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ABSTRACT

Automation has led to industrial robots facilitating a wide array of high speed,
endurance, and precision operations undertaken in the manufacturing industry
today. An acceptable level of functioning and control is therefore vital to the
efficacy and successful implementation of such manipulators. This research
presents a comprehensive analytical tool for downstream optimization of
manipulator design, functionality, and performance. The proposed model is
reconfigurable and allows for modelling and validation of different industrial
robots. Unique 3D visual models for a manipulator workspace and kinematic
singularities are developed to gain an understanding into the task space and reach
conditions of the manipulator’s end-effector. The developed algorithm also
presents a non-conventional and computationally inexpensive solution to the
inverse kinematics problem through the use Artificial Neural Networks.
Application of the proposed technique is further extended to aid in development of

path planning models for a uniform, continuous, and singularity free motion.
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CHAPTER 1

INTRODUCTION

1.1 Background

Automation has led to industrial manipulators facilitating a wide array of
operations such as assembly, inspection, material handling, processing etc. undertaken in
the manufacturing industry today. A comprehensive set of robot structures have since
been designed and built to fulfill the industry needs. These multi-Degrees of Freedom
(DOF) structures are highly complex in their form and control. Most manipulators used in
the industry today are articulated with six or more rotational joints. This structural form
provides the manipulators with a great deal of flexibility, dexterity, and an ability to reach
every specific coordinate of their workspace in more than one configuration. An
acceptable level of functioning and control is therefore vital to the efficacy and successful
implementation of industrial manipulators since the aforementioned tasks are highly

repetitive and in many cases not apt for humans.

The initial steps in integrating manipulators, when planning for automation,
includes their placement in an industrial setup based on the tasks they are required to
perform. This is in direct correlation to the work envelope of each individual manipulator
which dictates the working boundary of that manipulator. The total workspace of any
multi-DOF manipulator is a finitely bounded 3-D space which is topologically complex
and extremely challenging to visualize. In this total workspace, the true reachable
workspace of a manipulator is a combination of various 3-D subset(s) that may or may
not be mutually exclusive but are always collectively exhaustive. Each of these subset(s)
is representative of range of joint configurations of such a manipulator. It is therefore
important to assess and analyze the work envelope that defines the reachability and
functionality of a manipulator. This assessment subsequently helps to identify and map

user requirements to specific needs for automation.

A manipulator interacts with its environment (work envelope) through control of
its joint space. The joint space of a manipulator entails all possible joint configurations of

that manipulator. A 3-D work envelope is mapped in Cartesian space by the position and



orientation (pose) of a manipulator’s tool (end-effector) for every configuration in its
joint space. Industrial tasks and processes are seldom built to be accessible within a pre-
positioned manipulator’s work envelope. On the contrary, the positioning of a
manipulator in a work cell is determined to ensure accessibility of tasks and processes it
is intended to serve. An inverse mapping from the Cartesian space to a manipulator’s

joint space is thus required and is a challenging aspect of robot control.

The inverse mapping helps devise a control algorithm for a set of tasks to be
accomplished by a manipulator. Numerous techniques such as use of teach pendants,
robot simulation software, manual trial and error etc. are currently used in the industry for
determining joint configurations that may produce a required tool pose for a task. All
these techniques utilize conventional geometric, iterative or analytical methods to
develop a solution to the problem of positioning a manipulator’s end-effector. Often, the
development of a closed form solution to this problem may be mathematically complex
and computationally expensive, or may not even be possible. These limitations can be
overcome by use of non-traditional approaches such as Artificial Neural Networks
(ANNs). ANNs can identify and predict non-linear trends amongst data sets with and

acceptable level of accuracy which makes them suitable for such an application.

In development of control algorithms, there often arise configurations where two
or more joints of a manipulator no longer independently control the position and
orientation of a manipulator’s end-effector [1]. These configurations give rise to loci of
subset(s) in a manipulator’s work envelope known as kinematic singularities.
Singularities are hard to visualize and plan around since they might exist in one or more
configurations for any point in a manipulator’s work envelope. For example, if a point
(X,y,z) can be reached by a manipulator in ten different configurations, two of those ten
joint configurations might be singular. Kinematic singularities arise because of the
physical structure and attributes of a manipulator, and the relations between its joints. It is
therefore important to design and build manipulators that can successfully avoid or
minimize singularity configurations. This ensures robustness and accuracy of operations

in manipulators [2].



Experimenting with variability in manipulator design is a challenging problem
since most manipulators used in the industry today are flexible 5/6-axis articulated
robotic arms (with rotational joints). These robotic arms are inspired from the human

arms and their ability to rotate, position, and orient hands as shown in Figure 1 [3].

Forearm
Axis 4 Axis 5

Figure 1: Articulated Robot Arm Inspired from a Human Arm [3]

Not many industrial manipulator designs exist that incorporate different joint
types other than rotational joints. The use of articulated serial link robot arms in the
industry today has evolved from gantry systems that could only be manipulated linearly
along coordinate axes. The shift from traditional gantry (x-y-z) systems proved beneficial
given the capability of flexible robot arms and their ability to handle complex tasks.
However, through extensive research work and understanding into the functioning of
flexible manipulators, the need for hybrid structures that incorporates a kinematic

configuration of robot arms in conjunction with traditional Cartesian robots is realized.

Industrial manipulator manufacturers and developers provide specialized
simulation software packages such as Workspace, RobotStudio, RobotSim, MotoSim
etc., which can only analyze one or more specific classes of articulated manipulators.
However, such software lack the capability of providing the user the freedom to
reconfigure the functionality based on the structure of a manipulator. These software are

primarily analytical tools rather than design tools, and simply simulate pre-programmed



work envelopes and trajectories. Existing software also only allow the users to change the
range of joints for a robot configuration thereby adding to or limiting the reach of a
manipulator’s end-effector. The software also do not allow for any major change in
topology and or volume of the work envelope. This inhibits the development of possible
manipulator designs that may be specifically tailored and better suited to a customer
need. The trend towards flexible manufacturing requires automation that can adapt to the
same level of flexibility with decreasing cycle times and lead times, while increasing
production capacity and quality [4]. It is therefore important to have manipulators that
can adapt to a wide variety of tasks and processes with an acceptable level of

functionality and control.

1.2 Research Purpose

Manipulators performance is critical to any industrial application. Manipulators
however experience several challenges with respect to their performance that arise from
their kinematic structure, reach limits within their workspace (work window), singularity
conditions etc. A comprehensive analytical tool is therefore needed to optimize
manipulator design and functionality without the need for extensive computation and
planning. The purpose of this research is to develop a visual and analytical tool for the
study of industrial manipulators. The methodology used for the development of this

research tool is presented in Figure 2 below.

Analysis of Key Literature Modelling Result Reconfigurable
Elements Review Review Formulation Model

Figure 2: Research Methodology



This research provides an understanding of manipulator workspace where singularity

conditions are identified and visually represented for an insight into the true work

window. A robust inverse kinematic model is also developed using ANNSs that provides a

singularity free end-effector path through the workspace of the manipulator. The

developed tool is capable of realizing the following tasks:

1.

Reconfigurability: A virtual design tool capable of altering its computational

capabilities for various 6-DOF (6 axis) manipulator configurations. The physical
structure of a manipulator represented using its joints and link configurations can
be postulated and or edited by the user. These configuration parameters can be
based on any specific functionality requirements. The design tool will aid the
analyses of any possible combinations of two manipulator joints types, namely,
revolute (rotational) and prismatic (translational).

Workspace: A design tool that is capable of virtually generating, in 3-D space,
and altering the topology and volume of a manipulator’s work envelope based on
the manipulator’s kinematics structure. The reach parameters of a manipulator’s
tool (end-effector) could also be controlled using this tool by constraining the
joint limits. This design tool will subsequently aid in development of tool path
generation, path planning, travel path validation and optimization of reach
conditions within robot work cell(s).

Inverse Kinematics: A design tool that is capable of computing a robust inverse

kinematic solution for any input manipulator configuration provided by the user.
The model will be able to present a solution that is computationally inexpensive
unlike traditional geometric, iterative and analytical methods. The task will be
achieved using non-conventional techniques (ANNs) that will predict an inverse
kinematic solution within an acceptable confidence interval (90™-95™ percentile).

Jacobian Matrix: A design tool that is capable of computing a Jacobian matrix for

aid in analysis and control of manipulator motion. This Jacobian matrix will also
aid in determination of kinematic singularities. The design tool can also be used
as a basis for development of dynamic equations of motion, and transformation of

forces and torques from the manipulator’s end-effector to its joints [5].



5. Kinematic Singularity: A design tool that is capable of visually identifying loci of

all singular points in a manipulator’s workspace. The developed model can
analyze and document every possible manipulator configuration for kinematic
singularities. This will aid in development of a robust, continuous and singularity
free control algorithm.

6. Path Planning: A design tool that is capable of providing a singularity free end-
effector path through the workspace of a manipulator. The model can determine
an error window in the joint space of the manipulator to provide a bounding space

for inherent singularity.

1.3 Research Limitations

A mathematical model is developed in MATLAB platform for this research. All
kinematic models i.e. the physical structure of manipulator joints and links have been
visually represented in MATLAB through the use of robotic toolbox [6]. The model aids
a user in development of the aforementioned research tasks. The following constraints

define the limitations on the computational capability of the model:

1. Maximum Permissible Number of Joints (DOF): Six
2. Manipulator Type: Open Ended Kinematic Chains

3. Joint Types Permissible: Revolute (Rotational) and Prismatic (Translational)



CHAPTER 2
LITERATURE REVIEW

Significant research has been dedicated in the past towards the modelling of industrial
manipulators. Majority of this research focuses on development and optimization of
manipulator design and functionality in an industrial setting. A manipulator, because of
its kinematic structure and joint configuration, poses inherent challenges such as
kinematic singularities, complex inverse kinematic solution(s), trajectory planning, and
travel path validation. Addressing such issues is therefore important for enhancing the
robustness and accuracy of industrial manipulators. This chapter focuses on recent and
notable developments in the field of industrial robotics which include manipulator
modelling, traditional and non-conventional approaches to tackling the inverse

kinematics problem, manipulator workspace generation, and singularity avoidance.

2.1 Manipulator Kinematics and Modelling Techniques

Yoshikawa [7] has proposed a measure of manipulability of robotic mechanisms for
positioning and orienting end-effectors. Optimal postures and working positions have
subsequently been defined for different manipulators from the viewpoint of its
manipulability. The best postures and designs have been described as bearing
resemblance to the human arms and fingers. The research paper provides an insight into
the design and functionality of orthogonal, polar and cylindrical coordinate manipulators.
It however does not focus on techniques to avoid non-optimal poses. Elkady,
Mohammed, and Mohammed [8] have extended Yoshikawa’s work to develop a new
algorithm for measuring and optimizing the manipulability index of industrial
manipulators. The technique is tested on PUMA 560 robot where a visual representation
of the entire workspace is provided as a subset of varying manipulability. The research is
significant for determining the most dexterous regions in a manipulator workspace.
Pamanes and Zeghloul [9] have presented a technique for the optimal placement of
robotic manipulators for a prescribed task using multiple kinematic criteria. An
optimization problem is presented for this placement that takes into account several

constraints such as upper and lower bounds, points in a path taken, number of joints etc.



The paper however does not address any collision avoidance techniques in the

manipulator environment.

Work conducted by Djuric, Saidi, and ElMaraghy [10] demonstrates a multi-DOF
kinematic structure consisting of both rotational and translational joints. A novelty
methodology called n-GKM is presented by the author(s) which helps in developing an n-
DOF global kinematic chain model. The research paper considers all possible kinematic
structures in a 3 dimensional space, which is further divided into eight subspace and three
planes. The paper provides the readers with a complete description of the D-H parameters
and a visual representation of the multi DOF joints suitable for both robotic arm and
multi axis CNC machines. The evaluation of this model is shown using all possible
combinations of 2DOF kinematic structures i.e. RR, TT, RT, and TR. Computation of
both forward and inverse kinematics for the n-GKM methodology has been demonstrated

using the automatic separation method (ASM).

Laura and Khosla [11] have presented a Reconfigurable Modular Manipulator
Systems (RMMS) method on automatically generating the kinematics of reconfigurable
manipulators. The paper presents algorithm(s) for computation of forward and inverse
kinematics of reconfiguring manipulators independent of the number, joint type, and
shape of modules present. The model developed is applicable to redundant systems as
well. The paper however does not focus on development of a reconfiguring structure
using the proposed algorithm. Paredis and Khosla [12] have addressed the issue of
determining the optimal manipulator configuration for any specific task using RMMS.
The research addresses the kinematic design problem by developing an analytical
solution for the inverse kinematics problem for a 2 DOF manipulator. Global
optimization procedure is used to minimize the penalty of a manipulator design thereby
resulting in an optimal kinematic configuration. The work presented however is only

applicable to non-redundant manipulators.

Djuric and Urbanic [13] have also proposed a reconfigurable robot-based system for
material deposition applications involving 2 "2 axis and 2 "2 axis + 2 axis tool paths.
Various multi-action tool motions have been considered for development of four different

robot based platforms. Reconfigurable parameters, K; and K>, have been introduced in
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modelling of the 2 DOF robot platform that help control the positive direction of each
joint. The research paper provides an insight into the 2DOF manipulator response using
the reconfigurable controller and factor(s) while suggesting investigation into higher
DOF models. Several other research projects have also utilized the kinematic modelling
methodology for multi-axis machine tools and its CNC applications. Xu et al. [14] have
also presented a novel technique for modelling five axis machine tools using a
methodology similar to the one used for modelling articulated robots using D-H
parameters. This modelling technique is applied to CNC machines as the machine
structure is treated as a single kinematic chain. A combination of two separate kinematic
chains are used to model a single cutter chain which is considered as the end-effector for
this structure. Since the machined surface depends on the path of the cutter (end-effector),
trajectory planning is considered crucial for improving the process efficiency. Such
modelling techniques allow for a unified structure that provides an in-depth exploration
into the flexibility of five-axis machine tools. Work conducted by Du, Zhang, and Hong
[15] provides a similar modelling technique for a three axis NC machine tool. The
kinematic modelling is used to assess the geometric errors of CNC machine tools using a
cross grid encoder. The error model encompasses the rotational and translational error
component using an error transformation matrix of the machine tool. This method has
been proven superior to traditional error component identification methods. The authors
suggest using the novel technique for CMM’s and other higher axis machine tools as

well.

Lee and ElMaraghy [16] have emphasized the use of CAD based offline
programming and analysis systems for robotic manipulators. ROBOSIM, a system
developed for this research, determines the end-effector path, velocity calculations and
singularity checks. Simulation of manipulator motion on computer workstations to tune
any errors in the trajectory before real time implementation is proposed. Several
advantages of offline programing have been put forth such as elimination of the need to
have direct access to a robot, decreased production downtime, increase productivity,
storage of data for posterity, and development of different task strategies. Disadvantages
to offline programming include matching the simulation model to real time work

environment, and the tedious task of creating a graphical CAD database.
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2.2 Manipulator Workspace

Ceccarelli and Vinciguerra [17] have analyzed the workspace of a general open
kinematic chain with four rotational joints by examining the effect of link parameters on
its characteristics with the use of cross-sections. The authors emphasized the fact that
three characteristics are important in evaluation of workspace, namely, the cross section,
the volume and the existence of holes and voids. An algebraic formulation was developed
for the robot’s workspace from the envelop generation geometry. The workspace of the
manipulator was theoretically calculated as the union of all toroidal surface workspaces
by rotation of joint angles along each z-axis with respect to its base frame. The
investigation found that the workspace of the manipulator was mostly affected by the
ratio of the link lengths because of their ability to present voids and holes, and its twist
angles. This technique is beneficial in analysis and synthesis of manipulators with
rotational joints. Ottaviano, Husty and Ceccarelli [18] have presented a novel analysis on
the workspace of industrial manipulators based on the level set reconstruction of their
workspace. The method allows for determining the topologies of workspace of different
manipulators based on their kinematic properties. Various numerical examples of
orthogonal, ortho-parallel etc. manipulator types have been presented with singularities
for surface S. The singularities of graph S are presented as singular configurations of the

manipulator where it experiences more than normal singularity.

Liang and Ceccarelli [19] have also provided a parametric study and a classification
procedure on all possible topologies of the feasible workspace of a general two revolute
manipulator. The authors have selected four arbitrary boundary points on the torus
workspace for generating design equations. However the method for selection of these
arbitrary points for a feasible workspace is presented as an open ended problem. A
classification approach was applied to compute all topologies of feasible workspace.
Three different sub-regions for these topologies are then identified and analyzed to
characterize workspace capabilities of 2R manipulators. Malek et al. [20] have presented
an analytical technique for determining the boundary to a serial manipulator’s workspace
and any voids, if present, in that workspace. Voids in a workspace are identified by
closed boundaries for which the acceleration form provides output normal to the outside

of the enclosed surrounding space. A quadratic form has been devised for analyzing these
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voids that are based on the acceleration analyses of the end-effector over singular
surfaces. Such voids are identified as non-reachable spaces by a manipulator’s end-
effector. Voids and boundary conditions are identified in 3-D space for a 4R manipulator
to demonstrate the robustness of the developed technique. The technique promises an

effective method for analyzing workspace of serial manipulators.

A similar technique has been presented by Bohigas et al. [21] where a branch and
prune technique isolates a set of singularities. These singularities are classified based on
their correspondence to motion impediments in the manipulator workspace. The
technique distinctly identifies all singularities and workspace topologies with any barriers
present. The method is advantageous over other techniques because of its ability to
converge higher dimensional boundary points without prior knowledge of the
manipulator workspace. Goyal and Sethi [22] have determined the workspace of an RV-
M1 Mitsubishi manipulator modelled using Denavit-Hartenberg parameters through use
of MATLAB’s robotics toolbox. The paper emphasizes that the workspace of a
manipulator impacts its design, placement, and dexterity, and explores the method of
finding singularity sets using the Jacobian rank deficiency conditions. These singularity
sets when substituted in wrist accessible output set(s) of the robot, helped in
determination of the workspace boundary. Examples of singularity sets at different
configurations of the above mentioned manipulators are provided along with a visual

representation in MATLAB.

Djuric et al. [23] have presented a technique to develop the functional and reachable
workspace of serial 6 DOF manipulators for determining the effective travel path regions.
The paper puts forth advantages of workspace visualization such as the ability to
comprehensively assess manipulator configurations at design and redesign stages etc. A
work window algorithm for the FANUC 6R family is provided along with singularity
visualization at certain manipulator configuration(s). The research paper provides an
evaluation of reduction in the work window of different manipulators at specific
singularity joint configurations. Work done by Urbanic and Gudla [24] presents an
estimation of the functional workspace of a manipulator using kinematic modelling and

shape analyses. The outer boundary curves for an ABB IRB-140 manipulator are assessed
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for functional workspace of a desired end-effector and tool orientation. Advantages of
this technique include an understanding of the joint reach feasibility prior to on-site
setups in a manufacturing environment. Djuric and Urbanic [25] have presented a similar
technique for building reconfigurable alternatives and assessing the systems design
through the use of functional workspace of manipulators. Since the work envelop does
not allow for the operational feasibility of a manipulator, work window is introduced as a
parameter that allows the kinematic structure to function under pre-defined conditions.
The work window is graphically mapped at different tool orientations to compare the

feasibility of operations for multiple kinematic chains in a manufacturing cell.

Alameldin et al. [26] have presented another technique for computation of 3D
workspace of redundant manipulators. An algorithm is proposed as a hybrid between
direct manipulator kinematics and screw theory. Screw theory is incorporated because of
its ability to compute workspace points in pre-specified directions and no requirement for
edge detection of boundary workspace unlike direct kinematics. The disadvantages of
using screw theory presented are its exponential computation cost per point in the
manipulator workspace, and the inability to identify holes and voids. Zein, Wenger, and
Chablat [27] have presented an exhaustive study on the workspace topologies of
orthogonal manipulators that have at least one D-H parameter as zero. Manipulators are
classified in categories based on criteria such as size of feasible workspace subsets,
existence and size of voids etc. 21 different categories are identified for 3R manipulators.
The research is useful in analyzing the functional workspace of manipulators and
identification of classes based on industrial needs. The research however is not practical
for manipulators with higher DOF and for manipulators involving a combination of both

translational and rotational joints.

Most workspace models presented in this section do not take into account the
reconfigurability in design that may be introduced while analyzing the manipulator
workspace. All workspace model(s) are based on pre-defined manipulator parameters and
structural configurations. A need is therefore recognized for development of a tool that
can generate and identify feasible workspace topologies for varying DOF open kinematic

chains while accommodating combinations of different joint types.
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2.3 Manipulator Singularity and Avoidance Techniques

Kim et al. [28] have presented a novel technique called the Task Reconstruction
method that provides a solution to kinematic and algorithmic singularities. The method
not only provides a singularity free trajectory but also guarantees task performance. The
proposed method involves three tuning parameters in the reconstructed form of the
desired task that allows for the formulation of a path through unknown singularities.
Although, acceptable performance is achieved in cases involving only maximum of two
subtasks. Another method of interest is presented by Liu and Zhang [29], where a
damping reciprocal restrains or controls the joint velocities of a PUMA type of robot near
singular points. The authors have demonstrated a technique for decomposing the inverse
kinematics problem into subgroups with a trade-off in accuracy of velocity components
in partial directions of the end-effector. According to this optimized method, the
algorithm not only controls the sudden extreme changes in velocities near singular
regions, it also helps to reduce the tracking of the end-effector. This method is highly
beneficial in reducing the anomalies associated with manipulator singular positions.
Zhunqing, Hairong, and Yuefa [30] have presented an algorithm for singularity control
where line varieties and reciprocal screw theories are used to produce a full rank Jacobian
matrix. The full rank allows singularity free motions when mapping from task space to
joint space of a manipulator. Simulation results are provided for a PUMA robot
demonstrating smooth velocity through singular regions. Similar analysis has been
conducted by Fang and Lung-Wen [31] , and Hu et al. [32] where linearly dependent
rows and columns of the manipulator Jacobian are isolated to allow feasible mapping

between Cartesian and task space.

Pai and Leu [33] have presented a technique for symbolic computation and study of
singularities for decoupled manipulators. An algebraic condition for genericity for three
joint robots is presented using Jacobian determinants. The proposed method helps in
mapping singularities as smooth manifolds in the joint space of the manipulator. A
characterization of orientation singularities is provided in this paper for any arbitrary
number of joints. It is observed that the robot is only generic if no adjacent joints of the
manipulator are parallel. Djuric et al. [34] have provided a visual representation of the

singularity zones through manipulation of fundamental kinematic equations. The
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proposed technique helps in understanding singularity conditions for robot work cells and
aids in travel path generation and manipulator layouts. Decoupling of Jacobian based on
wrist and forearm joints is used to generate a loci of singular points for the FANUC
family of manipulators. Also, the effect of link lengths on the topology of singular space
is presented. This method is highly beneficial in analyzing the mechanical structure of a
manipulator as means of singularity reduction. Huo and Baron [35] have developed a
redundancy-resolution (RR) algorithm for optimizing the joint space trajectory of 6R arc
welding manipulators. The authors have proposed a decomposition in the required
instantaneous twist of a welding electrode in two orthogonal components. The symmetry
axis of the electrode allows the two components to lie in either task space or redundant
space. This technique efficiently optimizes the joint space trajectory and can be extended

to tasks that require less than 6 6 DOF in their tool frame.

Stanisic and Duta [36] have provide a novel design of symmetrically actuated double
pointing systems (SADPS) for eliminating singularities from manipulator wrists. The
design includes two serially connected spherical pointing systems with a common center.
The constraint functions of the developed system reduces the independent DOF to two
thereby resulting in a symmetry of motion for the corresponding links in each pointing
system of the double system structure. Superior dexterity of the SADOS system is also
observed with a two or three DOF singularity and interference free manipulator wrist.
Cheng et al. [37] have provided a technique (SICQP) to minimize the tracking errors in
the singularity direction for a PUMA 560 robot. The method decomposes the workspace
of the manipulator in singular and non-singular directions to provide extra redundancy to
achievable directions. This method is effective and efficient in solving the inverse

kinematic problem but requires decoupling of three-dimensional sub-problems.

Unlike traditional methods that depend on analysis of the Jacobian for computation
of kinematic singularities, Ahmad and Luo [38] have considered inverse kinematic
relationships to form triangular equations that reveal the structural properties of the
manipulator and the Cartesian configurations of the end-effector where the manipulator is
singular. This technique allows for computation of singularity states in terms of Cartesian

parameters of the end-effector even when the joint offset angles are not zero or ninety
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degrees. The method helps in trajectory verification of non-singular regions without the
need for computing an inverse kinematics solution. It also helps in coordination of
redundant robots. Analysis of less than twelve DOF redundant arms is also possible using
this technique by splitting an arm into two sets of six DOF and/or less that six DOF
manipulators. A higher accuracy of motion is observed with use of this method and the
results are useful in trajectory verification and redundancy coordination in Cartesian
space. Chiaverini and Egeland [39] have also presented a technique to handle the problem
associated with singularities in six-joint manipulators. This techniques allows for
successful removal of undesired commanded motions and presents an exact inverse
kinematic solution for the remainder part which can be used for both off-line planning
and real-time control. The authors have emphasized the problem in development of an
algorithm apart from the traditional use of inverse of the Jacobian that supports both
robustness and high accuracy of the manipulator. The method first determines degenerate
directions corresponding to the singularities, after which a marginal window is defined
around that singular region where the manipulator is treated as being singular. An inverse
kinematic solution is then found for the remainder space that has minimum error and
norm in end-effector coordinates and joint space respectively. Interpolation technique is
finally used in the previously determined degenerate directions for a continual solution to
the manipulator motion. This method demonstrated promising results for a 3R industrial
manipulator with a trajectory through the wrist singularity and can be successfully used

for similar manipulator configurations.

Work done by Yigit, Burghartm & Woern [40] demonstrates the development of
alternate configurations to avoid singularities of a human like robotic arm. Yigit et al.
solved the inverse kinematic problem by using a closed form solution and attempted to
develop configurations that would avoid singularities. However, this approach resulted in
loss of the reachable workspace of the robotic arm. The kinematic singularity was
avoided by use of a combination of restriction and elongation of the arm segments to

compensate for the loss in workspace.

Majority of the work provided in singularity analysis and avoidance techniques

involves either manipulation of the Jacobian, restriction of joint motion or development
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of new geometric method(s) to ensure smooth end-effector velocity through singular
regions. A major drawback to these techniques is the complexity in modelling and much
need priori knowledge of theoretical concepts. A need is therefore recognized for a
simplified algorithm that can provide equally promising results but in fraction of the
computation time. Also, the discussed techniques require some kind of manipulation with
the physical geometry and/or joint configuration of the robots being studied. A solution to
introducing such variation to a manipulator design is, however, not presented with any of

the theoretical techniques.

2.4 Inverse Kinematics using Artificial Neural Networks

Prior research has proven ANNs as an important tool in robot path planning and
control by successfully providing a solution to the inverse kinematics problem. The
network accuracy using ANNs, however, has been a common problem encountered by
various researchers in determining a solution. Kozakiewicz, Ogiso, and Miyake [41] have
proposed a partitioned neural network architecture to improve the accuracy for an inverse
kinematic problem. The partitioned layer, also referred to as the pre-processing layer,
helped to divide the entire network into individual smaller networks where the weights of
each partitioned network could be attenuated by concentrating on only one output. The
network achieved high prediction accuracy for position joints but exhibited higher errors
for orientation joints. Further work was suggested to obtain accurate learning and
prediction results for the entire range of joints, especially the orientation joints. Lou and
Brunn [42] have introduced an iterative approach for computing the inverse kinematic
problem using ANNs with an offset error compensation method to improve the accuracy
of the derived solution. The methodology was implemented since an offset error always
existed when taking the iterative approach which had different values for each required
end-effector position. The error compensation improved the accuracy of the network by
reducing the average error from 4 to 0.001 percent for a 2 DOF manipulator. The work
was extended in a two stage process to 6 DOF manipulators because of computing
limitations. Ahmad and Guez [43] also used an iterative approach using ANNs to find the
final predicted solution within a specified tolerance. The iterative process provided a two-
fold increase in the computational efficiency of a 3 DOF planar robot and the PUMA 560

robot.
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Yildirim and Eski [44] have presented a feed-forward neural network architecture
with five different learning techniques namely, Online Back Propagation (OBP), Online
Back Propagation Random (OBPR), Batch Back Propagation (BBP), Delta Bar Delta
(DBD), and Quick Propagation (QP). These learning techniques were used to predict pre-
defined target kinematic parameters of a PUMA 560 robot. It was determined from this
study that QP was the best learning technique to update network weights. Here, the
output(s) of the network exactly matched the target values with a root mean square
(RMS) error of 0.21345. The drawback to this technique was the fact that robot(s)
without wrist offsets lack rotational capabilities and did not have a closed form inverse
kinematic solution. Therefore, this technique could only be implemented as a single-stage

network.

Koker et al. [45] have also validated neural network as a tool for computing the
inverse kinematics of a three joint robots. The developed network was able to predict the
joint angles to its corresponding Cartesian (X,Y,Z) co-ordinates within an acceptable
error range. Hasan et al. [46] have addressed the problem of kinematic control through
singularity zone(s) by development of an ANN model that learns the characteristic of the
robot system rather than specifying an explicit system model. The discussed model has
Cartesian co-ordinates (X,Y,Z) of the end-effector, orientation angles (R,P,Y), and linear
velocity of a 6 DOF robot as network inputs, and angular position and velocity as the
network outputs. The maximum error percentages for the experimental data set
introduced to this network were determined to be 6.72% for the Z-coordinate and 5.79%
for the Y-orientation. This network model can be implemented for any serial manipulator
with a reasonable accuracy. However, the paper did not explore different network

topologies to further investigate the error reduction in the network.

Bingul, Ertunc, and Oysu [47] have explored three different end-effector orientation
types, namely, homogeneous transformation matrix, Euler angles, and equivalent angle
axis for training the ANN. The method is validated on a 6R manipulator with wrist offset.
The results are satisfactory with errors as high as 10 degrees of data resolution. Feng,
Yao-nan, and Yi-min [48] have presented a new algorithm called extreme learning

machine (ELM) that randomly chooses input weights and analytically determines the

17



output weights in a single hidden layer feed-forward ANN. The proposed method
provides good generalization performance, fast learning, and improved precision in

development of an inverse kinematic solution.

ANNs provide a quicker response, and have proven to be useful for multiple
satisfactory solution(s) to the inverse kinematics problem with real-time adaptive control
[45] [46]. An inherent challenge with this technique has been the attempts in increasing
the accuracy of the developed network. In the past, kinematic data from manipulators has
demonstrated high variation and lower fitting rates when processed through ANNS.
Moreover, every ANN architecture is tailored towards a specific configuration or class of
robots. For example, a specific ANN model might only be able to provide an acceptable
level of accuracy for non-wrist partitioned manipulators. An approach thus needs to be
developed to tailor the kinematic data of a manipulator along with the ANN architecture
for a universally acceptable model. Also, limited research exists that utilize ANNs as a
technique for coping with kinematic singularities by either providing a robust inverse
kinematic solution or by developing a path planning model for avoiding singularity

Zones.
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CHAPTER 3
INDUSTRIAL ROBOTICS

Any electro-mechanical device operating under computer control with some degree of
autonomy can generally be referred to as a robot. An industrial robot, however, as defined
by International Organization for Standardization (ISO 8373) is “An automatically
controlled, reprogrammable, multipurpose manipulator programmable in three or more
axes, which may be either fixed in place or mobile for use in industrial automation
applications” [49]. Industrial robots used in the industry today have evolved from a union
of teleoperators and Computer Numerical Control (CNC) machines [5]. They serve their
purpose by substituting as labour for tasks that are impractical, undesirable, and repetitive
for humans. The need for these industrial robots came into being from capital-intensive,
large volume, and high precision manufacturing required in the automotive, and electrical
goods industries [50]. According to 2012 statistics by the International Federation of
Robotics (IRF), the worldwide market value for industrial robot systems is approximately
$26 billion with a high number of robot density (industrial robots per 10,000 persons
employed) in countries such as Korea (396), Japan (332), Canada (103) etc. [51].

Robots in the industry today have evolved since then to handle more complex tasks
and adapt to different applications such as assembly, welding, machining, etc. that require
high endurance, speed, and precision. The uses of industrial robots based on the type of
industry and their applications are presented in Figure 3 and Figure 4. Handling of
materials and process along with welding and soldering operations constitute the majority
of applications of robots in the industry today. The physical structure and attributes of
these industrial robots greatly vary on the nature of tasks they are required to perform.
Industrial robot performance has significantly increased over the past few decades.
Robots can now be controlled with an acceptable level of safety standards and
performance which allows for human-robot collaboration in the same workplace [50].
This symbiosis has expanded the scope of industrial robots to other application areas and
industries. Industrial robots are thus being required to have some level of flexibility and

reconfigurability for such integration.
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Figure 3: Use of Industrial Robots by Industry [52]
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Figure 4: Use of Industrial Robots by Application [52]

20



3.1 Hardware and Software
Most industrial robots (manipulators) include some basic hardware and software
components as seen in Figure 5. These components constitute the electro-mechanical

framework, and the computer control or ‘Artificial Intelligence’ of the robot.

The Hardware components for a common industrial robotic system can be divided into

the following five categories:

1. Robotic Arm: The robot arm constitutes the mechanical part of the robot and
consists of joints, links, motors (actuators), sensor, shafts, gears, end-effector(s)
etc.

2. Teach Pendant: The teach pendant is a remote device used to operate the robot

manually. It serves as a user input device to feed commands to the robot.

3. Robot Controller: The robot controller constitutes all control circuits consisting of

microprocessors, motors, sensor, electronics, interface connectors and power units
for the robot arm to function.

4. Interface Computer: The interface computer is the program storage unit of the

manipulator. It serves as a user interface between the operator and the controller.

5. System Software: The systems software constitutes the programmed data stored
on the robot’s memory chips. The different codes and functions here help convert
sensor information into actuator commands thus providing the robot with

‘artificial intelligence’. [53]

— Robot Arm
—  Teach Pendant
— Hardware —
) — Robot Controller
O
O
(@) — Interface Computer
o
— Software System Software

Figure 5: Industrial Robot Components
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3.2 Symbolic Representation of Joints and Links

A robot manipulator’s physical setup consists of sequence of links connected by
different joints that form a kinematic chain. Combination of various joint types such as
revolute, prismatic, twisting, ball and socket etc. are often used to interconnect links in

industrial manipulators. This research addresses two commonly used joints, namely:

1. Revolute (Rotational): A revolute joint provides relative rotation about a single

axis between two links. A revolute or rotational joint can be represented by the
symbol ‘R’, with a joint variable ‘6’. The joint variable for a revolute joint
determines the angular range or motion for that joint. Figure 6 demonstrates a
kinematic chain with three rotational joints.

2. Prismatic (Translational): A prismatic joint provides relative translation along a

single axis between two links. A prismatic or translational joint can be represented
by the symbol ‘T’, with a joint variable ‘d’. The joint variable for a prismatic joint
determines the linear range of motion for that joint. Figure 7 demonstrates a

kinematic chain with three translational joints.

—x

Figure 6: Rotational Joint(s) Figure 7: Translational Joint(s)

In building the reconfigurable model for this research, both rotational joint(s) (R) and
translational joint(s) (T) are represented using a common joint variable, ‘g’. A common

joint variable (Equation 1) helps the model to adapt to the reconfiguring structure of a
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manipulator without the need for changing subsequent parameters and equations. It also
aids in the manipulation of the Jacobian matrix and development of manipulator
workspace and singularity space. The use of this variable will be demonstrated

subsequent chapters.

_ . 0; forallrotational joints
9= { d; for all translational joints

(1)

3.3 Manipulator Classification

For an understanding of the manipulator workspace and kinematic singularities, it is
important to first recognize the basic manipulator types used in the industry today. Nearly
all industrial manipulators in use have six or less DOF (< six independent joints). Of
these joints, the first three joints form the arm of the robot and the latter the wrist. This is
because a minimum of three joints are required to position (in X,Y,Z) the end-effector of
a manipulator. Industrial manipulators are broadly classified in five different categories

based on their forearm’s mechanical structure, namely;

1. Linear (Cartesian and Gantry) (TTT): Linear manipulators are the most basic type

of manipulators with three translational joints. Each joint allows a translation in
one of the X, Y, or Z axis to position the end-effector. Linear manipulators are
majorly used for pick and place, and handling applications.

2. Articulated (RRR): Articulated manipulators are the most common type of

manipulators used in the industry today since they provide the greatest relative
flexibility, and increased dexterity in a compact space. These robots have three
rotational joints and are majorly used for operations such as welding, painting,
assembly etc.

3. Spherical or Polar (RRT): Spherical or Polar manipulators derive their name from

the fact that their axes form the spherical or polar coordinate system. These robots
have two initial rotational joints and a third translational joint. Major applications
of these robots are in the welding and casting industry.

4. SCARA (RRT): Selective Compliance Articulated Robot Arm (SCARA)

manipulators are robots with two parallel rotational joints and a third translational
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joint. This allows a robot to provide compliance in a plane. These robots are

majorly used for pick and place work.

5. Cylindrical (RTT): Cylindrical manipulators derive their name from the fact that
their axes form the cylindrical coordinate system. These robots have an initial
rotational joint and two subsequent translational joints. Major applications of

these robots are in the assembly, welding and casting industry.

A basic kinematic structure of the aforementioned manipulators is provided in Figure 8

below:

| H
g

- ar

Cylindrical Coordinate Robot

Gantry Robot SCARA Robot

Figure 8: Kinematic Structures of Basic Manipulator Types [54]
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3.4 Manipulator End-Effector Types and Application

As defined by the United States Occupational Safety and Health Administration
(OSHA), a manipulator’s end-effector is “An accessory device or tool specifically
designed for attachment to the robot wrist or tool mounting plate to enable the robot to
perform its intended task. (Examples may include gripper, spot-weld gun, arc-weld gun,

spray- paint gun, or any other application tools.) [54].”

The forearm (first 3 joints) of the robot is responsible for positioning the end-effector
while the wrist of the robot is responsible for orienting the end-effector. Not all industrial
robots however, have an arm and wrist configuration. Many manipulator designs exist or
can be generated with no wrist configuration as seen in Case study 10.2 in Chapter 10.
The DOF for orienting an end-effector are determined by the DOF of the wrist [5]. A

wrist configuration may have up to 3 DOF, namely:

1. Yaw: A counter-clockwise rotation about the z-axis.
2. Pitch: A counter-clockwise rotation about the y-axis.

3. Roll: A counter-clockwise rotation about the x-axis [55].

Figure 9 demonstrates a commonly used spherical wrist configuration. The spherical

wrist effectively aids in decoupling the position and orientation of an end-effector [5].

il ;:9 ;% LA
e .EROBOT‘Q

[ ed8@

Figure 9: Spherical Wrist Configuration Figure 10: Different Gripper End-Effectors [56]
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The end-effector is the most critical part of the robot that performs the robot’s
intended function. A considerable amount of engineering work is therefore dedicated to
the design and build of end-effectors. The mechanical structure of the end-effector
depends on the type of application it is used for. End-effectors vary from simple open and
close grippers used in material handling to complex tools for machining and performing

tasks. Figure 10 above demonstrates three different types of gripper type end-effectors.
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CHAPTER 4
MATHEMATICAL CONCEPTS

Understanding of some key mathematical concepts such as Degrees of Freedom
(DOF), representation of position and orientation in Cartesian space, frame
transformations, etc. is important before modelling of open-ended kinematic chains. The

following sections in this chapter cover some of these important concepts.

4.1 Degrees of Freedom (DOF)

The number of Degrees of Freedom for any industrial manipulator is the number of
axes of movement for that manipulator. This movement can be either a rotation about an
axis if the joint is rotational (R), or it can be a translation along an axis if the joint is
translational (T). It is however important to realize that the number of joints may not
always equal to the Degrees of Freedom for a manipulator. For example, two rotational
joints in a manipulator might rotate about a single axis. This cancels out one additional
Degree of Freedom which would have been possible had both the joints not been rotating

about the same axis.

The number of Degrees of Freedom required by a manipulator is determined by task
required of the manipulator. As such, six Degrees of Freedom are required to locate any
object in 3-D space. Three of these DOF represent the position of the object while the rest
determine the orientation of the object in space. Therefore, depending on the positioning
and orientation of a part, appropriate number of DOF are built into the manipulator for
easier control. Manipulators with more than six Degrees of Freedom are referred to as
redundant manipulators. These manipulators have additional DOF for increased mobility
and flexibility [57]. An example of a redundant robot is the Canadarm. Figure 11

demonstrates an object defined using six degrees of freedom in 3-D space.
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Figure 11: DOF of an Object in 3-D Space

4.2 Representation of Position and Orientation

Kinematic modelling of manipulators requires all links to be considered as rigid
bodies. Coordinated frames are then rigidly (fixed location) attached as reference to these
rigid bodies. These coordinate frames help in determining the position and orientation of
any one frame with respect to another frame by means of frame transformations in 3-D

space.

F1
Object Frame

Fo
Base Frame

Figure 12: Object Frame with respect to Base Frame

For example, in Figure 12, the position (P matrix) of any object (Object Frame Fi) in

space with respect to another object (Base Frame Fy) is defined using the X, Y, and Z
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Cartesian coordinates as presented in Equation 2. Similarly, orientation (rotation matrix,
R) of any Object Frame F; with respect to Base Frame Foin 3-D space is defined using
three rotational angles (a, P, y) around each reference axis (Figure 11). Here, a is the
rotation about x-axis,  is the rotation about y-axis, and y is the rotation about z-axis.
These rotational angles collectively represent nine rotational elements as presented in

Equation 3 [57].

Px ]
P = |py
Pz ()
X1-X0 Y1-Xo Z1-Xo] 1 Tiz T3
R?= X1:Yo Y1-Yo Z1-Yo| = [7”21 T22 7”23] 3)
X1-Z20 Y1-Z0 Z1-Zol 31 T32 7133

The position and orientation, collectively called the ‘pose’, can thus be defined using 9
rotational elements and 3 position elements. These elements will subsequently be used as

inputs for ANNSs in determining an Inverse Kinematics solution.

4.3 Frame Transformation

In kinematic modelling, it is important to have an understanding of the position and
orientation of the manipulator’s end-effector with respect to the base of the manipulator.
This kind of modelling requires the computation of position and orientation of a point in
3-D space from a previously known position and orientation of that point. For example,
consider a point ‘W’ in Figure 13. The coordinate vector representing point W with

respect to Fi is given by Equation 4 as:
a,
q' = H (4)

It is then required to determine the coordinate vector that represents the point W with

respect to Fo given by Equation 5.
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Qo
o= i ©)
Co
From Figure 13, and Equation 5 the resultant vector v is determined in Equation 6.

v=p+u (6)

Substituting the vectors by their position are orientation, the position and orientation of v

is obtained in Equation 7

11 Tz T3] [A1 Px
v=q%= |21 T2 Ta3||bi|+ |Py|= R{q*+ P? (7)
31 T32 T33] LCq |

dv.

X1

F1
Object Frame

Fo
Base Frame

Figure 13: Frame Transformation

It can therefore be conclude that the position and orientation of a point W with respect to

Fo, can be defined by a simple frame transformation as represented in Equation 8.

q° =T q" 8)

where the transpose matrix T;, transforms coordinate vectors from frame F; to Fo[57].
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4.4 Roll, Pitch and Yaw (RPY) Angles
Another way of representing the rotation matrix R, is through the Roll, Pitch and Yaw
(RPY) angles represented by R(y, B, a). These angles define the rotation of an object

(Figure 11) through successive canonical rotations about the coordinate axes. Here,

1. Roll: Roll is counter-clockwise rotation of o about the x-axis.
2. Pitch: Pitch is counter-clockwise rotation of B about the y-axis.

3. Yaw: Yaw is a counter-clockwise rotation of y about the z-axis.

It is important to note that these rotations are performed in the order of roll given by
Rx(a), then pitch given by Ry(p), and finally yaw given by R.(y). The final rotation matrix
however, is obtained by multiplying the angles in the order of yaw, pitch, and roll. This is
because of the backward sequence of multiplication in frame transforms. The individual

rotations and the final rotation matrix are provided in Equations 9, 10, 11, and 12.
cos(y) —sin(y) O
R,(y) = [Sin(y) cos(y) 0] )
0 0 1

[ cos(B) 0 sin(PB)]
Ry(B) = 0 1 0 (10)
[—sin(B) 0 cos(B)l

1 1 0
Ry(a) = |1 cos(a) —sin(a) (11)
[0 sin(a) cos(a) |

R =R(y, B, o) = Rz(Y) Ry(B) -Rx(a) (12)

The elements of this rotation matrix, R can then be manipulated to calculate the roll pitch
and yaw angles. Table 1 below provides a solution to computing RPY angles from the

rotation matrix, R:
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Table 1: Computing RPY Angles from Rotation Matrix

For R(3,1) # +1 For R(3,1) =-1 IfR(3,1)=1

R(3,2)
o atan2 (;(g(,g ) atan2 <£8:§; ) +vy atan2 <—_RR(§£) ) +
cos(fB)
—R(3,1)

+1 - (R(3,1))? )

R(2,1)
cos(fB)
R(1,1)
cos(fB)

B | atan2 (

pi/2 -pi/2

Y atan2 ( ) Arbitrary Arbitrary

For the purpose of this research, the orientation of the end-effector was defined
using both RPY angles and through 9 individual rotational elements of the rotation
matrix, R. However, through the development of the reconfigurable model, it was
realized that superior results were achieved for ANNs when using elements of the
rotation matrix, R (Equation 3), in computation of an inverse kinematics solution. The
RPY angles provide a consolidated overview of an objects orientation with respect to a
coordinate frame and are easier to document. For this reason, the orientation of an end-

effector is usually represented using its RPY angles.
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CHAPTER 5
KINEMATIC MODELLING OF MANIPULATORS

This research addresses the kinematic modelling of open ended kinematic chains that
are widely used in the industry today. As previously mentioned, the kinematic modelling
of manipulators requires frame transformation of coordinate frames attached to each link
of the manipulator. These frame transformations help us to determine the forward
kinematic solution for a manipulator. A forward kinematics solution helps determine the
final position and orientation of the manipulator end-effector with its base for any
possible combination of the manipulator’s joint variable(s) (¢). The forward kinematics
solution can then be manipulated geometrically, analytically, or iteratively to derive an
inverse kinematic solution. An inverse kinematic solution helps determine the values of
all joint variable that would produce a required position and orientation of the

manipulator’s end-effector.

Any manipulator with n joints, has exactly n+/ links, since each joint connects two
links of a manipulator. Therefore, any joint 7, when actuated moves the link i, where the
location of joint i is determined by link i-/ [5]. All joint variables, as previously
mentioned are represented by ‘q’. Thus any joint g; can assume the value of 6;if the joint

is rotational, or d; if the joint is translational.

As standard convention, a Cartesian coordinate frame Fo is rigidly attached to the
base (i.e. link i-/) of the manipulator. All subsequent frame transformations for the
manipulator are performed by referencing this frame Fo to other coordinate frames.
Cartesian coordinate frames are attached to each link of a robot, starting with the base
frame all the way to the end-effector. The position and orientation of each frame can be
expressed through the homogeneous transformation matrices. It is important to note that
all frames are rigidly attached to each link. This assumption is made so that the position
and orientation of a manipulator’s end-effector can be determined with respect to any
particular frame of interest, and is always constant irrespective of the configuration of the
manipulator. [5] For example, a SCARA (RRT) robot (Figure 14) is kinematically
modelled in Figure 15.
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Figure 14: SCARA Robot [58]

150
100.,

Z({mm)

Figure 15: Kinematic Modelling of SCARA Robot

5.1 Denavit-Hartenberg (D-H) Parameters
Denavit-Hartenberg (D-H) parameters are set of standardized rules that are used in

defining Cartesian coordinate frames attached to the manipulator links. These parameters

help define position and orientation of one frame with respect to its preceding frame.

34



Ly
Yo

Zy

Yo

Figure 16: D-H Parameters. Adapted from [53]

The D-H parameters for defining the pose of any coordinate frame i (F1) with respect to

its preceding frame i-/ (Fo) are comprised of the following four parameters (see Figure
16):

1. Link Offset (d;): It is the distance measured along Zo axis to the point of
intersection of X axis and Zo axis.

2. Link Angle (6;): It is the angle between Xy axis and X axis measured in a plane
normal to Zo.

3. Link Length (a;): It is the distance between Zy axis and Z; axis measured along
X1 axis.

4. Link Twist (a;): It is the angle between Zo axis and Z; axis measured in a plane

normal to X; axis [5].

The direction of Link Angle and Link Twist is determined using the right hand rule. It is
important to note that the D-H parameters are implemented in the order of sequence of d;,
6, ai, and o; respectively. The homogeneous transformation matrix between two

successive links is defined using their D-H parameters. For example, the kinematic model
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of the SCARA robot in Figure 15 is developed using D-H parameters presented in Table

2 below:

Table 2: D-H Parameters of SCARA Robot

Robot: SCARA (RRT)
D-H parameters
Lower | Upper
Link Joint Link Twist
Joint Joint | Joint
Offset Angle Length Angle o o
Limit | Limit
(mm) (rad) (mm) (rad)
1 di= 1| 61= 61| ai= 225| au= 0] -2.22 | 2.22
2 db= 1]0= 0| aa= 225| ap= 0| -2.53 2.53
3 d3= d3| 035= 0| a3= 225| as= 0| -297 97

5.2 Homogeneous Frame Transformations

The homogenous transformation matrices help define rigid motions of Cartesian
coordinate frames in a matrix formulation. A general structure of a homogenous
transform matrix, A:™? is represented in Equation 13 below.

i-1 __ R3x3 P3x1
Ai _[000 1

(13)

In kinematic modelling, the top left corner of the homogeneous transform matrix
represents the rotation matrix (R3,3), the top right corner represents the position matrix
(vector P5,4), the zeroes represent perspective and 1 represents the scaling factor. The
matrix A represents the pose elements of frame i with respect to frame i-/. A basic
homogeneous transformation matrix is computed from the D-H parameters using

Equation 14.

A = Trans(Z,d;) Rot(Z,6;) Trans(X, a;) Rot(X, a;) (14)

Here, the sequence of multiplication is followed in the order of D-H parameters. The

sequence being translation of d; in Zi. axis, rotation of angle ; about the Zi. axis,
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translation of a; in direction of Xe axis, and lastly the rotation of angle a; about the X;

axis. These individual rotations and translations are represented in Equations 15-18.

1 0 0 O
_10 1.0 O
Trans(Z,d;) = 00 1 d (15)
0 0 0 1
cos(6;) —sin(6;)) 0 O
Rot(Z,6;) = sin(6;) cos(6;)) 0 O (16)
0 0 10
0 0 0 1
1 0 0 a
101 0 O
Trans(X,a;) = 00 1 0 (17)
0 0 0 1
1 0 0 0
y_ |0 cos(a) —sin(a;) O
Rot(X, a;) = 0 sin(a;) cos(a;) O (18)
0 0 0 1
Substituting Equations 15 — 18 in Equation 14, A’ can be represented as:
cos(6;) —cos(a;)sin(6;) sin(e;)sin(6;) a;cos(6;)
i1 = sin(8;) cos(a;)cos(6;) —sin(a;)cos(6;) a;sin(6;) (19)
l .
0 sin(«;) cos(a;) d;
0 0 0 1

The homogenous transformation matrix from Equation 19 is representative of all four D-
H parameters and determines the pose for frame F; with respect to Fi.i. Aﬁ_l is of
considerable significance because of its use in computation of the forward kinematics

equation(s) and determination of complete workspace for a manipulator.
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5.3 Joint Space

The joint space or configuration space of a manipulator is the set of all possible
combinations of joint variables for a manipulator. Each joint variable of a manipulator
has a defined range of motion that is represented as a vector. The combinations of these
vectors in order of their joints defines the joint space of the manipulator. The number of
vector(s) in the joint space is equal to the number of joints in a manipulator. For a
manipulator with # joints and a range of i values for each joint configuration, the joint
vectors can be defined with Equation 20. The joint space is then defined by Equation 21

as " sets of these vectors.

an=lar q2 .. qil" (20)

g=[01 2@ - 47 (21

For example, for a SCARA (RRT, n=3) robot, if all joint variables assume 10 values
each, then the joint space for that manipulator will have 1000 (10%) sets of Equation 22.

q=1[6, 6, d3]T (22)

5.4 Cartesian Space

The Cartesian space, v of a manipulator is the set of all possible combinations of
position and orientation of the manipulator’s end-effector. The Cartesian space has 6
DOF since it can always be represented by 3 position vectors and 3 orientation vectors

(RPY angles) as represented by Equation 23.

v=[x y z a B vy (23)

Since the position and orientation of the end-effector is determined by the joint
configuration of a manipulator, all sets in Cartesian space can be mapped back to at least
one set in the manipulator’s joint space. Since homogenous transformation matrices

represent the pose of a manipulator’s end-effector, they are used to define Cartesian space
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of a manipulator. The developed reconfigurable model for this research uses elements

from the pose matrices for improved ANN performance as described in Chapter 6.

5.5 Forward Kinematics

Forward kinematics for rigid manipulators is concerned with the computation of a
manipulator’s end-effector position and orientation for every known possible
combination of its joint variables. Forward kinematic computations are straightforward
and there always exist a forward kinematic solution for a manipulator in its joint space.
For any n-link manipulator, the forward kinematic computation can be mapped from a
configuration set in the joint space to a point in the Cartesian space of the manipulator

using Equation 24.

f
Joint Space (q1,92,q3 - qn ) = Cartesian Space (@, B, Yn> Pr> Pys Pz) (24

The forward kinematic equation(s) are computed using the homogeneous transformation
matrices. These matrices are multiplied in succession to obtain the homogenous

transformation for joint i with respect to frame, Fo, as seen in Equation 25.

Ny bx ty Dx

A0 = A0 AL A2 At = | by &y Py fori=12.k (25)
nZ bZ tZ pZ
0 0 0 1

where n, b, and ¢ represent orientation vectors for defining the orientation of link k. For
example, for a SCARA robot (RRT) (Figure 15), we obtain the forward kinematic

equations by multiplying all three individual homogenous matrices in Equation 19.

A

cos(6; +0,) —sin(6; +6,) 0 450 *cos(6; + 0,) + 225 * cos(6;)

sin(f; +6,) cos(6; +6,) 0 450 *sin(8; +6,) + 225 +sin(d,) | (20
0 0 1 ds + 2
0 0 0 1
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The forward kinematics equation (Equation 26) here can now be substituted with the joint
variable ranges from Table 2 to obtain the position and orientation of the SCARA robot’s
end-effector thereby defining its work envelop or complete workspace. It is important to
note that the position and orientation of the end-effector is found with respect to the base

frame, Fo, of a robot.

5.6 Workspace and Taskspace

The workspace of an industrial manipulator is a manifold of all points reachable by
the manipulator’s end-effector. Each point in a manipulator’s workspace can be realized
in at least one position and orientation configuration. The topology and volume of the
workspace is determined by the mechanical structure of a manipulator and its joint

configurations. The workspace is divided into two categories:

1. Dexterous Workspace: The dexterous workspace is a collection of all points in a

manipulator’s workspace that the end-effector can reach in all possible
orientations. For example, if the joint configuration allows the manipulator to be
oriented in all of its possible 10 orientations at a point ‘P’ in 3-D space. The point

P is then said to be a part of the dexterous workspace of a manipulator.

2. Reachable Workspace: The reachable workspace is the collection of all points in a
manipulator’s workspace that the end-effector can reach in at least one
orientation. For example, if the joint configuration of the manipulator allows the
manipulator to be oriented in only 2 of its possible 10 orientations at a point ‘Q’.
The point Q is the said to be a part of the reachable workspace of the manipulator.
The dexterous workspace of the manipulator is therefore a subset of the reachable

workspace of a manipulator. [2]

The workspace of the manipulator is formulated using the forward kinematics
equation(s) of the manipulator in Equation 25. Each point in the workspace is
representative of the position matrix of the manipulator. The reconfigurable model
presented in this research helps visually map the workspace of any manipulator
configuration. This analysis helps to understand and appropriately modify a
manipulator’s geometric properties and its associated mechanisms for a desired

workspace topology and volume. A sound understanding of the workspace also helps in
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path planning for the end-effector through the manipulator’s taskspace. Appendix A
provides the third angle orthographic projections and an isometric view of the SCARA

(RRT) robot’s workspace discussed previously in this text.

The taskspace of a manipulator on the other hand is determined by the task required
of the manipulator’s end-effector. The taskspace has a varying dimensionality which is
determined by the Degrees of Freedom needed to accomplish a task. The maximum
dimension of the task space is 6 since the position and orientation of any object can be
defined using 6 DOF. For example, if a manipulator is only concerned with positioning
its end-effector regardless of the orientation, the task space for that manipulator has a
dimension of 3. It is important to note that the joint space of the manipulator should be

equal to its task space for a realizable inverse kinematic solution.

5.7 Inverse Kinematics

The inverse kinematics problem is related to the joint space of the industrial
manipulators and depends strictly on the structure and configuration of a given
manipulator. The end-effector of a manipulator works in Cartesian space but the actuators
required to control the individual links work in its joint space. Thus, the computation of
these joint variables from the end-effector position and orientation in Cartesian space is
known as the inverse kinematics problem and is an essential tool for control of
manipulators. For any n-link manipulator, the inverse kinematic computation can be
mapped from the Cartesian space to the joint space of the manipulator using Equation 27.

-1

Cartesian Space (@, Bn, Y, Dx> Py, Pz) f—>]0int Space (41,92,93 - qn ) (27)

The equations for computing an inverse kinematic solution are generated by comparing
and analyzing Equation 25 with a forward kinematics solution for any manipulator. For
example, the inverse kinematic equation(s) for a SCARA robot with a known forward

kinematic solution can be analyzed from Equation 28 — Equation 32.

n, = cos(6; + 6;) (28)
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n, = sin(6; + 6,) (29)

Dy = 450 * cos(6; + 0,) + 225 * cos(6;) (30)
py = 450 *sin(6; + 6,) + 225 = sin(6,) (31)
p, = ds+2 (32)

An inverse kinematics problem is therefore a reverse computation of the forward
kinematics problem. The inverse kinematics solution for planar, and 3 or less DOF can be
easily determined through some geometric, algebraic, and or analytical manipulations.
However, with increasing DOF, the inverse kinematics problem proves to be
mathematically complex and computationally expensive. With increasing DOF,
kinematic decoupling of joint variables is often challenging and a closed form solution
may not always be possible. For algebraic manipulations, the expressions for the joint
variables are primarily determined from the x, y, and z coordinates of the position vector.
Since, it is possible to have more than one solution to a coordinate point, it can be
challenging to obtain inverse kinematic solutions for higher DOF manipulators. For
example, four possible inverse kinematic solution(s) of a PUMA 560 robot are presented

in Figure 17 below.

Figure 17: Four Different Inverse Kinematic Solution for PUMA 560 Robot [59]
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The formulation of an inverse kinematic solution has a wide range of applications
in the field of robotics. Most of the problems involving a robotic manipulator deal with
orienting and positioning the end-effector in the Cartesian space. An efficient way to
control the end-effector is through effective control of the actuated joints of the robot,
which lie in the manipulator’s joint space. It is therefore essential to map the Cartesian
space constraints into the robot’s joint space using inverse kinematics computations [60].
In cases where a closed form solution is not possible, a numerical method might be
utilized to determine a possible set of solutions for the joint variables. There has been
extensive research in the field of robotics for developing inverse kinematic solution(s) for
specific robot models, configurations, and types. However, no universal model for
computation of the inverse kinematics problem exists which can provide a solution with
an acceptable level of accuracy. This research addresses the issue of developing a non-
conventional technique of addressing this problem through the use of ANNs using

discrete data sets.
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CHAPTER 6
ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANNs) are biologically inspired mathematical models
that learn from their environment, similar to the neurons in the human nervous system.
These mathematical models consist of multiple interconnected neurons that act as
adaptive, and generally non-linear learning machines [61] [62]. The neurons in an ANN
are its processing elements that help approximate any finite non-linear model to
determine the relationship between its dependent and independent variables. The

interconnectivity of these neurons defines the topology of an ANN.

ANNSs are used for a variety of tasks including classification, clustering, prediction
etc. This is because these networks can acquire and store knowledge through a defined
learning process. [62] A feed-forward back-propagation multilayer perceptron (MLP)
neural network model with supervised learning technique is used for this research to
address the inverse kinematic problem in industrial manipulators. The results from this
model are further discussed in the cases studies presented in Chapter 10. An
understanding into the network architecture and its function are presented in this chapter

to help realize the configuration of an optimum network used for this research.

6.1 Trade-off between Generalization and Accuracy

Generalization is the capability of an ANN to negate the effect of noise or any
peculiarities that might be present within a dataset. Generally, a robust network with a
good generalization capability provides a well fitted curve through the training data set.
As a general rule, the simpler the network architecture, the better is its generalization
capability. An accurate network on the other hand has a superior fit to training data than a
network with good generalization capability. However, the trade-off here is the
complexity and brittleness of a network. A brittle network is only tailored to the specific
dataset it was trained on. Such a network lacks the capability of generalizing similar
dataset(s). It is therefore important to optimize the degree of complexity of the neural

network for a model that is both accurate and generalizes well [63].
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6.2 Network Architecture

A basic ANN architecture consists of data inputs that are connected to neurons. The
neurons process this input information and provide data outputs. All information in an
ANN flows through the connections between these inputs, neurons, and outputs. These
connections are scaled by adjustable parameters called weights, wi; [61]. The weights of a
neural network impart flexibility to the network thereby helping it to adapt and learn the
pattern(s) in a data set. The bias (generally assumed a value of 1) in a network represents

the factors that are not accounted for by the input variables

A Multi-Layer Perceptron (MLP) network architecture is used in this research
because of its capability to perform complex prediction tasks. Figure 18 represents a
general MLP architecture. Here, n represents the number of inputs, m represents the
number of neurons in the hidden layer, xn represents the input variables, z represents
network output, anm represents the weight from the n™ input variable to the m™ neuron in
the hidden layer, bm represents the weight from the m™ neuron in the hidden layer to the
output layer, aom represent the bias to the m'™™ neuron in the hidden layer, by represents the
bias to the output layer, and o, and f(.) represent the activation functions used in the

neurons.

[ KX X ]

|

Stage 1 Stage 2 Stage 3

Figure 18: Multi-Layer Perceptron Architecture [62]
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The network learning can be described in the following stages:

1. Stage 1: The hidden neurons sum the weighted inputs and pass them through the
activation function.

2. Stage 2: The outputs from the hidden layer are fed to the output layer with a
second set of weights and a bias.

3. Stage 3: The output layer passes the weighted sum of its inputs through a linear or

non-linear activation function to the network’s output.

The output(s) from the output layer make up the network outputs(s). The network

output(s) are subsequently analyzed for network performance and errors.

6.3 Network Learning

A feed-forward back-propagation batch learning with a supervised learning
technique is used to train the network. A feed-forward network structure only allows a
unidirectional flow of data through the network. The flow of data is usually from the
input layer through the hidden layer, and finally to the output layer. Feedback loops or

cycles are not permitted in a feed-forward network.

Learning for an ANN is the adjustment of its weights and biases to minimize error in
the network. A back-propagation learning type is used in the network developed for this
research. Back-propagation of error allows the network to calculate the error at each
output and adjust the value of weights that caused the error accordingly, thereby reducing
the overall error in the network. The effect of each weight on the error is determined by
the value of the weight and the error on the unit above [63]. The error is thus back-
propagated through the network for optimization of the weights such that if the same
dataset is provided to the network again, the error is lower than the previous result. The
error indicator considered for the network performance is the mean squared error (MSE)
value represented in Equation 33. The MSE value determines the accuracy of prediction

over all the training patterns for a given network
N
1 2
T OACRED (33)
l
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where, E is the MSE value, t; is the target for the i training pattern, z; is the predicted
output for the i training pattern, and N is the total number of training patterns. A batch
learning technique involves the network learning after the entire data set has been
presented to it, or more simply when one whole epoch is run. “An epoch refers to a single
pass of all input patterns in a perceptron during the training phase [62].” The network
computes a resultant error gradient with respect to weights from the average of error
gradients from each point in the dataset. The error is minimized in the direction of the

descent indicated by this resultant gradient. [62]

A supervised learning technique trains the network by providing a target to the
network along with its corresponding input during training phase. This allows the
network to be exposed to a known response. The network subsequently learns the system
behaviour under specific conditions characterized by the data presented to it [64]. The
Levenberg-Marquardt (LM) learning algorithm is used here to adjust and update the
weights of the network. LM is a hybrid learning technique based of the Gradient Descent
and Newton’s method. The algorithm as presented in Equation 34, helps to train a
network to attain a global minimum error by minimizing the first derivatives or gradients
to zero [62]. This training algorithm is known to demonstrate superior performance and

efficiency by adjusting the learning rate of the network repeatedly. [65]

dm

Ay = — —"
m ds, + et

(34)

where, d,, is the first derivative of error, d;, is the second derivative of error, and A is the

damping factor.

6.4 Activation Function

Activation functions are the processors of data in a neuron and help the weights in
the network identify and learn trends in a dataset. These functions can help introduce
non-linearity into the network which allows the network to process complex, and non-
linear datasets. Activation functions in the hidden layer(s) are non-linear continuous

functions. The continuity of these functions allows them to be differentiable. This
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property aids in the adjustment of the network weights during backpropagtion of errors
[62]. Generally, non-linear sigmoid functions are used as processors in MLPs [61]. The
sigmoid function class can be classified in three common non-linearities, namely,
logistic, hyperbolic tangent, and threshold functions. The logistic function (Equation 35)
constrains the input data within a range of [0, 1] and is represented by Figure 19. The
activation function, used for this research, for the network’s hidden layer is the

hyperbolic tangent function given in Equation 36.

1
logsi = — 35
ogsig() = T (39)
1 _ e—Zu
_ 36
tanh(u) T (36)

where, 3 is the slope parameter, and u is any value from a dataset. Hyperbolic tangent
functions constrain the data from [-1, 1] as seen from Figure 20. Unlike the logistic
function, this function is beneficial when the data set to be trained has both positive and
negative values in its input dataset and target dataset. The data can then be normalized
before being fed to the network for an improved performance. It is also important to note
that an asymmetric hyperbolic tangent function leads to a faster learning by requiring

fewer number of patterns presented to it than non-symmetric logistic function [63].

logsig(u) tanh(u)

-0.5
Iz 0 5 s
u
Figure 19: Logistic Function Figure 20 : Hyperbolic Tangent Function [62]
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A threshold activation function maps the data based on a predefined threshold, ¢.
If the input value is above the threshold, then the output is #;. If the input value is below
the threshold, the output value is 7. The threshold function acts as a binary classifier and
is best suited for clustering, and pattern recognition applications. Figure 21 represents a

threshold function with #,=1, and #=0 given by Equation 37.

to if input <0
threshold(u) = o 37
() {tl if input >0 (37
threshold(u) f(u)=u

5 ; 5
4,
3
2
al

0 0
K
20
e
4l

5 0.5 0 0.5 1 k- o 5

u u
Figure 21: Threshold Function Figure 22: Linear Function
The output from a neuron using any activation function, f, is given by Equation 38.
n
Neuron Output = f(z w;x; + b) (38)

j=1

The output layer on the other hand uses a linear activation function given by
Equation 39, as its processing unit. Unlike the hyperbolic tangent function, the linear
activation function (Figure 22) does not constrain the data but rather scales it linearly.

This helps attain a true output value with respect to the network input.

fw=u (39)
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6.5 Data Pre-Processing and Post Processing

Data pre-processing is an important step in the data mining process. The quality of
data and its results can significantly be improved with the correct pre-processing
techniques. One such technique, normalization, has been used here for the development
of an inverse kinematic solution using ANNs. The physical attributes of a manipulator
dictate its D-H parameters. These parameters are often a different scale than the joint
variable ranges of the manipulator. The difference in scale may mask the effect of one
variable on another. Normalization of data is therefore essential to scale all input and
target datasets in a pre-defined range. The pre-defined range used for training the network
is [-1, 1]. This guarantees a stable convergence of weights and biases. Normalization also
helps to identify the true effect of any one variable on another variable. Two
normalization techniques, namely, min-max normalization (Equation 40), and z-score
normalization (Equation 41) have been applied to the dataset(s) used for training the

network.

X' = a+(X—Xmin)(b—a) or, (40)

Xmax—Xmin

X—-X
o

X' = (41)

where, X denotes any value in the data set, X’ denotes the normalized value of X, a = -1,
b = 1, X = mean of the given variable, o is the standard deviation of the dataset,

Xmax » and X are the maximum and minimum values in the dataset respectively.

The network outputs from a normalized input set are also normalized. All values in the
output data set therefore need to be reverted to scale. The scale for de-normalizing an

output dataset is determined from the range of target dataset supplied to the network.

6.6 Division of Data
The ANNs for this research were developed with the aid of the Graphical User
Interface (GUI) Neural Network (NN) Toolbox in the MATLAB environment. For
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training a network, all data was divided at random into three mutually exclusive and

collectively exhaustive categories, namely:

1. Training Set: The training set is a percentage of the original data provided to a
network to adjust the weights of the network during training. The training set used
for this research accounts for 80% of the original data selected at random by the
NN Toolbox.

2. Validation Set: The validation set is a percentage of the original data provided to a
network to minimize over fitting. The validation set verifies if an increase in
accuracy over the training set yields an accuracy in the validation set as well. The
network starts over fitting if the accuracy over the training set increases while the
accuracy over the validation set decreases or remains constant. The training of a
network should be stopped at this point. For this research, the validation set
accounts for 10% of the original data selected at random by the NN Toolbox.

3. Testing Set: The testing set is a percentage of the original data provided to a
network to independently measure the networks performance and prediction
capability after training has commenced. For this research, the testing set accounts

for 10% of the original data selected at random by the NN Toolbox [66].

It is important to note that a data division percentage of 80-10-10 was chosen for the
input data set over the MATLAB default percentage of 70-15-15. This configuration was
selected since the ANN yielded a superior performance when compared to the default
configuration. Better performance was achieved since the network was able to train over
a larger dataset range while the validation and testing dataset performance remained

constant.

6.7 Network Prediction Capability

After learning commences, input(s) from a known input-target dataset are introduced
to the trained ANN. The network is simulated over the inputs to obtain network outputs.
These outputs are the predicted values from the trained network. The outputs are
compared with the known targets for errors in prediction. The relative percentage error in

prediction is calculated, for a target dataset with no zero values, using Equation 42.
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iz
Ep = X 100 (42)

i

where, Ep is the percentage error in prediction, t; is the i target value of the dataset, and
z; is the i™ output from the ANN. If the target dataset contains values that are zero, a
percentage error cannot be computed since the numerator in Equation 42 would require

division with 0. In such cases, absolute error is computed using Equation 43.

Ey =1t; — z] (43)

where, E, is the absolute error in prediction. It is important to note that the absolute error
requires reverting values back to scale if the input dataset had previously been

normalized.

6.8 Inverse Kinematics using Artificial Neural Networks

Inverse kinematics problem are classified as ill-posed problems in modelling of
ANN:Ss. An ill-posed problem is characterized by a consistent mapping of a single input on
one or more output(s). In such a case, the network learning averages all possible solutions
thereby yielding a poor performance [63]. In the case of industrial manipulators, when
mapping the end-effector position and orientation to the joint variable configuration of a
manipulator, an ill-posed problem is experienced. The problem arises because of several
joint configurations producing the same end-effector pose. The network thus generalizes

the dataset to produce an outcome with low accuracy.

This research presents ANNs as a non-conventional approach in solving the inverse
kinematic problem in industrial manipulators. ANNs can be used in development of a
robust and singularity free inverse kinematic solution. Figure 23 presents the network
architecture used for this research. The network uses a dataset of 12 inputs which
represent the position of the end-effector (py,py,p,), and the orientation of the end-
effector (ny,ny, Ny, by, by, by, ty, ty,t,) from the forward kinematics equations. The

targets and network outputs are the configurations of the joint variables

(91, 92, 93, 94, G5, 96) that produce the input position and orientation.
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Figure 23: ANN Architecture for Inverse Kinematics Problem

6.8.1 Challenges in developing an ANN Architecture

The network architecture was initially designed with only 6

(Px» Dy, P2, @, B,Y) as the rotation matrix was consolidated into its corresponding RPY
angles. This architecture demonstrated a far lower performance compared to using all 9
elements of the rotational matrix. This is because the network learning increasing with an
increase in input parameters for a given number of outputs. The increase in 6 additional
parameters help better define the joint configurations and the error can be generalized

over a wider range of dataset. Figure 43 (Appendix A) shows the outputs of the network
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(blue) completely superimposed on the network targets (green) thereby indicating a

perfectly trained network for a SCARA Robot.

An inherent challenge while developing the ANN model for this research was
availability of target data (joint variable configurations) for any assumed position and
orientation of the manipulator’s end-effector. Previously known target data is required for
supervised learning as well as in the computation of errors in prediction (Ep). Due to the
unavailability of inverse kinematic solution(s) for most industrial manipulators, a forward
kinematics solution was first developed for each manipulator type. An input dataset was
developed with the joint configurations used for the forward kinematic computation with
the outputs from the forward kinematic computation as network inputs. These network
outputs were subsequently compared with the targets for evaluating network

performance.

Accuracy of the network was another challenge faced while developing an
optimized network. It was observed that large amounts of data decreased the performance
of the network because of the increase in complexity of the data set. For example, for a 6
DOF robot with 10 joint values for each joint variable configuration, 1 million joint
configurations and their corresponding end-effector pose configurations were generated.
The network learning process therefore involved processing of 18 million joint
configurations (12 inputs + 6 outputs). Due to computational limitations (Intel® Core™
17-3770 CPU @ 3.40 GHz processor, 16.0 GB RAM), such large data could not be
processed through the Neural Network Toolbox in MATLAB. This data set was broken
down into subsets by taking a smaller range of values within a single joint variable for
ease of processing. Three different approach were experimented with to obtain a higher

network performance, namely:

1. Restructuring the ANN: Altering the ANN architecture was the first approach

taken to solve the aforementioned problem. This involved addition of neurons in
the hidden layer as well as addition of several other hidden layers each with
varying number of neurons. The network performance, however, did not
substantially increase after 55 neurons in the first hidden layer. Restructuring the

network henceforth only increased the complexity of the network. A single hidden
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layer (SHL) network architecture with the least amount of complexity and
comparable performance was therefore considered optimal.

2. Different Learning Techniques: Different learning techniques apart from feed-

forward back propagation were tested for an increase in network performance.
These techniques involved Elman back propagation, generalized regression,
cascade forward back propagation etc. A feed forward back propagation network,
however, provided the least amount of error in the system, and with a superior
performance amongst all compared techniques.

3. Reducing the Dataset Complexity: Instead of splitting a large data set into subsets,

smaller datasets were created with fewer joint configurations. This helped reduce
the complexity of the dataset by significantly decreasing the learning required by
the network. An optimal number of three joint configurations for each joint
variable (729 joint and pose configurations) demonstrated superior results over
any other approach taken to improve the network accuracy. The computation time
of the network also decreased substantially with this approach. The trade-off for
this approach was that only a range of 3 joint variable values could be trained with
the developed network at any given time. Different classes of joint configuration
therefore need to be developed when using this method. Chapter 10 presents case
studies on two different manipulator configurations with an inverse kinematic

solution for each manipulator type.

6.8.2 Generalization and Accuracy of the ANN Model

ANNSs provide promising results in development of inverse kinematic solution(s).
Moreover, the complexity of a solution is decreased since complicated coupled equations
from iterative methods are not explored. ANNs also greatly reduce the computation time
required for development of a solution as compared with other traditional geometric,
iterative, and analytical methods. A challenge with ANN models, however, is the
accuracy of a developed network. An acceptable level of accuracy is needed to make
confident predictions. A model with an optimized complexity is required for an accurate

model with good generalization capability.

55



Before modelling a dataset in Neural Networks, we assume that there is some
acceptable level of noise present. Noise may arise from presence of singularities, error
due to approximation etc. Since, reliable predictions for such a model cannot be made
beforehand, the model needs to possess an optimal generalization ability (Figure 24), in
order to prevent over fitting (Figure 25) or under fitting (Figure 26) due to high or low
model flexibility.

> >

Figure 24: ANN with good generalization [62] Figure 25: Over-fitted ANN with high flexibility [62]

Figure 26: Under-fitted ANN with low flexibility [62]

For improving generalization, the network’s DOF need to be lowered, which is
achieved by reducing the number of free parameters, or the weights to each hidden
neuron. These hidden neuron weights are directly proportional to the flexibility of the
network. Reducing the number of neurons thus reduces over fitting. One has to be careful
since excessive reduction in hidden neurons causes the model to under fit. In an early
stopping approach, if the weights are allowed to grow enough during training and then
training is stopped, it is possible to restrain the network from over fitting. A performance
plot provides the epoch at which the lowest validation performance is achieved. After this

point, over fitting sets into the model and the validation performance increases with
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training. If weights are taken for the network at an optimal point where the validation
performance is best, the network would fit sufficiently but not too close, which is an

indication of a well-trained model [62].

Figure 27 represents the ANN model used in development of an inverse kinematic
solution for the previously mentioned SCARA (RRT) robot. Using trial and error, it is
observed that an ANN with 55 neurons in a hidden layer provides the optimal network
generalization and accuracy. For training the network, a sample input and target data set
was created from the forward kinematics model of SCARA Robot. Each joint variable
was split in 25 equal sections over its range as given by Table 15 in Appendix A. The
joint space of the manipulator therefore consisted of 15625 joint combinations (25%)
which were used as network targets. Each of these combinations produced an end-
effector pose which were used as network inputs. Table 3 provides a summary of the

performance indicators for the trained ANN.

Hidden

Input

12

Figure 27: ANN Architecture for SCARA Robot

Table 3: ANN Performance Indicators for SCARA Robot

S. No. ANN Network Indicator Result

1 Total Epochs 501

2 Epoch for Best Validation Performance 501

3 Overall Regression (R) Value 1

4 Mean Square Error (MSE) 0.0000009
5 Training Performance 0.0000009
6 Testing Performance 0.0000010
7 Validation Performance 0.0000010
8 Error Histogram Center (Bell Curve) -0.000072
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The best validation performance, as seen from Figure 40 (Appendix A), was
obtained at epoch 501. The network training was manually aborted at epoch 501 since
excellent network performance was achieved. The regression plot in Figure 41
(Appendix A) demonstrates a fitness between the network outputs and target values. A
perfect fit is indicated by a regression (R) value of 1. A perfect fit is achieved since all
points in the network input data are unique. Moreover, an ill-posed problem is not
encountered since every point in the input dataset is mapped to exactly one corresponding
target data. Figure 43 (Appendix A) provides a comparison between the network outputs
and targets for qi, q2, and g3 as a solution to the inverse kinematics problem. It is
observed that the outputs and targets for qi, g2, and qz completely superimposed on each
other. This indicates a robust inverse kinematics solution for the SCARA manipulator.
The network performance indicator, MSE, has an extremely low value of 0.0000009
(assume zero). A low MSE value indicates a good accuracy of prediction. The individual
performance values for the training, testing, and validation dataset are extremely low and
are around the MSE value as well. The error histogram in Figure 42 (Appendix A)
determines the frequency of errors concentrated over a range. A well fit network has the
maximum frequency of errors around zero. In the network trained for SCARA robot, the
maximum errors in all training, validation, and testing dataset are concentrated at -
0.000072. The error histogram here displays a perfect normal distribution (bell shaped
curve) centered nearly at zero, thereby depicting a 95% and above confidence interval in

prediction of joint variables.

58



CHAPTER 7
JACOBIAN: VELOCITY KINEMATICS

The Jacobian matrix is an essential tool in the analysis and control of manipulator
motion. It is used in several aspects of robot manipulation including trajectory and path
planning, singularity analysis, derivation of dynamic equations of motion etc. A Jacobian
is the first derivative of the pose matrix of a manipulator. Mathematically, it defines the
Cartesian linear and angular end-effector velocity relationship to a manipulator’s joint
variable velocities in its joint space. The Jacobian matrix thus computes the end-effector
motion and Cartesian velocity caused by the actuation and rate of change of joints of a
manipulator [57]. The derivation of a manipulator’s Jacobian is highly dependent on the
kinematic structure of the manipulator and its joint configurations. It is therefore essential
to model a Jacobian that can adapt to changing kinematic structure(s) of any manipulator
type. Two common techniques to model the Jacobian are the Newton-Euler Recursive
method and the Vector Cross Multiplication (VCM) method. This research utilizes the
Newton-Euler Recursive (NER) method because of its capability to be extended for
calculation of dynamics equations of motion for a manipulator. During the course of this
research, it was also realized that the NER method provides seamless integration into the
development of a reconfigurable model without the need for assessment of several

additional parameters when compared to the VCM method.

7.1 Newton Euler Recursive Method

The computation of the Newton-Euler Recursive equation(s) begin with defining the
rotation matrix and the position matrix from the forward kinematics equations of a
manipulator (Equation 25). The rotation matrix, its transpose, and the position matrix that
define the orientation of a frame F; with respect to Fi.; are represented in Equations 44-46

respectively.

cos(f8;) —cos(a;)sin(6;) sin(a;)sin(6;)
RI"1 = |sin(6;) cos(a;y)cos(8;) —sin(a;)cos(8y)| fori=12,..,n (44)
0 sin(a;) cos(a;)
L= (RO s)
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a;cos(6;)
Pt = |asin(6;) | fori=12,..,n (46)
d;

The angular and linear velocity vectors are subsequently determined for all joint
variables. These joint rate vectors are the first derivatives of the joint variables and are

defined in Equation 47 and Equation 48.

0
g7t = [0 fori=12,..,n for rotational joints (47)
6,
' 0
Pt = [0] fori=1.2,..,n fortranslational joints (48)
P,

The next step involves determining the angular velocities ( iw? ), and linear velocities
( ivl-o ), of each link, i, based on the joint variable type. Equations 49-50 represent the

angular velocities for rotational and translational joint types, and Equations 51-52

represent the linear velocities for rotational and translational joint types.

‘w? = R, ['wly + 65 for rotational joints (49)
‘w? = R, [Tw?, for translational joints (50)
W = R, 4+ Ww?X(RL_,PITY)  forrotational joints (51)

v = R, + e X (Rf—lpii_l) + Ri_, P/ (52)
for translational joints

After computation of angular and linear velocities for the last link of the manipulator, the

generalized velocity vector (V) of the end-effector is computed using Equation 53.
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For example, for a 6 DOF manipulator, the generalized velocity vector is a 6x6 matrix

represented by Equation 54.
60
V=145 (54)

The Jacobian matrix, J(g), of a manipulator with respect to its end-effector is calculated
from the generalized velocity vector(V) by extracting the joint velocity vector(s), g. The
joint velocity vectors vary depending on the type of joint for each link as represented in

Equation 55.

851 for rotational joint i

i =1 55
1 ¢ P/~ for translational joint i (35)
The Jacobian matrix, J(g), is represented in Equation 56.
V=7 q (56)

This Jacobian matrix can further be divided into two submatrices representing the
Jacobian for linear velocities,/,, and the Jacobian for angular velocities, J,, as represented

in Equation 57.

@ =[] (57)

The dimension of the Jacobian matrix is dependent on the number of joints of a
manipulator, n, and the dimension of the task space, . For an n-DOF manipulator, the
Jacobian matrix has a dimension of #xn. Since most industrial manipulators are required
to position as well as orient its end-effector, the dimension of the task space is generally
6. The dimension of the manipulator Jacobian is therefore usually 6xn. In such as case,

the dimensions of both J,, and J,, will be 3xn.

61



The Jacobian matrix with respect to the base frame, Fo, is calculated using the Equation

38.

J(@g =Ry J(@) (58)

where, n is the number of joints in a manipulator, and RY represents the rotation matrix
defining the orientation of the end-effector with respect to the base frame of the
manipulator. Once computed, /(q)p is further analyzed for any kinematic singularities
present in the manipulator. For example, for a SCARA (RRT) manipulator previously
discussed in this text, the generalized velocity vector,V and the Jacobian matrix in the

base frame, Fo, are represented by Equations 59-60 respectively.

225 * sin(6,) 0 O
225 = cos(6,) + 450 450 0 g
, 0 0o 1|, 5
V = =
J@)q 0 o ollf (59)
0 0o o|Ps
1 1 0
—450 * sin(0; + 6,) — 225 *sin(0;) —450 *sin(6; + 6,) 0]
450 * cos(0; + 0,) + 225 * cos(f;) 450 xcos(6,+6,) O
0 0 1
= 60
J(@s 0 0 0 (60)
0 0 0
1 1 04

7.2 Wrist Partitioned Manipulators

Consider a general 6-DOF articulated industrial manipulator with a forearm
configuration in its first 3 joints, and a wrist configuration in its last 3 joints. If the
velocity reference point is considered as the center of the manipulator’s wrist, the
Jacobian matrix, /(q)g, can be further simplified into another matrix, Ji;,, with 4 sub-

matrices as represented in Equation 61 [67].

]11 ]12] (61)

J(@p =Jw = [,

21 ]22
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Here, J;;, and J,, are 3X3 matrices can that can be individually analyzed for

decoupling singularities. Often in some manipulator geometries where the last three joint

variables only affect the orientation of the end-effector, J;, will be a zero matrix of a

dimension 3x3. This zero block matrix simplifies the decoupling process which is

discussed further in detail in Chapter 8. The simplification of the manipulator Jacobian

(J(g) in any frame) into sub-matrices can help identify the relations between the forearm

and wrist configurations, and the linear and angular velocity vectors [57] using Equations

62-67.
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For example, for any wrist partitioned Cartesian manipulator, /1, = J,; = 0, thereby

verifying that the linear velocity of the end-effector is independent of the rotational joints

in the manipulator’s wrist. Also, the angular velocity is independent of the first three

translational joints [57].
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CHAPTER 8
KINEMATIC SINGULARITIES

The American National Standard for Industrial Robots and Robot Systems — Safety
Requirements (ANSI/RIA R15.06-1999) defines kinematic singularity as “a condition
caused by the collinear alignment of two or more robot axes resulting in unpredictable
robot motion and velocities” [68]. A manipulator’s performance is therefore greatly
depreciated at or near singular regions. It is thus crucial to understand the functionality
and reachable workspace, void of any singularities, for a manipulator’s enhanced

performance in an industrial setting [2].

Kinematic singularities in manipulators arise due to a loss of DOF in its end-effector
[2]. At such an instance, two or more joints of a manipulator do not independently control
the position and orientation of the end-effector [1]. For example for a SCARA (RRT)
manipulator, the singularity region is marked red in color in Figure 28 below and Figure
38 (Appendix A). At these singular regions, the position and orientation of the SCARA

manipulator is only controlled by one rotational joint and one translational joint.

Functional workspace of Robot

200

100-

Z {(mm)

1000 "~

500 ﬁ 500
1000 1000 X (mm)
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Figure 28: Singularity Space of SCARA Robot
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Kinematic Singularities are of particular interest for the following reasons:

1. Knowledge about singularities provides an insight into the reachable and
functional workspace for the end-effector of a manipulator.

2. Singular configurations (boundary singularities) may sometimes help define the
boundary of the manipulator’s workspace.

3. Singularity can be used as design tool for defining the joint limits and the
mechanical structure of a manipulator.

4. Singularities help determine configurations for unattainable directions of motion.

5. At singular configurations, small motion of the manipulator’s end-effector may
cause a large movement in the joint variables.

6. At or near singular configurations, the control algorithm of a manipulator fails,
resulting in large joint velocities and accelerations for the smooth operation of the
manipulator.

7. Singular configuration may correspond to non-unique, zero or infinite inverse

kinematic solutions to a manipulator [69] [5] [2].

During manipulator control, singularity conditions may arise during the inverse
mapping from the manipulator’s Cartesian space to its joint space [70]. By modifying
Equation 56, it can be seen that the joint velocity vector of the manipulator in its joint
space, can be mapped to the generalized velocity vector of the manipulator in Cartesian

space using Equation 68.

qa=U@I'Vv (68)

Singularities can therefore be mathematically determined by analyzing the inverse
of the Jacobian matrix for the manipulator being studied. From a mathematical
standpoint, singularities arise as a local or instantanecous phenomena from the rank
deficiency of the Jacobian matrix [69]. To realize a solution to Equation 68, the Jacobian
matrix of a manipulator should be non-singular, and be of a rank equal to the dimension
of the joint velocity vector and generalized velocity vector. One method of analyzing a
kinematic singularity is through the computation of the determinant of an nxn subset, J,

of the manipulator Jacobian, where n represents the number of joints. A square subset is
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analyzed for a non-square Jacobian (with 6 or less DOF) since an inverse of a non-square
matrix does not exist. Mathematically, the inverse of a Jacobian matrix is represented in

Equation 69.

@] = o (69)
V@™ = 7o

where, Cj; represents a matrix of cofactors (adjugate matrix) of the Jacobian being
analyzed, and |J/(q)| represents its determinant. For a non-invertible singular Jacobian,

the determinant of the matrix is zero as represented in Equation 70.

Singular Jacobian: |J(q)| =0 (70)

For the SCARA (RRT) manipulator, the 3x3 subset of its Jacobian matrix being analyzed
is the Jacobian matrix of linear velocities in base frame, J,(q)z represented by Equation

71. The determinant of this Jacobian is represented by Equation 72:

—450 * sin(6; + 6,) — 225 = sin(f;) —450 *sin(6; +6,) O
_ | 450 * cos(0; + 6;) + 225 * cos(6;) 450%*cos(6;+6,) O
]v(q)B - 1
0

0 0 1)
0 0
s (@)s] = 101250 * sin(6,) (72)

The determinant of the Jacobian,|],(q)g| assumes the value 0 when 8, = 0 or pi
radians. Since pi radians does not lie in the joint space of the manipulator (see Table 2),
the singular condition for this robot arises when its second joint variable reaches 0
radians. In this case, the singular space is on the boundary of the manipulator because at
0, = 0 radians, the arm of the manipulator is fully extended and cannot move any farther

from its base.
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8.1 Types of Singularities

With respect to general wrist partitioned industrial manipulators, kinematic

singularities can be classified based on the joint configuration(s) of the manipulator. The

two most common types of kinematic singularities are:

1.

Forearm Singularity: In wrist partitioned 6 DOF manipulators, forearm

singularities arise because of the motion of the forearm caused by first three joints
of the manipulator. These singularities are often experienced at the workspace
boundary of the manipulator when the manipulator arm is fully extended or
retracted. Arm singularities are therefore sometimes referred to as boundary
singularities or internal singularities based of the arm configuration. Forearm
singularities can be identified by analyzing the J;; subset of the Jacobian matrix
for a manipulator. A forearm singularity can be mathematically represented using

Equation 73.

l/111=0 (73)

For a wrist partitioned SCARA robot, a forearm singularity is observed at 8, = 0
or pi radians (Equation 72), as seen in Figure 38 (Appendix A). At this
configuration, the arm of the manipulator is at its maximum radial distance from

the base of the manipulator as seen from Figure 29 below.

SCARA Robot

1 PUMA 560 Robot

Figure 29: SCARA Robot Figure 30: PUMA 560 Robot
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2. Wrist Singularity: In wrist partitioned 6 DOF manipulators, wrist singularities

arise because of the motion of wrist cause by the last three joints of the
manipulator. When two of the three rotational joints of the wrist become collinear,
their equal and opposite rotation about their individual axis cancels out any
possible change in orientation of the end-effector [5]. These types of singularities
can only be excluded from the joint space by imposing restrictions on the joint
variables. Wrist singularities can be identified by analyzing the J,, subset of the
Jacobian matrix for a manipulator. A wrist singularity can be mathematically

represented using Equation 74.

[J22] = 0 (74)

For example, for a PUMA 560 robot in Figure 30, a wrist singularity is observed
at 8 = 0 or pi radians, where the axis of the fourth and the sixth joint become
collinear. A wrist singularity is challenging to visually analyze, since an
orientation at a specific point in the Cartesian workspace of a manipulator may be
realizable in multiple wrist configurations. It is possible that only a few of those

wrist configuration(s) are singular.

(cm) {cm)

Figure 31: PUMA Wrist Singularity [66]
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The corresponding position of the end-effector, however would still be
represented as being singular. Figures 31 and 32, show all points in the workspace
(black in color) of the PUMA 560 robot as singular points (red in color) since 85

= 0 is realizable at every point in the robot’s workspace.

{cm)

(em)

Figure 32: PUMA Wrist Singularity (Top View) [66]

The decoupling of singularities for wrist partitioned manipulators can therefore reduce
the computational time and effort in calculating singular configurations. For a
manipulator with J;, = 0, the Jacobian matrix and its singularity condition can thus be

represented using Equations 75 and 76, respectively.

— _ 11 03X3
J@s == [ 75)
J(@)sl = V11ll/22] (76)

8.2 Singularity Free Geometric Path Planning

Geometric path planning is the task of defining a set of Cartesian co-ordinates that
define the end-effector’s path between two known coordinates in a manipulator’s
workspace. Path planning is an important part in intelligent control of manipulators, and

involves generating an optimized and collision free path through the manipulators’
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workspace [71]. Path planning for industrial manipulators can be categorized in three

different categories, namely:

1.

Point-to-Point (P2P) Path: Point-to-Point path planning involves generating a path

between two discrete points within the manipulator’s workspace. The path
generation using this method may vary for any spatial location of the initial and
ending point.

Controlled Path: Controlled path planning involves a manipulator’s end-effector

following a predictable or controlled path through its workspace. The coordinates
of the path are pre-determined based on the manipulator’s task.

Continuous Path: Continuous path planning involves storing a close succession of

spatial points in the controller’s memory from any teaching sequence. The path
defined in the teaching sequence is then replayed from the memory for a defined

task. [54]

Singularities are inherent to any manipulator’s geometry and design. Development of

a singularity free geometric path for an end-effector is important for robust manipulator

control. P2P path planning is often challenging since a path generated might involve

maneuvering a manipulator’s end-effector through singularity zone(s). Singularities can

truly be eliminated from a manipulator’s workspace by imposing restriction on the range

of motion of its joint variables (in joint space). One solution to the problem of path

planning thus involves defining a path around the singularity zone(s). A path around any

singularity zone may involve:

1.

Avoiding a singular point in the manipulator’s workspace completely. For
example, a non-singular point, Pi, is chosen over a singular point Po in a path
being defined.

Maneuvering the end-effector through a singular point in a non-singular joint
configuration. For example, if a point, P2, is singular in joint configuration qa, but
not in joint configuration qp, then configuration qp is selected while maneuvering

the end-effector through point P».
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ANNSs are presented here as a non-conventional technique to aid in a singularity free
end-effector path generation. An ANN is previously trained for development of an
inverse kinematic solution for a specific manipulator configuration (Section 6.8). A data
set in Cartesian space consisting of known singularity points is then simulated over the
trained network for outputs. The output(s) from the ANN model are compared to the
known joint variable configuration(s) for singular points in the manipulator’s workspace.
The comparison helps visually identify a singularity error window which can be

developed in joint space of a manipulator for avoiding singularities.

For example, for the SCARA (RRT) robot, a set of known 625 singularity points
(each point with 3 position variables and 9 orientation variables) is normalized between [-
1,1]. This normalized dataset is simulated over the inverse kinematic model for the
SCARA robot. The ANN output, predicted joint variables, are reverted to scale and
compared for error with the theoretical known joint variables of each of the 625
singularity points. Table 4 below shows the absolute error between the predicted joint

variable values and the theoretical joint variable values for 5 sample points.

Table 4: Theoretical vs. Predicted Joint Variable Error

Joint Variable Joint Variable Absolute Error
Sample (Known) (Predicted)
W a el e e e e )
(rad) | (rad) | (mm) (rad) | (rad) (mm)
1 -2.22 | 0.00 | -280.33 | -2.22 | 0.00 | -280.34 | 0.00 0.00 0.00
2 -1.66 | 0.00 | -205.33 | -1.66 | 0.00 | -205.33 | 0.00 0.00 0.00
3 1.48 | 0.00 | -272.00 | 1.48 | -0.01 | -272.00 | 0.00 0.01 0.00
4 1.11 | 0.00 | -163.67 | 1.11 0.00 | -163.67 | 0.00 0.00 0.00
5 0.74 | 0.00 | -230.33 | 0.74 0.00 | -230.34 | 0.00 0.00 0.00
Table 5: Max. and Min. Error in Joint Variable Prediction
Predicted vs. Theoretical Joint Variables
Absolute Error qi1 (rad) qz2 (rad) q3 (mm)
Maximum 0.00 0.01 0.00
Minimum 0.00 0.00 0.00

71



An absolute error value is chosen since the joint variables assume the value 0 at
some points. A relative percentage error for such a point would not be possible (error
would be infinite). The maximum and minimum error in all joint variables for all 625

points are presented in Table 5 above.

The theoretical (red) and predicted (blue) joint variables are mapped to their
respective Cartesian space in Figure 33 below. It can be observed that that the predicted
singularity is well superimposed over the theoretical singularity with barely any error.
Moreover, there is very minimalistic deviation from the outer boundary of the workspace
where the manipulator singularity exists. The predicted singularity is exactly able to map
the radial distance of the theoretical singularity, thereby confirming a robust and well

trained ANN.

A comparison of each of the predicted vs. theoretical joint variable values for
singularity is presented in Figure 44 (Appendix A). Minimal deviation is observed
between the predicted joint values and the theoretical values at the extremes of the joint
angle range as seen from the Joint Variable 1 graph. This error arises because of the
lowered generalization capability of a high DOF ANN model. A majority of the deviation
from theoretical values in Joint Variable 2 is observed between [-0.01, 0.02] radians.
This confirms the ability of the ANN to accurately predict the singularity condition for a
manipulator. The predicted value for Joint Variable 3 is very accurately mapped since it
is a translational joint and does not control the orientation of an end-effector. This
reduces the variables in Cartesian space needed to be mapped to the joint space, thereby

increasing ANN model accuracy.
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Figure 33: Predicted vs. Theoretical Singularity (Top View)

An error window for each joint variable can therefore be formulated in joint space
when planning the path of an end-effector in Cartesian space using the developed ANN
model. The error window is determined by adding and subtracting the absolute maximum
error from the joint variable values of its respective class. Using this technique, a
boundary to the joint variable values contributing to the kinematic singularity in the
manipulator workspace can be determined. For example, for the SCARA manipulator, the

error window for Sample 1(Table 4) is defined in Table 6 below:

Table 6: Error Window for Path Planning

Sample 1 qq (rad) Error Window/| q, (rad) | Error Window q; (mm) Error Window

Upper Limit 4 -2.22 4+ 0.01 4> -280.33
-2.22+£0.00 0+0.01 -280.33 £0.00
Lower Limit 0 222 0 -0.01 0 -280.33

The end-effector path can therefore be planned around these error windows. For
example, when the q» approaches a value close to a range [-0.01, 0.01] rad, an alternate
path is taken by the second joint to avoid the oncoming singularity configuration. This
technique is especially beneficial when prior singularity conditions for a manipulator are

unknown.
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CHAPTER 9
RECONFIGURABLE MODEL

The purpose of this research is the development of a reconfigurable tool for modelling
of industrial manipulators that can adapt to changes from user based inputs. The
mechanical structure along with the joint configurations decides the functionality of any

industrial manipulator. Functionality of a manipulator incorporates:

1. Dexterity: Dexterity of a manipulator is its ability to perform a range of tasks in
different ways.

2. Flexibility: Flexibility of a manipulator is its generalized ability to adapt to
planned or anticipated tasks.

3. Reconfigurability: Reconfigurability is the ability of a manipulator to alter its

modules and configuration for a specific task.

The mathematical model (Appendix D) developed for this research can be
reconfigured and tailored to accommodate various kinematic structures. The ability of the
model to compute various parameters based upon change in structure and configuration
allows the user to evaluate different functional aspects of any manipulator type. Various
manipulator designs, including the ones that are unexplored, can therefore be studied,
evaluated, and optimized with the use of this model. The MATLAB platform is used to
code the mathematical model. MATLAB was chosen because of its user-friendly
interface, ease of data analysis, and availability of a Neural Network Toolbox for ANN
computations. The mathematical model is currently built for up to six joint (6 DOF)
industrial manipulator types. It can however, be expanded with ease to model higher
DOF. The mathematical model, presented in Figure 34 below, requires the following in

inputs:

1. Joint Type: The model requires the user to specify each joint as rotational or
translational in their order of sequence. The type and sequence of inputs can be

altered by the user depending on the configuration of the manipulator needed.
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2. D-H Parameters: The mathematical model requires the user to input all D-H

parameters required to model the manipulator configuration of interest, as well as

the range of motion for all joint variables.

Joint Type
(Rotational /
Translational)

D-H
Parameters

RECONFIGURABLE
MODEL

Forward Path
Kinematics [y Outputs e  Planning

Solution Model

3-D

3-D

Workspace Singularity

Space

Inverse
Kinematics
Solution

Jacobian

Matrix

Figure 34: Reconfigurable Model

75



Based on the user inputs, the model successfully computes and evaluates the following:

1. Forward Kinematics Solution: The model first computes all individual

homogenous transformation matrices, ‘A(i-1)(i)’, for a manipulator. The
transformation matrices are subsequently used to develop a forward kinematics
homogeneous matrix ‘A0(n)’. This matrix is stored in symbolic form which
allows manipulation of its position and orientation matrix equation(s) at a later
stage. The user can input any joint configuration set value at this stage to obtain a
forward kinematics solution.

2. 3-D Workspace: The model starts by splitting the range of each joint variable into

a set of values defined by an interval called ‘steps’. For example, if the value for
steps is 3, each joint variable will have 3 joint values. The values in a range are
randomized to prevent formation of classes in a continuous dataset. Dividing data
into classes will have a much lower accuracy since the ANN may generalize
output data to average the classes. Additionally, it also prevents ANN training at
the same orientation of the end-effector. The model forms the manipulator’s joint
space by making all possible combinations of each joint variable. For example,
for a 6 DOF manipulator, if each joint assumes 3 values in its range, the total
combinations of 6 joints will be 729 (3°). Each of the joint angle set in the joint
space of the manipulator is mapped to its Cartesian space, and the position and
rotation matrices are determined. The values from these matrices defines the 3-D
position and orientation of the end-effector. The position of each point is plotted
to obtain the complete workspace of the manipulator. For example, 729 joint
configurations would provide 729 Cartesian coordinates that are represented as
the complete workspace. During 3-D plotting of the workspace, the model
eliminates all similar points based on their (X, Y, Z) values. This is done to
prevent model memory from overloading if the number of points that define the
workspace are large.

3. Inverse Kinematics Solution: The position and orientation of each point in the

manipulator workspace defines the inputs for the inverse kinematics ANN model.
The corresponding joint space of the network inputs defines the network targets.

All inputs and targets are pre-processed by being normalized using either min-
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max or z-score normalization before being fed to the ANN. The ANN model
architecture used for this research has 55 fixed neurons in its hidden layer with
hyperbolic tangent activation function since this configuration provides an
optimal model generalization and accuracy. The network is trained on predefined
parameters after which the network’s performance indicators and plots are
generated. The outputs from the ANN are stored and reverted to scale. Absolute
error is defined at this stage between the network outputs and the targets. The
error plots for each joint variable are generated to give the user an understanding
of variation in prediction of each joint variable.

Jacobian Matrix: The reconfigurable model defines all angular and linear velocity

vectors for each joint variable of the manipulator. Newton Euler Recursive
Method calculations are subsequently carried out to determine the Jacobian of
linear and angular velocity elements for the end-effector with respect to the base
frame of the manipulator. If the manipulator is wrist-partitioned, sub-matrices Ji1
and J» are determined from the Jacobian matrix for decoupling of forearm and
wrist joints respectively.

3-D Singularity Space: The model computes all kinematic singularity conditions

present in the manipulator configuration by analyzing its Jacobian. The joint
variable combinations that produce singularities are subsequently identified. The
joint space of the manipulator is modified with the newly determined joint
variable combinations that produce these singularities. The new joint space is
mapped to its corresponding Cartesian space using the manipulator’s forward
kinematics equations. The new position and orientation matrices developed help
visually identify the loci of kinematic singularities present in the manipulator
workspace. All singular points are identified in the color red.

Path Planning Model: Once singular points are visually identified, the position

and orientation of each singular point is normalized and simulated over the
previously developed inverse kinematics model. The simulation results are
compared to the joint variable combinations (targets) previously determined while
developing the singularity space. The absolute error between network output and

target for each joint variable helps determine an error window around each
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singular configuration in joint space. During path planning, this model can be
effectively used to avoid singular conditions. A boundary to the loci of singular
points is determined using the error window which can help refrain the end-
effector from accessing certain part(s) of the manipulator’s workspace in specific
joint configurations. The error plots for each joint variable are generated to give
the user an understanding of variation in prediction of each joint variable that

causes singularity.

The complete workspace and singularity space models of the manipulator are
developed using a step size of 10. The reconfigurable model thus determines 1 million
(10%) joint configurations and their respective position and orientation matrices. Such
large amounts of data (18 million variables) cannot be processed through Neural Network
Toolbox for MATLAB because of computational constraints. A smaller step size is
therefore chosen for all neural network models. In determining the amount of data to be
processed for the inverse kinematics and path planning model, various step sizes such as
3, 4, 5 etc. were experimented with. A step size of 3 provided the most accurate ANN
model results over any other step size chosen. The accuracy with a smaller step sized
increased because of the reduced level of complexity in the dataset. A step size of 3 was
therefore selected as the default step size for developing ANN models. A drawback to a
smaller step size is the need for defining classes of inverse kinematics solution(s) for any
manipulator configuration. For example, a step size of 3 will only provide 729 points in
the manipulator workspace that can be used as inputs to an ANN model. Thus an inverse
kinematics solution that caters only to a specific subset (729 points) of the total
workspace can be determined at any given point. New joint variable values are thus
needed to define another inverse kinematics solution for a different subset of the
workspace and so forth. The complete inverse kinematics model for a manipulator is
determined by unifying individual classes of solutions developed. It is important to note
that the task space for a manipulator may only involve certain paths(s) of actual
mechanical work. For example, a welding robot may only be required to weld along a
curvilinear path defined by a string of points. It is therefore justified to develop inverse

kinematic model(s) that can encompass certain required points of work.
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CHAPTER 10
CASE STUDIES AND RESULTS

For the purpose of this research, the robustness of the developed model is tested on

two different kinematic structures namely:

1. 6 DOF Industrial Robot: A FANUC M16iB/20 robot is chosen for this study since

the kinematic structure (RRRRRR) of this robot has a wrist configuration in its
last 3 joints. Wrist partitioned robots are the most common types of manipulators
used in the industry today. FANUC M16iB/20 (Figure 35) is a popular industrial
manipulator used for several material handling applications.

2. 6 Axis CNC Machine: A multi-axis CNC was chosen for this study for two

purposes. Firstly, to test the robustness of the developed algorithm when
analyzing a kinematic structure with a combination of both rotational and

translational joint types. Secondly, to show the wide range of applications of the

developed model. The reconfigurable model is able to analyze any 6 axis machine
structure that can be kinematically modelled such as the 6 Axis CNC (RRRTTT)
(Figure 36).

X
i 7 Work Piece
= ._ " 3“
; 6 AXIS CNC MODEL
& . (\
Figure 35: FANUC M16iB/20 Robot [72] Figure 36: 6 Axis CNC Machine
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10.1 6 DOF Industrial Robot: FANUC M16iB/20
Note: All results for the FANUC M16iB robot are presented in Appendix B.

A kinematic model of the FANUC M16iB/20 robot, provided in Figure 46
(Appendix B), is first generated to analyze the configuration of the manipulator. Table 16
represents the D-H parameters used to model the manipulator along with the range of
motion for each rotational joint. To generate the manipulator’s total workspace and to
compute its corresponding singularity space, a step size of 10 was chosen that yielded 10°
joint configurations. Each of these configurations when processed through the forward
kinematics equation, A06 (Appendix B MATLAB Output), yielded the same number of
configurations in Cartesian space. The joint angle range for each joint with a step size of
10 is represented in Table 17. Out of the 1 million points generated, it was observed that
the Cartesian space had only 100,000 unique points based on their (X, Y, Z) coordinates.
This implies that the model generated 10 orientation configurations per coordinate point

in the manipulator’s workspace.

The complete 3-D workspace of the FANUC manipulator has a spherical topology
and is represented in Figure 47. From the top view of the total workspace (Figure 48), a
cylindrical void is observed exactly in the middle of the spherical workspace. This void
area is inaccessible by the end-effector of the FANUC manipulator. From the top, front
and, right view, it is observed that the total workspace fans out from a center point with
the number of spokes equal to the steps used to build the workspace. This implies that all
possible combinations of each set of joint variables produce a subset spoke of the
manipulator workspace. If the step size were increased, the workspace would not

demonstrate any voids between its spokes but would still have a void in the center.

Since the robot is wrist partitioned, both subsets, Ji1 and Jz2, are analyzed for
forearm and wrist singularities, respectively, as seen from Appendix B (MATLAB
Outputs). Kinematic singularity condition for the FANUC M16iB robot is only observed

at the manipulator wrist and is represented in Equation 77.

Singularity Condition : 65 =0 (77)
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Figure 49 represents the total workspace and singularity space for the FANUC
manipulator. At first look, minimal singularity space (red coloured points) is observed
since only singularities at workspace boundaries are visible. From Figure 50, which
represents the total singularity space, it is observed that the majority of the kinematic
singularity (internal) is present within the manipulator workspace. For computation of an
inverse kinematics solution, a random subset of joint configurations with a step size of 3
is chosen from the joint space of the manipulator. Table 18 represents the joint angles
values used for training the ANN. The model reruns on the new joint configurations and
first develops a subset of the total workspace and singularity space as represented in
Figure 51. The Cartesian space configuration of this subset workspace is normalized and
provided to the network as inputs. The joint angle configurations are normalized and
provided as targets. It can be seen from Figure 52 that an inverse kinematics solution for
the robot being studied is computed in merely 6 seconds and 23 epoch runs. The error
histogram from Figure 53 shows the concentration of errors from the trained network at a
fairly low value of 0.0205. The error histogram demonstrates a good normalization curve
with majority errors between the ranges of +0.4. The regression plot from Figure 54,
shows an overall R value of 98.68% thereby indicating a well-trained network. Best
validation performance for this network was reached at epoch 17 as seen from Figure 55.
The validation fail check was reached at epoch 23 as seen from Figure 56. Here, the
network gradient and learning rate (mu) curve for the network can also be observed for
each epoch run. The inputs and bias to the hidden and output layer are provided in

Appendix B. A summary of the ANN Inverse Kinematic results are provided in Table 7.

Table 7: ANN Results for FANUC M16iB/20

S.No. ANN Network Indicator Result
1 Total Epochs 23
2 Epoch for Best Validation Performance 17
3 Overall Regression (R) Value 0.9868
4 Mean Square Error (MSE) 0.0198
5 Training Performance 0.0105
6 Testing Performance 0.0638
7 Validation Performance 0.0505
8 Error Histogram Center (Bell Curve) 0.0205
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A comparison between the network outputs and targets (joint configurations) is
presented in Figure 57. The network is very accurate in predicting the first 3 joints of the
manipulator. It is observed that the predicted outputs of the network almost superimpose
on the target values. However, some variation is observed in Joints 4, 5, and 6 which
form the wrist of the manipulator. This variation arises due to the generalization
properties of the developed ANN. The purpose of an ANN is to determine a generalized
trend between the input and output parameters of a given manipulator, rather than
mapping exact points which leads to an over-fitted model. It is important to realize that
multiple wrist configurations may exist for every given set of position coordinates
(X,Y,Z) in the input data set. These wrist configurations primarily contribute to the
orientation of the manipulator’s end-effector. For each set of unique position coordinates,
the wrist can therefore assume a specific set of joint configurations. As a result, during
the training phase, the ANN network attempts to predict a generalized model for Joints 4,
5, and 6 for these multiple wrist configurations. Hence, when a new input set of
parameters is introduced to the network, the network attempts to predict an overall
generalized result for the last three joints based on their average thereby reducing
network accuracy. One method to increase the network accuracy is to generate an input
dataset that has only one orientation associated with a unique coordinate point. This will
map one single point in Cartesian space to only one combination of joint value set
thereby increasing the network accuracy. Figure 58 represents a plot of absolute residual
errors between aforementioned networks outputs and targets due to the network

generalization.

To develop a path planning model, the singularity points from the subset
Cartesian space are simulated over the trained network to provide predicted joint angle
configurations for singularity. Figure 59 represents a comparison between the ANN
predicted and theoretical joint configurations. It is observed that there is minimalistic
error between the predicted and theoretical values for the first 3 joints. Although, there is
noticeable error in joint prediction for the last three joints. This error can be ignored
because the path of a manipulator can be determined irrespective of the orientation
(controlled by wrist joints) of its end-effector. High network accuracy is achieved for the

first three joints that are responsible for controlling the position of the end-effector in
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wrist partitioned robots. This can be seen from Figure 60 which represents the absolute
residual errors between the predicted and theoretical joint configurations. The predicted
joint variables are mapped to their corresponding Cartesian space and compared with the
singularity values as represented in Figure 61. It is observed that the predicted singularity
of the model is fairly accurate when compared to the theoretical singularity. This
validates the robustness of the path planning model as well as the robustness of the
developed inverse kinematic model using ANNs. The absolute errors in joint space
between ANN predicted and theoretical joint angle configurations are presented in Table
8. Table 10 represents the maximum and minimum errors in joint prediction which help

define an error window (Table 9) to aid in path planning.

Table 8: Sample Theoretical vs. Predicted Joint Variable Error

Joint Variable Joint Variable Absolute Error

Sa;ll:)ple (Known) (Predicted) Eq) | E(q) | E(q)
. qi q2 q3 qi qz qs (rad) | (rad) | (rad)
(rad) | (rad) | (rad) | (rad) | (rad) | (rad)

1 1.65 1.80 3.37 1.64 1.74 3.35 0.00 | 0.06 | 0.02
2 144 | -0.09 0.52 1.45 -0.12 0.57 0.02 | 0.03 | 0.05
3 0.87 -0.58 0.52 0.86 -0.50 0.46 0.01 0.07 | 0.06
Joint Variable Joint Variable Absolute Error
Sample (Known) (Predicted)
No. E(q4) | E(q5) | E(qe)

q4 qs q6 q4 qs q6
(rad) | (rad) | (rad) | (rad) | (rad) | (rad) (rad) | (rad) | (rad)

1 -232 | 0.00 | 3.09 | -1.82 | -0.24 | -0.12 | 0.50 | 0.24 | 3.21
2 -3.09 | 0.00 | -2.28 | -249 | 0.20 | -0.08 | 0.60 | 0.20 | 2.20
3 -2.32 | 0.00 1.65 | -2.38 | -0.03 | 1.61 0.06 | 0.03 | 0.04
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Table 9: Sample Error Window for Path Planning

Sample 1|q; (rad) | Exrror Window | q (rad) |Error Window| qs (rad) |Error Window
IIJJ[')pe.-: 165 + 4 L7 4 1% 4 354
L(:V"v‘;r oy 1.80+0.14 3.37+0.17

. ) 4 153 4 166 & 320
Limit
Sample 1|qq (rad) | Error Window | s (rad) |Error Window | ¢ (rad) |Error Window
Upper
-0.12 1.50 7.49
Limit | 232+ Ll Ll Ll
Lower 27 0+ 1.50 3.09 £4.40
Limit 4 45 4 -1.50 4 -1.31
Table 10: Max. and Min. Error in Joint Variable Prediction
Predicted vs. Theoretical Joint Variables
Absolute q1 q2 qs3 q4 qs qs
Error (rad) (rad) | (rad) | (rad) | (rad) | (rad)
Maximum 0.12 0.14 0.17 2.20 1.50 4.40
Minimum 0.00 0.00 0.00 0.02 0.00 0.08
Average 0.022 0.058 | 0.056 0.56 0.46 1.5

10.2 6 Axis CNC Machine
Note: All results for the 6 Axis CNC Machine are presented in Appendix C.

A 6 Axis CNC machine with a rotary table and an X,Y,Z axis tool with a rotating

axis is chosen for this study. A common example of such a CNC machinery is the high

speed precision milling CNC machines used in the industry today. A kinematic model of

the CNC machine, provided in Figure 62 (Appendix C), is first generated to analyze and

accurately model the configuration of the machine. The tool of the machine is considered

as the end-effector of a manipulator, the tool axes of motion are represented by 3

translational joints and a rotational joint. The rotary table of the CNC machine is

represented by 2 rotational joints. The individual components are clubbed and modelled

as an open kinematic chain with 6 DOF (RRRTTT). The developed kinematic chain

(CNC manipulator) emulates the behaviour of the CNC machine with respect to its

function.
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Table 19 represents the D-H parameters used to model the CNC manipulator
along with the range of motion for each joint variable. Similar to the previous case study,
a step size of 10 was chosen to generate the manipulator’s total workspace and to
compute its corresponding singularity space which yielded 10° joint configurations. Each
of these configurations when processed through the forward kinematics equation, A06
(Appendix C MATLAB Outputs), yielded the same number of configurations in
Cartesian space. The joint variable range for each joint with a step size of 10 is
represented in Table 20. Out of the 1 million points generated, it was observed that there
were no repeated points based on the X, Y, Z coordinate values, and therefore the

Cartesian space consisted of a set of unique 1 million configurations.

The complete 3-D workspace of the CNC manipulator, represented in Figure 63,
has a topology of a spirally coiled gastropod shell flattened at one end. From the top and
front view of the total workspace (Figure 64), a void towards the center as well as the
flattened end of the workspace can be seen. This void area is inaccessible by the end-

effector of the CNC manipulator.

Since the CNC manipulator does not have wrist configuration, the Jacobian in the
base frame is analyzed for any kinematic singularities that may be present as seen from
Appendix C (MATLAB Outputs). A kinematic singularity condition for the CNC
manipulator is only observed when the second joint assumes a specific value thereby
cancelling the effect of the first and third joints on one another. The singularity condition

is represented in Equation 78.

Singularity Condition : 6, =0 (78)

Figure 65 represents the total workspace and singularity space for the CNC
manipulator. From this figure, the singularity space for the manipulator is only observed
as a single coiled path (red colour) at the boundary of the workspace. From Figure 66,
which represents the total singularity space, it is observed that internal singularities are
also present in the manipulator workspace. The total singularity space for the CNC
manipulator is therefore a planar subsection of the total workspace that extends along the

z-axis. Analysis of such visual representations of the singularity zone(s) is useful in
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evaluating and enhancing manipulator functionality and performance. The task space
manipulators can therefore be planned for by taking into account the singularity space

and not just the total workspace of the manipulator.

For computation of an inverse kinematics solution, a random subset of joint
configurations with a step size of 3 is chosen from the joint space of the manipulator.
Table 21 represents the joint angle values used for training the ANN. The model
reevaluates on the newly provided joint configurations and develops a subset of the total
workspace and singularity space as represented in Figure 67. The Cartesian space
configuration of this subset workspace is normalized and provided to the network as
inputs. The joint angle configurations are normalized and provided as targets. It can be
seen from Figure 68 that it takes only about a minute and a half and 316 epochs to
develop an inverse kinematics solution for the CNC manipulator. The error histogram
from Figure 69 shows the concentration of errors from the trained network nearly at zero
thereby representing a well-trained network. The error histogram demonstrates an
excellent normally distributed curve with the majority of errors in the range of +0.006.
The regression plot from Figure 70, shows an overall R value of 99.99% thereby
indicating that the network outputs perfectly fit to the supplied targets. The network
training was prematurely stopped at epoch 316 where the best validation performance for
this network was reached, as seen in Figure 71. Early stoppage was executed since the
performance of the network had reached nearly zero. Therefore, no validation fail checks
were performed as seen from Figure 72. From the same figure we observe that the
network gradient and learning rate (mu) had reached a fairly low value indicating a
satisfactory training process. The inputs and bias values to the hidden and output layer are
provided in Appendix C (MATLAB Outputs). A summary of the ANN Inverse Kinematic
results are provided in Table 11 below. The network has a high accuracy since each input
point was mapped to a unique combination of joint set configurations. A comparison
between the network outputs and targets (joint configurations) is presented in Figure 73.
Because of the high accuracy of the trained network, the outputs are completely
superimposed onto the supplied targets for joint variables. The network performance is
validated from the residual error plot presented in Figure 74 which represents

minimalistic absolute residual errors between the networks outputs and targets.
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Table 11: ANN Results for 6 Axis CNC Machine

S.No. ANN Network Indicator Result

1 Total Epochs 316

2 Epoch for Best Validation Performance 316

3 Overall Regression (R) Value 0.99999
4 Mean Square Error (MSE) 0.000011
5 Training Performance 0.000007
6 Testing Performance 0.000029
7 Validation Performance 0.000029
8 Error Histogram Center (Bell Curve) 0.000218

To develop a path planning model, the singularity points from the subset
Cartesian space are simulated over the trained network to provide predicted joint variable
configurations for singularity. Figure 75 represents a comparison between the ANN
predicted and theoretical joint configurations. Since very minimal variation is observed, it
can be concluded that the network is able to predict the singularity configurations very
accurately. Figure 76 represents an absolute residual errors plot between the predicted
and theoretical joint configurations. The predicted joint variables are mapped to their
corresponding Cartesian space and compared with the singularity points as presented in
Figure 77. It is observed that the predicted singularity of the model completely
superimposes the theoretical singularity. This validates the robustness of the path
planning model as well as the robustness of the developed inverse kinematic mode using
ANNSs. The absolute errors in joint space between the ANN predicted and theoretical
joint variable configurations are presented in Table 12. Table 14 represents the maximum
and minimum errors in joint prediction which help define an error window (Table 13) to

aid in path planning.

87



Table 12: Sample Theoretical vs. Predicted Joint Variable Error

Joint Variable Joint Variable Absolute Error
K Predict
Sample (Known) (Predicted) Eq) | E(q) | E(q)
No. qt qz g3 qt qz B Gad) | (rad) | (rad)
(rad) | (rad) | (rad) | (rad) | (rad) | (rad)
1 0.70 0.00 1.56 0.70 | -0.02 1.56 0.00 0.02 0.00
2 0.48 0.00 -1.03 0.48 -0.01 | -1.02 0.00 0.01 0.01
3 -0.92 | 0.00 0.14 | -0.94 | -0.01 0.15 0.02 0.01 0.01
S I Joint Variable Joint Variable Absolute Error
31;‘:)1’ ¢ (Known) (Predicted) E(q4) | E(qs) | E(qe)
" | q4(m) | qs(m) | qs (m) | qa (m) | qs(m) | qs (m) | (m) (m) (m)
1 0.00 0.00 0.39 -0.02 | 0.00 0.37 0.02 0.00 0.03
2 -0.26 | -0.18 | -0.21 | -0.25 | -0.19 | -0.24 | 0.01 0.01 0.03
3 -0.13 | -0.18 | -0.21 | -0.14 | -0.17 | -0.22 0.01 0.01 0.01
Table 13: Error Window for Path Planning
Sample 1| q; (rad) |Error Window | q, (rad) |Error Window| q3 (rad) |Error Window
Upper 4+ 073 £+ 001 4 160
mit_ 074,03 0+0.01 1.56 + 0.04
A 4 067 4 001 4 15
Limit
Sample 1| q4 (m) |Error Window| qs(m) |Error Window qe (m) Error Window
Upper 4+ 0.03 4+ 001 4 041
imit o 0,03 0+0.01 0.39 + 0.02
- 4 -0.03 4 -001 4 037
Table 14: Max. and Min. Error in Joint Variable Prediction
Predicted vs. Theoretical Joint Variables
Absolute q1 q2 qs3
Error (rad) | (rad) | (rad) Q4 (m) | qs (m) | qo (m)
Maximum 0.03 0.01 0.04 0.03 0.01 0.02
Minimum 0.00 0.01 0.00 0.00 0.00 0.00
Average 0.007 0.014 0.006 0.018 0.006 0.015
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10.3 Reconfigurable Model Applications

From the two case studies presented, the robustness of the developed model can be
validated. The reconfigurable model can be used to analyze and validate the performance
criterion for a wide range of industrial manipulators as well as non-conventional
machinery structures that can be parameterized in a similar fashion to kinematic
manipulators. Unlike other software that can only cater to standard manipulator
configurations, the developed model can reconfigure to any manipulator configuration

based on user inputs and generate results accordingly.

The model can be used as a design tool for development of kinematic structures based
on pre-defined functional requirements and for downstream optimization problems. It
also serves as an excellent tool for workspace and singularity analysis by not only
theoretically computing the functional workspace of the model but by also providing a 3-
D visual understanding of the manipulator reach and functionality. The model is also
successfully able to provide a non-conventional and computationally inexpensive solution
to the problem of inverse kinematics by using ANNSs. This technique is highly beneficial
in developing a path planning and collision detection model. The proposed method can
also successfully aid in development of robotic work cells where it is crucial to

understand the reach conditions of robot(s) with respect to their environment [66].
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CONCLUSIONS AND FUTURE WORK

A reconfigurable model is developed to gain an insight into the functionality of
industrial manipulators and optimization of their performance. The developed
reconfigurable model is successfully able to provide a forward kinematics solution, an
inverse kinematic solution, a 3D visual representation of workspace and kinematic
singularity, an analysis of the manipulator Jacobian, and a model to aid in path planning
of robots. The model provides promising results for both wrist and non-wrist partitioned
manipulators as well other machinery structures such as CNC machines that can be
modelled kinematically. This model can be successfully used for optimizing the
placement of industrial manipulators in an industrial setting and understanding their reach

conditions based on an analysis of their functional workspace.

This research lays the foundation for the development of a reconfigurable model that can
adapt to various manipulator configurations and provide the aforementioned analytical

tools. Future work for expanding the scope of analyses incudes:

1. Modelling of higher DOF redundant robots and machine structures

2. Expanding on the type of manipulator joints to be modelled

3. Developing dynamic equations of motion for a manipulator by expanding on the
Newton-Euler Recursive method

4. Incorporating simultaneous analysis of several kinematic chains and optimizing
their placement with respect to one another within the same work cell

5. Developing a trajectory planning and collision detection model

6. Incorporating a wider range of joint variable ranges for training the ANN model

7. Expanding on the ANN model architecture for an improved accuracy in prediction

of wrist configurations

The developed tool will aid to further research in the field of industrial robotics. It
will also help robot designers, manufacturers, as well as end-users to understand the true
functionality and capabilities of any manipulator. The research can ultimately be

extended to incorporate complex robot structures such as parallel link manipulators etc.
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APPENDICES

Appendix A: Results for SCARA Robot

Table 15: SCARA Joint Variable Range

2 3
5. No. (r(tllld) (r(tlzd) (n(zlm )
1 222 | 253 [-297.00
2 203 | -232 | -288.67
3 185 | -2.11 | -280.33
4 166 | -1.90 |-272.00
5 148 | -1.69 | -263.67
6 129 | -1.48 |-25533
7 L1 | 126 | -247.00
8 0.92 | -1.05 |-238.67
9 2074 | -0.84 |-230.33
10 20.55 | -0.63 |-222.00
11 037 | -042 |-213.67
12 0.18 | -021 |-205.33
13 0.00 | 0.00 |-197.00
14 018 | 021 |-188.67
15 037 | 0.42 |-18033
16 055 | 0.63 |-172.00
17 074 | 084 |-163.67
18 092 | 1.05 [-155.33
19 111 | 127 |-147.00
20 129 | 148 [-138.67
21 148 | 1.69 |-130.33
22 1.66 | 1.90 |-122.00
23 1.85 | 211 |-113.67
24 203 | 232 [-105.33
25 222 | 253 | 97.00
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Meural Network

Algorithms

Data Division: Random  (dividerand)

Training: Levenberg-Marquardt  (trainlm)
Performance: Mean Squared Error  (mise)
Derivative: Default (defaultderns)

Progress
Epoch: o [0 S0Lierations | 1000
Time: [ 0:09:22 ]

Performance: 104 [ el ] 0.0
Gradient 121 [ 605 T | 1.00e-07

Mu: 0.00100 | 1.00e-07 | 1.00e+10
Validation Checks: 0| 0 | &

Figure 39: ANN Architecture for SCARA Robot

Best Validation Performance is 1.0743e06 at epoch 501

10°
Train
Yalidation
Test

uny | e Best

Mean Squared Error {mse)

1 1 1 1 1 1 1 1 J
0 a0 100 150 200 250 300 350 400 450 500
501 Epochs

Figure 40: Performance Plot for SCARA Robot
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Appendix B: Results for FANUC M16iB/20 Robot

FANUC M16iB/20 Robot

Figure 46: FANUC M16iB/20 Robot

Table 16: D-H Parameters for FANUC M16iB/20 Robot

Robot: Fanuc M16iB/20
| . JOilIl)t-H parafneters . Lower Upper
Joint | Link Offset Angle Link Length | Twist Angle | Joimnt | Joint
(m) (rad) (m) (rad) Limit | Limit
1 di= 0525]| 61= 6| as= 0150 | u= -p1/2 | -2.97 2.97
2 d> = 0 0= 02| aa= 0770 | ;o= 0 -1.57 2.79
3 ds = 0 03= 03| as= 0.100 | a3= pi/2 -2.97 5.06
4 de= 0740 | 4= 04| ag= 0 a4= -pi/2 | -3.49 3.49
5 ds = 0 0s= 05| as= 0 as=  pi/2 -2.44 2.44
6 ds= 0.100 | 6= 06| ac= 0 o6 = 0 -7.85 7.85
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Table 17: FANUC Joint Angle Range for Workspace Generation

Angle Configuration Range for Workspace Generation
S.No. | qi1 (rad) | q2(rad) | q3 (rad) | q4 (rad) | qs (rad) | qe (rad)
1 -2.97 -1.57 -2.97 -3.49 -2.44 -7.85
2 -2.31 -1.09 -2.08 -2.71 -1.90 -6.11
3 -1.65 -0.60 -1.18 -1.94 -1.36 -4.36
4 -0.99 -0.12 -0.29 -1.16 -0.81 -2.62
5 -0.33 0.37 0.60 -0.39 -0.27 -0.87
6 0.33 0.85 1.49 0.39 0.27 0.87
7 0.99 1.34 2.39 1.16 0.81 2.62
8 1.65 1.82 3.28 1.94 1.36 4.36
9 2.31 2.31 4.17 2.71 1.90 6.11
10 2.97 2.79 5.06 3.49 2.44 7.85
Table 18: FANUC Joint Angle Range for Training ANN
Angle Configuration Range for Training ANN
S. No. | qi1 (rad) | q2 (rad) | q3 (rad) | qa (rad) | qs (rad) | qe (rad)
1 1.44 1.80 3.90 -3.09 1.82 -2.28
2 1.65 -0.58 3.37 -2.32 -1.32 3.09
3 0.87 -0.09 0.52 -0.19 0.99 1.65
Total Werkspace of Robot

3

2

1

E

Y m)

Figure 47: Workspace of FANUC M16iB/20 Robot
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Instances

Meural Network

Hidden Output

Algorithms

Data Dwvision: Random  (dividerand)]
Training: Levenberg-Marquardt (trainlm)
Performance: Mean Squared Error  (mise)
Derivative: Default (defaultderiv)

Progress
Epoch: 0 E 23 iterations | 1000
Time: | 0:00:06 |

Performance: 814 0.0
Gradient 651 1.00e-07

Mu: 000100 | 1.00e-05 | 1.00e+10
Validation Checks: 0 | f | 6

Figure 52: ANN Architecture for FANUC M16iB/20 Robot

Error Histogram with 20 Bins
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Figure 53: Error Histogram for FANUC M16iB/20 Robot
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Figure 54: Regression Plot for FANUC M16iB/20
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Figure 55: Performance Plot for FANUC M16iB/20 Robot
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Figure 56: Training State Plot for FANUC M16iB/20 Robot
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MATLAB Output for FANUC M161B/20 Robot:

AlG =

[ - sin(theta&)*(cos (thetad)*sin(thetal} - sin{thetad)*{ces(thetal) *sin{theta?) *sin¥
{Cheta?) - cos(bhetal) *cos(theta?) *cos{thetal))) - cosithetad)*{cos (thetad) * (zin{thetal) ¥
*sin(thetad) + cos(thetad)*{ces(thetal)*sin(theta?)*sini{thetald) - cos(thetal)*cos(theta?) ¢
teos(thetad))) + sin(thetaS)* (cas{thatal) *cos(theta?) *sin{thetal} + cos{thetal) *cos e
{theta3)*sin(theta2))), sin(thetad)*{cos(thetad)* (sin(thetal)*sin(thetad) + cos(thetad)r ¢
{eosthetal) *sin{theta?) *sinithatad) - cos(thetal)*cos{thata?} *cos{thatal))) + zine
{theta%)* (cos (thetall *cos (theta?) Ysin(thetad) + ces(thetal)*cos(thetad) *sin(thetal)}) -+
cos(thatad) * (cos {Chetad) *sin{thatal) - sin(thetad) * (cos{thatal) *sin(thetal) *sin(thatal) -«
cos(thetal) *oes (theta?) *cas (theta3))), cos(theta®) *(cos(thetal) *cos (thetal)*sin(thetad) +¢
cos(thatal) *oos (thetad) *sin{theta?)) - =inlthetad)* (sin({thetal) *sin(thetad) + cos(thetad) ¢
¥ (coz{thotal) *sin{theta?) *sinithetad) - cos({thetal) *coz {thetal) *cos (thetal) ), (3vcosy
{thatal)) /20 + (77*cas{thatal) *cos [theta?)) /100 - (ces(thatal)*sin{theta?) *sin(thetal))
/10 = {zin(thetal)*sin{thetad) *zini{thetas)) /10 + {sin(thetaZ + thcta3}lccs{thcta1]‘eosf
{thatas)) /10 + (cos{thetal) *cos(bhetal) *ces(thetal)) /10 + (37*cos(thetal) *cos (theta?) *sind
{theta)) /50 + (3T7*coz{thetal) *cos (thetad) *zin({theta2)) /50 + (cosithetal) *coz{theta?) *cose
{thetal) *cos (thetad) *sin(thetad)) /10 - (cos(thetal) *cos(thetad) *sin(theta?) *sin(thetal) ¥
kain(thetas))/10]

[ sinithetas)* {cos (thetal) *cos(thetad) + sin(thetad)*{sin(thetal)*sin{thetad)*siny
{thotal) - cosz(CheLa?) teos(thetad) *zin{thetall)) + cos(thetad)* {cos(thetad) * (cosz(Lhatal) v
*sin(thetad) - cesithetad)*(sin(thetal) *sin(theta?}*sinitheta3) - cosithetal)*cos(thetad)
tsin{thetal))) - sin(theta%)*{cas{lhata2)*sin{thetal)*sin{thetad) + cos{theLal)*sin¥
{thetal) *sin(theta2))), cos{thetad)*{ces(thetal}*cesithetad) + sinithetad)* (sin(thetal) #
*zin(theta?) *sin{thetal) - cositheta?)*cos (Lhetad)*sinithetal})) - sinlthetaf) = {casé
{thetas) * (cos {(thetall *sinfthetad) - cos(thetad)* (zin{thetal) *sin(thetad) *sin(thetal} -¢
cos (bhaka?) *cos (thetad) *sin{thetal) )} - sin(thetad}*{cos (theta?) *sin{thetal)*sin{thatal) ¢
b ocoz{thetad) *sinithetal) *sinitheta?)) ), sini{thetad)¥(cos(thetal)*sinithetad) = coa¢
{thatad)* (sin{thetall#sin(thata2) *sin(thetad) - oos(Lheta?)Teos {thetad) *sin(thetal)}) +¢
coz(thetad) ¥ (cos {thota2) *zin(thetal) *zin(theta3) + cos(thetad)*sinithetal) *sin(theta2)), ¢
{3*sinithetal) /20 + (77*cos(thetal) *sin(thetaly) /100 + (37*cos{thata?) *sin{thetal) *sine
{thetal)) /50 + (37*cosz{thetal) *sin(thetal) *zin(thetal)) /50 + (cos(thetal)*sin{thetad) *sine
{thetad)} /10 - (sin{thetal)*sin{theta?)*sin(thetal}) /10 + (sin(theta? + thetal)*ces¥
{CLhetab) *sin(thetal)} /10 + {coz(theta?)*cez(thetad) *zin{thetal)) /10 + ﬁcas{thctaZ]‘nosf
{theta3) *cos (thetad) *sin(thetall *sinfthetas)) /10 - (cosithetad) *sin(thetal)*sin(thetal) ¢
tzin(thetal) *sin{thetald))/10]

¢

sinf{theta? + thetad)*sin(thebad)*sin{thataf) - cos{thelaf)* (coz{theta? + Lhetal)tzind
{thetah) + sinitheta? + thetal)*cos(thetad) *cos(thetalh)), ¥

sin{thetad) * (cos{theta? + thatad)*sin(thetas) + sin(theta? + thetad)*cos(Chebad) *cosy
{thetah)) + sin(thets? + thetald)*cos(thetad) *sin(thetad), ¢

cesibhaba? + Chetal) *cos{thetaS) - sin{theta? + thebald) *cos(thetad) *sin{thetas), ¢

{37*cos (theta? + theta3)) /50 - sin(theta2 + theta3) /10 - (77*=in(theta?)) /100 + (sine
{thatad - thetaS)*sin(theta? + theta3))/ 20 - (sin{theta? + thetad)*sin(thetad + thetad)) ¢
JED 4+ dcos(thota? + thetad) *ecos(thetab)} /10 + 21/40)
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Input weichts =

ans =

Czlumnz 1 through 2

-2.1%
-1.77 0.8
a.01
-0, 01 0.0
=1.93
-0, 66 -2.16
=0.30
n.13 -0.29
-0.01
1.4% 0.16
-G.00
0.1 0,01
-0.11
-0.27 1.7%
0.65
=072 -1.82
-0.26
1.20 -0.495
0.22
0.4l 0.30
=-1.20
-1.02 1.05
-(.52
1.54 1.409
1.15
-0.E80 )
.02
0.01 -0.01
.23
-0.16 -0.75
=, 62
0,91 —1.45
=01
0,47 0.00
.08
n.07 -0.04
0,63
-0.78 -, 08
-0.53
0.76 n.al
-0.46
0.76 2.17
-0.01
=018 =000

L4

L3

-

23

121

0.

.14

.06

.8l

[ ]

Laz

.16

.26

.01

.01

.21

.38

.37

L0z

a0

.93

.52

.05

.24

0.

31

L04q¢

s

R4

A1

L4z



=1
[
I

0.2z

-0 24

-0.27

=-1.5%%
¢.71
l.63
0.11
-01.1%

122

0.

bt
s

.11

L1

L0

W23

.18

74

.01

A6

21

.05

26

LB

Llg

0,30

LT
VAT
.01
AT
.0z
L3
il

AT

L9l
L0z

LA



-1.96 .38
-1.62
0.56 =-0.37
=i, 50
-1.36 0.23
2.20
-(.85 1.85
.52
-, 28 O.EG
=.04
-1.11 -2.31
G.07
1.65 1.31
=1.41
0.24 -1.04

Columns 10 through 12

-0.71
-0.15
=64
.11
.43
4,66
-1.15
=.40
3.55
-0.68
=1.07
-0.64
.52
.11
.82
.44
1.17
2.03
0.23
=3.72
-0.28
d.4d1

[==]

"

=004
=0.25
-.42
d.16
- 75
-1.44%
—-4.60
.04

(]

e e }

-
LI T
—_

Ln

F.20

0.0s

0.69

.17

-1.06

=, 20
-0.75
=, %4
.34
=J.01
=0.40

]
[=U e
-4 g
o W

-1.7.

1 I 1
o Fo kR ]

L= T -
Ler OO LN ad

] | ] |
(= R N ]
. . . ' . "
[= TS WP s N E R L]
Mol 00 ds 0 0D W -l
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95

i

L43

.21

.08

-0.11¢

-0.34¢
-0.21¢

=1.24¢



1.17
a.78
=0.13
=-1.71
1.0%
=, 92
1.253
-.22
2.03
=0.81
-0.27
=g.77
-1.02
0.23
0.3
-1.83
-1.02
G.22
.63
0.23
=, 32
=0.57

Layar welghts

ans =

Columns 1 through 9

0,02
=001
0.03
0.0z -0.06
-0.02
003
-, 69
0.1z -0
.37
1.1z
1.03
- 64

Columns 10 through 18

-0.15

o.ac =0

0.20

0.0z =008

=002
-0.02
b.28%

[ =Y
[a%-]

-1 R m = S |

o T
LA o k& 0 n G -] 3D

% T L [

fis
[

Erotad G b REORD
O oS 0D 0D

[
[

e
.02
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.23

.15

"
o

0. 62

L7

003

L3

'A3

.39

L1

00

.27

.

Ty
L0l

17

L1
03
Nijl'e

A1



0.42

-0.15

-0.92

Columns 19 through

-0.28

Columns 28 through

=002

-0.56

1.39

=i, 08
Q.70

.03
-0.02
.01
.ol

=002
0.00

=0.47
0.6l
0,02
.55

27

0.a1

=002
=0.02
-0.@1
003
-0.10
011
=072
-0.75
.03
029

EL

Columnz 37 threugh 45

r.oe

=0.11

-0.14

0,19

G.06
0.0l
=007
=0.02
.07
=00z
0,58

=000

L

L2

L0z

-1
i
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=0

o,

v,

.05

]

.02

LT

W15

.0z

.04

03

LA3

.15

.0z

.05

L03

wn
o

.38

.10

.03

14

12

.26

.21

BTy



Columns 44 throuoh 54

-0, 06 -0.04
=012 =002 .06
.03 0.04
0,a0 0.04 -0.04
G.o0 -0.01
=006 =002 002
=0, 40 -0.18
1.37 1.30 0.19
0,26 —-0.53
1.23 =0.53 =0.97
-G.43 .47
o.e0 =-0.01 =025
Column 5%
-(.08
.05
-0.04
=(.13
.47
-1.23

Input hias =
ang =
3.61

-1.69
3.34

A
RN T
=1 40

[ I e A

-1.08
-1.52
=1.10
1.50
1.32
-1.22
-} B0
-04.87
L.33
-0.13
.92
- 589
1.1%
=3.01
G.75
-3, 38

.08

-0.048

=0.01

=0.50

-1.481

-0.13
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L

.0l

L46

L6

.00

.01

Lae

.01



=i, i

G.4q1

409
-0.11
-1.08
-0.11
-id.11
=-0.30
-1.23

.48
=0.32
-G, 34

0.56
-1.00

1.33
-1, 54
-0.55%
-, ED

0.8d

1
-0LB0
-1.13

.38

-1.9%

Layer hias =

ani

=340

.82
=2.05

0.23
-i}.46
-1.33

crformance =

™
Ir

Hetwork

f.0198

g =

Training Ferformanc
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¢.01035

Validatien Performance =

G.0505

Testing Performance
G.0638

Jacobizan in Base Frame

[ G.1%sin{thetal) *sinitheta?) *zin(thatad) - 0.77=cos{theta?) *zin(thetal) - 0. T4*casd
{thetaZ)*sin(thetal) *sin(thetad) - 0.7d%cos (thotad) *sindthetal) *sin(theta?) - 0.1%cozé
{thatal)*sin(thetad) *sin(thetad) - 0,.15%sin(thetal} - 0.1*cos(Cheta?) *cos (thetad) *sind
{thetal) - 0.l%ces(thetaZ) *cos{thetaS) *zin{thetal) *sin(thetad} - 0.1%cos (thetad) fcosé
{thetas)*sin{thetal)*sin(theta?) - 0.1%*ces(theta?) *cos(thetad) *cos(thetad) *sin(thetal) ¥
tsin(theta5) + 0.1%*cosz({thetad)*sin{thetal)*sin(theta2)*sin(thetal3) *sin(thetas), -0.01l%cosy
{thetal)* (77.0*sin(theta?y - 74.0%cos (thetaZ) *cos(thetald) + 10.0*cos(thetal) *sinithetad)
+ 10.0%cos (thetal) *sind{thata?) + 74.0*zin{theta?) *sin({thetal) + 10.0%o0s (thetad) feine
{thzta?) *sin(thetal) - 10.0%cos (theta?)*cos(thetad)*cosithetas) + 10.0%ces(theta?) *cosé
{Lhalad) *sin(theta3) *zin(thetad) + 10.0%cas(thetal) *cos{Lhalad) tsin(thela?) *zinithetad)y, ¢
=0, 02%cos (thetal) * (5.0%cos (theta) *sin(thetad) = 37.0%cositheta?)*cos(thetald) 4 5.0%cos#
{Chata®) *sin(theta?) + 37.0%*sin(theta?) *sin{thetal} + 5.0%*cos (thetaS) *sin{theta?) *sine
{thetad) - O.0%cos(theta?) *cos{thetal) “cos (thetas) + 5,0%cos(thetal) *ros(thetad) tsin’
{thetad)*sinithetas) + 5,0%cos{thetad) *cos(thetad) *sin{thata?) *sin(thatas)), -0.1%sine
{thetad) * (cos(thetad) *sin(thetal) 4 cos{thetal) *cos(theta?)*coz{thetad) *sinithetad) = 1.0¢
*oos (Lhetal) *sin(theta?) *sin(thetad) *sin (thetad)), 0.1%cos(thatal) *cos (Lheta?) *cos
{thetal) *cos (thetad) *eos {thetal) - 0.1%cos(thetal) *cos(theta2) *sin{thetald) *sin(thetad) -
i, 1*cos (thetal) *cos{thatal) *sin (theta?) *sin(thetad) - 0. 1%cos(thetab) *sin(thetal)*sind
{thetad) - 0.l*%cos(thetal) *cosithetad) *cos (thetad) *ein(theta?) *ain{thetal), ¢

il

[ 0.15%es (Lhetal) + O0.77*%cos(thetal) *coz{LhataZ) - U.l*costthetalj*si:{LhctaE]*sir.f
{thetad) - 0.1*sin(thetal)*sin{thetad)*sin(thetas) + 0.1%cos{thetal) *cos(thetal) *cose
{theta?) + 0.74%cos{thetal) *oos (theta?) fsinithatad) + 0.74%ces (thetal) *eos{thetal) *aind
{theta?) + 0,1%cos(thetal)*cos{theta?)*cos (thetas)*sin(thetad) + 0.1%cos (thetal) *cosé
{Lhatai) tcas(thetaS) *zin(theta?) + 0.l%*cas(thetal) feos(theta?) *eos (thata3) veaos (thetad) ¢
*sin(thetad) - 0.1%caos(thetal)*cos(thetad) *sin(thetaZ) *sinfthetad) *sin(thetat), =0.01%sine
(Lhatal)* {77, 0%sin(theta?d - T4 0%cos (Lheta?) *cos {thetad) + 10.0*cos (theta?) *sindthatal) ¢
¢ 10.0%cos (thetad) *sinftheta?) + 74.07sin{theta?)*sin(thetal) + 10.0%cos(thetas) *sin
{Lhata?) *sin(thetad) - 10.0*cos (Lheka?) *cos (thetad) Feos (bhataS) + 10.0%cos{thetal) *cosé
{thetad) *sin(thetad)*sin(thetad) + 10.0%cos (thetald) *cos{thetad) *sin(theta?) *sin(thetad)), ¢
-0.02*sinthetal) * (5. 0%cos (theta?) *sin{thatad) - 37.0*ces(theta?)*cos(thatad) + 5.0%cos?
{theta3) *sin(thetaZ) + 37.0%zin(thetaZ) *zin(thotald) + 5.0%cos (thetas) *sin(theta?) *sind
{thetald) - S.0%ces (theta?) foos{thetald) *eos (thetak) + 5.0%cos(thetal) *oos (thetad) *sind
{thetal) *zin(thetad) + 5.0%cos{thetad) *cos (thetzd) *sin(theta?) *sinfthetad)), 0.1%zine
{thetas)* {cos (thetal) *cos (thetal) - 1.0*cos(theta?) *cos (thetad) *sin(thetal) *sin(thetad) +¢
sin{thetal) *sin(theta?)*sin{thetal) *sin{thetad)), 0.1%cosithetal)*cos (thetal) ¥ain (thetad)
- §.1%*cos(theta?) *sin(thetal) *sin(thetad)*sinitheta’) - {.1%cos{thetal)*sin{thetal) *sin¥
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{theta?) *sin(thetas) + 0.1%cos{theta?) *cos(thetad) *cosithetad) “cos{thetas) *sin(thetal) -
i.1*cos (thetad) *cos{theta%) *sin(thetal) *sin(theta?} *sin(thetad), ¢

0]

¢

o, D.1*zin{theta?) tzin(thetald) - 0.1%os (theta2) tcos (Lhetal) -
0, M*ces{theta?) *sin(thetad) - 0.74%ccs (thetald)*sinitheta?) - &.71*cos (thetaZ) - 0.1%cosV
(thata2) *eos (thetal) *sin(thetal) - 0.1%cos(thetal) *cosithetad) *sin{theta?) - 0.1ltcoae
{theta?) *cosithetad) *oos (thetad) *sin(thetad) + D.1*cos(thetad)*sinitheta?)*sin(thetal) ¥
tzinlthetady, - L.0%(zin{thetaf)* {cos(theta? + thetad) *sinf{thetas) + zin{theta? + thetal) ¢
*oes(thetad) *cos(thetad)) 4 sinitheta? + thetad)*ces{thetad)*sinlthetad)}* (0. 1%cos v
(thatad) *sinithetaf) + 0. 7d%cos(thetaf) *sin(thetad) + sin(thetad)* (D, 1*sin{thatad) + 0,74
*oos (thetad) *cos{thetad)) + 0.1%cos(thetad) *cos (thetaf) *sin(thetad)) - 1.0% (cos (thetad)
{zos(theta? + thetal)*sin(thetaS) + sin(theta? + thetald)*cas{thetad) *cos (thetad)) - 1.0¢
*sin(theta? 4 thetad)*sin{thetad)¥sin(thetaf))* (0.1%cos {thetad) *cos (thetaf) = 0.74%sine
{thatadi*=zin(thetaf) + cosithetz)*(0.1*sin(thatad) + O.T4*cos (thetad) *cas{thatad)) - 0.1«
*eos (thetaf)'sin{thetad) *sinithetaf)) - 1.0%{0.1%cas{thetas) - 0.7d%cos{thetad) *sine
{theta5))* (cositheta? + thetal)*cos(thetad) - 1.0*sin(thets? + thetald) roos{thetad)*sine
{thatas)), ¢

0.1*sin(theta? + thetal}*sin(thetad) *sin(thetady, ¢

- O.1%zos (theta? + thetad)*sin{thetas) - 0.l*zin(theta? + thebad)*cos (Chetad) *eosy
{thetah), ¥

0]

4

0,¢

-1.0*sin{thetal), ¥

-1.0%ain{thetal), ¢

ain{thetaz + thetal)*cos(thetal), ¢

cas(thabal) *sinitheta?) *sin{thetal) *sin{thatal) - 1.0*cos(thetal) *cos (bhata?) *oos (Lhetad) ¢
*sin(thetad) = 1.0%cos{thetad)*sinithetal), cos{thetad)* (cos(thetal) *cos(theta?) *sind
{thatad) + cos(thatal)*cos(thetald)*sin{theta2)) — 1.0%sin{thetas)*{sin(thetal)=sin?
{thetad) + cos(thetad)*icosithetal)*sin(theta?) *sin(thetad) - L.0%cos (thetal) *cos (theta2)
*oos (thetald) )]

[¢

i0,¢

cos (thetal), ¢

cosz(thetal), ¢

szin(theta? + thetal)*sin(thetal), ¢

cos{thetal) *cos (thetad) - 1.0%cos{thetal)*cos(thetad)*sinlthetal)*sin(thetad) + sin¢
{thatall *sin{theta?) *ain(thetad} *sin(thetad), coes{thotaS)* {cos(theta?) *sin{thatal) *zine
{thetad) + cosithetad)*sin(thetal)*sin{theta2}) + sin(thetab)*(cosithetal) *sin(thetady =+
1.0% o5 (thetad) * {sin(thetal) *sin{thata?) *sin{thetal) - 1.0*%ces (theta?) *cas{thatal) *siné
(thetal) i)

[¢

{cos (theta? + thetad)*cos(theta%) = 1.0%szin(theta? + thetal)*cos(thetad)*sin(thetad)) 2 +¢
{zos(thetab)* (cos (bheta? + thetald)*sin{thetad) + sin{theba? + thetal)*ces(thetad) *casé
{thetab)) - l.0%zin{thetaZ + thetal)'sin(thetad)*zinithetad)) 2 + {sintthetaE}*[cosf
{theta? + thetad)*sin(thetad) + sin{theta? + thatal)*cos(thetad)*cos(thetal)) + zind
{thetaZ + thetad)*cos (thetad) *sin(thetad)) 2, ¢

i, ¢

0,

cos(theta? + thetad), ¢
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sin{theta + thotaEh*sin[thntaQ}rf
cos{thetaZ + thetald)*cos(thetad) - 1.0%sin(theta? + thetald)*cosi{thetad) *sin(thetad) ]

Jacobian Subset J11
[ O.l*zinithetal) *ein(thata2) *zin{thatal) - 0.77*coz{thata?) *sin(thelal}) - 0.7 ens ¢
{theta) *sin(thetali*sin{theta?) - 0.74*cos(thetadl*sinithetal) *sin(thetad) - O.1%ces
{thatal) *sin(thetady *sin(thetad) - 0.15%zin{thetal) - 0.1%cos (Lhaba?) *cos(thetald) *aind
{thetal) = C.l1%cos(theta?)*ces(thetad)*sin(thetsl)*sin(thetad) - 0.1%cos(thetad) *cose
{thataS) *sin(theltal) *ain({theta?) - 0.1%cos(Lheta?) *cosithetad) *cos{thatad) *sin(thetal)y @
“sinithetad) + 0.1%cos{thetad)*sin(thetal)*sin(theta?) *sin(thetad) *sin(thetad), =0.01%cesy
{Lhabtal)*({77.0%sin(theta?) - T4.0%es (theta?) *eos{thatal) + 10.0%cos (theta2) *sin{thabal)
I 10.0%cos(thetad) *sinithetaZ) + 74.0%sindtheta?) *sinlthetad) + 10.0%cos (thetab) tsind
{Ehata?) *=zin(thetad) - 10.0%cos(theta?) *cos(thetal) *cos (thatal) + 10.0%cos{thakta?) *oose
{thatad) *sin(thetal3) *2in{thatad) + 10.0%cos (that aj} coz{thetad) *sin(thetal) *zin{thetad)), ¢
-0, 02*%cos (thatal) * (5. 0%ces (theta?) *sin (thetal) - 37 . 0%cos(thetal?) *cos (thetal) + 5. 0%cosd
{thetad) bs ntthﬂtach + 37.0%zin(thetaZ) *zin(thet a3} + ;‘G*costthct553*sin[thctaZ}'sin!
{thetad) - J*Ca=t+heta?}’cas{thsta3]*coatthetaai + 5 0*cos{thsta?) *cos (Lhetad) *sind’
¢rh<ra°J* Lntthﬂta:h + 5.0%coz{thetal) *cos (thetad) *sinitheta) *zin(thetad) )]
[ G.15%zes(thetal) + O, ’T*chtfhef=l} cos (theta?) - 0, l*Cﬂq[thT=lﬁ' in{thsta?}*sin¥
{LheLaiJ - D.1*zinithetal) *sin{thetad) *sin (thetas) + 0.1 rcg{tntLul]*to;tLhﬁLaZ**PCﬁf
{thetad) + 0,74*cos{thetal)*cesz(theta?) *sin(thetald} + G,Tq*Cﬁq[tretalﬁ cos {thetad) *sin
{thetaZ) + 0.1*cosithetal) *cos{thotaZ) *cos (thetad) *sinithetal) + 0.1%cos(thatal) teose’
ifhﬂfaSJ*ﬂ*s(th@tabj'sin{theta?} + (,1%ces (Lhetal) *oos (theta?) *cos (thetad) *oos (thetad) ¢
tzin(thetady - 0,1*cos{thatal) *eos (thetad) *sin(theta?) *sin{thekad) *sin(thetad)y, -0.01%5ind
{thetall* (77.0%sin(theta?) - 74.0%ces (thetad) *cos{thetad) + 10.0%cos(theta?) *sinfthetad) ¥
+ 10.0%ces (thetal} #sin{thata?) + 74.0%ain{thata?) *sin(thetad) + 10.0%cos (Lhakal) *sind
{theta?) *sin(thetal) - 10.0*cos (thetal) *cos (thetadl *cosithetas) + 10.0%cos(thetal) *cos?
{thatad) *sinithetad) *sin{thetad) + 10.0%cos {thatald) *cos (thatad) *sin(theta?) *sin{thetaS)y, ¢
=0.02%sin(thetal)* (5.0%ccs (theta?) *sin{thetad) = 37.0%cos(thetal) *cos (thetad) + 5.0%cosy
{thatad) #zinitheta?) + 37.0%zinltheta?) *sin{thatald) + 5.0%cos (thebaS) *sin(theta?) *zin
{thetal3) - 5.0%ces (theta?) “coz{thetal) *cos (thetad) + 5.0%coz{theta?) Ycos(thotad) teind
{thetal) *sin(thetal) + 5.07cos{thetal)*cos (thetad) *sin({theta?) *zin{thatad) )]
[¢
i, d.1*sindthetaZ) *sin(thetad) - ¢.1%cos{theta?) *cos (thetad) -
0.74*cos{theta?) *sinithetald) - 0.7d*coz (thetald) *zin({theta2) - 0.77*%ces (theta?) - 0.1*%coz
{thetal) *cos (thetas) *sin(thetald) - 0.1*ces(thetal) *ocos(thetad)*zinithetal) - 0.1%cose
{thotaZ) *eos (Lhetad) *eos (thetad) *sin(thetas) + O.1l*cos(thotad)*sin{thetaz) *sin(thetaly ¢
*zin(theta%), - L.0%(sin(thetad)*(cos(thetaZ + thetal)*sinithetas) + sinitheta? + thetady ¢
toos (thetad) *cos {thetaS)) + sin(theta? + thetal) *cosz{thotaf)*zin|thetad))}* (0. 1*cos
{thetal)*sinithetaf) + D.74%*ces(thetaf) *sin(thetad) + sin{thetad)*{0.1*sin(thetal) + 0.74¢
*pos (Chetad) *ocos{thata5)) + 0, 1*cos(thataS) *cos (thetad) *sin(thetad)) - 1.0% (cos(thaetad)
{cos(theta? + thetad)*sinithetas) + sinitheta? + thatal)*cosz(thetad) ‘cosithetas)) - 1.0¢
“sinitheta? + thetald)*sin{thatad)*sin(thetaf))* (1. 1%cas(thatad) *cos (Lhebaf) - 0.74%sine
{thetad) *sinithetab) + cos(thetaf)* (0.1%zin(theta’) + 0.74*cos(thetad) *cosithetal)) - 0.1¢
teos (Lhetad) *sin{thetad) *=in{thatad)) - 1.0%(0.1%*cos{thatas) - 0.74*cas (thatad)*sin
{thetab) ) ¥ (cos({thetaZ + thetal)¥cos(thetad)l - l.0%sin(thetaZ 4 thotald) *cos (thetad) *sind
{thatal)}]

Jacohian Subset J22

[ sin{theta? + theta3)*cos(thetaly, cos(thetal)¥zin(theta?)*sin{thetal)*zin(thetad) - 1.0¢
*opsithetal) *cos(thetal) *cos (thetad) *sin(thetady - 1.0%cos(thetad)*sin(thetal), cos¢
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{thetalb)* (cos (thetal) *cos {thetaZ) *sin(thetal) + cocz(thetal)*cozi{thetal)*zinitheta)) -¢
1.0%*sin(thetad) *(sin(thetal) *sin(thetall + cos({thetad)*(cos(thetal)*sin{theta?)*sin¢
{thetaZ) - l.0%*ces (thetal)*coz{thetaz) *coz(thetal)))]

[ sin{thets? + thetal)*sinithetal), cosithetall *eosfthetad) - 1.0%ces(thetaZ) *cos?
{LhataZ) *sinithetal) *ain{thetad) + zin{thelal)*sin(thata?) *zin(thetad) *zin{thatad), v
{thetah) * (cos{thetal) *sinfthetal) *sin(thetaly 4+ cos(thetald}*sin{thetal)*sinitheta2)} ¢
sinf{thatad)* {cos{thetal) *sin{thatad) - 1.0%cas(thetad)*{zin(thetal) *zin{theta?) *zine
{thotald) = l.0*cos(thetaZ)*cesi{thetald) *sinithetalil)]

[ cos (theta? + thetal), ¢

sin{thetaZ + thetal)*sin(thetad), ¥

cosithata? + thetald) *cos(thetad) - 1.0*sinitheta? + thetal)*cos{thatad) *sinithetak)]

Singularity FEouation

The Rebot has a Wrist Configuration

Foraarm Zingularity Foguation

{284% cos (theta?) ) /30000 = {8547*cos({theta3)) /100000 = (77%szin(thetaZ)) /10000 + (231*sziné
{thetald) ) /20000 - (219373*cos (theta?) *cos{thetald) ) /500000 + (77*cos (thetal) *cos{thetah)) ¢
/10000 - (231*cos(thatal)*cos (thetad)) /20000 + (592%5*cos (theta?) *zin(theta3)) /100000 -¢
{28467cos (thetal) *oos (thetal) *2) /25000 - (646B*cos (thetad) *2*sin(thetal) ) /15625 - {T1*cosV
{thetad) *2*sin(thetaZ) ) /10000 + (2843*coz{theta3)*sinithetaZ) *zin(thetal)) /25000 -
{77*cos (thetad) *sin{thata?) *sin(thetab) ) /9000 + (231*cos (thetad) *sinithetal) *sinithetal)) ¢
20000 - (77*cas{theta?) Yeos (Chetald) *2reos (thetab) ) /5000 - (2B49%casz (thetal) "2 oo
{thetas) *sin(theta) ) /25000 + (T7*cos (Lhetady“2*cos (thetad) “2*sin(theta?}) /14000 -¢
{T7*ces (thetal) *2*cos (thetad) *Z*sin{theta?)) /10000 + t?T*cﬂs{LheLa4]“EﬁtﬂstheLJSJ“z*shqf
{thetaZ)) /10000 - (5929%cos (thetaZ) *cosithetald) ¥cos (thetad)) /100000 - (6468*cos (theta?) ¥
vops (Lhetadd*sin{thetad)) /15625 + (2849*cos (thetal?) *cos{thatad) *sin(Lhets’) )} /50000 +«
{77%cos (thetal) *cos (thetald) *cos (thetad) "2¥%sin (theta)) /10000 - (T7%ces (thetal) *cosd
{Lhatal) *cos (thetal) *2*sin (thetad)) /10000 - (284%*%cos (thela?) *ces (thetad) “2*cos (thetad) ¢
“zin(thetad)) /25000 + (77%ccs(thetad) “2*cos(thetad) *sin{theta?) *sin(thetab)) /5000 -
{2845%cos [Lheta?) *ons (thetal) *cas (EhetaS) *sin (thetal) ) /25000 + {77*cos (Lheta?) *oos ¢
{thetad) *cos (thetad) *sin(thotad)) /10000 + t?T*cos{thetaB]*costthctan‘sin(thctaE}*sin!
{thetald) ) /5000 + (5920%cos (theta?) *cos (bhetad) *sin (thetad) *sin (thetaldp ) A 100000 - (7T*rcose
{thetal) *2%cas (thetad) “2*cos (thetab) “2*zin(thetz2)) /10000 - {T74cos (thetal)*cos (thetad) ¢
~#*cos (bhetad) *oos (thetaf) *zin (thetal) ) /3000 - (77*ces(thetaZ) *cos(thetald) *cos (thetad)
f2*coz{thatab)*2*zin{thetai) ) /10000 + {??*co:tthetazﬁ*ccs{LheLa3}*cas{thetad]*sinttheta3}f
*zin(thetad)) /5000 + (2849%cos{thetal) *cos (thetad) *sin(thetaZ) *sinithetal) *sinithetas)) ¢
25000 + (77*cos{thetal) *cos(thetad) *oos (thetad) *zin{theta?) *sin (thetad) *sin {thetad)) ¢
feans

Warning: 1 cguaticens in 6 variables. Mew variables might ke introocuced.
> In Cth\Program Files\MATLABARZDLIahtoolbmdsymiolichsymbolichsyvmengine, pravnanging at 54

In mupadenging, mup

nginermipadengine.ovalin at %7
[n mupadenagine, mop
In golve at 172

Foraarm Singularity Selubionis)

lenginernupadenging. faval at 150

[z, 2*atan{(50*cos(z?)*sin(zd) - 3T0*cesizl) *sin(zl) + 1344%cas(z1)2 + 25%cas(zf) "2 +¥
3T0*%cos(zl) “2 cos(z3) - 25%coz{zl)*2¥cos(22)"2 + 25%cos{zl)"2%ces(23) "2 - 25*%cos(z2) ¢
~roes ()2 o+ (9250*ces(zd) - 527085tcos{zly + T1225*sin(zl) - 142450%*cos{zl) *coes{zd) -
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1043400%caz{z1) *sin{zl) + 9625%cos(zd)*zin(zl) + TOGSD%cos(22) *sinfzd) + 1882494%ens (z1) v
~2 o+ 1050130% ces (z1)°3 + 1250%c0s(22) "2 + 19043236%coa(z]) ™ + B25%cos{zd) "2 + E25*cos{zy ¢
*d + 35RG0%=in(zl) "2 - BE25*cos(zl)*coz(z3) 2 + S09120%cas(zl)*2%cos(zd) + 284900%coz{zl) ¢

~dvops (23} + 1031560%ces (z1) “4%cos(z3) - 517440%cos [z1) *sin(zl) "2 + 368EEdG*cos(z1) *2*sinV
(zl) + 2500%cos(z22)"3*zin(z3) + B5950*coz{zl)” 2*cra[ 2202 4+ 34400%cos (21) "2 cos (23 "2 -
1250%cos{zl)"E%cos (22) ™0 4 19250%cos (z1)~3*cas(zd) "2 - 1250%cos{zé) "i*cos (zd) "2 -V

A1200%c05 (21} *d*cos{22) "2 + Z06R00*cos{zl) "dtons(23) 2 + 625%cos(z]) "drcos{22) "L +¢
18500%cos (z1) "4 cos{z) "3 - 1250%cos(z2)*4%cos{zd) "2 + &25%cos(zl)~d*cos(z2)"4 + R2Gveosy
(22) fdteos (231 4+ 1943236 cas {2l " 24sin(z1) %2 + 36725%cas {22}t 2rsinizd) t? - G4700% oo
(zl)"2*cos(z2) “2*cos(z3) "2 - 18500%coz(zl)"2*cos(z2) “2%cos (23} 3 = 1250%cos(zl) "2*cos(z2) ¢
ArReas (e + 2E00%cos(2]) "2 cos {22} M reos (23107 4+ 65990%cas (1)t cos{n2) "R rons (23) 02 +¢
18500%cos (z1) ~d*cos{z2) “2%cos (23)~3 - 1280%cos(z1) "2%cos(z2) "d*cos(z3) ™4 + 1250%cos (z1) ¢
Sreos (22} " 2rcas (3000 - 12307 cos (1) M raes (22) “MFcos (23) 72 + B25%cos (2] Mrans (22) “toas
{23)"4 + 142450%cos{z2) *sin{zl)*zin(zd) - 67200%cos(zl) “2¥cos {22} 2vain(zl) 2 +¢

206600  cos (z1) "2 cas (231 " 2raindzl) "2 - 141300 cas (21) "2 *cos (221 "2*sin{z1) "2 + 62S*cas{zl) ¢
fZkeoa{z2) M tain{zl) 2 4+ 1B300*ceosizl) “Zfcoz{z3)"3*=in(zl) "2 4 §25%zon(zl) *2rcosn (23) ¢
mivsin(z1)02 + B2S*cos{zl) M Praes (23 *2%sin(23) 02 + 139900%cos (21} M tcos (22) "2 *sin(z3) "2 +¢
35650%cos (22) 24 sin{zl) *2%s1in(23) "2 - 9250%ces(zl) *cos(z2)*2*2inizl) - 142450*%cos(zl) *aosd
(z3*sindzl}™2 - 2775%0%cos (1) *cos (23) “2%sindzl) + 1552320%ces (z1) “2%ces (zd) *sinfzl) -¢
1250%coz{zl) *coa{=z2) *2rain(z]l) - 141300%cos (z1) *2*cos (22) *sinlz3) + 1054120%cos (z1) *2Hcas
{z21rsinizd) + 1250*ces(z2)*cez(zd)"27sin(zd) + 139400*cos izl d*cos(z2) *sin(zd) +¢
71300%c0s (22) *ainlzl)} *2vain(z3) + 18500%cos(zl) *2%cos (22) *2ioos{zd) - 18500%cas (zl) 4oz
{(z2)"2%cos(zd) + 9625%cos(zl)¥cos(zZ) 2*sin(zl)~2 = 7122%%cos(zl)“2*cos(z2)~2*sin(zl) =¥
25 cas{zl) foas{23) "2rsiniz]l) *2 + 1031560 cos(zl) "2 cas(23) *ainizl) "2 + 2136754 cas (21} ¢
~2vcos(z3)"2fsin(zl) + 9625%cos(zl) 2*ces(zd)“I¥sin(zl) - S000*cos(zl}"2*cos(z2) ~Ivsind
(23} + G250%cos(z2)"2%cos {23} Faindzd) 2 4 2500%cos (21} *rcas{z2) “3tsinizd) - 2500%cas{z2) ¢
~3%cog(z3) " 2*sinizd) + T1225*%coes(z2)"2¥sinfzl)*sin{z3}*2 - 277500%cos (z1) *cos(z3) *sinizl) ¢
- 52T065%cos (2]) *eas (22) % ein(23) + 18500 cos (22) *eos {20) *sin{2d) - 12507005 (21} *eos (22} ¢
“Z*cog (z3)*sin{zl) - $625*cos(zl) fcosiz?) Yoos(23) “Z¥sindzd) - T000'cos{zl) “2%cos (22) Yoo
(231 *sin{zd) + 284900%ces (21} "3*cas (22) *eos (23] *5in (23) + 37000%cos(z]) "M% cos (22} *cos (23}
bein(z3) - 4931%0%cos (zl) *eos (22) *sinlzl) *2¥sin(z3) - 427350%cos (z1) “Zfcoz{z2) *ain{zl) ¢
*sinlz3) - 9250%cos{zl)*cos(z2)*3*sinizl) *sin(z3) + 65050%cos (z1)"2%cas (22) *2*cos (z3) ¢
A248in{z1}"2 + 18500%cos(zl) *2%cos(z2) “2rcoz (23) "34ein (1) *2 - 2500%cos{zl) *2*cos(z2) ¢
~pvoos (23)2%sin(z3) 2 + 1250%cos(z1) "2*ces (22) "2¥cos (23) “d*gin(z1) "7 - 1250%cos (z1) ¢
Mooz (z2)tdtcoz{2d) "2tsiniz]l) *2 + B25tcos(zl) et cc“{zz}”’*rtd(*’J*d*s_ntzl]*E + 25004 cos ¢
{2l ™d*ces (z2) "2¥cos (zd) "2 sindz) "2 + 1394007 cos(zl) ~d*aos (22) ~*sinizl) *2*sin(zd) "2 +
92504 oz {zl) *cos {22 “2roos (23) *24ain(zl) - 94625%cos{z]) *2%cos (22) 2% cos {23 fain(zl) +
1250%cos {(zl) *coslzd) ~2*cos(zd) “I¥sinlzl) - 2500%cos (zl) "2*cos (z2) *coa(zd) *2*sin(zd) +f
19250%cos (z1) "3tcos{a) *oos{23) "2 %sin(zd) + 2500%cos(zl)"dbcon (22) foos (23124 sin(23) -
18500%ces (zl) *cos (z2) "2%sin(zl) *sin(zd) "2 + 139400%ces (21) "2¥%cesiz2) *sin(zl) " 2%s 1ﬁ{zﬁ}-rf
625%cas{al) feas (o) "3 sin (2 1) 2% sined) + 9623 %ecos (22) P reon (o) fsin(zl) *sindzd) "2 -
142450%ces(21) *eos (22) Yeos (23) *sinizd) - 1061900*ces(zl)*cos{z2) *asin(zl) *sin(zd) +¢
19250%cas (22) *ros (23} *sin(zl) *sin{zd) - 9625*cosiz]l) *oos(22) "2*eas (23} "2*sin(zl) "2 -
18500%cas (21) "2teos(22) *2%cos (23 *ein(zl) *2 + T122%%cas{zl)"2%cos (22) “2tcos (23) “2vainizl) ¢
+ B625%ces(2]) *2reos (22} "2%cos {23 " 3%sin (1) - 3T000%cesiz]) "2 cos (2d) “Ptcas () fsin{zd) ¢
~Z2 o4 5000%cos(sl) "Z%cos(Z2) *3fcoz{z3)"2%zin(cd) 4 37000%cesizl) ~d*rcoz(z2)" E‘CJQ[z‘ﬁ*hlnf
(23) "2 - 2R00%*cos(z]) **cas{z2) *Iroos(z3) *2%sin(ed) + 19230 cos{zl) *cas(z2) *2*ain(z]) ¢
A2kzin{z3}"2 - 142450%coz (z1) "2%cos (22) “2%sin(zl) *sin(z3)1 "2 + 2500%cos(zl)2%coz (z2) ¢
fivsin(z1)*2%sin(zd) - 142450%cos(z1) *cos{z?) *eoslzd) *sinlzl) *2*sinizd) - 27750*%cos (z1) ¥
Foepz(z2) Yooz (z3) "2%ain{zl) *sin{z2) - 57750%cos(zl) *2*coz(z2) Ycos(z3) *sin(zl) *=2in{z3) -
1250%cos{zl) *cos(z2) *ees (23) "3*sinizl) *sinizd) - 1250*ces(zl) *ces(z2) “3*coz(zd) *sin(zl)} ¥

132



*5in(z3) 4+ 3T000*cos(zl) 2*cozf{z2)*2%cos(zd) tein(zl)*2*sin(z3)"2 - 2500%cos(zl) "2 con{z2) ¥
~*oos(zd) *2*sin(z1)*2*sinizd) - 9625*cos{zl)*cos(z2) *oes(z3) *2*sinizl) “2*sinizd) -
2500%coz{zl) *eoa{z2) *2¥cos(z3) Yasin(zl) *sin (23} %2 + 237000%coz{zl) "2%cos(22) oo (23) *oiny
{z1y"2*sinizd) + 22507 cesizli*cosiziy"I*cos(zd)*2*sin(zl) *sin(zd) + 1250*ces(zl) *cesizd) ¢
f3vpoz(z3)3tsin{el) vain{n3) + 2L500%coz(z2]l)"2*cos{z2) "2*cos (22) "2 sin(z]l) "2 sin{z3) "2 -
2B0400*cos(2]) *cos (22) *oos (zd) *sin(zl) *sin(z3) + 25(0%cas(z1) “2*cos(z2) *cos(zd)"2*sin{zl) ¢
“prain(zld) - 19250*%casizl)“Ztcosia2) *Zreos (23 *sin(zl) *sin (23} "2 - 9625%cas(z]l) Yoos(z2) ¢
~Y*cog(zd) “2*sin(zl) "2¥sin(zd) 4+ 3485007 (1/2) + 25*cos(zl) “2*cos(z?)“2fcosizi)*E - Sl*cosd
{zly*2*cos(z2) feiniz3) - S0tcos(zl)*cos (23} *sin(zl) - 3T0%cas(zl)*cosiz?) *sin{zl) *sin{=2) ¢
- §0%cos{zl)*coz{z2) *cos(zd) *ein(zl) *2in(zd) + 25)/(1147*cos(zl) - 23*cos(zd) - 165*sine
{21} + 155*cos{zl} oz {23} + 1304%cos (z1) *sinlzl) - 185%cos (22) *sin(z3) + 3T0%coz(z1) "2 +¢
50%cos{zl) “2*cos{zd) - 135'cos{z2)*sin(zl)*sin(z3) - 25*ces(zl)*ces(z2) “2*sin(zl) +¢
25%cos (21} *eos(23) " 2¥ain(z]) + 370%rcas{z]l) "P*oos(z2) *sin{z3) + 3T0%eos(z]) *eos (23) *eind
{zl} - 25*cos{z2)*cos(zd)*ein(zd) + S0%cos(zl)Z*coz{z2)*cos{z3)*zin({zd) + 25%cos(zl) *cosd
{2y 2%cos(z) "2 zin(z]l) - S0%cos(zl) cos{z2Y*sin{zl)*sinlz2) - 189)Y), =1, =22, =23, =4]

[ z, -ZFatan({370%cos(zl)*sin(zl) - S0%cos(z2)*sin{z3d) - 13d4*cos(zl)*2 - 25*%casz(z2)}"2 -V
IT0*eos (z1)~2rees(22) + 25Tcos{zl)"2roes(z2) "2 - ZSvcos(zl)i*cos (232 + PSvcosizi) e
“2roos (232 + [9250%cos{z3) - 5270fS%caz{zl) + 71225+%szin(zl) - 142450%cos{zl) *cos{z3) -
1043900*cos (2l *sin{zl) + %625*cosizd)*sintzl) + 70050*cosiz2)*ainfzdy + 188240%4*cos(zl) v
%2 + 1054130%coa{=z1)"2 + 1250*cos{z2)"2 + 1943236%cozizl)"d + B25*coz{23}°2 + 625+cas{z2) v
~] o+ 35650%sin{zl)} "2 - 9825%cez(zl)*cos(z3) "2 + 509120%casizl)"2*cas(zd) + 284500%cas{zl) ¢
*reaslzd) + 1031560%cas {zl) *d4cosiz) - 517440%cos (z1) tain(z1) 2 + 36BEGA0EYcoz (nl) *24aln
{z1) + 2500*cos(z2)~3vsin(zd}) + E5950*cos{zl)"Z*ces(zd) "2 + 34400%cozizl) “2*cos(zly "2 -¢
12504 cas{zly "2reea(z2) % + 19250%cos {21} "3 eon (23) %2 - 1230%cas{z2) "2tooa(z3) "2 -
67200%cos (21) “d*ces {22) "2 ¢ 206600*cos{zl)"4*cos(z3) "2 + 625%cos(zl) “d*cos{z2) "4 +v
1E5300*cas (2]} "% cos{23) "3 - 1250%cos (22) " *cos (23) %2 + 623*cos(z)l) ¥ oos(23) 1 + E25*%cosy
{z2)"4*cos (23)°d 4 1943236vcos{zl)"2*zin(zl) "2 + 36725%cos(22)2*2in(z3) "2 - 64700%cosy
(2l "2*cosi22) *2¥cos (23)°2 - 18500%cas {21} "2*eos (22) *2*cos (23} 3 - 1250%cos (2]) "2%cos (2 ) ¢
“2rpog(z3)°d + 2500%cos (zl)“2¥casiz?) “4*cos (z3) 2 4 E5GSD*coz(zl) “d*cas{z2)“2%cos (23) "2 +¢
18500%eas (2]1) “47cas {22) "2*ons (23) 3 - 1250%cas (z1) *2*eos (22) ~*eas (2370 + 1290%cos(z1} ¥
“dkpoz (22} “2%coz{zd) "4 - 1250%coz{zl)"&*cos (22)"d%cos(23) "2 + E25*%cos{zl) “4*cos(z2) “d*cos
{z3p~4 + 1424507 cos {2 rsin(z1) *sin(z3) - 67200*cos (z1) *2*cos(z2) “2*sin(z1) "2 +¢
206600%aos (z1) “2*cos (23) *2%ain{zl) "2 - 141900%cos{zl) "2¢cos (z2) *2*sin(23) "2 + 625*cas{zl} ¢
niveog(z2)tArsin{zl) 2 + 18500%cos(zl) ~2 os(2d) drsin(z1) %2 + 625vcos(zl)“ivcos(zd) e
*qvsin{z1}*2 + 625%coz(22)"2%ces(23)"2%sin(23) %2 + 139400*%coz(zl) 4 %ces {22) " 2¥ain (23] %2 +V
35650%ceg (22) "2*sin{zl) "2*sin(z3) "2 - 9250*ces(zl) *cos(z2) "2*sin(zl) - 142450%cos(zl) *cos
{23} *zin{al)"2 - 27750%cos(z]) *cos(23) *2%sin{z]l) + 1552320%cos(21)*2%cos (23) *sin(zl) -
1280%cos{zl) *oes (23 "3*sin(zl) - 141900%cos (z1)~2*ces(z2) *sinizd) + 1054130%cos(zl) “Ivcosy
{z2)*ain{z3) + 1250%cos (22) *cos(23) "2ain{zd) + 139400%coa (21} d*cos{z2) *ainizd) +¢
T1300%ces (z2) *sindzl) “2*sin(zd) + 18500%cos(zl)“2%ces(28) “2*conizd) - 18500*cos(zl) “d¥*cos
{22 2 tcns(23) + 9625 cos{zllfcos{z?) "2rsin{z1) M2 - T1225%cas (21} *2*cas (22} “2%zin (21) -¢
9625%cos{zl) *eon (zd) "2¥%sin(zl) 2 + L031SE0*ces(2l) “2¥ces(23) *sin(zl) "2 + 213675vcos(zl) ¢
*2Feos i) 2%sind{nl) + O9625*cos(zl}f2*cos{z3) "I*sin(zl) - SO00*cas(zl) *2fcos(22) *drsine
{z3) + %250%cos(z2)"2%coa(z3) *sini{z3) "2 + 2500*cos(zl) “d*cos{zd) *3*sin(z3d) = 2500%cas(z2) ¢
Ailroos (23} " 2%sin{sd) + T1225%ces(22) "2 *=sin(zl) *eini{zd) 2 - 2?7!30[?*{:0.’;1?:1}*coﬁ{zj}":—:in{:l}lﬂ"
- 527065*%cos (2l *cos(22) *sin(z3) + 18500%cos{z2)*cos{z3)*sin{zl) - 125G%cos(zl) Frosizz) ¥
miroos(zd)rsinizl) - G625%cos (z1) *oos(22) *oos(23) "2%sin(zd) - 37000%cas{z1)~2%ces (22) *oos
{z3)*zin{z2) + 284500*coz{zl}"3*cos(z2) *oos(z3) *ain(z3) 4 37000%cos(zl) *d*cas{z2) *coz{z2) ¢
*sinizd) - 498160%cos (z1) *cos (z2) *sin(z]) “2*sinizd) - 427350%con(z1}*2%cos{z?) *ain{zl) ¥
ksin(z?) - 9250%cas{zl)*cos{z2)*2¥sin(zl) *sin(z3) + &5950%cos(zl) *2coz{z2) "2¥cos (23) ¢
nivsinizl} "2 + 18500%cos(z1) "2*cos(z2) “2%ces(zdy " Mrsin(z1) %2 - 25007 cos{zl)*2*cos (z2) ¢

133



“2écon (231 24ein{z) %2 4 1250%com{zl) "2%cos (22) “2*cosizd) “d*sin{z]) "2 - 1250%coz(zl) ¢
~2*eosz2)ttoes(z3)2%sin(zl) 2 + 625%cos(zl) “27cos{zd) “roes (23 M rsingzl) 02+ 2500%cos ¢
{zl)"d*cos(z2) "2*cos (231 "2%ain{z2) %2 + 139400%cos{zl) *2%cos(22) *2*zin(z]l} *2%cinizd) "2 +¢
9250%cas (z1) oo (220 *2%cos (23) “2*sinlzl) - 9625*cos(z1)~2*cos(z2) *2*cas (z3) *sin(zl) +¢
1250 cas{zl) *coa{e?) "2tcos (22) "3%sin{z]l) - 2500*cos (z]) 2oz (22} Ycos(23) "2 sin(n3) +
10250%cos (z1) "3*ces(zd) *eos(2d) "2*sin(z3) + 2500%cos{zl)"4*ces(zl)*ces(zd) ~2¥sinizdy -¢
18500%cos (2] *oas (22) "2 ain{zl) rain{23) "2 + 133400+*cas (2]) "2%cos (22} *sin(z])} "2 sin{zd) +¢
9RZ5*cosizl) *oos(z2) "I*sin(zl) "2 sin(zd + B62§*ces(z2) “2*cos(zi}vsinfzlsinizd)ne -¢
142450 cos (21) feos (22) *oos (23) fsin(z3) - 1061900%cos{=l) *cos{=?) *sinfzl) *ain{z3) +¢
19250%cos (22) *cos (23) *ain(zl) *sin{zd) - B62%*ces(zl) *cos(z?)“2*cos(zd)"2*ain(zl) 2 -«
1ESON*cos (2)) " 2% cos {22 "2 e (23) *sin (21) 2 + T1225%%cos{z]) "2 cos (22) *2*cos(23) "2 sin{zl) ¢
I 9625*cos(2l) "2%cos (22) "2%cos{zd) “3tein(zl) - 37000%cesizl) “Z¥cosizld)“2*ces(zd) tain(zd)
A2+ 5000%cos{z1) *2*cos (22) "3 cos {23 "Etsin(23) + 3T000%cos (z1) 4% cos(22) " 2% cos (23) *5ind
{z3}"2 = Z500%cos{zl) "d*cos{zZ) “I*cos (23) “2¥sin(z3) + 19250*cos{zl)*cos(zZ)*2%sin(zl] ¢
ARrain (i) 2 - 142450%cos(z1) "2 *cos{z2) *2vsinizl) *ain(z3) 2 + 2500%cos(z]) 2% cos (27}
“3kgin(z1)*2%sin{z?) - 142450%coz{zl) *cos{z2)*ros{z2) *zin{zl) "2%=in(z3) - 27750%cosz(zl) ¥
*oos(z2) *oos(od) "8 tsin{zl) fain(zd) - 57750%cos{zl)*2*cos(z?) *cos(z3) fainizl) *sin(zd) -¢
1250%cos{zl) *coa{z2) *cos (23)*3*ein{zl) *sin(z3) - 1250%cos(zl) *cos(22) *3cos(z3) *einizl) ¢
*sin(zd) + 37000%ces(zl)"2cos{z2) "Froes (23) *sin(21) 22 siniz 1) "2 - 2500*cos(zl) "2rcos(z) ¢
“3fpog({zi)t2tsin{zl)"2*%zin(z3) - 9625*cosizl)fcea{z2)*cos(23) "2%sin(z]) “2*sin{z3) -
2E00*cos{z1) *oos(z2) "2*cos (23) *sin(zl) *siniz3) 2 + A7000*ces(z1) ~2*ces(22) *cos (z3) *sind
{zl)*2*ein(zld) + 9250%cos(zl)*cas{e?) "Itcos (23) "2 ain(zl) *sini23) + 1250*%ces(2l) fooa(22)
~3vcos(z3)tITsin(zl) *sinlzd) + 2500*cosizl)~@fcoes(z2)~Z*ces (o) ~ivsin(zly 2*ain(zd) "2 -¢
280400 cosizl) fens (22) foos (23) *aln(zl) *aln(23) + 2500*cas(zl)*2teas(22) foos(23) "24ain{z]) ¢
~2*zin{z3) - 19250%cosizl)*2¥cos(z2)*2%cos(zd) *sin{zl) *sin{z3) 2 - $62%%cos(zl) Yoos(z2) ¥
Alreonsizd) "2esin{al) " 2rsin (23] 4+ 385 (12 - 25tcos (oD M2 reosiz2) *2fcos(ed) tE ¢ S0tcosy
{zl}"2*cos(22) *=in(z3) + S0%cos(zl)*cos(z3)*sinizl) + 370*cos(zl)*cosiz2) *sindzl) *sinfzd) ¢
+ 50*zas{zl) *cas{22) *eos (23) fsin (21 *sin(23) - 25)/(1147*cos {(21) - 25*cos(z3) - 155%sind
{z1} + 185%ces{zl)*cos{z3) + 13d44%*ces(zl)*sin(zl) - 185*%cesiz?)*siniz3d) + 3Tl*cosizl) 2 +¢
S0*coslzl)*27cas(zd) - 159+ cas{z?) *sin(zl)*5in{zd) - 25+%caszl)*cos(z2) "2*sin(zl) +¢
Z5%coz{zl) *ecoa{z3) "2%2in(zl) + 370%coz{zl)*2*cos(2Z) *=in(z3) + 3T0%cos(z1) *eosizl3) Yeind
{z1) - 25*cos{z2)*cos(z3)*sin(z3) + 50*com(zl) *2*cos{z?)*cos (=) *ain{zd) + 25*cos(zl) *cose
{z2)"2%cps(z2)"2*zin{z]l) - S0%cosz{zl)*cozf{z2)*zin{zl)*=in(z3) - 145}, =z1, z2, z3, zd]

Wrist Singuolarily Egualicn
-sinithetal)

Warning: 1 equations in 6 variahles. Wew variakles might ke introduced.

o=

Avavnbolichesymbolich\synengine  pravnengine at 3

In mupadengine.mupadenginermupadengine.evalin at 97
[n mupadengine . mupadanginesnupadenging, feval ab 150
In solve at 172

Warning: The solublons are paramelrized by the syvmbols:

uf R

vE = R_

¥oed = R

yi = R_

z =¢C

> In solve at 1%0
Wrist Singularity Zelution (=)
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Frror= in
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Joint Space
1 =0.12 Min Error in Joint
2= 0,14 Min Errsr in Joint
3= .17 Min Errer in Joinl
4w 2,2 4in Errer in Joint
5 =1.% Min Errer in Joink
& = 4.1 Min Erreor in Joint
Cartesian pacs
= 1.5 Min Errer in x=x
= 1.6 Min Rrror in ®-v
= .63 Min Error in x-z
= 1.6 Min Error in y-=
= 1.5 Min Error in y-v
= 1.3 Min Errer in y-z
= 1.4 Min Errer in z-x
= 1.1 Min Errer in -y
= 1.9 Min Errer in -2
= .06 HMin Error in x
= 2.1 Min Error in g
C 26 Min Errecr in o
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Appendix C: Results for CNC Manipulator

6 Axis CNC

Figure 62: Kinematic Model of 6 Axis CNC Machine

Table 19: D-H Parameters of CNC Manipulator

Robot: 6 Axis CNC

D-H parameters Lower | Upper

Joint | Link Offset | Joint Angle Link Twist Angle | Joint | Joint
(m) (rad) Length (m) (rad) Limit | Limit

1 di= 05] 0= 01 ai= 06| ou= -pi/2 | -1.74 | 1.74

2 db= 051 6= 0> a= 05| w= p/2 | -1.74 1.74

3 3= 0.5 ] 63= 03 aa= 05| az= -pi/2 | -1.74 1.74

4 | ds= ds | 0u=  pi2 | aa= 04| au= pi2 | 04 | 04

5 ds= ds | Os= pi/2 | as= 05| oas= -pi/2 | -0.3 0.3

6 ds= d¢6 | 6= -pi/2 | as= 05| as= -pi/2 | -04 0.4
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Table 20: CNC Manipulator Joint Angle Range for Workspace Generation

Angle Configuration Range for Workspace Generation

S.No. | qi(rad) | q2(rad) | q3 (rad) | q4 (m) | qs (m) | qe (m)
1 -1.75 -1.75 -1.75 -0.4 -0.30 -0.4
2 -1.36 -1.36 -1.36 -0.31 | -0.23 | -0.31
3 -0.97 -0.97 -0.97 -0.22 | -0.17 | -0.22
4 -0.58 -0.58 -0.58 -0.13 | -0.10 | -0.13
5 -0.19 -0.19 -0.19 -0.04 | -0.03 | -0.04
6 0.19 0.19 0.19 0.04 0.03 0.04
7 0.58 0.58 0.58 0.13 0.10 0.13
8 0.97 0.97 0.97 0.22 0.17 0.22
9 1.36 1.36 1.36 0.31 0.23 0.31
10 1.75 1.75 1.75 0.4 0.30 0.4

Table 21: CNC Manipulator Joint Angle Range for Training ANN

Angle Configuration Range for Training ANN

S.No. | qi(rad) | q2(rad) | q3 (rad) | q4 (m) | qs (m) | q6 (m)
1 0.7 0.54 -1.03 -0.13 0.00 -0.21
2 -0.92 1.24 1.56 -0.26 | -0.18 0.39
3 0.48 -0.01 0.14 0 -0.11 0.34

Total Workspace of Robot
3
.
n1\
E
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Figure 63: Workspace of CNC Manipulator
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Instances

Meural Network

Hidden Dutput

Pl e

Algorithms

Data Division: Random (dividerand]
Training: Levenberg-Marquardt (trainlm)
Performance: Mean Squared Error (mse)
Derrvative: Default (defaultder)

Progress
Epoch: D |0 316 iterations | 1000
Time: | 00132 |

Performance: 8.56 0.00
Gradient: 812 1.00e-07

Mu: 000100 | 1.00e-07 | 1.00e+10
Validation Checks: 0 | ] | &

Figure 68: ANN Architecture for CNC Manipulator

Error Histogram with 20 Bins
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Errors = Targets - Outputs

Figure 69: Error Histogram for CNC Manipulator
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Training: R=1

2 Data

Output ~= 1"Target + -1.7e05

0
Target

0.5

Test: R=0.99998

2 Data

Output ~= 1"Target + 5805

045

Target

0.5

QOutput ~= 1"Target + 0.00041

Output ~= 1"Target + 2.1e05

0.4

045

Validation: R=0.99998

& Data
2}
Fit o

05 0 05 1
Target

All: R=0.99999

O Data

Figure 70: Regression Plot for CNC Manipulator
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Mean Squared Error {mse)

Best Validation Performance is 2.923%¢-05 at epoch 316

Train
Yalidation
Test

']I:I-6 3 I I 1 I 1 1
0 50 100 150 200 250 300
316 Epochs
Figure 71: Performance Plot for CNC Manipulator
i Gradient = 0.0027692, at epoch 316
10 T T T T T T
5. 0
il
s} g ||-—
1[' 1 1 | 1 1 1
5 blu = 1e-07, at epoch 316
1D T T T T T T
ik I il
—
1D'm 1 1 ] 1 1 1
“alidation Checks =0, at epoch 316
1 T T T T T T
%
ML LB s e R e e e e
[
=

1 | 1 1
1] 50 100 140 200 250
316 Epochs

|
300

Figure 72: Training State Plot for CNC Manipulator

144



Jojendiueiy DND I0J UOT)OIPI] SONBUISUTY 9SISAU] :¢/ oINS

(wbua] 1esereq) .
008 009 00y 002 0.0
m 1 _ i)
| | =
. m . 0 8
1061e] o w
papIpald e : : o
I i mo m
SONBWSUIY 88I8AU| § JUICP J0] A0RINDAY NNY &
(wbua] 1esereq) ‘.,
008 009 00y 002 0.. ¢
| | | 5073
- o o o oo s
- e ® o & - &
_ o
pajIpald e %
_ _ _ S0 g
SONBWAUIY 3SI8AU| + UICM 40} A0BINDIY NNY &
(Wpbus] Jesereq) -
008 009 00y 002 0.8
_ _ 1 =]
| _ p
o
=
g
@
N
A
SOBWAUNY 88I8AU| 7 JUICM 10] A0RINDAY NNY e

(pbuaT Jesereq) .
008 009 00F 00¢ om_o- o
“ T T w
: Q
| om» = S Lo W
1o61e] o o
pERIpald o a
= — T
SONBWAUINY 8SI8AU| G JUIOP 10) ADRINDOY NNY £
(pbusT Jesereq) 2.
008 009 00y 00¢ 0, o
“ : ! ¢3
08P ESIPCEETIIVIGLOPBEEROSY S
o ‘- TECCVOeNODOTOOToDOOSTT 0 w
1061e] o o
PspIpeld o_ -......,‘......J.......N Mw
O
SOIBWAUIY 8SJ8AU| € JIOP 10§ ADBINDOY NNY &
(y1Bua Jeseleq) o
008 009 00y 00¢ oT 5
3
<
o
)
1ofle] o m
papIpald o -
o
SO1jeWaUIY 8SIaAU| | JUIOT J0) ADBINJ0Y NNY =

145



Joyerndiuein DN JOJ UOHOIPAI SOIIBWUTY 9SIOAU] UI JOIIF [BNPISOY AN[0SqQV i/ 9InT1]

(Y1Bue 1eseleq)
008 009 0oy 002

7 Ipajoipald - 1eBle] | = _o:m_|7

SOBLIAUNY 8SI8AU| g JUIOP 1o 1043 [Enpisay

(yiBua] JesE1RQ)
008 009 oof 00z

7 Ipejoipald - ”E@_m 1] = _em_|7

0

T A T AT T AR (L L R SN T A v pT o D

SOIJeWaUIY 8SIaAU| ¢ JUIOL J0] 10T [enpisay

(6us jesereq)
008 009 00y OO

7 |pa1aIpPald - %m@m 1| = _o_m_|

SOIJeWaUIY 8SIaAU| Z JUIOL Jo] 1013 [enpisay

{(pel) Jol13 |enpisay (pel) 10413 |jenpisay

(pel) Jou3 jenpisay

(Y}Bus Jesereq)
008 B o% - ‘o.ow _ oom B oo
‘ 15000
7 Ipajoipald - jeBle] | = _o:m_|7
_ : 100

SOIELBUNY 8sIaAU| G JUIOM 10} Jol1T [enpisay
(Y)Bua Jeseleq)

008 00F
i
7 Ipajoipald - ”E@_m 1] = _em_|7
: : 100
SOIJeLaUIY 8SIaAU| € JUIOL 10} JOIIT [enpISay
(UiBueT Joseleq)
008 009 00y 00¢ oo

7 |pa1oIpald - %m@m 1| = Jol3—

SOIJeWSUIY 8SIaAU| | JUIOL Jo] 1013 [enpisay

{pel) Jollg |enpisay (pel) Jollg |jenpisay

{(pel) Joug jenpisay

146



uonarpaid juror Ayrensurg ojediuey DND S/ 931

(WBue jesereq)
0S¢ go¢ 05l Q0L 0s 0..
T T T T m O:
50000 @ @ o0 © O 0% GLORAID 00 G DA
I 1061e] o
pejoipald e
, , m G0
9 julor Joj jebiel 'sAINAINO NNV
(y)Bua] jese1RQ)
0S¢ gog 0slL 00L 0g 0..
T T T _ m OI
B06 5 §° PEIDE 00 TRyt § 0D
S50 A0 umPp Eeal) 9 @
= @es % fpdgnm o6 TN $05ED - @0
1961e] o m
pEldIpald e :
, , _ G0
uonolpaid Auenbuls # Juior 1o} AoBINDOY NNY
(tyBua] 1asereq)
0

08¢ 00¢ 05}

P21oIpald e

uonolpaid Aenfuig z uior loj Aoeing

00} 05

Y NNY

S
=
(pel) T a|geuea lor

{pel) g a|gqeleA ior

(pel) ¥ a|geleA lor

(yBusT Jesereq)

08¢ 00¢ 05} 00} 05

1061e] o
pERIpald o

uonolpaid AenBulg ¢ Julor 1o) AoeIng:
(Ous jeseleq)

08¢ 00¢ 0%l 00} 05

Y NNV

] .u,.mm._m._. ® ”
psjaIpald e "

& & SOUTHIH BT CTID AR

uonolpaid Aenbuis € uior Jo) Aoeing
(U1Bua JesereQ)

Y NNY

05¢ 00¢ 0G| 00} 05

uonolpald Aenfuig | uior lo) Aoeing

Y NNY

(pel) ¢ ajgqeleA lor
(ped) G a|qeUeA uor

(pel) L o|gqeuea lor

147



uonorpaid jutor AyuemSurs Joyemdrueiy DN Ul J0LIF [enpIsay Injosqy 9/ aInJig

(YBua] Jesereq)
0S¢ 00¢ oSl 0ol oS oo
- 1200
7 Ipajoipald - 1061e ]| = _o:m_|~
: : : : b0'0
uocnaipald AenBuig g Juior Joj A2eIna2y NNY Ul 1ol
(yyBua] Josereq)
0S¢ 00¢ osl 00l oS oo
- 4200
7 Ipajoipald - 1961 | = _em_|“
: : : _ P00
uonaipald Aeinbuis ¢ uior Joj A2eIndoy NNY Ul Jol3
(YiBua J9sE1RQ)
0S¢ 00¢ oSt 00l oS oo
ANV W rtne ata e o B et PN e AN
L e g NOO
7 |pa1oIpald - 18bie] | = Jol3—
: : : : p0'0

uoijoipald AuenBuig z uior oy AorInooy NN Ul Jou3

{pel) Jollg |enpisay (pel) 1ol |jenpisay

{(pel) Joug jenpisay

(yBusT Jesereq)

08¢ 00¢ 05l 00} 05

7 Ipajoipald - jeble] | = _o:m_|w

1¢0°0

700

uonoipald AenBuIg ¢ Julop Joj AoBINoY NN Ul Jolig

(Y)Bua Jeseleq)
0S¢ 002 oSl 00l 05

0

[p810ipald - 186ie] | m_o__m|_

0

<00

700

uoijaIpald AueinBuig ¢ Juior Joj AorInooy NN Ul Jou3

(y3Bus] Jesereq)

0

05¢ 00¢ 0Gl 00} 05

|pajaIpald - 196ie ]| _u_otm_|

0

<00

¥00

uoijoipald AuenBuig | uior oy AorInooy NN Ul Jou3

(pel) Jol3 jenpisay (peld) 10013 enpisay

(pel) Joug jenpisay

148



AremnSurg pajorpard NNV 'SA [800R103Y ], i/ / 2InS1]

(W) A
: z: o

Gl b g0

b |

4 | 0 |

m N

9l
M3IA OIS AENBUIS NNY  [fueinBuig feonsiosy] @
(w)A | Awuenbus pepipaid @

(W) X

M3IA Juol4 AlieinBuIs NNY

v ¥ Gc
G “

Aenbuls [BoiaIoay | sA AUenbuIS palaipald NNY

malp do] AeinBuis NNY

(w) A

149



MATLAB Output for FANUC M161B/20 Robot:

[ (211941120397584958425756067902581613864715861035%cos (thetal) *sin(theta2)} ¢
J3ES3T5409332725725550921208179070754913583135744 - (1624930591 295809207 2R3T0ARGT245 7 cas v’
(theta3)*sin(thetal)} /405648159207 303340847880502572032 -

(GLEZI9A59753 495089581 1463407170472336061597408%81*2in(Lhetal) *sin (thetal}) ¢
JTI0TA0B1REE5451459101842416358141509827568271488 +¢

(51620985975 3495895811463407170472338061597408958 *oos (Lthetal) *cos (theta?) *cos (LhataZ))
JTI0TADE1REARAS145310184241635814150982736A2T1468 - (1R2A9305912958R0207383706R 872457 %coa v’
(Lhatal) *cos (theta?) *sin(thetald}) MAQSEART920T30334084TA94502572032
{16210320927856405661316834435721%ces (thatal) *sin(theta2)) ¢
J20262009603651670423047251 286016 + (1035888341267 763%cas (thetad) *sinithataly)) ¢
JUO0T1952547409%2 + (1624930551259869207283 7066972457 *sin (thetal) *sin(thetad) ) ¢
FA0SEA81920T30334084TRQAS025T2032 - (1624930591 2%9860920T383 706697245 T 202 (thetal) Toosy
{thetaZ) *ees (thetal)) /40564215207303340847854502572032 + (4035828241267763%cos (thetal) ¢
*ooz(theta?) *sin{thetal) ) /5007195254740952, (1621031092T856405661316834439721%cos (thetal)
tein(thetal)) f20282409A03R51670423547251286016 ¢
(2ETA48007242062002204435302733308769123612552117cos (thetal) *sin(thatal) ) ¥
JIRZRRTI0AGARIAZRAATTSARNANANRIS2SITTISALI156TATE -
(2110411203975849584257560679025816130864715861035 sin (thatal) *sin(thetad)) ¢
JIER3TEA09332725725550921208179070754913583135744 +
(21154112039758495042575606790258161306471586103% cos (thetal) *cos (Lheta?) *cos (thetald) ) ¢
J3E537540933272572555092120817907075451 3083135744 + (1621031092 78564056613160344357214cas
{thetal) *cos(theta?) *sin(thetald)) /20282409603651670423947251286016, (3*cos{thetal) /5 -
sinithatal) /2 4+ {cos(thetal)*cos (theta)) /2 +
{R322712111444800442947056773204977948706861426731%cos (thetal) *ain (theta2)) ¢
STADTE0ALEER5AS 14591018024 16358 1415098270662 71480 + (2001550711 780032049855900733103 *aos
{theta3) *sin(thetal)) /E1129638414606RB1AG5TAINN514408 -
{11338193656033425938791416884058787141156229594645%s1n (thatal) *sin(thatad)) ¢
J1461501637330902918203644832716283015655932542976 - d4*cos (thetal) *sin{thatal) +¢
(4035880301 267TR2 5 cos (thetal ) *sin(bhata2) ) FO007109254740592 -
{16210310927856405661216A344259721*db*cos (thetal) *sin{thetaz) ) ¢
JEOZRZAYGNI6E1ET0AZIBATIS1ZBE016 - (1035884311267 T63 d6* cos (thatal) *sin(thetal) )y ¢
J9007195254740952 — (4026203041061939*d5*zin{thetal) *sin{thetal) ) /d50359962T370496 -
{1624950591200860207383 70660972457 +d6%s1n (thetal) *sin(thetad) ) ¢
JA05R4B1920730334004TRAIG02572032 +
(1133815365603342552679141688405878714115622994645% 05 (thetal) *oos (thetaZ) *eos (thetaly)
JLAG1G0LE3ITI309029 182034832 716283015655932542576 +
(20015507117890220496559007331031*cos (thetal) *oes (thetal) *sin(thetal)) o
JEL12963841A606EH1695T780005144064 + (A02E2030AT0E10939*d5* cas {Lhatal) Yoos (Lhatal?) *onsy
{thetad) ) /45035996273704%6 + (16249305912998692073827066972457 dR co3 (thatal) *aos (thatal) ¥
voos (Lhetal) ) SA056R481520750334084 7694502572032 - dd*cos (thatal) *ees(theta?) *sin (thetad) -
(403558B341267763 ds  cos (thetal) *cos (theta?) Yein (thetal) ) /O00T7199254740992]

[ (1624830591299865207383706657245 T cos (Lhatal) *oes (thetad)
JANSELE19207303340847394502572032 4 (B18299859753405805811459407170472338061597408981%cos
{thetall*sin(thetal) )} /T307508186654514501018492416358141500827066271448 +
(2115411203975849584257560679025416138647154A1035%zin(thetal) *ain (theta?)) ¢
JAESATSA0DAAZTZET2N550921 20081790 T0TEAG13083135744 - (162403058091 200860207303 706607245 v oos v
(theta?) *sin{thetal)*sin(theta?)) /4056481920730334084 7424502572032 +¢
(518299850753495895811469407176472338061597409981 con (theta?) *oos (thetad) *sinithetal) ) ¢
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J73075081866545145910184241635814150958275662714588, (16210310927856405661316834439721 5in
{thetal)*sinitheta?) ) /20262000603651670423947251286016 -
(162492059129598R32073837066972457 cos (thetal) *sin{thetad)) ¢
FA0564819207303340847894502572032 - (403588831267763%cas [thetal) *cos (thetald) ) ¥
J9007195%2547409%2 + (4035888341267763 *coz{Lhata?) *ainithetal) *2in (Chatad)) "4
FOO0TLOG254T0902 - (16249305061209863207383706597245 7 cos (thetal) *cos (thetad) *siny
(Lhatal) ) /405648152073033402478094502572032,
(211541120397584958425 756067 002581613864715861035%c0s (thetal) *ain (thetad)y) ¢
JAERAT75409332725720550921208179070754513083135744 - (1621031092 785640566 121683443072] kaps
{thetal) *cos(thetal) ) /20282400603651670423947251286016 -
(2ATA4B00TAZ062002204435362 733358 T691336125521 1% sin (Lhatal) *sin(LhetaZ)}
J1A2EETI0A0ERIA2E64TTR4A0604089525377456591567872 4 (16210310927856405661 3100834435721 con ¢
(bhata?) *sin(thetal) *sin{thetad)) /2028240960365 167042304 7251286016 +¢
{211%411203975849584257560679025816138647150461035%cos (theta?) *cos (thetald) *sin{thetal) ) ¢
FRESITSA09332725720550921208179070754513095831357449, cesithetal) /2 + (I*sin(thetal)) /s -«
(2001550711 7830320496559007331031cos (thetal) *eos (thotad) ) ¢
FE1129638111606681695T8%005144064 + (ces(theta?) *sin{thetal) ) 2 +¢
(1133819365603342553873141688405378714115622994645%cos (thetal) *zin(thetad) ) ¢
S1AB150163733090291A202684027162830196559325429T6 +v¢
(692271311149806442947056773204977948708061426731*sin(thetal) *ain (theta)) ¢
FT3075081866545145%101842416358141509827%662 71488 + (2001550711 7480320498559007331031 *cos ¢
{Lheta?) *sin(thetal) *sin{theta?) ) FB11Z9638414R06AB1RA5TEO005144064 4+ ddécos (Lhetal ) Yooy
(theta3) + (035888341267 763*d6%cos (thetal) *con (thetad) ) /000T1592547406492 +¢
CA02R203041061933 d5*mos (thetal) *sindthalal) ) F4503559627370496 +¢

(1624930591 2998692073837066972457 d6%eos (thetal) *sin(thetad) ) ¥
FAQSEAE1920T303340047894302572032 + (A03EERE3A1267T63*d0*sin {thetal) *2in(Lhata?) )
JO0071952547409%2 = (162103109278564058613165834439721*d6%24n (thotal) *sin(thetaz) ) ¢
JA02B2A09603651 670423047251 286016 +¢
{1133815365603342553879141638405878714115522994645%cos (thotal) Y*ooa {thetald) *sin (thetal) ) ¢
JIAGIE0NIE3TIR0002918203684032716283010655032542976 + (40262030410619397d5%cos (thata?) *oos ¢
{thata3) *sin(thetal)) /4503539627370496 + (162459305012058632073083 7066072457 ds cas (theta2) ¢
*oos(thetad) *sin(thetal) ) JI0SEAEL9207303340847894502572032 - d4*cos (theta?) *sin{thetal) ¢
*zin(theta3) - (4035B88341267763*d6é*cos (thetal) *sinithetal) *sinithetal) ) ¢
FOO0T1I9%25074095%2]

(¢

(211941120397584050425756067902581613064715861035%cos (thetal) ) ¢
F3E53T75409332725726550921208179070754913583135744 -
(518299859753495895811469407170472338061997408981%cos (thetald) *sin (theta?) ) ¢
STI0TS0R1REAS451455101 8424 163581415098275662 714688 + (16249305091 20909RR920T3R3TOARITZ4G T4 5in
(thotaZ)*sin(thetad)) /A0564815207303340847854502572032, ¢
(1E21031092TRS6A05RE131ARZA43072 1 Yens (Ltheta?) ) F202B240960365 167042304 7251286016 +
(16249305912958R92073837066972457%cos (thetad) *ain (thotal) ) ¢

SAGSEAR1920T30334084 7494502572032 — (A035388301267T763%sin (thetaZ) *sinithatad)) ¢
JO007199254740952, ¢

- (28744800724206200220443538273339876913361255211 *cos (thata?) ) ¥
J18268TT046663620647T75400604089535377456591567372 -

(2115411 203975849504 25756067002581613064715861035%cos (thetal) *sin (theta2)) ¢
J265375409332725729550921208179070754513983135744 - {16210310927854905661316534439721%sin
(theta?)*sin{thetal)) /2028240860365167042394 7251286016, ¢
{63227131114480644l94?055?732G497?9%8708551426?31*CO3ithctazﬁ}f
STANTE0818665451455101842416358141509827966271488 ~ =sinithetal) /2 -«
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{112381%36560334259387014165840587871411562295846d5% o (theta3) *sin(theta)) ¢
J1A61501637330002018203684032716283015655932542976 -«
(20015507117850320498559007331031%in (theta2) *sin{thetal}) ¢
FB1120638414606681695780005144064 + (035888341 267763 d5 cas (theta?)) /o007190254740992 -
(16210310927856405681216834435721*df cos (Lheta?) ) /20282400603R5167042394725128R016 —«
(026203041061939*d5*cas (thetad) *sinitheta?) ) /4503599627370496 -
(16249930591293869207303T066972457d6*cos (thetal) *sin {theta?) §

FAOSEABIU20730334084 7899502572032 + dd¥sin(theta?) *sin(thetad)y + (4035888341267763%dEvsine
{thata?) *sin(thebald)}/9007199254740852 + 1/2]

[ ¥

0,

4
¢
¢

| o R s |

]

Input welghts =

L
o
4]

0]

Columnz 1 througn 9

0.84 .35 -1.23 1.64 0.09 -0,15¢
0,37 =0, 51 -1.5%

-1.91 -1.87 3.44 3.00 1.65 -2, 86¢
-2.47 -0.28 a.00

-0.33 -0.69 -1.25 0.69 .22 n.age
=260 0.2 0,76

-(.51 -1,32 1,40 -0.52 0.01 1.62¢
0.44 1.32 0,04

.59 -(,38 1,54 0,39 —0.43 -0, 36
-0.86 -0.78 -0.217

-1.8%9 -0, 24 1,85 1.08 -5.62 1,495
2.29 -0.77 1.24

-0.26 -0.683 1.06 .45 n. 94 0.06¢
.10 0,28 -0.34

2.97 g.41 .43 -0.79 -0.29 -0.97¢
-2.50 -0.53 -0.97

-i1.32 -1.42 -0.48 0,34 -1.497 029
3.03 0.14 -0.95

i.52 a.8% 0.20 .60 -0, 64 D62
1. 68 D42 -0, 25

2.34 -0.08 -0.57 1.14 .10 n.E2e
-0.47 -0, 50 -0, 35

0,83 1.02 -.04 -0.13 n.13 020
-1,37 -0.,72 -0, 16

1.82 2.12 1.21 -1.14 -Z.00 0,76
0.53 -1.133 0,91

-0.76 1.56 -0.59 0.18 -1.32 -0, 49¢
1.42 -0.63 -0.21

.50 .45 -1.69 -0.27 -0.51 -0.,57¢
-1.47 1.04 -4.71
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-0.26

-0.43

1.G3 0.4%
0.27 1.53
1.48 0.14
0.17 0.10
-i1.5%9 -1.30
-1.%6 2.15
0.53 0n.73
-2.75 -0 53
0.a0 -0,02
(.78 -1.17
0,492 -1.12
0.7% 1.89
=1.08 =0.5%9
=0.75 2.26
=1.32 =1.04
-1.83 =-0.67
1.82 -0.48
-0.27 0.60
1.32 n.18
.26 0.41
-1.76 -0.85
.55 0.13
-0, &6 1.09
-1.37 1.23
-0, 44 =0, 08
-0.06 -u.78
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Lad

08

.ao

L2l

L35

.6l

.23

.83

Lan

20

.49

.79

.18

.24

V57

D_.

BT
N1
A1
L26¢

1T



=-1.44

=0.1%

=0.4%

-0.81
.12
-0.52
-1.3z
-1.08
.53
_G. K
1.5%1
n.7o
.27
-0.62
1,10
-1.43
=-0.21
=070
0.25
=1.40
-1.8%
-0.06
.52
=0.27
.68
0,25
0.02
&.34
-, 30
0.84
(. ED
-1.58
12
2.05
-6, 81
-2.01
=-0.04
-0.4%
=0.55
—.24
.84
.67
=3.80
.50
=i.18
0,81
.89
-0, 21
-0.47
-3.51
-0.03
1.40

—

.

B3
.20
.38
.08
.14

A7

Pl I
.48
.53
.53
.09
.26

q

4

kT

.05
L32
.50

-

2 b

B4
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.87

LBE

.62

L
&

LB6

LES

L0l

.12

.04

.19

Lpae
47
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Layer weights =

ans

o =

Columns

1 througnh 9

02

[

0.4
-3.01
-0.01l

=0.12
1.75
-, 63

-0.403 0.24
-3.17 =i, 44
-.53 0.22
a,oq -i.32
-0.587 -0.248
-1.40 0,43
1.49 -0.11
=5.87 =1.52
2.30 .44
=i.00 .44
3.E] 1.48
.01 =0.51
-0.4] =041
=3.74 =i].44
-, 40 =0.46
=J.1% 0.22
-1.47 0,03
-3.05 —-i0.04
=, 89 .11
3.7 1.54
=i1.133 .24
—0.27 -il. 11
.23 =0.4%
0.72 .45
=0.58 =0.15
L.38 .15
.54 -0.0%
1.27 0,549
=i].33 =0.23
-0.27 -0.55
=1.08 0.11
-8z —.20
.10 0.65
=040 0.a
1.08 -0.1%
-0.59 .41
.23 =0.05
.11
=i1.00 0.¢1
0,01
-0.1% 0.13
0.11
-1.22 2.83
4.20
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-1.6%
L4 =5.33
1.03
BB =0.05
Czalumnz 10 throudh
=}.hE
L2 -0.45
=3.01
L0l [y
0.38
ns 0,30
3.E9
21 2.00
2.51
94 1.68
G.3E
T3 (.34
Columnz 19 through
.14
146 -0.57
0.0
01 [y
=i, 02
ey Q.42
=1.6E
LG -2.12
3.EB1
55 -2.78
2.91
L35 2.02
Columnz 28 through
=7.21
e 0.08
0.0
03 -0.03
¢.13
] -, 0e
3.31
21 n.4]
.74
54 -3.73
-.14
16 =0.4a0

Columns 37 through

3.29
-0.12
=0.40

FY
exa
[gu]

.83

.22

(5]
&

Lo
-]

=i,

[

(i ]
(54}

82

L84

.32

.17

.81

L1

LAD

.10

0

17
LBO¢
L2a

.45

L2

L1

17

27

Ldoe

o.oze



0.05

-3.05

-1.75

Columnz 46 through 2

-0.56

-0.28

1.5%

-0, 83

1.86

-{1.34

0,11

Column 55

Input

ANG =

]

LU |

(%]

=T S [ Y s R
v A P .

RS T B - ]
Lo I Lai]

hias =

-2.25
=4.34
2,54
1.04
-1.34
Z2.63
-1.51
-2.86
-2.15

-0.19

Lt

=000

B2

22

.30

.01

.24

.38

27

157

=

iy

09

.13

.13

.14

.0

.42

.88

.18

.23

.

.14

.29

1

0"
NikT'4
10
J16¢

14

L01¢



-1.52
-1,483
-1.0%
.22
1.41
1.23
G.BE
-2.58
-1.13
=1.14
-3.74
.96
-G, o4
=G.6%
1.5%8
=G.13
.11
-3.82
.47
.11
=351
-0.38
3.03
-0.5%
-3.21
-1.22
1.42
-2.14
.09
-2.47
-1.31
1.55
-1.2&
2,92
-1.85

=33
-1.3%
=2.1%
-0l6L
F.85
2.96
2.1%
1.61
2.14
1.17
1.37

Layver bias =

ang =
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-2.43
=it 14
G.27
1.34
2.98
=1.20

Helwork Parfarmance =

1.15242-05

Traininqﬂ?erformance =

T.1317a-00

Validation_Performance =

2.9239=-0%

Testing Parformance =
2.91822-05

Jacobian in Baze Frame

[ {0.799%23%cos (thetad) *sin(thetal) = 0.15734%ces (thetal)*zin{theta?) - 0.583006%aine
{thetal)*=in(thetaly + 0,.58006%cos (Lhetal) *cos (theta?) *cos (bhatald) + 0,79923*cos (Lhatal) ¢
*cos (thetaZ) *sin{thetald) ) * (0.078672%in (theta2) - 0.475%54%cos (thetad) - 0.096734%cosy
{theta?) + 0.34804*sin{thetal) - 0.68065%cos (thata?) *cos (thetal) - 0.10958%cos (thetal)
*zin(theta3) - 0.64633%cos(thetal)*sin{thetaZ) + 0.6884%*sin(theta?)*zin{theta3) + 0.40058¢
*d5+cos (theta?) + 0.10058*dé*cos (thetaZ) + 0.44807*di*cos(thetal) *sinitheta?) - 0.79923¢
*di*cos(Chetald) *sind{thetaZ) + 0.20077*dé*coz{theta3) *sin(theta?) - 0.40058%d4*sin(Ltheta2) ¢
*sinlthetad) + 0.8%4*dé*sin(thetaZ) *sinithetald)) - 1.0%(0.79923%cos (thetal) *sin(thetald) +¢
0.44807%caz {theta?) *sin (thetaly + ©.40058%sin(thetal) *sin{thetad) - 0.400584coz {thotal) ¥
*gos (thetaZ) *oes (thetad) + 0.44807*cos {thetal) *coz (theta?) *sin(thetal)) * (0.62365%cosy
{thata2) + 0.28884%cos {thata3) + 0.39%E2 5 sinithatad) + 0.24035% sinithabta3) + 0.023745%ans
{thota?)*cos (thetaly + 0.42432%cos (thetad)*sin(thetad) + 0.424%2%cos (thetald) *sin(thetal)
1+ 069664 sin (theta?) *sin{thetal) - 0.894%d5*cos (theta?) - 0, A4807+d5*ces (thetal) *sin
{theta?) - 0.894%d4*sin(thetal) *sin(thetad)) - 1.0*(0.40058%cos {thetad) *sin(thetal) -¢
0.58006%cos (thatal) *sin(theta?y + 0.70927*sin(thaetal) *ain(thetad) - 0.70927*cos (thekal) ¢
*oos (theta?) *cos (thetald) + 0.40058%cos (thetal) *cos (theta?) *sin(thetad)) ¥ (0.3576%cos ¢
{thata2) + 0.2403157cos(thetald) - 0.29003*sin(thata?) + 0.42556*sin({thatald) - 0.15435*casy
{thetaz) *cos (thetal) + 0.55492%cos(thetaZ)*sin(theta3) + 0.599%%cosithetald) *sin(thetaz) -«
0.095627*=zin (theta?) *sin(thetal) - 0.20077*d5%cos (thata?) - 0.79323*d6*cos {thata?) +¢
0.894%dd%cos (thetal) *ein(theta?) + 0.40058%d5%cos {thetad) *zinl{thetaZ) - D.40058%dR*cosy
{thetald) *sin(theta?) + 0.20077*d4*sin (thetaZ)*sin(thetal) + (. 44807*d6 sin{thata?) *siny
{theta?)), {0.7%9923%zez (thetal)*sin(thetal) - 0.1572d%cos (thetal) *sin(thetal?) - 0,58006¢
*sin(thetal} *sin{thetal) + 0,58006%*cos {thetal) *cos (theta?) *ocos (thetaldy + 0.70923*cosy
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{thetal) *cos (theta?) *zin(thetal)) * (0. 6884%cos (thetald) + 0.64633%zin(thetal) - 0.40058¢
*dd*cos (thetady + 0.891*de*cos{thetald) - C.44307*dd*sin(thatald) + 0.79523*d%*sin{thaetad)
- 0.20077%dé*sin{thetal) + 0.078672) + (0.40058%ces (thetad)*sin{thetal) - 0.58006%coz
{thetal) *sin(thsta2) + 0.70927*sin(thetal) *sin(thetad) - 0.70927*cos(thetal) *cos (thatal) ¢
tops (Cheta?) + D.40058*%cos (Lhetal) *cos{thetaz) *sin(thata3) ) = {0. 0953627 cos (Lhaelad) +¢
0,8909%sin(thetadl - $.20077*dd*cos{thetad) - 0.44807*dé*cos{thetad) + 0.894*dd*sine
{thatal) + 0.400538*d%*sin{thetal) - 0.40058*d6*sin(Lhatal) + 0.29003) - 1.0*(0.6308d%casy
{thetad) - 0.42432*sinithetad) - 0.894*d4*cos(thetald) + 0.44807%ds*sin(thetald) + {.39962) ¢
E(0.7992 3 cos (thetal) *sindtheta?) + 0.44807*cos (thebtal) *2in (thetal) + §.40058%zin (thetal) ¢
tsin{thatald) - 0.40058%cesithetal) *coz{theta?) *cos(thetald) + 0.44807%cos(thetal) *cosy
{thetaZ) *sin(thetad)), (0,691%05 - 0,62365) % (0,79923%cos (Lhebsl) *sin (theta?) +¢
0.44807%ces (thetad) Ysin(thetal) + 0.40058%sin(thetal) *sin{thetad) - 0.40058%cos (thetal) ¥
*oos (bheta?) *cas (thetad) + 0.44807%cas (thetal) *cos (thetal) *sin (thetall) + {0, 40058%d5 +¢
0.40058%d6 = 0.096734)%(0.79923%cos (thetad) *sin{thetal) - 0.15734*cos (thetal) *sin(theta?) ¢
- (0.58006%sin(thetal) *sin(thetad) + 0.5B8006*cos (thatal) *cos (thetal) *cos {thetald) + 0.79323¢
Yoos(thetal) *cos {theta) *sin{thetad) ) + (0.200774d5 + 0.79923%dd - 0.3576) % (0.40058 cos
{thetald) *=in (thetal) - 0.58006%cos (thetal)*sin{theta?) + 0.70%927*sin{thetal) *sin(thatald)
- 0.70927%ces (thetal) *cos {thata?) *eos (theta?) + 0.40053*%cos (thetal)*cos {thota?) *eine
{thetald)y, 8.0303e-18*cos{thetal) *cos (thetal)*cos{thetal) - 1.0*ces(thetad) *sin(thetal) -¢
B.0303e-16*zin(thetal) *zin(thetal) - 1.86022e-17%cos (thetal) *sin{thetaZ) - 1.0%cos (thetal) ¥
*cos (theta?) *sin(thetal), 0.44807%cos (thetal)*sin{theta?) - 0.894%sin(thetal) *sin(thetaly ¢
+ 0.B3*cos{thetal) *eos (Cheta?) *eos (thetal), 0.4005%8*cos (thetal) *cos (thetaZ) *eos (Lhatad) v
- 0.44807*cos (theta?) *sinithetal) - 0.40058%sin(thetal) *sinithetad) - £.79923%cos (thetal) ¢
trin(itheta?) - 0, 44807 ces (thetal) *eos {thataZ) *sin(thatald)]

[ (0.40058 cos (thetal) *oos (thetad) ¢ 0.70927%ces (thetal) *sin(thetald) + 0.58008¢
*sinithetal) *sin{theta?) - 0.40058 cos{theta?} *=zin(thaetal) *sin{thetald) + 0.70927 cos
{theta?) *cos (thetal) *sin(thetall) ¥ (0.3576%cos (theta?) + 0,24035%ces (thetal) - 0.25003%sin
{Lhata?) + 0.42536*szinithatald) - 0.15435%cos (Lhata?) *cosi(thetald) + 0,.55492%cos (Lheta?) ¢
“sini(theta3) + 0.5%99%cos(theta3) *sin(theta?) - 0.0595627*sin{thetal) *sinithetad) ¢
0.20077=d5*cas (thata2) - 0,79023*d6*%cos (Lhata?) + 0,85%4%d4%a0s (thetal) =sin{thatal) +v¢
0.400538*d5 cos (thetad) *sin (theta?) - 0.40058%d6%cos (thetad) *sin{thetaZ) + 0.20077*dd*siny
{theta?) *sin(thetal) + 0. A4807*d6*sin(theta?) *sinfthatal)) + (0.58006%ces (thetal) *aind
{thetal) - 0.79923*casz {thetal)*cos (thetald) - 0.15734*%sin(thetal) “zin(theta2) + 0.79923¢
*cos(theta?) *sin(thetal) *sin(thetad) + 0.58006*cos (theta?) *oos (thetald) *sinithetal) ) *v
{0.078672%zin {theta?} - 0.47954*cos{thetad) - 0.096734%cos (Cheta2) + 0.34B04*szin(thatald)
- 0.68965%*cas (theta?) *cos(thatald) - 0.10%58%cos (thetal) *sin(thetad) - {.64633*cos (thetal)
tzin(theta?) + D.EAR4*sin(theta?) *zin(thetal) + 0.40058%d3%cos (LhetaZ) + 0.40058*dé*rosy
{theta?) + 0.44807*dd%cos(thetad) *sin(theta?) - 0.7%923%d5%cos (thetad) *zin{thetal) +¢
0.20077*d6*coa (thatad) *sin (theta?) - 0,40058%d4*sin (theta?) *sin{thetal] + 0.899%d64zin
{theta?) *sin(thetad)) + (0.44807¥cos (thetal) *eos (thetad) + 0.40058%cos (thetal) *sine
{thatal) - 0.79923*sin{thatal)*sin{theta?) - 0. 44807%cositheta?) *sinithatal) *sin{thatal)
¢ 0.40058*cos (theta?) *cos (thetad) *sin(thetal)) * (0.62365%cos (theta?) + 0.26884*cos (thetaly
+ (L39962%sin (theta?) + 0.24035%sin(thetad) + (0.023749%cos (thelba?) *oos (Lhetald + 0,42432¢
tcos(theta?) *ainithetad) + 0.42432%cos(thetald) *sin(theta2) + D.89F64%sin(theta?) Ysind
{thetad) - 0.894*5*cos (Lheta?) - 0,94807*d5*ces (Lhetald) *sin{thata?) - 0.894%cd4*sine
{thetaZ) *sin(thetal)), (0.58006%cos (thetal)¥sinithetal) - 0.79%23%cos (thetal) *eos (thetal)
- 01573 *sin(thetal) *sin{theta?) + 0.79523%*cos (thataZ) *sin (thetal) *sin(thetald) + 0.58006¢
*cos(thetal2) *ces{thetal) *sin{thetal) ) * {0.6884%cons {thetad) + 0.F4633%zin{thetal) - 0.40058¢
*di*oos (thetad) + 080 dé*cos{thetal) - 0.44507+d9*sin{thetad) + 0.79523%d5%sin (Lhatad) ¥
- 0.20077%dé%zin{thetald) + 0.0T78672) - 1.0%(0.40058%caz (thetal) ¥cos (thetal) + 0.709274%cos
{thetal) *sin(thetad) + 0.58006*sin(thetal) *sin(thetaz) - 0.400587cos(thetal) *sinithetal) ¢
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fsin(thetal) + 0.70927* cos (theta2) *cos{thetald) *sini{thetal) ) *{0.0095627cos (thetal) 1
7.5900%sin (thetal) - 0,20077*d1%ces (thetal) - (.41807*d6%cos (thetald) + 0,894*d4*sine
(theta2) + 0.40058%d5%*sinithetal) - 0,40058%d6%sin({thetald) + 0.29003) + (0.44807*cos
{thetal) *cos (thetad) + 0.40058%cos (thetal)*sin(thetad) - 0.79923*sin(thetal) *sin(thatal) ¥
- 0.44807*cos (thetaZ) *sin{Lhatal) *2in(Lthelal) + ﬂ.dﬂﬂSﬁ*ces(thﬁtaE:*ccs{LhuLan*sir|f
{thetal))*(0.89664%cos(thetad) - 0.42432%=in{thetad) - 0.894%d4%cos (thetal) + 0,44807¢
tddtein(thetad) + 0.39962), (0.40058+d5 + 0.40058*d6 — 0.096734) % (0.538006%cas (thatal) *siny
{thetad) - 0.79%23*cosithetal) *cos (thetad) - 0.15734%sinithetal) *sin{thetal) + 0.79923¢
teositheta?) *sin{thetal} *sinlthatal) + 0.58006%*cos (bheta?) *eos (Khetal) *sinfthatal)) - 1.0«
*(0.20077%d5 + 0.75923%dE = 0.3576)*({0.40058%ccs (thatal) *coz(thetal) + 0.70927*caz v
(Lhabal)*sin(thetad) + 0. 0B00G*sin(thetal)*sin{theta?) - 0. 40058*cns (theta?) *sin{thatal)
*zin(thetad) + 0.70927%ces(theta?)*coz(thetad) *sin{thetal)) = 1.0%(0.854*%d5 = 0.62365)*¢
(040807 *cos (thetal) *eos (thetal) + 0,40058%cas (thetal)*sinithatald) - 0,79823*sin(thatal) ¢
vein(theta2) - 0.44207%cos (theta?)*sin{thetal) *sin{thetad) + 0.40058%coa {thetal) Yoos
{thatad) *zin(thatal)), 1.07cos{thatal)*cos(thetad) + §,0303e-18%00s (thetal) *sin(thatald) -«
1.6022¢-17%sin {thetal) *sin (thetaZ) - 1.0%coz{thetaZ) *sinithetal) *zin(thetald) + 8.03032c-¢
18*cos (theta?) *cos (thetad) *sin{thetal), &.851*cos{thetal) *sin(theta’d) + 0.44807*zine
(thetal)*zin(theta2) + 0.8%4*sos (theta?) *cozitheta?)*sin(thetal), 0.44807*%cas(thetal) *aos
{theta3) + 0.490058%cos(thetal) *sin(thetad) - §.79923%sin(thetal) *sin(theta?) - 0.44807¢
fops(theta2) *sin{thetal) *zin(thatad) + 0.40058%cos (LhetaZ) *cos (thetal) *sin{thatal)]

[ ¥

(0. 5R006%cos (Cheta?) - 2.709274cos (thetad) *sin(theta?) + 0.40058+%sin{thetaZl *sin(thatad)) ¢
*(0,3576¥cos (thetaZ) + 0.24035%ces (thetady - 0.2%003*sin(thetaZ) + 0.42356%sin(thetady -
0.15435*cas {thala?) *eos (thebad) + 0.55492%cos (theta?)y *sinlthetal) + 0.599%%cos (thelad) ¥
*sinitheta?) = 0.0%%627*sin{thetaZ) *sini{thetald) = 0.20077*d%%cos (theta?) = 0.79%23%d6*cos
ithaka?) + 0.894+d4%cos (Lhetad) #sin{theta?) + 0.40058*%d5*cos (thetald) *zin(thata?) -

0. 40058%dR*cos (thetad) Yein (theta?) + 0.20077%dd*ein (theta?) *sinithetad) + 0.44807%d6vsiny
{bhata?) *sinlthetad)) - 1,0%(0.15734%ces (Lheta?) + 0,58006%ces (Lhetald) *sin{thata?) +¢
0.72%23sind{thata?) *sin(theta2) ) * (0. 078672 %sin (theta2) - 0.47954%cos (thetald) - 0.096734¢
*eas (Lheta2) + 2,34804%5in (Lhetad) - 0.68965%a0s (Lheta?) *eos {thetald) - 0,109587cos
{theta2) *sin(thetal) - 0.64633%cos (thetadd *sin{theta?) + 0.6884%sin(thetaZ) *sin{thetad) +¢
0.40058*d5*cos (theta?) + 0.40056*dévcos (theta?) + 0.44807+dd%cos (thetal) *sin(theta?) -¢
0.72%23*d%*cos (theta3) *sin(theta?) + 0.20077*dE*cos (thetad) *sin{thetaZ) - 0.40058*dd*siny
{theta?)*sin(thetad) + 0.804*dé*sin(theta?) *sinithetald)) - 1.0%{0.7302% coa (thata?) +¢
0.40058%cos{Cheta?) *sin(theta?) - 0.44807%zin(theta?) *zin{thetad) ) * (0.62265%cas (theta?) +¢
0.26B89%cos (thetad) + 0,3996272in{theta?) + 0.24035*2in{theta’) + 0.02374% cos (thetal) ¢
tens (thetal) + 0.42432%cos (theta?)y *sinf{thotald)y + 0.42432*cos{thetal) *sinltheta?) +¢
0.69650%sin{thata?) *sin(thetal) - 0.894*d5*cos (theta?) - 0.44807*d5*cos (thetal) *sine
ithata?) - 0.894%d4%sin(theta?) *sin{thetal)), ¥

= 1.0%(0.75923%¢os (theta?) o+ 0.40058%cos (thetad)*sin(thetal) = 0.4480%7*sin(theta?) *siny
ithata®)) = {0, 69664 *caz (thatad) - 0.42432*sin{thatal) - 0.894%dd%cos (thetad) + 0,44807¢
*di*zin(thetal) + 0.35962) = L.0*(0.58006%ces (thetal) = 0.70927%cos (thetal) *sin(thetaZ) +¢
0.ADD56*sin(thata?) *sin (thetal) ) ¥ (0. 00562 T+cos (thakad) + 0.5990%sin (Lhetal) - 0.20077¢
*dd*cos (thetald) - 0.44807%diYcos (thetad) + 0.8%d%dd*sin{thetald) + 0. 40058%d5*sin(thetal)
- 0. 40058*dE*sin{thetad) + 0,29003) - 1.0%(0.1573*cos (thata?) + 0.58006*%ces (thetald) *sin
{theta?) + 0.79923*sin{thetaZ)*sin(thetal))*{0.6854%cos{theta3) + 0.64633*sin{thetad) -¢
0, 40058 *dd*cos (thetad) + 0.8584+d6%ces (thetad) - O.A4807+d4*sin(thetad) + (.78923%d5%sin¢
{theta) - 0.20077*d6*sin({thetal) + 0.078472), ¢

(D.891*%d5 - 0.62365)*(0,79023 cos (theta?) + 0.40058%cos(thetald) *sin(theta?) - 0.449807*sinv
{thetaZ) *sin(theta2)) - 1.0*{0.40058%d5 + 0. 40058*d6 - 0.096734) ¥ (0.15734 coz(thataz) +¢
0.58006%cos (thetad) *sin(theta?) + 0.79923*sin(theta?) *sin(thetald)) - 1.0% (0, 580067 cosy
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{thetaZ) - 0.70927%coz (thetald) *sin(theta?) + 0.40058*%zinitheta?) *sin(thetai)) * (0.200774ad5¢
+ 0.79923%a6 - 2.3576) ¢

1.0%zin(theta?) *sinithetal) - 8.0303e-18%cos (thetal)*sin(theta?) - 1.60220-17%cos
ftheta?), 0.44807%cos (theta?) -¢
D.ﬂgﬂ*:osttheta3?*sin[LharaE},f

0.44807*gin{thetal) *sinithetad) - §,40058%ces (thetald)*sin(thetad) - 0.79923*cos(thetal) )
[¥

7.1963e-18vcos {thetal) *cos (theta?) “2%ces (thetad) - 1.6022e-17*ces(thetal) *sinithetad) =&
5.0303e-18*sin(thetal) *sin(theta?) - 3.5082e-18%cos (theta?) *sin{thetal) *sin(thelkal) -
3.5982c=18%cos (thetal) *cos (thetad) + 3.204de=17*cos (thetal) *coes (theta?) “2%sin (thetad) +¢
1.6061a-1T*cosithatad) *?*sin(thatal) *sin(theta?) - 1.6162e-17*cos (thetal) *cos{thata?) *siny
{thetaZ) + 1.6022e-17%cos{theta?) *ees (thetal) *sin(thetal) + 1.0786e-17%cas (thetal) Ycos ¥
{Eheta?) *eos(thetad) “2%sin (theta?) - 1.0786s-17*ces (thetad) *sin{thatal) *sintheta?) *sind
{theta3) + 1l.606le=17*cos(thetal) *cos (theta?) *cos{thetal) *sini{theta?) *sin(thetald), ¢
3.5982a-18*costhatal) *sin (theta?) *sin(thetad) - 4.0303e-187cos{thetal) *cos (thetal) -
1.0786e-1T*cos (thetad) “2hsin{thetal) - 1.0%zin(thetal) - 1.606le-17%cos{thotald)*eind
{thetal)*=zinithetad) + 1.60681e-17*cos (thetzl) *cos(thetal) *cos (bthetad) ®2 - 1.60222-17*cosV
{thetal) *cos (thetal) *zin({theta2) - 1.0786e-1T*cos{thetal) *cos(thetal) *aes (thetal) *sind
{thetai), ¥

l.0%coz (thetal) *sin{thetaZ) + 1.68022e-17*cos{thetal)*sin(thetal) - 3.5%82e-18%zin(thetal)
*sin(thetad) + 3,.5%82e-18%cos (thetal) *cos{theta?) *cos(thetad) + 1.6022:-17*cos (thetal) ¢
teps (theta?) *zinithekal),

0, ¢

0,

2]

[¥

8.0303e-16%coa (thetal) *sin (theta?) - 2.5%8Ze-18%cos (thetad) *sin{thetal) - 1.E0220-17*ziny
{thatal) *sinithetald) - 1.6162e-17*cos (Lheta?) *sin{thetal) *sinitheta?) - 1,8061e-1T*cose
{thetal) *cos(thetad) *2%sin(theta?) + 7.1963p=18%ces (theta?) “2%ces (thetald) *sin{thetal) +¢
3.2004e-1T*cos (thata?) *2*=in{thatal) *sin (thetady - 1.6022a-17*ces (thetal) *cos (thata?) foos
{theta3) + 3.5982e¢-18%cos(thetal) *cos (thetaZ)*sin{thetal) + 1.0786e-17%cos (thetaZ) voos
{thatald)*Z*sini{thatal) *sin(theta?) + 1.0786e-17*cos (thetal) *cos{thatal) *sin {theta?) *sine
{theta3) + 1.606le-17*cas(theta?) *cos (thetald)*sin{thetal)*zin(theta?) *zin(thetald), ¢
1.0%ces (thetal) - #.0303e-18%cos (thetaZ) *sinfthetal) + 1.07862-17*cos (thetal) *cos (thetad) ¥
*2 - 1.6022e-17%cos {thata3) *ein(thatal) *zin(theta?) + 3.5982e-18*sin(thetal)*cin(thataZ) ¢
*sin(thetad) + 1.6361e-17*cos (thetal) *cas{thetald) "2*2inithetal) + 1.%06le-17*cos (thetal) ¢
tees (thetad) *sin{thetad) - 1.0786e-17%cos {theta?) *coz (thetad) *sin{thetal) *ain {thatal) , ¢
3.5987%e-16"cos {thetal) *sin(thetaly - 1.6022e-17*cos (thetal)*cos(thetad) + 1.0*sin(thetaly e
tzin(theta?) + 1,6022e-17%coz (theta?) *sin{thoetal) *sin(thetald) + 3.9982e-18%cos (Lheta?y
*gcog (thetal) *sind{thetal), £

0,

i, ¢

n]

[¢

(0.15734*%cos (theta?) + 0.508006%:0s (Lhetald) *sin(theta?) + 0. 79923*sin(theta?)*sin(thatad)) ¢
~Z 4 {0.58006%cos (thetaZ) - 0,70%27%cos (thetad) *sin(theta2) + 0.40058*sin(thetal)*sind
{Ehatad)) 2 + {2.759923%zos (theta?) + 0.10058%cos (thetad) *sin{thata?) - 0, 44E0T*sin
{thetal) *sin(thetal))=2, ¢

8.0303a-18*sin{theta?) - 1,6022a-17*cos (theta?) *oos (thetald) + 3.5082e-18%ces (thetal) *sind
{Chetal) - l.606le-1T*casz(thetal) *2*zin(theta?) + l.DTBEc—l?*co:tthctalﬁ*sin[thutaZ}*:inf
{thetald), ¢

162



l.0%es (theta?) - 2.5%82e-18%cos (thetad) *sin{thetaz) - 1.6022e-17*%sin(thata?) *sine’
{thetad), ¢

0, ¢

0,

0]

{(187383159047657 8050032 7411641 69890051 702835585971913730443027517559593505794725100619858
TEANGEI4I5E0A1300202084108640035417316524202703009284413561027123610722101488362681084059¢
1969332858 65TA1T8E2T05410907ET455323017211754000R8965E6034967445233817769424393604 704840
981298303145642717598514275946T7224486350645892108596292971684811952011%=in (theta2)) ¥
JEEA3GO0TTAGEE2EAA 884NN E0955672515%9107970324256T75T6953656720512242792137461 2359328
5O7ZE181681RA059TE0R50089588E2T137086198250902731618531260121113752408440872925685747989¢
B261153449853227322096500951 54101 3009642239202 2644302042543251587903817230657511863543535¢
0422953644880067099640L02665697T00T0L4260082V3T2000942461090401L01360056

Sipgularity Eguation
Warning: 1 eguations in & wariables. MNew varizhles micht be inbroduoed.

=Ty

» In Coh\Program Files\MATLABVE20IIa\teolboxhoymbelichevabolichaymengine . praymengine at 56

I'n mupadenaine.mupadanginesnupadengine . evalin at 47
In mupadengine mopadengine»runadenginge . faval at 150
In zsalve at 172

Warning: The zolutieons are parametrized by Lhe syvabols:

uli = I

vli = H_

nhEd B

yl3 = R_

Z C

» In solve at 1%0

Singularity Solution(z)

[ =669, 0, z, v13, w13, y13)

Apaclute Errors in Joint Sp
Max Error in Joint = 0.038 Min Error in Joint 1 = 3.6e-035
Dle

1
Max Errer in Jeint 2 = 0 Min Error in Jeoint 2 = 0,012

Max Error in Jeint 3 = 0.041 Min Error in Jointt 3 = 2.3a-05
Max Errcr in Joint 4 = 0,033 Min Errcr in Jeint 4 = 0.0017
Max Frror in Joint 5 = 2,017 Min Errar in Joint 5 = Ze-0§

Max Errecr in Joint & = 0,027 Min Errer in Joint & = 0.,0002

Absolute Errors in Cartesian Space

Max Error in =-x = 1.5 Min Errer in x=x = 0,001L
Max RBrror in -y =1.2 Min Error in #-y = 0,0025
Max Errer in x-z = 1.4 Min Errer in x-z = 3.60-03
Max Error in y-# =1.3 Min Error in y-x = (.00011
Max Error in y-y = 0.7 Min Errecr in y-y = 2.00033
Max Errer in y-z = 1.9 Min Errer in y-z = f4a-(5

Max Errer in z-z = 0.011 Min Errar in z-x = 0.4048
Max Errer in z-v = 00,0096 Min Errer in z-y = §.0042
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Max Error in z-z = p.012 Min Error in z-z = Q.0051
Max Brrer in = = {.047 Min Brrer in = = 5. T7e-05
Max Error in v = 3.3 Min Errer in y = 0.00014
Max Brrer in =z = 0.4 Min Brrer in =z = i, 2%

-8
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Appendix D: M-Code for Reconfigurable Model

cle
clc

ar

disp('®© Luv Aggarwal')
format bank;
syms pi thetaldot theta2dot theta3dot thetad4dot thetabdot thetabdot
dldot d2dot d3dot d4dot dbdot dédot;

Link l=input ('En
Link 2=input ('En
Link 3=input ('En
Link 4=input ('En
Link 5=input ('En
Link 6=input ('En
alphal=input ('In
alpha2=input ('In
alpha3=input ('In
alpha4=input ('In
alphab=input ('In
alpha6=input ('In
al=input ('Input
aZ2=input ('Input
a3=input (' Input
ad4=input ('Input
ab=input ('Input
a6b=input ('Input
if (Link 1)==0;

syms thetal

dl=input ('Input value for dl

Link
Link
Link
Link
Link
Link

ter
ter
ter
ter
ter
ter

value
value
value
value
value
value

put
put
put
put
put
put

for
for
for
for
for
for

value
value
value
value
value
value

o U W N

Type
Type
Type
Type
Type
Type

for
for
for
for
for
for

al(
a2 (
a3 (
a4 (
ab(
ao (

alphal
alpha?2
alpha3
alphad
alphab
alpha6

units)
units)
units)
units)
units)
units)

Rotational (0)
Rotational (0)
Rotational (0)
Rotational (0)
Rotational (0)
Rotational (0)
(degrees
(degrees
(degrees
(degrees
(degrees
(degrees
n');

)
n')
n');

) .
)
)

n');
nl

n'

’

’

\
\
\
\
\
\

(units)\n');

—_— — — — — —

Translational
Translational
Translational
Translational
Translational
Translational

gl min=double (input ('Input value for thetal minimum
(deg)\n'") *pi/180);
gl max=double (input ('Input value for thetal maximum
(deg)\n')*pi/180);

gldot=thetal
tl=thetal; %

else

end

if

syms dl

thetal=input ('Input value for thetal

dot;

For solving Singularity Equation

(degrees)\n') ;

gl min=input ('Input value for dl minimum (units)\n');
gl max=input ('Input value for dl maximum (units)\n'");

gldot=dldot;
tl=dl;

Link 2==0;
syms theta?2
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d2=input ('Input value for d2(units)\n');
g2_min=double (input ('Input value for thetaZ minimum

(deg)\n") *pi/180);

g2 max=double (input ('Input value for thetaZ maximum

(deg)\n'") *pi/180);
gzdot=theta2dot;
t2=thetaz;

else
syms d2

theta2=input ('Input value for theta?2
for d2 minimum
for d2 maximum

g2_min=input ('Input value
g2 _max=input ('Input value
g2dot=d2dot;
t2=d2;

end

if Link 3==0;
syms theta3

d3=input ('Input value for d3(units)\n');
g3 min=double (input ('Input value for theta3 minimum

(deg)\n')*pi/180) ;

(degrees)\n') ;
(units)\n'");
(units)\n'");

g3 _max=double (input ('Input value for theta3 maximum

(deg)\n'") *pi/180);
g3dot=theta3dot;
t3=theta3;

else
syms d3
theta3=input ('Input value

for theta3

(degrees)\n') ;

g3 _min=input ('Input value for d3 minimum (units)\n');
g3 _max=input ('Input value for d3 maximum (units)\n'");

g3dot=d3dot;
t3=d3;
end

if Link 4==0;
syms thetad

d4=input ('Input value for d4 (units)\n');
g4 min=double (input ('Input value for theta4 minimum

(deg)\n')*pi/180) ;

g4 max=double (input ('Input value for thetad maximum

(deg)\n'") *pi/180);
g4dot=thetaddot;
t4=theta4;

else
syms d4
thetad=input ('Input value
g4 _min=input ('Input value
g4 max=input ('Input value
g4dot=d4dot;
td4=d4;

end

if Link 5==0;
syms thetab
d5=input ('Input value for

for theta4 (degrees)\n');

for d4 minimum
for d4 maximum

d5 (units)\n');
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g5 min=double (input ('Input value for thetab minimum
(deg)\n')*pi/180) ;
g5 max=double (input ('Input value for thetab maximum
(deg)\n')*pi/180);
gbdot=thetabdot;
t5=thetab;
else
syms db
thetab=input ('Input value for theta5 (degrees)\n');
g5 min=input ('Input value for d5 minimum (units)\n');
g5 max=input ('Input value for d5 maximum (units)\n');
gbdot=dbdot;
t£5=d5;
end

if Link 6==0;
syms thetab
d6=input ('Input value for d6(units)\n');
g6_min=double (input ('Input value for theta6t minimum
(deg)\n')*pi/180);
g6 _max=double (input ('Input value for theta6 maximum
(deg)\n')*pi/180);
godot=theta6dot;
t6=thetat;
else
syms d6
theta6=input ('Input value for theta6 (degrees)\n');
g6 _min=input ('Input value for dé minimum (units)\n');
g6 _max=input ('Input value for dé maximum (units)\n');
go6dot=d6dot;
t6=d6;
end

$Link 1

% disp('Transformation Matrix for Rotational Joint 1'")
A0l=simplify([cos(thetal) -cos(alphal*pi/180)*sin (thetal)
sin(alphal*pi/180)*sin (thetal) al*cos (thetal);sin (thetal)

cos (alphal*pi/180) *cos (thetal) -sin(alphal*pi/180) *cos (thetal)
al*sin(thetal);0 sin(alphal*pi/180) cos (alphal*pi/180) d1;0 0 0 1]);
ROl=simplify ([A01(1,1) AO1(1l,2) A01(1,3);A01(2,1) A01(2,2)
A01(2,3);A01(3,1) A01(3,2) A01(3,3)1]1):

R10=transpose (RO1) ;

PO1=[A01(1,4);A01(2,4);A01(3,4)]1;

% disp('Transformation Matrix for Rotational Joint 2'")
Al2=simplify([cos (theta2) -cos(alpha2*pi/180)*sin (theta?2)
sin(alpha2*pi/180) *sin (theta2) a2*cos (theta?2);sin (theta2)

cos (alpha2*pi/180) *cos (theta2) -sin(alpha2*pi/180) *cos (theta2)
a2*sin(theta2);0 sin(alpha2*pi/180) cos (alpha2*pi/180) d2;0 0 0 17]);
Rl12=simplify ([A12(1,1) Al2(1,2) Al2(1,3);Al2(2,1) Al2(2,2)
Al2(2,3);A12(3,1) Al2(3,2) Al1l2(3,3)1);

R21=transpose (R12) ;

P12=[A12(1,4);A12(2,4);A12(3,4)];

% disp('Transformation Matrix for Rotational Joint 3'")
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A23=simplify ([cos (theta3) -cos(alpha3*pi/180) *sin (theta3)
sin(alpha3*pi/180) *sin (theta3) a3*cos (theta3);sin (theta3)

cos (alpha3*pi/180) *cos (theta3) -sin(alpha3*pi/180) *cos (theta3l)
a3*sin(theta3);0 sin(alpha3*pi/180) cos(alpha3*pi/180) d3;0 0 0 11]);
R23=simplify ([A23(1,1) A23(1,2) A23(1,3);A23(2,1) A23(2,2)
A23(2,3);A23(3,1) A23(3,2) A23(3,3)1):

R32=transpose (R23) ;

P23=[A23(1,4);RA23(2,4);A23(3,4)]1;

% disp('Transformation Matrix for Rotational Joint 4'")
A34=simplify([cos (thetad4) -cos(alphad*pi/180)*sin (thetad)
sin(alpha4*pi/180) *sin(thetad4) a4d*cos(thetad);sin(thetad)

cos (alphad4*pi/180) *cos (theta4d) -sin(alphad*pi/180) *cos (theta4)
ad*sin(theta4);0 sin(alphad4*pi/180) cos (alphad4*pi/180) d4;0 0 0 11);
R34=simplify ([A34(1,1) A34(1,2) A34(1,3);A34(2,1) A34(2,2)
A34(2,3);RA34(3,1) A34(3,2) A34(3,3)1):

R43=transpose (R34) ;

P34=[A34(1,4);A34(2,4);RA34(3,4)1;

% disp('Transformation Matrix for Rotational Joint 5'")
A45=simplify ([cos (thetab5) -cos(alpha5*pi/180) *sin (thetab)
sin(alphab5*pi/180) *sin (thetab5) a5*cos (theta5);sin (thetab)

cos (alpha5*pi/180) *cos (theta5) -sin(alpha5*pi/180) *cos (thetab)
a5*sin(theta5);0 sin(alphab5*pi/180) cos(alpha5*pi/180) d5;0 0 0 17]);
R45=simplify ([A45(1,1) A45(1,2) A45(1,3);A45(2,1) A45(2,2)
A45(2,3);A45(3,1) A45(3,2) RA45(3,3)1);

R54=transpose (R45) ;

P45=[A45(1,4);A45(2,4);A45(3,4)1;

% disp('Transformation Matrix for Rotational Joint 6'")
A56=simplify([cos (theta6) -cos(alpha6*pi/180)*sin (thetab)
sin(alpha6*pi/180) *sin (theta6) a6*cos(thetab);sin(thetab)

cos (alpha6*pi/180) *cos (theta6) -sin(alpha6*pi/180) *cos (thetab)
a6*sin(theta6);0 sin(alpha6*pi/180) cos (alpha6*pi/180) d6;0 0 0 11);
R56=simplify ([A56(1,1) A56(1,2) A56(1,3);A56(2,1) A56(2,2)
A56(2,3);RA56(3,1) A56(3,2) A56(3,3)1);

R65=transpose (R56) ;

P56=[A56(1,4);A56(2,4);A56(3,4)1;

$Forward Kinematics

% disp('Forward Kinematics')

AQ6=simplify (AO1*A12*A23*A34*A45*A56) ;

RO6=simplify ([AO6(1,1) AO6(1,2) AO06(1,3);A06(2,1) A06(2,2)
A06(2,3);A06(3,1) A06(3,2) A06(3,3)]):

R60=transpose (R06) ;

PO6=[A06(1,4);RA06(2,4);A06(3,4)1;

[

% Total Workspace

R0O06 = RO6; % RO6 is stored in R006 fot the purpose of calucatinj
Jacobian
P=[A06(1,1);A06(1,2);A06(1,3);A06(2,1),;A06(2,2);A06(2,3);A06(3,1);A06(3,
2);A06(3,3);A06(1,4);A06(2,4);A06(3,4)1;

s P = RA06(:,4);
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syms gl g2 g3 g4 g5 g6
if (Link 1)==0;

P=subs (P, thetal, qgl);
RO6=subs (R06, thetal,ql);
else

P=subs (P, dl, qgl);
RO6=subs (R06,d1,qgl) ;

end

if (Link 2)==0;

P=subs (P, theta2, g2);
RO6=subs (R06, theta2,g2) ;
else

P=subs (P, d2, g2);
RO6=subs (R06,d2,g2) ;

end

if (Link 3)==0;

P=subs (P, theta3, qg3);
RO6=subs (R06, theta3,g3);
else

P=subs (P, d3, g3);
RO6=subs (R06,d3,93) ;

end

if (Link 4)==0;

P=subs (P, theta4, g4);
RO6=subs (R06, theta4,gd);
else

P=subs (P, d4, qg4);
RO6=subs (R06,d4,qg4) ;

end

if (Link 5)==0;

P=subs (P, thetab, gb);
RO6=subs (R06, theta5,g5) ;
else

P=subs (P, d5, gb5);
RO6=subs (R06,d5,g5) ;

end

if (Link 6)==0;

P=subs (P, theta6, gb6);
RO6=subs (R06, theta6,g6) ;
else

P=subs (P, d6, gb6);
RO6=subs (R06,d6,96) ;

end

%$Plotting position and orientation

steps = 10;

gl range = linspace (gl min,
g2 _range = linspace (g2 min,
g3 _range = linspace (g3 min,
g4 range = linspace (g4 min,
g5 range = linspace (g5 min,

gl max, steps
g2_max, steps
g3 max, steps
g4 max, steps
g5 max, steps
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g6_range = linspace (g6 _min, g6 max,steps)';

angle config =combvec (gl range', g2 range', g3 range', g4 range',
g5 range', g6 _range')';

fwdkin=zeros ((steps)”6,12); % Change if the number of joints change
Q_sym=[ql 92 g3 g4 g5 g6];

for i=1:length(angle config)
Q set=angle config(i,:);
fwdkin (i, :)= double(subs(P,Q sym,Q set));
end

Kl= [angle config fwdkin];

[o)

% All Angle configurations
0l =K1(:,1)";

Q2 =KI1(:,2)";
Q3 =K1(:,3)"';
Q4 =KI1(:,4)";
05 =K1 (:,5)";
Q6 =K1(:,6)";

o\°

All Orientations about x,vy,z

x x =K1(:,7)";
x y =K1(:,8)"';
x z =K1(:,9)"';
y x =K1(:,10)";
y y =K1(:,11)';
y z =K1(:,12)";
z x =K1(:,13)";
z y =K1(:,14)";
z z =K1(:,15)";
% Cartesian Coordinates x,vy,z
x =K1 (:,16)"';

y =K1(:,17)"';

z =K1(:,18)";
figure (1)

subplot(2,2,1);
plot3(x',y',z','o"', '"MarkerSize',15, "MarkerEdgeColor', 'k', '"MarkerFaceColo
r','w', 'LineWidth', 2);

grid on;

set (gca, 'fontsize',20)

xlabel ("X (m)', '"FontSize',20);

ylabel ('Y (m)','FontSize',20);

title ('Workspace Top View', 'FontSize',20);

view ([0 90]) % X-Y

subplot (2,2,2);
plot3(x',y',z','o', '"MarkerSize', 15, '"MarkerEdgeColor', 'k', '"MarkerFaceColo
r','w','Linewidth',2);

grid on;

set (gca, 'fontsize',20)

xlabel ("X (m)', '"FontSize',20);

ylabel ('Y (m)', "FontSize',20);
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zlabel ('Z (m)', 'FontSize',20);
title('Total Workspace of Robot', 'FontSize',20);
view ([45 45 45]) % X-Y-7Z

subplot (2,2,3);
plot3(x',y',z','o"', '"MarkerSize',15, "MarkerEdgeColor', 'k', "MarkerFaceColo
r','w','LineWidth', 2);

grid on;

set (gca, 'fontsize',20)

xlabel ('X (m)', 'FontSize',20);

zlabel ('Z (m)', 'FontSize',20);

title('Workspace Front View', 'FontSize',20);

view ([0 0]) % X-7Z

subplot (2,2,4);
plot3(x',y',z','o', '"MarkerSize', 15, '"MarkerEdgeColor', 'k', '"MarkerFaceColo
r','w','Linewidth',2);

grid on;

set (gca, 'fontsize',20)

ylabel ('Y (m)','FontSize',20);

zlabel ('Z (m)', 'FontSize',20);

title ('Workspace Right View', 'FontSize',20);

view([90 0]); % Y-2Z

o\°

Neural Network Inputs and Targets for training the network
% Step 1: Normalizing all inputs and targets between [-1,1] for IK Soln

[q1l n,PS1] = mapminmax (Ql);
[92 n,PS2] = mapminmax (Q2);
[g3 n,PS3] = mapminmax(Q3);
[g4 n,PS4] = mapminmax (Q4);
[g5 n,PS5] = mapminmax (Q5);
[g6 n,PS6] = mapminmax (Q6);
[x x n,PS7] = mapminmax (x Xx);
[x y n,PS8] = mapminmax (x y);
[x z n,PS9] = mapminmax (x_z);
[y x n,PS10] = mapminmax(y Xx);
[y v n,PS11l] = mapminmax(y_y);
[y z n,PS12] = mapminmax(y_ z);
[z x n,PS13] = mapminmax(z_x);
[z vy n,PS14] = mapminmax(z_y);
[z z n,PS15] = mapminmax(z_z);
[x n,PS16] = mapminmax (x);
[y n,PS17] = mapminmax(y);
[z n,PS18] = mapminmax(z);

input =[x Xx n; X yn; x zn; y Xxn; yyn, yzn; zXn; zyn, z zZ n;
X n; y n; z njl;
target =[gl n; 92 n; 93 n; g4 n; g5 n; g6 n]j;

% Solve an Input-Output Fitting problem with a Neural Network
% This script assumes these variables are defined:
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o\°

o\°

input - input data.
target - target data.

o

inputs = input;
targets = target;

% Create a Fitting Network
hiddenLayerSize = [55];
net = fitnet (hiddenlayerSize);

o

Choose Input and Output Pre/Post-Processing Functions

% For a list of all processing functions type: help nnprocess
net.inputs{l}.processFcns = {'removeconstantrows', 'mapminmax'};
net.outputs{2}.processFcns = {'removeconstantrows', 'mapminmax'};

Setup Division of Data for Training, Validation, Testing

For a list of all data division functions type: help nndivide
net.divideFcn = 'dividerand'; % Divide data randomly
net.divideMode = 'sample'; % Divide up every sample
net.divideParam.trainRatio = 80/100;

net.divideParam.valRatio = 10/100;

net.divideParam.testRatio = 10/100;

o° oo

% For help on training function 'trainlm' type: help trainlm
% For a list of all training functions type: help nntrain

[}

net.trainFcn = 'trainlm'; % Levenberg-Marquardt

o\°

Choose a Performance Function
% For a list of all performance functions type: help nnperformance

Q

net.performFcn = 'mse'; % Mean squared error

o\°

Choose Plot Functions

% For a list of all plot functions type: help nnplot
net.plotFcns = {'plotperform', 'plottrainstate', 'ploterrhist’,
'plotregression', 'plotfit'}:;

% Train the Network

[net,tr] = train(net, inputs, targets);
%Display network weights and bias wvalues
disp 'Input weights ='

net.iw{l,1}

disp 'Layer weights ='

net.lw{2,1}

disp 'Input bias ='

net.b{1l}

disp 'Layer bias ='

net.b{2}

$Display network Training parameters
% disp 'Training parameters ='
net.trainParam;
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% Test the Network

outputs = net (inputs);

errors = gsubtract (targets,outputs);

format short;

Network Performance = perform(net, targets, outputs)

% Recalculate Training, Validation and Test Performance
trainTargets = targets .* tr.trainMask{l};

valTargets = targets .* tr.valMask{l};

testTargets = targets .* tr.testMask{1l};

Training Performance = perform(net,trainTargets, outputs)
Validation Performance = perform(net,valTargets,outputs)
Testing Performance = perform(net, testTargets,outputs)

% View the Network
view (net)

o\°

Plots

Uncomment these lines to enable various plots.
figure, plotperform(tr)

figure, plottrainstate(tr)

figure, plotfit (net, inputs, targets)

figure, plotregression (targets,outputs)
figure, ploterrhist(errors)

o oo

o° oo

o\°

o\°

format bank;
% Compare target with network output for IK
gl np = mapminmax ('reverse',outputs(l,:),PSl

)
g2 np = mapminmax ('reverse',outputs(2,:),PS2);
g3 _np = mapminmax ('reverse',outputs(3,:),PS3);
g4 np = mapminmax ('reverse',outputs(4,:),PS4);
g5 np = mapminmax ('reverse',outputs(5,:),PS5);
g6 _np = mapminmax ('reverse',outputs(6,:),PS6);
figure (2)

subplot(3,2,1);

plot (gl np,'o', 'MarkerSize',10, 'MarkerEdgeColor', 'b', '"MarkerFaceColor', "'
b','LineWidth', 2);

hold all

plot(Ql, 'o', '"MarkerSize',10, '"MarkerEdgeColor', 'g', '"MarkerFaceColor', 'g',
'LineWidth', 2);

grid on;

set (gca, 'fontsize',20)

xlabel (' (Dataset Length)', 'FontSize',20)

ylabel ('Joint Variable 1 (rad)', 'FontSize',20)

title ('ANN Accuracy for Joint 1 Inverse Kinematics', 'FontSize', 20)
legend ('Predicted', 'Target"')

subplot(3,2,2);

plot(g2 np,'o', 'MarkerSize',10, 'MarkerEdgeColor', 'b', '"MarkerFaceColor', "'
b','LineWidth', 2);

hold all
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plot (Q2,'o', 'MarkerSize',10, '"MarkerEdgeColor', 'g', '"MarkerFaceColor', 'g’',
'LineWidth', 2);

grid on;

set (gca, 'fontsize',20)

xlabel (' (Dataset Length)', 'FontSize',20)

ylabel ('Joint Variable 2 (rad)', 'FontSize',20)

title ('ANN Accuracy for Joint 2 Inverse Kinematics', 'FontSize',20)
legend ('Predicted', 'Target"')

subplot (3,2,3);

plot (g3 np,'o', 'MarkerSize',10, 'MarkerEdgeColor', 'b', '"MarkerFaceColor', "'
b', 'LinewWidth', 2);

hold all

plot (Q3,'o', 'MarkerSize',10, '"MarkerEdgeColor', 'g', '"MarkerFaceColor', 'g’',
'LineWidth', 2);

grid on;

set (gca, 'fontsize',20)

xlabel (' (Dataset Length)', 'FontSize',20)

ylabel ('Joint Variable 3 (rad)', 'FontSize',20)

title ('ANN Accuracy for Joint 3 Inverse Kinematics', 'FontSize', 20)
legend ('Predicted', 'Target"')

subplot(3,2,4);

plot (g4 np,'o', 'MarkerSize',10, 'MarkerEdgeColor', 'b', '"MarkerFaceColor', "'
b', 'LinewWidth', 2);

hold all

plot (Q4,'o', 'MarkerSize',10, '"MarkerEdgeColor', 'g', '"MarkerFaceColor', 'g’',
'LineWidth', 2);

grid on;

set (gca, 'fontsize',20)

xlabel (' (Dataset Length)', 'FontSize',20)

ylabel ('Joint Variable 4 (rad)', 'FontSize',20)

title ('ANN Accuracy for Joint 4 Inverse Kinematics', 'FontSize', 20)
legend ('Predicted', 'Target"')

subplot (3,2,5);

plot (g5 np,'o', 'MarkerSize',10, 'MarkerEdgeColor', 'b', '"MarkerFaceColor', "'
b', 'Linewidth',2);

hold all

plot (Q5,'o', 'MarkerSize',10, '"MarkerEdgeColor', 'g', '"MarkerFaceColor', 'g’',
'LineWidth', 2);

grid on;

set (gca, 'fontsize',20)

xlabel (' (Dataset Length)', 'FontSize',20)

ylabel ('Joint Variable 5 (rad)', 'FontSize',20)

title ('ANN Accuracy for Joint 5 Inverse Kinematics', 'FontSize', 20)
legend ('Predicted', 'Target"')

subplot (3,2,6);

plot (g6 _np,'o', 'MarkerSize',10, 'MarkerEdgeColor', 'b', '"MarkerFaceColor', "'
b','LineWidth', 2);

hold all

plot (Q6,'o', 'MarkerSize',10, '"MarkerEdgeColor', 'g', '"MarkerFaceColor', 'g’,
'LineWidth', 2);

grid on;

set (gca, 'fontsize',20)
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xlabel (' (Dataset Length)', 'FontSize',20)

ylabel ('Joint Variable 6 (rad)', 'FontSize',20)

title ('ANN Accuracy for Joint 6 Inverse Kinematics', 'FontSize', 20)
legend ('Predicted', 'Target"')

% Residual Error Plot

figure (3)

subplot (3,2,1);

plot(abs (Ql-gl np),'-r', 'LineWidth',2);

hold all

grid on;

set (gca, 'fontsize',20)

% axis ([0 800 0 4.57)

axis ([0 800 0 0.01])

xlabel (' (Dataset Length)', 'FontSize',20)

ylabel ('Residual Error (rad)', 'FontSize',20)

title('Residual Error for Joint 1 Inverse Kinematics', 'FontSize',20)
legend ('Error = |Target - Predicted]|')

subplot(3,2,2);

plot (abs (Q02-92 np), '-r', 'LineWidth',2);

hold all

grid on;

set (gca, 'fontsize',20)

% axis ([0 800 0 4.57)

axis ([0 800 0 0.011])

xlabel (' (Dataset Length)', 'FontSize',20)
ylabel ('Residual Error (rad)', 'FontSize',20)
title('Residual Error for Joint 2 Inverse Kinematics', 'FontSize',20)
legend ('Error = |Target - Predicted]|')

subplot (3,2,3);

plot (abs (Q3-93 np), '-r', 'LinewWidth', 2);

hold all

grid on;

set (gca, 'fontsize',20)

% axis ([0 800 0 4.57)

axis ([0 800 0 0.011)

xlabel (' (Dataset Length)', 'FontSize',20)
ylabel ('Residual Error (rad)','FontSize',20)
title('Residual Error for Joint 3 Inverse Kinematics', 'FontSize',20)
legend ('Error = |Target - Predicted]|')

subplot(3,2,4);

plot (abs (Q4-94 np), '-r','LinewWidth',2);

hold all

grid on;

set (gca, 'fontsize',20)

% axis ([0 800 0 4.57)

axis ([0 800 0 0.011)

xlabel (' (Dataset Length)', 'FontSize',20)
ylabel ('Residual Error (rad)','FontSize',20)
title('Residual Error for Joint 4 Inverse Kinematics', 'FontSize',20)
legend ('Error = |Target - Predicted]|')

subplot (3,2,5);

175



plot (abs (Q5-g5 np), '-r', 'LineWidth', 2);

hold all

grid on;

set (gca, 'fontsize',20)

% axis ([0 800 0 4.57)

axis ([0 800 0 0.01])

xlabel (' (Dataset Length)', 'FontSize',20)

ylabel ('Residual Error (rad)', 'FontSize',20)

title('Residual Error for Joint 5 Inverse Kinematics', 'FontSize',20)
legend ('Error = |Target - Predicted]|')

subplot (3,2,6);

plot (abs (Q6-g6 np), '-r', 'LineWidth',2);

hold all

grid on;

set (gca, 'fontsize',20)

% axis ([0 800 0 4.57)

axis ([0 800 0 0.011)

xlabel (' (Dataset Length)', 'FontSize',20)
ylabel ('Residual Error (rad)','FontSize',20)
title('Residual Error for Joint 6 Inverse Kinematics', 'FontSize',20)
legend ('Error = |Target - Predicted]|')

[o)

% Angular and Linear Velocities

[o)

% Joint Angular Velocities
syms pi;

format bank;
qdot01=[0;0;gldot

17

gdotl1l2=[0;0;g2dot];

gdot23=[0;0;g3dot];
]
]
]

’

gdot34=[0;0;g4dot
qdot45=[0;0;gbdot
qdot56=[0;0;g6dot

’

’

omega000=[0;0;0];
v000=[0;0;0];

if Link 1==

omegalOl=simplify (R10* (omega000+gdot0l)) ;

v101l=simplify ((R10*v000)+cross (omegalll, (R10*P01)));

else

omegalOl=simplify (R10* (omegal00)) ;

v10l=simplify ((R10*v000)+cross (omegal000, (R10*P01))+ (R10*gdot01));
end

if Link 2==

omega202=simplify (R21* (omegalOl+gdotl?2)) ;

v202=simplify ((R21*v101l)+cross (omega202, (R21*P12)));

else

omega202=simplify (R21*omegalll) ;

v202=simplify ((R21*v101l)+cross (omegalll, (R21*P12))+ (R21*gdotl2));
end
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if Link 3==

omega303=simplify (R32* (omega202+gdot23)) ;

v303=simplify ((R32*v202)+cross (omega303, (R32*P23))) ;

else

omega303=simplify (R32* (omega202)) ;

v303=simplify ((R32*v202)+cross (omega202, (R32*P23) )+ (R32*gdot23));
end

if Link 4==

omegad04=simplify (R43* (omega303+gdot34));

v404=simplify ((R43*v303)+cross (omegad04, (R43*P34)));

else

omegad04=simplify (R43* (omega303));

v404=simplify ( (R43*v303)+cross (omega303, (R43*P34))+ (R43*gdot34));
end

if Link 5==

omegab505=simplify (R54* (omegad404+qgdotdb));

v505=simplify ((R54*v404)+cross (omegab505, (R54*P45))) ;

else

omega505=simplify (R54* (omegad04));

v505=simplify ((R54*v404)+cross (omegad04, (R54*P45) )+ (R54*gdotd’));
end

if Link 6==

omega606=simplify (R65* (omegab505+gdotb56)) ;

v606=simplify ((R65*v505)+cross (omega606, (R65*P56))) ;

else

omega606=simplify (R65* (omega505)) ;

v606=simplify ((R65*v505)+cross (omega505, (R65*P56) )+ (R65*gdot56)) ;
end

disp('Jacobian in Base Frame')

VE=[v606;0omegac06];

J Variable=[gldot;g2dot;g3dot;gd4dot;g5bdot;g6dot];
JE=jacobian (VE,J Variable);

JBv=simplify (RO06*[JE(1,1) JE(1,2) JE(1,3) JE(1,4) JE(1,5)
JE(1,6);JE(2,1) JE(2,2) JE(2,3) JE(2,4) JE(2,5) JE(2,6);JE(3,1) JE(3,2)
JE(3,3) JE(3,4) JE(3,5) JE(3,6)]);

JBw=simplify (ROO6*[JE(4,1) JE(4,2) JE(4,3) JE(4,4) JE(4,5)
JE(4,6);JE(5,1) (5,2) JE(5,3) JE(5,4) JE(5,5) JE(5,060);JE(6,1) JE(6,2)
JE(6,3) JE(6,4) (6,5) JE(6,6)1);

JB=[JBv; JBw] ;

J11=[JB(1,1) JB(1,2) JB(1,3); JB(2,1) JdB(2,2) JdB(2,3); JB(3,1) JB(3,2)
JB(3,3)1;

J22=[JB(4,4) JB(4,5) JB(4,6); JB(5,4) JB(5,5) JB(5,6); JB(6,4) JB(6,5)
JB(6,6)];

disp (vpa (JdB,5))

JE
JE

%Z Integers , Q = Rational Numbers , R_ = Real Numbers, C_ = Complex
Numbers

if ad4+ad+ab==
disp ('Jacobian Subset J11'")
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disp(vpa(J1l1l,5))

disp('Jacobian Subset J22")

disp (vpa (J22,5))

Sl=simplify(det (J11));

S2=simplify(det (J22));

fprintf (2, 'Singularity Equation\n')

fprintf (2, 'The Robot has a Wrist Configuration\n')

if sl==
fprintf (2, '"Robot always has a Forearm Singularity\n')
else
fprintf (2, 'Forearm Singularity Equation\n')
disp(S1)
SEl=

solve (S1==0,tl,t2,t3,t4,t5,t6, '"Real', true, 'IgnoreProperties’', true, 'Ignor
eAnalyticConstraints', true);
if Link 1==
t101=SEl.thetal;
else
t101=SE1.d1;
end

if Link 2==
t102=SEl.theta2;
else
t102=S8SE1.d2;
end

if Link 3==
t103=SEl.theta3;
else
t103=8SE1.d3;
end

if Link 4==
£t104=SE1l.thetad;
else
t104=SE1.d4;
end

if Link 5==
t105=SEl.thetab;
else
t105=8E1.d5;
end

if Link 6==
t106=SEl.thetab6;
else
t106=SE1.d6;
end
fprintf (2, 'Forearm Singularity Solution(s)\n'")
SE1 = [t101 t102 t103 tl104 t105 t106]
end
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if S2==
fprintf (2, '"Robot always has a Wrist Singularity\n')
else
fprintf (2, '"Wrist Singularity Equation\n')
disp(S2)
SE2=
solve (S2==0,tl,t2,t3,t4,t5,t6, '"Real', true, 'IgnoreProperties’', true, 'Ignor
eAnalyticConstraints', true);
if Link 1==
t201=SE2.thetal;
else
t201=SE2.d1l;
end

if Link 2==
t202=SE2.theta2;
else
t202=8E2.d2;
end

if Link 3==
t203=SE2.theta3;
else
t203=8SE2.d3;
end

if Link 4==
t204=SE2.theta4;
else
t204=SE2.d4;
end

if Link 5==
t205=8SE2.thetab;
else
t205=8E2.d5;
end

if Link 6==
t206=SE2.thetat6;
else
t206=SE2.d6;
end
fprintf (2, '"Wrist Singularity Solution(s)\n')
SE2 = [t201 t202 t203 t204 t205 t206]

end
else
S3=simplify (det (JB));
if S3==
% fprintf (2, '"Robot is always Singular\n')
else
disp (S3)
end
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fprintf (2, 'Singularity Equation\n')
SE3=
solve (S3==0,t1l,t2,t3,t4,t5,t6, '"Real', true, 'IgnoreProperties', true, 'Ignor
eAnalyticConstraints', true);
if Link 1==
t301=SE3.thetal;
else
t301=SE3.d1;
end

if Link 2==
t302=SE3.theta2;
else
t302=8SE3.d2;
end

if Link 3==
t303=SE3.theta3;
else
t303=8SE3.d3;
end

if Link 4==
t304=SE3.theta4;
else
t304=SE3.d4;
end

if Link 5==
t305=SE3.theta5;
else
t305=8SE3.d5;
end

if Link 6==0
t306=SE3.thetab6;
else
t306=SE3.d6;
end

fprintf (2, ' Singularity Solution(s)\n")

SE3 = [t301 t302 t303 t304 t305 t306]
end

$Plotting Singularity

gl range new = gl range;

g2_range new = 0;

g3_range new = g3_range;

g4 range new = g4 range;

g5 range new = g5 range; $change fwd kin dimension
g6 _range new = g6 range;

angle config s =combvec (gl range new', g2 range new', g3 range new',
g4 range new', g5 range new', g6 range new')';
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[o)

fwdkin s=zeros((steps)”5,12); % change every time
Q_sym=[ql g2 g3 g4 g5 g6];

for i=1:length(angle config s)
Q set s=angle config s (i, :);

fwdkin s (i, :)= double(subs(P,Q sym,Q set s));
end
K _s= [angle config s fwdkin s];
[~, loc_s] = unique(K s(:,16:18), 'rows');

K1 s=K s(loc s,:);

% All Angle configurations
Ql s =K1 s(:,1)";

Q02 s =K1 s(:,2)";

03 s =K1 s(:,3)";

Q04 s =K1 s(:,4)";

Q5 s =K1 s(:,5)";

Q6 s =K1 s(:,6)";

% All Orientations about x,vy,z
x x s =K1 s(:,7)"';

x y s =K1l s(:,8)";

x z s =K1l s(:,9)"';

y x s =Kl s(:,10)";

y y s =Kl s(:,11)";

y z s =K1 s(:,12)";

z x s =K1 s(:,13)";

z y s =K1 s(:,14)";

z z s =K1 s(:,15)";

% Cartesian Coordinates x,vy,z
x s =K1 s(:,16)";

y s =K1 s(:,17)";

z s =K1 s(:,18)";
figure (5)

subplot(2,2,1);
plot3(x',y',z','o', '"MarkerSize', 15, '"MarkerEdgeColor', 'k', '"MarkerFaceColo
r','w','Linewidth',2);

hold all

plot3(x s',y s',z s','o', '"MarkerSize', 15, 'MarkerEdgeColor', 'r', 'MarkerFa
ceColor','r', 'LineWidth', 2) ;

grid on;

set (gca, 'fontsize',20)

xlabel ("X (m)', '"FontSize',20);

ylabel ('Y (m)','FontSize',20);

title('Functional Workspace Top View', 'FontSize',20);

legend ('Workspace', 'Singularity Space')

view ([0 90]) % X-Y

subplot (2,2,2);
plot3(x',y',z','o', '"MarkerSize', 15, '"MarkerEdgeColor', 'k', '"MarkerFaceColo
r','w', 'LineWidth', 2);
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hold all

plot3(x s',y s',z s','o', 'MarkerSize',15, 'MarkerEdgeColor', 'r', '"MarkerFa
ceColor','r', 'LineWidth', 2) ;

grid on;

set (gca, 'fontsize',20)

xlabel ('X (m)', 'FontSize',20);

ylabel ('Y (m)', '"FontSize',20);

zlabel ('Z (m)', 'FontSize',20);

title('Functional Workspace of Robot', 'FontSize',20);
legend ('Workspace', 'Singularity Space')

view ([45 45 45]) % X-Y-7Z

subplot (2,2,3);
plot3(x',y',z','o', '"MarkerSize', 15, '"MarkerEdgeColor', 'k', '"MarkerFaceColo
r','w','LineWwidth', 2);

hold all

plot3(x s',y s',z s','o', '"MarkerSize', 15, 'MarkerEdgeColor', 'r', 'MarkerFa
ceColor','r', 'LinewWwidth', 2);

grid on;

set (gca, 'fontsize',20)

xlabel ("X (m)', '"FontSize',20);

zlabel ('Z (m)', 'FontSize',20);

title('Functional Workspace Front View', 'FontSize',20);

legend ('Workspace', 'Singularity Space')

view ([0 0]) % X-7Z

subplot (2,2,4);
plot3(x',y',z','o"', '"MarkerSize',15, "MarkerEdgeColor', 'k', '"MarkerFaceColo
r','w', 'LineWidth', 2);

hold all

plot3(x s',y s',z s','o', 'MarkerSize',15, 'MarkerEdgeColor', 'r', '"MarkerFa
ceColor','r', 'Linewidth',2);

grid on;

set (gca, 'fontsize',20)

ylabel ('Y (m)','FontSize',20);

zlabel ('Z (m)', 'FontSize',20);

title('Functional Workspace Right View', 'FontSize',20);

legend ('Workspace', 'Singularity Space')

view([90 01); % Y-Z

% Neural Network Inputs and Targets for training the network
% Step 1: Normalizing all inputs and targets between [-1,1] for IK Soln

'apply',02 s,PS2);

gl n s = mapminmax )
)

"apply',Q3 s,PS3);
)
)
)

g2 _n_s = mapminmax
g3 n s = mapminmax
d4 n s = mapminmax
g5 n s = mapminmax
g6 _n s = mapminmax

"apply',0Q1 s,PsSl

'apply',Q4 s,Ps4);
"apply',Q5 s, PS5

"apply',Q6 s,PS6

’

’

~ o~ o~~~ —

X x n_ s = mapminmax('apply',x x s,PS7);
X y n s = mapminmax('apply',x y s,PS8);
X z n_ s = mapminmax('apply',x z s,PS9);
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y_ X n_ s = mapminmax ('apply',y X s,PS10);

y_y n s = mapminmax ('apply',y y s,PS1ll);

y z n s = mapminmax('apply',y z s,PS12);

z X n s = mapminmax('apply',z x s,PS13);

z y n s = mapminmax ('apply',z y s,PSl4);

Zz z n s = mapminmax ('apply',z z s,PS15);

X n s = mapminmax('apply',x s,PS16);

y n s = mapminmax('apply',y s,PS17);

z n s = mapminmax('apply',z_s,PS18);

input s =[x X n s; X yn s; X zZnN s; y XN s; yyns; y zns;
Z yns; z zZns; XN s; yns; znsl;

target s =[gl n s; g2 n s; g3 n s; g4 n s; g5 n s; g6 n s];

$Simulate network with test data

outputs p = sim(net, input_s);

gl p = mapminmax ('reverse',outputs p(l,:),PSl);

g2 _p = mapminmax('reverse',outputs p(2,:),PS2);

g3 _p = mapminmax('reverse',outputs p(3,:),PS3);

g4 p = mapminmax ('reverse',outputs p(4,:),PS4);

g5 p = mapminmax ('reverse',outputs p(5,:),PS5);

g6 _p = mapminmax('reverse',outputs p(6,:),PS6);
angle_config p = [ql_p', 92_p', g3_p' g4_p', g5 _p', gb6_p'l;

Q

% change every time
change every time

fwdkin p=zeros (length (input s),12

% fwdkin p=zeros((steps)”5,12);
Q_sym=[gl 92 g3 g4 g5 g6];

) ’
o
°

for i=l:length(angle config p)
Q set p=angle config p(i,:);
fwdkin p(i,:)= double(subs(P,Q sym,Q set p));
end

K p= [angle config p fwdkin p];
[~, loc] = unique(K p(:,16:18), 'rows');
Kl p=K p(loc,:);

% All Angle configurations

0l p =K1 p(:,1)";
02 p =K1 _p(:,2)";
Q3_p _Kl_p( /3) ';
04 p =K1 p(:,4)";
05 p =K1 p(:,5)";
Q6 _p =K1 _p(:,6)";

x x p =K1 p(:,7)"';
x y p =Kl _p(:,8)";
x z_p =Kl p(:,9)";
y x p =K1 p(:,10)"';
y vy p =Kl p(:,11)";
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y_z_p =Kl _p(:,12)";
z X p =K1 p(:,13)";
z y p =K1l p(:,14)";
z z p =K1 p(:,15)";

% Cartesian Coordinates x,vy,z

x_p =Kl _p(:,16)";
y p =Kl p(:,17)";
z_ p =K1 _p(:,18)"';

figure (6)

subplot(2,2,1)

plot3(x p',y p',z p','o', '"MarkerSize',20, '"MarkerEdgeColor', 'b', '"MarkerFa
ceColor', 'b', 'LinewWidth', 2);

hold all

plot3(x s',y s',z s','o', 'MarkerSize',20, 'MarkerEdgeColor', 'r', '"MarkerFa
ceColor','r', 'LineWidth', 2) ;

grid on;

set (gca, 'fontsize',20)

xlabel ("X (m)', '"FontSize',20);

ylabel ('Y (m)','FontSize',20);

title ('ANN Singularity Top View', 'FontSize',20)

legend ('Predicted Singularity', 'Theoretical Singularity')

view ([0 90]) % X-Y

subplot (2,2,2);

plot3(x p',y p',z p','o', '"MarkerSize',20, '"MarkerEdgeColor', 'b', '"MarkerFa
ceColor', 'b', 'LineWidth', 2) ;

hold all

plot3(x s',y s',z s','o', 'MarkerSize',20, 'MarkerEdgeColor', 'r', '"MarkerFa
ceColor','r', 'Linewidth',2);

grid on;

set (gca, 'fontsize',20)

xlabel ("X (m)', '"FontSize',20);

ylabel ('Y (m)', "FontSize',20);

zlabel ('Z (m)', 'FontSize',20);

title ('"ANN Predicted Singularity vs Theoretical

Singularity', 'FontSize',20)

legend ('Predicted Singularity', 'Theoretical Singularity')

view([45 45 45]) % X-Y-7Z

subplot(2,2,3);

plot3(x p',y p',z p','o', '"MarkerSize',20, '"MarkerEdgeColor', 'b', '"MarkerFa
ceColor', 'b', 'LinewWidth', 2) ;

hold all

plot3(x s',y s',z s','o', 'MarkerSize',20, 'MarkerEdgeColor', 'r', '"MarkerFa
ceColor','r', 'LineWidth', 2) ;

grid on;

set (gca, 'fontsize',20)

xlabel ('X (m)', 'FontSize',20);

zlabel ('Z (m)', 'FontSize',20);

title ('ANN Singularity Front View', 'FontSize',20)

legend ('Predicted Singularity', 'Theoretical Singularity')

view ([0 0]) % X-7Z
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subplot (2,2,4);

plot3(x p',y p',z p','o', '"MarkerSize',20, '"MarkerEdgeColor"',
ceColor', 'b', 'LineWidth', 2) ;

hold all

plot3(x s',y s',z s','o', 'MarkerSize',20, '"MarkerEdgeColor"',
ceColor','r', 'Linewidth',2);

grid on;

set (gca, 'fontsize',20)

ylabel ('Y (m)','FontSize',20);

zlabel ('Z (m)', 'FontSize',20);

title ('ANN Singularity Right View', 'FontSize'

+20)

legend ('Predicted Singularity', 'Theoretical Singularity')
view([90 0]); % Y-Z

% Absolute Error

E gl p s = abs(Ql s'-gql p');

E g2 p s = abs(Q2 s'-g2 p');

E g3 p s = abs(Q3 s'-g3 p');

E g4 p s = abs(Q4 s'-g4 p');

E g5 p s = abs(Q5 s'-g5 p');

E g6 p s = abs(Q6 s'-g6 p');

E x xps=abs(xxs'"-xxp")';
Exyps=abs(xys'-xyp"';

E x zps =abs(x zs'-xzp")';

Ey xps=abs(y xs'-yxp')'";
Eyyps=abs(yys'"-yyp)'
Eyzps=abs(yzs'-yzp")';

E z xps =abs(zxs'-zxp")";
Ezyps=abs(zys'-zyp"';

E z z p s =abs(z z s' -z zp')";

E x p s =abs(xs' - xp')'";

Eyps =abs(y s'" -yp')';

E z p s = abs(z s' -z p')'";

disp ('Absolute Errors in Joint Space')

disp(['Max Error in Joint 1 = ' num2str(max(E gl p s),2)
in Joint 1 = ' numZ2str(min(E gl p s),2)])

disp(['Max Error in J01nt 2 = ' num2Zstr (max(E g2 p s),2)
in Joint 2 = ' numZ2str (min(E g2 p s),2)])

disp(['Max Error in Joint 3 = ' num2str(max(E g3 p s),2)
in Joint 3 = ' numZ2str(min(E g3 p s),2)])

disp(['Max Error in Joint 4 = ' num2str(max(E g4 p s),2)
Error in Joint 4 = ' num2str (min(E g4 p s),2)])
disp(['Max Error in Joint 5 = ' num2str(max(E g5 p s),2)
Error in Joint 5 = ' numZ2str (min(E g5 p s),2)])
disp(['Max Error in Joint 6 = ' num25tr(max(E_q6_p_s),2)
Error in Joint 6 = ' numZ2str (min(E g6 p s),2)])

disp('Absolute Errors in Cartesian Space')

disp(['Max Error in x-x
Error in x-x = ' num2st
disp(['Max Error in x-y

in x-y =
disp(['Max Error in x-z
Error in x-z = ' num2str

r(m

(m

in(E x x p s),

' numZ2str (min(E x y p s),

numZStr(max(E_x_x p_s),

_X_X_p_s),2)])
num2str (max(E x y p s)
2)1)

numZStr(max(E_x_z P_Ss),
n(E x z p s),2)])
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disp(['Max Error in y-x =" numZStr(max(E_y_x p_s),2) ' Min
Error in y-x = ' numZ2str (min(E y x p s),2)])

disp(['Max Error in y-y =" num2str(max(E_y_y p_s),2) ' Min
Error in y-y = ' numZ2str(min(E y vy p s),2)])

disp(['Max Error in y-z =" numZStr(max(E_y_z p_s),2) ' Min
Error in y-z = ' numZ2str(min(E y z p s),2)])

disp(['Max Error in z-x = ' numZ2str (max(E_ z x p s),2) ' Min Error
in z-x = ' numZ2str(min(E z X p s),2)])

disp(['Max Error in z-y =" num2str(max(E_z_y p_s),2) ' Min
Error in z-y = ' numZ2str(min(E_z y p s),2)])

disp(['Max Error in z-z =" numZStr(max(E_z_z p_s),2) ' Min
Error in z-z = ' numZ2str(min(E_z z p s),2)])

disp(['Max Error in x = ' numZ2str (max(E x p s),2) ' Min
Error in x = ' numZ2str (min(E x p s),2)])

disp(['Max Error in y = ' numZ2str (max(E_ y p s),2) ! Min
Error in vy = ' numZ2str (min(E_y p s),2)])

disp(['Max Error in z =" num2str(max(E_z_p_s),2) ! Min
Error in z = ' numZ2str(min(E_z p s),2)])

disp('Absolute Errors in Joint Space')

disp(['Average Error in Joint 1 = ' num2str(mean(E gl p s),2)])
disp(['Average Error in Joint 2 = ' num2str(mean(E g2 p s),2)])
disp(['Average Error in Joint 3 = ' num2Zstr(mean(E g3 p s),2)])
disp(['Average Error in Joint 4 = ' num2str(mean(E g4 p s),2)])
disp(['Average Error in Joint 5 = ' num2str (mean(E g5 p s),2)])
disp(['Average Error in Joint 6 = ' num2str (mean(E g6 p s),2)])
figure (7)

subplot(3,2,1);

plot (gl p,'o', 'MarkerSize',10, 'MarkerEdgeColor', 'b', '"MarkerFaceColor', 'b
', 'LineWidth',2);

hold all

plot(Ql s,'o', 'MarkerSize',10, 'MarkerEdgeColor', 'g', '"MarkerFaceColor','g
', '"LineWidth', 2);

grid on;

set (gca, 'fontsize',20)

xlabel (' (Dataset Length)', 'FontSize',20)

ylabel ('Joint Variable 1 (rad)', 'FontSize',20)

title ('ANN Accuracy for Joint 1 Singularity Prediction', 'FontSize',20)
legend ('Predicted', 'Target"')

subplot(3,2,2);

plot(g2 p,'o', 'MarkerSize',10, 'MarkerEdgeColor', 'b', '"MarkerFaceColor', 'b
', 'LineWidth',2);

hold all

plot(Q2 s,'o', 'MarkerSize',10, 'MarkerEdgeColor', 'g', '"MarkerFaceColor', 'g
', '"LineWidth', 2);

grid on;

set (gca, 'fontsize',20)

xlabel (' (Dataset Length)', 'FontSize',20)

ylabel ('Joint Variable 2 (rad)', 'FontSize',20)

title ('ANN Accuracy for Joint 2 Singularity Prediction', 'FontSize',20)

legend (

'Predicted’',

'Target"')

subplot (3,2, 3);
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plot (g3 p,'o', 'MarkerSize', 10, 'MarkerEdgeColor', 'b', '"MarkerFaceColor', 'b
', 'LineWidth',2);

hold all

plot(Q3 s, 'o', 'MarkerSize',10, 'MarkerEdgeColor', 'g', '"MarkerFaceColor', 'g
', 'LineWidth',2);

grid on;

set (gca, 'fontsize',20)

xlabel (' (Dataset Length)', 'FontSize',20)

ylabel ('Joint Variable 3 (rad)', 'FontSize',20)

title ('ANN Accuracy for Joint 3 Singularity Prediction', 'FontSize',20)
legend ('Predicted', 'Target')

subplot (3,2,4);

plot (g4 p,'o', 'MarkerSize', 10, 'MarkerEdgeColor', 'b', '"MarkerFaceColor', 'b
', 'LineWidth',2);

hold all

plot(Q4 s,'o', 'MarkerSize',10, 'MarkerEdgeColor', 'g', '"MarkerFaceColor', 'g
', 'LineWidth',2);

grid on;

set (gca, 'fontsize',20)

xlabel (' (Dataset Length)', 'FontSize',20)

ylabel ('Joint Variable 4 (rad)', 'FontSize',20)

title ('ANN Accuracy for Joint 4 Singularity Prediction', 'FontSize',20)
legend ('Predicted', 'Target’')

subplot (3,2,5);

plot (g5 p,'o', 'MarkerSize', 10, 'MarkerEdgeColor', 'b', '"MarkerFaceColor', 'b
', '"LinewWidth', 2);

hold all

plot (Q5 s, 'o', 'MarkerSize', 10, 'MarkerEdgeColor', 'g', '"MarkerFaceColor', 'g
', 'LineWidth',2);

grid on;

set (gca, 'fontsize',20)

xlabel (' (Dataset Length)', 'FontSize',20)

ylabel ('Joint Variable 5 (rad)', 'FontSize',20)

title ('ANN Accuracy for Joint 5 Singularity Prediction', 'FontSize',20)
legend ('Predicted', 'Target’')

subplot (3,2,6);

plot (g6 _p,'o', 'MarkerSize', 10, 'MarkerEdgeColor', 'b', '"MarkerFaceColor', 'b
', '"LinewWidth', 2);

hold all

plot (Q6_s,'o', 'MarkerSize', 10, 'MarkerEdgeColor', 'g', '"MarkerFaceColor','g
', 'LineWidth',2);

grid on;

set (gca, 'fontsize',20)

xlabel (' (Dataset Length)', 'FontSize',20)

ylabel ('Joint Variable 6 (rad)', 'FontSize',20)

title ('ANN Output vs. Target for Joint 6', 'FontSize',20)

legend ('Predicted', 'Target’')

%$Residual Error Plot

figure (8)

subplot (3,2,1);
plot(abs(Ql s-gql p),'-r','LineWidth',2);
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hold all

grid on;

set (gca, 'fontsize',20)

$ axis ([0 30 0 4.5])

axis ([0 250 0 0.04])

xlabel (' (Dataset Length)', 'FontSize',20)

ylabel ('Residual Error (rad)','FontSize',20)
title('Error in ANN Accuracy for Joint 1 Singularity
Prediction', '"FontSize', 20)

legend ('Error = |Target - Predicted]|')

subplot (3,2,2);

plot(abs (02 s-g2 p),'-r','LineWidth',2);
hold all

grid on;

set (gca, 'fontsize',20)

% axis ([0 30 0 4.5])

axis ([0 250 0 0.04])

xlabel (' (Dataset Length)', 'FontSize',20)
ylabel ('Residual Error (rad)', 'FontSize',20)
title('Error in ANN Accuracy for Joint 2 Singularity
Prediction', '"FontSize', 20)

legend ('Error = |Target - Predicted]|')

subplot (3,2, 3);
plot(abs(Q3 s-g3 p),'-r', 'LineWidth',2);
hold all

grid on;

set (gca, 'fontsize',20)

$ axis ([0 30 0 4.5])

axis ([0 250 0 0.041)

xlabel (' (Dataset Length)', 'FontSize',20)
ylabel ('Residual Error (rad)', 'FontSize',20)
title('Error in ANN Accuracy for Joint 3 Singularity
Prediction', '"FontSize', 20)

legend ('Error = |Target - Predicted]')

subplot(3,2,4);

plot (abs (04 s-g4 p),'-r','LineWidth',2);
hold all

grid on;

set (gca, 'fontsize',20)

$ axis ([0 30 0 4.5])

axis ([0 250 0 0.04])

xlabel (' (Dataset Length)', 'FontSize',20)
ylabel ('Residual Error (rad)', 'FontSize',20)
title('Error in ANN Accuracy for Joint 4 Singularity
Prediction', '"FontSize', 20)

legend ('Error = |Target - Predicted]')

subplot (3,2,5);

plot (abs (Q5 s-g5 p),'-r', 'LineWidth',2);
hold all

grid on;

set (gca, 'fontsize',20)

% axis ([0 30 0 4.5])
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axis ([0 250 0 0.041)

xlabel (' (Dataset Length)', 'FontSize',20)

ylabel ('Residual Error (rad)', 'FontSize',20)
title('Error in ANN Accuracy for Joint 5 Singularity
Prediction', 'FontSize', 20)

legend ('Error = |Target - Predicted]|')

subplot (3,2,6);

plot (abs (Q6_s-g6 p),'-r', 'LineWidth',2);
hold all

grid on;

set (gca, 'fontsize',20)

% axis ([0 30 0 4.57)

axis ([0 250 0 0.04])

xlabel (' (Dataset Length)', 'FontSize',20)
ylabel ('Residual Error (rad)', 'FontSize',20)
title('Error in ANN Accuracy for Joint 6 Singularity
Prediction', 'FontSize', 20)

legend ('Error = |Target - Predicted]|')
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