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Acute Lymphoblastic Leukaemia (ALL) is a common form of 

blood cancer that usually affects children under 15 years of age. 

Chemotherapy treatment for ALL is delivered in three phases 

viz. induction, intensification, and maintenance. The 

maintenance phase involves oral administration of the 

chemotherapy drug 6-Mercaptopurine (6-MP) in varying doses 

to destroy any remaining abnormal cells and prevent 

reoccurrence. A key side effect of the treatment is a reduction in 

neutrophil counts which can lead to a condition known as 

neutropenia. This carries a risk of secondary infection and has 

been linked to 60% ALL fatalities. Current practice aims to 

control neutrophil counts by varying 6-MP dosages on a weekly 

basis and is based upon clinical judgment and experience of the 

medical professionals involved. Conceived as a decision support 

aid for clinicians then, presented are the results of a machine 

learning technique that predicts neutrophil counts one or more 

weeks ahead using data from ALL blood test results and 6-MP 

dosing. In this work, a model is trained and validated using data 

from a single female ALL patient’s maintenance phase. The 

prediction error is found to be typically within +/- 290/microL at 

one week and within +/- 820/microL for a 14 day prediction. 

 

Index Terms—Leukaemia, Neutrophils, Artificial Neural 

Networks, Time Series Prediction 

I. INTRODUCTION 

Acute Lymphoblastic Leukaemia (ALL) is the most 

common form of cancer in children and represents 80% of 

all leukaemia cases [1]. As the number of children with this 

type of leukaemia grows worldwide so does the demand for 

research into more effective treatment regimens. ALL is a 

form of leukaemia that affects lymphocytes; a type of white 

blood cell. ALL is an overproduction of immature 

lymphocytes called lymphoblast, or blast cells. These cells 

flood the bone marrow and prevent the body from 

producing the correct amounts of healthy cells in order to 

function normally. If untreated, ALL progression is rapid 

and requires aggressive chemotherapy treatment. The 

protocol for treating ALL typically spans 2 years for girls 

and 3 for boys. It consists of three phases of chemotherapy 

treatment viz. induction, intensification and maintenance -

with the latter being the most protracted, lasting around 18 

months for girls and 30 months for boys. 

The induction phase is designed to achieve initial 

remission and involves intravenous administration of 

various drugs including vincristine, methotrexate and 

dexamethasone. Intensification is the most concentrated 

phase of treatment and is aimed at destroying remaining 

abnormal cells. The aim of the maintenance phase is to kill 

any remaining cells left over from the first two phases to 

minimize the chance of relapse. During this phase, patients 

receive doses of the chemotherapy drug 6-mercaptopurine 

(6-MP), typically administered orally on a daily basis [2]. 

6-MP’s effect is to damage the RNA or DNA thereby 

disrupting the natural division process, ultimately resulting 

in cell death. A primary side effect of this treatment, 

however, is a reduction in neutrophil counts which can lead 

to neutropenia (abnormally low level of neutrophils) and so 

presents a risk for acquiring secondary infection. Typically, 

neutropenia results in regular hospitalizations and/or 

unscheduled breaks in the treatment regime. Also, patients 

with neutropenia are at high risk of secondary infections 

with associated fatalities of 60% [3].  

Decreasing drug dosages can reduce the risk of 

neutropenia, but can degrade treatment effectiveness. 

Conversely, increasing drug dosages where appropriate can 

be beneficial but dosing regimens are not always able to 

support such decisions with a satisfactory degree of 

accuracy.  Medical professionals aim to control counts by 

varying 6-MP dosages on a weekly basis. Typically the aim 

is to achieve neutrophil counts between [1,1.5]  ×  109 

neutrophils per liter of blood. Patients with a count smaller 

than 0.5 × 109  are classed as neutropenic, i.e. no effective 

immune system at which point treatment is stopped until 

counts increase above the minimum threshold. Weekly 

blood counts are used to inform weekly dosing decisions 
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and typically patients are prescribed 100%, 75% or 50% of 

the calculated dose (per kg body mass).     

Hence, the motivation of this work is to explore a 

machine learning technique that can predict, at least one 

week ahead, neutrophil counts. It is hoped that further 

research and development leads to supporting clinical 

decisions of 6-MP dose manipulations to reduce instances 

of neutropenia in children with ALL. 

To the authors’ knowledge, currently there is not wide 

reporting of methods for predicting neutrophil counts using 

a machine learning technique such as that presented herein. 

In the literature, such techniques have shown success when 

applied to other medical conditions. 

An anti-diabetic drug failure prediction methodology for 

type 2 diabetes investigated by Kang, S. et al. [4] using 

support vector machines (SVM) proposed an ensemble of 

SVM for a large scale dataset, reporting a prediction 

accuracy of about 80%. Menden, M.P. et al. [5] also 

proposed a drug prediction methodology using analysis of  

variance (ANOVA) which aimed to predict patient response 

to a specific cancer therapy. Lin, C. et al. [6] carried out an 

investigation in applying neural networks to predict the 

likelihood of patient response to clozapine during the 

treatment of schizophrenia. The research showed that all 

clozapine responders and approximately 75% of non-

responders were successfully predicted by the resulting 

artificial neural network (ANN) model. A similar study into 

the prediction of clozapine response was carried out by 

Khodayari-Rostamabad, A. et al. [7]. Machine learning 

techniques were applied to pre-treatment 

electroencephalography (EEG) data from schizophrenia 

patients in order to predict the likely response to clozapine 

therapy in adults suffering from schizophrenia. These 

techniques were able to predict, in advance of the first dose, 

whether a patient will or will not respond to the powerful 

but potentially toxic medication. The level of performance 

using the leave-one-out validation method was ≈85%. Yuan 

Li et al. [8] have developed a data-driven predictive system 

using machine learning techniques. The framework has 

been validated in vitro though experimental study with 

Giardia lamblia and the system categorizes the set of data 

using Fuzzy c-means clustering algorithm. It used a 

Probabilistic Suffix Automaton (PSA) to model the 

temporal state sequences. The accuracy of the system was 

73% with four data points and 97.5% with nine data points.  

This paper describes a time series prediction technique 

using an artificial neural network to predict future 

neutrophil counts based on measured blood count data and 

6-MP dosing. Compared is the accuracy of the predicted 

neutrophil count with known (i.e. expected) counts.  

II. BACKGROUND 

Time series prediction, used for the current work, is a 

machine learning technique that is commonly used in 

weather forecasting, business planning, economic 

predictions and signal processing. Data from previously 

observed system states are used to create a model to predict 

future states. Although there are a large number of 

algorithms demonstrating high reliability in prediction, 

difficulties can arise when attempting to model systems that 

are highly non-linear, such as in drug prediction.  In other 

fields, ANNs have been shown to provide accurate 

prediction results in such cases [9-12]. They represent a 

group of statistical algorithms inspired by biological neural 

networks that are able to learn system behavior from a 

sufficient number of inputs.  In a biological system, the 

transmission of a signal from one neuron to another, 

through a synapse, releases specific transmitter substances. 

The outcome is to lower or raise the electrical potential 

inside the body of the receiving cell. Once the electrical 

potential reaches a threshold the neuron will fire. It is this 

underlying process that the artificial neuron tries to mimic 

[13], as depicted in Fig. 1 [9] [14]. 

 

 
 

Fig. 1 Artificial Neuron Structure 

The neuron has  𝑥1, 𝑥2, 𝑥𝑗 … 𝑥𝑛  inputs each attributed a 

weight  𝑥1, 𝑥2, 𝑥𝑗 … 𝑥𝑛 . Input weightings are dependent on 

each individual inputs contribution to the output prediction 

and are analogous to the synaptic connections in biological 

neurons. The activation corresponding to the graded 

potential is given by [8], Eq. 1 

    𝑎 = ∑ 𝑤𝑗𝑢𝑗
𝑁
𝑗=0 + 𝜃                               (1) 

where θ represents the threshold in the artificial neuron. 

Typically, the modelling of complex functions is not 

achievable through a single artificial neuron and so layers 

of artificial neurons are formed, where the outputs from 

many neurons are connected as inputs to the others and thus 

building a neural network. When making such a network, 



 

 

the formula above can be modified by expressing the 

activation 𝑖𝑡ℎ neuron as Eg. 2, 

 

                                  𝑎𝑖 = ∑ 𝑤𝑗𝑖𝑥𝑗
𝑁
𝑗=0 + 𝜃𝑖                       (2) 

where, 𝑥𝑗  is either the output of another neuron or an 

external input. Neural Networks are made up of a number 

of layers, the first being the input layer, the last the output 

layer and all layers between are the hidden layers. Each 

layer also carries a weight determined during the training 

phase. 

In this paper we use Nonlinear AutoRegressive with 

eXogenous inputs of an ANN model (NARX) in Matlab 

2012b. In a NARX network, the output signal of the 

network composes the input vector of the network using 

delay operators. A mathematical formulation of the output 

final response is expressed below:  

𝑦(𝑛 + 1) = 𝑓[𝑦(𝑛), 𝑦(𝑛 − 1), …, 

 𝑦(𝑛 − 𝑑𝑦 + 1);  𝑥(𝑛), 𝑥(𝑛 − 1), …,  

          𝑥(𝑛 − 𝑑𝑥 + 1)] = 𝑓[𝑦(𝑛); 𝑥(𝑛); 𝑊]                (3) 

Where x(n) and y(n) are the components of the input 

and output vector respectively. The delays being 𝑑𝑥 and 𝑑𝑦, 

𝑊  is the matrix of the adjustable weights and 𝑓  is the 

unknown nonlinear function. 

III. METHODOLOGY 

A clinical dataset from the maintenance phase treatment 

of one female ALL patient is used in the current work. Data 

consists of multiple full blood counts and blood 

differentials along with corresponding 6-MP dosages. Table 

I shows the ranges of the data in the medical records used. 

TABLE I. INPUT PARAMETERS 

Input Range 

Days of treatment [1,588] 

Hemoglobin  (g/dL) [78,169] 

White Cell Count (10*9/L) [0.4,11.9] 

Platelets  (10*9/L) [87,507] 

Red Cell Count (10*12/L) [2.03,5.05] 

Mean Cell Volume (fL) [89,104] 

Hematocrit  [0.134,0.496] 

MCH  (pg) [28.9,34.6] 

MCHC  (g/dL) [315,354] 

Lymphocytes  (10*9/L) [0.25,2.83] 

Monocytes  (10*9/L) [0,1.2] 

Eosinophils (10*9/L) [0,0.4] 

Basophils  (10*9/L) [0,0.1] 

6-marcaptopurine (mg) [0,80] 

Neutrophil counts (10*9/L) [0,8.43] 

The measured neutrophil count for the full 588 day 

treatment period is shown in Fig. 2 in which the graph 

markers indicate days when bloods were sampled. 

 
Fig. 2 Neutrophil counts during the Maintenance phase 

To improve the accuracy of prediction, the dataset in 

Table I is first interpolated producing 588 samples over the 

treatment period. Data normalization, Eq. 4, is necessary 

prior to training 

                      �̅� =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                    (4) 

 

where X is the actual value of the sample and 𝑋𝑚𝑎𝑥  and 

𝑋𝑚𝑖𝑛  are the maximum and minimum values. Figure 3 

shows a graph of the normalized and interpolated dataset.  

 
Fig. 3 Neutrophil counts after normalization and interpolation 

 

The dataset is sub-divided as follows: 70% training, 

30% for validation. Following training, the ANN is used to 

predict the patient neutrophil count one or more weeks 

ahead, and the resulting prediction compared with the 

actual count. The accuracy of two-week and three-week 

ahead predictions are also investigated. This opens the 

possibility of fortnightly blood tests and dosing should 

neutrophil counts be relatively high and if 14 day 

predictions from the ANN be consistently of sufficient 

accuracy. 
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IV. RESULTS AND DISCUSSION 

A. One week ahead neutrophil prediction 

Approximately four months of training data has been 

found to be the minimum threshold for training the NARX 

ANN. Training datasets of this size have been used to 

produce all the results in the following graphs and tables. 

Three different training datasets were created from the 

normalized blood test data in the 4 months preceding days 

113, 233 and 352 and Figs. 4, 5 and 6 graph the predictions 

for the values in the next 7 days. The dashed lines display 

the close fit between the ANN’s prediction of future values 

and the expected (known) values.  

 
Fig. 4 Normalized neutrophil counts. Prediction period: 7 days 

 

Fig. 5 Normalized neutrophil counts. Prediction period: 7 days 

Fig. 6 Normalized neutrophil counts. Prediction period: 7 days 

B. Two weeks ahead neutrophil prediction 

Extending the prediction period to two weeks shows 

some degradation in the quality of the fit but Figs. 7, 8 and 

9 do show qualitatively a reasonable agreement with the 

expected (known) value 14 days ahead. 

  

 
Fig. 7 Normalized neutrophil counts. Prediction period: 14 days 

 
Fig. 8 Normalized neutrophil counts. Prediction period: 14 days  

 

 
Fig. 9 Normalized neutrophil counts. Prediction period: 14 days 

 

When analyzing the results, a reduction in accuracy was 

expected as the time period was increased – predictions of 

the future get more difficult in proportional to the size of 

look-ahead time period. There is also a degree of caution 
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necessary when utilizing a ‘black-box’ function such as 

neural network for prediction. This is illustrated by 

inspecting Fig. 7 and Fig. 8 and comparing with Fig. 9. 

Visible in Fig. 9 is a significant deterioration in the quality 

of the prediction after day 369.  

For a quantitative analysis of the expected error, 10 

unique predictions were made, each of three different time 

periods; 7, 14, and 21 days ahead. Those 30 predictions 

were then compared with measured blood test results - not 

interpolated or normalized data. The standard error was 

found and used to produce a 95% confidence interval (CI), 

Table II and Fig. 10. As expected, the bounds of our likely 

prediction error increase (≈ 2.8 times) in transitioning from 

a 7 to a 14 day prediction. We also judge from this analysis 

the 21 day prediction to be unreliable at the time of writing. 

 

TABLE II. Errors in the ANN time series prediction 

 Normalized 

error 

Error in Neutrophil prediction 

and 95% confidence intervals 
Prediction 

(days ahead) 

10
3
 

MSE 

10
2
 

RMSE 
Lower 

Mean 

(10
9
 / L) 

Upper 

7 2.87 5.36 -0.27 0.00523 0.285 

14 22.5 15.01 -0.74 0.03620 0.812 

21 147.0 38.38 -2.73 -0.88954 0.953 

 

 

Fig. 10 Errors in 1, 2 and 3 week prediction (95% CI as error bars) 

V. CONCLUSION AND FUTURE WORK 

Predicting neutrophil counts with sufficient accuracy a 

week or more ahead is highly desirable. The potential is 

significant: aiding clinicians in reducing the risk of 

neutropenia thereby facilitating improved treatment success 

and reducing the number of Acute Lymphoblastic 

Leukaemia deaths brought about because of secondary 

infections.  

In this paper, a description of an Artificial Neural 

Network tasked with predicting neutrophil count in Acute 

Lymphoblastic Leukaemia prediction has been presented. 

Blood tests results and 6-MP dosages from a 588 day 

treatment period for a female ALL patient were used for the 

training. 

The results show effective prediction 7 days ahead using 

relatively modest training datasets (4 months historic data). 

Prediction accuracy degrades with increasing time period. 

The current work indicates that 21 day ahead predictions 

are not to be relied upon with the current implementation.  

If machine-based learning techniques such as these can 

aid clinicians in decision making, then possibilities of time-

off treatment and time spent in hospital, plus the associate 

costs, are reduced along with the potential from improved 

clinical outcomes for the patient. 

In further work, we intend to improve the algorithm and 

gather more patient datasets to see if this method can be 

generalized with a view to improving its accuracy and 

performance. The authors also recognize that, not only 

could this work stream be significant in terms of enhancing 

the treatment of ALL, but that possibilities exist to extend 

this method for other drug dosing regimens where control is 

required, such as in the treatment of other types of cancer 

and clozapine treatment for schizophrenia. 
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