of the manipulator. 

Table 21 represents the joint angle values used for training the ANN. The model 

reevaluates on the newly provided joint configurations and develops a subset of the total 

workspace and singularity space as represented in Figure 67.  The Cartesian space 

configuration of this subset workspace is normalized and provided to the network as 

inputs. The joint angle configurations are normalized and provided as targets. It can be 

seen from Figure 68 that it takes only about a minute and a half and 316 epochs to 

develop an inverse kinematics solution for the CNC manipulator. The error histogram 

from Figure 69 shows the concentration of errors from the trained network nearly at zero 

thereby representing a well-trained network. The error histogram demonstrates an 

excellent normally distributed curve with the majority of errors in the range of ±0.006. 

The regression plot from Figure 70, shows an overall R value of 99.99% thereby 

indicating that the network outputs perfectly fit to the supplied targets. The network 

training was prematurely stopped at epoch 316 where the best validation performance for 

this network was reached, as seen in Figure 71. Early stoppage was executed since the 

performance of the network had reached nearly zero.  Therefore, no validation fail checks 

were performed as seen from Figure 72. From the same figure we observe that the 

network gradient and learning rate (mu) had reached a fairly low value indicating a 

satisfactory training process. The inputs and bias values to the hidden and output layer are 

provided in Appendix C (MATLAB Outputs). A summary of the ANN Inverse Kinematic 

results are provided in Table 11 below. The network has a high accuracy since each input 

point was mapped to a unique combination of joint set configurations. A comparison 

between the network outputs and targets (joint configurations) is presented in Figure 73. 

Because of the high accuracy of the trained network, the outputs are completely 

superimposed onto the supplied targets for joint variables. The network performance is 

validated from the residual error plot presented in Figure 74 which represents 

minimalistic absolute residual errors between the networks outputs and targets.   
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Table 11: ANN Results for 6 Axis CNC Machine 

S.No. ANN Network Indicator Result 
1 Total Epochs 316 
2 Epoch for Best Validation Performance 316 
3 Overall Regression (R) Value 0.99999 
4 Mean Square Error (MSE) 0.000011 
5 Training Performance 0.000007 
6 Testing Performance 0.000029 
7 Validation Performance 0.000029 
8 Error Histogram Center (Bell Curve) 0.000218 

 

To develop a path planning model, the singularity points from the subset 

Cartesian space are simulated over the trained network to provide predicted joint variable 

configurations for singularity. Figure 75 represents a comparison between the ANN 

predicted and theoretical joint configurations. Since very minimal variation is observed, it 

can be concluded that the network is able to predict the singularity configurations very 

accurately. Figure 76 represents an absolute residual errors plot between the predicted 

and theoretical joint configurations. The predicted joint variables are mapped to their 

corresponding Cartesian space and compared with the singularity points as presented in 

Figure 77.  It is observed that the predicted singularity of the model completely 

superimposes the theoretical singularity. This validates the robustness of the path 

planning model as well as the robustness of the developed inverse kinematic mode using 

ANNs. The absolute errors in joint space between the ANN predicted and theoretical 

joint variable configurations are presented in Table 12. Table 14 represents the maximum 

and minimum errors in joint prediction which help define an error window (Table 13) to 

aid in path planning. 
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Table 12: Sample Theoretical vs. Predicted Joint Variable Error 

Sample 
No. 

Joint Variable 
(Known) 

Joint Variable 
(Predicted) 

 Absolute Error 

E(q1) 
(rad) 

E(q2) 
(rad) 

E(q3) 
(rad) q1 

(rad) 
q2 

(rad) 
q3 

(rad) 
q1 

(rad) 
q2 

(rad) 
q3 

(rad) 
1 0.70 0.00 1.56 0.70 -0.02 1.56 0.00 0.02 0.00 
2 0.48 0.00 -1.03 0.48 -0.01 -1.02 0.00 0.01 0.01 
3 -0.92 0.00 0.14 -0.94 -0.01 0.15 0.02 0.01 0.01 

          

Sample 
No. 

Joint Variable 
(Known) 

Joint Variable 
(Predicted) 

 Absolute Error 
E(q4) 
(m) 

E(q5) 
(m) 

E(q6) 
(m) q4 (m) q5 (m) q6 (m) q4 (m) q5 (m) q6 (m) 

1 0.00 0.00 0.39 -0.02 0.00 0.37 0.02 0.00 0.03 
2 -0.26 -0.18 -0.21 -0.25 -0.19 -0.24 0.01 0.01 0.03 
3 -0.13 -0.18 -0.21 -0.14 -0.17 -0.22 0.01 0.01 0.01 

 

Table 13: Error Window for Path Planning 

 

Table 14: Max. and Min. Error in Joint Variable Prediction 

 Predicted vs. Theoretical Joint Variables 
Absolute 

Error 
q1 

(rad) 
q2 

(rad) 
q3 

(rad) q4 (m) q5 (m) q6 (m) 

Maximum 0.03 0.01 0.04 0.03 0.01 0.02 

Minimum 0.00 0.01 0.00 0.00 0.00 0.00 
Average 0.007 0.014 0.006 0.018 0.006 0.015 

 

Error Window
Upper 
Limit 0.7 ± 0.03

0.73
0 ± 0.01

0.01
 1.56 ± 0.04

1.60
Lower 
Limit

0.67

Sample 1 q1 (rad) Error Window q2 (rad) Error Window q3 (rad)

-0.01 1.52

Sample 1 q4 (m) Error Window q5 (m) Error Window q6 (m) Error Window

0.41
Lower 
Limit

-0.03 -0.01 0.37

Upper 
Limit  0 ± 0.03

0.03
0 ± 0.01

0.01
 0.39 ± 0.02
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10.3   Reconfigurable Model Applications 

From the two case studies presented, the robustness of the developed model can be 

validated. The reconfigurable model can be used to analyze and validate the performance 

criterion for a wide range of industrial manipulators as well as non-conventional 

machinery structures that can be parameterized in a similar fashion to kinematic 

manipulators. Unlike other software that can only cater to standard manipulator 

configurations, the developed model can reconfigure to any manipulator configuration 

based on user inputs and generate results accordingly.  

The model can be used as a design tool for development of kinematic structures based 

on pre-defined functional requirements and for downstream optimization problems. It 

also serves as an excellent tool for workspace and singularity analysis by not only 

theoretically computing the functional workspace of the model but by also providing a 3-

D visual understanding of the manipulator reach and functionality. The model is also 

successfully able to provide a non-conventional and computationally inexpensive solution 

to the problem of inverse kinematics by using ANNs. This technique is highly beneficial 

in developing a path planning and collision detection model. The proposed method can 

also successfully aid in development of robotic work cells where it is crucial to 

understand the reach conditions of robot(s) with respect to their environment [66].  
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 CONCLUSIONS AND FUTURE WORK 

A reconfigurable model is developed to gain an insight into the functionality of 

industrial manipulators and optimization of their performance. The developed 

reconfigurable model is successfully able to provide a forward kinematics solution, an 

inverse kinematic solution, a 3D visual representation of workspace and kinematic 

singularity, an analysis of the manipulator Jacobian, and a model to aid in path planning 

of robots. The model provides promising results for both wrist and non-wrist partitioned 

manipulators as well other machinery structures such as CNC machines that can be 

modelled kinematically. This model can be successfully used for optimizing the 

placement of industrial manipulators in an industrial setting and understanding their reach 

conditions based on an analysis of their functional workspace.  

This research lays the foundation for the development of a reconfigurable model that can 

adapt to various manipulator configurations and provide the aforementioned analytical 

tools. Future work for expanding the scope of analyses incudes: 

1. Modelling of higher DOF redundant robots and machine structures 

2. Expanding on the type of manipulator joints to be modelled 

3. Developing dynamic equations of motion for a manipulator by expanding on the 

Newton-Euler Recursive method 

4. Incorporating simultaneous analysis of several kinematic chains and optimizing 

their placement with respect to one another within the same work cell 

5. Developing a trajectory planning and collision detection model 

6. Incorporating a wider range of joint variable ranges for training the ANN model 

7. Expanding on the ANN model architecture for an improved accuracy in prediction 

of  wrist configurations 

The developed tool will aid to further research in the field of industrial robotics. It 

will also help robot designers, manufacturers, as well as end-users to understand the true 

functionality and capabilities of any manipulator. The research can ultimately be 

extended to incorporate complex robot structures such as parallel link manipulators etc.   
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 APPENDICES  

Appendix A: Results for SCARA Robot 
 

Table 15: SCARA Joint Variable Range 

S. No.  q1 
(rad) 

q2 

(rad) 
q3 

(mm) 
1 -2.22 -2.53 -297.00 
2 -2.03 -2.32 -288.67 
3 -1.85 -2.11 -280.33 
4 -1.66 -1.90 -272.00 
5 -1.48 -1.69 -263.67 
6 -1.29 -1.48 -255.33 
7 -1.11 -1.26 -247.00 
8 -0.92 -1.05 -238.67 
9 -0.74 -0.84 -230.33 
10 -0.55 -0.63 -222.00 
11 -0.37 -0.42 -213.67 
12 -0.18 -0.21 -205.33 
13 0.00 0.00 -197.00 
14 0.18 0.21 -188.67 
15 0.37 0.42 -180.33 
16 0.55 0.63 -172.00 
17 0.74 0.84 -163.67 
18 0.92 1.05 -155.33 
19 1.11 1.27 -147.00 
20 1.29 1.48 -138.67 
21 1.48 1.69 -130.33 
22 1.66 1.90 -122.00 
23 1.85 2.11 -113.67 
24 2.03 2.32 -105.33 
25 2.22 2.53 -97.00 
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Figure 39: ANN Architecture for SCARA Robot 

 

Figure 40: Performance Plot for SCARA Robot 
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 Figure 41: Regression Plot for SCARA Robot 

 

Figure 42: Error Histogram for SCARA Robot 
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Appendix B: Results for FANUC M16iB/20 Robot 
 

 

Figure 46: FANUC M16iB/20 Robot 

 

Table 16: D-H Parameters for FANUC M16iB/20 Robot 

Robot: Fanuc M16iB/20 

Joint 

D-H parameters Lower 
Joint 
Limit  

Upper 
Joint 
Limit  

Link Offset 
(m) 

Joint 
Angle 
(rad) 

Link Length 
(m) 

Twist Angle 
(rad) 

1 d1 = 0.525 θ1 = θ1  a1 = 0.150 α1 =  -pi/2 -2.97 2.97 
2 d2 = 0 θ2 = θ2 a2 = 0.770 α2 = 0 -1.57 2.79 
3 d3 = 0 θ3 = θ3 a3 = 0.100 α3 = pi/2 -2.97 5.06 
4 d4 = 0.740 θ4 = θ4 a4 = 0 α4 =  -pi/2 -3.49 3.49 
5 d5 = 0 θ5 = θ5 a5 = 0 α5 = pi/2 -2.44 2.44 
6 d6 = 0.100 θ6 = θ6 a6 = 0 α6 = 0 -7.85 7.85 
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Table 17: FANUC Joint Angle Range for Workspace Generation 

Angle Configuration Range for Workspace Generation 
S. No.  q1 (rad) q2 (rad) q3 (rad) q4 (rad) q5 (rad) q6 (rad) 

1 -2.97 -1.57 -2.97 -3.49 -2.44 -7.85 
2 -2.31 -1.09 -2.08 -2.71 -1.90 -6.11 
3 -1.65 -0.60 -1.18 -1.94 -1.36 -4.36 
4 -0.99 -0.12 -0.29 -1.16 -0.81 -2.62 
5 -0.33 0.37 0.60 -0.39 -0.27 -0.87 
6 0.33 0.85 1.49 0.39 0.27 0.87 
7 0.99 1.34 2.39 1.16 0.81 2.62 
8 1.65 1.82 3.28 1.94 1.36 4.36 
9 2.31 2.31 4.17 2.71 1.90 6.11 
10 2.97 2.79 5.06 3.49 2.44 7.85 

 

Table 18: FANUC Joint Angle Range for Training ANN 

Angle Configuration Range for Training ANN 
S. No.  q1 (rad) q2 (rad) q3 (rad) q4 (rad) q5 (rad) q6 (rad) 

1 1.44 1.80 3.90 -3.09 1.82 -2.28 
2 1.65 -0.58 3.37 -2.32 -1.32 3.09 
3 0.87 -0.09 0.52 -0.19 0.99 1.65 

 

 

Figure 47: Workspace of FANUC M16iB/20 Robot 
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Figure 52: ANN Architecture for FANUC M16iB/20 Robot 

 

Figure 53: Error Histogram for FANUC M16iB/20 Robot 
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Figure 54: Regression Plot for FANUC M16iB/20 
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Figure 55: Performance Plot for FANUC M16iB/20 Robot 

 

Figure 56: Training State Plot for FANUC M16iB/20 Robot 

114 
 



 

 

Fi
gu

re
 5

7:
 In

ve
rs

e 
K

in
em

at
ic

s P
re

di
ct

io
n 

fo
r F

A
N

U
C

 M
16

iB
/2

0 
R

ob
ot

 

 

115 
 



 

 

Fi
gu

re
 5

8:
 A

bs
ol

ut
e 

R
es

id
ua

l E
rr

or
 in

 In
ve

rs
e 

K
in

em
at

ic
s P

re
di

ct
io

n 
fo

r F
A

N
U

C
 M

16
iB

/2
0 

R
ob

ot
 

 

116 
 



 

 

Fi
gu

re
 5

9:
 F

A
N

U
C

 M
16

iB
/2

0 
Si

ng
ul

ar
ity

 Jo
in

t P
re

di
ct

io
n 

117 
 



 

 

Fi
gu

re
 6

0:
 A

bs
ol

ut
e 

R
es

id
ua

l E
rr

or
 in

 F
A

N
U

C
 M

16
iB

/2
0 

Si
ng

ul
ar

ity
 Jo

in
t P

re
di

ct
io

n 

 

 

118 
 



 

 

Fi
gu

re
 6

1:
 T

he
or

et
ic

al
 v

s. 
A

N
N

 P
re

di
ct

ed
 S

in
gu

la
rit

y 

119 
 



 

MATLAB Output for FANUC M16iB/20 Robot: 

 

120 
 



 

 

 

 

121 
 



 

 

 

 

122 
 



 

 

 

123 
 



 

 

 

124 
 



 

 

 

 

125 
 



 

 

 

126 
 



 

 

  

127 
 



 

 

128 
 



 

 

  

129 
 



 

  

  

130 
 



 

  

131 
 



 

 

132 
 



 

 

133 
 



 

 

134 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

135 
 



 

Appendix C: Results for CNC Manipulator 
 

 

Figure 62: Kinematic Model of  6 Axis CNC Machine 

 

Table 19: D-H Parameters of CNC Manipulator 

Robot: 6 Axis CNC 

Joint 
D-H parameters Lower 

Joint 
Limit  

Upper 
Joint 
Limit  

Link Offset 
(m) 

Joint Angle 
(rad) 

Link 
Length (m) 

Twist Angle 
(rad) 

1 d1 = 0.5 θ1 = θ1  a1 = 0.6 α1 =  -pi/2 -1.74 1.74 
2 d2 = 0.5 θ2 = θ2 a2 = 0.5 α2 = pi/2 -1.74 1.74 
3 d3 = 0.5 θ3 = θ3 a3 = 0.5 α3 =  -pi/2 -1.74 1.74 
4 d4 = d4 θ4 =  -pi/2 a4 = 0.4 α4 =  -pi/2 -0.4 0.4 
5 d5 = d5  θ5 = pi/2 a5 = 0.5 α5 =  -pi/2 -0.3 0.3 
6 d6 = d6  θ6 =  -pi/2 a6 = 0.5 α6 =  -pi/2 -0.4 0.4 
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Table 20: CNC Manipulator Joint Angle Range for Workspace Generation 

Angle Configuration Range for Workspace Generation 
S. No.  q1 (rad) q2 (rad) q3 (rad) q4 (m) q5 (m) q6 (m) 

1 -1.75 -1.75 -1.75 -0.4 -0.30 -0.4 
2 -1.36 -1.36 -1.36 -0.31 -0.23 -0.31 
3 -0.97 -0.97 -0.97 -0.22 -0.17 -0.22 
4 -0.58 -0.58 -0.58 -0.13 -0.10 -0.13 
5 -0.19 -0.19 -0.19 -0.04 -0.03 -0.04 
6 0.19 0.19 0.19 0.04 0.03 0.04 
7 0.58 0.58 0.58 0.13 0.10 0.13 
8 0.97 0.97 0.97 0.22 0.17 0.22 
9 1.36 1.36 1.36 0.31 0.23 0.31 
10 1.75 1.75 1.75 0.4 0.30 0.4 

 

Table 21: CNC Manipulator Joint Angle Range for Training ANN 

Angle Configuration Range for Training ANN 
S. No.  q1 (rad) q2 (rad) q3 (rad) q4 (m) q5 (m) q6 (m) 

1 0.7 0.54 -1.03 -0.13 0.00 -0.21 
2 -0.92 1.24 1.56 -0.26 -0.18 0.39 
3 0.48 -0.01 0.14 0 -0.11 0.34 

 

 

 Figure 63: Workspace of CNC Manipulator 
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Figure 68: ANN Architecture for CNC Manipulator 

 

 Figure 69: Error Histogram for CNC Manipulator 
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Figure 70: Regression Plot for CNC Manipulator 
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Figure 71: Performance Plot for CNC Manipulator 

 

 Figure 72: Training State Plot for CNC Manipulator 
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MATLAB Output for FANUC M16iB/20 Robot: 
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Appendix D: M-Code for Reconfigurable Model 
 

clear 
clc 
disp('© Luv Aggarwal') 
format bank; 
syms pi theta1dot theta2dot theta3dot theta4dot theta5dot theta6dot 
d1dot d2dot d3dot d4dot d5dot d6dot; 
  
Link_1=input('Enter Link 1 Type Rotational(0) or Translational(1)\n'); 
Link_2=input('Enter Link 2 Type Rotational(0) or Translational(1)\n'); 
Link_3=input('Enter Link 3 Type Rotational(0) or Translational(1)\n'); 
Link_4=input('Enter Link 4 Type Rotational(0) or Translational(1)\n'); 
Link_5=input('Enter Link 5 Type Rotational(0) or Translational(1)\n'); 
Link_6=input('Enter Link 6 Type Rotational(0) or Translational(1)\n'); 
  
alpha1=input('Input value for alpha1 (degrees)\n'); 
alpha2=input('Input value for alpha2 (degrees)\n'); 
alpha3=input('Input value for alpha3 (degrees)\n'); 
alpha4=input('Input value for alpha4 (degrees)\n'); 
alpha5=input('Input value for alpha5 (degrees)\n'); 
alpha6=input('Input value for alpha6 (degrees)\n'); 
  
a1=input('Input value for a1(units)\n'); 
a2=input('Input value for a2(units)\n'); 
a3=input('Input value for a3(units)\n'); 
a4=input('Input value for a4(units)\n'); 
a5=input('Input value for a5(units)\n'); 
a6=input('Input value for a6(units)\n'); 
  
  
if (Link_1)==0; 
    syms theta1 
    d1=input('Input value for d1 (units)\n'); 
    q1_min=double(input('Input value for theta1 minimum 
(deg)\n')*pi/180); 
    q1_max=double(input('Input value for theta1 maximum 
(deg)\n')*pi/180); 
    q1dot=theta1dot; 
    t1=theta1; % For solving Singularity Equation 
  
else 
    syms d1 
    theta1=input('Input value for theta1 (degrees)\n'); 
    q1_min=input('Input value for d1 minimum (units)\n'); 
    q1_max=input('Input value for d1 maximum (units)\n'); 
    q1dot=d1dot; 
    t1=d1; 
    
end 
  
if Link_2==0; 
    syms theta2 
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    d2=input('Input value for d2(units)\n'); 
    q2_min=double(input('Input value for theta2 minimum 
(deg)\n')*pi/180); 
    q2_max=double(input('Input value for theta2 maximum 
(deg)\n')*pi/180); 
    q2dot=theta2dot; 
    t2=theta2; 
else 
    syms d2 
    theta2=input('Input value for theta2 (degrees)\n'); 
    q2_min=input('Input value for d2 minimum (units)\n'); 
    q2_max=input('Input value for d2 maximum (units)\n'); 
    q2dot=d2dot; 
    t2=d2; 
end 
  
if Link_3==0; 
    syms theta3 
    d3=input('Input value for d3(units)\n'); 
    q3_min=double(input('Input value for theta3 minimum 
(deg)\n')*pi/180); 
    q3_max=double(input('Input value for theta3 maximum 
(deg)\n')*pi/180); 
    q3dot=theta3dot; 
    t3=theta3; 
else 
    syms d3 
    theta3=input('Input value for theta3 (degrees)\n'); 
    q3_min=input('Input value for d3 minimum (units)\n'); 
    q3_max=input('Input value for d3 maximum (units)\n'); 
    q3dot=d3dot; 
    t3=d3; 
end 
  
if Link_4==0; 
    syms theta4 
    d4=input('Input value for d4(units)\n'); 
    q4_min=double(input('Input value for theta4 minimum 
(deg)\n')*pi/180); 
    q4_max=double(input('Input value for theta4 maximum 
(deg)\n')*pi/180); 
    q4dot=theta4dot; 
    t4=theta4; 
else 
    syms d4 
    theta4=input('Input value for theta4 (degrees)\n'); 
    q4_min=input('Input value for d4 minimum (units)\n'); 
    q4_max=input('Input value for d4 maximum (units)\n'); 
    q4dot=d4dot; 
    t4=d4; 
end 
  
if Link_5==0; 
    syms theta5 
    d5=input('Input value for d5(units)\n'); 
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    q5_min=double(input('Input value for theta5 minimum 
(deg)\n')*pi/180); 
    q5_max=double(input('Input value for theta5 maximum 
(deg)\n')*pi/180); 
    q5dot=theta5dot; 
    t5=theta5; 
else 
    syms d5 
    theta5=input('Input value for theta5 (degrees)\n'); 
    q5_min=input('Input value for d5 minimum (units)\n'); 
    q5_max=input('Input value for d5 maximum (units)\n'); 
    q5dot=d5dot; 
    t5=d5; 
end 
  
if Link_6==0; 
    syms theta6 
    d6=input('Input value for d6(units)\n'); 
    q6_min=double(input('Input value for theta6 minimum 
(deg)\n')*pi/180); 
    q6_max=double(input('Input value for theta6 maximum 
(deg)\n')*pi/180); 
    q6dot=theta6dot; 
    t6=theta6; 
else 
    syms d6 
    theta6=input('Input value for theta6 (degrees)\n'); 
    q6_min=input('Input value for d6 minimum (units)\n'); 
    q6_max=input('Input value for d6 maximum (units)\n'); 
    q6dot=d6dot; 
    t6=d6; 
end 
  
  
%Link 1 
% disp('Transformation Matrix for Rotational Joint 1') 
A01=simplify([cos(theta1) -cos(alpha1*pi/180)*sin(theta1) 
sin(alpha1*pi/180)*sin(theta1) a1*cos(theta1);sin(theta1) 
cos(alpha1*pi/180)*cos(theta1) -sin(alpha1*pi/180)*cos(theta1) 
a1*sin(theta1);0 sin(alpha1*pi/180) cos(alpha1*pi/180) d1;0 0 0 1]); 
R01=simplify([A01(1,1) A01(1,2) A01(1,3);A01(2,1) A01(2,2) 
A01(2,3);A01(3,1) A01(3,2) A01(3,3)]); 
R10=transpose(R01); 
P01=[A01(1,4);A01(2,4);A01(3,4)]; 
  
% disp('Transformation Matrix for Rotational Joint 2') 
A12=simplify([cos(theta2) -cos(alpha2*pi/180)*sin(theta2) 
sin(alpha2*pi/180)*sin(theta2) a2*cos(theta2);sin(theta2) 
cos(alpha2*pi/180)*cos(theta2) -sin(alpha2*pi/180)*cos(theta2) 
a2*sin(theta2);0 sin(alpha2*pi/180) cos(alpha2*pi/180) d2;0 0 0 1]); 
R12=simplify([A12(1,1) A12(1,2) A12(1,3);A12(2,1) A12(2,2) 
A12(2,3);A12(3,1) A12(3,2) A12(3,3)]); 
R21=transpose(R12); 
P12=[A12(1,4);A12(2,4);A12(3,4)]; 
  
% disp('Transformation Matrix for Rotational Joint 3') 
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A23=simplify([cos(theta3) -cos(alpha3*pi/180)*sin(theta3) 
sin(alpha3*pi/180)*sin(theta3) a3*cos(theta3);sin(theta3) 
cos(alpha3*pi/180)*cos(theta3) -sin(alpha3*pi/180)*cos(theta3) 
a3*sin(theta3);0 sin(alpha3*pi/180) cos(alpha3*pi/180) d3;0 0 0 1]); 
R23=simplify([A23(1,1) A23(1,2) A23(1,3);A23(2,1) A23(2,2) 
A23(2,3);A23(3,1) A23(3,2) A23(3,3)]); 
R32=transpose(R23); 
P23=[A23(1,4);A23(2,4);A23(3,4)]; 
  
% disp('Transformation Matrix for Rotational Joint 4') 
A34=simplify([cos(theta4) -cos(alpha4*pi/180)*sin(theta4) 
sin(alpha4*pi/180)*sin(theta4) a4*cos(theta4);sin(theta4) 
cos(alpha4*pi/180)*cos(theta4) -sin(alpha4*pi/180)*cos(theta4) 
a4*sin(theta4);0 sin(alpha4*pi/180) cos(alpha4*pi/180) d4;0 0 0 1]); 
R34=simplify([A34(1,1) A34(1,2) A34(1,3);A34(2,1) A34(2,2) 
A34(2,3);A34(3,1) A34(3,2) A34(3,3)]); 
R43=transpose(R34); 
P34=[A34(1,4);A34(2,4);A34(3,4)]; 
  
% disp('Transformation Matrix for Rotational Joint 5') 
A45=simplify([cos(theta5) -cos(alpha5*pi/180)*sin(theta5) 
sin(alpha5*pi/180)*sin(theta5) a5*cos(theta5);sin(theta5) 
cos(alpha5*pi/180)*cos(theta5) -sin(alpha5*pi/180)*cos(theta5) 
a5*sin(theta5);0 sin(alpha5*pi/180) cos(alpha5*pi/180) d5;0 0 0 1]); 
R45=simplify([A45(1,1) A45(1,2) A45(1,3);A45(2,1) A45(2,2) 
A45(2,3);A45(3,1) A45(3,2) A45(3,3)]); 
R54=transpose(R45); 
P45=[A45(1,4);A45(2,4);A45(3,4)]; 
  
% disp('Transformation Matrix for Rotational Joint 6') 
A56=simplify([cos(theta6) -cos(alpha6*pi/180)*sin(theta6) 
sin(alpha6*pi/180)*sin(theta6) a6*cos(theta6);sin(theta6) 
cos(alpha6*pi/180)*cos(theta6) -sin(alpha6*pi/180)*cos(theta6) 
a6*sin(theta6);0 sin(alpha6*pi/180) cos(alpha6*pi/180) d6;0 0 0 1]); 
R56=simplify([A56(1,1) A56(1,2) A56(1,3);A56(2,1) A56(2,2) 
A56(2,3);A56(3,1) A56(3,2) A56(3,3)]); 
R65=transpose(R56); 
P56=[A56(1,4);A56(2,4);A56(3,4)]; 
  
%Forward Kinematics 
% disp('Forward Kinematics') 
A06=simplify(A01*A12*A23*A34*A45*A56); 
R06=simplify([A06(1,1) A06(1,2) A06(1,3);A06(2,1) A06(2,2) 
A06(2,3);A06(3,1) A06(3,2) A06(3,3)]); 
R60=transpose(R06); 
P06=[A06(1,4);A06(2,4);A06(3,4)]; 
  
% Total Workspace 
  
R006 = R06; % R06 is stored in R006 fot the purpose of calucatinj 
Jacobian 
P=[A06(1,1);A06(1,2);A06(1,3);A06(2,1);A06(2,2);A06(2,3);A06(3,1);A06(3,
2);A06(3,3);A06(1,4);A06(2,4);A06(3,4)]; 
  
% P = A06(:,4); 
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syms q1 q2 q3 q4 q5 q6 
if (Link_1)==0; 
P=subs(P, theta1, q1); 
R06=subs(R06,theta1,q1); 
else 
P=subs(P, d1, q1); 
R06=subs(R06,d1,q1); 
end 
  
if (Link_2)==0; 
P=subs(P, theta2, q2); 
R06=subs(R06,theta2,q2); 
else 
P=subs(P, d2, q2); 
R06=subs(R06,d2,q2); 
end 
  
if (Link_3)==0; 
P=subs(P, theta3, q3); 
R06=subs(R06,theta3,q3); 
else 
P=subs(P, d3, q3); 
R06=subs(R06,d3,q3); 
end 
  
if (Link_4)==0; 
P=subs(P, theta4, q4); 
R06=subs(R06,theta4,q4); 
else 
P=subs(P, d4, q4); 
R06=subs(R06,d4,q4); 
end 
  
if (Link_5)==0; 
P=subs(P, theta5, q5); 
R06=subs(R06,theta5,q5); 
else 
P=subs(P, d5, q5); 
R06=subs(R06,d5,q5); 
end 
  
if (Link_6)==0; 
P=subs(P, theta6, q6); 
R06=subs(R06,theta6,q6); 
else 
P=subs(P, d6, q6); 
R06=subs(R06,d6,q6); 
end 
  
%Plotting position and orientation 
steps = 10; 
q1_range = linspace(q1_min, q1_max,steps)'; 
q2_range = linspace(q2_min, q2_max,steps)'; 
q3_range = linspace(q3_min, q3_max,steps)'; 
q4_range = linspace(q4_min, q4_max,steps)'; 
q5_range = linspace(q5_min, q5_max,steps)'; 
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q6_range = linspace(q6_min, q6_max,steps)'; 
     
angle_config =combvec (q1_range', q2_range', q3_range', q4_range', 
q5_range', q6_range')'; 
fwdkin=zeros((steps)^6,12); % Change if the number of joints change 
Q_sym=[q1 q2 q3 q4 q5 q6]; 
  
for i=1:length(angle_config) 
         Q_set=angle_config(i,:); 
             fwdkin(i,:)= double(subs(P,Q_sym,Q_set)); 
end 
  
K1= [angle_config fwdkin]; 
% All Angle configurations 
Q1 =K1(:,1)'; 
Q2 =K1(:,2)'; 
Q3 =K1(:,3)'; 
Q4 =K1(:,4)'; 
Q5 =K1(:,5)'; 
Q6 =K1(:,6)'; 
  
% All Orientations about x,y,z  
x_x =K1(:,7)'; 
x_y =K1(:,8)'; 
x_z =K1(:,9)'; 
y_x =K1(:,10)'; 
y_y =K1(:,11)'; 
y_z =K1(:,12)'; 
z_x =K1(:,13)'; 
z_y =K1(:,14)'; 
z_z =K1(:,15)'; 
  
% Cartesian Coordinates x,y,z  
x =K1(:,16)'; 
y =K1(:,17)'; 
z =K1(:,18)';  
  
figure(1) 
subplot(2,2,1); 
plot3(x',y',z','o','MarkerSize',15,'MarkerEdgeColor','k','MarkerFaceColo
r','w','LineWidth',2); 
grid on; 
set(gca,'fontsize',20) 
xlabel('X (m)','FontSize',20); 
ylabel('Y (m)','FontSize',20); 
title('Workspace Top View','FontSize',20); 
view([0 90]) % X-Y 
  
subplot(2,2,2); 
plot3(x',y',z','o','MarkerSize',15,'MarkerEdgeColor','k','MarkerFaceColo
r','w','LineWidth',2); 
grid on; 
set(gca,'fontsize',20) 
xlabel('X (m)','FontSize',20); 
ylabel('Y (m)','FontSize',20); 
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zlabel('Z (m)','FontSize',20); 
title('Total Workspace of Robot','FontSize',20); 
view([45 45 45]) % X-Y-Z 
  
subplot(2,2,3); 
plot3(x',y',z','o','MarkerSize',15,'MarkerEdgeColor','k','MarkerFaceColo
r','w','LineWidth',2); 
grid on; 
set(gca,'fontsize',20) 
xlabel('X (m)','FontSize',20); 
zlabel('Z (m)','FontSize',20); 
title('Workspace Front View','FontSize',20); 
view([0 0]) % X-Z 
  
subplot(2,2,4); 
plot3(x',y',z','o','MarkerSize',15,'MarkerEdgeColor','k','MarkerFaceColo
r','w','LineWidth',2); 
grid on; 
set(gca,'fontsize',20) 
ylabel('Y (m)','FontSize',20); 
zlabel('Z (m)','FontSize',20); 
title('Workspace Right View','FontSize',20); 
view([90 0]); % Y-Z 
  
% Neural Network Inputs and Targets for training the network 
% Step 1: Normalizing all inputs and targets between [-1,1] for IK Soln 
[q1_n,PS1] = mapminmax(Q1); 
[q2_n,PS2] = mapminmax(Q2); 
[q3_n,PS3] = mapminmax(Q3); 
[q4_n,PS4] = mapminmax(Q4); 
[q5_n,PS5] = mapminmax(Q5); 
[q6_n,PS6] = mapminmax(Q6); 
  
[x_x_n,PS7] = mapminmax(x_x); 
[x_y_n,PS8] = mapminmax(x_y); 
[x_z_n,PS9] = mapminmax(x_z); 
  
[y_x_n,PS10] = mapminmax(y_x); 
[y_y_n,PS11] = mapminmax(y_y); 
[y_z_n,PS12] = mapminmax(y_z); 
  
[z_x_n,PS13] = mapminmax(z_x); 
[z_y_n,PS14] = mapminmax(z_y); 
[z_z_n,PS15] = mapminmax(z_z); 
  
[x_n,PS16] = mapminmax(x); 
[y_n,PS17] = mapminmax(y); 
[z_n,PS18] = mapminmax(z); 
  
input =[x_x_n; x_y_n; x_z_n; y_x_n; y_y_n; y_z_n; z_x_n; z_y_n; z_z_n; 
x_n; y_n; z_n]; 
target =[q1_n; q2_n; q3_n; q4_n; q5_n; q6_n]; 
  
% Solve an Input-Output Fitting problem with a Neural Network 
% This script assumes these variables are defined: 
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% 
%   input - input data. 
%   target - target data. 
  
inputs = input; 
targets = target; 
  
% Create a Fitting Network 
hiddenLayerSize = [55]; 
net = fitnet(hiddenLayerSize); 
  
% Choose Input and Output Pre/Post-Processing Functions 
% For a list of all processing functions type: help nnprocess 
net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'}; 
net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'}; 
  
  
% Setup Division of Data for Training, Validation, Testing 
% For a list of all data division functions type: help nndivide 
net.divideFcn = 'dividerand';  % Divide data randomly 
net.divideMode = 'sample';  % Divide up every sample 
net.divideParam.trainRatio = 80/100; 
net.divideParam.valRatio = 10/100; 
net.divideParam.testRatio = 10/100; 
  
% For help on training function 'trainlm' type: help trainlm 
% For a list of all training functions type: help nntrain 
net.trainFcn = 'trainlm';  % Levenberg-Marquardt 
  
% Choose a Performance Function 
% For a list of all performance functions type: help nnperformance 
net.performFcn = 'mse';  % Mean squared error 
  
% Choose Plot Functions 
% For a list of all plot functions type: help nnplot 
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 
  'plotregression', 'plotfit'}; 
  
  
% Train the Network 
[net,tr] = train(net,inputs,targets); 
%Display network weights and bias values 
disp 'Input weights =' 
net.iw{1,1} 
disp 'Layer weights =' 
net.lw{2,1} 
disp 'Input bias =' 
net.b{1} 
disp 'Layer bias =' 
net.b{2} 
  
%Display network Training parameters 
% disp 'Training parameters =' 
net.trainParam; 
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% Test the Network 
outputs = net(inputs); 
errors = gsubtract(targets,outputs); 
format short; 
Network_Performance = perform(net,targets,outputs) 
  
% Recalculate Training, Validation and Test Performance 
trainTargets = targets .* tr.trainMask{1}; 
valTargets = targets  .* tr.valMask{1}; 
testTargets = targets  .* tr.testMask{1}; 
  
Training_Performance = perform(net,trainTargets,outputs) 
Validation_Performance = perform(net,valTargets,outputs) 
Testing_Performance = perform(net,testTargets,outputs) 
  
% View the Network 
view(net) 
  
% Plots 
% Uncomment these lines to enable various plots. 
% figure, plotperform(tr) 
% figure, plottrainstate(tr) 
% figure, plotfit(net,inputs,targets) 
% figure, plotregression(targets,outputs) 
% figure, ploterrhist(errors) 
  
format bank; 
% Compare target with network output for IK 
q1_np = mapminmax('reverse',outputs(1,:),PS1); 
q2_np = mapminmax('reverse',outputs(2,:),PS2); 
q3_np = mapminmax('reverse',outputs(3,:),PS3); 
q4_np = mapminmax('reverse',outputs(4,:),PS4); 
q5_np = mapminmax('reverse',outputs(5,:),PS5); 
q6_np = mapminmax('reverse',outputs(6,:),PS6); 
  
figure(2) 
subplot(3,2,1); 
plot(q1_np,'o','MarkerSize',10,'MarkerEdgeColor','b','MarkerFaceColor','
b','LineWidth',2); 
hold all 
plot(Q1,'o','MarkerSize',10,'MarkerEdgeColor','g','MarkerFaceColor','g',
'LineWidth',2); 
grid on; 
set(gca,'fontsize',20) 
xlabel('(Dataset Length)','FontSize',20) 
ylabel('Joint Variable 1 (rad)','FontSize',20) 
title('ANN Accuracy for Joint 1 Inverse Kinematics','FontSize',20) 
legend('Predicted','Target') 
  
subplot(3,2,2); 
plot(q2_np,'o','MarkerSize',10,'MarkerEdgeColor','b','MarkerFaceColor','
b','LineWidth',2); 
hold all 
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plot(Q2,'o','MarkerSize',10,'MarkerEdgeColor','g','MarkerFaceColor','g',
'LineWidth',2); 
grid on; 
set(gca,'fontsize',20) 
xlabel('(Dataset Length)','FontSize',20) 
ylabel('Joint Variable 2 (rad)','FontSize',20) 
title('ANN Accuracy for Joint 2 Inverse Kinematics','FontSize',20) 
legend('Predicted','Target') 
  
subplot(3,2,3); 
plot(q3_np,'o','MarkerSize',10,'MarkerEdgeColor','b','MarkerFaceColor','
b','LineWidth',2); 
hold all 
plot(Q3,'o','MarkerSize',10,'MarkerEdgeColor','g','MarkerFaceColor','g',
'LineWidth',2); 
grid on; 
set(gca,'fontsize',20) 
xlabel('(Dataset Length)','FontSize',20) 
ylabel('Joint Variable 3 (rad)','FontSize',20) 
title('ANN Accuracy for Joint 3 Inverse Kinematics','FontSize',20) 
legend('Predicted','Target') 
  
subplot(3,2,4); 
plot(q4_np,'o','MarkerSize',10,'MarkerEdgeColor','b','MarkerFaceColor','
b','LineWidth',2); 
hold all 
plot(Q4,'o','MarkerSize',10,'MarkerEdgeColor','g','MarkerFaceColor','g',
'LineWidth',2); 
grid on; 
set(gca,'fontsize',20) 
xlabel('(Dataset Length)','FontSize',20) 
ylabel('Joint Variable 4 (rad)','FontSize',20) 
title('ANN Accuracy for Joint 4 Inverse Kinematics','FontSize',20) 
legend('Predicted','Target') 
  
subplot(3,2,5); 
plot(q5_np,'o','MarkerSize',10,'MarkerEdgeColor','b','MarkerFaceColor','
b','LineWidth',2); 
hold all 
plot(Q5,'o','MarkerSize',10,'MarkerEdgeColor','g','MarkerFaceColor','g',
'LineWidth',2); 
grid on; 
set(gca,'fontsize',20) 
xlabel('(Dataset Length)','FontSize',20) 
ylabel('Joint Variable 5 (rad)','FontSize',20) 
title('ANN Accuracy for Joint 5 Inverse Kinematics','FontSize',20) 
legend('Predicted','Target') 
  
subplot(3,2,6); 
plot(q6_np,'o','MarkerSize',10,'MarkerEdgeColor','b','MarkerFaceColor','
b','LineWidth',2); 
hold all 
plot(Q6,'o','MarkerSize',10,'MarkerEdgeColor','g','MarkerFaceColor','g',
'LineWidth',2); 
grid on; 
set(gca,'fontsize',20) 
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xlabel('(Dataset Length)','FontSize',20) 
ylabel('Joint Variable 6 (rad)','FontSize',20) 
title('ANN Accuracy for Joint 6 Inverse Kinematics','FontSize',20) 
legend('Predicted','Target') 
  
% Residual Error Plot 
figure(3) 
subplot(3,2,1); 
plot(abs(Q1-q1_np),'-r','LineWidth',2); 
hold all 
grid on; 
set(gca,'fontsize',20) 
% axis([0 800 0 4.5]) 
axis([0 800 0 0.01]) 
xlabel('(Dataset Length)','FontSize',20) 
ylabel('Residual Error (rad)','FontSize',20) 
title('Residual Error for Joint 1 Inverse Kinematics','FontSize',20) 
legend('Error = |Target - Predicted|') 
  
subplot(3,2,2); 
plot(abs(Q2-q2_np),'-r','LineWidth',2); 
hold all 
grid on; 
set(gca,'fontsize',20) 
% axis([0 800 0 4.5]) 
axis([0 800 0 0.01]) 
xlabel('(Dataset Length)','FontSize',20) 
ylabel('Residual Error (rad)','FontSize',20) 
title('Residual Error for Joint 2 Inverse Kinematics','FontSize',20) 
legend('Error = |Target - Predicted|') 
  
subplot(3,2,3); 
plot(abs(Q3-q3_np),'-r','LineWidth',2); 
hold all 
grid on; 
set(gca,'fontsize',20) 
% axis([0 800 0 4.5]) 
axis([0 800 0 0.01]) 
xlabel('(Dataset Length)','FontSize',20) 
ylabel('Residual Error (rad)','FontSize',20) 
title('Residual Error for Joint 3 Inverse Kinematics','FontSize',20) 
legend('Error = |Target - Predicted|') 
  
subplot(3,2,4); 
plot(abs(Q4-q4_np),'-r','LineWidth',2); 
hold all 
grid on; 
set(gca,'fontsize',20) 
% axis([0 800 0 4.5]) 
axis([0 800 0 0.01]) 
xlabel('(Dataset Length)','FontSize',20) 
ylabel('Residual Error (rad)','FontSize',20) 
title('Residual Error for Joint 4 Inverse Kinematics','FontSize',20) 
legend('Error = |Target - Predicted|') 
  
subplot(3,2,5); 
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plot(abs(Q5-q5_np),'-r','LineWidth',2); 
hold all 
grid on; 
set(gca,'fontsize',20) 
% axis([0 800 0 4.5]) 
axis([0 800 0 0.01]) 
xlabel('(Dataset Length)','FontSize',20) 
ylabel('Residual Error (rad)','FontSize',20) 
title('Residual Error for Joint 5 Inverse Kinematics','FontSize',20) 
legend('Error = |Target - Predicted|') 
  
subplot(3,2,6); 
plot(abs(Q6-q6_np),'-r','LineWidth',2); 
hold all 
grid on; 
set(gca,'fontsize',20) 
% axis([0 800 0 4.5]) 
axis([0 800 0 0.01]) 
xlabel('(Dataset Length)','FontSize',20) 
ylabel('Residual Error (rad)','FontSize',20) 
title('Residual Error for Joint 6 Inverse Kinematics','FontSize',20) 
legend('Error = |Target - Predicted|') 
  
% Angular and Linear Velocities 
  
% Joint Angular Velocities 
syms pi; 
  
format bank; 
qdot01=[0;0;q1dot]; 
qdot12=[0;0;q2dot]; 
qdot23=[0;0;q3dot]; 
qdot34=[0;0;q4dot]; 
qdot45=[0;0;q5dot]; 
qdot56=[0;0;q6dot]; 
  
omega000=[0;0;0]; 
v000=[0;0;0]; 
  
if Link_1==0 
omega101=simplify(R10*(omega000+qdot01)); 
v101=simplify((R10*v000)+cross(omega101,(R10*P01))); 
else  
omega101=simplify(R10*(omega000)); 
v101=simplify((R10*v000)+cross(omega000,(R10*P01))+(R10*qdot01)); 
end 
  
if Link_2==0 
omega202=simplify(R21*(omega101+qdot12)); 
v202=simplify((R21*v101)+cross(omega202,(R21*P12))); 
else 
omega202=simplify(R21*omega101); 
v202=simplify((R21*v101)+cross(omega101,(R21*P12))+(R21*qdot12)); 
end 
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if Link_3==0 
omega303=simplify(R32*(omega202+qdot23)); 
v303=simplify((R32*v202)+cross(omega303,(R32*P23))); 
else  
omega303=simplify(R32*(omega202)); 
v303=simplify((R32*v202)+cross(omega202,(R32*P23))+(R32*qdot23)); 
end 
  
if Link_4==0 
omega404=simplify(R43*(omega303+qdot34)); 
v404=simplify((R43*v303)+cross(omega404,(R43*P34))); 
else  
omega404=simplify(R43*(omega303)); 
v404=simplify((R43*v303)+cross(omega303,(R43*P34))+(R43*qdot34)); 
end 
  
if Link_5==0 
omega505=simplify(R54*(omega404+qdot45)); 
v505=simplify((R54*v404)+cross(omega505,(R54*P45))); 
else  
omega505=simplify(R54*(omega404)); 
v505=simplify((R54*v404)+cross(omega404,(R54*P45))+(R54*qdot45)); 
end 
  
if Link_6==0 
omega606=simplify(R65*(omega505+qdot56));  
v606=simplify((R65*v505)+cross(omega606,(R65*P56))); 
else  
omega606=simplify(R65*(omega505)); 
v606=simplify((R65*v505)+cross(omega505,(R65*P56))+(R65*qdot56)); 
end 
  
disp('Jacobian in Base Frame') 
VE=[v606;omega606]; 
J_Variable=[q1dot;q2dot;q3dot;q4dot;q5dot;q6dot]; 
JE=jacobian(VE,J_Variable); 
JBv=simplify(R006*[JE(1,1) JE(1,2) JE(1,3) JE(1,4) JE(1,5) 
JE(1,6);JE(2,1) JE(2,2) JE(2,3) JE(2,4) JE(2,5) JE(2,6);JE(3,1) JE(3,2) 
JE(3,3) JE(3,4) JE(3,5) JE(3,6)]); 
JBw=simplify(R006*[JE(4,1) JE(4,2) JE(4,3) JE(4,4) JE(4,5) 
JE(4,6);JE(5,1) JE(5,2) JE(5,3) JE(5,4) JE(5,5) JE(5,6);JE(6,1) JE(6,2) 
JE(6,3) JE(6,4) JE(6,5) JE(6,6)]); 
JB=[JBv;JBw];  
J11=[JB(1,1) JB(1,2) JB(1,3); JB(2,1) JB(2,2) JB(2,3); JB(3,1) JB(3,2) 
JB(3,3)];  
J22=[JB(4,4) JB(4,5) JB(4,6); JB(5,4) JB(5,5) JB(5,6); JB(6,4) JB(6,5) 
JB(6,6)]; 
disp(vpa(JB,5)) 
  
  
%Z_Integers , Q_ = Rational Numbers , R_ = Real Numbers, C_ = Complex 
Numbers 
  
if a4+a4+a6==0 
   disp('Jacobian Subset J11') 
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    disp(vpa(J11,5)) 
    disp('Jacobian Subset J22') 
    disp(vpa(J22,5)) 
    S1=simplify(det(J11)); 
    S2=simplify(det(J22)); 
    fprintf(2,'Singularity Equation\n') 
    fprintf(2,'The Robot has a Wrist Configuration\n') 
    if S1==0 
      fprintf(2,'Robot always has a Forearm Singularity\n') 
    else 
        fprintf(2,'Forearm Singularity Equation\n') 
        disp(S1)  
         
        SE1= 
solve(S1==0,t1,t2,t3,t4,t5,t6,'Real',true,'IgnoreProperties',true,'Ignor
eAnalyticConstraints', true); 
           if Link_1==0 
              t101=SE1.theta1; 
           else 
              t101=SE1.d1; 
           end 
  
           if Link_2==0 
              t102=SE1.theta2;              
           else 
              t102=SE1.d2;               
           end 
            
           if Link_3==0 
              t103=SE1.theta3;              
           else 
              t103=SE1.d3;              
           end 
  
           if Link_4==0 
              t104=SE1.theta4;               
           else 
              t104=SE1.d4;               
           end 
  
           if Link_5==0 
              t105=SE1.theta5; 
           else 
              t105=SE1.d5;           
           end 
  
           if Link_6==0 
              t106=SE1.theta6;              
           else 
              t106=SE1.d6;              
           end 
           fprintf(2,'Forearm Singularity Solution(s)\n') 
           SE1 = [t101 t102 t103 t104 t105 t106] 
    end 
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    if S2==0 
      fprintf(2,'Robot always has a Wrist Singularity\n') 
    else 
        fprintf(2,'Wrist Singularity Equation\n') 
        disp(S2) 
          SE2= 
solve(S2==0,t1,t2,t3,t4,t5,t6,'Real',true,'IgnoreProperties',true,'Ignor
eAnalyticConstraints', true); 
           if Link_1==0 
              t201=SE2.theta1; 
           else 
              t201=SE2.d1; 
           end 
  
           if Link_2==0 
              t202=SE2.theta2; 
           else 
              t202=SE2.d2; 
           end 
            
           if Link_3==0 
              t203=SE2.theta3; 
           else 
              t203=SE2.d3; 
           end 
  
           if Link_4==0 
              t204=SE2.theta4; 
           else 
              t204=SE2.d4; 
           end 
  
           if Link_5==0 
              t205=SE2.theta5; 
           else 
              t205=SE2.d5; 
           end 
  
           if Link_6==0 
              t206=SE2.theta6; 
           else 
              t206=SE2.d6; 
           end 
           fprintf(2,'Wrist Singularity Solution(s)\n') 
           SE2 = [t201 t202 t203 t204 t205 t206]  
    end 
             
           
else     
    S3=simplify(det(JB)); 
    if S3==0 
%       fprintf(2,'Robot is always Singular\n') 
    else 
      disp(S3)  
    end 
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    fprintf(2,'Singularity Equation\n') 
    SE3= 
solve(S3==0,t1,t2,t3,t4,t5,t6,'Real',true,'IgnoreProperties',true,'Ignor
eAnalyticConstraints', true); 
           if Link_1==0 
              t301=SE3.theta1; 
           else 
              t301=SE3.d1; 
           end 
  
           if Link_2==0 
              t302=SE3.theta2; 
           else 
              t302=SE3.d2; 
           end 
  
           if Link_3==0 
              t303=SE3.theta3; 
           else 
              t303=SE3.d3; 
           end 
  
           if Link_4==0 
              t304=SE3.theta4; 
           else 
              t304=SE3.d4; 
           end 
  
           if Link_5==0 
              t305=SE3.theta5; 
           else 
              t305=SE3.d5; 
           end 
  
           if Link_6==0 
              t306=SE3.theta6; 
           else 
              t306=SE3.d6; 
           end 
  
          fprintf(2,' Singularity Solution(s)\n') 
     
          SE3 = [t301 t302 t303 t304 t305 t306] 
end 
  
 %Plotting Singularity 
 q1_range_new = q1_range; 
 q2_range_new = 0; 
 q3_range_new = q3_range; 
 q4_range_new = q4_range; 
 q5_range_new = q5_range;                  %change fwd_kin dimension 
 q6_range_new = q6_range; 
  
angle_config_s =combvec (q1_range_new', q2_range_new', q3_range_new', 
q4_range_new', q5_range_new', q6_range_new')'; 
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fwdkin_s=zeros((steps)^5,12); % change every time 
Q_sym=[q1 q2 q3 q4 q5 q6]; 
  
for i=1:length(angle_config_s) 
         Q_set_s=angle_config_s(i,:); 
             fwdkin_s(i,:)= double(subs(P,Q_sym,Q_set_s)); 
end 
  
K_s= [angle_config_s fwdkin_s]; 
[~, loc_s] = unique(K_s(:,16:18),'rows'); 
K1_s=K_s(loc_s,:); 
  
% All Angle configurations 
Q1_s =K1_s(:,1)'; 
Q2_s =K1_s(:,2)'; 
Q3_s =K1_s(:,3)'; 
Q4_s =K1_s(:,4)'; 
Q5_s =K1_s(:,5)'; 
Q6_s =K1_s(:,6)'; 
  
% All Orientations about x,y,z  
x_x_s =K1_s(:,7)'; 
x_y_s =K1_s(:,8)'; 
x_z_s =K1_s(:,9)'; 
y_x_s =K1_s(:,10)'; 
y_y_s =K1_s(:,11)'; 
y_z_s =K1_s(:,12)'; 
z_x_s =K1_s(:,13)'; 
z_y_s =K1_s(:,14)'; 
z_z_s =K1_s(:,15)'; 
  
% Cartesian Coordinates x,y,z  
x_s =K1_s(:,16)'; 
y_s =K1_s(:,17)'; 
z_s =K1_s(:,18)';  
  
figure(5) 
subplot(2,2,1); 
plot3(x',y',z','o','MarkerSize',15,'MarkerEdgeColor','k','MarkerFaceColo
r','w','LineWidth',2); 
hold all 
plot3(x_s',y_s',z_s','o','MarkerSize',15,'MarkerEdgeColor','r','MarkerFa
ceColor','r','LineWidth',2); 
grid on; 
set(gca,'fontsize',20) 
xlabel('X (m)','FontSize',20); 
ylabel('Y (m)','FontSize',20); 
title('Functional Workspace Top View','FontSize',20); 
legend('Workspace','Singularity Space') 
view([0 90]) % X-Y 
  
subplot(2,2,2); 
plot3(x',y',z','o','MarkerSize',15,'MarkerEdgeColor','k','MarkerFaceColo
r','w','LineWidth',2); 
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hold all 
plot3(x_s',y_s',z_s','o','MarkerSize',15,'MarkerEdgeColor','r','MarkerFa
ceColor','r','LineWidth',2); 
grid on; 
set(gca,'fontsize',20) 
xlabel('X (m)','FontSize',20); 
ylabel('Y (m)','FontSize',20); 
zlabel('Z (m)','FontSize',20); 
title('Functional Workspace of Robot','FontSize',20); 
legend('Workspace','Singularity Space') 
view([45 45 45]) % X-Y-Z 
  
subplot(2,2,3); 
plot3(x',y',z','o','MarkerSize',15,'MarkerEdgeColor','k','MarkerFaceColo
r','w','LineWidth',2); 
hold all 
plot3(x_s',y_s',z_s','o','MarkerSize',15,'MarkerEdgeColor','r','MarkerFa
ceColor','r','LineWidth',2); 
grid on; 
set(gca,'fontsize',20) 
xlabel('X (m)','FontSize',20); 
zlabel('Z (m)','FontSize',20); 
title('Functional Workspace Front View','FontSize',20); 
legend('Workspace','Singularity Space') 
view([0 0]) % X-Z 
  
subplot(2,2,4); 
plot3(x',y',z','o','MarkerSize',15,'MarkerEdgeColor','k','MarkerFaceColo
r','w','LineWidth',2); 
hold all 
plot3(x_s',y_s',z_s','o','MarkerSize',15,'MarkerEdgeColor','r','MarkerFa
ceColor','r','LineWidth',2); 
grid on; 
set(gca,'fontsize',20) 
ylabel('Y (m)','FontSize',20); 
zlabel('Z (m)','FontSize',20); 
title('Functional Workspace Right View','FontSize',20); 
legend('Workspace','Singularity Space') 
view([90 0]); % Y-Z 
  
  
% Neural Network Inputs and Targets for training the network 
% Step 1: Normalizing all inputs and targets between [-1,1] for IK Soln 
  
q1_n_s = mapminmax('apply',Q1_s,PS1); 
q2_n_s = mapminmax('apply',Q2_s,PS2); 
q3_n_s = mapminmax('apply',Q3_s,PS3); 
q4_n_s = mapminmax('apply',Q4_s,PS4); 
q5_n_s = mapminmax('apply',Q5_s,PS5); 
q6_n_s = mapminmax('apply',Q6_s,PS6); 
  
x_x_n_s = mapminmax('apply',x_x_s,PS7); 
x_y_n_s = mapminmax('apply',x_y_s,PS8); 
x_z_n_s = mapminmax('apply',x_z_s,PS9); 
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y_x_n_s = mapminmax('apply',y_x_s,PS10); 
y_y_n_s = mapminmax('apply',y_y_s,PS11); 
y_z_n_s = mapminmax('apply',y_z_s,PS12); 
  
z_x_n_s = mapminmax('apply',z_x_s,PS13); 
z_y_n_s = mapminmax('apply',z_y_s,PS14); 
z_z_n_s = mapminmax('apply',z_z_s,PS15); 
  
x_n_s = mapminmax('apply',x_s,PS16); 
y_n_s = mapminmax('apply',y_s,PS17); 
z_n_s = mapminmax('apply',z_s,PS18); 
  
input_s =[x_x_n_s; x_y_n_s; x_z_n_s; y_x_n_s; y_y_n_s; y_z_n_s; z_x_n_s; 
z_y_n_s; z_z_n_s; x_n_s; y_n_s; z_n_s]; 
target_s =[q1_n_s; q2_n_s; q3_n_s; q4_n_s; q5_n_s; q6_n_s]; 
  
%Simulate network with test data 
  
outputs_p = sim(net,input_s); 
  
q1_p = mapminmax('reverse',outputs_p(1,:),PS1); 
q2_p = mapminmax('reverse',outputs_p(2,:),PS2); 
q3_p = mapminmax('reverse',outputs_p(3,:),PS3); 
q4_p = mapminmax('reverse',outputs_p(4,:),PS4); 
q5_p = mapminmax('reverse',outputs_p(5,:),PS5); 
q6_p = mapminmax('reverse',outputs_p(6,:),PS6); 
angle_config_p = [q1_p', q2_p', q3_p' q4_p', q5_p', q6_p']; 
  
fwdkin_p=zeros(length(input_s),12);        % change every time 
% fwdkin_p=zeros((steps)^5,12);  % change every time 
Q_sym=[q1 q2 q3 q4 q5 q6]; 
  
for i=1:length(angle_config_p) 
         Q_set_p=angle_config_p(i,:); 
             fwdkin_p(i,:)= double(subs(P,Q_sym,Q_set_p)); 
end 
  
K_p= [angle_config_p fwdkin_p]; 
[~, loc] = unique(K_p(:,16:18),'rows'); 
K1_p=K_p(loc,:); 
  
% All Angle configurations 
Q1_p =K1_p(:,1)'; 
Q2_p =K1_p(:,2)'; 
Q3_p =K1_p(:,3)'; 
Q4_p =K1_p(:,4)'; 
Q5_p =K1_p(:,5)'; 
Q6_p =K1_p(:,6)'; 
  
% All Orientations about x,y,z  
x_x_p =K1_p(:,7)'; 
x_y_p =K1_p(:,8)'; 
x_z_p =K1_p(:,9)'; 
y_x_p =K1_p(:,10)'; 
y_y_p =K1_p(:,11)'; 
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y_z_p =K1_p(:,12)'; 
z_x_p =K1_p(:,13)'; 
z_y_p =K1_p(:,14)'; 
z_z_p =K1_p(:,15)'; 
  
% Cartesian Coordinates x,y,z  
  
x_p =K1_p(:,16)'; 
y_p =K1_p(:,17)'; 
z_p =K1_p(:,18)';  
  
figure(6) 
subplot(2,2,1) 
plot3(x_p',y_p',z_p','o','MarkerSize',20,'MarkerEdgeColor','b','MarkerFa
ceColor','b','LineWidth',2); 
hold all 
plot3(x_s',y_s',z_s','o','MarkerSize',20,'MarkerEdgeColor','r','MarkerFa
ceColor','r','LineWidth',2); 
grid on; 
set(gca,'fontsize',20) 
xlabel('X (m)','FontSize',20); 
ylabel('Y (m)','FontSize',20); 
title('ANN Singularity Top View','FontSize',20) 
legend('Predicted Singularity','Theoretical Singularity') 
view([0 90]) % X-Y 
  
subplot(2,2,2); 
plot3(x_p',y_p',z_p','o','MarkerSize',20,'MarkerEdgeColor','b','MarkerFa
ceColor','b','LineWidth',2); 
hold all 
plot3(x_s',y_s',z_s','o','MarkerSize',20,'MarkerEdgeColor','r','MarkerFa
ceColor','r','LineWidth',2); 
grid on; 
set(gca,'fontsize',20) 
xlabel('X (m)','FontSize',20); 
ylabel('Y (m)','FontSize',20); 
zlabel('Z (m)','FontSize',20); 
title('ANN Predicted Singularity vs Theoretical 
Singularity','FontSize',20) 
legend('Predicted Singularity','Theoretical Singularity') 
view([45 45 45]) % X-Y-Z 
  
subplot(2,2,3); 
plot3(x_p',y_p',z_p','o','MarkerSize',20,'MarkerEdgeColor','b','MarkerFa
ceColor','b','LineWidth',2); 
hold all 
plot3(x_s',y_s',z_s','o','MarkerSize',20,'MarkerEdgeColor','r','MarkerFa
ceColor','r','LineWidth',2); 
grid on; 
set(gca,'fontsize',20) 
xlabel('X (m)','FontSize',20); 
zlabel('Z (m)','FontSize',20); 
title('ANN Singularity Front View','FontSize',20) 
legend('Predicted Singularity','Theoretical Singularity') 
view([0 0]) % X-Z 
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subplot(2,2,4); 
plot3(x_p',y_p',z_p','o','MarkerSize',20,'MarkerEdgeColor','b','MarkerFa
ceColor','b','LineWidth',2); 
hold all 
plot3(x_s',y_s',z_s','o','MarkerSize',20,'MarkerEdgeColor','r','MarkerFa
ceColor','r','LineWidth',2); 
grid on; 
set(gca,'fontsize',20) 
ylabel('Y (m)','FontSize',20); 
zlabel('Z (m)','FontSize',20); 
title('ANN Singularity Right View','FontSize',20) 
legend('Predicted Singularity','Theoretical Singularity') 
view([90 0]); % Y-Z 
  
% Absolute Error 
E_q1_p_s = abs(Q1_s'-q1_p'); 
E_q2_p_s = abs(Q2_s'-q2_p'); 
E_q3_p_s = abs(Q3_s'-q3_p'); 
E_q4_p_s = abs(Q4_s'-q4_p'); 
E_q5_p_s = abs(Q5_s'-q5_p'); 
E_q6_p_s = abs(Q6_s'-q6_p'); 
  
E_x_x_p_s = abs(x_x_s' - x_x_p')'; 
E_x_y_p_s = abs(x_y_s' - x_y_p')'; 
E_x_z_p_s = abs(x_z_s' - x_z_p')'; 
E_y_x_p_s = abs(y_x_s' - y_x_p')'; 
E_y_y_p_s = abs(y_y_s' - y_y_p')'; 
E_y_z_p_s = abs(y_z_s' - y_z_p')'; 
E_z_x_p_s = abs(z_x_s' - z_x_p')'; 
E_z_y_p_s = abs(z_y_s' - z_y_p')'; 
E_z_z_p_s = abs(z_z_s' - z_z_p')'; 
  
E_x_p_s = abs(x_s' - x_p')'; 
E_y_p_s = abs(y_s' - y_p')'; 
E_z_p_s = abs(z_s' - z_p')'; 
disp('Absolute Errors in Joint Space') 
disp(['Max Error in Joint 1 = ' num2str(max(E_q1_p_s),2)  '   Min Error 
in Joint 1 = ' num2str(min(E_q1_p_s),2)]) 
disp(['Max Error in Joint 2 = ' num2str(max(E_q2_p_s),2)  '    Min Error 
in Joint 2 = ' num2str(min(E_q2_p_s),2)]) 
disp(['Max Error in Joint 3 = ' num2str(max(E_q3_p_s),2)  '    Min Error 
in Joint 3 = ' num2str(min(E_q3_p_s),2)]) 
disp(['Max Error in Joint 4 = ' num2str(max(E_q4_p_s),2)  '     Min 
Error in Joint 4 = ' num2str(min(E_q4_p_s),2)]) 
disp(['Max Error in Joint 5 = ' num2str(max(E_q5_p_s),2)  '     Min 
Error in Joint 5 = ' num2str(min(E_q5_p_s),2)]) 
disp(['Max Error in Joint 6 = ' num2str(max(E_q6_p_s),2)  '     Min 
Error in Joint 6 = ' num2str(min(E_q6_p_s),2)]) 
  
disp('Absolute Errors in Cartesian Space') 
disp(['Max Error in x-x     = ' num2str(max(E_x_x_p_s),2) '     Min 
Error in x-x     = ' num2str(min(E_x_x_p_s),2)]) 
disp(['Max Error in x-y     = ' num2str(max(E_x_y_p_s),2) '    Min Error 
in x-y     = ' num2str(min(E_x_y_p_s),2)]) 
disp(['Max Error in x-z     = ' num2str(max(E_x_z_p_s),2) '     Min 
Error in x-z     = ' num2str(min(E_x_z_p_s),2)]) 
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disp(['Max Error in y-x     = ' num2str(max(E_y_x_p_s),2) '     Min 
Error in y-x     = ' num2str(min(E_y_x_p_s),2)]) 
disp(['Max Error in y-y     = ' num2str(max(E_y_y_p_s),2) '     Min 
Error in y-y     = ' num2str(min(E_y_y_p_s),2)]) 
disp(['Max Error in y-z     = ' num2str(max(E_y_z_p_s),2) '     Min 
Error in y-z     = ' num2str(min(E_y_z_p_s),2)]) 
disp(['Max Error in z-x     = ' num2str(max(E_z_x_p_s),2) '    Min Error 
in z-x     = ' num2str(min(E_z_x_p_s),2)]) 
disp(['Max Error in z-y     = ' num2str(max(E_z_y_p_s),2) '     Min 
Error in z-y     = ' num2str(min(E_z_y_p_s),2)]) 
disp(['Max Error in z-z     = ' num2str(max(E_z_z_p_s),2) '     Min 
Error in z-z     = ' num2str(min(E_z_z_p_s),2)]) 
disp(['Max Error in x       = ' num2str(max(E_x_p_s),2)   '     Min 
Error in x       = ' num2str(min(E_x_p_s),2)]) 
disp(['Max Error in y       = ' num2str(max(E_y_p_s),2)   '     Min 
Error in y       = ' num2str(min(E_y_p_s),2)]) 
disp(['Max Error in z       = ' num2str(max(E_z_p_s),2)   '     Min 
Error in z       = ' num2str(min(E_z_p_s),2)]) 
  
disp('Absolute Errors in Joint Space') 
disp(['Average Error in Joint 1 = ' num2str(mean(E_q1_p_s),2)]) 
disp(['Average Error in Joint 2 = ' num2str(mean(E_q2_p_s),2)]) 
disp(['Average Error in Joint 3 = ' num2str(mean(E_q3_p_s),2)]) 
disp(['Average Error in Joint 4 = ' num2str(mean(E_q4_p_s),2)]) 
disp(['Average Error in Joint 5 = ' num2str(mean(E_q5_p_s),2)]) 
disp(['Average Error in Joint 6 = ' num2str(mean(E_q6_p_s),2)]) 
  
figure(7) 
subplot(3,2,1); 
plot(q1_p,'o','MarkerSize',10,'MarkerEdgeColor','b','MarkerFaceColor','b
','LineWidth',2); 
hold all 
plot(Q1_s,'o','MarkerSize',10,'MarkerEdgeColor','g','MarkerFaceColor','g
','LineWidth',2); 
grid on; 
set(gca,'fontsize',20) 
xlabel('(Dataset Length)','FontSize',20) 
ylabel('Joint Variable 1 (rad)','FontSize',20) 
title('ANN Accuracy for Joint 1 Singularity Prediction','FontSize',20) 
legend('Predicted','Target') 
  
subplot(3,2,2); 
plot(q2_p,'o','MarkerSize',10,'MarkerEdgeColor','b','MarkerFaceColor','b
','LineWidth',2); 
hold all 
plot(Q2_s,'o','MarkerSize',10,'MarkerEdgeColor','g','MarkerFaceColor','g
','LineWidth',2); 
grid on; 
set(gca,'fontsize',20) 
xlabel('(Dataset Length)','FontSize',20) 
ylabel('Joint Variable 2 (rad)','FontSize',20) 
title('ANN Accuracy for Joint 2 Singularity Prediction','FontSize',20) 
legend('Predicted','Target') 
  
subplot(3,2,3); 

186 
 



 

plot(q3_p,'o','MarkerSize',10,'MarkerEdgeColor','b','MarkerFaceColor','b
','LineWidth',2); 
hold all 
plot(Q3_s,'o','MarkerSize',10,'MarkerEdgeColor','g','MarkerFaceColor','g
','LineWidth',2); 
grid on; 
set(gca,'fontsize',20) 
xlabel('(Dataset Length)','FontSize',20) 
ylabel('Joint Variable 3 (rad)','FontSize',20) 
title('ANN Accuracy for Joint 3 Singularity Prediction','FontSize',20) 
legend('Predicted','Target') 
  
subplot(3,2,4); 
plot(q4_p,'o','MarkerSize',10,'MarkerEdgeColor','b','MarkerFaceColor','b
','LineWidth',2); 
hold all 
plot(Q4_s,'o','MarkerSize',10,'MarkerEdgeColor','g','MarkerFaceColor','g
','LineWidth',2); 
grid on; 
set(gca,'fontsize',20) 
xlabel('(Dataset Length)','FontSize',20) 
ylabel('Joint Variable 4 (rad)','FontSize',20) 
title('ANN Accuracy for Joint 4 Singularity Prediction','FontSize',20) 
legend('Predicted','Target') 
  
subplot(3,2,5); 
plot(q5_p,'o','MarkerSize',10,'MarkerEdgeColor','b','MarkerFaceColor','b
','LineWidth',2); 
hold all 
plot(Q5_s,'o','MarkerSize',10,'MarkerEdgeColor','g','MarkerFaceColor','g
','LineWidth',2); 
grid on; 
set(gca,'fontsize',20) 
xlabel('(Dataset Length)','FontSize',20) 
ylabel('Joint Variable 5 (rad)','FontSize',20) 
title('ANN Accuracy for Joint 5 Singularity Prediction','FontSize',20) 
legend('Predicted','Target') 
  
subplot(3,2,6); 
plot(q6_p,'o','MarkerSize',10,'MarkerEdgeColor','b','MarkerFaceColor','b
','LineWidth',2); 
hold all 
plot(Q6_s,'o','MarkerSize',10,'MarkerEdgeColor','g','MarkerFaceColor','g
','LineWidth',2); 
grid on; 
set(gca,'fontsize',20) 
xlabel('(Dataset Length)','FontSize',20) 
ylabel('Joint Variable 6 (rad)','FontSize',20) 
title('ANN Output vs. Target for Joint 6','FontSize',20) 
legend('Predicted','Target') 
  
%Residual Error Plot 
  
figure(8) 
subplot(3,2,1); 
plot(abs(Q1_s-q1_p),'-r','LineWidth',2); 
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hold all 
grid on; 
set(gca,'fontsize',20) 
% axis([0 30 0 4.5]) 
axis([0 250 0 0.04]) 
xlabel('(Dataset Length)','FontSize',20) 
ylabel('Residual Error (rad)','FontSize',20) 
title('Error in ANN Accuracy for Joint 1 Singularity 
Prediction','FontSize',20) 
legend('Error = |Target - Predicted|') 
  
subplot(3,2,2); 
plot(abs(Q2_s-q2_p),'-r','LineWidth',2); 
hold all 
grid on; 
set(gca,'fontsize',20) 
% axis([0 30 0 4.5]) 
axis([0 250 0 0.04]) 
xlabel('(Dataset Length)','FontSize',20) 
ylabel('Residual Error (rad)','FontSize',20) 
title('Error in ANN Accuracy for Joint 2 Singularity 
Prediction','FontSize',20) 
legend('Error = |Target - Predicted|') 
  
subplot(3,2,3); 
plot(abs(Q3_s-q3_p),'-r','LineWidth',2); 
hold all 
grid on; 
set(gca,'fontsize',20) 
% axis([0 30 0 4.5]) 
axis([0 250 0 0.04]) 
xlabel('(Dataset Length)','FontSize',20) 
ylabel('Residual Error (rad)','FontSize',20) 
title('Error in ANN Accuracy for Joint 3 Singularity 
Prediction','FontSize',20) 
legend('Error = |Target - Predicted|') 
  
subplot(3,2,4); 
plot(abs(Q4_s-q4_p),'-r','LineWidth',2); 
hold all 
grid on; 
set(gca,'fontsize',20) 
% axis([0 30 0 4.5]) 
axis([0 250 0 0.04]) 
xlabel('(Dataset Length)','FontSize',20) 
ylabel('Residual Error (rad)','FontSize',20) 
title('Error in ANN Accuracy for Joint 4 Singularity 
Prediction','FontSize',20) 
legend('Error = |Target - Predicted|') 
  
subplot(3,2,5); 
plot(abs(Q5_s-q5_p),'-r','LineWidth',2); 
hold all 
grid on; 
set(gca,'fontsize',20) 
% axis([0 30 0 4.5]) 
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axis([0 250 0 0.04]) 
xlabel('(Dataset Length)','FontSize',20) 
ylabel('Residual Error (rad)','FontSize',20) 
title('Error in ANN Accuracy for Joint 5 Singularity 
Prediction','FontSize',20) 
legend('Error = |Target - Predicted|') 
  
subplot(3,2,6); 
plot(abs(Q6_s-q6_p),'-r','LineWidth',2); 
hold all 
grid on; 
set(gca,'fontsize',20) 
% axis([0 30 0 4.5]) 
axis([0 250 0 0.04]) 
xlabel('(Dataset Length)','FontSize',20) 
ylabel('Residual Error (rad)','FontSize',20) 
title('Error in ANN Accuracy for Joint 6 Singularity 
Prediction','FontSize',20) 
legend('Error = |Target - Predicted|') 
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