109 research outputs found

    Contribuciones a la estimación de la pose de la cámara en aplicaciones industriales de realidad aumentada

    Get PDF
    Augmented Reality (AR) aims to complement the visual perception of the user environment superimposing virtual elements. The main challenge of this technology is to combine the virtual and real world in a precise and natural way. To carry out this goal, estimating the user position and orientation in both worlds at all times is a crucial task. Currently, there are numerous techniques and algorithms developed for camera pose estimation. However, the use of synthetic square markers has become the fastest, most robust and simplest solution in these cases. In this scope, a big number of marker detection systems have been developed. Nevertheless, most of them presents some limitations, (1) their unattractive and non-customizable visual appearance prevent their use in industrial products and (2) the detection rate is drastically reduced in presence of noise, blurring and occlusions. In this doctoral dissertation the above-mentioned limitations are addressed. In first place, a comparison has been made between the different marker detection systems currently available in the literature, emphasizing the limitations of each. Secondly, a novel approach to design, detect and track customized markers capable of easily adapting to the visual limitations of commercial products has been developed. In third place, a method that combines the detection of black and white square markers with keypoints and contours has been implemented to estimate the camera position in AR applications. The main motivation of this work is to offer a versatile alternative (based on contours and keypoints) in cases where, due to noise, blurring or occlusions, it is not possible to identify markers in the images. Finally, a method for reconstruction and semantic segmentation of 3D objects using square markers in photogrammetry processes has been presented.La Realidad Aumentada (AR) tiene como objetivo complementar la percepción visual del entorno circunstante al usuario mediante la superposición de elementos virtuales. El principal reto de dicha tecnología se basa en fusionar, de forma precisa y natural, el mundo virtual con el mundo real. Para llevar a cabo dicha tarea, es de vital importancia conocer en todo momento tanto la posición, así como la orientación del usuario en ambos mundos. Actualmente, existen un gran número de técnicas de estimación de pose. No obstante, el uso de marcadores sintéticos cuadrados se ha convertido en la solución más rápida, robusta y sencilla utilizada en estos casos. En este ámbito de estudio, existen un gran número de sistemas de detección de marcadores ampliamente extendidos. Sin embargo, su uso presenta ciertas limitaciones, (1) su aspecto visual, poco atractivo y nada customizable impiden su uso en ciertos productos industriales en donde la personalización comercial es un aspecto crucial y (2) la tasa de detección se ve duramente decrementada ante la presencia de ruido, desenfoques y oclusiones Esta tesis doctoral se ocupa de las limitaciones anteriormente mencionadas. En primer lugar, se ha realizado una comparativa entre los diferentes sistemas de detección de marcadores actualmente en uso, enfatizando las limitaciones de cada uno. En segundo lugar, se ha desarrollado un novedoso enfoque para diseñar, detectar y trackear marcadores personalizados capaces de adaptarse fácilmente a las limitaciones visuales de productos comerciales. En tercer lugar, se ha implementado un método que combina la detección de marcadores cuadrados blancos y negros con keypoints y contornos, para estimar de la posición de la cámara en aplicaciones AR. La principal motivación de este trabajo se basa en ofrecer una alternativa versátil (basada en contornos y keypoints) en aquellos casos donde, por motivos de ruido, desenfoques u oclusiones no sea posible identificar marcadores en las imágenes. Por último, se ha desarrollado un método de reconstrucción y segmentación semántica de objetos 3D utilizando marcadores cuadrados en procesos de fotogrametría

    EYE AND GAZE TRACKING ALGORITHM FOR COLLABORATIVE LEARNING SYSTEM

    Get PDF
    International audienceOur work focuses on the interdisciplinary field of detailed analysis of behaviors exhibited by individuals during sessions of distributed collaboration. With a particular focus on ergonomics, we propose new mechanisms to be integrated into existing tools to enable increased productivity in distributed learning and working. Our technique is to record ocular movements (eye tracking) to analyze various scenarios of distributed collaboration in the context of computer-based training. In this article, we present a low-cost oculometric device that is capable of making ocular measurements without interfering with the natural behavior of the subject. We expect that this device could be employed anywhere that a natural, non-intrusive method of observation is required, and its low-cost permits it to be readily integrated into existing popular tools, particularly E-learning campus

    Pose estimation system based on monocular cameras

    Get PDF
    Our world is full of wonders. It is filled with mysteries and challenges, which through the ages inspired and called for the human civilization to grow itself, either philosophically or sociologically. In time, humans reached their own physical limitations; nevertheless, we created technology to help us overcome it. Like the ancient uncovered land, we are pulled into the discovery and innovation of our time. All of this is possible due to a very human characteristic - our imagination. The world that surrounds us is mostly already discovered, but with the power of computer vision (CV) and augmented reality (AR), we are able to live in multiple hidden universes alongside our own. With the increasing performance and capabilities of the current mobile devices, AR is what we dream it can be. There are still many obstacles, but this future is already our reality, and with the evolving technologies closing the gap between the real and the virtual world, soon it will be possible for us to surround ourselves into other dimensions, or fuse them with our own. This thesis focuses on the development of a system to predict the camera’s pose estimation in the real-world regarding to the virtual world axis. The work was developed as a sub-module integrated on the M5SAR project: Mobile Five Senses Augmented Reality System for Museums, aiming to a more immerse experience with the total or partial replacement of the environments’ surroundings. It is based mainly on man-made buildings indoors and their typical rectangular cuboid shape. With the possibility of knowing the user’s camera direction, we can then superimpose dynamic AR content, inviting the user to explore the hidden worlds. The M5SAR project introduced a new way to explore the existent historical museums by exploring the human’s five senses: hearing, smell, taste, touch, vision. With this innovative technology, the user is able to enhance their visitation and immerse themselves into a virtual world blended with our reality. A mobile device application was built containing an innovating framework: MIRAR - Mobile Image Recognition based Augmented Reality - containing object recognition, navigation, and additional AR information projection in order to enrich the users’ visit, providing an intuitive and compelling information regarding the available artworks, exploring the hearing and vision senses. A device specially designed was built to explore the additional three senses: smell, taste and touch which, when attached to a mobile device, either smartphone or tablet, would pair with it and automatically react in with the offered narrative related to the artwork, immersing the user with a sensorial experience. As mentioned above, the work presented on this thesis is relative to a sub-module of the MIRAR regarding environment detection and the superimposition of AR content. With the main goal being the full replacement of the walls’ contents, and with the possibility of keeping the artwork visible or not, it presented an additional challenge with the limitation of using only monocular cameras. Without the depth information, any 2D image of an environment, to a computer doesn’t represent the tridimensional layout of the real-world dimensions. Nevertheless, man-based building tends to follow a rectangular approach to divisions’ constructions, which allows for a prediction to where the vanishing point on any environment image may point, allowing the reconstruction of an environment’s layout from a 2D image. Furthermore, combining this information with an initial localization through an improved image recognition to retrieve the camera’s spatial position regarding to the real-world coordinates and the virtual-world, alas, pose estimation, allowed for the possibility of superimposing specific localized AR content over the user’s mobile device frame, in order to immerse, i.e., a museum’s visitor into another era correlated to the present artworks’ historical period. Through the work developed for this thesis, it was also presented a better planar surface in space rectification and retrieval, a hybrid and scalable multiple images matching system, a more stabilized outlier filtration applied to the camera’s axis, and a continuous tracking system that works with uncalibrated cameras and is able to achieve particularly obtuse angles and still maintain the surface superimposition. Furthermore, a novelty method using deep learning models for semantic segmentation was introduced for indoor layout estimation based on monocular images. Contrary to the previous developed methods, there is no need to perform geometric calculations to achieve a near state of the art performance with a fraction of the parameters required by similar methods. Contrary to the previous work presented on this thesis, this method performs well even in unseen and cluttered rooms if they follow the Manhattan assumption. An additional lightweight application to retrieve the camera pose estimation is presented using the proposed method.O nosso mundo está repleto de maravilhas. Está cheio de mistérios e desafios, os quais, ao longo das eras, inspiraram e impulsionaram a civilização humana a evoluir, seja filosófica ou sociologicamente. Eventualmente, os humanos foram confrontados com os seus limites físicos; desta forma, criaram tecnologias que permitiram superá-los. Assim como as terras antigas por descobrir, somos impulsionados à descoberta e inovação da nossa era, e tudo isso é possível graças a uma característica marcadamente humana: a nossa imaginação. O mundo que nos rodeia está praticamente todo descoberto, mas com o poder da visão computacional (VC) e da realidade aumentada (RA), podemos viver em múltiplos universos ocultos dentro do nosso. Com o aumento da performance e das capacidades dos dispositivos móveis da atualidade, a RA pode ser exatamente aquilo que sonhamos. Continuam a existir muitos obstáculos, mas este futuro já é o nosso presente, e com a evolução das tecnologias a fechar o fosso entre o mundo real e o mundo virtual, em breve será possível cercarmo-nos de outras dimensões, ou fundi-las dentro da nossa. Esta tese foca-se no desenvolvimento de um sistema de predição para a estimação da pose da câmara no mundo real em relação ao eixo virtual do mundo. Este trabalho foi desenvolvido como um sub-módulo integrado no projeto M5SAR: Mobile Five Senses Augmented Reality System for Museums, com o objetivo de alcançar uma experiência mais imersiva com a substituição total ou parcial dos limites do ambiente. Dedica-se ao interior de edifícios de arquitetura humana e a sua típica forma de retângulo cuboide. Com a possibilidade de saber a direção da câmara do dispositivo, podemos então sobrepor conteúdo dinâmico de RA, num convite ao utilizador para explorar os mundos ocultos. O projeto M5SAR introduziu uma nova forma de explorar os museus históricos existentes através da exploração dos cinco sentidos humanos: a audição, o cheiro, o paladar, o toque e a visão. Com essa tecnologia inovadora, o utilizador pode engrandecer a sua visita e mergulhar num mundo virtual mesclado com a nossa realidade. Uma aplicação para dispositivo móvel foi criada, contendo uma estrutura inovadora: MIRAR - Mobile Image Recognition based Augmented Reality - a possuir o reconhecimento de objetos, navegação e projeção de informação de RA adicional, de forma a enriquecer a visita do utilizador, a fornecer informação intuitiva e interessante em relação às obras de arte disponíveis, a explorar os sentidos da audição e da visão. Foi também desenhado um dispositivo para exploração em particular dos três outros sentidos adicionais: o cheiro, o toque e o sabor. Este dispositivo, quando afixado a um dispositivo móvel, como um smartphone ou tablet, emparelha e reage com este automaticamente com a narrativa relacionada à obra de arte, a imergir o utilizador numa experiência sensorial. Como já referido, o trabalho apresentado nesta tese é relativo a um sub-módulo do MIRAR, relativamente à deteção do ambiente e a sobreposição de conteúdo de RA. Sendo o objetivo principal a substituição completa dos conteúdos das paredes, e com a possibilidade de manter as obras de arte visíveis ou não, foi apresentado um desafio adicional com a limitação do uso de apenas câmaras monoculares. Sem a informação relativa à profundidade, qualquer imagem bidimensional de um ambiente, para um computador isso não se traduz na dimensão tridimensional das dimensões do mundo real. No entanto, as construções de origem humana tendem a seguir uma abordagem retangular às divisões dos edifícios, o que permite uma predição de onde poderá apontar o ponto de fuga de qualquer ambiente, a permitir a reconstrução da disposição de uma divisão através de uma imagem bidimensional. Adicionalmente, ao combinar esta informação com uma localização inicial através de um reconhecimento por imagem refinado, para obter a posição espacial da câmara em relação às coordenadas do mundo real e do mundo virtual, ou seja, uma estimativa da pose, foi possível alcançar a possibilidade de sobrepor conteúdo de RA especificamente localizado sobre a moldura do dispositivo móvel, de maneira a imergir, ou seja, colocar o visitante do museu dentro de outra era, relativa ao período histórico da obra de arte em questão. Ao longo do trabalho desenvolvido para esta tese, também foi apresentada uma melhor superfície planar na recolha e retificação espacial, um sistema de comparação de múltiplas imagens híbrido e escalável, um filtro de outliers mais estabilizado, aplicado ao eixo da câmara, e um sistema de tracking contínuo que funciona com câmaras não calibradas e que consegue obter ângulos particularmente obtusos, continuando a manter a sobreposição da superfície. Adicionalmente, um algoritmo inovador baseado num modelo de deep learning para a segmentação semântica foi introduzido na estimativa do traçado com base em imagens monoculares. Ao contrário de métodos previamente desenvolvidos, não é necessário realizar cálculos geométricos para obter um desempenho próximo ao state of the art e ao mesmo tempo usar uma fração dos parâmetros requeridos para métodos semelhantes. Inversamente ao trabalho previamente apresentado nesta tese, este método apresenta um bom desempenho mesmo em divisões sem vista ou obstruídas, caso sigam a mesma premissa Manhattan. Uma leve aplicação adicional para obter a posição da câmara é apresentada usando o método proposto

    Efficient recognition approaches for the interaction between humans and aerial robots

    Get PDF
    This project consists in a set of computer vision methods that serve as a baseline to perform HRI experiments. The methods are aimed to perform: visual marker detection, face detection and object recognition. Then we tested some of the methods by developing a demonstration scenario

    Дополненная реальность

    Full text link
    Augmented reality (AR) is a new technology. Very few people know about its development, which began in 1970s from massive and primitive devices. Now AR is at the very peak of its improvement in the form of various software. Augmented reality has its application in the following devices: glasses, phones, tablets. Augmented reality works on the basis of two stages: object recognition and marker tracking. Recognition occurs on the basis of machine learning and tracking of markers by finding certain elements or special markers. The analogue of this principle of operation is SLAM technology (Simultaneous Localization and Map Building). But the best results are achieved with the simultaneous use of two technologies. AR is involved in different areas: education, medicine, entertainment, military training. For education, three-dimensional 3D models are used, which are more visual for students and simplify their studies. In entertainment, AR has found a place for itself in various social networks in the form of masks (Snapchat), games (Pokemon GO) and others. In medicine, in addition to training, AR is used to visualize the internal organs of patients. Augmented reality has great potential for development in practical application in everyday life environments because it does not require high hardware characteristics.Дополненная реальность, или AR (augmented reality) – новая технология, развитие которой сейчас мало кому известно. Она начала развитие в 70-х годах прошлого века от массивных и примитивных устройств. Сейчас же находится на самом пике своего совершенствования в виде различных ПО. Дополненная реальность имеет свое применение в следующий устройствах: очки, телефоны, планшеты. AR работает на основе двух этапов: распознавание объектов и отслеживание маркеров. Распознавание происходит на базе машинного обучения, а отслеживание маркеров путем нахождения определенных элементов или специальных маркеров. Аналогом данного принципа работы является технология SLAM. Но наилучшие результаты достигаются при одновременном использовании двух технологий. AR заполняет все больше сфер. Для образования используют объемные 3D модели, которые являются более наглядными для студентов и упрощают их обучение. В развлечениях AR нашло себе место в различных социальных сетях в виде масок (Snapchat), игр (Pokemon GO) и других. В медицине, помимо обучения, AR используют для визуализации внутренних органов пациентов. Дополненная реальность имеет большие возможности для развития в практическом применение в повседневных средах жизни, потому что не требует высоких характеристик аппаратных средств

    Object information based on marker recognition

    Get PDF
    corecore