10 research outputs found

    Neutrophil count prediction for personalized drug dosing in childhood cancer patients receiving 6-mercaptopurine chemotherapy treatment

    Get PDF
    Acute Lymphoblastic Leukaemia (ALL) is a common form of blood cancer that usually affects children under 15 years of age. Chemotherapy treatment for ALL is delivered in three phases viz. induction, intensification, and maintenance. The maintenance phase involves oral administration of the chemotherapy drug 6-Mercaptopurine (6-MP) in varying doses to destroy any remaining abnormal cells and prevent reoccurrence. A key side effect of the treatment is a reduction in neutrophil counts which can lead to a condition known as neutropenia. This carries a risk of secondary infection and has been linked to 60% ALL fatalities. Current practice aims to control neutrophil counts by varying 6-MP dosages on a weekly basis and is based upon clinical judgment and experience of the medical professionals involved. Conceived as a decision support aid for clinicians then, presented are the results of a machine learning technique that predicts neutrophil counts one or more weeks ahead using data from ALL blood test results and 6-MP dosing. In this work, a model is trained and validated using data from a single female ALL patient’s maintenance phase. The prediction error is found to be typically within +/- 290/microL at one week and within +/- 820/microL for a 14 day prediction

    Artificial Neural Networks and Predictive Medicine: a Revolutionary Paradigm Shift

    Get PDF

    Predicting Hospital-Acquired Infections by Scoring System with Simple Parameters

    Get PDF
    BACKGROUND: Hospital-acquired infections (HAI) are associated with increased attributable morbidity, mortality, prolonged hospitalization, and economic costs. A simple, reliable prediction model for HAI has great clinical relevance. The objective of this study is to develop a scoring system to predict HAI that was derived from Logistic Regression (LR) and validated by Artificial Neural Networks (ANN) simultaneously. METHODOLOGY/PRINCIPAL FINDINGS: A total of 476 patients from all the 806 HAI inpatients were included for the study between 2004 and 2005. A sample of 1,376 non-HAI inpatients was randomly drawn from all the admitted patients in the same period of time as the control group. External validation of 2,500 patients was abstracted from another academic teaching center. Sixteen variables were extracted from the Electronic Health Records (EHR) and fed into ANN and LR models. With stepwise selection, the following seven variables were identified by LR models as statistically significant: Foley catheterization, central venous catheterization, arterial line, nasogastric tube, hemodialysis, stress ulcer prophylaxes and systemic glucocorticosteroids. Both ANN and LR models displayed excellent discrimination (area under the receiver operating characteristic curve [AUC]: 0.964 versus 0.969, p = 0.507) to identify infection in internal validation. During external validation, high AUC was obtained from both models (AUC: 0.850 versus 0.870, p = 0.447). The scoring system also performed extremely well in the internal (AUC: 0.965) and external (AUC: 0.871) validations. CONCLUSIONS: We developed a scoring system to predict HAI with simple parameters validated with ANN and LR models. Armed with this scoring system, infectious disease specialists can more efficiently identify patients at high risk for HAI during hospitalization. Further, using parameters either by observation of medical devices used or data obtained from EHR also provided good prediction outcome that can be utilized in different clinical settings

    Two distinct patterns of treatment resistance:clinical predictors of treatment resistance in first-episode schizophrenia spectrum psychoses

    Get PDF
    BACKGROUND: Clozapine remains the only evidence-based antipsychotic for treatment-resistant schizophrenia (TRS). The ability to predict which patients with their first onset of schizophrenia would subsequently meet criteria for treatment resistance (TR) could help to diminish the severe functional disability which may ensue if TR is not recognized and correctly treated. METHOD: This is a 5-year longitudinal assessment of clinical outcomes in a cohort of 246 first-episode schizophrenia spectrum patients recruited as part of the NIHR Genetics and Psychosis (GAP) study conducted in South London from 2005 to 2010. We examined the relationship between baseline demographic and clinical measures and the emergence of TR. TR status was determined from a review of electronic case records. We assessed for associations with early-, and late-onset TR, and non-TR, and differences between those TR patients treated with clozapine and those who were not. RESULTS: Seventy per cent (n = 56) of TR patients, and 23% of the total study population (n = 246) were treatment resistant from illness onset. Those who met criteria for TR during the first 5 years of illness were more likely to have an early age of first contact for psychosis (years) [odds ratio (OR) 2.49, 95% confidence interval (CI) 1.25-4.94] compared to those with non-TR. The relationship between an early age of first contact (years) and TR was significant in patients of Black ethnicity (OR 3.71, 95% CI 1.44-9.56); and patients of male gender (OR 3.13 95% CI 1.35-7.23). CONCLUSIONS: For the majority of the TR group, antipsychotic TR is present from illness onset, necessitating increased consideration for the earlier use of clozapine

    Machine learning for prediction of schizophrenia using genetic and demographic factors in the UK Biobank

    Get PDF
    Machine learning (ML) holds promise for precision psychiatry, but its predictive performance is unclear. We assessed whether ML provided added value over logistic regression for prediction of schizophrenia, and compared models built using polygenic risk scores (PRS) or clinical/demographic factors. LASSO and ridge-penalised logistic regression, support vector machines (SVM), random forests, boosting, neural networks and stacked models were trained to predict schizophrenia, using PRS for schizophrenia (PRSSZ), sex, parental depression, educational attainment, winter birth, handedness and number of siblings as predictors. Models were evaluated for discrimination using area under the receiver operator characteristic curve (AUROC) and relative importance of predictors using permutation feature importance (PFI). In a secondary analysis, fitted models were tested for association with schizophrenia-related traits which had not been used in model development. Following learning curve analysis, 738 cases and 3690 randomly sampled controls were selected from the UK Biobank. ML models combining all predictors showed the highest discrimination (linear SVM, AUROC = 0.71), but did not significantly outperform logistic regression. AUROC was robust over 100 random resamples of controls. PFI identified PRSSZ as the most important predictor. Highest variance in fitted models was explained by schizophrenia-related traits including fluid intelligence (most associated: linear SVM), digit symbol substitution (RBF SVM), BMI (XGBoost), smoking status (XGBoost) and deprivation (linear SVM). In conclusion, ML approaches did not provide substantial added value for prediction of schizophrenia over logistic regression, as indexed by AUROC; however, risk scores derived with different ML approaches differ with respect to association with schizophrenia-related traits

    Systematic quantitative characterization of cellular responses induced by multiple signals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cells constantly sense many internal and environmental signals and respond through their complex signaling network, leading to particular biological outcomes. However, a systematic characterization and optimization of multi-signal responses remains a pressing challenge to traditional experimental approaches due to the arising complexity associated with the increasing number of signals and their intensities.</p> <p>Results</p> <p>We established and validated a data-driven mathematical approach to systematically characterize signal-response relationships. Our results demonstrate how mathematical learning algorithms can enable systematic characterization of multi-signal induced biological activities. The proposed approach enables identification of input combinations that can result in desired biological responses. In retrospect, the results show that, unlike a single drug, a properly chosen combination of drugs can lead to a significant difference in the responses of different cell types, increasing the differential targeting of certain combinations. The successful validation of identified combinations demonstrates the power of this approach. Moreover, the approach enables examining the efficacy of all lower order mixtures of the tested signals. The approach also enables identification of system-level signaling interactions between the applied signals. Many of the signaling interactions identified were consistent with the literature, and other unknown interactions emerged.</p> <p>Conclusions</p> <p>This approach can facilitate development of systems biology and optimal drug combination therapies for cancer and other diseases and for understanding key interactions within the cellular network upon treatment with multiple signals.</p

    Do we have any solid evidence of clinical utility about the pathophysiology of schizophrenia?

    Get PDF
    A diagnosis of schizophrenia, as in most of psychiatric practice, is made largely by eliciting symptoms with reference to subjective, albeit operationalized, criteria. This diagnosis then provides some rationale for management. Objective diagnostic and therapeutic tests are much more desirable, provided they are reliably measured and interpreted. Definite advances have been made in our understanding of schizophrenia in recent decades, but there has been little consideration of how this information could be used in clinical practice. We review here the potential utility of the strongest and best replicated risk factors for and manifestations of schizophrenia within clinical, epidemiological, cognitive, blood biomarker and neuroimaging domains. We place particular emphasis on the sensitivity, specificity and predictive power of pathophysiological indices for making a diagnosis, establishing an early diagnosis or predicting treatment response in schizophrenia. We conclude that a number of measures currently available have the potential to increase the rigour of clinical assessments in schizophrenia. We propose that the time has come to more fully evaluate these and other well replicated abnormalities as objective potential diagnostic and prognostic guides, and to steer future clinical, therapeutic and nosological research in this direction

    Artificial neural network prediction of clozapine response with combined pharmacogenetic and clinical data.

    No full text
    Although one third to one half of refractory schizophrenic patients responds to clozapine, however, there are few evidences currently that could predict clozapine response before the use of the medication. The present study aimed to train and validate artificial neural networks (ANN) , using clinical and pharmacogenetic data, to predict clozapine response in schizophrenic patients. Five pharmacogenetic variables and five clinical variables were collated from 93 schizophrenic patients taking clozapine, including 26 responders. ANN analysis was carried out by training the network with data from 75% of cases and subsequently testing with data from 25% of unseen cases to determine the optimal ANN architecture. Then the leave-one-out method was used to examine the generalization of the models. The optimal ANN architecture was found to be a standard feed-forward, fully- connected, back-propagation multilayer perceptron. The overall accuracy rate of ANN was 83.3%, which is higher than that of logistic regression (LR) (70.8%). By using the area under the receiver operating characteristics curve as a measure of performance, the ANN outperformed the LR (0.821 + /- 0.054 versus 0.579 +/- 0.068; p < 0. 001). The ANN with only genetic variables outperformed the ANN with only clinical variables (0.805 +/- 0.056 versus 0.647 +/- 0.066; p = 0.046). The gene polymorphisms should play an important role in the prediction. Further validation of ANN analysis is likely to provide decision support for predicting individual response

    Artificial Neural Network Prediction of Clozapine Response with Combined Pharmacogenetic and Clinical Data

    No full text
    Although one third to one half of refractory schizophrenic patients responds to clozapine, however, there are few evidences currently that could predict clozapine response before the use of the medication. The present study aimed to train and validate artificial neural networks (ANN) , using clinical and pharmacogenetic data, to predict clozapine response in schizophrenic patients. Five pharmacogenetic variables and five clinical variables were collated from 93 schizophrenic patients taking clozapine, including 26 responders. ANN analysis was carried out by training the network with data from 75% of cases and subsequently testing with data from 25% of unseen cases to determine the optimal ANN architecture. Then the leave-one-out method was used to examine the generalization of the models. The optimal ANN architecture was found to be a standard feed-forward, fully- connected, back-propagation multilayer perceptron. The overall accuracy rate of ANN was 83.3%, which is higher than that of logistic regression (LR) (70.8%). By using the area under the receiver operating characteristics curve as a measure of performance, the ANN outperformed the LR (0.821 + /- 0.054 versus 0.579 +/- 0.068; p < 0. 001). The ANN with only genetic variables outperformed the ANN with only clinical variables (0.805 +/- 0.056 versus 0.647 +/- 0.066; p = 0.046). The gene polymorphisms should play an important role in the prediction. Further validation of ANN analysis is likely to provide decision support for predicting individual response
    corecore