
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2014

Reconfigurable Validation Model for Identifying
Kinematic Singularities and Reach Conditions for
Articulated Robots and Machine Tools
Luv Aggarwal
University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Aggarwal, Luv, "Reconfigurable Validation Model for Identifying Kinematic Singularities and Reach Conditions for Articulated
Robots and Machine Tools" (2014). Electronic Theses and Dissertations. Paper 5219.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F5219&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5219&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5219&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/5219?utm_source=scholar.uwindsor.ca%2Fetd%2F5219&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Reconfigurable Validation Model for Identifying Kinematic
Singularities and Reach Conditions for Articulated Robots and

Machine Tools

By

Luv Aggarwal

A Thesis

Submitted to the Faculty of Graduate Studies
through the Department of Mechanical, Automotive and Materials Engineering

in Partial Fulfillment of the Requirements for
the Degree of Master of Applied Science

 at the University of Windsor

Windsor, Ontario, Canada

2014

© 2014 Luv Aggarwal

Reconfigurable Validation Model for Identifying Kinematic Singularities and Reach
Conditions for Articulated Robots and Machine Tools

By

Luv Aggarwal

APPROVED BY:

__
Dr. Z. Pasek

Industrial and Manufacturing Systems Engineering

__
Dr. J. Johrendt

Mechanical, Automotive and Materials Engineering

__
Dr. R. J. Urbanic, Advisor

Mechanical, Automotive and Materials Engineering

June 23, 2014

 DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION

I. Co-Authorship Declaration

I hereby declare that this thesis incorporates material that is result of joint
research, as follows:

This thesis incorporates the outcome of a joint research undertaken in
collaboration with Kush Aggarwal under the supervision of Dr. Jill Urbanic. The
collaboration is covered in Chapter 9 of the thesis. In all cases, the key ideas,
primary contributions, experimental designs, data analysis and interpretation, were
performed by the author, and the contribution of co-authors was primarily through
the provision of comments, thoughts, and suggestions for improvement to the
quality of work.

I am aware of the University of Windsor Senate Policy on Authorship and I
certify that I have properly acknowledged the contribution of other researchers to
my thesis, and have obtained written permission from each of the co-author(s) to
include the above material(s) in my thesis.

I certify that, with the above qualification, this thesis, and the research to
which it refers, is the product of my own work.

II. Declaration of Previous Publication

This thesis includes concepts, methodology, and excerpt(s) from 2 original
papers that have been previously published in peer reviewed journals, as follows:

Thesis Chapter Publication title/full citation Publication
status*

Chapter(s)
1,2,5,8

 Aggarwal, L., Urbanic, R., and Aggarwal,
K., "A Reconfigurable Algorithm for
Identifying and Validating Functional
Workspace of Industrial Manipulators,"
SAE Technical Paper 2014-01-0734, 2014,
doi:10.4271/2014-01-0734.

Published

iii

Chapter(s)
2,6,8,10

 Aggarwal, L., Aggarwal, K., and Urbanic,
R. J. (2014). Use of artificial neural
networks for the development of an inverse
kinematic solution and visual identification
of singularity zone(s). 47th CIRP
Conference on Manufacturing Systems.
Windsor: Elsevier Ltd. doi:
10.1016/j.procir.2014.01.107

Published

I certify that I have obtained a written permission (Appendices E, F) from
the copyright owner(s) to include the above published material(s) in my thesis. I
certify that the above material describes work completed during my registration as
graduate student at the University of Windsor.

I declare that, to the best of my knowledge, my thesis does not infringe
upon anyone’s copyright nor violate any proprietary rights and that any ideas,
techniques, quotations, or any other material from the work of other people
included in my thesis, published or otherwise, are fully acknowledged in
accordance with the standard referencing practices. Furthermore, to the extent that
I have included copyrighted material that surpasses the bounds of fair dealing
within the meaning of the Canada Copyright Act, I certify that I have obtained a
written permission from the copyright owner(s) to include such material(s) in my
thesis.

I declare that this is a true copy of my thesis, including any final revisions,
as approved by my thesis committee and the Graduate Studies office, and that this
thesis has not been submitted for a higher degree to any other University or
Institution.

iv

 ABSTRACT

Automation has led to industrial robots facilitating a wide array of high speed,

endurance, and precision operations undertaken in the manufacturing industry

today. An acceptable level of functioning and control is therefore vital to the

efficacy and successful implementation of such manipulators. This research

presents a comprehensive analytical tool for downstream optimization of

manipulator design, functionality, and performance. The proposed model is

reconfigurable and allows for modelling and validation of different industrial

robots. Unique 3D visual models for a manipulator workspace and kinematic

singularities are developed to gain an understanding into the task space and reach

conditions of the manipulator’s end-effector. The developed algorithm also

presents a non-conventional and computationally inexpensive solution to the

inverse kinematics problem through the use Artificial Neural Networks.

Application of the proposed technique is further extended to aid in development of

path planning models for a uniform, continuous, and singularity free motion.

v

 DEDICATION

To my parents,

for their unconditional love, endless support, encouragement

and

for their sacrifices in providing me with a better future.

Thank you for giving so selflessly.

vi

 ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. Jill Urbanic, for providing me with the

opportunity of pursuing this field of research under her guidance. She has been a

constant source of motivation and encouragement throughout this journey. I am

extremely thankful for her selfless dedication to both my personal and academic

development.

I owe a debt of gratitude to Dr. Ana Djuric and Dr. Jennifer Johrendt for providing

me with the tools to build a strong foundation. I am forever thankful to Dr. Djuric

for introducing me to the field of robotics. She has always made the most

challenging tasks seem so easy. I am also very thankful to Dr. Johrendt for

introducing me to the field of neural networks. She has always taken the time out

to guide me through the smallest of hurdles. I would not be where I am today if it

weren’t for Dr. Urbanic, Dr. Djuric, and Dr. Johrendt.

I would also like to acknowledge Dr. Zbignew Pasek for his guidance and

technical advice.

A special thanks goes out to my twin, Kush, who has been there with me in my

best and worst of times. I could not have asked for a better friend.

Finally, I must thank my girlfriend, Ishika, for believing in me even at times when

I doubted myself. She has always supported me in all my endeavours and has been

there for me through thick and thin. I am thankful to her for being my rock.

vii

TABLE OF CONTENTS

DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION iii

ABSTRACT ..v

DEDICATION.. vi

ACKNOWLEDGEMENTS ... vii

LIST OF TABLES ... xi

LIST OF FIGURES .. xii

LIST OF APPENDICES ...xv

LIST OF ABBREVIATIONS / SYMBOLS ... xvi

NOMENCLATURE ... xix

CHAPTER 1 INTRODUCTION ..1

1.1 Background .. 1

1.2 Research Purpose .. 4

1.3 Research Limitations ... 6

CHAPTER 2 LITERATURE REVIEW ..7

2.1 Manipulator Kinematics and Modelling Techniques ... 7

2.2 Manipulator Workspace ... 10

2.3 Manipulator Singularity and Avoidance Techniques ... 13

2.4 Inverse Kinematics using Artificial Neural Networks .. 16

CHAPTER 3 INDUSTRIAL ROBOTICS ...19

3.1 Hardware and Software ... 21

3.2 Symbolic Representation of Joints and Links .. 22

3.3 Manipulator Classification .. 23

3.4 Manipulator End-Effector Types and Application ... 25

CHAPTER 4 MATHEMATICAL CONCEPTS ...27

4.1 Degrees of Freedom (DOF) ... 27

4.2 Representation of Position and Orientation .. 28

4.3 Frame Transformation ... 29

viii

4.4 Roll, Pitch and Yaw (RPY) Angles ... 31

CHAPTER 5 KINEMATIC MODELLING OF MANIPULATORS33

5.1 Denavit-Hartenberg (D-H) Parameters ... 34

5.2 Homogeneous Frame Transformations ... 36

5.3 Joint Space ... 38

5.4 Cartesian Space ... 38

5.5 Forward Kinematics .. 39

5.6 Workspace and Taskspace ... 40

5.7 Inverse Kinematics ... 41

CHAPTER 6 ARTIFICIAL NEURAL NETWORKS..44

6.1 Trade-off between Generalization and Accuracy .. 44

6.2 Network Architecture ... 45

6.3 Network Learning .. 46

6.4 Activation Function .. 47

6.5 Data Pre-Processing and Post Processing .. 50

6.6 Division of Data ... 50

6.7 Network Prediction Capability .. 51

6.8 Inverse Kinematics using Artificial Neural Networks .. 52

 6.8.1 Challenges in developing an ANN Architecture .. 53

 6.8.2 Generalization and Accuracy of the ANN Model ... 55

CHAPTER 7 JACOBIAN: VELOCITY KINEMATICS ..59

7.1 Newton Euler Recursive Method.. 59

7.2 Wrist Partitioned Manipulators ... 62

CHAPTER 8 KINEMATIC SINGULARITIES ...64

8.1 Types of Singularities ... 67

8.2 Singularity Free Geometric Path Planning ... 69

CHAPTER 9 RECONFIGURABLE MODEL ..74

CHAPTER 10 CASE STUDIES AND RESULTS ..79

10.1 6 DOF Industrial Robot: FANUC M16iB/20 ... 80

10.2 6 Axis CNC Machine .. 84

ix

10.3 Reconfigurable Model Applications ... 89

CONCLUSIONS AND FUTURE WORK ...90

REFERENCES ...91

APPENDICES ..98

VITA AUCTORIS ...192

x

 LIST OF TABLES

Table 1: Computing RPY Angles from Rotation Matrix .. 32

Table 2: D-H Parameters of SCARA Robot ... 36

Table 3: ANN Performance Indicators for SCARA Robot 57

Table 4: Theoretical vs. Predicted Joint Variable Error ... 71

Table 5: Max. and Min. Error in Joint Variable Prediction 71

Table 6: Error Window for Path Planning .. 73

Table 7: ANN Results for FANUC M16iB/20 ... 81

Table 8: Sample Theoretical vs. Predicted Joint Variable Error 83

Table 9: Sample Error Window for Path Planning ... 84

Table 10: Max. and Min. Error in Joint Variable Prediction 84

Table 11: ANN Results for 6 Axis CNC Machine ... 87

Table 12: Sample Theoretical vs. Predicted Joint Variable Error 88

Table 13: Error Window for Path Planning .. 88

Table 14: Max. and Min. Error in Joint Variable Prediction 88

Table 15: SCARA Joint Variable Range .. 98

Table 16: D-H Parameters for FANUC M16iB/20 Robot 106

Table 17: FANUC Joint Angle Range for Workspace Generation 107

Table 18: FANUC Joint Angle Range for Training ANN 107

Table 19: D-H Parameters of CNC Manipulator .. 136

Table 20: CNC Manipulator Joint Angle Range for Workspace Generation 137

Table 21: CNC Manipulator Joint Angle Range for Training ANN 137

xi

 LIST OF FIGURES

Figure 1: Articulated Robot Arm Inspired from a Human Arm 3

Figure 2: Research Methodology .. 4

Figure 3: Use of Industrial Robots by Industry .. 20

Figure 4: Use of Industrial Robots by Application ... 20

Figure 5: Industrial Robot Components .. 21

Figure 6: Rotational Joint(s) .. 22

Figure 7: Translational Joint(s) ... 22

Figure 8: Kinematic Structures of Basic Manipulator Types 24

Figure 9: Spherical Wrist Configuration... 25

Figure 10: Different Gripper End-Effectors ... 25

Figure 11: DOF of an Object in 3-D Space .. 28

Figure 12: Object Frame with respect to Base Frame ... 28

Figure 13: Frame Transformation ... 30

Figure 14: SCARA Robot ... 34

Figure 15: Kinematic Modelling of SCARA Robot ... 34

Figure 16: D-H Parameters ... 35

Figure 17: Four Different Inverse Kinematic Solution for PUMA 560 Robot 42

Figure 18: Multi-Layer Perceptron Architecture .. 45

Figure 19: Logistic Function ... 48

Figure 20 : Hyperbolic Tangent Function ... 48

Figure 21: Threshold Function.. 49

Figure 22: Linear Function ... 49

Figure 23: ANN Architecture for Inverse Kinematics Problem 53

Figure 24: ANN with good generalization .. 56

Figure 25: Over-fitted ANN with high flexibility ... 56

Figure 26: Under-fitted ANN with low flexibility .. 56

Figure 27: ANN Architecture for SCARA Robot ... 57

Figure 28: Singularity Space of SCARA Robot ... 64

Figure 29: SCARA Robot ... 67

Figure 30: PUMA 560 Robot .. 67

xii

Figure 31: PUMA Wrist Singularity ... 68

Figure 32: PUMA Wrist Singularity (Top View) ... 69

Figure 33: Predicted vs. Theoretical Singularity (Top View) 73

Figure 34: Reconfigurable Model ... 75

Figure 35: FANUC M16iB/20 Robot ... 79

Figure 36: 6 Axis CNC Machine .. 79

Figure 37: Complete Workspace of SCARA Robot ... 99

Figure 38: SCARA Workspace and Singularity Space... 100

Figure 39: ANN Architecture for SCARA Robot ... 101

Figure 40: Performance Plot for SCARA Robot .. 101

Figure 41: Regression Plot for SCARA Robot ... 102

Figure 42: Error Histogram for SCARA Robot .. 102

Figure 43: Inverse Kinematics Prediction for SCARA Robot 103

Figure 44: SCARA Singularity Joint Prediction ... 104

Figure 45: Theoretical vs. ANN Predicted Singularity ... 105

Figure 46: FANUC M16iB/20 Robot ... 106

Figure 47: Workspace of FANUC M16iB/20 Robot .. 107

Figure 48: Total Workspace for FANUC M16iB/20 Robot 108

Figure 49: Workspace and Singularity Space for FANUC M16iB/20 Robot 109

Figure 50: Singularity Space of FANUC M16iB/20 Robot 110

Figure 51: Functional Workspace of FANUC M16iB/20 Robot 111

Figure 52: ANN Architecture for FANUC M16iB/20 Robot 112

Figure 53: Error Histogram for FANUC M16iB/20 Robot 112

Figure 54: Regression Plot for FANUC M16iB/20 .. 113

Figure 55: Performance Plot for FANUC M16iB/20 Robot 114

Figure 56: Training State Plot for FANUC M16iB/20 Robot 114

Figure 57: Inverse Kinematics Prediction for FANUC M16iB/20 Robot 115

Figure 58: Absolute Residual Error in Inverse Kinematics Prediction for FANUC

M16iB/20 Robot ... 116

Figure 59: FANUC M16iB/20 Singularity Joint Prediction 117

xiii

Figure 60: Absolute Residual Error in FANUC M16iB/20 Singularity Joint

Prediction .. 118

Figure 61: Theoretical vs. ANN Predicted Singularity ... 119

Figure 62: Kinematic Model of 6 Axis CNC Machine .. 136

Figure 63: Workspace of CNC Manipulator ... 137

Figure 64: Total Workspace for CNC Manipulator .. 138

Figure 65: Workspace and Singularity Space for CNC Manipulator 139

Figure 66: Singularity Space for CNC Manipulator ... 140

Figure 67: Functional Workspace of CNC Manipulator 141

Figure 68: ANN Architecture for CNC Manipulator .. 142

Figure 69: Error Histogram for CNC Manipulator ... 142

Figure 70: Regression Plot for CNC Manipulator .. 143

Figure 71: Performance Plot for CNC Manipulator ... 144

Figure 72: Training State Plot for CNC Manipulator ... 144

Figure 73: Inverse Kinematics Prediction for CNC Manipulator 145

Figure 74: Absolute Residual Error in Inverse Kinematics Prediction for CNC

Manipulator ... 146

Figure 75: CNC Manipulator Singularity Joint Prediction 147

Figure 76: Absolute Residual Error in CNC Manipulator Singularity Joint

Prediction .. 148

Figure 77: Theoretical vs. ANN Predicted Singularity ... 149

xiv

 LIST OF APPENDICES

Appendix A: Results for SCARA Robot ...98

Appendix B: Results for FANUC M16iB/20 Robot ..106

Appendix C: Results for CNC Manipulator ...136

Appendix D: M-Code for Reconfigurable Model ..165

Appendix E: Permission from SAE to Reprint Paper 2014-01-0734...........................190

Appendix F: Permission from Procedia CIRP to Reprint Paper 17 (2014) 812 –

817 ..191

xv

 LIST OF ABBREVIATIONS / SYMBOLS

Abbreviations

ANN Artificial neural network

CAD Computer-aided design

CNC Computer numerical control

D-H Denavit-Hartenberg parameters

DOF Degrees of freedom

FANUC Fuji Automatic Numeric Controls

LM Levenberg Marquardt training algorithm

MLP Mulit-layer perceptron

MSE Mean squared error

NER Newton-Euler recursive method

PUMA Programmable universal machine for assembly

SCARA Selective compliance articulated robot arm

Symbols for Mathematical Modelling of Manipulators

(n, b, t) Orientation vectors for defining the orientation of link n

(X,Y,Z) Cartesian coordinates

𝑃̇𝑃𝑖𝑖𝑖𝑖−1 Joint Rate Vector for prismatic joints

𝜃̇𝜃𝑖𝑖𝑖𝑖−1 Joint rate vector for revolute joints

𝐴𝐴𝑖𝑖0 Forward kinematics solution

𝐴𝐴𝑖𝑖𝑖𝑖−1 Homogeneous transformation matrix of frame i with

reference to frame i-1

𝐶𝐶𝑗𝑗𝑗𝑗 Matrix of cofactors of the Jacobian

𝑃𝑃𝑖𝑖𝑖𝑖−1 Position matrix of object in frame i with reference to

frame i-1

𝑅𝑅𝑖𝑖𝑖𝑖−1 Rotation matrix of object in frame i with reference to

frame i-1

xvi

𝑇𝑇𝑖𝑖𝑖𝑖−1 Transpose matrix of frame i with respect to frame i-1

𝜈𝜈𝑖𝑖0 𝑖𝑖 Linear velocity of link i with respect to base frame

𝜔𝜔𝑖𝑖
0 𝑖𝑖 Angular velocity of link i with respect to base frame

𝑞𝑞𝑛𝑛 Joint space vector

ai Link length

d Joint variable for prismatic joints

di Link offset

Fi Object frame

J(q) Jacobian matrix

n General variable

q Common manipulator joint variable

R Revolute joint

T Prismatic joint

v Cartesian space vector

V Generalized velocity vector

α Rotation angle about x-axis

αi Link twist angle

β Rotation angle about y-axis

γ Rotation angle about z-axis

θ Joint variable for revolute joints

θi Link angle

Symbols for Artificial Neural Network Model

𝑋𝑋� Mean value of a given variable X

𝑑𝑑𝑚𝑚𝑠𝑠 Second derivative of error

dm First derivative of error

E Network MSE value

EA Absolute error

Ep Relative percentage error

m Number of neurons in hidden layer

xvii

n General variable

N Total number of training patterns

R Regression value

ti Target for the ith training pattern

wij Weight associated with jth input and ith independent

variable

X’ Normalized value of X

xi Input variable

Zi Network output

β Slope parameter

λ Damping factor

xviii

 NOMENCLATURE

Degrees of Freedom A direction allowing independent motion

D-H Parameters Modelling convention for attaching reference frames to links in a

kinematic chain

End-Effector The last link of a manipulator

Error Difference between the predicted and theoretical values

Jacobian Matrix consisting of the first derivatives of the pose function

Joint Location of contact for two or more parts of a robotic arm

Joint Limit Constraining limit on the operating range of a joint

Joint Space Joint angles or configurations of a manipulator

Kinematic Chain Mathematical representation of rigid bodies connected by joints

Kinematics Branch of mechanics dealing with motion without considering

forces or mass

Manipulator Industrial kinematic structure used for performing automated

tasks in a manufacturing environment

Neural Network Artificial intelligent machine learning and pattern recognition

algorithm inspired from biological nervous system

Path Planning Planning for maneuvering the end-effector of a manipulator

through its workspace

Prismatic A joint that allows linear motion between two consecutive links

Reconfigurable A virtual tool capable of altering its computational capabilities

for various manipulator structures

Redundant A manipulator containing more than the required number of

degrees of freedom

Revolute A joint that allows single axis rotation between two links

Robot A manipulator used in industrial applications

Singularity A region defined by the position and orientation of a manipulator

which causes loss of mobility

Workspace Finite bound 3-D space defining the possible reach conditions of

a manipulator

xix

 CHAPTER 1

INTRODUCTION

1.1 Background

Automation has led to industrial manipulators facilitating a wide array of

operations such as assembly, inspection, material handling, processing etc. undertaken in

the manufacturing industry today. A comprehensive set of robot structures have since

been designed and built to fulfill the industry needs. These multi-Degrees of Freedom

(DOF) structures are highly complex in their form and control. Most manipulators used in

the industry today are articulated with six or more rotational joints. This structural form

provides the manipulators with a great deal of flexibility, dexterity, and an ability to reach

every specific coordinate of their workspace in more than one configuration. An

acceptable level of functioning and control is therefore vital to the efficacy and successful

implementation of industrial manipulators since the aforementioned tasks are highly

repetitive and in many cases not apt for humans.

The initial steps in integrating manipulators, when planning for automation,

includes their placement in an industrial setup based on the tasks they are required to

perform. This is in direct correlation to the work envelope of each individual manipulator

which dictates the working boundary of that manipulator. The total workspace of any

multi-DOF manipulator is a finitely bounded 3-D space which is topologically complex

and extremely challenging to visualize. In this total workspace, the true reachable

workspace of a manipulator is a combination of various 3-D subset(s) that may or may

not be mutually exclusive but are always collectively exhaustive. Each of these subset(s)

is representative of range of joint configurations of such a manipulator. It is therefore

important to assess and analyze the work envelope that defines the reachability and

functionality of a manipulator. This assessment subsequently helps to identify and map

user requirements to specific needs for automation.

A manipulator interacts with its environment (work envelope) through control of

its joint space. The joint space of a manipulator entails all possible joint configurations of

that manipulator. A 3-D work envelope is mapped in Cartesian space by the position and

1

orientation (pose) of a manipulator’s tool (end-effector) for every configuration in its

joint space. Industrial tasks and processes are seldom built to be accessible within a pre-

positioned manipulator’s work envelope. On the contrary, the positioning of a

manipulator in a work cell is determined to ensure accessibility of tasks and processes it

is intended to serve. An inverse mapping from the Cartesian space to a manipulator’s

joint space is thus required and is a challenging aspect of robot control.

The inverse mapping helps devise a control algorithm for a set of tasks to be

accomplished by a manipulator. Numerous techniques such as use of teach pendants,

robot simulation software, manual trial and error etc. are currently used in the industry for

determining joint configurations that may produce a required tool pose for a task. All

these techniques utilize conventional geometric, iterative or analytical methods to

develop a solution to the problem of positioning a manipulator’s end-effector. Often, the

development of a closed form solution to this problem may be mathematically complex

and computationally expensive, or may not even be possible. These limitations can be

overcome by use of non-traditional approaches such as Artificial Neural Networks

(ANNs). ANNs can identify and predict non-linear trends amongst data sets with and

acceptable level of accuracy which makes them suitable for such an application.

In development of control algorithms, there often arise configurations where two

or more joints of a manipulator no longer independently control the position and

orientation of a manipulator’s end-effector [1]. These configurations give rise to loci of

subset(s) in a manipulator’s work envelope known as kinematic singularities.

Singularities are hard to visualize and plan around since they might exist in one or more

configurations for any point in a manipulator’s work envelope. For example, if a point

(x,y,z) can be reached by a manipulator in ten different configurations, two of those ten

joint configurations might be singular. Kinematic singularities arise because of the

physical structure and attributes of a manipulator, and the relations between its joints. It is

therefore important to design and build manipulators that can successfully avoid or

minimize singularity configurations. This ensures robustness and accuracy of operations

in manipulators [2].

2

Experimenting with variability in manipulator design is a challenging problem

since most manipulators used in the industry today are flexible 5/6-axis articulated

robotic arms (with rotational joints). These robotic arms are inspired from the human

arms and their ability to rotate, position, and orient hands as shown in Figure 1 [3].

Figure 1: Articulated Robot Arm Inspired from a Human Arm [3]

Not many industrial manipulator designs exist that incorporate different joint

types other than rotational joints. The use of articulated serial link robot arms in the

industry today has evolved from gantry systems that could only be manipulated linearly

along coordinate axes. The shift from traditional gantry (x-y-z) systems proved beneficial

given the capability of flexible robot arms and their ability to handle complex tasks.

However, through extensive research work and understanding into the functioning of

flexible manipulators, the need for hybrid structures that incorporates a kinematic

configuration of robot arms in conjunction with traditional Cartesian robots is realized.

Industrial manipulator manufacturers and developers provide specialized

simulation software packages such as Workspace, RobotStudio, RobotSim, MotoSim

etc., which can only analyze one or more specific classes of articulated manipulators.

However, such software lack the capability of providing the user the freedom to

reconfigure the functionality based on the structure of a manipulator. These software are

primarily analytical tools rather than design tools, and simply simulate pre-programmed

3

work envelopes and trajectories. Existing software also only allow the users to change the

range of joints for a robot configuration thereby adding to or limiting the reach of a

manipulator’s end-effector. The software also do not allow for any major change in

topology and or volume of the work envelope. This inhibits the development of possible

manipulator designs that may be specifically tailored and better suited to a customer

need. The trend towards flexible manufacturing requires automation that can adapt to the

same level of flexibility with decreasing cycle times and lead times, while increasing

production capacity and quality [4]. It is therefore important to have manipulators that

can adapt to a wide variety of tasks and processes with an acceptable level of

functionality and control.

1.2 Research Purpose

Manipulators performance is critical to any industrial application. Manipulators

however experience several challenges with respect to their performance that arise from

their kinematic structure, reach limits within their workspace (work window), singularity

conditions etc. A comprehensive analytical tool is therefore needed to optimize

manipulator design and functionality without the need for extensive computation and

planning. The purpose of this research is to develop a visual and analytical tool for the

study of industrial manipulators. The methodology used for the development of this

research tool is presented in Figure 2 below.

Figure 2: Research Methodology

4

This research provides an understanding of manipulator workspace where singularity

conditions are identified and visually represented for an insight into the true work

window. A robust inverse kinematic model is also developed using ANNs that provides a

singularity free end-effector path through the workspace of the manipulator. The

developed tool is capable of realizing the following tasks:

1. Reconfigurability: A virtual design tool capable of altering its computational

capabilities for various 6-DOF (6 axis) manipulator configurations. The physical

structure of a manipulator represented using its joints and link configurations can

be postulated and or edited by the user. These configuration parameters can be

based on any specific functionality requirements. The design tool will aid the

analyses of any possible combinations of two manipulator joints types, namely,

revolute (rotational) and prismatic (translational).

2. Workspace: A design tool that is capable of virtually generating, in 3-D space,

and altering the topology and volume of a manipulator’s work envelope based on

the manipulator’s kinematics structure. The reach parameters of a manipulator’s

tool (end-effector) could also be controlled using this tool by constraining the

joint limits. This design tool will subsequently aid in development of tool path

generation, path planning, travel path validation and optimization of reach

conditions within robot work cell(s).

3. Inverse Kinematics: A design tool that is capable of computing a robust inverse

kinematic solution for any input manipulator configuration provided by the user.

The model will be able to present a solution that is computationally inexpensive

unlike traditional geometric, iterative and analytical methods. The task will be

achieved using non-conventional techniques (ANNs) that will predict an inverse

kinematic solution within an acceptable confidence interval (90th-95th percentile).

4. Jacobian Matrix: A design tool that is capable of computing a Jacobian matrix for

aid in analysis and control of manipulator motion. This Jacobian matrix will also

aid in determination of kinematic singularities. The design tool can also be used

as a basis for development of dynamic equations of motion, and transformation of

forces and torques from the manipulator’s end-effector to its joints [5].

5

5. Kinematic Singularity: A design tool that is capable of visually identifying loci of

all singular points in a manipulator’s workspace. The developed model can

analyze and document every possible manipulator configuration for kinematic

singularities. This will aid in development of a robust, continuous and singularity

free control algorithm.

6. Path Planning: A design tool that is capable of providing a singularity free end-

effector path through the workspace of a manipulator. The model can determine

an error window in the joint space of the manipulator to provide a bounding space

for inherent singularity.

1.3 Research Limitations

A mathematical model is developed in MATLAB platform for this research. All

kinematic models i.e. the physical structure of manipulator joints and links have been

visually represented in MATLAB through the use of robotic toolbox [6]. The model aids

a user in development of the aforementioned research tasks. The following constraints

define the limitations on the computational capability of the model:

1. Maximum Permissible Number of Joints (DOF): Six

2. Manipulator Type: Open Ended Kinematic Chains

3. Joint Types Permissible: Revolute (Rotational) and Prismatic (Translational)

6

 CHAPTER 2

LITERATURE REVIEW

Significant research has been dedicated in the past towards the modelling of industrial

manipulators. Majority of this research focuses on development and optimization of

manipulator design and functionality in an industrial setting. A manipulator, because of

its kinematic structure and joint configuration, poses inherent challenges such as

kinematic singularities, complex inverse kinematic solution(s), trajectory planning, and

travel path validation. Addressing such issues is therefore important for enhancing the

robustness and accuracy of industrial manipulators. This chapter focuses on recent and

notable developments in the field of industrial robotics which include manipulator

modelling, traditional and non-conventional approaches to tackling the inverse

kinematics problem, manipulator workspace generation, and singularity avoidance.

2.1 Manipulator Kinematics and Modelling Techniques

Yoshikawa [7] has proposed a measure of manipulability of robotic mechanisms for

positioning and orienting end-effectors. Optimal postures and working positions have

subsequently been defined for different manipulators from the viewpoint of its

manipulability. The best postures and designs have been described as bearing

resemblance to the human arms and fingers. The research paper provides an insight into

the design and functionality of orthogonal, polar and cylindrical coordinate manipulators.

It however does not focus on techniques to avoid non-optimal poses. Elkady,

Mohammed, and Mohammed [8] have extended Yoshikawa’s work to develop a new

algorithm for measuring and optimizing the manipulability index of industrial

manipulators. The technique is tested on PUMA 560 robot where a visual representation

of the entire workspace is provided as a subset of varying manipulability. The research is

significant for determining the most dexterous regions in a manipulator workspace.

Pamanes and Zeghloul [9] have presented a technique for the optimal placement of

robotic manipulators for a prescribed task using multiple kinematic criteria. An

optimization problem is presented for this placement that takes into account several

constraints such as upper and lower bounds, points in a path taken, number of joints etc.

7

The paper however does not address any collision avoidance techniques in the

manipulator environment.

Work conducted by Djuric, Saidi, and ElMaraghy [10] demonstrates a multi-DOF

kinematic structure consisting of both rotational and translational joints. A novelty

methodology called n-GKM is presented by the author(s) which helps in developing an n-

DOF global kinematic chain model. The research paper considers all possible kinematic

structures in a 3 dimensional space, which is further divided into eight subspace and three

planes. The paper provides the readers with a complete description of the D-H parameters

and a visual representation of the multi DOF joints suitable for both robotic arm and

multi axis CNC machines. The evaluation of this model is shown using all possible

combinations of 2DOF kinematic structures i.e. RR, TT, RT, and TR. Computation of

both forward and inverse kinematics for the n-GKM methodology has been demonstrated

using the automatic separation method (ASM).

Laura and Khosla [11] have presented a Reconfigurable Modular Manipulator

Systems (RMMS) method on automatically generating the kinematics of reconfigurable

manipulators. The paper presents algorithm(s) for computation of forward and inverse

kinematics of reconfiguring manipulators independent of the number, joint type, and

shape of modules present. The model developed is applicable to redundant systems as

well. The paper however does not focus on development of a reconfiguring structure

using the proposed algorithm. Paredis and Khosla [12] have addressed the issue of

determining the optimal manipulator configuration for any specific task using RMMS.

The research addresses the kinematic design problem by developing an analytical

solution for the inverse kinematics problem for a 2 DOF manipulator. Global

optimization procedure is used to minimize the penalty of a manipulator design thereby

resulting in an optimal kinematic configuration. The work presented however is only

applicable to non-redundant manipulators.

Djuric and Urbanic [13] have also proposed a reconfigurable robot-based system for

material deposition applications involving 2 ½ axis and 2 ½ axis + 2 axis tool paths.

Various multi-action tool motions have been considered for development of four different

robot based platforms. Reconfigurable parameters, K1 and K2, have been introduced in

8

modelling of the 2 DOF robot platform that help control the positive direction of each

joint. The research paper provides an insight into the 2DOF manipulator response using

the reconfigurable controller and factor(s) while suggesting investigation into higher

DOF models. Several other research projects have also utilized the kinematic modelling

methodology for multi-axis machine tools and its CNC applications. Xu et al. [14] have

also presented a novel technique for modelling five axis machine tools using a

methodology similar to the one used for modelling articulated robots using D-H

parameters. This modelling technique is applied to CNC machines as the machine

structure is treated as a single kinematic chain. A combination of two separate kinematic

chains are used to model a single cutter chain which is considered as the end-effector for

this structure. Since the machined surface depends on the path of the cutter (end-effector),

trajectory planning is considered crucial for improving the process efficiency. Such

modelling techniques allow for a unified structure that provides an in-depth exploration

into the flexibility of five-axis machine tools. Work conducted by Du, Zhang, and Hong

[15] provides a similar modelling technique for a three axis NC machine tool. The

kinematic modelling is used to assess the geometric errors of CNC machine tools using a

cross grid encoder. The error model encompasses the rotational and translational error

component using an error transformation matrix of the machine tool. This method has

been proven superior to traditional error component identification methods. The authors

suggest using the novel technique for CMM’s and other higher axis machine tools as

well.

Lee and ElMaraghy [16] have emphasized the use of CAD based offline

programming and analysis systems for robotic manipulators. ROBOSIM, a system

developed for this research, determines the end-effector path, velocity calculations and

singularity checks. Simulation of manipulator motion on computer workstations to tune

any errors in the trajectory before real time implementation is proposed. Several

advantages of offline programing have been put forth such as elimination of the need to

have direct access to a robot, decreased production downtime, increase productivity,

storage of data for posterity, and development of different task strategies. Disadvantages

to offline programming include matching the simulation model to real time work

environment, and the tedious task of creating a graphical CAD database.

9

2.2 Manipulator Workspace

Ceccarelli and Vinciguerra [17] have analyzed the workspace of a general open

kinematic chain with four rotational joints by examining the effect of link parameters on

its characteristics with the use of cross-sections. The authors emphasized the fact that

three characteristics are important in evaluation of workspace, namely, the cross section,

the volume and the existence of holes and voids. An algebraic formulation was developed

for the robot’s workspace from the envelop generation geometry. The workspace of the

manipulator was theoretically calculated as the union of all toroidal surface workspaces

by rotation of joint angles along each z-axis with respect to its base frame. The

investigation found that the workspace of the manipulator was mostly affected by the

ratio of the link lengths because of their ability to present voids and holes, and its twist

angles. This technique is beneficial in analysis and synthesis of manipulators with

rotational joints. Ottaviano, Husty and Ceccarelli [18] have presented a novel analysis on

the workspace of industrial manipulators based on the level set reconstruction of their

workspace. The method allows for determining the topologies of workspace of different

manipulators based on their kinematic properties. Various numerical examples of

orthogonal, ortho-parallel etc. manipulator types have been presented with singularities

for surface S. The singularities of graph S are presented as singular configurations of the

manipulator where it experiences more than normal singularity.

Liang and Ceccarelli [19] have also provided a parametric study and a classification

procedure on all possible topologies of the feasible workspace of a general two revolute

manipulator. The authors have selected four arbitrary boundary points on the torus

workspace for generating design equations. However the method for selection of these

arbitrary points for a feasible workspace is presented as an open ended problem. A

classification approach was applied to compute all topologies of feasible workspace.

Three different sub-regions for these topologies are then identified and analyzed to

characterize workspace capabilities of 2R manipulators. Malek et al. [20] have presented

an analytical technique for determining the boundary to a serial manipulator’s workspace

and any voids, if present, in that workspace. Voids in a workspace are identified by

closed boundaries for which the acceleration form provides output normal to the outside

of the enclosed surrounding space. A quadratic form has been devised for analyzing these

10

voids that are based on the acceleration analyses of the end-effector over singular

surfaces. Such voids are identified as non-reachable spaces by a manipulator’s end-

effector. Voids and boundary conditions are identified in 3-D space for a 4R manipulator

to demonstrate the robustness of the developed technique. The technique promises an

effective method for analyzing workspace of serial manipulators.

A similar technique has been presented by Bohigas et al. [21] where a branch and

prune technique isolates a set of singularities. These singularities are classified based on

their correspondence to motion impediments in the manipulator workspace. The

technique distinctly identifies all singularities and workspace topologies with any barriers

present. The method is advantageous over other techniques because of its ability to

converge higher dimensional boundary points without prior knowledge of the

manipulator workspace. Goyal and Sethi [22] have determined the workspace of an RV-

M1 Mitsubishi manipulator modelled using Denavit-Hartenberg parameters through use

of MATLAB’s robotics toolbox. The paper emphasizes that the workspace of a

manipulator impacts its design, placement, and dexterity, and explores the method of

finding singularity sets using the Jacobian rank deficiency conditions. These singularity

sets when substituted in wrist accessible output set(s) of the robot, helped in

determination of the workspace boundary. Examples of singularity sets at different

configurations of the above mentioned manipulators are provided along with a visual

representation in MATLAB.

Djuric et al. [23] have presented a technique to develop the functional and reachable

workspace of serial 6 DOF manipulators for determining the effective travel path regions.

The paper puts forth advantages of workspace visualization such as the ability to

comprehensively assess manipulator configurations at design and redesign stages etc. A

work window algorithm for the FANUC 6R family is provided along with singularity

visualization at certain manipulator configuration(s). The research paper provides an

evaluation of reduction in the work window of different manipulators at specific

singularity joint configurations. Work done by Urbanic and Gudla [24] presents an

estimation of the functional workspace of a manipulator using kinematic modelling and

shape analyses. The outer boundary curves for an ABB IRB-140 manipulator are assessed

11

for functional workspace of a desired end-effector and tool orientation. Advantages of

this technique include an understanding of the joint reach feasibility prior to on-site

setups in a manufacturing environment. Djuric and Urbanic [25] have presented a similar

technique for building reconfigurable alternatives and assessing the systems design

through the use of functional workspace of manipulators. Since the work envelop does

not allow for the operational feasibility of a manipulator, work window is introduced as a

parameter that allows the kinematic structure to function under pre-defined conditions.

The work window is graphically mapped at different tool orientations to compare the

feasibility of operations for multiple kinematic chains in a manufacturing cell.

Alameldin et al. [26] have presented another technique for computation of 3D

workspace of redundant manipulators. An algorithm is proposed as a hybrid between

direct manipulator kinematics and screw theory. Screw theory is incorporated because of

its ability to compute workspace points in pre-specified directions and no requirement for

edge detection of boundary workspace unlike direct kinematics. The disadvantages of

using screw theory presented are its exponential computation cost per point in the

manipulator workspace, and the inability to identify holes and voids. Zein, Wenger, and

Chablat [27] have presented an exhaustive study on the workspace topologies of

orthogonal manipulators that have at least one D-H parameter as zero. Manipulators are

classified in categories based on criteria such as size of feasible workspace subsets,

existence and size of voids etc. 21 different categories are identified for 3R manipulators.

The research is useful in analyzing the functional workspace of manipulators and

identification of classes based on industrial needs. The research however is not practical

for manipulators with higher DOF and for manipulators involving a combination of both

translational and rotational joints.

Most workspace models presented in this section do not take into account the

reconfigurability in design that may be introduced while analyzing the manipulator

workspace. All workspace model(s) are based on pre-defined manipulator parameters and

structural configurations. A need is therefore recognized for development of a tool that

can generate and identify feasible workspace topologies for varying DOF open kinematic

chains while accommodating combinations of different joint types.

12

2.3 Manipulator Singularity and Avoidance Techniques

Kim et al. [28] have presented a novel technique called the Task Reconstruction

method that provides a solution to kinematic and algorithmic singularities. The method

not only provides a singularity free trajectory but also guarantees task performance. The

proposed method involves three tuning parameters in the reconstructed form of the

desired task that allows for the formulation of a path through unknown singularities.

Although, acceptable performance is achieved in cases involving only maximum of two

subtasks. Another method of interest is presented by Liu and Zhang [29], where a

damping reciprocal restrains or controls the joint velocities of a PUMA type of robot near

singular points. The authors have demonstrated a technique for decomposing the inverse

kinematics problem into subgroups with a trade-off in accuracy of velocity components

in partial directions of the end-effector. According to this optimized method, the

algorithm not only controls the sudden extreme changes in velocities near singular

regions, it also helps to reduce the tracking of the end-effector. This method is highly

beneficial in reducing the anomalies associated with manipulator singular positions.

Zhunqing, Hairong, and Yuefa [30] have presented an algorithm for singularity control

where line varieties and reciprocal screw theories are used to produce a full rank Jacobian

matrix. The full rank allows singularity free motions when mapping from task space to

joint space of a manipulator. Simulation results are provided for a PUMA robot

demonstrating smooth velocity through singular regions. Similar analysis has been

conducted by Fang and Lung-Wen [31] , and Hu et al. [32] where linearly dependent

rows and columns of the manipulator Jacobian are isolated to allow feasible mapping

between Cartesian and task space.

Pai and Leu [33] have presented a technique for symbolic computation and study of

singularities for decoupled manipulators. An algebraic condition for genericity for three

joint robots is presented using Jacobian determinants. The proposed method helps in

mapping singularities as smooth manifolds in the joint space of the manipulator. A

characterization of orientation singularities is provided in this paper for any arbitrary

number of joints. It is observed that the robot is only generic if no adjacent joints of the

manipulator are parallel. Djuric et al. [34] have provided a visual representation of the

singularity zones through manipulation of fundamental kinematic equations. The

13

proposed technique helps in understanding singularity conditions for robot work cells and

aids in travel path generation and manipulator layouts. Decoupling of Jacobian based on

wrist and forearm joints is used to generate a loci of singular points for the FANUC

family of manipulators. Also, the effect of link lengths on the topology of singular space

is presented. This method is highly beneficial in analyzing the mechanical structure of a

manipulator as means of singularity reduction. Huo and Baron [35] have developed a

redundancy-resolution (RR) algorithm for optimizing the joint space trajectory of 6R arc

welding manipulators. The authors have proposed a decomposition in the required

instantaneous twist of a welding electrode in two orthogonal components. The symmetry

axis of the electrode allows the two components to lie in either task space or redundant

space. This technique efficiently optimizes the joint space trajectory and can be extended

to tasks that require less than 6 6 DOF in their tool frame.

Stanisic and Duta [36] have provide a novel design of symmetrically actuated double

pointing systems (SADPS) for eliminating singularities from manipulator wrists. The

design includes two serially connected spherical pointing systems with a common center.

The constraint functions of the developed system reduces the independent DOF to two

thereby resulting in a symmetry of motion for the corresponding links in each pointing

system of the double system structure. Superior dexterity of the SADOS system is also

observed with a two or three DOF singularity and interference free manipulator wrist.

Cheng et al. [37] have provided a technique (SICQP) to minimize the tracking errors in

the singularity direction for a PUMA 560 robot. The method decomposes the workspace

of the manipulator in singular and non-singular directions to provide extra redundancy to

achievable directions. This method is effective and efficient in solving the inverse

kinematic problem but requires decoupling of three-dimensional sub-problems.

Unlike traditional methods that depend on analysis of the Jacobian for computation

of kinematic singularities, Ahmad and Luo [38] have considered inverse kinematic

relationships to form triangular equations that reveal the structural properties of the

manipulator and the Cartesian configurations of the end-effector where the manipulator is

singular. This technique allows for computation of singularity states in terms of Cartesian

parameters of the end-effector even when the joint offset angles are not zero or ninety

14

degrees. The method helps in trajectory verification of non-singular regions without the

need for computing an inverse kinematics solution. It also helps in coordination of

redundant robots. Analysis of less than twelve DOF redundant arms is also possible using

this technique by splitting an arm into two sets of six DOF and/or less that six DOF

manipulators. A higher accuracy of motion is observed with use of this method and the

results are useful in trajectory verification and redundancy coordination in Cartesian

space. Chiaverini and Egeland [39] have also presented a technique to handle the problem

associated with singularities in six-joint manipulators. This techniques allows for

successful removal of undesired commanded motions and presents an exact inverse

kinematic solution for the remainder part which can be used for both off-line planning

and real-time control. The authors have emphasized the problem in development of an

algorithm apart from the traditional use of inverse of the Jacobian that supports both

robustness and high accuracy of the manipulator. The method first determines degenerate

directions corresponding to the singularities, after which a marginal window is defined

around that singular region where the manipulator is treated as being singular. An inverse

kinematic solution is then found for the remainder space that has minimum error and

norm in end-effector coordinates and joint space respectively. Interpolation technique is

finally used in the previously determined degenerate directions for a continual solution to

the manipulator motion. This method demonstrated promising results for a 3R industrial

manipulator with a trajectory through the wrist singularity and can be successfully used

for similar manipulator configurations.

Work done by Yigit, Burghartm & Woern [40] demonstrates the development of

alternate configurations to avoid singularities of a human like robotic arm. Yigit et al.

solved the inverse kinematic problem by using a closed form solution and attempted to

develop configurations that would avoid singularities. However, this approach resulted in

loss of the reachable workspace of the robotic arm. The kinematic singularity was

avoided by use of a combination of restriction and elongation of the arm segments to

compensate for the loss in workspace.

Majority of the work provided in singularity analysis and avoidance techniques

involves either manipulation of the Jacobian, restriction of joint motion or development

15

of new geometric method(s) to ensure smooth end-effector velocity through singular

regions. A major drawback to these techniques is the complexity in modelling and much

need priori knowledge of theoretical concepts. A need is therefore recognized for a

simplified algorithm that can provide equally promising results but in fraction of the

computation time. Also, the discussed techniques require some kind of manipulation with

the physical geometry and/or joint configuration of the robots being studied. A solution to

introducing such variation to a manipulator design is, however, not presented with any of

the theoretical techniques.

2.4 Inverse Kinematics using Artificial Neural Networks

Prior research has proven ANNs as an important tool in robot path planning and

control by successfully providing a solution to the inverse kinematics problem. The

network accuracy using ANNs, however, has been a common problem encountered by

various researchers in determining a solution. Kozakiewicz, Ogiso, and Miyake [41] have

proposed a partitioned neural network architecture to improve the accuracy for an inverse

kinematic problem. The partitioned layer, also referred to as the pre-processing layer,

helped to divide the entire network into individual smaller networks where the weights of

each partitioned network could be attenuated by concentrating on only one output. The

network achieved high prediction accuracy for position joints but exhibited higher errors

for orientation joints. Further work was suggested to obtain accurate learning and

prediction results for the entire range of joints, especially the orientation joints. Lou and

Brunn [42] have introduced an iterative approach for computing the inverse kinematic

problem using ANNs with an offset error compensation method to improve the accuracy

of the derived solution. The methodology was implemented since an offset error always

existed when taking the iterative approach which had different values for each required

end-effector position. The error compensation improved the accuracy of the network by

reducing the average error from 4 to 0.001 percent for a 2 DOF manipulator. The work

was extended in a two stage process to 6 DOF manipulators because of computing

limitations. Ahmad and Guez [43] also used an iterative approach using ANNs to find the

final predicted solution within a specified tolerance. The iterative process provided a two-

fold increase in the computational efficiency of a 3 DOF planar robot and the PUMA 560

robot.

16

Yildirim and Eski [44] have presented a feed-forward neural network architecture

with five different learning techniques namely, Online Back Propagation (OBP), Online

Back Propagation Random (OBPR), Batch Back Propagation (BBP), Delta Bar Delta

(DBD), and Quick Propagation (QP). These learning techniques were used to predict pre-

defined target kinematic parameters of a PUMA 560 robot. It was determined from this

study that QP was the best learning technique to update network weights. Here, the

output(s) of the network exactly matched the target values with a root mean square

(RMS) error of 0.21345. The drawback to this technique was the fact that robot(s)

without wrist offsets lack rotational capabilities and did not have a closed form inverse

kinematic solution. Therefore, this technique could only be implemented as a single-stage

network.

Koker et al. [45] have also validated neural network as a tool for computing the

inverse kinematics of a three joint robots. The developed network was able to predict the

joint angles to its corresponding Cartesian (X,Y,Z) co-ordinates within an acceptable

error range. Hasan et al. [46] have addressed the problem of kinematic control through

singularity zone(s) by development of an ANN model that learns the characteristic of the

robot system rather than specifying an explicit system model. The discussed model has

Cartesian co-ordinates (X,Y,Z) of the end-effector, orientation angles (R,P,Y), and linear

velocity of a 6 DOF robot as network inputs, and angular position and velocity as the

network outputs. The maximum error percentages for the experimental data set

introduced to this network were determined to be 6.72% for the Z-coordinate and 5.79%

for the Y-orientation. This network model can be implemented for any serial manipulator

with a reasonable accuracy. However, the paper did not explore different network

topologies to further investigate the error reduction in the network.

Bingul, Ertunc, and Oysu [47] have explored three different end-effector orientation

types, namely, homogeneous transformation matrix, Euler angles, and equivalent angle

axis for training the ANN. The method is validated on a 6R manipulator with wrist offset.

The results are satisfactory with errors as high as 10 degrees of data resolution. Feng,

Yao-nan, and Yi-min [48] have presented a new algorithm called extreme learning

machine (ELM) that randomly chooses input weights and analytically determines the

17

output weights in a single hidden layer feed-forward ANN. The proposed method

provides good generalization performance, fast learning, and improved precision in

development of an inverse kinematic solution.

ANNs provide a quicker response, and have proven to be useful for multiple

satisfactory solution(s) to the inverse kinematics problem with real-time adaptive control

[45] [46]. An inherent challenge with this technique has been the attempts in increasing

the accuracy of the developed network. In the past, kinematic data from manipulators has

demonstrated high variation and lower fitting rates when processed through ANNs.

Moreover, every ANN architecture is tailored towards a specific configuration or class of

robots. For example, a specific ANN model might only be able to provide an acceptable

level of accuracy for non-wrist partitioned manipulators. An approach thus needs to be

developed to tailor the kinematic data of a manipulator along with the ANN architecture

for a universally acceptable model. Also, limited research exists that utilize ANNs as a

technique for coping with kinematic singularities by either providing a robust inverse

kinematic solution or by developing a path planning model for avoiding singularity

zones.

18

 CHAPTER 3

INDUSTRIAL ROBOTICS

Any electro-mechanical device operating under computer control with some degree of

autonomy can generally be referred to as a robot. An industrial robot, however, as defined

by International Organization for Standardization (ISO 8373) is “An automatically

controlled, reprogrammable, multipurpose manipulator programmable in three or more

axes, which may be either fixed in place or mobile for use in industrial automation

applications” [49]. Industrial robots used in the industry today have evolved from a union

of teleoperators and Computer Numerical Control (CNC) machines [5]. They serve their

purpose by substituting as labour for tasks that are impractical, undesirable, and repetitive

for humans. The need for these industrial robots came into being from capital-intensive,

large volume, and high precision manufacturing required in the automotive, and electrical

goods industries [50]. According to 2012 statistics by the International Federation of

Robotics (IRF), the worldwide market value for industrial robot systems is approximately

$26 billion with a high number of robot density (industrial robots per 10,000 persons

employed) in countries such as Korea (396), Japan (332), Canada (103) etc. [51].

Robots in the industry today have evolved since then to handle more complex tasks

and adapt to different applications such as assembly, welding, machining, etc. that require

high endurance, speed, and precision. The uses of industrial robots based on the type of

industry and their applications are presented in Figure 3 and Figure 4. Handling of

materials and process along with welding and soldering operations constitute the majority

of applications of robots in the industry today. The physical structure and attributes of

these industrial robots greatly vary on the nature of tasks they are required to perform.

Industrial robot performance has significantly increased over the past few decades.

Robots can now be controlled with an acceptable level of safety standards and

performance which allows for human-robot collaboration in the same workplace [50].

This symbiosis has expanded the scope of industrial robots to other application areas and

industries. Industrial robots are thus being required to have some level of flexibility and

reconfigurability for such integration.

19

Figure 3: Use of Industrial Robots by Industry [52]

Figure 4: Use of Industrial Robots by Application [52]

33.2%

9.9%

9.4%

4.3%3.7%

2.5%
1.5%

0.8%

9.7%

25.0%

Use by Industry Automotive

Electrical and
Electronics
Chemical Rubber and
Plastics
Machinery

Metal Products

Communications

Food

Precision and Optics

Other

Unspecified

35.4%

28.9%

13.0%

3.7%

2.5%
7.9%

8.6%

Use by Application
Handling of Materials
and Processes
Welding and Soldering

Assembling and
Disassembling
Dispensing and Painting

Cutting Milling and
other Processing
Other

Unspecified

20

3.1 Hardware and Software

Most industrial robots (manipulators) include some basic hardware and software

components as seen in Figure 5. These components constitute the electro-mechanical

framework, and the computer control or ‘Artificial Intelligence’ of the robot.

The Hardware components for a common industrial robotic system can be divided into

the following five categories:

1. Robotic Arm: The robot arm constitutes the mechanical part of the robot and

consists of joints, links, motors (actuators), sensor, shafts, gears, end-effector(s)

etc.

2. Teach Pendant: The teach pendant is a remote device used to operate the robot

manually. It serves as a user input device to feed commands to the robot.

3. Robot Controller: The robot controller constitutes all control circuits consisting of

microprocessors, motors, sensor, electronics, interface connectors and power units

for the robot arm to function.

4. Interface Computer: The interface computer is the program storage unit of the

manipulator. It serves as a user interface between the operator and the controller.

5. System Software: The systems software constitutes the programmed data stored

on the robot’s memory chips. The different codes and functions here help convert

sensor information into actuator commands thus providing the robot with

‘artificial intelligence’. [53]

Figure 5: Industrial Robot Components

21

3.2 Symbolic Representation of Joints and Links

A robot manipulator’s physical setup consists of sequence of links connected by

different joints that form a kinematic chain. Combination of various joint types such as

revolute, prismatic, twisting, ball and socket etc. are often used to interconnect links in

industrial manipulators. This research addresses two commonly used joints, namely:

1. Revolute (Rotational): A revolute joint provides relative rotation about a single

axis between two links. A revolute or rotational joint can be represented by the

symbol ‘R’, with a joint variable ‘θ’. The joint variable for a revolute joint

determines the angular range or motion for that joint. Figure 6 demonstrates a

kinematic chain with three rotational joints.

2. Prismatic (Translational): A prismatic joint provides relative translation along a

single axis between two links. A prismatic or translational joint can be represented

by the symbol ‘T’, with a joint variable ‘d’. The joint variable for a prismatic joint

determines the linear range of motion for that joint. Figure 7 demonstrates a

kinematic chain with three translational joints.

 Figure 6: Rotational Joint(s) Figure 7: Translational Joint(s)

In building the reconfigurable model for this research, both rotational joint(s) (R) and

translational joint(s) (T) are represented using a common joint variable, ‘q’. A common

joint variable (Equation 1) helps the model to adapt to the reconfiguring structure of a

22

manipulator without the need for changing subsequent parameters and equations. It also

aids in the manipulation of the Jacobian matrix and development of manipulator

workspace and singularity space. The use of this variable will be demonstrated

subsequent chapters.

 𝑞𝑞𝑖𝑖 = { 𝜃𝜃𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑑𝑑𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 (1)

3.3 Manipulator Classification

For an understanding of the manipulator workspace and kinematic singularities, it is

important to first recognize the basic manipulator types used in the industry today. Nearly

all industrial manipulators in use have six or less DOF (≤ six independent joints). Of

these joints, the first three joints form the arm of the robot and the latter the wrist. This is

because a minimum of three joints are required to position (in X,Y,Z) the end-effector of

a manipulator. Industrial manipulators are broadly classified in five different categories

based on their forearm’s mechanical structure, namely;

1. Linear (Cartesian and Gantry) (TTT): Linear manipulators are the most basic type

of manipulators with three translational joints. Each joint allows a translation in

one of the X, Y, or Z axis to position the end-effector. Linear manipulators are

majorly used for pick and place, and handling applications.

2. Articulated (RRR): Articulated manipulators are the most common type of

manipulators used in the industry today since they provide the greatest relative

flexibility, and increased dexterity in a compact space. These robots have three

rotational joints and are majorly used for operations such as welding, painting,

assembly etc.

3. Spherical or Polar (RRT): Spherical or Polar manipulators derive their name from

the fact that their axes form the spherical or polar coordinate system. These robots

have two initial rotational joints and a third translational joint. Major applications

of these robots are in the welding and casting industry.

4. SCARA (RRT): Selective Compliance Articulated Robot Arm (SCARA)

manipulators are robots with two parallel rotational joints and a third translational

23

joint. This allows a robot to provide compliance in a plane. These robots are

majorly used for pick and place work.

5. Cylindrical (RTT): Cylindrical manipulators derive their name from the fact that

their axes form the cylindrical coordinate system. These robots have an initial

rotational joint and two subsequent translational joints. Major applications of

these robots are in the assembly, welding and casting industry.

A basic kinematic structure of the aforementioned manipulators is provided in Figure 8

below:

Figure 8: Kinematic Structures of Basic Manipulator Types [54]

24

3.4 Manipulator End-Effector Types and Application

As defined by the United States Occupational Safety and Health Administration

(OSHA), a manipulator’s end-effector is “An accessory device or tool specifically

designed for attachment to the robot wrist or tool mounting plate to enable the robot to

perform its intended task. (Examples may include gripper, spot-weld gun, arc-weld gun,

spray- paint gun, or any other application tools.) [54].”

The forearm (first 3 joints) of the robot is responsible for positioning the end-effector

while the wrist of the robot is responsible for orienting the end-effector. Not all industrial

robots however, have an arm and wrist configuration. Many manipulator designs exist or

can be generated with no wrist configuration as seen in Case study 10.2 in Chapter 10.

The DOF for orienting an end-effector are determined by the DOF of the wrist [5]. A

wrist configuration may have up to 3 DOF, namely:

1. Yaw: A counter-clockwise rotation about the z-axis.

2. Pitch: A counter-clockwise rotation about the y-axis.

3. Roll: A counter-clockwise rotation about the x-axis [55].

Figure 9 demonstrates a commonly used spherical wrist configuration. The spherical

wrist effectively aids in decoupling the position and orientation of an end-effector [5].

 Figure 9: Spherical Wrist Configuration Figure 10: Different Gripper End-Effectors [56]

25

The end-effector is the most critical part of the robot that performs the robot’s

intended function. A considerable amount of engineering work is therefore dedicated to

the design and build of end-effectors. The mechanical structure of the end-effector

depends on the type of application it is used for. End-effectors vary from simple open and

close grippers used in material handling to complex tools for machining and performing

tasks. Figure 10 above demonstrates three different types of gripper type end-effectors.

26

 CHAPTER 4

MATHEMATICAL CONCEPTS

Understanding of some key mathematical concepts such as Degrees of Freedom

(DOF), representation of position and orientation in Cartesian space, frame

transformations, etc. is important before modelling of open-ended kinematic chains. The

following sections in this chapter cover some of these important concepts.

4.1 Degrees of Freedom (DOF)

The number of Degrees of Freedom for any industrial manipulator is the number of

axes of movement for that manipulator. This movement can be either a rotation about an

axis if the joint is rotational (R), or it can be a translation along an axis if the joint is

translational (T). It is however important to realize that the number of joints may not

always equal to the Degrees of Freedom for a manipulator. For example, two rotational

joints in a manipulator might rotate about a single axis. This cancels out one additional

Degree of Freedom which would have been possible had both the joints not been rotating

about the same axis.

The number of Degrees of Freedom required by a manipulator is determined by task

required of the manipulator. As such, six Degrees of Freedom are required to locate any

object in 3-D space. Three of these DOF represent the position of the object while the rest

determine the orientation of the object in space. Therefore, depending on the positioning

and orientation of a part, appropriate number of DOF are built into the manipulator for

easier control. Manipulators with more than six Degrees of Freedom are referred to as

redundant manipulators. These manipulators have additional DOF for increased mobility

and flexibility [57]. An example of a redundant robot is the Canadarm. Figure 11

demonstrates an object defined using six degrees of freedom in 3-D space.

27

Figure 11: DOF of an Object in 3-D Space

4.2 Representation of Position and Orientation

Kinematic modelling of manipulators requires all links to be considered as rigid

bodies. Coordinated frames are then rigidly (fixed location) attached as reference to these

rigid bodies. These coordinate frames help in determining the position and orientation of

any one frame with respect to another frame by means of frame transformations in 3-D

space.

Figure 12: Object Frame with respect to Base Frame

For example, in Figure 12, the position (P matrix) of any object (Object Frame F1) in

space with respect to another object (Base Frame F0) is defined using the X, Y, and Z

28

Cartesian coordinates as presented in Equation 2. Similarly, orientation (rotation matrix,

R) of any Object Frame F1 with respect to Base Frame F0 in 3-D space is defined using

three rotational angles (α, β, γ) around each reference axis (Figure 11). Here, α is the

rotation about x-axis, β is the rotation about y-axis, and γ is the rotation about z-axis.

These rotational angles collectively represent nine rotational elements as presented in

Equation 3 [57].

𝑃𝑃10 = �

𝑝𝑝𝑥𝑥
𝑝𝑝𝑦𝑦
𝑝𝑝𝑧𝑧
�

(2)

 𝑅𝑅10 = �
𝑥𝑥1. 𝑥𝑥0 𝑦𝑦1. 𝑥𝑥0 𝑧𝑧1. 𝑥𝑥0
𝑥𝑥1. 𝑦𝑦0 𝑦𝑦1.𝑦𝑦0 𝑧𝑧1.𝑦𝑦0
𝑥𝑥1. 𝑧𝑧0 𝑦𝑦1. 𝑧𝑧0 𝑧𝑧1. 𝑧𝑧0

� = �
𝑟𝑟11 𝑟𝑟12 𝑟𝑟13
𝑟𝑟21 𝑟𝑟22 𝑟𝑟23
𝑟𝑟31 𝑟𝑟32 𝑟𝑟33

� (3)

The position and orientation, collectively called the ‘pose’, can thus be defined using 9

rotational elements and 3 position elements. These elements will subsequently be used as

inputs for ANNs in determining an Inverse Kinematics solution.

4.3 Frame Transformation

In kinematic modelling, it is important to have an understanding of the position and

orientation of the manipulator’s end-effector with respect to the base of the manipulator.

This kind of modelling requires the computation of position and orientation of a point in

3-D space from a previously known position and orientation of that point. For example,

consider a point ‘W’ in Figure 13. The coordinate vector representing point W with

respect to F1 is given by Equation 4 as:

 𝑞𝑞1 = �
𝑎𝑎1
𝑏𝑏1
𝑐𝑐1
� (4)

It is then required to determine the coordinate vector that represents the point W with

respect to F0 given by Equation 5.

29

 𝑞𝑞0 = �
𝑎𝑎0
𝑏𝑏0
𝑐𝑐0
� (5)

From Figure 13, and Equation 5 the resultant vector 𝑣𝑣 is determined in Equation 6.

 𝑣𝑣 = 𝑝𝑝 + 𝑢𝑢 (6)

Substituting the vectors by their position are orientation, the position and orientation of v

is obtained in Equation 7

 𝑣𝑣 = 𝑞𝑞0 = �
𝑟𝑟11 𝑟𝑟12 𝑟𝑟13
𝑟𝑟21 𝑟𝑟22 𝑟𝑟23
𝑟𝑟31 𝑟𝑟32 𝑟𝑟33

� �
𝑎𝑎1
𝑏𝑏1
𝑐𝑐1
� + �

𝑝𝑝𝑥𝑥
𝑝𝑝𝑦𝑦
𝑝𝑝𝑧𝑧
� = 𝑅𝑅10𝑞𝑞1 + 𝑃𝑃10 (7)

Figure 13: Frame Transformation

It can therefore be conclude that the position and orientation of a point W with respect to

F0, can be defined by a simple frame transformation as represented in Equation 8.

 𝑞𝑞0 = 𝑇𝑇10 𝑞𝑞1 (8)

where the transpose matrix 𝑇𝑇10, transforms coordinate vectors from frame F1 to F0 [57].

30

4.4 Roll, Pitch and Yaw (RPY) Angles

Another way of representing the rotation matrix R, is through the Roll, Pitch and Yaw

(RPY) angles represented by R(γ, β, α). These angles define the rotation of an object

(Figure 11) through successive canonical rotations about the coordinate axes. Here,

1. Roll: Roll is counter-clockwise rotation of α about the x-axis.

2. Pitch: Pitch is counter-clockwise rotation of β about the y-axis.

3. Yaw: Yaw is a counter-clockwise rotation of γ about the z-axis.

It is important to note that these rotations are performed in the order of roll given by

Rx(α), then pitch given by Ry(β), and finally yaw given by Rz(γ). The final rotation matrix

however, is obtained by multiplying the angles in the order of yaw, pitch, and roll. This is

because of the backward sequence of multiplication in frame transforms. The individual

rotations and the final rotation matrix are provided in Equations 9, 10, 11, and 12.

 𝑅𝑅𝑧𝑧(γ) = �
cos(γ) −sin (γ) 0
sin(γ) cos (γ) 0

0 0 1
� (9)

 𝑅𝑅𝑦𝑦(β) = �
cos(β) 0 sin (β)

0 1 0
−sin (β) 0 cos (β)

� (10)

 𝑅𝑅𝑥𝑥(α) = �
1 1 0
1 cos (α) −sin (α)
0 sin (α) cos (α)

� (11)

 R = R(γ,β,α) = 𝑅𝑅𝑧𝑧(γ) .𝑅𝑅𝑦𝑦(β) .𝑅𝑅𝑥𝑥(α) (12)

The elements of this rotation matrix, R can then be manipulated to calculate the roll pitch

and yaw angles. Table 1 below provides a solution to computing RPY angles from the

rotation matrix, R:

31

Table 1: Computing RPY Angles from Rotation Matrix

 For R(3,1) ≠ ±1 For R(3,1) = -1 If R(3,1) = 1

α atan2 (

𝑅𝑅(3,2)
cos (β)
𝑅𝑅(3,3)
cos (β)

) atan2 �
𝑅𝑅(1,2)
𝑅𝑅(2,2) � + γ atan2 �

−𝑅𝑅(1,2)
𝑅𝑅(2,2) � + γ

β atan2 (
−R(3,1)

±�1 − (𝑅𝑅(3,1))2
) pi/2 -pi/2

γ atan2 (

𝑅𝑅(2,1)
cos (β)
𝑅𝑅(1,1)
cos (β)

) Arbitrary Arbitrary

For the purpose of this research, the orientation of the end-effector was defined

using both RPY angles and through 9 individual rotational elements of the rotation

matrix, R. However, through the development of the reconfigurable model, it was

realized that superior results were achieved for ANNs when using elements of the

rotation matrix, R (Equation 3), in computation of an inverse kinematics solution. The

RPY angles provide a consolidated overview of an objects orientation with respect to a

coordinate frame and are easier to document. For this reason, the orientation of an end-

effector is usually represented using its RPY angles.

32

 CHAPTER 5

KINEMATIC MODELLING OF MANIPULATORS

This research addresses the kinematic modelling of open ended kinematic chains that

are widely used in the industry today. As previously mentioned, the kinematic modelling

of manipulators requires frame transformation of coordinate frames attached to each link

of the manipulator. These frame transformations help us to determine the forward

kinematic solution for a manipulator. A forward kinematics solution helps determine the

final position and orientation of the manipulator end-effector with its base for any

possible combination of the manipulator’s joint variable(s) (q). The forward kinematics

solution can then be manipulated geometrically, analytically, or iteratively to derive an

inverse kinematic solution. An inverse kinematic solution helps determine the values of

all joint variable that would produce a required position and orientation of the

manipulator’s end-effector.

Any manipulator with n joints, has exactly n+1 links, since each joint connects two

links of a manipulator. Therefore, any joint i, when actuated moves the link i, where the

location of joint i is determined by link i-1 [5]. All joint variables, as previously

mentioned are represented by ‘q’. Thus any joint qi can assume the value of θi if the joint

is rotational, or di if the joint is translational.

As standard convention, a Cartesian coordinate frame F0 is rigidly attached to the

base (i.e. link i-1) of the manipulator. All subsequent frame transformations for the

manipulator are performed by referencing this frame F0 to other coordinate frames.

Cartesian coordinate frames are attached to each link of a robot, starting with the base

frame all the way to the end-effector. The position and orientation of each frame can be

expressed through the homogeneous transformation matrices. It is important to note that

all frames are rigidly attached to each link. This assumption is made so that the position

and orientation of a manipulator’s end-effector can be determined with respect to any

particular frame of interest, and is always constant irrespective of the configuration of the

manipulator. [5] For example, a SCARA (RRT) robot (Figure 14) is kinematically

modelled in Figure 15.

33

Figure 14: SCARA Robot [58]

Figure 15: Kinematic Modelling of SCARA Robot

5.1 Denavit-Hartenberg (D-H) Parameters

Denavit-Hartenberg (D-H) parameters are set of standardized rules that are used in

defining Cartesian coordinate frames attached to the manipulator links. These parameters

help define position and orientation of one frame with respect to its preceding frame.

34

Figure 16: D-H Parameters. Adapted from [53]

The D-H parameters for defining the pose of any coordinate frame i (F1) with respect to

its preceding frame i-1 (F0) are comprised of the following four parameters (see Figure

16):

1. Link Offset (di): It is the distance measured along Z0 axis to the point of

intersection of X1 axis and Z0 axis.

2. Link Angle (θi): It is the angle between X0 axis and X1 axis measured in a plane

normal to Z0.

3. Link Length (ai): It is the distance between Z0 axis and Z1 axis measured along

X1 axis.

4. Link Twist (αi): It is the angle between Z0 axis and Z1 axis measured in a plane

normal to X1 axis [5].

The direction of Link Angle and Link Twist is determined using the right hand rule. It is

important to note that the D-H parameters are implemented in the order of sequence of di,

θi, ai, and αi respectively. The homogeneous transformation matrix between two

successive links is defined using their D-H parameters. For example, the kinematic model

35

of the SCARA robot in Figure 15 is developed using D-H parameters presented in Table

2 below:

Table 2: D-H Parameters of SCARA Robot

Robot: SCARA (RRT)

Joint

D-H parameters
Lower

Joint

Limit

Upper

Joint

Limit

Link

Offset

(mm)

Joint

Angle

(rad)

Link

Length

(mm)

Twist

Angle

(rad)

1 d1 = 1 θ1 = θ1 a1 = 225 α1 = 0 -2.22 2.22

2 d2 = 1 θ2 = θ2 a2 = 225 α2 = 0 -2.53 2.53

3 d3 = d3 θ3 = 0 a3 = 225 α3 = 0 -297 -97

5.2 Homogeneous Frame Transformations

The homogenous transformation matrices help define rigid motions of Cartesian

coordinate frames in a matrix formulation. A general structure of a homogenous

transform matrix, 𝐴𝐴𝑖𝑖𝑖𝑖−1 is represented in Equation 13 below.

 𝐴𝐴𝑖𝑖𝑖𝑖−1 = �𝑅𝑅3𝑥𝑥3 𝑃𝑃3𝑥𝑥1
000 1 � (13)

In kinematic modelling, the top left corner of the homogeneous transform matrix

represents the rotation matrix (𝑅𝑅3𝑥𝑥3), the top right corner represents the position matrix

(vector 𝑃𝑃3𝑥𝑥1), the zeroes represent perspective and 1 represents the scaling factor. The

matrix A represents the pose elements of frame i with respect to frame i-1. A basic

homogeneous transformation matrix is computed from the D-H parameters using

Equation 14.

 𝐴𝐴𝑖𝑖𝑖𝑖−1 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑍𝑍,𝑑𝑑𝑖𝑖) 𝑅𝑅𝑅𝑅𝑅𝑅(𝑍𝑍,𝜃𝜃𝑖𝑖) 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑋𝑋, 𝑎𝑎𝑖𝑖) 𝑅𝑅𝑅𝑅𝑅𝑅(𝑋𝑋,𝛼𝛼𝑖𝑖) (14)

 Here, the sequence of multiplication is followed in the order of D-H parameters. The

sequence being translation of 𝑑𝑑𝑖𝑖 in Zi-1 axis, rotation of angle 𝜃𝜃𝑖𝑖 about the Zi-1 axis,

36

translation of 𝑎𝑎𝑖𝑖 in direction of Xθ axis, and lastly the rotation of angle 𝛼𝛼𝑖𝑖 about the Xi

axis. These individual rotations and translations are represented in Equations 15-18.

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑍𝑍,𝑑𝑑𝑖𝑖) = �

1 0 0 0
0 1 0 0
0 0 1 𝑑𝑑𝑖𝑖
0 0 0 1

� (15)

 𝑅𝑅𝑅𝑅𝑅𝑅(𝑍𝑍,𝜃𝜃𝑖𝑖) = �

cos (𝜃𝜃𝑖𝑖) −sin (𝜃𝜃𝑖𝑖) 0 0
sin (𝜃𝜃𝑖𝑖) cos (𝜃𝜃𝑖𝑖) 0 0

0 0 1 0
0 0 0 1

� (16)

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑋𝑋,𝑎𝑎𝑖𝑖) = �

1 0 0 𝑎𝑎𝑖𝑖
0 1 0 0
0 0 1 0
0 0 0 1

� (17)

 𝑅𝑅𝑅𝑅𝑅𝑅(𝑋𝑋,𝛼𝛼𝑖𝑖) = �

1 0 0 0
0 cos (𝛼𝛼𝑖𝑖) −sin (𝛼𝛼𝑖𝑖) 0
0 sin (𝛼𝛼𝑖𝑖) cos (𝛼𝛼𝑖𝑖) 0
0 0 0 1

� (18)

Substituting Equations 15 – 18 in Equation 14, 𝐴𝐴𝑖𝑖𝑖𝑖−1 can be represented as:

 𝐴𝐴𝑖𝑖𝑖𝑖−1 = �

cos (𝜃𝜃𝑖𝑖) −cos (𝛼𝛼𝑖𝑖)sin (𝜃𝜃𝑖𝑖) sin(𝛼𝛼𝑖𝑖)sin (𝜃𝜃𝑖𝑖) 𝑎𝑎𝑖𝑖cos (𝜃𝜃𝑖𝑖)
sin (𝜃𝜃𝑖𝑖) cos (𝛼𝛼𝑖𝑖)cos (𝜃𝜃𝑖𝑖) −sin (𝛼𝛼𝑖𝑖)cos (𝜃𝜃𝑖𝑖) 𝑎𝑎𝑖𝑖sin (𝜃𝜃𝑖𝑖)

0 sin (𝛼𝛼𝑖𝑖) cos (𝛼𝛼𝑖𝑖) 𝑑𝑑𝑖𝑖
0 0 0 1

� (19)

The homogenous transformation matrix from Equation 19 is representative of all four D-

H parameters and determines the pose for frame Fi with respect to Fi-1. 𝐴𝐴𝑖𝑖𝑖𝑖−1 is of

considerable significance because of its use in computation of the forward kinematics

equation(s) and determination of complete workspace for a manipulator.

37

5.3 Joint Space

The joint space or configuration space of a manipulator is the set of all possible

combinations of joint variables for a manipulator. Each joint variable of a manipulator

has a defined range of motion that is represented as a vector. The combinations of these

vectors in order of their joints defines the joint space of the manipulator. The number of

vector(s) in the joint space is equal to the number of joints in a manipulator. For a

manipulator with n joints and a range of i values for each joint configuration, the joint

vectors can be defined with Equation 20. The joint space is then defined by Equation 21

as 𝑖𝑖𝑛𝑛 sets of these vectors.

 𝑞𝑞𝑛𝑛 = [𝑞𝑞𝑛𝑛1 𝑞𝑞𝑛𝑛2 … 𝑞𝑞𝑛𝑛𝑖𝑖]𝑇𝑇 (20)

 𝑞𝑞 = [𝑞𝑞1 𝑞𝑞2 … 𝑞𝑞𝑛𝑛]𝑇𝑇 (21)

For example, for a SCARA (RRT, n=3) robot, if all joint variables assume 10 values

each, then the joint space for that manipulator will have 1000 (103) sets of Equation 22.

 𝑞𝑞 = [𝜃𝜃1 𝜃𝜃2 𝑑𝑑3]𝑇𝑇 (22)

5.4 Cartesian Space

The Cartesian space, 𝑣𝑣 of a manipulator is the set of all possible combinations of

position and orientation of the manipulator’s end-effector. The Cartesian space has 6

DOF since it can always be represented by 3 position vectors and 3 orientation vectors

(RPY angles) as represented by Equation 23.

 𝑣𝑣 = [𝑥𝑥 𝑦𝑦 𝑧𝑧 𝛼𝛼 𝛽𝛽 𝛾𝛾]𝑇𝑇 (23)

Since the position and orientation of the end-effector is determined by the joint

configuration of a manipulator, all sets in Cartesian space can be mapped back to at least

one set in the manipulator’s joint space. Since homogenous transformation matrices

represent the pose of a manipulator’s end-effector, they are used to define Cartesian space

38

of a manipulator. The developed reconfigurable model for this research uses elements

from the pose matrices for improved ANN performance as described in Chapter 6.

5.5 Forward Kinematics

Forward kinematics for rigid manipulators is concerned with the computation of a

manipulator’s end-effector position and orientation for every known possible

combination of its joint variables. Forward kinematic computations are straightforward

and there always exist a forward kinematic solution for a manipulator in its joint space.

For any n-link manipulator, the forward kinematic computation can be mapped from a

configuration set in the joint space to a point in the Cartesian space of the manipulator

using Equation 24.

 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑞𝑞1,𝑞𝑞2, 𝑞𝑞3 … 𝑞𝑞𝑛𝑛)
𝑓𝑓
→ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝛼𝛼𝑛𝑛, 𝛽𝛽𝑛𝑛, 𝛾𝛾𝑛𝑛, 𝑝𝑝𝑥𝑥, 𝑝𝑝𝑦𝑦, 𝑝𝑝𝑧𝑧) (24)

The forward kinematic equation(s) are computed using the homogeneous transformation

matrices. These matrices are multiplied in succession to obtain the homogenous

transformation for joint i with respect to frame, F0, as seen in Equation 25.

 𝐴𝐴𝑖𝑖0 = 𝐴𝐴10 .𝐴𝐴21 .𝐴𝐴32. …𝐴𝐴𝑖𝑖𝑖𝑖−1 = �

𝑛𝑛𝑥𝑥 𝑏𝑏𝑥𝑥 𝑡𝑡𝑥𝑥 𝑝𝑝𝑥𝑥
𝑛𝑛𝑦𝑦 𝑏𝑏𝑦𝑦 𝑡𝑡𝑦𝑦 𝑝𝑝𝑦𝑦
𝑛𝑛𝑧𝑧 𝑏𝑏𝑧𝑧 𝑡𝑡𝑧𝑧 𝑝𝑝𝑧𝑧
0 0 0 1

� 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2. . ,𝑘𝑘 (25)

where n, b, and t represent orientation vectors for defining the orientation of link k. For

example, for a SCARA robot (RRT) (Figure 15), we obtain the forward kinematic

equations by multiplying all three individual homogenous matrices in Equation 19.

𝐴𝐴30

= �

cos (𝜃𝜃1 + 𝜃𝜃2) −sin (𝜃𝜃1 + 𝜃𝜃2) 0 450 ∗ cos(𝜃𝜃1 + 𝜃𝜃2) + 225 ∗ cos (𝜃𝜃1)
sin (𝜃𝜃1 + 𝜃𝜃2) cos (𝜃𝜃1 + 𝜃𝜃2) 0 450 ∗ sin(𝜃𝜃1 + 𝜃𝜃2) + 225 ∗ sin(𝜃𝜃1)

0 0 1 𝑑𝑑3 + 2
0 0 0 1

�
(26)

39

The forward kinematics equation (Equation 26) here can now be substituted with the joint

variable ranges from Table 2 to obtain the position and orientation of the SCARA robot’s

end-effector thereby defining its work envelop or complete workspace. It is important to

note that the position and orientation of the end-effector is found with respect to the base

frame, F0, of a robot.

5.6 Workspace and Taskspace

The workspace of an industrial manipulator is a manifold of all points reachable by

the manipulator’s end-effector. Each point in a manipulator’s workspace can be realized

in at least one position and orientation configuration. The topology and volume of the

workspace is determined by the mechanical structure of a manipulator and its joint

configurations. The workspace is divided into two categories:

1. Dexterous Workspace: The dexterous workspace is a collection of all points in a

manipulator’s workspace that the end-effector can reach in all possible

orientations. For example, if the joint configuration allows the manipulator to be

oriented in all of its possible 10 orientations at a point ‘P’ in 3-D space. The point

P is then said to be a part of the dexterous workspace of a manipulator.

2. Reachable Workspace: The reachable workspace is the collection of all points in a

manipulator’s workspace that the end-effector can reach in at least one

orientation. For example, if the joint configuration of the manipulator allows the

manipulator to be oriented in only 2 of its possible 10 orientations at a point ‘Q’.

The point Q is the said to be a part of the reachable workspace of the manipulator.

The dexterous workspace of the manipulator is therefore a subset of the reachable

workspace of a manipulator. [2]

The workspace of the manipulator is formulated using the forward kinematics

equation(s) of the manipulator in Equation 25. Each point in the workspace is

representative of the position matrix of the manipulator. The reconfigurable model

presented in this research helps visually map the workspace of any manipulator

configuration. This analysis helps to understand and appropriately modify a

manipulator’s geometric properties and its associated mechanisms for a desired

workspace topology and volume. A sound understanding of the workspace also helps in

40

path planning for the end-effector through the manipulator’s taskspace. Appendix A

provides the third angle orthographic projections and an isometric view of the SCARA

(RRT) robot’s workspace discussed previously in this text.

The taskspace of a manipulator on the other hand is determined by the task required

of the manipulator’s end-effector. The taskspace has a varying dimensionality which is

determined by the Degrees of Freedom needed to accomplish a task. The maximum

dimension of the task space is 6 since the position and orientation of any object can be

defined using 6 DOF. For example, if a manipulator is only concerned with positioning

its end-effector regardless of the orientation, the task space for that manipulator has a

dimension of 3. It is important to note that the joint space of the manipulator should be

equal to its task space for a realizable inverse kinematic solution.

5.7 Inverse Kinematics

The inverse kinematics problem is related to the joint space of the industrial

manipulators and depends strictly on the structure and configuration of a given

manipulator. The end-effector of a manipulator works in Cartesian space but the actuators

required to control the individual links work in its joint space. Thus, the computation of

these joint variables from the end-effector position and orientation in Cartesian space is

known as the inverse kinematics problem and is an essential tool for control of

manipulators. For any n-link manipulator, the inverse kinematic computation can be

mapped from the Cartesian space to the joint space of the manipulator using Equation 27.

 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝛼𝛼𝑛𝑛,𝛽𝛽𝑛𝑛, 𝛾𝛾𝑛𝑛,𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦,𝑝𝑝𝑧𝑧)
𝑓𝑓−1
�� 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑞𝑞1,𝑞𝑞2, 𝑞𝑞3 … 𝑞𝑞𝑛𝑛) (27)

The equations for computing an inverse kinematic solution are generated by comparing

and analyzing Equation 25 with a forward kinematics solution for any manipulator. For

example, the inverse kinematic equation(s) for a SCARA robot with a known forward

kinematic solution can be analyzed from Equation 28 – Equation 32.

 𝑛𝑛𝑥𝑥 = cos (𝜃𝜃1 + 𝜃𝜃2) (28)

41

 𝑛𝑛𝑦𝑦 = sin (𝜃𝜃1 + 𝜃𝜃2) (29)

 𝑝𝑝𝑥𝑥 = 450 ∗ cos(𝜃𝜃1 + 𝜃𝜃2) + 225 ∗ cos (𝜃𝜃1) (30)

 𝑝𝑝𝑦𝑦 = 450 ∗ sin(𝜃𝜃1 + 𝜃𝜃2) + 225 ∗ sin(𝜃𝜃1) (31)

 𝑝𝑝𝑧𝑧 = 𝑑𝑑3 + 2 (32)

An inverse kinematics problem is therefore a reverse computation of the forward

kinematics problem. The inverse kinematics solution for planar, and 3 or less DOF can be

easily determined through some geometric, algebraic, and or analytical manipulations.

However, with increasing DOF, the inverse kinematics problem proves to be

mathematically complex and computationally expensive. With increasing DOF,

kinematic decoupling of joint variables is often challenging and a closed form solution

may not always be possible. For algebraic manipulations, the expressions for the joint

variables are primarily determined from the x, y, and z coordinates of the position vector.

Since, it is possible to have more than one solution to a coordinate point, it can be

challenging to obtain inverse kinematic solutions for higher DOF manipulators. For

example, four possible inverse kinematic solution(s) of a PUMA 560 robot are presented

in Figure 17 below.

Figure 17: Four Different Inverse Kinematic Solution for PUMA 560 Robot [59]

42

The formulation of an inverse kinematic solution has a wide range of applications

in the field of robotics. Most of the problems involving a robotic manipulator deal with

orienting and positioning the end-effector in the Cartesian space. An efficient way to

control the end-effector is through effective control of the actuated joints of the robot,

which lie in the manipulator’s joint space. It is therefore essential to map the Cartesian

space constraints into the robot’s joint space using inverse kinematics computations [60].

In cases where a closed form solution is not possible, a numerical method might be

utilized to determine a possible set of solutions for the joint variables. There has been

extensive research in the field of robotics for developing inverse kinematic solution(s) for

specific robot models, configurations, and types. However, no universal model for

computation of the inverse kinematics problem exists which can provide a solution with

an acceptable level of accuracy. This research addresses the issue of developing a non-

conventional technique of addressing this problem through the use of ANNs using

discrete data sets.

43

 CHAPTER 6

ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANNs) are biologically inspired mathematical models

that learn from their environment, similar to the neurons in the human nervous system.

These mathematical models consist of multiple interconnected neurons that act as

adaptive, and generally non-linear learning machines [61] [62]. The neurons in an ANN

are its processing elements that help approximate any finite non-linear model to

determine the relationship between its dependent and independent variables. The

interconnectivity of these neurons defines the topology of an ANN.

ANNs are used for a variety of tasks including classification, clustering, prediction

etc. This is because these networks can acquire and store knowledge through a defined

learning process. [62] A feed-forward back-propagation multilayer perceptron (MLP)

neural network model with supervised learning technique is used for this research to

address the inverse kinematic problem in industrial manipulators. The results from this

model are further discussed in the cases studies presented in Chapter 10. An

understanding into the network architecture and its function are presented in this chapter

to help realize the configuration of an optimum network used for this research.

6.1 Trade-off between Generalization and Accuracy

Generalization is the capability of an ANN to negate the effect of noise or any

peculiarities that might be present within a dataset. Generally, a robust network with a

good generalization capability provides a well fitted curve through the training data set.

As a general rule, the simpler the network architecture, the better is its generalization

capability. An accurate network on the other hand has a superior fit to training data than a

network with good generalization capability. However, the trade-off here is the

complexity and brittleness of a network. A brittle network is only tailored to the specific

dataset it was trained on. Such a network lacks the capability of generalizing similar

dataset(s). It is therefore important to optimize the degree of complexity of the neural

network for a model that is both accurate and generalizes well [63].

44

6.2 Network Architecture

A basic ANN architecture consists of data inputs that are connected to neurons. The

neurons process this input information and provide data outputs. All information in an

ANN flows through the connections between these inputs, neurons, and outputs. These

connections are scaled by adjustable parameters called weights, wij [61]. The weights of a

neural network impart flexibility to the network thereby helping it to adapt and learn the

pattern(s) in a data set. The bias (generally assumed a value of 1) in a network represents

the factors that are not accounted for by the input variables

A Multi-Layer Perceptron (MLP) network architecture is used in this research

because of its capability to perform complex prediction tasks. Figure 18 represents a

general MLP architecture. Here, n represents the number of inputs, m represents the

number of neurons in the hidden layer, xn represents the input variables, z represents

network output, anm represents the weight from the nth input variable to the mth neuron in

the hidden layer, bm represents the weight from the mth neuron in the hidden layer to the

output layer, a0m represent the bias to the mth neuron in the hidden layer, b0 represents the

bias to the output layer, and σ, and f(.) represent the activation functions used in the

neurons.

Figure 18: Multi-Layer Perceptron Architecture [62]

45

The network learning can be described in the following stages:

1. Stage 1: The hidden neurons sum the weighted inputs and pass them through the

activation function.

2. Stage 2: The outputs from the hidden layer are fed to the output layer with a

second set of weights and a bias.

3. Stage 3: The output layer passes the weighted sum of its inputs through a linear or

non-linear activation function to the network’s output.

The output(s) from the output layer make up the network outputs(s). The network

output(s) are subsequently analyzed for network performance and errors.

6.3 Network Learning

A feed-forward back-propagation batch learning with a supervised learning

technique is used to train the network. A feed-forward network structure only allows a

unidirectional flow of data through the network. The flow of data is usually from the

input layer through the hidden layer, and finally to the output layer. Feedback loops or

cycles are not permitted in a feed-forward network.

Learning for an ANN is the adjustment of its weights and biases to minimize error in

the network. A back-propagation learning type is used in the network developed for this

research. Back-propagation of error allows the network to calculate the error at each

output and adjust the value of weights that caused the error accordingly, thereby reducing

the overall error in the network. The effect of each weight on the error is determined by

the value of the weight and the error on the unit above [63]. The error is thus back-

propagated through the network for optimization of the weights such that if the same

dataset is provided to the network again, the error is lower than the previous result. The

error indicator considered for the network performance is the mean squared error (MSE)

value represented in Equation 33. The MSE value determines the accuracy of prediction

over all the training patterns for a given network

 𝐸𝐸 =
1

2𝑁𝑁
�(𝑡𝑡𝑖𝑖 − 𝑧𝑧𝑖𝑖)2
𝑁𝑁

𝑖𝑖

 (33)

46

where, E is the MSE value, 𝑡𝑡𝑖𝑖 is the target for the ith training pattern, 𝑧𝑧𝑖𝑖 is the predicted

output for the ith training pattern, and N is the total number of training patterns. A batch

learning technique involves the network learning after the entire data set has been

presented to it, or more simply when one whole epoch is run. “An epoch refers to a single

pass of all input patterns in a perceptron during the training phase [62].” The network

computes a resultant error gradient with respect to weights from the average of error

gradients from each point in the dataset. The error is minimized in the direction of the

descent indicated by this resultant gradient. [62]

A supervised learning technique trains the network by providing a target to the

network along with its corresponding input during training phase. This allows the

network to be exposed to a known response. The network subsequently learns the system

behaviour under specific conditions characterized by the data presented to it [64]. The

Levenberg-Marquardt (LM) learning algorithm is used here to adjust and update the

weights of the network. LM is a hybrid learning technique based of the Gradient Descent

and Newton’s method. The algorithm as presented in Equation 34, helps to train a

network to attain a global minimum error by minimizing the first derivatives or gradients

to zero [62]. This training algorithm is known to demonstrate superior performance and

efficiency by adjusting the learning rate of the network repeatedly. [65]

 𝛥𝛥𝑤𝑤𝑚𝑚 = −
𝑑𝑑𝑚𝑚

𝑑𝑑𝑚𝑚𝑠𝑠 + 𝑒𝑒𝜆𝜆
 (34)

where, 𝑑𝑑𝑚𝑚 is the first derivative of error, 𝑑𝑑𝑚𝑚𝑠𝑠 is the second derivative of error, and λ is the

damping factor.

6.4 Activation Function

Activation functions are the processors of data in a neuron and help the weights in

the network identify and learn trends in a dataset. These functions can help introduce

non-linearity into the network which allows the network to process complex, and non-

linear datasets. Activation functions in the hidden layer(s) are non-linear continuous

functions. The continuity of these functions allows them to be differentiable. This

47

property aids in the adjustment of the network weights during backpropagtion of errors

[62]. Generally, non-linear sigmoid functions are used as processors in MLPs [61]. The

sigmoid function class can be classified in three common non-linearities, namely,

logistic, hyperbolic tangent, and threshold functions. The logistic function (Equation 35)

constrains the input data within a range of [0, 1] and is represented by Figure 19. The

activation function, used for this research, for the network’s hidden layer is the

hyperbolic tangent function given in Equation 36.

 logsig(𝑢𝑢) =
1

1 + 𝑒𝑒−𝛽𝛽𝛽𝛽
 (35)

 tanh(𝑢𝑢) =
1 − 𝑒𝑒−2𝑢𝑢

1 + 𝑒𝑒−2𝑢𝑢
 (36)

where, β is the slope parameter, and u is any value from a dataset. Hyperbolic tangent

functions constrain the data from [-1, 1] as seen from Figure 20. Unlike the logistic

function, this function is beneficial when the data set to be trained has both positive and

negative values in its input dataset and target dataset. The data can then be normalized

before being fed to the network for an improved performance. It is also important to note

that an asymmetric hyperbolic tangent function leads to a faster learning by requiring

fewer number of patterns presented to it than non-symmetric logistic function [63].

 Figure 19: Logistic Function Figure 20 : Hyperbolic Tangent Function [62]

48

A threshold activation function maps the data based on a predefined threshold, t.

If the input value is above the threshold, then the output is t1. If the input value is below

the threshold, the output value is t0. The threshold function acts as a binary classifier and

is best suited for clustering, and pattern recognition applications. Figure 21 represents a

threshold function with t1=1, and t0=0 given by Equation 37.

 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜(𝑢𝑢) = { 𝑡𝑡0 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 < 0
 𝑡𝑡1 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > 0 (37)

 Figure 21: Threshold Function Figure 22: Linear Function

The output from a neuron using any activation function, f, is given by Equation 38.

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = f (�𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗 + 𝑏𝑏
𝑛𝑛

𝑗𝑗=1

) (38)

The output layer on the other hand uses a linear activation function given by

Equation 39, as its processing unit. Unlike the hyperbolic tangent function, the linear

activation function (Figure 22) does not constrain the data but rather scales it linearly.

This helps attain a true output value with respect to the network input.

 𝑓𝑓(𝑢𝑢) = 𝑢𝑢 (39)

49

6.5 Data Pre-Processing and Post Processing

Data pre-processing is an important step in the data mining process. The quality of

data and its results can significantly be improved with the correct pre-processing

techniques. One such technique, normalization, has been used here for the development

of an inverse kinematic solution using ANNs. The physical attributes of a manipulator

dictate its D-H parameters. These parameters are often a different scale than the joint

variable ranges of the manipulator. The difference in scale may mask the effect of one

variable on another. Normalization of data is therefore essential to scale all input and

target datasets in a pre-defined range. The pre-defined range used for training the network

is [-1, 1]. This guarantees a stable convergence of weights and biases. Normalization also

helps to identify the true effect of any one variable on another variable. Two

normalization techniques, namely, min-max normalization (Equation 40), and z-score

normalization (Equation 41) have been applied to the dataset(s) used for training the

network.

 𝑋𝑋′ = 𝑎𝑎+(𝑋𝑋−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)(𝑏𝑏−𝑎𝑎)
𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

 or, (40)

 𝑋𝑋′ =
𝑋𝑋 − 𝑋𝑋�
𝜎𝜎

 (41)

where, 𝑋𝑋 denotes any value in the data set, 𝑋𝑋′ denotes the normalized value of 𝑋𝑋, a = -1,

b = 1, 𝑋𝑋� = mean of the given variable, 𝜎𝜎 is the standard deviation of the dataset,

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 are the maximum and minimum values in the dataset respectively.

The network outputs from a normalized input set are also normalized. All values in the

output data set therefore need to be reverted to scale. The scale for de-normalizing an

output dataset is determined from the range of target dataset supplied to the network.

6.6 Division of Data

The ANNs for this research were developed with the aid of the Graphical User

Interface (GUI) Neural Network (NN) Toolbox in the MATLAB environment. For

50

training a network, all data was divided at random into three mutually exclusive and

collectively exhaustive categories, namely:

1. Training Set: The training set is a percentage of the original data provided to a

network to adjust the weights of the network during training. The training set used

for this research accounts for 80% of the original data selected at random by the

NN Toolbox.

2. Validation Set: The validation set is a percentage of the original data provided to a

network to minimize over fitting. The validation set verifies if an increase in

accuracy over the training set yields an accuracy in the validation set as well. The

network starts over fitting if the accuracy over the training set increases while the

accuracy over the validation set decreases or remains constant. The training of a

network should be stopped at this point. For this research, the validation set

accounts for 10% of the original data selected at random by the NN Toolbox.

3. Testing Set: The testing set is a percentage of the original data provided to a

network to independently measure the networks performance and prediction

capability after training has commenced. For this research, the testing set accounts

for 10% of the original data selected at random by the NN Toolbox [66].

It is important to note that a data division percentage of 80-10-10 was chosen for the

input data set over the MATLAB default percentage of 70-15-15. This configuration was

selected since the ANN yielded a superior performance when compared to the default

configuration. Better performance was achieved since the network was able to train over

a larger dataset range while the validation and testing dataset performance remained

constant.

6.7 Network Prediction Capability

After learning commences, input(s) from a known input-target dataset are introduced

to the trained ANN. The network is simulated over the inputs to obtain network outputs.

These outputs are the predicted values from the trained network. The outputs are

compared with the known targets for errors in prediction. The relative percentage error in

prediction is calculated, for a target dataset with no zero values, using Equation 42.

51

 𝐸𝐸𝑃𝑃 =
𝑡𝑡𝑖𝑖 − 𝑧𝑧𝑖𝑖
𝑡𝑡𝑖𝑖

 𝑋𝑋 100 (42)

where, 𝐸𝐸𝑃𝑃 is the percentage error in prediction, 𝑡𝑡𝑖𝑖 is the ith target value of the dataset, and

𝑧𝑧𝑖𝑖 is the ith output from the ANN. If the target dataset contains values that are zero, a

percentage error cannot be computed since the numerator in Equation 42 would require

division with 0. In such cases, absolute error is computed using Equation 43.

 𝐸𝐸𝐴𝐴 = |𝑡𝑡𝑖𝑖 − 𝑧𝑧𝑖𝑖| (43)

where, 𝐸𝐸𝐴𝐴 is the absolute error in prediction. It is important to note that the absolute error

requires reverting values back to scale if the input dataset had previously been

normalized.

6.8 Inverse Kinematics using Artificial Neural Networks

Inverse kinematics problem are classified as ill-posed problems in modelling of

ANNs. An ill-posed problem is characterized by a consistent mapping of a single input on

one or more output(s). In such a case, the network learning averages all possible solutions

thereby yielding a poor performance [63]. In the case of industrial manipulators, when

mapping the end-effector position and orientation to the joint variable configuration of a

manipulator, an ill-posed problem is experienced. The problem arises because of several

joint configurations producing the same end-effector pose. The network thus generalizes

the dataset to produce an outcome with low accuracy.

This research presents ANNs as a non-conventional approach in solving the inverse

kinematic problem in industrial manipulators. ANNs can be used in development of a

robust and singularity free inverse kinematic solution. Figure 23 presents the network

architecture used for this research. The network uses a dataset of 12 inputs which

represent the position of the end-effector (𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦,𝑝𝑝𝑧𝑧), and the orientation of the end-

effector (𝑛𝑛𝑥𝑥, 𝑛𝑛𝑦𝑦,𝑛𝑛𝑧𝑧 , 𝑏𝑏𝑥𝑥,𝑏𝑏𝑦𝑦, 𝑏𝑏𝑧𝑧 , 𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦, 𝑡𝑡𝑧𝑧) from the forward kinematics equations. The

targets and network outputs are the configurations of the joint variables

(𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3, 𝑞𝑞4, 𝑞𝑞5, 𝑞𝑞6) that produce the input position and orientation.

52

Figure 23: ANN Architecture for Inverse Kinematics Problem

6.8.1 Challenges in developing an ANN Architecture

The network architecture was initially designed with only 6 inputs

(𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦,𝑝𝑝𝑧𝑧 ,𝛼𝛼,𝛽𝛽, 𝛾𝛾) as the rotation matrix was consolidated into its corresponding RPY

angles. This architecture demonstrated a far lower performance compared to using all 9

elements of the rotational matrix. This is because the network learning increasing with an

increase in input parameters for a given number of outputs. The increase in 6 additional

parameters help better define the joint configurations and the error can be generalized

over a wider range of dataset. Figure 43 (Appendix A) shows the outputs of the network

53

(blue) completely superimposed on the network targets (green) thereby indicating a

perfectly trained network for a SCARA Robot.

An inherent challenge while developing the ANN model for this research was

availability of target data (joint variable configurations) for any assumed position and

orientation of the manipulator’s end-effector. Previously known target data is required for

supervised learning as well as in the computation of errors in prediction (𝐸𝐸𝑃𝑃). Due to the

unavailability of inverse kinematic solution(s) for most industrial manipulators, a forward

kinematics solution was first developed for each manipulator type. An input dataset was

developed with the joint configurations used for the forward kinematic computation with

the outputs from the forward kinematic computation as network inputs. These network

outputs were subsequently compared with the targets for evaluating network

performance.

Accuracy of the network was another challenge faced while developing an

optimized network. It was observed that large amounts of data decreased the performance

of the network because of the increase in complexity of the data set. For example, for a 6

DOF robot with 10 joint values for each joint variable configuration, 1 million joint

configurations and their corresponding end-effector pose configurations were generated.

The network learning process therefore involved processing of 18 million joint

configurations (12 inputs + 6 outputs). Due to computational limitations (Intel® Core™

i7-3770 CPU @ 3.40 GHz processor, 16.0 GB RAM), such large data could not be

processed through the Neural Network Toolbox in MATLAB. This data set was broken

down into subsets by taking a smaller range of values within a single joint variable for

ease of processing. Three different approach were experimented with to obtain a higher

network performance, namely:

1. Restructuring the ANN: Altering the ANN architecture was the first approach

taken to solve the aforementioned problem. This involved addition of neurons in

the hidden layer as well as addition of several other hidden layers each with

varying number of neurons. The network performance, however, did not

substantially increase after 55 neurons in the first hidden layer. Restructuring the

network henceforth only increased the complexity of the network. A single hidden

54

layer (SHL) network architecture with the least amount of complexity and

comparable performance was therefore considered optimal.

2. Different Learning Techniques: Different learning techniques apart from feed-

forward back propagation were tested for an increase in network performance.

These techniques involved Elman back propagation, generalized regression,

cascade forward back propagation etc. A feed forward back propagation network,

however, provided the least amount of error in the system, and with a superior

performance amongst all compared techniques.

3. Reducing the Dataset Complexity: Instead of splitting a large data set into subsets,

smaller datasets were created with fewer joint configurations. This helped reduce

the complexity of the dataset by significantly decreasing the learning required by

the network. An optimal number of three joint configurations for each joint

variable (729 joint and pose configurations) demonstrated superior results over

any other approach taken to improve the network accuracy. The computation time

of the network also decreased substantially with this approach. The trade-off for

this approach was that only a range of 3 joint variable values could be trained with

the developed network at any given time. Different classes of joint configuration

therefore need to be developed when using this method. Chapter 10 presents case

studies on two different manipulator configurations with an inverse kinematic

solution for each manipulator type.

6.8.2 Generalization and Accuracy of the ANN Model

ANNs provide promising results in development of inverse kinematic solution(s).

Moreover, the complexity of a solution is decreased since complicated coupled equations

from iterative methods are not explored. ANNs also greatly reduce the computation time

required for development of a solution as compared with other traditional geometric,

iterative, and analytical methods. A challenge with ANN models, however, is the

accuracy of a developed network. An acceptable level of accuracy is needed to make

confident predictions. A model with an optimized complexity is required for an accurate

model with good generalization capability.

55

Before modelling a dataset in Neural Networks, we assume that there is some

acceptable level of noise present. Noise may arise from presence of singularities, error

due to approximation etc. Since, reliable predictions for such a model cannot be made

beforehand, the model needs to possess an optimal generalization ability (Figure 24), in

order to prevent over fitting (Figure 25) or under fitting (Figure 26) due to high or low

model flexibility.

Figure 24: ANN with good generalization [62] Figure 25: Over-fitted ANN with high flexibility [62]

 Figure 26: Under-fitted ANN with low flexibility [62]

For improving generalization, the network’s DOF need to be lowered, which is

achieved by reducing the number of free parameters, or the weights to each hidden

neuron. These hidden neuron weights are directly proportional to the flexibility of the

network. Reducing the number of neurons thus reduces over fitting. One has to be careful

since excessive reduction in hidden neurons causes the model to under fit. In an early

stopping approach, if the weights are allowed to grow enough during training and then

training is stopped, it is possible to restrain the network from over fitting. A performance

plot provides the epoch at which the lowest validation performance is achieved. After this

point, over fitting sets into the model and the validation performance increases with

56

training. If weights are taken for the network at an optimal point where the validation

performance is best, the network would fit sufficiently but not too close, which is an

indication of a well-trained model [62].

Figure 27 represents the ANN model used in development of an inverse kinematic

solution for the previously mentioned SCARA (RRT) robot. Using trial and error, it is

observed that an ANN with 55 neurons in a hidden layer provides the optimal network

generalization and accuracy. For training the network, a sample input and target data set

was created from the forward kinematics model of SCARA Robot. Each joint variable

was split in 25 equal sections over its range as given by Table 15 in Appendix A. The

joint space of the manipulator therefore consisted of 15625 joint combinations (253)

which were used as network targets. Each of these combinations produced an end-

effector pose which were used as network inputs. Table 3 provides a summary of the

performance indicators for the trained ANN.

Figure 27: ANN Architecture for SCARA Robot

Table 3: ANN Performance Indicators for SCARA Robot

S. No. ANN Network Indicator Result
1 Total Epochs 501
2 Epoch for Best Validation Performance 501
3 Overall Regression (R) Value 1
4 Mean Square Error (MSE) 0.0000009
5 Training Performance 0.0000009
6 Testing Performance 0.0000010
7 Validation Performance 0.0000010
8 Error Histogram Center (Bell Curve) -0.000072

57

The best validation performance, as seen from Figure 40 (Appendix A), was

obtained at epoch 501. The network training was manually aborted at epoch 501 since

excellent network performance was achieved. The regression plot in Figure 41

(Appendix A) demonstrates a fitness between the network outputs and target values. A

perfect fit is indicated by a regression (R) value of 1. A perfect fit is achieved since all

points in the network input data are unique. Moreover, an ill-posed problem is not

encountered since every point in the input dataset is mapped to exactly one corresponding

target data. Figure 43 (Appendix A) provides a comparison between the network outputs

and targets for q1, q2, and q3 as a solution to the inverse kinematics problem. It is

observed that the outputs and targets for q1, q2, and q3 completely superimposed on each

other. This indicates a robust inverse kinematics solution for the SCARA manipulator.

The network performance indicator, MSE, has an extremely low value of 0.0000009

(assume zero). A low MSE value indicates a good accuracy of prediction. The individual

performance values for the training, testing, and validation dataset are extremely low and

are around the MSE value as well. The error histogram in Figure 42 (Appendix A)

determines the frequency of errors concentrated over a range. A well fit network has the

maximum frequency of errors around zero. In the network trained for SCARA robot, the

maximum errors in all training, validation, and testing dataset are concentrated at -

0.000072. The error histogram here displays a perfect normal distribution (bell shaped

curve) centered nearly at zero, thereby depicting a 95% and above confidence interval in

prediction of joint variables.

58

 CHAPTER 7

JACOBIAN: VELOCITY KINEMATICS

The Jacobian matrix is an essential tool in the analysis and control of manipulator

motion. It is used in several aspects of robot manipulation including trajectory and path

planning, singularity analysis, derivation of dynamic equations of motion etc. A Jacobian

is the first derivative of the pose matrix of a manipulator. Mathematically, it defines the

Cartesian linear and angular end-effector velocity relationship to a manipulator’s joint

variable velocities in its joint space. The Jacobian matrix thus computes the end-effector

motion and Cartesian velocity caused by the actuation and rate of change of joints of a

manipulator [57]. The derivation of a manipulator’s Jacobian is highly dependent on the

kinematic structure of the manipulator and its joint configurations. It is therefore essential

to model a Jacobian that can adapt to changing kinematic structure(s) of any manipulator

type. Two common techniques to model the Jacobian are the Newton-Euler Recursive

method and the Vector Cross Multiplication (VCM) method. This research utilizes the

Newton-Euler Recursive (NER) method because of its capability to be extended for

calculation of dynamics equations of motion for a manipulator. During the course of this

research, it was also realized that the NER method provides seamless integration into the

development of a reconfigurable model without the need for assessment of several

additional parameters when compared to the VCM method.

7.1 Newton Euler Recursive Method

The computation of the Newton-Euler Recursive equation(s) begin with defining the

rotation matrix and the position matrix from the forward kinematics equations of a

manipulator (Equation 25). The rotation matrix, its transpose, and the position matrix that

define the orientation of a frame Fi with respect to Fi-1 are represented in Equations 44-46

respectively.

 𝑅𝑅𝑖𝑖𝑖𝑖−1 = �
cos (𝜃𝜃𝑖𝑖) −cos (𝛼𝛼𝑖𝑖)sin (𝜃𝜃𝑖𝑖) sin(𝛼𝛼𝑖𝑖)sin (𝜃𝜃𝑖𝑖)
sin (𝜃𝜃𝑖𝑖) cos (𝛼𝛼𝑖𝑖)cos (𝜃𝜃𝑖𝑖) −sin (𝛼𝛼𝑖𝑖)cos (𝜃𝜃𝑖𝑖)

0 sin (𝛼𝛼𝑖𝑖) cos (𝛼𝛼𝑖𝑖)
� 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2, … ,𝑛𝑛 (44)

 𝑅𝑅𝑖𝑖−1𝑖𝑖 = �𝑅𝑅𝑖𝑖𝑖𝑖−1�
𝑇𝑇
 (45)

59

 𝑃𝑃𝑖𝑖𝑖𝑖−1 = �
𝑎𝑎𝑖𝑖cos (𝜃𝜃𝑖𝑖)
𝑎𝑎𝑖𝑖sin (𝜃𝜃𝑖𝑖)

𝑑𝑑𝑖𝑖
� 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2, … , 𝑛𝑛 (46)

The angular and linear velocity vectors are subsequently determined for all joint

variables. These joint rate vectors are the first derivatives of the joint variables and are

defined in Equation 47 and Equation 48.

 𝜃̇𝜃𝑖𝑖𝑖𝑖−1 = �
0
0
𝜃𝜃𝚤̇𝚤
� 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2, … ,𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 (47)

 𝑃̇𝑃𝑖𝑖𝑖𝑖−1 = �
0
0
𝑝𝑝𝚤̇𝚤
� 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2, … , 𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 (48)

The next step involves determining the angular velocities (𝜔𝜔𝑖𝑖
0 𝑖𝑖), and linear velocities

(𝜈𝜈𝑖𝑖0 𝑖𝑖), of each link, i, based on the joint variable type. Equations 49-50 represent the

angular velocities for rotational and translational joint types, and Equations 51-52

represent the linear velocities for rotational and translational joint types.

 𝜔𝜔𝑖𝑖
0 𝑖𝑖 = 𝑅𝑅𝑖𝑖−1𝑖𝑖 � 𝜔𝜔𝑖𝑖−1

0 𝑖𝑖−1 + 𝜃̇𝜃𝑖𝑖𝑖𝑖−1� 𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 (49)

 𝜔𝜔𝑖𝑖
0 𝑖𝑖 = 𝑅𝑅𝑖𝑖−1𝑖𝑖 � 𝜔𝜔𝑖𝑖−1

0 𝑖𝑖−1 � 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 (50)

 𝜈𝜈𝑖𝑖0 𝑖𝑖 = 𝑅𝑅𝑖𝑖−1𝑖𝑖 𝜈𝜈𝑖𝑖−10𝑖𝑖−1 + 𝜔𝜔𝑖𝑖
0 𝑖𝑖 X �𝑅𝑅𝑖𝑖−1𝑖𝑖 𝑃𝑃𝑖𝑖𝑖𝑖−1� 𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 (51)

𝜈𝜈𝑖𝑖0 𝑖𝑖 = 𝑅𝑅𝑖𝑖−1𝑖𝑖 𝜈𝜈𝑖𝑖−10 𝑖𝑖−1 + 𝜔𝜔𝑖𝑖−1

0 𝑖𝑖−1 X �𝑅𝑅𝑖𝑖−1𝑖𝑖 𝑃𝑃𝑖𝑖𝑖𝑖−1� + 𝑅𝑅𝑖𝑖−1𝑖𝑖 𝑃̇𝑃𝑖𝑖𝑖𝑖−1

 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
(52)

After computation of angular and linear velocities for the last link of the manipulator, the

generalized velocity vector (𝑉𝑉) of the end-effector is computed using Equation 53.

60

 𝑉𝑉 = �𝜈𝜈𝜔𝜔� (53)

For example, for a 6 DOF manipulator, the generalized velocity vector is a 6x6 matrix

represented by Equation 54.

 𝑉𝑉 = �
𝜈𝜈60 6

𝜔𝜔6
0 6 � (54)

The Jacobian matrix, J(q), of a manipulator with respect to its end-effector is calculated

from the generalized velocity vector(𝑉𝑉) by extracting the joint velocity vector(s), 𝑞̇𝑞. The

joint velocity vectors vary depending on the type of joint for each link as represented in

Equation 55.

 𝑞̇𝑞𝑖𝑖𝑖𝑖−1 = {
𝜃̇𝜃𝑖𝑖𝑖𝑖−1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑖𝑖

𝑃̇𝑃𝑖𝑖𝑖𝑖−1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑖𝑖
 (55)

The Jacobian matrix, J(q), is represented in Equation 56.

 𝑉𝑉 = 𝐽𝐽(𝑞𝑞) 𝑞̇𝑞 (56)

This Jacobian matrix can further be divided into two submatrices representing the

Jacobian for linear velocities,𝐽𝐽𝜈𝜈 and the Jacobian for angular velocities, 𝐽𝐽𝜔𝜔 , as represented

in Equation 57.

 𝐽𝐽(𝑞𝑞) = �𝐽𝐽𝜈𝜈𝐽𝐽𝜔𝜔
� (57)

The dimension of the Jacobian matrix is dependent on the number of joints of a

manipulator, n, and the dimension of the task space, t. For an n-DOF manipulator, the

Jacobian matrix has a dimension of txn. Since most industrial manipulators are required

to position as well as orient its end-effector, the dimension of the task space is generally

6. The dimension of the manipulator Jacobian is therefore usually 6xn. In such as case,

the dimensions of both 𝐽𝐽𝜈𝜈 and 𝐽𝐽𝜔𝜔 will be 3xn.

61

The Jacobian matrix with respect to the base frame, F0, is calculated using the Equation

58.

 𝐽𝐽(𝑞𝑞)𝐵𝐵 = 𝑅𝑅𝑛𝑛
0 𝐽𝐽(𝑞𝑞) (58)

where, n is the number of joints in a manipulator, and 𝑅𝑅𝑛𝑛
0 represents the rotation matrix

defining the orientation of the end-effector with respect to the base frame of the

manipulator. Once computed, 𝐽𝐽(𝑞𝑞)𝐵𝐵 is further analyzed for any kinematic singularities

present in the manipulator. For example, for a SCARA (RRT) manipulator previously

discussed in this text, the generalized velocity vector,𝑉𝑉 and the Jacobian matrix in the

base frame, F0, are represented by Equations 59-60 respectively.

 𝑉𝑉 = 𝐽𝐽(𝑞𝑞) 𝑞̇𝑞 =

⎣
⎢
⎢
⎢
⎢
⎡

225 ∗ sin (𝜃𝜃2) 0 0
225 ∗ cos(𝜃𝜃2) + 450 450 0

0 0 1
0 0 0
0 0 0
1 1 0⎦

⎥
⎥
⎥
⎥
⎤

�
𝜃𝜃1̇
𝜃̇𝜃2
𝑝̇𝑝3
� (59)

 𝐽𝐽(𝑞𝑞)𝐵𝐵 =

⎣
⎢
⎢
⎢
⎢
⎡−450 ∗ sin(𝜃𝜃1 + 𝜃𝜃2) − 225 ∗ sin (𝜃𝜃1) −450 ∗ sin(𝜃𝜃1 + 𝜃𝜃2) 0

450 ∗ cos(𝜃𝜃1 + 𝜃𝜃2) + 225 ∗ cos (𝜃𝜃1) 450 ∗ cos(𝜃𝜃1 + 𝜃𝜃2) 0
0 0 1
0 0 0
0 0 0
1 1 0⎦

⎥
⎥
⎥
⎥
⎤

 (60)

7.2 Wrist Partitioned Manipulators

Consider a general 6-DOF articulated industrial manipulator with a forearm

configuration in its first 3 joints, and a wrist configuration in its last 3 joints. If the

velocity reference point is considered as the center of the manipulator’s wrist, the

Jacobian matrix, 𝐽𝐽(𝑞𝑞)𝐵𝐵, can be further simplified into another matrix, 𝐽𝐽𝑊𝑊, with 4 sub-

matrices as represented in Equation 61 [67].

 𝐽𝐽(𝑞𝑞)𝐵𝐵 = 𝐽𝐽𝑊𝑊 = �𝐽𝐽11 𝐽𝐽12
𝐽𝐽21 𝐽𝐽22

� (61)

62

Here, 𝐽𝐽11 , and 𝐽𝐽22 are 3X3 matrices can that can be individually analyzed for

decoupling singularities. Often in some manipulator geometries where the last three joint

variables only affect the orientation of the end-effector, 𝐽𝐽12 will be a zero matrix of a

dimension 3x3. This zero block matrix simplifies the decoupling process which is

discussed further in detail in Chapter 8. The simplification of the manipulator Jacobian

(J(𝑞𝑞) in any frame) into sub-matrices can help identify the relations between the forearm

and wrist configurations, and the linear and angular velocity vectors [57] using Equations

62-67.

 𝐽𝐽11𝑞𝑞𝑎̇𝑎 = �
𝐽𝐽(𝑞𝑞)11 𝐽𝐽(𝑞𝑞)12 𝐽𝐽(𝑞𝑞)13
𝐽𝐽(𝑞𝑞)21 𝐽𝐽(𝑞𝑞)22 𝐽𝐽(𝑞𝑞)23
𝐽𝐽(𝑞𝑞)31 𝐽𝐽(𝑞𝑞)32 𝐽𝐽(𝑞𝑞)33

� �
𝑞𝑞1̇
𝑞̇𝑞2
𝑞̇𝑞3
� (62)

 𝐽𝐽12𝑞𝑞𝑏̇𝑏 = �
𝐽𝐽(𝑞𝑞)14 𝐽𝐽(𝑞𝑞)15 𝐽𝐽(𝑞𝑞)16
𝐽𝐽(𝑞𝑞)24 𝐽𝐽(𝑞𝑞)25 𝐽𝐽(𝑞𝑞)26
𝐽𝐽(𝑞𝑞)34 𝐽𝐽(𝑞𝑞)35 𝐽𝐽(𝑞𝑞)36

� �
𝑞𝑞4̇
𝑞̇𝑞5
𝑞̇𝑞6
� (63)

 𝐽𝐽21𝑞𝑞𝑎̇𝑎 = �
𝐽𝐽(𝑞𝑞)41 𝐽𝐽(𝑞𝑞)42 𝐽𝐽(𝑞𝑞)43
𝐽𝐽(𝑞𝑞)51 𝐽𝐽(𝑞𝑞)52 𝐽𝐽(𝑞𝑞)53
𝐽𝐽(𝑞𝑞)61 𝐽𝐽(𝑞𝑞)62 𝐽𝐽(𝑞𝑞)63

� �
𝑞𝑞1̇
𝑞̇𝑞2
𝑞̇𝑞3
� (64)

 𝐽𝐽22𝑞𝑞𝑏̇𝑏 = �
𝐽𝐽(𝑞𝑞)44 𝐽𝐽(𝑞𝑞)45 𝐽𝐽(𝑞𝑞)46
𝐽𝐽(𝑞𝑞)54 𝐽𝐽(𝑞𝑞)55 𝐽𝐽(𝑞𝑞)56
𝐽𝐽(𝑞𝑞)64 𝐽𝐽(𝑞𝑞)65 𝐽𝐽(𝑞𝑞)66

� �
𝑞𝑞4̇
𝑞̇𝑞5
𝑞̇𝑞6
� (65)

 𝜈𝜈 = 𝐽𝐽11𝑞𝑞𝑎̇𝑎 + 𝐽𝐽12𝑞𝑞𝑏̇𝑏 (66)

 𝜔𝜔 = 𝐽𝐽21𝑞𝑞𝑎̇𝑎 + 𝐽𝐽22𝑞𝑞𝑏̇𝑏 (67)

For example, for any wrist partitioned Cartesian manipulator, 𝐽𝐽12 = 𝐽𝐽21 = 0, thereby

verifying that the linear velocity of the end-effector is independent of the rotational joints

in the manipulator’s wrist. Also, the angular velocity is independent of the first three

translational joints [57].

63

 CHAPTER 8

KINEMATIC SINGULARITIES

The American National Standard for Industrial Robots and Robot Systems – Safety

Requirements (ANSI/RIA R15.06-1999) defines kinematic singularity as “a condition

caused by the collinear alignment of two or more robot axes resulting in unpredictable

robot motion and velocities” [68]. A manipulator’s performance is therefore greatly

depreciated at or near singular regions. It is thus crucial to understand the functionality

and reachable workspace, void of any singularities, for a manipulator’s enhanced

performance in an industrial setting [2].

Kinematic singularities in manipulators arise due to a loss of DOF in its end-effector

[2]. At such an instance, two or more joints of a manipulator do not independently control

the position and orientation of the end-effector [1]. For example for a SCARA (RRT)

manipulator, the singularity region is marked red in color in Figure 28 below and Figure

38 (Appendix A). At these singular regions, the position and orientation of the SCARA

manipulator is only controlled by one rotational joint and one translational joint.

Figure 28: Singularity Space of SCARA Robot

64

Kinematic Singularities are of particular interest for the following reasons:

1. Knowledge about singularities provides an insight into the reachable and

functional workspace for the end-effector of a manipulator.

2. Singular configurations (boundary singularities) may sometimes help define the

boundary of the manipulator’s workspace.

3. Singularity can be used as design tool for defining the joint limits and the

mechanical structure of a manipulator.

4. Singularities help determine configurations for unattainable directions of motion.

5. At singular configurations, small motion of the manipulator’s end-effector may

cause a large movement in the joint variables.

6. At or near singular configurations, the control algorithm of a manipulator fails,

resulting in large joint velocities and accelerations for the smooth operation of the

manipulator.

7. Singular configuration may correspond to non-unique, zero or infinite inverse

kinematic solutions to a manipulator [69] [5] [2].

During manipulator control, singularity conditions may arise during the inverse

mapping from the manipulator’s Cartesian space to its joint space [70]. By modifying

Equation 56, it can be seen that the joint velocity vector of the manipulator in its joint

space, can be mapped to the generalized velocity vector of the manipulator in Cartesian

space using Equation 68.

 𝑞̇𝑞 = [𝐽𝐽(𝑞𝑞)]−1 𝑉𝑉 (68)

Singularities can therefore be mathematically determined by analyzing the inverse

of the Jacobian matrix for the manipulator being studied. From a mathematical

standpoint, singularities arise as a local or instantaneous phenomena from the rank

deficiency of the Jacobian matrix [69]. To realize a solution to Equation 68, the Jacobian

matrix of a manipulator should be non-singular, and be of a rank equal to the dimension

of the joint velocity vector and generalized velocity vector. One method of analyzing a

kinematic singularity is through the computation of the determinant of an nxn subset, 𝐽𝐽𝑛𝑛

of the manipulator Jacobian, where n represents the number of joints. A square subset is

65

analyzed for a non-square Jacobian (with 6 or less DOF) since an inverse of a non-square

matrix does not exist. Mathematically, the inverse of a Jacobian matrix is represented in

Equation 69.

 [𝐽𝐽(𝑞𝑞)]−1 =
𝐶𝐶𝑗𝑗𝑗𝑗

|𝐽𝐽(𝑞𝑞)|
 (69)

where, 𝐶𝐶𝑗𝑗𝑗𝑗 represents a matrix of cofactors (adjugate matrix) of the Jacobian being

analyzed, and |𝐽𝐽(𝑞𝑞)| represents its determinant. For a non-invertible singular Jacobian,

the determinant of the matrix is zero as represented in Equation 70.

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽: |𝐽𝐽(𝑞𝑞)| = 0 (70)

For the SCARA (RRT) manipulator, the 3x3 subset of its Jacobian matrix being analyzed

is the Jacobian matrix of linear velocities in base frame, 𝐽𝐽𝑣𝑣(𝑞𝑞)𝐵𝐵 represented by Equation

71. The determinant of this Jacobian is represented by Equation 72:

 𝐽𝐽𝑣𝑣(𝑞𝑞)𝐵𝐵 = �

−450 ∗ sin(𝜃𝜃1 + 𝜃𝜃2) − 225 ∗ sin (𝜃𝜃1) −450 ∗ sin(𝜃𝜃1 + 𝜃𝜃2) 0
450 ∗ cos(𝜃𝜃1 + 𝜃𝜃2) + 225 ∗ cos (𝜃𝜃1) 450 ∗ cos(𝜃𝜃1 + 𝜃𝜃2) 0

0 0 1
0 0 0

� (71)

 |𝐽𝐽𝑣𝑣(𝑞𝑞)𝐵𝐵| = 101250 ∗ sin (𝜃𝜃2) (72)

The determinant of the Jacobian,|𝐽𝐽𝑣𝑣(𝑞𝑞)𝐵𝐵| assumes the value 0 when 𝜃𝜃2 = 0 or pi

radians. Since pi radians does not lie in the joint space of the manipulator (see Table 2),

the singular condition for this robot arises when its second joint variable reaches 0

radians. In this case, the singular space is on the boundary of the manipulator because at

𝜃𝜃2 = 0 radians, the arm of the manipulator is fully extended and cannot move any farther

from its base.

66

8.1 Types of Singularities

With respect to general wrist partitioned industrial manipulators, kinematic

singularities can be classified based on the joint configuration(s) of the manipulator. The

two most common types of kinematic singularities are:

1. Forearm Singularity: In wrist partitioned 6 DOF manipulators, forearm

singularities arise because of the motion of the forearm caused by first three joints

of the manipulator. These singularities are often experienced at the workspace

boundary of the manipulator when the manipulator arm is fully extended or

retracted. Arm singularities are therefore sometimes referred to as boundary

singularities or internal singularities based of the arm configuration. Forearm

singularities can be identified by analyzing the 𝐽𝐽11 subset of the Jacobian matrix

for a manipulator. A forearm singularity can be mathematically represented using

Equation 73.

 |𝐽𝐽11 | = 0 (73)

For a wrist partitioned SCARA robot, a forearm singularity is observed at 𝜃𝜃2 = 0

or pi radians (Equation 72), as seen in Figure 38 (Appendix A). At this

configuration, the arm of the manipulator is at its maximum radial distance from

the base of the manipulator as seen from Figure 29 below.

 Figure 29: SCARA Robot Figure 30: PUMA 560 Robot

67

2. Wrist Singularity: In wrist partitioned 6 DOF manipulators, wrist singularities

arise because of the motion of wrist cause by the last three joints of the

manipulator. When two of the three rotational joints of the wrist become collinear,

their equal and opposite rotation about their individual axis cancels out any

possible change in orientation of the end-effector [5]. These types of singularities

can only be excluded from the joint space by imposing restrictions on the joint

variables. Wrist singularities can be identified by analyzing the 𝐽𝐽22 subset of the

Jacobian matrix for a manipulator. A wrist singularity can be mathematically

represented using Equation 74.

 |𝐽𝐽22 | = 0 (74)

For example, for a PUMA 560 robot in Figure 30, a wrist singularity is observed

at 𝜃𝜃5 = 0 or pi radians, where the axis of the fourth and the sixth joint become

collinear. A wrist singularity is challenging to visually analyze, since an

orientation at a specific point in the Cartesian workspace of a manipulator may be

realizable in multiple wrist configurations. It is possible that only a few of those

wrist configuration(s) are singular.

 Figure 31: PUMA Wrist Singularity [66]

68

The corresponding position of the end-effector, however would still be

represented as being singular. Figures 31 and 32, show all points in the workspace

(black in color) of the PUMA 560 robot as singular points (red in color) since 𝜃𝜃5

= 0 is realizable at every point in the robot’s workspace.

Figure 32: PUMA Wrist Singularity (Top View) [66]

The decoupling of singularities for wrist partitioned manipulators can therefore reduce

the computational time and effort in calculating singular configurations. For a

manipulator with 𝐽𝐽12 = 0, the Jacobian matrix and its singularity condition can thus be

represented using Equations 75 and 76, respectively.

 𝐽𝐽(𝑞𝑞)𝐵𝐵 = 𝐽𝐽𝑊𝑊 = �𝐽𝐽11 03𝑋𝑋3
𝐽𝐽21 𝐽𝐽22

� (75)

 |𝐽𝐽(𝑞𝑞)𝐵𝐵| = |𝐽𝐽11||𝐽𝐽22| (76)

8.2 Singularity Free Geometric Path Planning

Geometric path planning is the task of defining a set of Cartesian co-ordinates that

define the end-effector’s path between two known coordinates in a manipulator’s

workspace. Path planning is an important part in intelligent control of manipulators, and

involves generating an optimized and collision free path through the manipulators’

69

workspace [71]. Path planning for industrial manipulators can be categorized in three

different categories, namely:

1. Point-to-Point (P2P) Path: Point-to-Point path planning involves generating a path

between two discrete points within the manipulator’s workspace. The path

generation using this method may vary for any spatial location of the initial and

ending point.

2. Controlled Path: Controlled path planning involves a manipulator’s end-effector

following a predictable or controlled path through its workspace. The coordinates

of the path are pre-determined based on the manipulator’s task.

3. Continuous Path: Continuous path planning involves storing a close succession of

spatial points in the controller’s memory from any teaching sequence. The path

defined in the teaching sequence is then replayed from the memory for a defined

task. [54]

Singularities are inherent to any manipulator’s geometry and design. Development of

a singularity free geometric path for an end-effector is important for robust manipulator

control. P2P path planning is often challenging since a path generated might involve

maneuvering a manipulator’s end-effector through singularity zone(s). Singularities can

truly be eliminated from a manipulator’s workspace by imposing restriction on the range

of motion of its joint variables (in joint space). One solution to the problem of path

planning thus involves defining a path around the singularity zone(s). A path around any

singularity zone may involve:

1. Avoiding a singular point in the manipulator’s workspace completely. For

example, a non-singular point, P1, is chosen over a singular point P0 in a path

being defined.

2. Maneuvering the end-effector through a singular point in a non-singular joint

configuration. For example, if a point, P2, is singular in joint configuration qa, but

not in joint configuration qb, then configuration qb is selected while maneuvering

the end-effector through point P2.

70

ANNs are presented here as a non-conventional technique to aid in a singularity free

end-effector path generation. An ANN is previously trained for development of an

inverse kinematic solution for a specific manipulator configuration (Section 6.8). A data

set in Cartesian space consisting of known singularity points is then simulated over the

trained network for outputs. The output(s) from the ANN model are compared to the

known joint variable configuration(s) for singular points in the manipulator’s workspace.

The comparison helps visually identify a singularity error window which can be

developed in joint space of a manipulator for avoiding singularities.

For example, for the SCARA (RRT) robot, a set of known 625 singularity points

(each point with 3 position variables and 9 orientation variables) is normalized between [-

1,1]. This normalized dataset is simulated over the inverse kinematic model for the

SCARA robot. The ANN output, predicted joint variables, are reverted to scale and

compared for error with the theoretical known joint variables of each of the 625

singularity points. Table 4 below shows the absolute error between the predicted joint

variable values and the theoretical joint variable values for 5 sample points.

Table 4: Theoretical vs. Predicted Joint Variable Error

Sample
No.

Joint Variable
(Known)

Joint Variable
(Predicted)

 Absolute Error

E(q1)
(rad)

E(q2)
(rad)

E(q3)
(mm) q1

(rad)
q2

(rad)
q3

(mm)
q1

(rad)
q2

(rad)
q3

(mm)
1 -2.22 0.00 -280.33 -2.22 0.00 -280.34 0.00 0.00 0.00
2 -1.66 0.00 -205.33 -1.66 0.00 -205.33 0.00 0.00 0.00
3 1.48 0.00 -272.00 1.48 -0.01 -272.00 0.00 0.01 0.00
4 1.11 0.00 -163.67 1.11 0.00 -163.67 0.00 0.00 0.00
5 0.74 0.00 -230.33 0.74 0.00 -230.34 0.00 0.00 0.00

Table 5: Max. and Min. Error in Joint Variable Prediction

 Predicted vs. Theoretical Joint Variables
Absolute Error q1 (rad) q2 (rad) q3 (mm)

Maximum 0.00 0.01 0.00
Minimum 0.00 0.00 0.00

71

An absolute error value is chosen since the joint variables assume the value 0 at

some points. A relative percentage error for such a point would not be possible (error

would be infinite). The maximum and minimum error in all joint variables for all 625

points are presented in Table 5 above.

The theoretical (red) and predicted (blue) joint variables are mapped to their

respective Cartesian space in Figure 33 below. It can be observed that that the predicted

singularity is well superimposed over the theoretical singularity with barely any error.

Moreover, there is very minimalistic deviation from the outer boundary of the workspace

where the manipulator singularity exists. The predicted singularity is exactly able to map

the radial distance of the theoretical singularity, thereby confirming a robust and well

trained ANN.

A comparison of each of the predicted vs. theoretical joint variable values for

singularity is presented in Figure 44 (Appendix A). Minimal deviation is observed

between the predicted joint values and the theoretical values at the extremes of the joint

angle range as seen from the Joint Variable 1 graph. This error arises because of the

lowered generalization capability of a high DOF ANN model. A majority of the deviation

from theoretical values in Joint Variable 2 is observed between [-0.01, 0.02] radians.

This confirms the ability of the ANN to accurately predict the singularity condition for a

manipulator. The predicted value for Joint Variable 3 is very accurately mapped since it

is a translational joint and does not control the orientation of an end-effector. This

reduces the variables in Cartesian space needed to be mapped to the joint space, thereby

increasing ANN model accuracy.

72

Figure 33: Predicted vs. Theoretical Singularity (Top View)

An error window for each joint variable can therefore be formulated in joint space

when planning the path of an end-effector in Cartesian space using the developed ANN

model. The error window is determined by adding and subtracting the absolute maximum

error from the joint variable values of its respective class. Using this technique, a

boundary to the joint variable values contributing to the kinematic singularity in the

manipulator workspace can be determined. For example, for the SCARA manipulator, the

error window for Sample 1(Table 4) is defined in Table 6 below:

Table 6: Error Window for Path Planning

The end-effector path can therefore be planned around these error windows. For

example, when the q2 approaches a value close to a range [-0.01, 0.01] rad, an alternate

path is taken by the second joint to avoid the oncoming singularity configuration. This

technique is especially beneficial when prior singularity conditions for a manipulator are

unknown.

q3 (mm)

-2.22

Error Window

Upper Limit

Lower Limit
 -2.22 ± 0.00 0 ± 0.01 -280.33 ± 0.00

Sample 1

-2.22

0.01 -280.33

-280.33-0.01

q1 (rad) Error Window q2 (rad) Error Window

73

 CHAPTER 9

RECONFIGURABLE MODEL

The purpose of this research is the development of a reconfigurable tool for modelling

of industrial manipulators that can adapt to changes from user based inputs. The

mechanical structure along with the joint configurations decides the functionality of any

industrial manipulator. Functionality of a manipulator incorporates:

1. Dexterity: Dexterity of a manipulator is its ability to perform a range of tasks in

different ways.

2. Flexibility: Flexibility of a manipulator is its generalized ability to adapt to

planned or anticipated tasks.

3. Reconfigurability: Reconfigurability is the ability of a manipulator to alter its

modules and configuration for a specific task.

The mathematical model (Appendix D) developed for this research can be

reconfigured and tailored to accommodate various kinematic structures. The ability of the

model to compute various parameters based upon change in structure and configuration

allows the user to evaluate different functional aspects of any manipulator type. Various

manipulator designs, including the ones that are unexplored, can therefore be studied,

evaluated, and optimized with the use of this model. The MATLAB platform is used to

code the mathematical model. MATLAB was chosen because of its user-friendly

interface, ease of data analysis, and availability of a Neural Network Toolbox for ANN

computations. The mathematical model is currently built for up to six joint (6 DOF)

industrial manipulator types. It can however, be expanded with ease to model higher

DOF. The mathematical model, presented in Figure 34 below, requires the following in

inputs:

1. Joint Type: The model requires the user to specify each joint as rotational or

translational in their order of sequence. The type and sequence of inputs can be

altered by the user depending on the configuration of the manipulator needed.

74

2. D-H Parameters: The mathematical model requires the user to input all D-H

parameters required to model the manipulator configuration of interest, as well as

the range of motion for all joint variables.

 Figure 34: Reconfigurable Model

75

Based on the user inputs, the model successfully computes and evaluates the following:

1. Forward Kinematics Solution: The model first computes all individual

homogenous transformation matrices, ‘A(i-1)(i)’, for a manipulator. The

transformation matrices are subsequently used to develop a forward kinematics

homogeneous matrix ‘A0(n)’. This matrix is stored in symbolic form which

allows manipulation of its position and orientation matrix equation(s) at a later

stage. The user can input any joint configuration set value at this stage to obtain a

forward kinematics solution.

2. 3-D Workspace: The model starts by splitting the range of each joint variable into

a set of values defined by an interval called ‘steps’. For example, if the value for

steps is 3, each joint variable will have 3 joint values. The values in a range are

randomized to prevent formation of classes in a continuous dataset. Dividing data

into classes will have a much lower accuracy since the ANN may generalize

output data to average the classes. Additionally, it also prevents ANN training at

the same orientation of the end-effector. The model forms the manipulator’s joint

space by making all possible combinations of each joint variable. For example,

for a 6 DOF manipulator, if each joint assumes 3 values in its range, the total

combinations of 6 joints will be 729 (36). Each of the joint angle set in the joint

space of the manipulator is mapped to its Cartesian space, and the position and

rotation matrices are determined. The values from these matrices defines the 3-D

position and orientation of the end-effector. The position of each point is plotted

to obtain the complete workspace of the manipulator. For example, 729 joint

configurations would provide 729 Cartesian coordinates that are represented as

the complete workspace. During 3-D plotting of the workspace, the model

eliminates all similar points based on their (X, Y, Z) values. This is done to

prevent model memory from overloading if the number of points that define the

workspace are large.

3. Inverse Kinematics Solution: The position and orientation of each point in the

manipulator workspace defines the inputs for the inverse kinematics ANN model.

The corresponding joint space of the network inputs defines the network targets.

All inputs and targets are pre-processed by being normalized using either min-

76

max or z-score normalization before being fed to the ANN. The ANN model

architecture used for this research has 55 fixed neurons in its hidden layer with

hyperbolic tangent activation function since this configuration provides an

optimal model generalization and accuracy. The network is trained on predefined

parameters after which the network’s performance indicators and plots are

generated. The outputs from the ANN are stored and reverted to scale. Absolute

error is defined at this stage between the network outputs and the targets. The

error plots for each joint variable are generated to give the user an understanding

of variation in prediction of each joint variable.

4. Jacobian Matrix: The reconfigurable model defines all angular and linear velocity

vectors for each joint variable of the manipulator. Newton Euler Recursive

Method calculations are subsequently carried out to determine the Jacobian of

linear and angular velocity elements for the end-effector with respect to the base

frame of the manipulator. If the manipulator is wrist-partitioned, sub-matrices J11

and J22 are determined from the Jacobian matrix for decoupling of forearm and

wrist joints respectively.

5. 3-D Singularity Space: The model computes all kinematic singularity conditions

present in the manipulator configuration by analyzing its Jacobian. The joint

variable combinations that produce singularities are subsequently identified. The

joint space of the manipulator is modified with the newly determined joint

variable combinations that produce these singularities. The new joint space is

mapped to its corresponding Cartesian space using the manipulator’s forward

kinematics equations. The new position and orientation matrices developed help

visually identify the loci of kinematic singularities present in the manipulator

workspace. All singular points are identified in the color red.

6. Path Planning Model: Once singular points are visually identified, the position

and orientation of each singular point is normalized and simulated over the

previously developed inverse kinematics model. The simulation results are

compared to the joint variable combinations (targets) previously determined while

developing the singularity space. The absolute error between network output and

target for each joint variable helps determine an error window around each

77

singular configuration in joint space. During path planning, this model can be

effectively used to avoid singular conditions. A boundary to the loci of singular

points is determined using the error window which can help refrain the end-

effector from accessing certain part(s) of the manipulator’s workspace in specific

joint configurations. The error plots for each joint variable are generated to give

the user an understanding of variation in prediction of each joint variable that

causes singularity.

The complete workspace and singularity space models of the manipulator are

developed using a step size of 10. The reconfigurable model thus determines 1 million

(106) joint configurations and their respective position and orientation matrices. Such

large amounts of data (18 million variables) cannot be processed through Neural Network

Toolbox for MATLAB because of computational constraints. A smaller step size is

therefore chosen for all neural network models. In determining the amount of data to be

processed for the inverse kinematics and path planning model, various step sizes such as

3, 4, 5 etc. were experimented with. A step size of 3 provided the most accurate ANN

model results over any other step size chosen. The accuracy with a smaller step sized

increased because of the reduced level of complexity in the dataset. A step size of 3 was

therefore selected as the default step size for developing ANN models. A drawback to a

smaller step size is the need for defining classes of inverse kinematics solution(s) for any

manipulator configuration. For example, a step size of 3 will only provide 729 points in

the manipulator workspace that can be used as inputs to an ANN model. Thus an inverse

kinematics solution that caters only to a specific subset (729 points) of the total

workspace can be determined at any given point. New joint variable values are thus

needed to define another inverse kinematics solution for a different subset of the

workspace and so forth. The complete inverse kinematics model for a manipulator is

determined by unifying individual classes of solutions developed. It is important to note

that the task space for a manipulator may only involve certain paths(s) of actual

mechanical work. For example, a welding robot may only be required to weld along a

curvilinear path defined by a string of points. It is therefore justified to develop inverse

kinematic model(s) that can encompass certain required points of work.

78

 CHAPTER 10

CASE STUDIES AND RESULTS

For the purpose of this research, the robustness of the developed model is tested on

two different kinematic structures namely:

1. 6 DOF Industrial Robot: A FANUC M16iB/20 robot is chosen for this study since

the kinematic structure (RRRRRR) of this robot has a wrist configuration in its

last 3 joints. Wrist partitioned robots are the most common types of manipulators

used in the industry today. FANUC M16iB/20 (Figure 35) is a popular industrial

manipulator used for several material handling applications.

2. 6 Axis CNC Machine: A multi-axis CNC was chosen for this study for two

purposes. Firstly, to test the robustness of the developed algorithm when

analyzing a kinematic structure with a combination of both rotational and

translational joint types. Secondly, to show the wide range of applications of the

developed model. The reconfigurable model is able to analyze any 6 axis machine

structure that can be kinematically modelled such as the 6 Axis CNC (RRRTTT)

(Figure 36).

 Figure 35: FANUC M16iB/20 Robot [72] Figure 36: 6 Axis CNC Machine

79

10.1 6 DOF Industrial Robot: FANUC M16iB/20

Note: All results for the FANUC M16iB robot are presented in Appendix B.

A kinematic model of the FANUC M16iB/20 robot, provided in Figure 46

(Appendix B), is first generated to analyze the configuration of the manipulator. Table 16

represents the D-H parameters used to model the manipulator along with the range of

motion for each rotational joint. To generate the manipulator’s total workspace and to

compute its corresponding singularity space, a step size of 10 was chosen that yielded 106

joint configurations. Each of these configurations when processed through the forward

kinematics equation, A06 (Appendix B MATLAB Output), yielded the same number of

configurations in Cartesian space. The joint angle range for each joint with a step size of

10 is represented in Table 17. Out of the 1 million points generated, it was observed that

the Cartesian space had only 100,000 unique points based on their (X, Y, Z) coordinates.

This implies that the model generated 10 orientation configurations per coordinate point

in the manipulator’s workspace.

The complete 3-D workspace of the FANUC manipulator has a spherical topology

and is represented in Figure 47. From the top view of the total workspace (Figure 48), a

cylindrical void is observed exactly in the middle of the spherical workspace. This void

area is inaccessible by the end-effector of the FANUC manipulator. From the top, front

and, right view, it is observed that the total workspace fans out from a center point with

the number of spokes equal to the steps used to build the workspace. This implies that all

possible combinations of each set of joint variables produce a subset spoke of the

manipulator workspace. If the step size were increased, the workspace would not

demonstrate any voids between its spokes but would still have a void in the center.

Since the robot is wrist partitioned, both subsets, J11 and J22, are analyzed for

forearm and wrist singularities, respectively, as seen from Appendix B (MATLAB

Outputs). Kinematic singularity condition for the FANUC M16iB robot is only observed

at the manipulator wrist and is represented in Equation 77.

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∶ 𝜃𝜃5 = 0 (77)

80

Figure 49 represents the total workspace and singularity space for the FANUC

manipulator. At first look, minimal singularity space (red coloured points) is observed

since only singularities at workspace boundaries are visible. From Figure 50, which

represents the total singularity space, it is observed that the majority of the kinematic

singularity (internal) is present within the manipulator workspace. For computation of an

inverse kinematics solution, a random subset of joint configurations with a step size of 3

is chosen from the joint space of the manipulator. Table 18 represents the joint angles

values used for training the ANN. The model reruns on the new joint configurations and

first develops a subset of the total workspace and singularity space as represented in

Figure 51. The Cartesian space configuration of this subset workspace is normalized and

provided to the network as inputs. The joint angle configurations are normalized and

provided as targets. It can be seen from Figure 52 that an inverse kinematics solution for

the robot being studied is computed in merely 6 seconds and 23 epoch runs. The error

histogram from Figure 53 shows the concentration of errors from the trained network at a

fairly low value of 0.0205. The error histogram demonstrates a good normalization curve

with majority errors between the ranges of ±0.4. The regression plot from Figure 54,

shows an overall R value of 98.68% thereby indicating a well-trained network. Best

validation performance for this network was reached at epoch 17 as seen from Figure 55.

The validation fail check was reached at epoch 23 as seen from Figure 56. Here, the

network gradient and learning rate (mu) curve for the network can also be observed for

each epoch run. The inputs and bias to the hidden and output layer are provided in

Appendix B. A summary of the ANN Inverse Kinematic results are provided in Table 7.

Table 7: ANN Results for FANUC M16iB/20

S.No. ANN Network Indicator Result
1 Total Epochs 23
2 Epoch for Best Validation Performance 17
3 Overall Regression (R) Value 0.9868
4 Mean Square Error (MSE) 0.0198
5 Training Performance 0.0105
6 Testing Performance 0.0638
7 Validation Performance 0.0505
8 Error Histogram Center (Bell Curve) 0.0205

81

A comparison between the network outputs and targets (joint configurations) is

presented in Figure 57. The network is very accurate in predicting the first 3 joints of the

manipulator. It is observed that the predicted outputs of the network almost superimpose

on the target values. However, some variation is observed in Joints 4, 5, and 6 which

form the wrist of the manipulator. This variation arises due to the generalization

properties of the developed ANN. The purpose of an ANN is to determine a generalized

trend between the input and output parameters of a given manipulator, rather than

mapping exact points which leads to an over-fitted model. It is important to realize that

multiple wrist configurations may exist for every given set of position coordinates

(X,Y,Z) in the input data set. These wrist configurations primarily contribute to the

orientation of the manipulator’s end-effector. For each set of unique position coordinates,

the wrist can therefore assume a specific set of joint configurations. As a result, during

the training phase, the ANN network attempts to predict a generalized model for Joints 4,

5, and 6 for these multiple wrist configurations. Hence, when a new input set of

parameters is introduced to the network, the network attempts to predict an overall

generalized result for the last three joints based on their average thereby reducing

network accuracy. One method to increase the network accuracy is to generate an input

dataset that has only one orientation associated with a unique coordinate point. This will

map one single point in Cartesian space to only one combination of joint value set

thereby increasing the network accuracy. Figure 58 represents a plot of absolute residual

errors between aforementioned networks outputs and targets due to the network

generalization.

To develop a path planning model, the singularity points from the subset

Cartesian space are simulated over the trained network to provide predicted joint angle

configurations for singularity. Figure 59 represents a comparison between the ANN

predicted and theoretical joint configurations. It is observed that there is minimalistic

error between the predicted and theoretical values for the first 3 joints. Although, there is

noticeable error in joint prediction for the last three joints. This error can be ignored

because the path of a manipulator can be determined irrespective of the orientation

(controlled by wrist joints) of its end-effector. High network accuracy is achieved for the

first three joints that are responsible for controlling the position of the end-effector in

82

wrist partitioned robots. This can be seen from Figure 60 which represents the absolute

residual errors between the predicted and theoretical joint configurations. The predicted

joint variables are mapped to their corresponding Cartesian space and compared with the

singularity values as represented in Figure 61. It is observed that the predicted singularity

of the model is fairly accurate when compared to the theoretical singularity. This

validates the robustness of the path planning model as well as the robustness of the

developed inverse kinematic model using ANNs. The absolute errors in joint space

between ANN predicted and theoretical joint angle configurations are presented in Table

8. Table 10 represents the maximum and minimum errors in joint prediction which help

define an error window (Table 9) to aid in path planning.

Table 8: Sample Theoretical vs. Predicted Joint Variable Error

Sample
No.

Joint Variable
(Known)

Joint Variable
(Predicted)

 Absolute Error

E(q1)
(rad)

E(q2)
(rad)

E(q3)
(rad) q1

(rad)
q2

(rad)
q3

(rad)
q1

(rad)
q2

(rad)
q3

(rad)
1 1.65 1.80 3.37 1.64 1.74 3.35 0.00 0.06 0.02
2 1.44 -0.09 0.52 1.45 -0.12 0.57 0.02 0.03 0.05
3 0.87 -0.58 0.52 0.86 -0.50 0.46 0.01 0.07 0.06

Sample
No.

Joint Variable
(Known)

Joint Variable
(Predicted)

 Absolute Error

E(q4)
(rad)

E(q5)
(rad)

E(q6)
(rad) q4

(rad)
q5

(rad)
q6

(rad)
q4

(rad)
q5

(rad)
q6

(rad)
1 -2.32 0.00 3.09 -1.82 -0.24 -0.12 0.50 0.24 3.21
2 -3.09 0.00 -2.28 -2.49 0.20 -0.08 0.60 0.20 2.20
3 -2.32 0.00 1.65 -2.38 -0.03 1.61 0.06 0.03 0.04

83

Table 9: Sample Error Window for Path Planning

Table 10: Max. and Min. Error in Joint Variable Prediction

 Predicted vs. Theoretical Joint Variables
Absolute

Error
q1

(rad)
q2

(rad)
q3

(rad)
q4

(rad)
q5

(rad)
q6

(rad)
Maximum 0.12 0.14 0.17 2.20 1.50 4.40

Minimum 0.00 0.00 0.00 0.02 0.00 0.08
Average 0.022 0.058 0.056 0.56 0.46 1.5

10.2 6 Axis CNC Machine

Note: All results for the 6 Axis CNC Machine are presented in Appendix C.

A 6 Axis CNC machine with a rotary table and an X,Y,Z axis tool with a rotating

axis is chosen for this study. A common example of such a CNC machinery is the high

speed precision milling CNC machines used in the industry today. A kinematic model of

the CNC machine, provided in Figure 62 (Appendix C), is first generated to analyze and

accurately model the configuration of the machine. The tool of the machine is considered

as the end-effector of a manipulator, the tool axes of motion are represented by 3

translational joints and a rotational joint. The rotary table of the CNC machine is

represented by 2 rotational joints. The individual components are clubbed and modelled

as an open kinematic chain with 6 DOF (RRRTTT). The developed kinematic chain

(CNC manipulator) emulates the behaviour of the CNC machine with respect to its

function.

Error Window

Upper
Limit 1.65 ±

0.12

1.77
1.80 ± 0.14

1.94
 3.37 ± 0.17

3.54

Lower
Limit

1.53

Sample 1 q1 (rad) Error Window q2 (rad) Error Window q3 (rad)

1.66 3.20

Sample 1 q4 (rad) Error Window q5 (rad) Error Window q6 (rad) Error Window

7.49

Lower
Limit -4.52 -1.50 -1.31

Upper
Limit -2.32 ±

2.2

-0.12
0 ± 1.50

1.50
 3.09 ± 4.40

84

Table 19 represents the D-H parameters used to model the CNC manipulator

along with the range of motion for each joint variable. Similar to the previous case study,

a step size of 10 was chosen to generate the manipulator’s total workspace and to

compute its corresponding singularity space which yielded 106 joint configurations. Each

of these configurations when processed through the forward kinematics equation, A06

(Appendix C MATLAB Outputs), yielded the same number of configurations in

Cartesian space. The joint variable range for each joint with a step size of 10 is

represented in Table 20. Out of the 1 million points generated, it was observed that there

were no repeated points based on the X, Y, Z coordinate values, and therefore the

Cartesian space consisted of a set of unique 1 million configurations.

The complete 3-D workspace of the CNC manipulator, represented in Figure 63,

has a topology of a spirally coiled gastropod shell flattened at one end. From the top and

front view of the total workspace (Figure 64), a void towards the center as well as the

flattened end of the workspace can be seen. This void area is inaccessible by the end-

effector of the CNC manipulator.

Since the CNC manipulator does not have wrist configuration, the Jacobian in the

base frame is analyzed for any kinematic singularities that may be present as seen from

Appendix C (MATLAB Outputs). A kinematic singularity condition for the CNC

manipulator is only observed when the second joint assumes a specific value thereby

cancelling the effect of the first and third joints on one another. The singularity condition

is represented in Equation 78.

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∶ 𝜃𝜃2 = 0 (78)

Figure 65 represents the total workspace and singularity space for the CNC

manipulator. From this figure, the singularity space for the manipulator is only observed

as a single coiled path (red colour) at the boundary of the workspace. From Figure 66,

which represents the total singularity space, it is observed that internal singularities are

also present in the manipulator workspace. The total singularity space for the CNC

manipulator is therefore a planar subsection of the total workspace that extends along the

z-axis. Analysis of such visual representations of the singularity zone(s) is useful in

85

evaluating and enhancing manipulator functionality and performance. The task space

manipulators can therefore be planned for by taking into account the singularity space

and not just the total workspace of the manipulator.

For computation of an inverse kinematics solution, a random subset of joint

configurations with a step size of 3 is chosen from the joint space of the manipulator.

Table 21 represents the joint angle values used for training the ANN. The model

reevaluates on the newly provided joint configurations and develops a subset of the total

workspace and singularity space as represented in Figure 67. The Cartesian space

configuration of this subset workspace is normalized and provided to the network as

inputs. The joint angle configurations are normalized and provided as targets. It can be

seen from Figure 68 that it takes only about a minute and a half and 316 epochs to

develop an inverse kinematics solution for the CNC manipulator. The error histogram

from Figure 69 shows the concentration of errors from the trained network nearly at zero

thereby representing a well-trained network. The error histogram demonstrates an

excellent normally distributed curve with the majority of errors in the range of ±0.006.

The regression plot from Figure 70, shows an overall R value of 99.99% thereby

indicating that the network outputs perfectly fit to the supplied targets. The network

training was prematurely stopped at epoch 316 where the best validation performance for

this network was reached, as seen in Figure 71. Early stoppage was executed since the

performance of the network had reached nearly zero. Therefore, no validation fail checks

were performed as seen from Figure 72. From the same figure we observe that the

network gradient and learning rate (mu) had reached a fairly low value indicating a

satisfactory training process. The inputs and bias values to the hidden and output layer are

provided in Appendix C (MATLAB Outputs). A summary of the ANN Inverse Kinematic

results are provided in Table 11 below. The network has a high accuracy since each input

point was mapped to a unique combination of joint set configurations. A comparison

between the network outputs and targets (joint configurations) is presented in Figure 73.

Because of the high accuracy of the trained network, the outputs are completely

superimposed onto the supplied targets for joint variables. The network performance is

validated from the residual error plot presented in Figure 74 which represents

minimalistic absolute residual errors between the networks outputs and targets.

86

Table 11: ANN Results for 6 Axis CNC Machine

S.No. ANN Network Indicator Result
1 Total Epochs 316
2 Epoch for Best Validation Performance 316
3 Overall Regression (R) Value 0.99999
4 Mean Square Error (MSE) 0.000011
5 Training Performance 0.000007
6 Testing Performance 0.000029
7 Validation Performance 0.000029
8 Error Histogram Center (Bell Curve) 0.000218

To develop a path planning model, the singularity points from the subset

Cartesian space are simulated over the trained network to provide predicted joint variable

configurations for singularity. Figure 75 represents a comparison between the ANN

predicted and theoretical joint configurations. Since very minimal variation is observed, it

can be concluded that the network is able to predict the singularity configurations very

accurately. Figure 76 represents an absolute residual errors plot between the predicted

and theoretical joint configurations. The predicted joint variables are mapped to their

corresponding Cartesian space and compared with the singularity points as presented in

Figure 77. It is observed that the predicted singularity of the model completely

superimposes the theoretical singularity. This validates the robustness of the path

planning model as well as the robustness of the developed inverse kinematic mode using

ANNs. The absolute errors in joint space between the ANN predicted and theoretical

joint variable configurations are presented in Table 12. Table 14 represents the maximum

and minimum errors in joint prediction which help define an error window (Table 13) to

aid in path planning.

87

Table 12: Sample Theoretical vs. Predicted Joint Variable Error

Sample
No.

Joint Variable
(Known)

Joint Variable
(Predicted)

 Absolute Error

E(q1)
(rad)

E(q2)
(rad)

E(q3)
(rad) q1

(rad)
q2

(rad)
q3

(rad)
q1

(rad)
q2

(rad)
q3

(rad)
1 0.70 0.00 1.56 0.70 -0.02 1.56 0.00 0.02 0.00
2 0.48 0.00 -1.03 0.48 -0.01 -1.02 0.00 0.01 0.01
3 -0.92 0.00 0.14 -0.94 -0.01 0.15 0.02 0.01 0.01

Sample
No.

Joint Variable
(Known)

Joint Variable
(Predicted)

 Absolute Error
E(q4)
(m)

E(q5)
(m)

E(q6)
(m) q4 (m) q5 (m) q6 (m) q4 (m) q5 (m) q6 (m)

1 0.00 0.00 0.39 -0.02 0.00 0.37 0.02 0.00 0.03
2 -0.26 -0.18 -0.21 -0.25 -0.19 -0.24 0.01 0.01 0.03
3 -0.13 -0.18 -0.21 -0.14 -0.17 -0.22 0.01 0.01 0.01

Table 13: Error Window for Path Planning

Table 14: Max. and Min. Error in Joint Variable Prediction

 Predicted vs. Theoretical Joint Variables
Absolute

Error
q1

(rad)
q2

(rad)
q3

(rad) q4 (m) q5 (m) q6 (m)

Maximum 0.03 0.01 0.04 0.03 0.01 0.02

Minimum 0.00 0.01 0.00 0.00 0.00 0.00
Average 0.007 0.014 0.006 0.018 0.006 0.015

Error Window
Upper
Limit 0.7 ± 0.03

0.73
0 ± 0.01

0.01
 1.56 ± 0.04

1.60
Lower
Limit

0.67

Sample 1 q1 (rad) Error Window q2 (rad) Error Window q3 (rad)

-0.01 1.52

Sample 1 q4 (m) Error Window q5 (m) Error Window q6 (m) Error Window

0.41
Lower
Limit

-0.03 -0.01 0.37

Upper
Limit 0 ± 0.03

0.03
0 ± 0.01

0.01
 0.39 ± 0.02

88

10.3 Reconfigurable Model Applications

From the two case studies presented, the robustness of the developed model can be

validated. The reconfigurable model can be used to analyze and validate the performance

criterion for a wide range of industrial manipulators as well as non-conventional

machinery structures that can be parameterized in a similar fashion to kinematic

manipulators. Unlike other software that can only cater to standard manipulator

configurations, the developed model can reconfigure to any manipulator configuration

based on user inputs and generate results accordingly.

The model can be used as a design tool for development of kinematic structures based

on pre-defined functional requirements and for downstream optimization problems. It

also serves as an excellent tool for workspace and singularity analysis by not only

theoretically computing the functional workspace of the model but by also providing a 3-

D visual understanding of the manipulator reach and functionality. The model is also

successfully able to provide a non-conventional and computationally inexpensive solution

to the problem of inverse kinematics by using ANNs. This technique is highly beneficial

in developing a path planning and collision detection model. The proposed method can

also successfully aid in development of robotic work cells where it is crucial to

understand the reach conditions of robot(s) with respect to their environment [66].

89

 CONCLUSIONS AND FUTURE WORK

A reconfigurable model is developed to gain an insight into the functionality of

industrial manipulators and optimization of their performance. The developed

reconfigurable model is successfully able to provide a forward kinematics solution, an

inverse kinematic solution, a 3D visual representation of workspace and kinematic

singularity, an analysis of the manipulator Jacobian, and a model to aid in path planning

of robots. The model provides promising results for both wrist and non-wrist partitioned

manipulators as well other machinery structures such as CNC machines that can be

modelled kinematically. This model can be successfully used for optimizing the

placement of industrial manipulators in an industrial setting and understanding their reach

conditions based on an analysis of their functional workspace.

This research lays the foundation for the development of a reconfigurable model that can

adapt to various manipulator configurations and provide the aforementioned analytical

tools. Future work for expanding the scope of analyses incudes:

1. Modelling of higher DOF redundant robots and machine structures

2. Expanding on the type of manipulator joints to be modelled

3. Developing dynamic equations of motion for a manipulator by expanding on the

Newton-Euler Recursive method

4. Incorporating simultaneous analysis of several kinematic chains and optimizing

their placement with respect to one another within the same work cell

5. Developing a trajectory planning and collision detection model

6. Incorporating a wider range of joint variable ranges for training the ANN model

7. Expanding on the ANN model architecture for an improved accuracy in prediction

of wrist configurations

The developed tool will aid to further research in the field of industrial robotics. It

will also help robot designers, manufacturers, as well as end-users to understand the true

functionality and capabilities of any manipulator. The research can ultimately be

extended to incorporate complex robot structures such as parallel link manipulators etc.

90

 REFERENCES

[1] Adept Technology Inc., "Six-Axis Robot Configuration Singularities, Use of the
V+ MV.SL_MOVE Routine and the SPEED.LIMIT Parameter," Adept
Tehnology Inc., United States of America, 2007.

[2] L. Aggarwal, R. J. Urbanic and K. Aggarwal, "A Reconfigurable Algorithm for
Identifying and Validating Functional Workspace of Industrial Manipulators," in
SAE World Congress 2014, Detroit, 2014.

[3] M. Tyson, "Robotics 101," ABB, May 2013. [Online]. Available:
http://www02.abb.com/global/zaabb/zaabb011.nsf/bf177942f19f4a98c1257148003
b7a0a/0f55ae5d8012b4a6c1257b7200358d2e/$file/dmro+1+-
+introduction+to+robotics.pdf. [Accessed 11 May 2014].

[4] A. G. Gudla, A methodology to determine the functional workspace of a 6R robot
using forward kinematics and geometrical methods, Windsor: University of
Windsor, 2012.

[5] M. W. Spong, S. Hutchinson and M. Vidyasagar, Robot Modeling and Control,
Hoboken, NJ: John Wiley & Sons Inc., 2006.

[6] P. I. Corke, "Robotics, Vision & Control: Fundamental Algorithms in MATLAB,"
Springer, 2011.

[7] T. Yoshikawa, "Manipulability of Robotic Mechanisms," The International Journal
of Robotics Research, vol. 4, no. 3, pp. 3-9, 1985.

[8] A. Y. Elkady, M. Mohammed and T. Sobh, "A New Algorithm for Measuring and
Optimizing the Manipulability Index," Journal of Intelligent and Robotic Systems,
vol. 59, no. 1, pp. 75-86, 2010.

[9] G. Pamanes and S. Zeghloul, "Optimal placement of robotic manipulators using
multiple kinematic criteria," in IEEE International Conference on Robotics and
Automation, Sacramento, 1991.

[10] A. M. Djuric, R. A. Saidi and W. ElMaraghy, "Global Kinematic Model
Generation for n-DOF Reconfigurable Machinery Structure," in 6th annual IEEE
Conference on Automation Science and Engineering, Toronto, 2010.

91

[11] L. K. Khosla and P. K., "Automatic generation of forward and inverse kinematics
for a reconfigurable modular manipulator system," Journal of Robotic Systems, vol.
7, no. 4, pp. 599-619, 1990.

[12] C. J. J. Paredis and P. K. Khosla, "Kinematic Design of Serial Link Manipulators
from Task Specifications," The International Journal of Robotics Research, vol.
12, no. 3, pp. 274-287, 1993.

[13] A. Djuric and R. J. Urbanic, "Design of a reconfigurable robot-based system for
material deposition applications," in IEEE International Conference on
Electro/Information Technology, Windsor, 2009.

[14] L. H. T. H.-y. K. S. L. X. Hai-Yin Xu, "A novel kinematic model for five-axis
machine tools," The International Journal of Advanced Manufacturing Technology,
vol. 67, no. 5-8, pp. 1297-1307, 2013.

[15] Z. Du, S. Zhang and M. Hong, "Development of a multi-step measuring method for
motion accuracy of NC machine toolsbased on cross grid encoder," International
Journal of Machine Tools & Manufacture, vol. 50, no. 3, pp. 270-280, 2010.

[16] D. M. A. Lee and W. H. ElMaraghy, "ROBOSIM: a CAD-based off-line
programming and analysis system for robotic manipulators," Computer-Aided
Engineering Journal, vol. 7, no. 5, pp. 141-148, 1990.

[17] M. Ceccarelli and A. Vinciguerra, "On the workspace of general 4R manipulators,"
International Journal of Robotics Research, vol. 14, no. 2, pp. 152-160, 1995.

[18] E. Ottaviano, M. Husty and M. Ceccarelli, "A Study on Workspace Topologies of
3R Industrial-Type Manipulators," in International Conference on Automation,
Quality and Testing, Robotics, 2006.

[19] C. Liang and M. Ceccarelli, "Feasible workspace regions for general two-revolute
manipulator," Frontiers of Mechanical Engineering, vol. 6, no. 4, pp. 397-408,
2011.

[20] K. Abdel-Malek, H.-J. Yeh and S. Othman, "Interior and exterior boundaries to the
workspace of mechanical manipulators," Robotics and Computer-Integrated
Manufacturing, vol. 16, no. 5, pp. 365-376, 2000.

[21] O. Bohigas, M. Manubens and L. Ros, "A Complete Method for Workspace
Boundary Determination on General Structure Manipulators," IEEE Transactions

92

on Robotics, vol. 28, no. 5, pp. 993-1006, 2012.

[22] K. Goyal and D. Sethi, "AN ANALYTICAL METHOD TO FIND WORKSPACE
OF A ROBOTIC MANIPULATOR," Journal of Mechanical Engineering, vol. 41,
no. 1, pp. 25-30, 2010.

[23] A. Djuric, J. Urbanic, M. Filipovic and L. Kevac, "Effective Work Region
Visualization for Serial 6 DOF Robots," in 5th International Conference on
Changeable, Agile, Reconfigurable and Virtual Production (CARV), Munich, 2013.

[24] R. J. Urbanic and A. Gudla, "Functional Workspace Estimation of a Robot using
Forward Kinematics, D-H Parameters, and Shape Analyses," in ASME 11th
Biennial Conference on Engineering Systems Design and Analysis, Nates, 2012.

[25] A. Djuric and R. J. Urbanic, "Utilizing the Functional Work Space Evaluation Tool
for Assessing a System Design and Reconfiguration Alternatives," in Robotic
Systems - Applications, Control and Programming, A. Dutta, Ed., 2012.

[26] T. K. Alameldin, N. Badler, T. Sobh and R. Mihali, "A Computational Approach
for Constructing of the Reachable Workspaces for Redundant Manipulators,"
Journal of Scientific Computing, vol. 2, no. 1, pp. 48-52, 2003.

[27] M. Zein, P. Wenger and D. Chablat, "An exhaustive study of the workspace
topologies of all 3R orthogonal manipulators with geometric simplifications,"
International Workshop on Computational Kinematics Special Issue, vol. 41, no. 8,
pp. 971-986, 2006.

[28] J. Kim, G. Marani, W. K. Chung and J. Yuh, "Task reconstruction method for real-
time singularity avoidance for robotic manipulators," Advanced Robotics, vol. 20,
no. 4, pp. 453-481, 2006.

[29] H. Liu and T. Zhang, "Browse Conference Publications > Mechatronics and
Automation (... Help Working with Abstracts," in International Conference on
Mechatronics and Automation (ICMA), Xi'an, 2010.

[30] H. Zhunqing, F. Hairong and F. Yuefa, "New solution algorithm for singularity
control of serial manipulators," in IEEE Region 10 Conference on Computers,
Communications, Control and Power Engineering, 2002.

[31] Y. Fang and L.-W. Tsai, "Feasible Motion Solutions for Serial Manipulators at
Singular Configurations," Journal of Mechanical Design, vol. 125, no. 1, pp. 61-

93

69, 2003.

[32] Z.-Q. Hu, Z.-G. Fu and H.-R. Fang, "Study of singularity robust inverse of
Jacobian matrix for manipulator," in International Conference on Machine
Learning and Cybernetics, 2002.

[33] D. Pai and M. Leu, "Generic singularities of robot manipulators," in IEEE
International Conference on Robotics and Automation, Scottsdale, 1989.

[34] A. Djuric, M. Filipovic, L. Kevac and J. Urbanic, "Singularity Analysis for a 6
DOF Family of Robots," in roceedings of the 5th International Conference on
Changeable, Agile, Reconfigurable and Virtual Production (CARV 2013), Munich,
2013.

[35] L. Huo and L. Baron, "The joint-limits and singularity avoidance in robotic
welding," Industrial Robot: An International Journal, vol. 35, no. 5, pp. 456-464,
2008.

[36] M. Stanisic and O. Duta, "Symmetrically actuated double pointing systems: the
basis of singularity-free robot wrists," IEEE Transactions on Robotics and
Automation, vol. 6, no. 5, pp. 562-569, 1990.

[37] F.-T. Cheng, T.-L. Hour, Y.-Y. Sun and T.-H. Chen, "Study and resolution of
singularities for a 6-DOF PUMA manipulator," in IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, 1997.

[38] S. Ahmad and S. Luo, "Analysis of kinematic singularities for robot manipulators
in Cartesian coordinate parameters," in IEEE International Conference on Robotics
and Automation, Philadelphia, 1988.

[39] S. Chiaverini and O. Egeland, "A solution to the singularity problem for six-joint
manipulators," in IEEE International Conference on Robotics and Automation,
Cincinnati, 1990.

[40] S. Yigit, C. Burghart and H. Woern, "Avoiding Singularities of Inverse Kinematics
for a Redundant Robot Arm for Safe Human Robot Co-operation," in CCCT, 2003.

[41] C. Kozakiewicz, T. Ogiso and N. Miyake, "Partitioned neural network architecture
for inverse kinematic calculation of a 6 DOF robot manipulator," in IEEE
International Joint Conference on Neural Networks, 1991.

[42] Y. F. Lou and P. Brunn, "A hybrid artificial neural network inverse kinematic

94

solution for accurate robot path control," Journal of System and Control
Engineering, vol. 213, no. 1, pp. 23-32, 1999.

[43] Z. Ahmad and A. Guez, "On the solution to the inverse kinematic problem," in
IEEE International Conference on Robotics and Automation, Cincinnati, 1990.

[44] Ş. Yıldırım and İ. Eski, "A QP Artificial Neural Network inverse kinematic
solution for accurate robot path control," Journal of Mechanical Science and
Technology, vol. 20, no. 7, pp. 917-928, 2006.

[45] R. Köker, C. Öz, T. Çakar and H. Ekiz, "A study of neural network based inverse
kinematics solution for a three-joint robot," Robotics and Autonomous Systems:
Patterns and Autonomous Control, vol. 49, no. 3-4, pp. 227-234, 2004.

[46] A. T. Hasan, N. Ismaila, A. Hamoudab, A. Ishak, M. M.H. and H. Al-Assadia,
"Artificial neural network-based kinematics Jacobian solution for serial
manipulator passing through singular configurations," Advances in Engineering
Software, vol. 41, no. 2, pp. 359-367, 2010.

[47] Z. Bingul, H. Ertunc and C. Oysu, "Comparison of inverse kinematics solutions
using neural network for 6R robot manipulator with offset," in ICSC Congress on
Computational Intelligence Methods and Applications, Istanbul, 2005.

[48] Y. Feng, W. Yao-nan and Y. Yi-min, "Inverse Kinematics Solution for Robot
Manipulator based on Neural Network under Joint Subspace," International
Journal of Computers, Communications & Control, vol. 7, no. 3, pp. 459-472,
2012.

[49] International Organization for Standardization, "Industrial Robotics," International
Federation of Robotics (IFR), [Online]. Available: http://www.ifr.org/industrial-
robots/. [Accessed May 2014].

[50] M. Hägele, . K. Nilsson and J. N. Pires, "Industrial Robotics," in Springer
Handbook of Robotics, Springer Berlin Heidelberg, 2008, pp. 963-986.

[51] International Federation of Robotics, "Industrial Robot Statistics," International
Federation of Robotics, 2013.

[52] E. Guizzo, "The Rise of the Machines," IEEE Spectrum, December 2008. [Online].
Available: http://spectrum.ieee.org/robotics/industrial-robots/the-rise-of-the-
machines.

95

[53] A. Djuric, "Introduction to Robotics," University of Windsor, Windsor, 2013.

[54] United States Department of Labour, "OSHA Technical Manual (OTM): Section
IV: Chapter 4," January 1999. [Online]. Available:
https://www.osha.gov/dts/osta/otm/otm_iv/otm_iv_4.html#2.

[55] S. M. LaValle, "Planning Algorithms," Canbridge University Press, 2006. [Online].
Available: http://planning.cs.uiuc.edu/node102.html.

[56] C. Bernier, "Different End Effectors on the Market," Robotiq, July 2013. [Online].
Available: http://blog.robotiq.com/bid/65660/Different-End-Effectors-on-the-
Market.

[57] R. Manseur, Robot Modelling and Kinematics, Boston: Da Vinci Engineering
Press, 2006.

[58] Mitsubishi Electric, "Mitsubishi Electric Industrial Robot," Jun 2006. [Online].
Available:
http://www.abcontrols.com/robotic_arms/mitsubisi_robotic_arms/mitsubishi_scara
_robot_abcontrols.pdf.

[59] J. J. Craig, Introduction to Robotics: Mechanics and Control, Upper Saddle River:
Pearson Eductaion International, 2005.

[60] P. Allen, "Inverse Kinematics," Columbia University, October 2010. [Online].
Available: http://www.cs.columbia.edu/~allen/F13/NOTES/invkin.pdf.

[61] J. C. Principe, N. R. Euliano and W. C. Lefebvre, Neural and Adaptive Systems:
Fundamentals through Simulations, New York: John Wiley & Sons Inc., 2000.

[62] S. Samarasinghe, Neural Networks for Applied Sciences and Engineering: From
Fundamentals to Complex Pattern Recognition, Boca Raton: Taylor and Francis
Group, 2007.

[63] K. Swingler, Applying Neural Networks: A Practical Guide, San Francisco:
Academia Press, 2001.

[64] A. J. Levesque, Driver Modelling for Risk Assessment, University of Windsor,
2012.

[65] I. Towfic and J. Johrendt, "A Neural Network Approach for Predicting Collision
Severity," in SAE World Congress 2014, 2014.

96

[66] L. Aggarwal, K. Aggarwal and R. J. Urbanic, "Use of artificial neural networks for
the development of an inverse kinematic solution and visual identification of
singularity zone(s)," in 47th CIRP Conference on Manufacturing Systems,
Windsor, 2014.

[67] V. D. Tourassis and M. H. A. Jr, "Task decoupling in robot manipulators," Journal
of Intelligent and Robotic Systems, vol. 14, no. 3, pp. 283-302, 1995.

[68] A. R.-1. Robot Safety Standard, "Risk Assessment and Methodology and Specific
Guidelines for Safeguarding Robotic Systems," [Online]. Available:
http://www.welding-robots.com/articles/viewing/robot-safety-standard-ansi-ria-
r15-06-1999-on-risk-assessment-and-methodology-and-specific-guideline.

[69] P. Donelan, "Singularities of Robot Manipulators," in Singularity Theory, London,
World Scientific Publishing Co. , 2005, pp. 189-218.

[70] P. Allen, "Kinematic Singularities and Jacobians," Columbia University,
September 2013. [Online]. Available:
http://www.cs.columbia.edu/~allen/F13/NOTES/jacobians.pdf.

[71] O.Hachour, "Path planning of Autonomous Mobile robot," International Journal of
Systems Applications, Engineering and Development, vol. 2, no. 4, pp. 178-190,
2008.

[72] RobotWorkz, "FANUC M-16iB/20 RJ3iB".

[73] H.-Y. Xu, L. Hu, T. Hon-yuen, K. Shi and L. Xu, "A novel kinematic model for
five-axis machine tools," The International Journal of Advanced Manufacturing
Technology, vol. 67, no. 5-8, pp. 1297-1307, 2013.

97

 APPENDICES

Appendix A: Results for SCARA Robot

Table 15: SCARA Joint Variable Range

S. No. q1
(rad)

q2

(rad)
q3

(mm)
1 -2.22 -2.53 -297.00
2 -2.03 -2.32 -288.67
3 -1.85 -2.11 -280.33
4 -1.66 -1.90 -272.00
5 -1.48 -1.69 -263.67
6 -1.29 -1.48 -255.33
7 -1.11 -1.26 -247.00
8 -0.92 -1.05 -238.67
9 -0.74 -0.84 -230.33
10 -0.55 -0.63 -222.00
11 -0.37 -0.42 -213.67
12 -0.18 -0.21 -205.33
13 0.00 0.00 -197.00
14 0.18 0.21 -188.67
15 0.37 0.42 -180.33
16 0.55 0.63 -172.00
17 0.74 0.84 -163.67
18 0.92 1.05 -155.33
19 1.11 1.27 -147.00
20 1.29 1.48 -138.67
21 1.48 1.69 -130.33
22 1.66 1.90 -122.00
23 1.85 2.11 -113.67
24 2.03 2.32 -105.33
25 2.22 2.53 -97.00

98

Fi
gu

re
 3

7:
 C

om
pl

et
e

W
or

ks
pa

ce
 o

f S
C

A
R

A
 R

ob
ot

99

Fi
gu

re
 3

8:
 S

C
A

R
A

 W
or

ks
pa

ce
 a

nd
 S

in
gu

la
rit

y
Sp

ac
e

100

Figure 39: ANN Architecture for SCARA Robot

Figure 40: Performance Plot for SCARA Robot

101

 Figure 41: Regression Plot for SCARA Robot

Figure 42: Error Histogram for SCARA Robot

102

Fi
gu

re
 4

3:
 In

ve
rs

e
K

in
em

at
ic

s P
re

di
ct

io
n

fo
r S

C
A

R
A

 R
ob

ot

103

Fi
gu

re
 4

4:
 S

C
A

R
A

 S
in

gu
la

rit
y

Jo
in

t P
re

di
ct

io
n

104

Fi
gu

re
 4

5:
 T

he
or

et
ic

al
 v

s.
A

N
N

 P
re

di
ct

ed
 S

in
gu

la
rit

y

105

Appendix B: Results for FANUC M16iB/20 Robot

Figure 46: FANUC M16iB/20 Robot

Table 16: D-H Parameters for FANUC M16iB/20 Robot

Robot: Fanuc M16iB/20

Joint

D-H parameters Lower
Joint
Limit

Upper
Joint
Limit

Link Offset
(m)

Joint
Angle
(rad)

Link Length
(m)

Twist Angle
(rad)

1 d1 = 0.525 θ1 = θ1 a1 = 0.150 α1 = -pi/2 -2.97 2.97
2 d2 = 0 θ2 = θ2 a2 = 0.770 α2 = 0 -1.57 2.79
3 d3 = 0 θ3 = θ3 a3 = 0.100 α3 = pi/2 -2.97 5.06
4 d4 = 0.740 θ4 = θ4 a4 = 0 α4 = -pi/2 -3.49 3.49
5 d5 = 0 θ5 = θ5 a5 = 0 α5 = pi/2 -2.44 2.44
6 d6 = 0.100 θ6 = θ6 a6 = 0 α6 = 0 -7.85 7.85

106

Table 17: FANUC Joint Angle Range for Workspace Generation

Angle Configuration Range for Workspace Generation
S. No. q1 (rad) q2 (rad) q3 (rad) q4 (rad) q5 (rad) q6 (rad)

1 -2.97 -1.57 -2.97 -3.49 -2.44 -7.85
2 -2.31 -1.09 -2.08 -2.71 -1.90 -6.11
3 -1.65 -0.60 -1.18 -1.94 -1.36 -4.36
4 -0.99 -0.12 -0.29 -1.16 -0.81 -2.62
5 -0.33 0.37 0.60 -0.39 -0.27 -0.87
6 0.33 0.85 1.49 0.39 0.27 0.87
7 0.99 1.34 2.39 1.16 0.81 2.62
8 1.65 1.82 3.28 1.94 1.36 4.36
9 2.31 2.31 4.17 2.71 1.90 6.11
10 2.97 2.79 5.06 3.49 2.44 7.85

Table 18: FANUC Joint Angle Range for Training ANN

Angle Configuration Range for Training ANN
S. No. q1 (rad) q2 (rad) q3 (rad) q4 (rad) q5 (rad) q6 (rad)

1 1.44 1.80 3.90 -3.09 1.82 -2.28
2 1.65 -0.58 3.37 -2.32 -1.32 3.09
3 0.87 -0.09 0.52 -0.19 0.99 1.65

Figure 47: Workspace of FANUC M16iB/20 Robot

107

Fi
gu

re
 4

8:
 T

ot
al

 W
or

ks
pa

ce
 fo

r F
A

N
U

C
 M

16
iB

/2
0

R
ob

ot

108

Fi
gu

re
 4

9:
 W

or
ks

pa
ce

 a
nd

 S
in

gu
la

rit
y

Sp
ac

e
fo

r F
A

N
U

C
 M

16
iB

/2
0

R
ob

ot

109

Fi
gu

re
 5

0:
 S

in
gu

la
rit

y
Sp

ac
e

of
 F

A
N

U
C

 M
16

iB
/2

0
R

ob
ot

110

Fi
gu

re
 5

1:
 F

un
ct

io
na

l W
or

ks
pa

ce
 o

f F
A

N
U

C
 M

16
iB

/2
0

R
ob

ot

111

Figure 52: ANN Architecture for FANUC M16iB/20 Robot

Figure 53: Error Histogram for FANUC M16iB/20 Robot

112

Figure 54: Regression Plot for FANUC M16iB/20

113

Figure 55: Performance Plot for FANUC M16iB/20 Robot

Figure 56: Training State Plot for FANUC M16iB/20 Robot

114

Fi
gu

re
 5

7:
 In

ve
rs

e
K

in
em

at
ic

s P
re

di
ct

io
n

fo
r F

A
N

U
C

 M
16

iB
/2

0
R

ob
ot

115

Fi
gu

re
 5

8:
 A

bs
ol

ut
e

R
es

id
ua

l E
rr

or
 in

 In
ve

rs
e

K
in

em
at

ic
s P

re
di

ct
io

n
fo

r F
A

N
U

C
 M

16
iB

/2
0

R
ob

ot

116

Fi
gu

re
 5

9:
 F

A
N

U
C

 M
16

iB
/2

0
Si

ng
ul

ar
ity

 Jo
in

t P
re

di
ct

io
n

117

Fi
gu

re
 6

0:
 A

bs
ol

ut
e

R
es

id
ua

l E
rr

or
 in

 F
A

N
U

C
 M

16
iB

/2
0

Si
ng

ul
ar

ity
 Jo

in
t P

re
di

ct
io

n

118

Fi
gu

re
 6

1:
 T

he
or

et
ic

al
 v

s.
A

N
N

 P
re

di
ct

ed
 S

in
gu

la
rit

y

119

MATLAB Output for FANUC M16iB/20 Robot:

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

Appendix C: Results for CNC Manipulator

Figure 62: Kinematic Model of 6 Axis CNC Machine

Table 19: D-H Parameters of CNC Manipulator

Robot: 6 Axis CNC

Joint
D-H parameters Lower

Joint
Limit

Upper
Joint
Limit

Link Offset
(m)

Joint Angle
(rad)

Link
Length (m)

Twist Angle
(rad)

1 d1 = 0.5 θ1 = θ1 a1 = 0.6 α1 = -pi/2 -1.74 1.74
2 d2 = 0.5 θ2 = θ2 a2 = 0.5 α2 = pi/2 -1.74 1.74
3 d3 = 0.5 θ3 = θ3 a3 = 0.5 α3 = -pi/2 -1.74 1.74
4 d4 = d4 θ4 = -pi/2 a4 = 0.4 α4 = -pi/2 -0.4 0.4
5 d5 = d5 θ5 = pi/2 a5 = 0.5 α5 = -pi/2 -0.3 0.3
6 d6 = d6 θ6 = -pi/2 a6 = 0.5 α6 = -pi/2 -0.4 0.4

136

Table 20: CNC Manipulator Joint Angle Range for Workspace Generation

Angle Configuration Range for Workspace Generation
S. No. q1 (rad) q2 (rad) q3 (rad) q4 (m) q5 (m) q6 (m)

1 -1.75 -1.75 -1.75 -0.4 -0.30 -0.4
2 -1.36 -1.36 -1.36 -0.31 -0.23 -0.31
3 -0.97 -0.97 -0.97 -0.22 -0.17 -0.22
4 -0.58 -0.58 -0.58 -0.13 -0.10 -0.13
5 -0.19 -0.19 -0.19 -0.04 -0.03 -0.04
6 0.19 0.19 0.19 0.04 0.03 0.04
7 0.58 0.58 0.58 0.13 0.10 0.13
8 0.97 0.97 0.97 0.22 0.17 0.22
9 1.36 1.36 1.36 0.31 0.23 0.31
10 1.75 1.75 1.75 0.4 0.30 0.4

Table 21: CNC Manipulator Joint Angle Range for Training ANN

Angle Configuration Range for Training ANN
S. No. q1 (rad) q2 (rad) q3 (rad) q4 (m) q5 (m) q6 (m)

1 0.7 0.54 -1.03 -0.13 0.00 -0.21
2 -0.92 1.24 1.56 -0.26 -0.18 0.39
3 0.48 -0.01 0.14 0 -0.11 0.34

 Figure 63: Workspace of CNC Manipulator

137

Fi
gu

re
 6

4:
 T

ot
al

 W
or

ks
pa

ce
 fo

r C
N

C
 M

an
ip

ul
at

or

138

Fi
gu

re
 6

5:
 W

or
ks

pa
ce

 a
nd

 S
in

gu
la

rit
y

Sp
ac

e
fo

r C
N

C
 M

an
ip

ul
at

or

139

Fi
gu

re
 6

6:
 S

in
gu

la
rit

y
Sp

ac
e

fo
r C

N
C

 M
an

ip
ul

at
or

140

Fi
gu

re
 6

7:
 F

un
ct

io
na

l W
or

ks
pa

ce
 o

f C
N

C
 M

an
ip

ul
at

or

141

Figure 68: ANN Architecture for CNC Manipulator

 Figure 69: Error Histogram for CNC Manipulator

142

Figure 70: Regression Plot for CNC Manipulator

143

Figure 71: Performance Plot for CNC Manipulator

 Figure 72: Training State Plot for CNC Manipulator

144

Fi
gu

re
 7

3:
 In

ve
rs

e
K

in
em

at
ic

s P
re

di
ct

io
n

fo
r C

N
C

 M
an

ip
ul

at
or

145

Fi
gu

re
 7

4:
 A

bs
ol

ut
e

R
es

id
ua

l E
rr

or
 in

 In
ve

rs
e

K
in

em
at

ic
s P

re
di

ct
io

n
fo

r C
N

C
 M

an
ip

ul
at

or

146

Fi
gu

re
 7

5:
 C

N
C

 M
an

ip
ul

at
or

 S
in

gu
la

rit
y

Jo
in

t P
re

di
ct

io
n

147

Fi
gu

re
 7

6:
 A

bs
ol

ut
e

R
es

id
ua

l E
rr

or
 in

 C
N

C
 M

an
ip

ul
at

or
 S

in
gu

la
rit

y
Jo

in
t P

re
di

ct
io

n

148

Fi
gu

re
 7

7:
 T

he
or

et
ic

al
 v

s.
A

N
N

 P
re

di
ct

ed
 S

in
gu

la
rit

y

149

MATLAB Output for FANUC M16iB/20 Robot:

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

Appendix D: M-Code for Reconfigurable Model

clear
clc
disp('© Luv Aggarwal')
format bank;
syms pi theta1dot theta2dot theta3dot theta4dot theta5dot theta6dot
d1dot d2dot d3dot d4dot d5dot d6dot;

Link_1=input('Enter Link 1 Type Rotational(0) or Translational(1)\n');
Link_2=input('Enter Link 2 Type Rotational(0) or Translational(1)\n');
Link_3=input('Enter Link 3 Type Rotational(0) or Translational(1)\n');
Link_4=input('Enter Link 4 Type Rotational(0) or Translational(1)\n');
Link_5=input('Enter Link 5 Type Rotational(0) or Translational(1)\n');
Link_6=input('Enter Link 6 Type Rotational(0) or Translational(1)\n');

alpha1=input('Input value for alpha1 (degrees)\n');
alpha2=input('Input value for alpha2 (degrees)\n');
alpha3=input('Input value for alpha3 (degrees)\n');
alpha4=input('Input value for alpha4 (degrees)\n');
alpha5=input('Input value for alpha5 (degrees)\n');
alpha6=input('Input value for alpha6 (degrees)\n');

a1=input('Input value for a1(units)\n');
a2=input('Input value for a2(units)\n');
a3=input('Input value for a3(units)\n');
a4=input('Input value for a4(units)\n');
a5=input('Input value for a5(units)\n');
a6=input('Input value for a6(units)\n');

if (Link_1)==0;
 syms theta1
 d1=input('Input value for d1 (units)\n');
 q1_min=double(input('Input value for theta1 minimum
(deg)\n')*pi/180);
 q1_max=double(input('Input value for theta1 maximum
(deg)\n')*pi/180);
 q1dot=theta1dot;
 t1=theta1; % For solving Singularity Equation

else
 syms d1
 theta1=input('Input value for theta1 (degrees)\n');
 q1_min=input('Input value for d1 minimum (units)\n');
 q1_max=input('Input value for d1 maximum (units)\n');
 q1dot=d1dot;
 t1=d1;

end

if Link_2==0;
 syms theta2

165

 d2=input('Input value for d2(units)\n');
 q2_min=double(input('Input value for theta2 minimum
(deg)\n')*pi/180);
 q2_max=double(input('Input value for theta2 maximum
(deg)\n')*pi/180);
 q2dot=theta2dot;
 t2=theta2;
else
 syms d2
 theta2=input('Input value for theta2 (degrees)\n');
 q2_min=input('Input value for d2 minimum (units)\n');
 q2_max=input('Input value for d2 maximum (units)\n');
 q2dot=d2dot;
 t2=d2;
end

if Link_3==0;
 syms theta3
 d3=input('Input value for d3(units)\n');
 q3_min=double(input('Input value for theta3 minimum
(deg)\n')*pi/180);
 q3_max=double(input('Input value for theta3 maximum
(deg)\n')*pi/180);
 q3dot=theta3dot;
 t3=theta3;
else
 syms d3
 theta3=input('Input value for theta3 (degrees)\n');
 q3_min=input('Input value for d3 minimum (units)\n');
 q3_max=input('Input value for d3 maximum (units)\n');
 q3dot=d3dot;
 t3=d3;
end

if Link_4==0;
 syms theta4
 d4=input('Input value for d4(units)\n');
 q4_min=double(input('Input value for theta4 minimum
(deg)\n')*pi/180);
 q4_max=double(input('Input value for theta4 maximum
(deg)\n')*pi/180);
 q4dot=theta4dot;
 t4=theta4;
else
 syms d4
 theta4=input('Input value for theta4 (degrees)\n');
 q4_min=input('Input value for d4 minimum (units)\n');
 q4_max=input('Input value for d4 maximum (units)\n');
 q4dot=d4dot;
 t4=d4;
end

if Link_5==0;
 syms theta5
 d5=input('Input value for d5(units)\n');

166

 q5_min=double(input('Input value for theta5 minimum
(deg)\n')*pi/180);
 q5_max=double(input('Input value for theta5 maximum
(deg)\n')*pi/180);
 q5dot=theta5dot;
 t5=theta5;
else
 syms d5
 theta5=input('Input value for theta5 (degrees)\n');
 q5_min=input('Input value for d5 minimum (units)\n');
 q5_max=input('Input value for d5 maximum (units)\n');
 q5dot=d5dot;
 t5=d5;
end

if Link_6==0;
 syms theta6
 d6=input('Input value for d6(units)\n');
 q6_min=double(input('Input value for theta6 minimum
(deg)\n')*pi/180);
 q6_max=double(input('Input value for theta6 maximum
(deg)\n')*pi/180);
 q6dot=theta6dot;
 t6=theta6;
else
 syms d6
 theta6=input('Input value for theta6 (degrees)\n');
 q6_min=input('Input value for d6 minimum (units)\n');
 q6_max=input('Input value for d6 maximum (units)\n');
 q6dot=d6dot;
 t6=d6;
end

%Link 1
% disp('Transformation Matrix for Rotational Joint 1')
A01=simplify([cos(theta1) -cos(alpha1*pi/180)*sin(theta1)
sin(alpha1*pi/180)*sin(theta1) a1*cos(theta1);sin(theta1)
cos(alpha1*pi/180)*cos(theta1) -sin(alpha1*pi/180)*cos(theta1)
a1*sin(theta1);0 sin(alpha1*pi/180) cos(alpha1*pi/180) d1;0 0 0 1]);
R01=simplify([A01(1,1) A01(1,2) A01(1,3);A01(2,1) A01(2,2)
A01(2,3);A01(3,1) A01(3,2) A01(3,3)]);
R10=transpose(R01);
P01=[A01(1,4);A01(2,4);A01(3,4)];

% disp('Transformation Matrix for Rotational Joint 2')
A12=simplify([cos(theta2) -cos(alpha2*pi/180)*sin(theta2)
sin(alpha2*pi/180)*sin(theta2) a2*cos(theta2);sin(theta2)
cos(alpha2*pi/180)*cos(theta2) -sin(alpha2*pi/180)*cos(theta2)
a2*sin(theta2);0 sin(alpha2*pi/180) cos(alpha2*pi/180) d2;0 0 0 1]);
R12=simplify([A12(1,1) A12(1,2) A12(1,3);A12(2,1) A12(2,2)
A12(2,3);A12(3,1) A12(3,2) A12(3,3)]);
R21=transpose(R12);
P12=[A12(1,4);A12(2,4);A12(3,4)];

% disp('Transformation Matrix for Rotational Joint 3')

167

A23=simplify([cos(theta3) -cos(alpha3*pi/180)*sin(theta3)
sin(alpha3*pi/180)*sin(theta3) a3*cos(theta3);sin(theta3)
cos(alpha3*pi/180)*cos(theta3) -sin(alpha3*pi/180)*cos(theta3)
a3*sin(theta3);0 sin(alpha3*pi/180) cos(alpha3*pi/180) d3;0 0 0 1]);
R23=simplify([A23(1,1) A23(1,2) A23(1,3);A23(2,1) A23(2,2)
A23(2,3);A23(3,1) A23(3,2) A23(3,3)]);
R32=transpose(R23);
P23=[A23(1,4);A23(2,4);A23(3,4)];

% disp('Transformation Matrix for Rotational Joint 4')
A34=simplify([cos(theta4) -cos(alpha4*pi/180)*sin(theta4)
sin(alpha4*pi/180)*sin(theta4) a4*cos(theta4);sin(theta4)
cos(alpha4*pi/180)*cos(theta4) -sin(alpha4*pi/180)*cos(theta4)
a4*sin(theta4);0 sin(alpha4*pi/180) cos(alpha4*pi/180) d4;0 0 0 1]);
R34=simplify([A34(1,1) A34(1,2) A34(1,3);A34(2,1) A34(2,2)
A34(2,3);A34(3,1) A34(3,2) A34(3,3)]);
R43=transpose(R34);
P34=[A34(1,4);A34(2,4);A34(3,4)];

% disp('Transformation Matrix for Rotational Joint 5')
A45=simplify([cos(theta5) -cos(alpha5*pi/180)*sin(theta5)
sin(alpha5*pi/180)*sin(theta5) a5*cos(theta5);sin(theta5)
cos(alpha5*pi/180)*cos(theta5) -sin(alpha5*pi/180)*cos(theta5)
a5*sin(theta5);0 sin(alpha5*pi/180) cos(alpha5*pi/180) d5;0 0 0 1]);
R45=simplify([A45(1,1) A45(1,2) A45(1,3);A45(2,1) A45(2,2)
A45(2,3);A45(3,1) A45(3,2) A45(3,3)]);
R54=transpose(R45);
P45=[A45(1,4);A45(2,4);A45(3,4)];

% disp('Transformation Matrix for Rotational Joint 6')
A56=simplify([cos(theta6) -cos(alpha6*pi/180)*sin(theta6)
sin(alpha6*pi/180)*sin(theta6) a6*cos(theta6);sin(theta6)
cos(alpha6*pi/180)*cos(theta6) -sin(alpha6*pi/180)*cos(theta6)
a6*sin(theta6);0 sin(alpha6*pi/180) cos(alpha6*pi/180) d6;0 0 0 1]);
R56=simplify([A56(1,1) A56(1,2) A56(1,3);A56(2,1) A56(2,2)
A56(2,3);A56(3,1) A56(3,2) A56(3,3)]);
R65=transpose(R56);
P56=[A56(1,4);A56(2,4);A56(3,4)];

%Forward Kinematics
% disp('Forward Kinematics')
A06=simplify(A01*A12*A23*A34*A45*A56);
R06=simplify([A06(1,1) A06(1,2) A06(1,3);A06(2,1) A06(2,2)
A06(2,3);A06(3,1) A06(3,2) A06(3,3)]);
R60=transpose(R06);
P06=[A06(1,4);A06(2,4);A06(3,4)];

% Total Workspace

R006 = R06; % R06 is stored in R006 fot the purpose of calucatinj
Jacobian
P=[A06(1,1);A06(1,2);A06(1,3);A06(2,1);A06(2,2);A06(2,3);A06(3,1);A06(3,
2);A06(3,3);A06(1,4);A06(2,4);A06(3,4)];

% P = A06(:,4);

168

syms q1 q2 q3 q4 q5 q6
if (Link_1)==0;
P=subs(P, theta1, q1);
R06=subs(R06,theta1,q1);
else
P=subs(P, d1, q1);
R06=subs(R06,d1,q1);
end

if (Link_2)==0;
P=subs(P, theta2, q2);
R06=subs(R06,theta2,q2);
else
P=subs(P, d2, q2);
R06=subs(R06,d2,q2);
end

if (Link_3)==0;
P=subs(P, theta3, q3);
R06=subs(R06,theta3,q3);
else
P=subs(P, d3, q3);
R06=subs(R06,d3,q3);
end

if (Link_4)==0;
P=subs(P, theta4, q4);
R06=subs(R06,theta4,q4);
else
P=subs(P, d4, q4);
R06=subs(R06,d4,q4);
end

if (Link_5)==0;
P=subs(P, theta5, q5);
R06=subs(R06,theta5,q5);
else
P=subs(P, d5, q5);
R06=subs(R06,d5,q5);
end

if (Link_6)==0;
P=subs(P, theta6, q6);
R06=subs(R06,theta6,q6);
else
P=subs(P, d6, q6);
R06=subs(R06,d6,q6);
end

%Plotting position and orientation
steps = 10;
q1_range = linspace(q1_min, q1_max,steps)';
q2_range = linspace(q2_min, q2_max,steps)';
q3_range = linspace(q3_min, q3_max,steps)';
q4_range = linspace(q4_min, q4_max,steps)';
q5_range = linspace(q5_min, q5_max,steps)';

169

q6_range = linspace(q6_min, q6_max,steps)';

angle_config =combvec (q1_range', q2_range', q3_range', q4_range',
q5_range', q6_range')';
fwdkin=zeros((steps)^6,12); % Change if the number of joints change
Q_sym=[q1 q2 q3 q4 q5 q6];

for i=1:length(angle_config)
 Q_set=angle_config(i,:);
 fwdkin(i,:)= double(subs(P,Q_sym,Q_set));
end

K1= [angle_config fwdkin];
% All Angle configurations
Q1 =K1(:,1)';
Q2 =K1(:,2)';
Q3 =K1(:,3)';
Q4 =K1(:,4)';
Q5 =K1(:,5)';
Q6 =K1(:,6)';

% All Orientations about x,y,z
x_x =K1(:,7)';
x_y =K1(:,8)';
x_z =K1(:,9)';
y_x =K1(:,10)';
y_y =K1(:,11)';
y_z =K1(:,12)';
z_x =K1(:,13)';
z_y =K1(:,14)';
z_z =K1(:,15)';

% Cartesian Coordinates x,y,z
x =K1(:,16)';
y =K1(:,17)';
z =K1(:,18)';

figure(1)
subplot(2,2,1);
plot3(x',y',z','o','MarkerSize',15,'MarkerEdgeColor','k','MarkerFaceColo
r','w','LineWidth',2);
grid on;
set(gca,'fontsize',20)
xlabel('X (m)','FontSize',20);
ylabel('Y (m)','FontSize',20);
title('Workspace Top View','FontSize',20);
view([0 90]) % X-Y

subplot(2,2,2);
plot3(x',y',z','o','MarkerSize',15,'MarkerEdgeColor','k','MarkerFaceColo
r','w','LineWidth',2);
grid on;
set(gca,'fontsize',20)
xlabel('X (m)','FontSize',20);
ylabel('Y (m)','FontSize',20);

170

zlabel('Z (m)','FontSize',20);
title('Total Workspace of Robot','FontSize',20);
view([45 45 45]) % X-Y-Z

subplot(2,2,3);
plot3(x',y',z','o','MarkerSize',15,'MarkerEdgeColor','k','MarkerFaceColo
r','w','LineWidth',2);
grid on;
set(gca,'fontsize',20)
xlabel('X (m)','FontSize',20);
zlabel('Z (m)','FontSize',20);
title('Workspace Front View','FontSize',20);
view([0 0]) % X-Z

subplot(2,2,4);
plot3(x',y',z','o','MarkerSize',15,'MarkerEdgeColor','k','MarkerFaceColo
r','w','LineWidth',2);
grid on;
set(gca,'fontsize',20)
ylabel('Y (m)','FontSize',20);
zlabel('Z (m)','FontSize',20);
title('Workspace Right View','FontSize',20);
view([90 0]); % Y-Z

% Neural Network Inputs and Targets for training the network
% Step 1: Normalizing all inputs and targets between [-1,1] for IK Soln
[q1_n,PS1] = mapminmax(Q1);
[q2_n,PS2] = mapminmax(Q2);
[q3_n,PS3] = mapminmax(Q3);
[q4_n,PS4] = mapminmax(Q4);
[q5_n,PS5] = mapminmax(Q5);
[q6_n,PS6] = mapminmax(Q6);

[x_x_n,PS7] = mapminmax(x_x);
[x_y_n,PS8] = mapminmax(x_y);
[x_z_n,PS9] = mapminmax(x_z);

[y_x_n,PS10] = mapminmax(y_x);
[y_y_n,PS11] = mapminmax(y_y);
[y_z_n,PS12] = mapminmax(y_z);

[z_x_n,PS13] = mapminmax(z_x);
[z_y_n,PS14] = mapminmax(z_y);
[z_z_n,PS15] = mapminmax(z_z);

[x_n,PS16] = mapminmax(x);
[y_n,PS17] = mapminmax(y);
[z_n,PS18] = mapminmax(z);

input =[x_x_n; x_y_n; x_z_n; y_x_n; y_y_n; y_z_n; z_x_n; z_y_n; z_z_n;
x_n; y_n; z_n];
target =[q1_n; q2_n; q3_n; q4_n; q5_n; q6_n];

% Solve an Input-Output Fitting problem with a Neural Network
% This script assumes these variables are defined:

171

%
% input - input data.
% target - target data.

inputs = input;
targets = target;

% Create a Fitting Network
hiddenLayerSize = [55];
net = fitnet(hiddenLayerSize);

% Choose Input and Output Pre/Post-Processing Functions
% For a list of all processing functions type: help nnprocess
net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};
net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'};

% Setup Division of Data for Training, Validation, Testing
% For a list of all data division functions type: help nndivide
net.divideFcn = 'dividerand'; % Divide data randomly
net.divideMode = 'sample'; % Divide up every sample
net.divideParam.trainRatio = 80/100;
net.divideParam.valRatio = 10/100;
net.divideParam.testRatio = 10/100;

% For help on training function 'trainlm' type: help trainlm
% For a list of all training functions type: help nntrain
net.trainFcn = 'trainlm'; % Levenberg-Marquardt

% Choose a Performance Function
% For a list of all performance functions type: help nnperformance
net.performFcn = 'mse'; % Mean squared error

% Choose Plot Functions
% For a list of all plot functions type: help nnplot
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ...
 'plotregression', 'plotfit'};

% Train the Network
[net,tr] = train(net,inputs,targets);
%Display network weights and bias values
disp 'Input weights ='
net.iw{1,1}
disp 'Layer weights ='
net.lw{2,1}
disp 'Input bias ='
net.b{1}
disp 'Layer bias ='
net.b{2}

%Display network Training parameters
% disp 'Training parameters ='
net.trainParam;

172

% Test the Network
outputs = net(inputs);
errors = gsubtract(targets,outputs);
format short;
Network_Performance = perform(net,targets,outputs)

% Recalculate Training, Validation and Test Performance
trainTargets = targets .* tr.trainMask{1};
valTargets = targets .* tr.valMask{1};
testTargets = targets .* tr.testMask{1};

Training_Performance = perform(net,trainTargets,outputs)
Validation_Performance = perform(net,valTargets,outputs)
Testing_Performance = perform(net,testTargets,outputs)

% View the Network
view(net)

% Plots
% Uncomment these lines to enable various plots.
% figure, plotperform(tr)
% figure, plottrainstate(tr)
% figure, plotfit(net,inputs,targets)
% figure, plotregression(targets,outputs)
% figure, ploterrhist(errors)

format bank;
% Compare target with network output for IK
q1_np = mapminmax('reverse',outputs(1,:),PS1);
q2_np = mapminmax('reverse',outputs(2,:),PS2);
q3_np = mapminmax('reverse',outputs(3,:),PS3);
q4_np = mapminmax('reverse',outputs(4,:),PS4);
q5_np = mapminmax('reverse',outputs(5,:),PS5);
q6_np = mapminmax('reverse',outputs(6,:),PS6);

figure(2)
subplot(3,2,1);
plot(q1_np,'o','MarkerSize',10,'MarkerEdgeColor','b','MarkerFaceColor','
b','LineWidth',2);
hold all
plot(Q1,'o','MarkerSize',10,'MarkerEdgeColor','g','MarkerFaceColor','g',
'LineWidth',2);
grid on;
set(gca,'fontsize',20)
xlabel('(Dataset Length)','FontSize',20)
ylabel('Joint Variable 1 (rad)','FontSize',20)
title('ANN Accuracy for Joint 1 Inverse Kinematics','FontSize',20)
legend('Predicted','Target')

subplot(3,2,2);
plot(q2_np,'o','MarkerSize',10,'MarkerEdgeColor','b','MarkerFaceColor','
b','LineWidth',2);
hold all

173

plot(Q2,'o','MarkerSize',10,'MarkerEdgeColor','g','MarkerFaceColor','g',
'LineWidth',2);
grid on;
set(gca,'fontsize',20)
xlabel('(Dataset Length)','FontSize',20)
ylabel('Joint Variable 2 (rad)','FontSize',20)
title('ANN Accuracy for Joint 2 Inverse Kinematics','FontSize',20)
legend('Predicted','Target')

subplot(3,2,3);
plot(q3_np,'o','MarkerSize',10,'MarkerEdgeColor','b','MarkerFaceColor','
b','LineWidth',2);
hold all
plot(Q3,'o','MarkerSize',10,'MarkerEdgeColor','g','MarkerFaceColor','g',
'LineWidth',2);
grid on;
set(gca,'fontsize',20)
xlabel('(Dataset Length)','FontSize',20)
ylabel('Joint Variable 3 (rad)','FontSize',20)
title('ANN Accuracy for Joint 3 Inverse Kinematics','FontSize',20)
legend('Predicted','Target')

subplot(3,2,4);
plot(q4_np,'o','MarkerSize',10,'MarkerEdgeColor','b','MarkerFaceColor','
b','LineWidth',2);
hold all
plot(Q4,'o','MarkerSize',10,'MarkerEdgeColor','g','MarkerFaceColor','g',
'LineWidth',2);
grid on;
set(gca,'fontsize',20)
xlabel('(Dataset Length)','FontSize',20)
ylabel('Joint Variable 4 (rad)','FontSize',20)
title('ANN Accuracy for Joint 4 Inverse Kinematics','FontSize',20)
legend('Predicted','Target')

subplot(3,2,5);
plot(q5_np,'o','MarkerSize',10,'MarkerEdgeColor','b','MarkerFaceColor','
b','LineWidth',2);
hold all
plot(Q5,'o','MarkerSize',10,'MarkerEdgeColor','g','MarkerFaceColor','g',
'LineWidth',2);
grid on;
set(gca,'fontsize',20)
xlabel('(Dataset Length)','FontSize',20)
ylabel('Joint Variable 5 (rad)','FontSize',20)
title('ANN Accuracy for Joint 5 Inverse Kinematics','FontSize',20)
legend('Predicted','Target')

subplot(3,2,6);
plot(q6_np,'o','MarkerSize',10,'MarkerEdgeColor','b','MarkerFaceColor','
b','LineWidth',2);
hold all
plot(Q6,'o','MarkerSize',10,'MarkerEdgeColor','g','MarkerFaceColor','g',
'LineWidth',2);
grid on;
set(gca,'fontsize',20)

174

xlabel('(Dataset Length)','FontSize',20)
ylabel('Joint Variable 6 (rad)','FontSize',20)
title('ANN Accuracy for Joint 6 Inverse Kinematics','FontSize',20)
legend('Predicted','Target')

% Residual Error Plot
figure(3)
subplot(3,2,1);
plot(abs(Q1-q1_np),'-r','LineWidth',2);
hold all
grid on;
set(gca,'fontsize',20)
% axis([0 800 0 4.5])
axis([0 800 0 0.01])
xlabel('(Dataset Length)','FontSize',20)
ylabel('Residual Error (rad)','FontSize',20)
title('Residual Error for Joint 1 Inverse Kinematics','FontSize',20)
legend('Error = |Target - Predicted|')

subplot(3,2,2);
plot(abs(Q2-q2_np),'-r','LineWidth',2);
hold all
grid on;
set(gca,'fontsize',20)
% axis([0 800 0 4.5])
axis([0 800 0 0.01])
xlabel('(Dataset Length)','FontSize',20)
ylabel('Residual Error (rad)','FontSize',20)
title('Residual Error for Joint 2 Inverse Kinematics','FontSize',20)
legend('Error = |Target - Predicted|')

subplot(3,2,3);
plot(abs(Q3-q3_np),'-r','LineWidth',2);
hold all
grid on;
set(gca,'fontsize',20)
% axis([0 800 0 4.5])
axis([0 800 0 0.01])
xlabel('(Dataset Length)','FontSize',20)
ylabel('Residual Error (rad)','FontSize',20)
title('Residual Error for Joint 3 Inverse Kinematics','FontSize',20)
legend('Error = |Target - Predicted|')

subplot(3,2,4);
plot(abs(Q4-q4_np),'-r','LineWidth',2);
hold all
grid on;
set(gca,'fontsize',20)
% axis([0 800 0 4.5])
axis([0 800 0 0.01])
xlabel('(Dataset Length)','FontSize',20)
ylabel('Residual Error (rad)','FontSize',20)
title('Residual Error for Joint 4 Inverse Kinematics','FontSize',20)
legend('Error = |Target - Predicted|')

subplot(3,2,5);

175

plot(abs(Q5-q5_np),'-r','LineWidth',2);
hold all
grid on;
set(gca,'fontsize',20)
% axis([0 800 0 4.5])
axis([0 800 0 0.01])
xlabel('(Dataset Length)','FontSize',20)
ylabel('Residual Error (rad)','FontSize',20)
title('Residual Error for Joint 5 Inverse Kinematics','FontSize',20)
legend('Error = |Target - Predicted|')

subplot(3,2,6);
plot(abs(Q6-q6_np),'-r','LineWidth',2);
hold all
grid on;
set(gca,'fontsize',20)
% axis([0 800 0 4.5])
axis([0 800 0 0.01])
xlabel('(Dataset Length)','FontSize',20)
ylabel('Residual Error (rad)','FontSize',20)
title('Residual Error for Joint 6 Inverse Kinematics','FontSize',20)
legend('Error = |Target - Predicted|')

% Angular and Linear Velocities

% Joint Angular Velocities
syms pi;

format bank;
qdot01=[0;0;q1dot];
qdot12=[0;0;q2dot];
qdot23=[0;0;q3dot];
qdot34=[0;0;q4dot];
qdot45=[0;0;q5dot];
qdot56=[0;0;q6dot];

omega000=[0;0;0];
v000=[0;0;0];

if Link_1==0
omega101=simplify(R10*(omega000+qdot01));
v101=simplify((R10*v000)+cross(omega101,(R10*P01)));
else
omega101=simplify(R10*(omega000));
v101=simplify((R10*v000)+cross(omega000,(R10*P01))+(R10*qdot01));
end

if Link_2==0
omega202=simplify(R21*(omega101+qdot12));
v202=simplify((R21*v101)+cross(omega202,(R21*P12)));
else
omega202=simplify(R21*omega101);
v202=simplify((R21*v101)+cross(omega101,(R21*P12))+(R21*qdot12));
end

176

if Link_3==0
omega303=simplify(R32*(omega202+qdot23));
v303=simplify((R32*v202)+cross(omega303,(R32*P23)));
else
omega303=simplify(R32*(omega202));
v303=simplify((R32*v202)+cross(omega202,(R32*P23))+(R32*qdot23));
end

if Link_4==0
omega404=simplify(R43*(omega303+qdot34));
v404=simplify((R43*v303)+cross(omega404,(R43*P34)));
else
omega404=simplify(R43*(omega303));
v404=simplify((R43*v303)+cross(omega303,(R43*P34))+(R43*qdot34));
end

if Link_5==0
omega505=simplify(R54*(omega404+qdot45));
v505=simplify((R54*v404)+cross(omega505,(R54*P45)));
else
omega505=simplify(R54*(omega404));
v505=simplify((R54*v404)+cross(omega404,(R54*P45))+(R54*qdot45));
end

if Link_6==0
omega606=simplify(R65*(omega505+qdot56));
v606=simplify((R65*v505)+cross(omega606,(R65*P56)));
else
omega606=simplify(R65*(omega505));
v606=simplify((R65*v505)+cross(omega505,(R65*P56))+(R65*qdot56));
end

disp('Jacobian in Base Frame')
VE=[v606;omega606];
J_Variable=[q1dot;q2dot;q3dot;q4dot;q5dot;q6dot];
JE=jacobian(VE,J_Variable);
JBv=simplify(R006*[JE(1,1) JE(1,2) JE(1,3) JE(1,4) JE(1,5)
JE(1,6);JE(2,1) JE(2,2) JE(2,3) JE(2,4) JE(2,5) JE(2,6);JE(3,1) JE(3,2)
JE(3,3) JE(3,4) JE(3,5) JE(3,6)]);
JBw=simplify(R006*[JE(4,1) JE(4,2) JE(4,3) JE(4,4) JE(4,5)
JE(4,6);JE(5,1) JE(5,2) JE(5,3) JE(5,4) JE(5,5) JE(5,6);JE(6,1) JE(6,2)
JE(6,3) JE(6,4) JE(6,5) JE(6,6)]);
JB=[JBv;JBw];
J11=[JB(1,1) JB(1,2) JB(1,3); JB(2,1) JB(2,2) JB(2,3); JB(3,1) JB(3,2)
JB(3,3)];
J22=[JB(4,4) JB(4,5) JB(4,6); JB(5,4) JB(5,5) JB(5,6); JB(6,4) JB(6,5)
JB(6,6)];
disp(vpa(JB,5))

%Z_Integers , Q_ = Rational Numbers , R_ = Real Numbers, C_ = Complex
Numbers

if a4+a4+a6==0
 disp('Jacobian Subset J11')

177

 disp(vpa(J11,5))
 disp('Jacobian Subset J22')
 disp(vpa(J22,5))
 S1=simplify(det(J11));
 S2=simplify(det(J22));
 fprintf(2,'Singularity Equation\n')
 fprintf(2,'The Robot has a Wrist Configuration\n')
 if S1==0
 fprintf(2,'Robot always has a Forearm Singularity\n')
 else
 fprintf(2,'Forearm Singularity Equation\n')
 disp(S1)

 SE1=
solve(S1==0,t1,t2,t3,t4,t5,t6,'Real',true,'IgnoreProperties',true,'Ignor
eAnalyticConstraints', true);
 if Link_1==0
 t101=SE1.theta1;
 else
 t101=SE1.d1;
 end

 if Link_2==0
 t102=SE1.theta2;
 else
 t102=SE1.d2;
 end

 if Link_3==0
 t103=SE1.theta3;
 else
 t103=SE1.d3;
 end

 if Link_4==0
 t104=SE1.theta4;
 else
 t104=SE1.d4;
 end

 if Link_5==0
 t105=SE1.theta5;
 else
 t105=SE1.d5;
 end

 if Link_6==0
 t106=SE1.theta6;
 else
 t106=SE1.d6;
 end
 fprintf(2,'Forearm Singularity Solution(s)\n')
 SE1 = [t101 t102 t103 t104 t105 t106]
 end

178

 if S2==0
 fprintf(2,'Robot always has a Wrist Singularity\n')
 else
 fprintf(2,'Wrist Singularity Equation\n')
 disp(S2)
 SE2=
solve(S2==0,t1,t2,t3,t4,t5,t6,'Real',true,'IgnoreProperties',true,'Ignor
eAnalyticConstraints', true);
 if Link_1==0
 t201=SE2.theta1;
 else
 t201=SE2.d1;
 end

 if Link_2==0
 t202=SE2.theta2;
 else
 t202=SE2.d2;
 end

 if Link_3==0
 t203=SE2.theta3;
 else
 t203=SE2.d3;
 end

 if Link_4==0
 t204=SE2.theta4;
 else
 t204=SE2.d4;
 end

 if Link_5==0
 t205=SE2.theta5;
 else
 t205=SE2.d5;
 end

 if Link_6==0
 t206=SE2.theta6;
 else
 t206=SE2.d6;
 end
 fprintf(2,'Wrist Singularity Solution(s)\n')
 SE2 = [t201 t202 t203 t204 t205 t206]
 end

else
 S3=simplify(det(JB));
 if S3==0
% fprintf(2,'Robot is always Singular\n')
 else
 disp(S3)
 end

179

 fprintf(2,'Singularity Equation\n')
 SE3=
solve(S3==0,t1,t2,t3,t4,t5,t6,'Real',true,'IgnoreProperties',true,'Ignor
eAnalyticConstraints', true);
 if Link_1==0
 t301=SE3.theta1;
 else
 t301=SE3.d1;
 end

 if Link_2==0
 t302=SE3.theta2;
 else
 t302=SE3.d2;
 end

 if Link_3==0
 t303=SE3.theta3;
 else
 t303=SE3.d3;
 end

 if Link_4==0
 t304=SE3.theta4;
 else
 t304=SE3.d4;
 end

 if Link_5==0
 t305=SE3.theta5;
 else
 t305=SE3.d5;
 end

 if Link_6==0
 t306=SE3.theta6;
 else
 t306=SE3.d6;
 end

 fprintf(2,' Singularity Solution(s)\n')

 SE3 = [t301 t302 t303 t304 t305 t306]
end

 %Plotting Singularity
 q1_range_new = q1_range;
 q2_range_new = 0;
 q3_range_new = q3_range;
 q4_range_new = q4_range;
 q5_range_new = q5_range; %change fwd_kin dimension
 q6_range_new = q6_range;

angle_config_s =combvec (q1_range_new', q2_range_new', q3_range_new',
q4_range_new', q5_range_new', q6_range_new')';

180

fwdkin_s=zeros((steps)^5,12); % change every time
Q_sym=[q1 q2 q3 q4 q5 q6];

for i=1:length(angle_config_s)
 Q_set_s=angle_config_s(i,:);
 fwdkin_s(i,:)= double(subs(P,Q_sym,Q_set_s));
end

K_s= [angle_config_s fwdkin_s];
[~, loc_s] = unique(K_s(:,16:18),'rows');
K1_s=K_s(loc_s,:);

% All Angle configurations
Q1_s =K1_s(:,1)';
Q2_s =K1_s(:,2)';
Q3_s =K1_s(:,3)';
Q4_s =K1_s(:,4)';
Q5_s =K1_s(:,5)';
Q6_s =K1_s(:,6)';

% All Orientations about x,y,z
x_x_s =K1_s(:,7)';
x_y_s =K1_s(:,8)';
x_z_s =K1_s(:,9)';
y_x_s =K1_s(:,10)';
y_y_s =K1_s(:,11)';
y_z_s =K1_s(:,12)';
z_x_s =K1_s(:,13)';
z_y_s =K1_s(:,14)';
z_z_s =K1_s(:,15)';

% Cartesian Coordinates x,y,z
x_s =K1_s(:,16)';
y_s =K1_s(:,17)';
z_s =K1_s(:,18)';

figure(5)
subplot(2,2,1);
plot3(x',y',z','o','MarkerSize',15,'MarkerEdgeColor','k','MarkerFaceColo
r','w','LineWidth',2);
hold all
plot3(x_s',y_s',z_s','o','MarkerSize',15,'MarkerEdgeColor','r','MarkerFa
ceColor','r','LineWidth',2);
grid on;
set(gca,'fontsize',20)
xlabel('X (m)','FontSize',20);
ylabel('Y (m)','FontSize',20);
title('Functional Workspace Top View','FontSize',20);
legend('Workspace','Singularity Space')
view([0 90]) % X-Y

subplot(2,2,2);
plot3(x',y',z','o','MarkerSize',15,'MarkerEdgeColor','k','MarkerFaceColo
r','w','LineWidth',2);

181

hold all
plot3(x_s',y_s',z_s','o','MarkerSize',15,'MarkerEdgeColor','r','MarkerFa
ceColor','r','LineWidth',2);
grid on;
set(gca,'fontsize',20)
xlabel('X (m)','FontSize',20);
ylabel('Y (m)','FontSize',20);
zlabel('Z (m)','FontSize',20);
title('Functional Workspace of Robot','FontSize',20);
legend('Workspace','Singularity Space')
view([45 45 45]) % X-Y-Z

subplot(2,2,3);
plot3(x',y',z','o','MarkerSize',15,'MarkerEdgeColor','k','MarkerFaceColo
r','w','LineWidth',2);
hold all
plot3(x_s',y_s',z_s','o','MarkerSize',15,'MarkerEdgeColor','r','MarkerFa
ceColor','r','LineWidth',2);
grid on;
set(gca,'fontsize',20)
xlabel('X (m)','FontSize',20);
zlabel('Z (m)','FontSize',20);
title('Functional Workspace Front View','FontSize',20);
legend('Workspace','Singularity Space')
view([0 0]) % X-Z

subplot(2,2,4);
plot3(x',y',z','o','MarkerSize',15,'MarkerEdgeColor','k','MarkerFaceColo
r','w','LineWidth',2);
hold all
plot3(x_s',y_s',z_s','o','MarkerSize',15,'MarkerEdgeColor','r','MarkerFa
ceColor','r','LineWidth',2);
grid on;
set(gca,'fontsize',20)
ylabel('Y (m)','FontSize',20);
zlabel('Z (m)','FontSize',20);
title('Functional Workspace Right View','FontSize',20);
legend('Workspace','Singularity Space')
view([90 0]); % Y-Z

% Neural Network Inputs and Targets for training the network
% Step 1: Normalizing all inputs and targets between [-1,1] for IK Soln

q1_n_s = mapminmax('apply',Q1_s,PS1);
q2_n_s = mapminmax('apply',Q2_s,PS2);
q3_n_s = mapminmax('apply',Q3_s,PS3);
q4_n_s = mapminmax('apply',Q4_s,PS4);
q5_n_s = mapminmax('apply',Q5_s,PS5);
q6_n_s = mapminmax('apply',Q6_s,PS6);

x_x_n_s = mapminmax('apply',x_x_s,PS7);
x_y_n_s = mapminmax('apply',x_y_s,PS8);
x_z_n_s = mapminmax('apply',x_z_s,PS9);

182

y_x_n_s = mapminmax('apply',y_x_s,PS10);
y_y_n_s = mapminmax('apply',y_y_s,PS11);
y_z_n_s = mapminmax('apply',y_z_s,PS12);

z_x_n_s = mapminmax('apply',z_x_s,PS13);
z_y_n_s = mapminmax('apply',z_y_s,PS14);
z_z_n_s = mapminmax('apply',z_z_s,PS15);

x_n_s = mapminmax('apply',x_s,PS16);
y_n_s = mapminmax('apply',y_s,PS17);
z_n_s = mapminmax('apply',z_s,PS18);

input_s =[x_x_n_s; x_y_n_s; x_z_n_s; y_x_n_s; y_y_n_s; y_z_n_s; z_x_n_s;
z_y_n_s; z_z_n_s; x_n_s; y_n_s; z_n_s];
target_s =[q1_n_s; q2_n_s; q3_n_s; q4_n_s; q5_n_s; q6_n_s];

%Simulate network with test data

outputs_p = sim(net,input_s);

q1_p = mapminmax('reverse',outputs_p(1,:),PS1);
q2_p = mapminmax('reverse',outputs_p(2,:),PS2);
q3_p = mapminmax('reverse',outputs_p(3,:),PS3);
q4_p = mapminmax('reverse',outputs_p(4,:),PS4);
q5_p = mapminmax('reverse',outputs_p(5,:),PS5);
q6_p = mapminmax('reverse',outputs_p(6,:),PS6);
angle_config_p = [q1_p', q2_p', q3_p' q4_p', q5_p', q6_p'];

fwdkin_p=zeros(length(input_s),12); % change every time
% fwdkin_p=zeros((steps)^5,12); % change every time
Q_sym=[q1 q2 q3 q4 q5 q6];

for i=1:length(angle_config_p)
 Q_set_p=angle_config_p(i,:);
 fwdkin_p(i,:)= double(subs(P,Q_sym,Q_set_p));
end

K_p= [angle_config_p fwdkin_p];
[~, loc] = unique(K_p(:,16:18),'rows');
K1_p=K_p(loc,:);

% All Angle configurations
Q1_p =K1_p(:,1)';
Q2_p =K1_p(:,2)';
Q3_p =K1_p(:,3)';
Q4_p =K1_p(:,4)';
Q5_p =K1_p(:,5)';
Q6_p =K1_p(:,6)';

% All Orientations about x,y,z
x_x_p =K1_p(:,7)';
x_y_p =K1_p(:,8)';
x_z_p =K1_p(:,9)';
y_x_p =K1_p(:,10)';
y_y_p =K1_p(:,11)';

183

y_z_p =K1_p(:,12)';
z_x_p =K1_p(:,13)';
z_y_p =K1_p(:,14)';
z_z_p =K1_p(:,15)';

% Cartesian Coordinates x,y,z

x_p =K1_p(:,16)';
y_p =K1_p(:,17)';
z_p =K1_p(:,18)';

figure(6)
subplot(2,2,1)
plot3(x_p',y_p',z_p','o','MarkerSize',20,'MarkerEdgeColor','b','MarkerFa
ceColor','b','LineWidth',2);
hold all
plot3(x_s',y_s',z_s','o','MarkerSize',20,'MarkerEdgeColor','r','MarkerFa
ceColor','r','LineWidth',2);
grid on;
set(gca,'fontsize',20)
xlabel('X (m)','FontSize',20);
ylabel('Y (m)','FontSize',20);
title('ANN Singularity Top View','FontSize',20)
legend('Predicted Singularity','Theoretical Singularity')
view([0 90]) % X-Y

subplot(2,2,2);
plot3(x_p',y_p',z_p','o','MarkerSize',20,'MarkerEdgeColor','b','MarkerFa
ceColor','b','LineWidth',2);
hold all
plot3(x_s',y_s',z_s','o','MarkerSize',20,'MarkerEdgeColor','r','MarkerFa
ceColor','r','LineWidth',2);
grid on;
set(gca,'fontsize',20)
xlabel('X (m)','FontSize',20);
ylabel('Y (m)','FontSize',20);
zlabel('Z (m)','FontSize',20);
title('ANN Predicted Singularity vs Theoretical
Singularity','FontSize',20)
legend('Predicted Singularity','Theoretical Singularity')
view([45 45 45]) % X-Y-Z

subplot(2,2,3);
plot3(x_p',y_p',z_p','o','MarkerSize',20,'MarkerEdgeColor','b','MarkerFa
ceColor','b','LineWidth',2);
hold all
plot3(x_s',y_s',z_s','o','MarkerSize',20,'MarkerEdgeColor','r','MarkerFa
ceColor','r','LineWidth',2);
grid on;
set(gca,'fontsize',20)
xlabel('X (m)','FontSize',20);
zlabel('Z (m)','FontSize',20);
title('ANN Singularity Front View','FontSize',20)
legend('Predicted Singularity','Theoretical Singularity')
view([0 0]) % X-Z

184

subplot(2,2,4);
plot3(x_p',y_p',z_p','o','MarkerSize',20,'MarkerEdgeColor','b','MarkerFa
ceColor','b','LineWidth',2);
hold all
plot3(x_s',y_s',z_s','o','MarkerSize',20,'MarkerEdgeColor','r','MarkerFa
ceColor','r','LineWidth',2);
grid on;
set(gca,'fontsize',20)
ylabel('Y (m)','FontSize',20);
zlabel('Z (m)','FontSize',20);
title('ANN Singularity Right View','FontSize',20)
legend('Predicted Singularity','Theoretical Singularity')
view([90 0]); % Y-Z

% Absolute Error
E_q1_p_s = abs(Q1_s'-q1_p');
E_q2_p_s = abs(Q2_s'-q2_p');
E_q3_p_s = abs(Q3_s'-q3_p');
E_q4_p_s = abs(Q4_s'-q4_p');
E_q5_p_s = abs(Q5_s'-q5_p');
E_q6_p_s = abs(Q6_s'-q6_p');

E_x_x_p_s = abs(x_x_s' - x_x_p')';
E_x_y_p_s = abs(x_y_s' - x_y_p')';
E_x_z_p_s = abs(x_z_s' - x_z_p')';
E_y_x_p_s = abs(y_x_s' - y_x_p')';
E_y_y_p_s = abs(y_y_s' - y_y_p')';
E_y_z_p_s = abs(y_z_s' - y_z_p')';
E_z_x_p_s = abs(z_x_s' - z_x_p')';
E_z_y_p_s = abs(z_y_s' - z_y_p')';
E_z_z_p_s = abs(z_z_s' - z_z_p')';

E_x_p_s = abs(x_s' - x_p')';
E_y_p_s = abs(y_s' - y_p')';
E_z_p_s = abs(z_s' - z_p')';
disp('Absolute Errors in Joint Space')
disp(['Max Error in Joint 1 = ' num2str(max(E_q1_p_s),2) ' Min Error
in Joint 1 = ' num2str(min(E_q1_p_s),2)])
disp(['Max Error in Joint 2 = ' num2str(max(E_q2_p_s),2) ' Min Error
in Joint 2 = ' num2str(min(E_q2_p_s),2)])
disp(['Max Error in Joint 3 = ' num2str(max(E_q3_p_s),2) ' Min Error
in Joint 3 = ' num2str(min(E_q3_p_s),2)])
disp(['Max Error in Joint 4 = ' num2str(max(E_q4_p_s),2) ' Min
Error in Joint 4 = ' num2str(min(E_q4_p_s),2)])
disp(['Max Error in Joint 5 = ' num2str(max(E_q5_p_s),2) ' Min
Error in Joint 5 = ' num2str(min(E_q5_p_s),2)])
disp(['Max Error in Joint 6 = ' num2str(max(E_q6_p_s),2) ' Min
Error in Joint 6 = ' num2str(min(E_q6_p_s),2)])

disp('Absolute Errors in Cartesian Space')
disp(['Max Error in x-x = ' num2str(max(E_x_x_p_s),2) ' Min
Error in x-x = ' num2str(min(E_x_x_p_s),2)])
disp(['Max Error in x-y = ' num2str(max(E_x_y_p_s),2) ' Min Error
in x-y = ' num2str(min(E_x_y_p_s),2)])
disp(['Max Error in x-z = ' num2str(max(E_x_z_p_s),2) ' Min
Error in x-z = ' num2str(min(E_x_z_p_s),2)])

185

disp(['Max Error in y-x = ' num2str(max(E_y_x_p_s),2) ' Min
Error in y-x = ' num2str(min(E_y_x_p_s),2)])
disp(['Max Error in y-y = ' num2str(max(E_y_y_p_s),2) ' Min
Error in y-y = ' num2str(min(E_y_y_p_s),2)])
disp(['Max Error in y-z = ' num2str(max(E_y_z_p_s),2) ' Min
Error in y-z = ' num2str(min(E_y_z_p_s),2)])
disp(['Max Error in z-x = ' num2str(max(E_z_x_p_s),2) ' Min Error
in z-x = ' num2str(min(E_z_x_p_s),2)])
disp(['Max Error in z-y = ' num2str(max(E_z_y_p_s),2) ' Min
Error in z-y = ' num2str(min(E_z_y_p_s),2)])
disp(['Max Error in z-z = ' num2str(max(E_z_z_p_s),2) ' Min
Error in z-z = ' num2str(min(E_z_z_p_s),2)])
disp(['Max Error in x = ' num2str(max(E_x_p_s),2) ' Min
Error in x = ' num2str(min(E_x_p_s),2)])
disp(['Max Error in y = ' num2str(max(E_y_p_s),2) ' Min
Error in y = ' num2str(min(E_y_p_s),2)])
disp(['Max Error in z = ' num2str(max(E_z_p_s),2) ' Min
Error in z = ' num2str(min(E_z_p_s),2)])

disp('Absolute Errors in Joint Space')
disp(['Average Error in Joint 1 = ' num2str(mean(E_q1_p_s),2)])
disp(['Average Error in Joint 2 = ' num2str(mean(E_q2_p_s),2)])
disp(['Average Error in Joint 3 = ' num2str(mean(E_q3_p_s),2)])
disp(['Average Error in Joint 4 = ' num2str(mean(E_q4_p_s),2)])
disp(['Average Error in Joint 5 = ' num2str(mean(E_q5_p_s),2)])
disp(['Average Error in Joint 6 = ' num2str(mean(E_q6_p_s),2)])

figure(7)
subplot(3,2,1);
plot(q1_p,'o','MarkerSize',10,'MarkerEdgeColor','b','MarkerFaceColor','b
','LineWidth',2);
hold all
plot(Q1_s,'o','MarkerSize',10,'MarkerEdgeColor','g','MarkerFaceColor','g
','LineWidth',2);
grid on;
set(gca,'fontsize',20)
xlabel('(Dataset Length)','FontSize',20)
ylabel('Joint Variable 1 (rad)','FontSize',20)
title('ANN Accuracy for Joint 1 Singularity Prediction','FontSize',20)
legend('Predicted','Target')

subplot(3,2,2);
plot(q2_p,'o','MarkerSize',10,'MarkerEdgeColor','b','MarkerFaceColor','b
','LineWidth',2);
hold all
plot(Q2_s,'o','MarkerSize',10,'MarkerEdgeColor','g','MarkerFaceColor','g
','LineWidth',2);
grid on;
set(gca,'fontsize',20)
xlabel('(Dataset Length)','FontSize',20)
ylabel('Joint Variable 2 (rad)','FontSize',20)
title('ANN Accuracy for Joint 2 Singularity Prediction','FontSize',20)
legend('Predicted','Target')

subplot(3,2,3);

186

plot(q3_p,'o','MarkerSize',10,'MarkerEdgeColor','b','MarkerFaceColor','b
','LineWidth',2);
hold all
plot(Q3_s,'o','MarkerSize',10,'MarkerEdgeColor','g','MarkerFaceColor','g
','LineWidth',2);
grid on;
set(gca,'fontsize',20)
xlabel('(Dataset Length)','FontSize',20)
ylabel('Joint Variable 3 (rad)','FontSize',20)
title('ANN Accuracy for Joint 3 Singularity Prediction','FontSize',20)
legend('Predicted','Target')

subplot(3,2,4);
plot(q4_p,'o','MarkerSize',10,'MarkerEdgeColor','b','MarkerFaceColor','b
','LineWidth',2);
hold all
plot(Q4_s,'o','MarkerSize',10,'MarkerEdgeColor','g','MarkerFaceColor','g
','LineWidth',2);
grid on;
set(gca,'fontsize',20)
xlabel('(Dataset Length)','FontSize',20)
ylabel('Joint Variable 4 (rad)','FontSize',20)
title('ANN Accuracy for Joint 4 Singularity Prediction','FontSize',20)
legend('Predicted','Target')

subplot(3,2,5);
plot(q5_p,'o','MarkerSize',10,'MarkerEdgeColor','b','MarkerFaceColor','b
','LineWidth',2);
hold all
plot(Q5_s,'o','MarkerSize',10,'MarkerEdgeColor','g','MarkerFaceColor','g
','LineWidth',2);
grid on;
set(gca,'fontsize',20)
xlabel('(Dataset Length)','FontSize',20)
ylabel('Joint Variable 5 (rad)','FontSize',20)
title('ANN Accuracy for Joint 5 Singularity Prediction','FontSize',20)
legend('Predicted','Target')

subplot(3,2,6);
plot(q6_p,'o','MarkerSize',10,'MarkerEdgeColor','b','MarkerFaceColor','b
','LineWidth',2);
hold all
plot(Q6_s,'o','MarkerSize',10,'MarkerEdgeColor','g','MarkerFaceColor','g
','LineWidth',2);
grid on;
set(gca,'fontsize',20)
xlabel('(Dataset Length)','FontSize',20)
ylabel('Joint Variable 6 (rad)','FontSize',20)
title('ANN Output vs. Target for Joint 6','FontSize',20)
legend('Predicted','Target')

%Residual Error Plot

figure(8)
subplot(3,2,1);
plot(abs(Q1_s-q1_p),'-r','LineWidth',2);

187

hold all
grid on;
set(gca,'fontsize',20)
% axis([0 30 0 4.5])
axis([0 250 0 0.04])
xlabel('(Dataset Length)','FontSize',20)
ylabel('Residual Error (rad)','FontSize',20)
title('Error in ANN Accuracy for Joint 1 Singularity
Prediction','FontSize',20)
legend('Error = |Target - Predicted|')

subplot(3,2,2);
plot(abs(Q2_s-q2_p),'-r','LineWidth',2);
hold all
grid on;
set(gca,'fontsize',20)
% axis([0 30 0 4.5])
axis([0 250 0 0.04])
xlabel('(Dataset Length)','FontSize',20)
ylabel('Residual Error (rad)','FontSize',20)
title('Error in ANN Accuracy for Joint 2 Singularity
Prediction','FontSize',20)
legend('Error = |Target - Predicted|')

subplot(3,2,3);
plot(abs(Q3_s-q3_p),'-r','LineWidth',2);
hold all
grid on;
set(gca,'fontsize',20)
% axis([0 30 0 4.5])
axis([0 250 0 0.04])
xlabel('(Dataset Length)','FontSize',20)
ylabel('Residual Error (rad)','FontSize',20)
title('Error in ANN Accuracy for Joint 3 Singularity
Prediction','FontSize',20)
legend('Error = |Target - Predicted|')

subplot(3,2,4);
plot(abs(Q4_s-q4_p),'-r','LineWidth',2);
hold all
grid on;
set(gca,'fontsize',20)
% axis([0 30 0 4.5])
axis([0 250 0 0.04])
xlabel('(Dataset Length)','FontSize',20)
ylabel('Residual Error (rad)','FontSize',20)
title('Error in ANN Accuracy for Joint 4 Singularity
Prediction','FontSize',20)
legend('Error = |Target - Predicted|')

subplot(3,2,5);
plot(abs(Q5_s-q5_p),'-r','LineWidth',2);
hold all
grid on;
set(gca,'fontsize',20)
% axis([0 30 0 4.5])

188

axis([0 250 0 0.04])
xlabel('(Dataset Length)','FontSize',20)
ylabel('Residual Error (rad)','FontSize',20)
title('Error in ANN Accuracy for Joint 5 Singularity
Prediction','FontSize',20)
legend('Error = |Target - Predicted|')

subplot(3,2,6);
plot(abs(Q6_s-q6_p),'-r','LineWidth',2);
hold all
grid on;
set(gca,'fontsize',20)
% axis([0 30 0 4.5])
axis([0 250 0 0.04])
xlabel('(Dataset Length)','FontSize',20)
ylabel('Residual Error (rad)','FontSize',20)
title('Error in ANN Accuracy for Joint 6 Singularity
Prediction','FontSize',20)
legend('Error = |Target - Predicted|')

189

Appendix E: Permission from SAE to Reprint Paper 2014-01-0734

Dear Luv,

Thank you for your correspondence requesting permission to reprint SAE paper 2014-01-
0734 – which you co-authored – in your MASc thesis titled 'Reconfigurable Validation
Model for Identifying Kinematic Singularities and Reach Conditions within a Work Cell'
for University of Windsor. ON, Canada.

Permission is hereby granted, and subject to the following conditions:

• Permission is for this one-time single use only. New requests are required for
further use or distribution of the SAE material.

• The following credit statement must appear on the paper: “Reprinted with
permission Copyright © 2014 SAE International. This paper may not be
printed, copied, distributed or forwarded without prior permission from
SAE.”

• We also request that you credit the original source (author, paper number and
SAE) in the reference section of your thesis.

• This permission does not cover any third party copyrighted work which may
appear in the material requested.

Please feel free to contact me if you need further assistance. Good luck with your thesis!

Best regards,
–––––––––––––––––––––––––––––––––
Terri Kelly
Intellectual Property Rights Administrator

SAE INTERNATIONAL
400 Commonwealth Drive
Warrendale, PA 15096

o +1.724.772.4095
f +1.724-776-9765
e terri@sae.org
www.sae.org

190

tel:2014-01-0734
tel:2014-01-0734
tel:%2B1.724.772.4095
tel:%2B1.724-776-9765
mailto:terri@sae.org
http://www.sae.org/

Appendix F: Permission from Procedia CIRP to Reprint Paper 17 (2014) 812 – 817

Dear Mr. Aggarwal,

Elsevier is very pleased to announce that starting from February 1st, 2014 Procedia
journal will be published under Creative commons license, in particular under Creative
Commons Attribution Non-Commercial No Derivatives license (CC-BY-NC-ND). CC-
BY-NC-ND license gives the authors similar rights to the ones under Procedia Exclusive
License agreement.

Under CC-BY-NC-ND the authors would retain:
• Copyright of the article
• Patent, trademark and other intellectual property rights in the article
• The right for proper attribution and credit for the published work
• The right to reuse their own work in the same way readers can as defined by CC-BY-
NC-ND license.
Under CC-BY-NC-ND the users are allowed to copy and distribute the article, provided
this is not done for commercial purposes and the article is not changed or edited in any
way. The author must be attributed and must not be represented as endorsing the use
made of the work. This also does not allow users to text or data mine the article. You are
invited to visit Elsevier open access page to learn
more: http://www.elsevier.com/about/open-access/open-access-policies/oa-license-
policy?a=133551.
Please share this information with Procedia authors. The authors will automatically
receive a copy of creative commons license that they will need to sign and send back by
email to Elsevier.
Kind Regards,
Jeniv

Jeniv Praveen Kumar
Journal Manager - Global Journals Production
Elsevier India
(A division of Reed Elsevier India Pvt. Ltd.)

International Tech Park | Crest – 12th Floor | Taramani Road | Taramani | Chennai 600
113 | India
Tel: +91 44 42994854 |
E-mail: j.praveenkumar@elsevier.com; url: www.elsevier.com
Line Manager: L.Rajaram@elsevier.com

191

http://creativecommons.org/licenses/
http://www.elsevier.com/about/open-access/open-access-policies/oa-license-policy?a=133551
http://www.elsevier.com/about/open-access/open-access-policies/oa-license-policy?a=133551
tel:%2B91%2044%2042994854
mailto:j.praveenkumar@elsevier.com
http://www.elsevier.com/
mailto:L.Rajaram@elsevier.com

 VITA AUCTORIS

NAME: Luv Aggarwal

PLACE OF BIRTH:

Rohtak, Haryana, India

YEAR OF BIRTH:

1991

EDUCATION:

University of Windsor, B.A.Sc. Industrial
Engineering with Minor in Business
Administration (Hons.) Co-op, Windsor, ON,
2012

University of Windsor, M.A.Sc. Mechanical
Engineering, Windsor, ON, 2014

Lean Six Sigma Black Belt, Certification,
Lawrence Technological University, Southfield,
Michigan, 2014

192

	University of Windsor
	Scholarship at UWindsor
	2014

	Reconfigurable Validation Model for Identifying Kinematic Singularities and Reach Conditions for Articulated Robots and Machine Tools
	Luv Aggarwal
	Recommended Citation

	DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION
	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF APPENDICES
	LIST OF abbreviations / SYMBOLS
	Abbreviations
	Symbols for Mathematical Modelling of Manipulators
	Symbols for Artificial Neural Network Model
	NOMENCLATURE
	CHAPTER 1 INTRODUCTION
	1.1 Background
	1.2 Research Purpose
	1.3 Research Limitations

	CHAPTER 2 LITERATURE REVIEW
	2.1 Manipulator Kinematics and Modelling Techniques
	2.2 Manipulator Workspace
	2.3 Manipulator Singularity and Avoidance Techniques
	2.4 Inverse Kinematics using Artificial Neural Networks

	CHAPTER 3 INDUSTRIAL ROBOTICS
	3.1 Hardware and Software
	3.2 Symbolic Representation of Joints and Links
	3.3 Manipulator Classification
	3.4 Manipulator End-Effector Types and Application

	CHAPTER 4 MATHEMATICAL CONCEPTS
	4.1 Degrees of Freedom (DOF)
	4.2 Representation of Position and Orientation
	4.3 Frame Transformation
	4.4 Roll, Pitch and Yaw (RPY) Angles

	CHAPTER 5 KINEMATIC MODELLING OF MANIPULATORS
	5.1 Denavit-Hartenberg (D-H) Parameters
	5.2 Homogeneous Frame Transformations
	5.3 Joint Space
	5.4 Cartesian Space
	5.5 Forward Kinematics
	5.6 Workspace and Taskspace
	5.7 Inverse Kinematics

	CHAPTER 6 ARTIFICIAL NEURAL NETWORKS
	6.1 Trade-off between Generalization and Accuracy
	6.2 Network Architecture
	6.3 Network Learning
	6.4 Activation Function
	6.5 Data Pre-Processing and Post Processing
	6.6 Division of Data
	6.7 Network Prediction Capability
	6.8 Inverse Kinematics using Artificial Neural Networks
	6.8.1 Challenges in developing an ANN Architecture
	6.8.2 Generalization and Accuracy of the ANN Model

	CHAPTER 7 JACOBIAN: VELOCITY KINEMATICS
	7.1 Newton Euler Recursive Method
	7.2 Wrist Partitioned Manipulators

	CHAPTER 8 KINEMATIC SINGULARITIES
	8.1 Types of Singularities
	8.2 Singularity Free Geometric Path Planning

	CHAPTER 9 RECONFIGURABLE MODEL
	CHAPTER 10 CASE STUDIES AND RESULTS
	10.1 6 DOF Industrial Robot: FANUC M16iB/20
	10.2 6 Axis CNC Machine
	10.3 Reconfigurable Model Applications

	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	APPENDICES
	Appendix A: Results for SCARA Robot
	Appendix B: Results for FANUC M16iB/20 Robot
	Appendix C: Results for CNC Manipulator
	Appendix D: M-Code for Reconfigurable Model
	Appendix E: Permission from SAE to Reprint Paper 2014-01-0734
	Appendix F: Permission from Procedia CIRP to Reprint Paper 17 (2014) 812 – 817

	VITA AUCTORIS

