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Abstract

Our world is full of wonders. It is filled with mysteries and challenges, which through

the ages inspired and called for the human civilization to grow itself, either philo-

sophically or sociologically. In time, humans reached their own physical limitations;

nevertheless, we created technology to help us overcome it. Like the ancient uncov-

ered land, we are pulled into the discovery and innovation of our time. All of this is

possible due to a very human characteristic - our imagination.

The world that surrounds us is mostly already discovered, but with the power of

computer vision (CV) and augmented reality (AR), we are able to live in multiple hid-

den universes alongside our own. With the increasing performance and capabilities of

the current mobile devices, AR is what we dream it can be. There are still many obsta-

cles, but this future is already our reality, and with the evolving technologies closing

the gap between the real and the virtual world, soon it will be possible for us to sur-

round ourselves into other dimensions, or fuse them with our own.

This thesis focuses on the development of a system to predict the camera’s pose

estimation in the real-world regarding to the virtual world axis. The work was de-

veloped as a sub-module integrated on the M5SAR project: Mobile Five Senses Aug-

mented Reality System for Museums, aiming to a more immerse experience with the

total or partial replacement of the environments’ surroundings. It is based mainly on

man-made buildings indoors and their typical rectangular cuboid shape. With the pos-

sibility of knowing the user’s camera direction, we can then superimpose dynamic AR
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content, inviting the user to explore the hidden worlds.

The M5SAR project introduced a new way to explore the existent historical muse-

ums by exploring the human’s five senses: hearing, smell, taste, touch, vision. With

this innovative technology, the user is able to enhance their visitation and immerse

themselves into a virtual world blended with our reality. A mobile device application

was built containing an innovating framework: MIRAR - Mobile Image Recognition

based Augmented Reality - containing object recognition, navigation, and additional

AR information projection in order to enrich the users’ visit, providing an intuitive

and compelling information regarding the available artworks, exploring the hearing

and vision senses. A device specially designed was built to explore the additional

three senses: smell, taste and touch which, when attached to a mobile device, either

smartphone or tablet, would pair with it and automatically react in with the offered

narrative related to the artwork, immersing the user with a sensorial experience.

As mentioned above, the work presented on this thesis is relative to a sub-module

of the MIRAR regarding environment detection and the superimposition of AR con-

tent. With the main goal being the full replacement of the walls’ contents, and with the

possibility of keeping the artwork visible or not, it presented an additional challenge

with the limitation of using only monocular cameras. Without the depth information,

any 2D image of an environment, to a computer doesn’t represent the tridimensional

layout of the real-world dimensions. Nevertheless, man-based building tends to fol-

low a rectangular approach to divisions’ constructions, which allows for a prediction

to where the vanishing point on any environment image may point, allowing the re-

construction of an environment’s layout from a 2D image. Furthermore, combining

this information with an initial localization through an improved image recognition

to retrieve the camera’s spatial position regarding to the real-world coordinates and

the virtual-world, alas, pose estimation, allowed for the possibility of superimposing

specific localized AR content over the user’s mobile device frame, in order to immerse,

i.e., a museum’s visitor into another era correlated to the present artworks’ historical

period. Through the work developed for this thesis, it was also presented a better
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planar surface in space rectification and retrieval, a hybrid and scalable multiple im-

ages matching system, a more stabilized outlier filtration applied to the camera’s axis,

and a continuous tracking system that works with uncalibrated cameras and is able to

achieve particularly obtuse angles and still maintain the surface superimposition.

Furthermore, a novelty method using deep learning models for semantic segmen-

tation was introduced for indoor layout estimation based on monocular images. Con-

trary to the previous developed methods, there is no need to perform geometric calcu-

lations to achieve a near state of the art performance with a fraction of the parameters

required by similar methods. Contrary to the previous work presented on this thesis,

this method performs well even in unseen and cluttered rooms if they follow the Man-

hattan assumption. An additional lightweight application to retrieve the camera pose

estimation is presented using the proposed method.

Keywords: Artificial Neural Networks, Augmented Reality, Computer Vision,

Deep Learning, Human-Computer Interaction, Indoor Layout Estimation, Machine

Learning, Markerless-based Recognition, Walls Recognition, Superposition
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Resumo

O nosso mundo está repleto de maravilhas. Está cheio de mistérios e desafios, os quais,

ao longo das eras, inspiraram e impulsionaram a civilização humana a evoluir, seja

filosófica ou sociologicamente. Eventualmente, os humanos foram confrontados com

os seus limites físicos; desta forma, criaram tecnologias que permitiram superá-los.

Assim como as terras antigas por descobrir, somos impulsionados à descoberta e ino-

vação da nossa era, e tudo isso é possível graças a uma característica marcadamente

humana: a nossa imaginação.

O mundo que nos rodeia está praticamente todo descoberto, mas com o poder da

visão computacional (VC) e da realidade aumentada (RA), podemos viver em múltip-

los universos ocultos dentro do nosso. Com o aumento da performance e das capaci-

dades dos dispositivos móveis da atualidade, a RA pode ser exatamente aquilo que

sonhamos. Continuam a existir muitos obstáculos, mas este futuro já é o nosso pre-

sente, e com a evolução das tecnologias a fechar o fosso entre o mundo real e o mundo

virtual, em breve será possível cercarmo-nos de outras dimensões, ou fundi-las dentro

da nossa.

Esta tese foca-se no desenvolvimento de um sistema de predição para a estimação

da pose da câmara no mundo real em relação ao eixo virtual do mundo. Este tra-

balho foi desenvolvido como um sub-módulo integrado no projeto M5SAR: Mobile

Five Senses Augmented Reality System for Museums, com o objetivo de alcançar uma

experiência mais imersiva com a substituição total ou parcial dos limites do ambi-
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ente. Dedica-se ao interior de edifícios de arquitetura humana e a sua típica forma

de retângulo cuboide. Com a possibilidade de saber a direção da câmara do dispos-

itivo, podemos então sobrepor conteúdo dinâmico de RA, num convite ao utilizador

para explorar os mundos ocultos.

O projeto M5SAR introduziu uma nova forma de explorar os museus históricos ex-

istentes através da exploração dos cinco sentidos humanos: a audição, o cheiro, o pal-

adar, o toque e a visão. Com essa tecnologia inovadora, o utilizador pode engrandecer

a sua visita e mergulhar num mundo virtual mesclado com a nossa realidade. Uma

aplicação para dispositivo móvel foi criada, contendo uma estrutura inovadora: MI-

RAR - Mobile Image Recognition based Augmented Reality - a possuir o reconheci-

mento de objetos, navegação e projeção de informação de RA adicional, de forma a

enriquecer a visita do utilizador, a fornecer informação intuitiva e interessante em re-

lação às obras de arte disponíveis, a explorar os sentidos da audição e da visão. Foi

também desenhado um dispositivo para exploração em particular dos três outros sen-

tidos adicionais: o cheiro, o toque e o sabor. Este dispositivo, quando afixado a um

dispositivo móvel, como um smartphone ou tablet, emparelha e reage com este auto-

maticamente com a narrativa relacionada à obra de arte, a imergir o utilizador numa

experiência sensorial.

Como já referido, o trabalho apresentado nesta tese é relativo a um sub-módulo

do MIRAR, relativamente à deteção do ambiente e a sobreposição de conteúdo de RA.

Sendo o objetivo principal a substituição completa dos conteúdos das paredes, e com

a possibilidade de manter as obras de arte visíveis ou não, foi apresentado um desafio

adicional com a limitação do uso de apenas câmaras monoculares. Sem a informação

relativa à profundidade, qualquer imagem bidimensional de um ambiente, para um

computador isso não se traduz na dimensão tridimensional das dimensões do mundo

real. No entanto, as construções de origem humana tendem a seguir uma abordagem

retangular às divisões dos edifícios, o que permite uma predição de onde poderá apon-

tar o ponto de fuga de qualquer ambiente, a permitir a reconstrução da disposição de

uma divisão através de uma imagem bidimensional. Adicionalmente, ao combinar
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esta informação com uma localização inicial através de um reconhecimento por im-

agem refinado, para obter a posição espacial da câmara em relação às coordenadas

do mundo real e do mundo virtual, ou seja, uma estimativa da pose, foi possível al-

cançar a possibilidade de sobrepor conteúdo de RA especificamente localizado sobre

a moldura do dispositivo móvel, de maneira a imergir, ou seja, colocar o visitante do

museu dentro de outra era, relativa ao período histórico da obra de arte em questão.

Ao longo do trabalho desenvolvido para esta tese, também foi apresentada uma mel-

hor superfície planar na recolha e retificação espacial, um sistema de comparação de

múltiplas imagens híbrido e escalável, um filtro de outliers mais estabilizado, aplicado

ao eixo da câmara, e um sistema de tracking contínuo que funciona com câmaras não

calibradas e que consegue obter ângulos particularmente obtusos, continuando a man-

ter a sobreposição da superfície.

Adicionalmente, um algoritmo inovador baseado num modelo de deep learning

para a segmentação semântica foi introduzido na estimativa do traçado com base em

imagens monoculares. Ao contrário de métodos previamente desenvolvidos, não é

necessário realizar cálculos geométricos para obter um desempenho próximo ao state

of the art e ao mesmo tempo usar uma fração dos parâmetros requeridos para méto-

dos semelhantes. Inversamente ao trabalho previamente apresentado nesta tese, este

método apresenta um bom desempenho mesmo em divisões sem vista ou obstruídas,

caso sigam a mesma premissa Manhattan. Uma leve aplicação adicional para obter a

posição da câmara é apresentada usando o método proposto.

Palavras chave: Interação Homem-Máquina, Aprendizagem Automática, Reali-

dade Aumentada, Reconhecimento baseado em Padrões, Reconhecimento de Pare-

des, Redes Neurais Artificiais, Sobreposição, Visão Computacional
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1
Introduction

Augmented Reality (AR) is one of the most emerging and promising technologies in

the current landscape, being already defined as part of our future and not simply a

gimmick. With the power of AR we are able to enhance our day-to-day lives, either

by displaying additional always-updated informations using only the mobile devices,

without any need for hardware research, development or maintenance while also re-

moving the additional cost on scalability; or by interacting with the user using pro-

jection devices associated with cameras, allowing for unique experiences in diverse

areas, such as marketing, education, industry; or by presenting the user with the gift

of exploring multiple different worlds hidden in plain sight.

Being a specific area of Computer Vision (CV), AR shares some of the same ob-

stacles that continue to challenge researchers. When combined with the use on mo-
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bile devices, these obstacles tend to increase in complexity, either due to the existence

of different uncalibrated cameras, or the unpredicted movement from the mobile de-

vices’ users, or even the disparity in performance between multiple devices. One of

these challenges surrounds the accurate prediction os the camera’s position between

the real-world and the virtual world. As most of the nowadays AR applications are de-

veloped to work over a simple 2D frame obtained from the mobile devices’ camera, re-

gardless of the increasing availability of mobile devices equipped with depth sensors,

due to the fact that these kinds of solutions are aimed to perform in specific conditions,

such as the unlocking of a mobile device using facial tridimensional landmarks, and

are not yet globally standardized or available for backwards cameras. Nevertheless,

the majority of the practical solutions developed over the years have been based on

structure from motion techniques, and 3D cloud of points, which are demanding algo-

rithms in terms of performance. Presently, the most used technique relies on a fusion

between the gyroscope values retrieved in-between frames and the calculation of the

pose estimation through flow analysis of the features.

When we achieve a stable and trustful calculation of the real-world camera’s pose

estimation, we open the virtual world to the user, allowing for endless applications,

from indoor navigation, to floating AR content, or even the complete overhaul of any

available division. Although there are already some alternatives to peek into another

"dimensions", none of them evaluate the users’ surroundings, which forces the user

to be aware of their real-world while they are exploring, which breaks the immersive

experience. Some of the available alternatives require extremely visually rich environ-

ment for their planar detection and continuous tracking.

In this thesis, the method developed to continuous calculate and predict the cam-

era’s pose estimation focused on the different geometric characteristics of our sur-

roundings, allowing for the possibility of superimposing AR content on any vertical

plane - walls. Beginning with an initialization of the users’ localization on any previ-

ous scanned room, this hybrid mode can continuously predict the camera’s direction

even with highly obtuse angles between the user and the environment limits, or even
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with different types of uncalibrated cameras. Through the work developed for this

thesis, multiple keypoints features detectors and descriptor were benchmark in pre-

viously untested conditions regarding their scaling and obtuse angular performance;

an additional analysis were made between brute force matching of said keypoints de-

tected and artificial neural networks matching, including a deeper inquiry in one of

the solutions already available, with the result of an increasing performance after the

author’s implementation. There is also presented a solution for 2D scanning a rectan-

gular room and correlating its 3D boundaries to its vertical planes - walls. Another

innovation presented is the filtration with Kalman filters of spatial outliers not only

at the projected points, as was also done in this thesis, but also on the camera’s axis,

which smooth the AR projection without overly increasing the performance. One of

the core developments of this thesis is the hybrid method of fusing a good homogra-

phy, with additional refinements introduced on this thesis, with the geometrical van-

ishing point lines to be able to retrieve an almost perfect homography, which allows us

to use uncalibrated cameras and achieve the same results. Furthermore, a continuous

tracking method independent from the features matching database, allows for an ad-

vanced superimposition of AR content, achieving extremely obtuse angles while still

maintaining the projection, even when the feature matching is lost.

All this previous work was limited to the use of only computer vision techniques

and monocular cameras to achieve the desired outcome.

Over the last years, research has revolutionized itself through machine learning and

deep learning. The birth of convolutional neural networks capable of achieving state

of the art results across the vast fields of computer vision changed most of the con-

solidated algorithms. Aligned with this emerging area, a new method is introduced to

estimate the room spatial layout using only a monocular image. Through a lightweight

model for backbone and a semantic segmentation model, near state of the art results

are achieved with a fraction of the parameters of the current methods. Initially a coarse

semantic segmentation is achieved from where the layout type is hypothesized and

ranked with a discriminative classifier. Afterwards, a sliding window method is used
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for refinement. With the approached spatial information available, three vanishing

points are estimated instead of calculated, which can become computationally cum-

bersome, allowing us to predict the camera pose estimation.

1.1 Scope of the Thesis

The content of this thesis began integrated as an additional module in the already run-

ning project Mobile Five Senses Augmented Reality System for Museums1 (M5SAR),

funded by Portugal2020, CRESC Algarve 2020 I&DT, n° 3322, promoter SPIC 2 (Sonha

Pensa Imagina Comunica, Lda.) and co-promoter University of the Algarve 3. The

project began in January of 2016 and finished in October of 2018.

The project M5SAR’s main goal was the development of an AR system solution

aimed to enhance the museums’ visits through the exploration of the humans’ five

senses: hearing, smell, taste, touch, and vision. It consisted in creating a synergy be-

tween a mobile device application and an additional device where a tablet or smart-

phone would perfectly fit, allowing for a unique and innovative experience when vis-

iting any historical museum. This hardware device is capable of exploring 3 of those

senses: smell, taste and touch, communicating with the application via a Bluetooth

connection. The development of this device is out of the scope of this thesis. The

software development encompassed the creation of an Augmented Reality applica-

tion for mobile devices using only the available monocular cameras, being in its core

the framework Mobile Image Recognition based Augmented Reality (MIRAR), which

contained three modules: Object Detection, Environment Detection, and Person De-

tection. This framework would explore the remaining two senses: hearing and vision.

The Object Detection module aimed at recognizing the artwork through computer vi-

sion markerless-based image recognition, using beacons to limit the amount of images

to compare. Through this module, with the created device attached, it was possible to

superimpose AR content over the artworks, where an immersive storytelling would
1https://sites.google.com/view/m5sar-microsite
2http://spic.pt
3http://www.ualg.pt
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begin activating the corresponding senses according to the story. The Environment

Detection module consisted in the recognition of the walls of any rectangular cuboid

room available at a museum in order to allow for the superimposition of content rela-

tive to the artworks’ era, granting the possibility of for the visitor to peek into another

age, further immersing it into the museums’ experience. The Person Detection module

was capable of recognizing the humans’ shape and movement, which allowed for the

superimposition of clothes from the artworks’ generation. The Environment Detection

module development is the main focus of this thesis.

The work presented in this thesis began in September of 2017 and its development

continued after the end of the project M5SAR.

1.2 Objectives

The main objective of this thesis is to develop a system that would allow for the detec-

tion of the walls on a rectangular cuboid environment using only a monocular camera

without the assistance of any 3D scanning or additional devices, and superimpose dy-

namic content over the walls. This implementation is aimed at mobile devices, mainly

smartphones, and should be able to run in real-time. The specific objectives are de-

scribed below:

• Development of a 2D scanning protocol and bundle creation;

• Location awareness with markerless-based image recognition;

• Camera’s pose estimation calculation;

• Scalable image search mechanism;

• Improved homography refinement and recover;

• A progressive tracking system;

• Superimposition of dynamic content.
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1.3 Structure of the Thesis

The structure of this thesis is presented by the compilation of the author’s most rele-

vant publications, where the thesis’ objectives are further explored and analysed, with

the additional publications being listed in Sec. 6.2. Therefore, each of the following

chapters is presented as an already published publication, containing its own abstract,

introduction, state of the art, methodology, results, and conclusion. Albeit the bibli-

ographies were removed for simplicity and aesthetics, they are available at the end of

this thesis. As the result of being a continuous work developed with the same objective,

some information between the publications may overlap, without disregarding the in-

novations over the presented algorithm. In order to clarify the contributions made by

the author of this thesis’ to each chapter, it is detailed below an overall description of

the author’s work over the 3 main chapters of this thesis:

• Rodrigues, J.M.F., Veiga, R., Bajireanu, R., Lam, R., Pereira, J., Sardo, J., Cardoso,

P.J.S., and Bica, P. (2018) Mobile augmented reality framework - MIRAR. In 12th

International Conference on Universal Access in Human-Computer Interaction,

integrated in the 20th HCII, Las Vegas, USA, pp. 102–121

On Chapter 2, the author’s main contribution is presented mainly on Section 2.4,

introducing the initial skeleton of the search algorithm using artificial neural net-

works and a performance comparison using different parameters, such as the

template’s resolutions, the use of ORB or BRISK for feature detection and/or de-

scription, and the FLANN or Brute Force matching methods.

• Ricardo J. M. Veiga, João A. R. Pereira, João D. P. Sardo, Roman Bajireanu, Pedro

J. S. Cardoso, João M. F. Rodrigues (2019). Augmented Reality Indoor Envi-

ronment Detection: Proof-of-Concept. In WSEAS Transactions on Mathematics,

ISSN / E-ISSN: 1109-2769 / 2224-2880, Volume 18, 2019, Art. 28, pp. 203-210

In this publication, on Chapter 3, the author of the thesis presents and hybrid

version of his previous work. Advancing with a more robust detection algo-

rithm mixing different scales of artificial neural networks, it is also presented a
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more refined homography filtration and reconstruction. This is possible using

the previous developed wall detection, which uses the environments’ available

geometrical characteristics, such as the common existence of planes that always

convert to the vanishing point. An initial stabilization was also presented.

• Rodrigues J.M.F., Veiga R.J.M., Bajireanu R., Lam R., Cardoso P.J.S., Bica P. (2019)

AR Contents Superimposition on Walls and Persons. In: Antona M., Stephani-

dis C. (eds) Universal Access in Human-Computer Interaction. Theory, Methods

and Tools. HCII 2019. Lecture Notes in Computer Science, vol 11572, pp. 638-645,

Springer, Cham. DOI: 10.1007/978-3-030-23560-4_46

The contributions for this publication, on Chapter 4, consists in the improvement

and evolution of the previous work and also the introduction of a progressive

tracking based on the camera’s pose estimation, see Section 4.3. It was also pre-

sented the initial fusion between the thesis work and the human content super-

imposition.

• Veiga, Ricardo J.M., Cardoso, Pedro J.S., Rodrigues, João M.F. (2020) Efficient

Small-Scale Network for Room Spatial Layout Estimation In Submission to

14th International conference on Universal Access in Human-Computer Inter-

action, integrated in the 22nd HCII, Copenhagen, Denmark, 19-24 July

On Chapter 5, a novelty method is proposed of indoor spatial layout estimation

using a network with the fraction of the parameters of current methods. There

is also a new post-processing algorithm for layout ranking and refinement. Near

state of the art results are achieved, and an small application for camera pose

estimation is introduced.

1.4 Overview of the Thesis

This present chapter introduced the theme of this thesis, as its main objectives, contri-

butions and scope, consisting on three different published papers related to the envi-
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ronments’ detection, tracking and superimposition. In Chapter 2 is introduced a per-

formance comparison between different templates’ resolutions, features’ detectors and

descriptors, and keypoints’ matching methods. Chapter 3 continues the previous work

introducing a hybrid matching method using artificial neural networks, an improved

homography refinement fused with the previous work done over the environments’

geometrical characteristics. In Chapter 4 a progressive tracking is introduced, allow-

ing for a smooth superimposition even when the matching is lost, and a fusion with the

human content superimposition is presented. Chapter 5 presents a novelty solution for

room spatial layout estimation using a smaller network accompanied by an application

for camera pose prediction. Finally, in Chapter 6 we have the conclusions of this thesis

and all the work done over the previous chapters, as well the future work and a list of

all the publications that resulted from the work presented on this thesis. It is impor-

tant to highlight that due to the continuous nature of the work presented in this thesis,

some of the content across the main chapters will be very similar, notwithstanding the

innovation introduced.
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2
Mobile Augmented Reality

Framework - MIRAR

Abstract

The increasing immersion of technology on our daily lives demands for additional

investments in various areas, including, as in the present case, the enhancement of

museums’ experiences. One of the technologies that improves our relationship with

everything that surrounds us is Augmented Reality. This paper presents the archi-

tecture of MIRAR, a Mobile Image Recognition based Augmented Reality framework.

The MIRAR framework allows the development of a system that uses mobile devices

to interact with the museum’s environment, by: (a) recognizing and tracking on-the-
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fly, on the client side (mobile), museum’s objects, (b) detecting and recognizing where

the walls and respective boundaries are localized, as well as (c) do person detection

and segmentation. These objects, wall and person segmentation will allow the pro-

jection of different contents (text, images, videos, clothes, etc.). Promising results are

presented in these topics, nevertheless, some of them are still in a development stage.

2.1 Introduction

Augmented Reality (AR) (Azuma et al. (2001)) is a technology that, thanks to the mo-

bile devices increasing hardware capabilities and new algorithms, quickly evolved in

the recent years, gaining a huge amount of users. AR empowers a higher level of inter-

action between the user and real world objects, extending the experience on how the

user sees and feels those objects by creating a new level of edutainment that was not

available before. The M5SAR: Mobile Five Senses Augmented Reality System for Mu-

seums project (Rodrigues et al. (2017)) aims for the development of an AR system that

acts as guide for cultural, historical and museum events. This is not a novelty, since

almost every known museum has its own mobile applications (App), e.g. Information-

Week (2017); TWSJ (2017). While the use of AR in museums is much less common, it is

also not new, see e.g. HMS (2017); Qualcomm (2017); SM (2017); Vainstein et al. (2016).

The novelty in the M5SAR project is to extend the AR to the human five senses, see e.g.

Rodrigues et al. (2017) for more details.

This paper focus on MIRAR, Mobile Image Recognition based Augmented Reality

framework, one of the M5SAR’s modules. MIRAR focuses on the development of a

mobile multi-platform AR (Azuma et al. (2001)) framework, with the following main

goals: (a) to perform “all” computational processing in the client-side (mobile device),

minimizing, this way, costs with server(s) and communications; (b) to use real world

two- and three-dimensional (2D and 3D) objects as markers for the AR; (c) to recognise

environments, i.e., walls and its respective boundaries; (d) to detect and segment hu-

man shapes; (e) to project contents (e.g., text and media) onto different objects, walls
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and persons detected and displayed in the mobile device’s screen, as well as enhance

the object’s displayed contents, by touching on the device’s screen regions on those

objects; and (f) to use the mobile device’s RGB camera to achieve these goals. A frame-

work that integrates these goals is completely different from the existing (SDK, frame-

works, content management, etc.) AR systems (Artoolkit (2017); Catchoom (2017); Ku-

dan (2017); Layar (2017); Pádua et al. (2015)).

The MIRAR sub-module for object recognition and environment detection pre-

sented in this paper is AR marker-based, often also called image-based (Cheng and

Tsai (2013)). AR image-based markers allow adding pre-set signals (e.g., from paint-

ings, statues, etc.) easily detectable in the environment, and the use computer vision

techniques to sense them. There are many image-based commercial AR toolkits (SDK)

such as Catchoom (2017) or Kudan (2017), and AR content management systems such

as Layar (2017), including open source SDKs (Artoolkit (2017)). Each of the above so-

lutions have pros and cons. Between other problems, some are quite expensive, others

consume too much memory (it is important to stress that the present application will

have many markers, at least one for each museum piece), and others take too much

time to load on the mobile device.

The increasing massification of AR applications brings new challenges to the ta-

ble, such as the demand for planar regions detection ("walls"), with the more pop-

ular being developed within the scope of Simultaneous Localization And Mapping

(SLAM) (Bailey and Durrant-Whyte (2006); Durrant-Whyte and Bailey (2006)). Usu-

ally, the common approach for image acquisition of 3D environments uses RGB-D de-

vices or light detection and ranging (LIDAR) sensors (Hulik et al. (2014); Ring (1963);

Xiao et al. (2013); Sousa et al. (2014)). There are also novelty advances within envi-

ronment detection, localization or recognition, either using Direct Sparse Odometry

(Engel et al. (2018)), or using descriptors, like ORB SLAM (Mur-Artal et al. (2015))

or even Large-Scale Direct Monocular SLAM (Engel et al. (2014)). However, as men-

tioned, the MIRAR framework focuses on mobile devices with only monocular cam-

eras. Following this, an initial study of an environment detection sub-module was
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previously presented in Pereira et al. (2017), being the purposed method a geometric

approach to the extracted edges of a frame. It should be considered that a frame is

always captured from a perspective view of the surrounding environment, with the

usual expected environment being characterized by the existence of numerous parallel

lines which converge to a unique point in the horizon, called vanishing point (Duan

(2011); Serrão et al. (2015)).

The last topics addressed in the MIRAR framework regards the detection of hu-

man shapes in real world conditions. This continues to be a challenge in computer

vision due to the existence of multiple variants, e.g., object obstructions, light varia-

tions, different viewpoints, the existence of multiple humans (occlusions), poses, etc.,

nevertheless, the detection of human shapes is an area with many studies and devel-

opments (Fang et al. (2017); Ouyang and Wang (2013); Sermanet et al. (2013); Tian et al.

(2015); Zhang et al. (2016a)).

In summary, the MIRAR’s object recognition sub-module uses images from the mu-

seum’s objects, and the mobile device’s camera to recognise and track on-the-fly, on

the client-side, the museum’s objects. The environment detection and recognition sub-

module is supported upon the same principles of the object’s recognition, but uses

images from the environment, walls, to recognise them. Finally, the human detection

and segmentation uses Convolutional Networks for the detection and an image pro-

cessing algorithm for foreground (person) extraction. The main contribution of this

paper is the integration of these three topics into a single mobile framework for AR.

The paper is structured as follows: The MIRAR framework and architecture is in-

troduced in Sec. 2.2. Section 2.3 presents the main MIRAR’s sub-module, namely the

object detection, followed by the wall detection sub-module in Sec. 2.4 and the human

shape detection in Sec. 2.5. The paper concludes with a final discussion and future

work, Sec. 2.6.
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2.2 MIRAR framework

Before detailing the MIRAR framework it is important to give a brief overview of the

M5SAR system, shown on top of Fig. 2.1. On the figure’s left side, the basic commu-

nications flow between the server and mobile device is outlined and, on the right side,

the simplified diagram of the mobile App and the devices “connected" (via bluetooth)

with the mobile device is shown. The displayed Beacons (Estimote (2017)) are em-

ployed in the user’s localisation and the Portable Device for Touch, Taste and Smell

Sensations (PDTTSS) (Sardo et al. (2017)) used to enhance the five senses. In summary,

the M5SAR App architecture is divided into three main modules: (A) Adaptive User

Interfaces (AUI), see Rodrigues et al. (2017); (B) Location module, a detailed explana-

tion is out of this paper’s focus, and (C) MIRAR module (see Fig. 2.1 bottom).

Figure 2.1: Top: overall simplified system architecture. Bottom: MIRAR block diagram.
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The MIRAR has four main features: (a) the detection and recognition of museum

objects, triggering a card in the (M5SAR) App (Rodrigues et al. (2017)); (b) the detec-

tion, recognition and tracking of objects as the user moves along the museum, allowing

to touch different areas of the objects displayed in the mobile screen and showing in-

formation about that region of the object, MIRAR sub-module (i); (c) detection and

modelling of the museum walls, and projecting information into the detected walls

(e.g., images, movies, text) related with the recognized object’s epoch, sub-module (ii);

(d) detection of persons that are moving in the museum, and, for instance, to dress

them with clothes from the object’s epoch, sub-module (iii).

Sub-modules (i) and (ii) need to communicate with the server, i.e., the MIRAR mod-

ule sends the user’s position to the server, based on the previous object detections and

the localisation given by the beacon’s signals. From the server, the MIRAR module

receives a group of object markers (image descriptors; see next section), here called

bundles, that contain all the objects available in the located room or museum section.

In a way to minimise communications, the App stores in the memory (limited to each

device’s memory size) the bundles from the previous room(s), museum section(s), and

as soon as it detects a new beacon signal it downloads a new bundle. Older bundles

are discarded in a FIFO (first in, first out) manner.

It is also important to stress that, since the sensor used to acquire the images from

the environment is the mobile’s camera, in order to save battery, the camera is only ac-

tivated when the AR option is selected in the UI. When the activation occurs, the user

can see the environment in the mobile screen and effectuate the previously mentioned

actions. As an additional effort to save battery, the device will enter a low-power state

if the user turns the phone upside down, by dimming the phone’s screen and inter-

rupting the processing.

As final remarks, the App was implemented using Unity (2018), the computer vi-

sion algorithms were deployed using the OpenCV (2017) library (Asset) for Unity, and

tests and results consider that the mobile device is located inside a museological space.

The next section will present the object detection and tracking module.
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2.3 Object detection, recognition and tracking module

The object detection sub-module aim at detecting objects present in the museum, being

the algorithm divided in 2 components: (a) detection and recognition, and (b) tracking.

While the recognition is intended to work on every museum object, the tracking will

only work in masterpieces1. The masterpieces’ tracking allows to place contents in

specific parts of the UI, so that the user will touch on those areas in order to gain more

information about a particular region of the detected object.

Before describing this module in further details, it is important to distinguish from

templates and markers. Here, templates are images (photographs) of the objects stored

in the server’s database (DB) while, on the other hand, a marker is the set of features

(keypoints) with their respective (binary) descriptors for a certain template, see Fig. 2.2

and Pereira et al. (2017). The authors’ employ the ORB descriptor for keypoint detec-

tion and descriptors implementation (Figat et al. (2014); Pereira et al. (2017); Rublee

et al. (2011)).

A generic image recognition and tracking algorithm for AR has the following main

steps: (1) extract the markers (keypoints and descriptors) from a template; (2) extract

keypoints and compute descriptors from query images (i.e., for each mobile device

camera’s frame); (3) match the descriptors of both the template and query; and, when

needed, (4) calculate the projection matrix to allow perspective wrapping of images,

videos, and other contents.

An initial recognition algorithm was presented in Rodrigues et al. (2017), with fur-

ther advances presented in Pereira et al. (2017), as follows. Similar to Baggio (2012),

in Step (1) it is utilised the image to extract keypoints and compute descriptors. The

borders are the exception (e.g., the painting frame) which were removed, since usually

there is no relevant information in those areas. Nevertheless, the templates are pro-

cessed in different scales (image sizes): starting at the pre-defined camera frame size,

640× 480px (pixels), the templates are scaled up and down (by a 1/3), resulting in a

1Masterpieces are objects that have an enlarged (historical and cultural) value in the museum’s col-
lection.
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Figure 2.2: Top: Example of existing objects in Faro Municipal Museum. Bottom: ex-
amples of detected and tracked markers with the corresponding axis.

total of 3 scales per template. To further increase the framework’s performance, these

markers continue to be created on a server and sent to the client (mobile device) on

demand, to be de-serialized. Step (2) from the frame acquired by the camera, the key-

points are simply extracted and their respective descriptors computed (using the ORB

descriptor).

Regarding Step (3), the query image descriptors are (3.1) brute-force matched, us-

ing K-Nearest Neighbours (KNN), with K = 2, against the descriptors of the available

markers. Next, (3.2) the markers’ descriptors are matched to the query’s descriptors.

Following, (3.3) a ratio test is performed, i.e., if the two closest neighbours of a match

have close matching distances (65% ratio), then the match is discarded (Baggio (2012)),

because this would be an ambiguous match. This ratio evaluation is the test where

most matches are removed. For this reason, this test is performed first to improve

performance later on. Then, (3.4) it is performed a symmetry match where only the

matches resulting from the KNN in (3.1) that are present in (3.2) are accepted. After

this, a (3.5) homography refinement is applied. This refinement uses the RANSAC

method to verify if the matched keypoints in the query image maintain the same con-
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figuration between them (same relative position) as they had in the template image.

If any of the keypoints stay out of this relation, then they are considered outliers and

removed from the match set. (3.6) If after all of these refinements there are at least 8

matches left, then it is considered as a valid classification.

In the (3.6.i) classification stage the query image is compared using Brute-Force (BF)

to all marker scales for each of the available templates. This, in turn, returns a classi-

fication based on the count of (filtered) matches, when there are at least 8 descriptors

matches. The marker that retrieved the most number of matches is considered the

template to be tracked. Afterwards (3.6.ii), if the tracking stage is necessary, i.e., if a mas-

terpiece is present, the matching only occurs with the markers of the 3 scales of the

template to be tracked previously selected in classification phase. If the object (template

to be tracked) is not visible in the scene for 1 second then it is considered lost and the

recognition process initiates again. Last, but not least, Step (4) of the generic algorithm

is done using perspective wrapping (pose estimation) in order to place content on the

same plane as the detected image (marker).

Figure 2.2 bottom shows some examples of tests done in the Faro Municipal Mu-

seum where the classification number is shown in red. For more algorithm details and

results see Pereira et al. (2017).

2.4 Environments detection

As previously mentioned, the objective of this sub-module is to be able to discern the

location and position of the walls of a given environment, and afterwards replace them

with other contents. The algorithm presented here does not yet supports our investi-

gation over this subject mentioned in Pereira et al. (2017), although it will eventually

merge with the preceding work. In the present case, similar to Sec. 2.3 markers are

used (keypoints and descriptors) for each template, with the bundles being previously

generated. For this sub-module, the templates are of the entire walls, and not only of

the museum’s object, see Fig. 2.3 top row, which allows for the retrieval of the expected
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Figure 2.3: Top: Example of templates. Bottom: Extracted keypoints location for each
template.

wall shape using a pose estimation algorithm. Various implementations of pose esti-

mation have already been presented for 3D objects using RGB-D sensors (Buch et al.

(2013)) or through monocular images (Riba Pi (2015)), and urban environments (Hal-

lquist and Zakhor (2013)). The main contribution of this sub-module is the initial im-

plementation of the wall estimation for primarily indoor detection and recognition

while the user navigates through museums, which are presented in this chapter, with

a future user localization feature already being developed. Regarding our implemen-

tation of wall estimation, it is important to note that the aim for this sub-module is a

seamlessly fully integrated AR application for mobile devices; therefore, the presented

algorithm is focused and adjusted for performance on smartphones.

Contrary to what was presented for the object detection, instead of using ORB de-

scriptors, we found that BRISK (Leutenegger et al. (2011)) descriptors perform better

for this task, which will be explained later in Sec. 2.4.1. For comparison between mark-

ers, not only Brute-Force was tested, but also the Fast Library for Approximate Nearest

Neighbours (FLANN) (Muja and Lowe (2012)). The necessity of evaluating both match-

ers for this task will be posteriorly explained.

The current algorithm, after the bundle has been created and loaded, is applied to

each frame from the mobile device camera as follows: (1) A number of the most sig-

nificant keypoints are retrieved (filtered) and the respective descriptors computed; (2)

Optimal matches are found and filtered; (3) Pose estimation is performed after discard-
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ing the defective homography; (4) Polygons corresponding to the matched templates

are superimposed on the frame.

Beginning with Step (1), all the keypoints (using the BRISK keypoint detector)

found from the frame provided are ordered by their response, which defines the ones

with stronger information, and only an amount of keypoints is maintained, which in

our case was NumKP = 385 (this number was empirically computed, see Sec. 2.4.1).

More keypoints will not improve results and it increases computational time. If this

number is decreased significantly, many “template (wall) - frame" matches are lost.

Afterwards, the respective descriptor for each keypoint is computed using the BRISK

descriptor.

In Step (2), before searching through all the stored templates, it is verified if the loca-

tion of the user is known through the previous frames, thus allowing for the matching

search to begin with the surrounding templates. The method used for matching was

K-Nearest Neighbours (the same as in Sec. 2.3), with K = 2, either by BF matching,

or using FLANN. While the BF compares all the retrieved markers’ descriptors from

the frame with the stored markers from the templates, it was created an index with

FLANN that uses multi-probe LSH (Lv et al. (2007)). The parameters used were 6 hash

tables, with 12 bits hash key size, and 1 bit to be shifted to check for neighbouring

buckets. The number of times we defined for the index to be recursively traversed

was 100, as we observed a good balance between additional processing time and the

increased precision. It is important to refer that, as opposed to BF, FLANN does not

return a complete matching between the markers, but instead it gives an approximate

correspondence. The remaining matches are filtered through the Lowe’s ratio test,

where we discard the pairs with close matching distances (65% ratio), allowing only

the more distinct ones to remain. Subsequently, if at least 10 good matches are found,

then the perspective transform is retrieved through the homography refinement using

the RANSAC method, where the original pattern of keypoints from the templates are

compared with the ones from the frame, considering the ones with the same configu-

ration as inliers, and the others as outliners.
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Regarding Step (3), for the pose (wall) estimation templates to be properly found,

the perspective matrix must be found valid. It should be noted that the existing planes

across the provided frames will be randomly presented with acute perspective angles,

or at deeper distances. Concerning the templates’ format, for this sub-module we chose

to include the desired full wall delimitations to be found, even if the regular walls did

not offer relevant information to be retrieved, with the keypoints gathered in clusters

along the museums’ objects, see in Fig. 2.3.

The chosen template format after the pose estimation returned the approximated

horizontal limits of the walls. In order to improve accuracy and performance, it was

necessary to discard the non relevant perspective matrices. To do so, we analysed the

matrix extracted from the homography and applied a group of tests. We calculated the

determinant of the top left 2× 2 matrix and limited the output between 1 and 100, given

that, with the perspective transform, if the values of said determinant were to be neg-

ative there would be an inversion, and as the templates were created for the expected

projection, there should be none. The limit of 100 was imposed because in case there

was a large value for the determinant, then the aspect ratio would have been overly

deformed. Furthermore, after finding the coordinates, their order is compared against

the original template, e.g., if the (x0, y0) of the template is on the top left and the (x1, y1)

on the lower left; then, after the perspective transform, this orientation should remain.

Afterwards, it is verified if the angles between each 3 points are not overly convex,

as they are expected to be nearly perpendicular. Finally, as the environment/room is

“regular", which means the presence of vertical walls without deformations (no cir-

cular walls) or extensive 3D artwork, all the non vertical resulting polygons with and

error of 15% are discarded.

The last Step (4), the retrieved coordinates are converted into polygons that are su-

perimposed upon the original frame for each of the matched templates, corresponding

to the expected surface of the wall in the environment; a sequence of the output re-

sults can be seen in Fig. 2.4. With this outcome it is possible to project content not only

replacing the walls, as presented before in Pereira et al. (2017), but also to present float-
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Figure 2.4: Example of a sequence of frames with matched templates. See also Fig. 2.6.

ing AR content. It is important to stress that when the angle between the wall and the

mobile user is “too sharp" is not yet possible to find the boundaries of the wall, which

can be shown if Fig. 2.4 bottom row.

2.4.1 Tests

In order to test de reliability of the algorithm, test were done before converting the

algorithm to the mobile platform; nevertheless, all the videos used for the tests were

acquired by mobile devices (smartphones and tablets). The tests were done using a

desktop computer with an Intel CPU i5-6300 running at 2.4 GHz with the algorithm

limited to run in single-thread. The videos consisted on a total amount of 4.306 frames

of expected user navigation through the museum, with both the horizontal and vertical

orientations used. An additional video containing persons in between the camera and

the walls also showed good results, as seen in Fig. 2.6. It is important to note that it
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is expect that this sub-module will not always detect and recognize the environment

in all the frames; therefore, the most important measure of success is the amount of

frames with valid matches found.

The tests were conducted in following ways: the templates’ width size between

320px and 640px; the frame’s width size between 640, 480 and 320px; and increasing

the number of minimal good matches, starting with 10 and using steps of 5. All the

tests were performed using BF and FLANN.

Regarding the variation of the minimal good matches between markers to begin

the template matching, as expected, with the increase of this threshold the amount of

frames with a found template match were dramatically reduced, while it was observed

the maintenance of a similar processing time, either for each frame as for each matched

frame, showing little to no variation. The results in terms of “pose" estimation of the

polygons over the output frame were also improved. Upon reviewing this results we

decided to use the minimal value of 10, given that it returned the highest number of

frames matched without overly increasing the undesired results; for example, chang-

ing this value to 15 reduced the frames matched by 35− 40%. With the variation of

the templates width size, it was expect to add additional detected matches for when

the wall is distant and is presented smaller on the frame. The results showed that even

when it occasionally happens, it doesn’t justify adding different scales of templates for

this sub-module at the current version in exchange of processing time performance, as

it was presented in Rodrigues et al. (2017).

The obtained processing times for the current algorithm, while reducing the tem-

plates and frames width, decreased from 28, 3± 13, 8ms to 17, 9± 5, 9ms with BF, and

from 33, 2± 14, 2ms to 24, 1± 17, 8ms. Even though it presented some improvement on

the time performance, the amount of frames matched dropped 73− 63% respectively.

Considering the necessity a higher rate of matching, the performance of different

templates and frames sizes were compared. The illustration in Fig. 2.5 presents the

amount of frames matched with the colour black within the total frames of different

expected user interaction videos. On the left is shown the frame number (1,..., 4306),
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Figure 2.5: Illustration of the number of matched frames (in black) with templates,
changing the widths of both, i.e., from A-F is shown for each pair Flann (A, C and E)
and BF (B, D and F) the matched templates with a width of 640px, the frames’ width
varies from 640 (A and B), to 480 (C and D) and 320px (E and F). From G-L the same
but now with the template with the width of 320px. At right, an histogram of the total
of matches for each frame is shown.

and on the right, the histogram of matched template-frame along the different widths

and matching algorithms, namely FLANN and BF. The intent of this comparison, other

than reporting the total of matched frames for each different test, was to analyse if the

scale factor would introduce new results, either by reducing the frame width while re-

taining a larger template width, which is shows from A-F, or by reducing the template

width, while again changing the size of the frame, as can be seen from G-L, with a
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template width of 320px. The test were also divided in FLANN (A, C, E, G, I and K)

and BF (B, D, F, H, J and L). The variation of frames’ width is organized as 640 (A and

B), 480 (C and D) and 320px (E and F), with the same from G-L.

Using the illustration shown in Fig. 2.5 it becomes easier to analyse the effect of

the different parameters, being one of the main comparisons the use of FLANN or BF

for feature matching. Is it relevant to note that, as BF needs a complete certainty for

matching, which would be achieved more easily if the desired matching template was

in full frame, FLANN does not, which introduces the possibility of the existence of

false positives. As a continuous outputs of false positives from the same template is

uncommon, it became easier to discard them. Although FLANN versus BF is usually

restricted to a large amount of keypoints, in our case for 640px templates the average

was 384.5 ± 119.48 keypoints per image, where FLANN surpasses BF in processing

time performance, for our case it was primarily used with the intend of retrieving

additional matched frames. Regarding the obtained results, FLANN returned addi-

tional matched frames with 38% of the total number of 4.306 frames matched, and BF

returned 32% for 640px templates, while for 320px we obtained 20% and 15%, respec-

tively. Although there is an increase in processing time for FLANN in order of 17%

facing BT, when analysing the results shown in Fig. 2.5, it is possible to verify a more

sparse occurrence of matched frames for FLANN versus BF, allowing for a higher prob-

ability of matching while the user navigates the museum, which will be used in order

to recalibrate (in the future) the user localization and focus, improving the projection

of content tracking and stability.

Focusing on the 640px width templates, it is possible to observe the expected lower

matching while reducing the frames’ width, for the total of available markers for each

frame was reduced against the templates average number of extracted keypoints. With

the 320px templates, the results showed a different outcome. While the total matched

frames was also reduced, it became almost invariable across the tests, which means

that with a lower processing time the same results would be achievable. One interest-

ing point is noticeable near the medium point, where there was more matched frames

24



acquired with lower templates’ width. This is explained with the distance of the match-

ing template, i.e., if the frame’s width is 640px and the templates’ 320px, if the respec-

tive location of the template is inside the frame at distance, it will be closest to the

lower templates’ width than the larger, and as we are using BRISK descriptors, even

if they are invariant to scale, there is a threshold to the maximum of that invariance.

In conclusion, for these results it can be seen that in the future the implementation of

different scales of templates to improve the localization tracking may be needed.

As referred before, for this module a BRISK descriptor was used instead of ORB.

Although the amount of frames with matched templates was similar in between, ORB

performed slightly better, with 771 frames with match against 726 of BRISK, from a

total amount of frames of 1.857. The outcome of said matches presented worse pro-

jected polygons, meaning that even with the homography additional sanity tests, the

occurrence of bad homographies increased. Furthermore, an increase in the occurrence

of false positives with a factor of ten times between ORB and BRISK was observable,

which largely contributed to the bad homographies received. The performed times

from ORB to BRISK lowered from 37.8± 9.5ms to 27.1± 10.4ms while using FLANN,

and 36.7± 9.6ms to 26.0± 8.5ms with BF. Is important to observe that for our tests us-

ing ORB, FLANN does not seem to affect the performance times. Lastly, the amount of

average keypoints retrieved from the templates actually decreased from ORB to BRISK,

with a total of 5.824 keypoints, with an average of 485.3± 24.4 keypoints per template,

to a total of 4.614 keypoints, with an average 384.5± 119.5, which shows ORB being

more consistent than BRISK for the amount retrieved, although it did not prove that

with the additional keypoints the results would improve.

As the objective of this sub-module is the recognition and detection of the walls

throughout the visit within some rooms of the museum, it is expected a loss of track-

ing/recognition and its recovery at a slightly different location or angle, which de-

mands that the recognized template shape be the as close as possible to the desired,

every time there is a match within frames. Since the amount of good expected results

with BRISK surpassed the ORB descriptor, we decided to perform the current algo-
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Figure 2.6: Top row, examples of different vertical matching outcomes. Middle row,
initial results of matching while the view is obstructed by persons. Bottom row, exam-
ples of the Hough (1962) Transform applied to different frames.

rithm using only the BRISK descriptor, while the algorithm for object detection shown

at Sec. 2.3 remains using ORB. The different outcomes between both the descriptors for

this challenge could be due to the fact that the BRISK descriptor is invariant to scale,

while the ORB is not. Furthermore, while for object detection we used scaled versions

of the templates for matching, as the object is expected to fill the screen of the mo-

bile device, with this module there was an additional inclusion of different scales, as

it should be considered that the user will be navigating the different rooms of the mu-

seum; therefore, the templates, in this case the walls, will appear on the mobile device

with different geometric shapes and distances; see also Pereira et al. (2017).

Additional examples of results obtained can be observed in Fig. 2.6, where is pos-

sible to see on top the algorithm working with vertical frames and some of the still

occurring bad outcomes retrieved from faulty perspectives transforms from the ho-

mography. On the 2nd row, results of the current algorithm can be observed, while the
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view is partially obstructed with people. Additionally, it is important to remark that

this module is being ran only from the frames obtained, without additional sensors

or 3D information, an so, the results obtained with obstructed views are a welcoming

result for the current implementation.

In Fig. 2.6 bottom row it is possible to observe the results of part of the former al-

gorithm (Pereira et al. (2017)) applied to the retrieved frames. While with the former

implementation the process would begin by elimination of all non relevant lines, or

in our former case, all the non vertical, horizontal and vanishing lines, the future fu-

sion of both developments will be more focused in only retrieving the nearest lines to

the already extracted polygons through the Hough (1962) Transform, improving the

polygons veracity to the actual walls’ shapes and adding a level of longer distance

detection, either by additional calculations through the use of the vanishing point to-

gether with the vertical and horizontal lines, as can be seen in Pereira et al. (2017), or

with an eventual introduction of a pre-known room shape, which, combined with the

user localisation, would achieve better results, presenting the opportunity for the use

of indoor 3D models, further increasing the user immersion with AR.

On the next section we introduce an initial study for the detection and segmentation

of the human shape.

2.5 Human shape detection

Human shape detection, as mentioned in the Introduction, already presents its chal-

lenges; furthermore, for this sub-module we have to consider the detection in real-time

on a mobile device, while the user is moving trough six degrees of freedom (6DOF),

which will increase the level of complexity (Bhole and Pal (2012); Park and Yoo (2014)).

Recent researches approach the human shape detection either by a top-down or a

bottom-up method. Top-down means that the persons’ shape are first detected and af-

terwards an estimation of their poses is achieved (He et al. (2017); Hernández-Vela et al.

(2012); Papandreou et al. (2017)), while with bottom-up the humans’ limbs are individ-
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Figure 2.7: Top row-left, example of human detection with SSD-Mobilenet. Right, the
result of human segmentation by GrabCut. Bottom row, from left to right, original
image (frame), human segmentation, computed optical flow of two consecutive frames
and overlap of segmentation and optical flow (the two former images).

ually detected, generating groups of body parts in order to form humans’ poses (Cao

et al. (2017); Fang et al. (2017)). For the initial study of this module we used a top-down

approach, being the objective the detection and segmentation of the humans’ shapes,

allowing for the projection of AR content over it, as for example, the ability “to dress”

the museums’ users with clothes corresponding to the desired surrounding epoch of

the museums’ objects.

In order to overcome the complex challenges imposed by the detection of human

shapes in video, captured by a moving camera of a mobile device, we used a convolu-

tional neural networks (CNN), built in TensorFlow (Google (2018)). To detect human

shapes in a video feed with reasonable rate of fps we used a single shot detection (SSD)

network, and we used the MobileNet model for the neural network architecture; as

its name suggests, it is designed for mobile applications (Howard et al. (2017a)). The

other technique used in the process of human detection/segmentation is the GrabCut

algorithm (Park and Yoo (2014)). It has a limitation where it needs to define the fore-

ground and background areas; hence, we propose a fully-automatic human segmenta-

tion method by using the bounding box as a basis for the foreground and background
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areas.

The algorithm for this module is executed for each frame following these steps: (1)

Apply SSD-Mobilenet (Huang et al. (2017)), used for human detection, which outputs

a bounding box around the detected humans (see Sec. 2.5.1 for the justification). (2)

Resize the extracted bounding box by an increase of 10%; the original bounding box

would cut some parts of the human shape in some image conditions, thus this im-

proves the foreground precision. Step (3) follows with a cut of the input image, the cut

is made with twice (2x) the size of the initial bounding box, with the same centre, and

inside, the cropped area is used as background. Finally, (4) we use the GrabCut (Rother

et al. (2004)) algorithm for human shape segmentation.

2.5.1 Tests

Three models were tested in the mobile device for the human shapes detection, SSD-

Mobilenet (Huang et al. (2016)), YOLO (Redmon and Farhadi (2016)), and DeepMulti-

Box (Erhan et al. (2014)). Empirical tests were done in a Museum (Faro Municipal Mu-

seum) using an ASUS Zenpad 3S 10 tablet, showing that in real world conditions the

SSD-Mobilenet presented a better accuracy and speed, validating what is mentioned

in Huang et al. (2016). Initially, we used COCO (Lin et al. (2014)) frozen pre-trained

weights for SSD-Mobilenet. The evaluation setup, as mentioned, consisted on a ASUS

Zenpad 3S 10 tablet and a windows machine with an Intel i7-6700 CPU @ 3.40GHz. A

total of 86 frames of data were run 15 times through the network, with their perfor-

mance being recorded. The resolution of the input frames was 640px and the spatial

size of the convolutional neural network was 320px. To filter out weak detections we

use a confidence threshold of 0.25. Our tests for this model, using the tablet, returned

an average processing time of 346.0ms, while the computer achieved 33.7ms, being

these values only regarding Step (1).

After the human detection, and for the remaining Steps (2-4) in our algorithm,

with the use of GrabCut for segmentation, we achieved an average processing time

of 127.3ms using the computer. In Fig. 2.7 top row is possible to observe the output
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frame showing promising results regarding human segmentation. An observable dis-

advantage for this module within the museum environment can also be observed with

a painting of a person being detected as living person. Although it is a good feature, for

this task it is an undesirable result. Furthermore, in Fig 2.7 bottom row is possible to in-

spect that, when the conditions provide a discriminative foreground and background

areas, the GrabCut algorithm can perform with high precision.

To solve the problem caused by mis-segmentation of the limbs of a segmented per-

son, as for example in the left image, where the arms are indistinguishable from the

torso, we started to apply Gunnar Farneback’s algorithm to compute dense optical

flow between two consecutive frames (Farnebäck (2003); Fleet and Weiss (2006)). This

allows to complement the GrabCut segmentation process by using the consistency of

pixel values in two frames. Using Farneback’s algorithm allows to estimate the optical

flow in a sequence of frames, and it is possible to use it to locate the borders of limbs

that do not appear in the GrabCut segmentation. The algorithm shows an optical flow

field with distinguished values between torso and arms because they have different

speed movements, see Fig. 2.7 bottom right.

2.6 Conclusions

This chapter presents the current Mobile Image Recognition based Augmented Real-

ity (MIRAR) framework architecture. Even in its current state, MIRAR had already

presented good results in the object detection, recognition, and tracking sub-modules.

The integration with the new approach for the wall detection and recognition shows

satisfactory results, taking in consideration that it is still a work in progress. For the

human shapes detection, initial results were shown; nevertheless, more consistent tests

need to be performed in different museum conditions.

For future work, the recognition of 3D objects is an immediate focus in terms of

creating a robust bank of tests, and so is the refinement of the object recognition and

tracking module. This can be achieved by refining the matches with homography and
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trying to find an optimised set of keypoints from multiple scales. For the wall detec-

tion, the focus will be on improving the stability and further filtering the occasional

bad results, introducing pre-tuned templates to increase the range of detection, while

preserving performance, the inclusion of a tracking system, and a merger with the

previous work presented on edges detection for geometric prediction to stabilise the

resulting polygons, reaching for a predictive localization of the surrounding indoor

environment. The current different choices of descriptors between objects and wall

detection will also be addressed.

For the human shapes detection, the segmentation done with the use of the Grab-

Cut algorithm needs to be complemented in order to acquire a good human segmen-

tation, since it will allow the projection of contents onto those shapes/persons. In the

future we plan to use optical flow estimation (with initial results already shown) in the

final segmentation process in order to improve the segmentation results. Additional

work needs to be done to reduce the execution times of the detection and segmenta-

tion.

As a final conclusion, the MIRAR shows, even in this current stage, promising re-

sults, and it is expected to be an excellent tool to give a more impactful relation between

the museum’s user and the museum’s objects.
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3
Augmented Reality

Indoor Environment

Detection: Proof-of-Concept

Abstract

The conventional museum experience offers the visitors glimpses of the past with the

narrative limited to the static art that garnishes it. Through technology we already can

mix the past with the future, immersing the visitors in a true dynamic journey across

the same walls that guard our history. One of this technologies is the Augmented

Reality, which aims to enhance our surroundings into a new era of creativity and dis-
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covery. This chapter presents the proof-of-concept of an indoor portable environment

pose estimation module (PEPE) present inside M5SAR, a project that aims to develop

a five senses augmented reality system for museums. The current state of develop-

ment of this module shows that is already achievable real-world wall(s) detection and

a new environment superimposition over the detection, i.e., it is now possible to have

a dynamic museum experience with the ability of transforming rooms into historic live

stages.

3.1 Introduction

Augmented Reality (AR) (Azuma et al. (2001)) has benefited from the increased hard-

ware capabilities of smartphones and novelty algorithms, resulting in a fast evolution

over a short time, rapidly growing its number of users. It allows for a higher level of in-

teraction between user and real-world objects, expanding this experience and creating

a brand new level of edutainment. The M5SAR: Mobile Five Senses Augmented Real-

ity System for Museums project (Rodrigues et al. (2017)) aims for development of an

AR system that acts as guide for cultural, historical and museum events. Most muse-

ums have their own mobile applications (App), see e.g. InformationWeek (2017); TWSJ

(2017), and some also have AR applications, see e.g. HMS (2017); Qualcomm (2017);

SM (2017); Vainstein et al. (2016). The innovation in the M5SAR project is to extend the

AR to the human five senses, see e.g. Rodrigues et al. (2017) for more details.

The Mobile Image Recognition based Augmented Reality Framework (MIRAR)

framework is one of the modules of M5SAR project (Pereira et al. (2017)), aims to: (a)

perform all computational processing in the client-side (mobile device); (b) use in real

world with 2D and 3D objects as markers for the AR; (c) recognise environments, i.e.,

walls and its respective boundaries; (d) detect and segment human shapes; (e) project

contents (e.g., text and media) onto different objects, walls and persons detected and

displayed in the mobile device’s screen. A framework that integrates these goals is

completely different from the existing (SDK, frameworks, content management, etc.)
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AR systems (Artoolkit (2017); Catchoom (2017); Kudan (2017); Layar (2017); Pádua

et al. (2015)).

This chapter focus on one of the MIRAR sub-modules (sub-module c)), the environ-

ment detection and overlapping of information. Considering a typical museum wall,

there is usually artwork such as paintings and tapestry hanging on the walls, creating

an unique rich environment full of visual information. Following the previous method

introduced on the main object recognition module of MIRAR (Pereira et al. (2017)),

we will use the features detection and description matching methods for the environ-

ment recognition. Considering the expect walls as planes, and taking into account the

limited input information obtained from a monocular camera and smartphone per-

formance, any methods of 3D matching, such as bundle adjustments, iterative closest

point, among others, were discarded. Furthermore, with planes, it is possible not only

to perform a faster recognition using the same methods used for object recognition,

but also use the vanishing lines provided by the common geometric rules, for which

we considered the existence of paintings’ frames as a guarantee for the existence of

vanishing lines.

In this chapter the contribution is to fuse both approaches in order to achieve a

better wall detection and also user’s localization so that we can more accurately project

content upon the walls through the use of AR superimposition.

The MIRAR sub-module for object recognition and environment detection pre-

sented in this paper is AR marker-based, often also called image-based (Cheng and

Tsai (2013)). AR image-based markers allow adding easily detectable pre-set signals

in the environment, using computer vision techniques to sense them. There are many

image-based commercial AR toolkits (SDK) such as Catchoom (2017) or Kudan (2017),

and AR content management systems such as Layar (2017), including open source

SDKs (Artoolkit (2017)). Some are expensive, others consume too much memory (and

the present application will have at least one marker for each museum piece), while

others load slowly on the mobile device. The increasing massification of AR applica-

tions brings new challenges, such as the demand for planar regions detection (walls),
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with the more popular being developed within the scope of Simultaneous Localisation

And Mapping (SLAM) (Bailey and Durrant-Whyte (2006); Durrant-Whyte and Bailey

(2006)). RGB-D devices or light detection and ranging (LIDAR) sensors (Hulik et al.

(2014); Ring (1963); Xiao et al. (2013); Sousa et al. (2014)) usually used for image acqui-

sition of 3D environments. Some advances within environment detection, localisation

or recognition include using Direct Sparse Odometry (Engel et al. (2018)), or using de-

scriptors, like ORB SLAM (Mur-Artal et al. (2015)) or even Large-Scale Direct Monoc-

ular SLAM (Engel et al. (2014)). However, the MIRAR framework focuses on mobile

devices with monocular cameras only. Following this, an initial study of an environ-

ment detection sub-module was presented in Pereira et al. (2017), using a geometric

approach to the extracted edges of a frame. A frame is always captured from a per-

spective view of the surrounding environment, with the usual expected environment

being characterised by the existence of numerous parallel lines which converge to the

vanishing point (Duan (2011); Serrão et al. (2015)).

The chapter is structured as follows: The environment detection and AR overlap-

ping is presented at Sec. 3.2 and concluding with a final discussion and future work,

Sec. 3.3. For the MIRAR framework and architecture please see Sec. 2.2.

3.2 Environment Detection

The conventional museum’s environment is rich in details provided by the multiple

artwork that embellishes it. This scattered information is always present along the vis-

itor’s navigation throughout the museum when in presence of artwork. In continuity

of our previous work presented in former publications (see e.g. Rodrigues et al. (2016);

Pereira et al. (2017); Rodrigues et al. (2018); Sardo et al. (2017)), the vast presence of

unique features along the museum allows us not only to be able to superimpose con-

tent over the walls, but also to locate the visitor’s position within the museum. The

visitor’s localisation is also used within our main module of object recognition, but

using Bluetooth beacons instead.
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Figure 3.1: From top to bottom: Example of five templates following each other.

Also, in previous papers (Rodrigues et al. (2018); Veiga et al. (2017)) two distinct

approaches were presented to solve the environment detection, one focusing on the

geometry shape of a regular museum’s division, assuming that all the vanishing lines

are presented by the present walls within such division; while the other focuses on the

recognition of already known parts of said walls. In this paper both methods are fused

together in order to achieve a harmonious detection, recognition and localisation of the

environment, to dynamically superimpose different types of content over the walls,

such as images, video, animations, or 3D objects.

Before continuing, it is important to remind that due to the necessity of regular

cuboid rooms and image recognition, the method presented in this paper is intended

to be only used on previously scanned and prepared environments. It is also relevant

to remind that the purpose of this AR application is to be able to run seamlessly on

any current monocular smartphones, from which only a RGB image is provided by the

camera, without any additional depth information.

The current algorithm divides itself in four different stages: the bundle creation (a),

the recognition and localisation (b), tracking (c), and superimposition (d).

It is self-explanatory that the first stage is not performed inside the runtime, see

below for a detail explanation, while the other two complement each other. All of the

results presented were obtained running on an Intel i7-4820K CPU running on a single-

thread. Beginning with the bundles’ creation (a), for this task there are two distinct
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Features Number
of Features

FLANN
Based
Matcher

FLANN
Index

Performance
Difference Parameters

AKAZE 9500 10.62 ms 3.09 ms -70.90 % Default
BRISK 14521 22.64 ms 10.19 ms -54.99 % Default

BRISK 11299 17.01 ms 3.5 ms -79.42 % thresh=30, octaves=5,
patternScale=float(2.0)

ORB 10891 11.72 ms 5.35 ms -54.35 % Default
ORB 35311 40.62 ms 22.90 ms -43.62 % nFeatures=2000

Table 3.1: Comparison of the performance between FLANN Based Matched and
FLANN Index, presenting the results obtained from the matching of a real world image
to an index of 71 prepared images.

types of bundles created: a FLANN Index (FI) bundle, and a FLANN Based Matcher

(FBM) bundle. The reason for this peculiar choice is based on performance evaluations

made while testing the multiple alternatives available, being the Brute Forced Matcher

out of the scope of this paper, due to its lack of “flexibility" present on a previous pub-

lication. Both methods used the same index parameters, with the chosen algorithm

being the Locality-Sensitive Hashing (LSH), due to the choice of using non-patent bi-

nary descriptors, the number of tables used were only 1, with a key size of 12, and only

1 multiprobe level. The addition of a multiprobe to the LSH allowed for the reduction

of the number of hash tables, which allow for a better performance while maintain

the same obtained results. We observed an average reduction of 76.56% of processing

time across different binary features detectors and descriptors (AKAZE, BRISK, ORB)

(Tareen and Saleem (2018)), with the default and tweaked specifications, while using

only 1 hash table versus the 6 hash tables originally recommended, with the corre-

sponding images’ indexes returned with equal accuracy.

Regarding the choice of having two bundles of similar matchers, although the FBM

is build upon the FI, we performed search tests with the same query image on both and

obtained a better result retrieving the matching image index by and average of 60.66%

less processing time while using the FI, as can be seen at table 3.1. This justifies the

creation of an FI bundle, although while matching using the FI only the original image

index is retrieved, accompanied by the KNN’s distances. This way, it is only possi-

ble to know what image was matched but it is impossible to find the homography
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of said image with the queried one, which prevents the possibility of user’s localisa-

tion. In order to contour this limitation, a second bundle was created. With the Flann

Based Matcher, the matches obtained are correlated between the trained index and the

queried image. Furthermore, in our tests the Flann Based Matcher, while using a single

image, matched with an average processing time of 5.5 ms. This allows for an initial

faster and broad user’s localisation within the museum environment, followed by a

more specific approach once the localisation is found. It is important to notice that,

with our method, even when adding the FI and the posterior FBM processing time, it

is still faster comparing to the only use of the FBM.

An additional method was also analysed based on ASIFT. Due to the nature of the

application, it is expected that the users explore the superimposed content not only

frontal-facing to the walls, but also shifting the smartphone to the side, which creates

an image perspective more difficult to match. With the ASIFT algorithm we expected

to explore the additional affine matching while using the FLANN index matcher to

maintain an acceptable performance with the new additional descriptors. Unfortu-

nately, the obtained results, while successful, returned a large reduction of matched

indexes, in some cases more than 13 times less. For this reason, further tests and anal-

yses will be performed and presented on a future publication.

Regarding the templates used to train the FLANN indexes, it was observed while

advancing the presented algorithm that the wooden frames of the museum’s artworks

represented a large part of the retrieved features from the images, as can be seen

on Fig. 3.2. When implemented, it was verified that the wooden frames’ descrip-

tors matched vastly between themselves across different artworks, which introduced

plenty of false positive matches. To prevent this results we applied masks over the

templates, as can also be seen on Fig. 3.2, allowing only the features present on the

artworks to be computed as descriptors. This improved the performance and reduced

the observed false positives. The nature of the shape and form of the templates images

will be further explained at the finding homography step. In continuity of our previ-

ous work, the height of the templates was limited to 480 pixels, which is the obtained
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Figure 3.2: Top and Bottom: Example of the different amount of keypoints once the
painting’s frame is removed through the use of masks.

height of the smartphones’ camera frame, and the detector and descriptor remains the

BRISK, which allows for some image scaling in the recognition, which is expect to oc-

cur while the users navigate the museum.

Advancing to the recognition and localization stage (b) of the algorithm, while

retrieving the frames from the user’s smartphone camera, if there isn’t a previous

matched frame, the FLANN Index is used to find the corresponding image’s index.

As the FI usually returns the more approached image to the frame’s descriptors, it

is always necessary to perform at least the corresponding FLANN Based Matcher of

the obtained image index to discard the insufficient matches. It was observed that

the amount of returned matches from the FI is not correlated to the certainty of the

retrieved match. Nevertheless, this method continues to be faster than a plain FBM

use. All the matches obtained from the FBM are subjected to the Lowe’s ratio test,

where only the matches with distances inferior to a relation of 0.65 are considered

good matches. When a match is found with at least 10 good matches, then we proceed

to find the homography. Normally only 4 matches are needed for the homography cal-

culation, but as mentioned on previous work, for this AR application it is mandatory
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the computation of a good homography, and therefore the number of minimal good

matches was increased. The following homography refinement method can be found

on our previous publication, with the addition of a symmetry test and also a verifica-

tion if the return matrix isn’t transposed, being this way possible to salvage some bad

outputs (Tolias and Avrithis (2011)). Having in mind the necessity of a considerable

amount of good matches but also a smooth performance, the amount of descriptors

detected from the frame is directly associated with the previous frame processing time,

with all being firstly sorted by their response parameter.

As referred before, the templates’ shape form was made with a purpose. When

calculating the homography we found the perspective relation between two different

planes: an image in the 2D world, and an object in the 3D world. Due to the similar

construction structure between different smartphones, we were able to observe a lim-

ited variation in the intrinsic camera matrix, which allow us to assume a acceptable

outcome within error, if needed we might implement an auto-calibration method as

future work (Mendonça and Cipolla (1999)). In order to reduce additional comput-

ing calculations, when the template’s images where obtained, the corresponding wall

heigh was included, which allows for a direct relation between the artworks full of

features an the plain walls that lack them. It is important to refer that a panoramic

of all the walls of a museum room was also created, but giving the vastness of the

information, the panoramic reduced the performance and increased the false positives

matches, therefore increasing the amount of bad homographies computed. The current

arrangement of templates cover completely the walls of the museum room with at least

two artworks always present, with the exception of large artwork pieces. Using these

limits, and with each template preceding the other and never overlaying, it is possi-

ble to retrieve the already known shape of the room without the need of advanced 3D

calculations.

With the homography known, the next steps are the fusion of the previous two

methods presented on former publications. A Gaussian Blur is applied to the obtained

frame. A dynamically adjusted Canny (1986) edge detection is applied to the camera’s
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Figure 3.3: Example of the lines found in the environment through different perspec-
tives.

frame, using the Otsu (1979) threshold to replace the high Canny’s threshold while

the lower varies with a direct proportion of 10% to the higher. From there, the Proba-

bilistic Hough (1962) Transform (Kiryati et al. (1991)) is applied in order to retrieve the

presented lines in the environment, as can be seen in Fig. 3.3.

The Line Segment Detector was also considered, but it presented a performance 3

times worse for the same amount of lines retrieved. The obtained lines are then filtered

with the vertical and horizontal lines being discarded relatively to the horizon line.

Afterwards the similar lines are removed, remaining only the unique lines, expected

to be the environment vanishing lines. The intersecting points between these lines

are calculate following the Cramer’s Rule. The obtained intersecting points are added

to a k-means clustering, where the most dense cluster is chosen and its centroid is

considered as vanishing point. The already found lines from the homography are then

adjusted to the obtained lines corresponding to the walls’ horizontal delimitations,

improving the already refined homography.

Following the last steps comes the stage of tracking (c). As referred in previous

publications, it is not expected the possibility of always achieving a valid match with

the templates. In order to be able to continue tracking the user’s navigation it is neces-

sary to deploy different methods for confirming the user’s actions. The direct method

is to continue tracking the matching image and the ones surrounding it to the left and

right. We also used the retrieved homography perspective to generate a mask which is

used while the same image is matched, which allows discarding unnecessary descrip-

tors from the frame. With the fusion of both methods previously presented we are able
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Figure 3.4: Left to right: the desired segmentation of the environment’s walls, two
examples of superimposing results.

to use a novel approach, where we apply Kalman Filters to the vanishing point and

corresponding points of the found and adjusted homography through vanishing lines.

This method allows for a better perception of the user’s movement and smooths the

transitions of the superimposed content.

Finally, we reach the last stage, the superimposition (d). Although it was already

possible after the second stage, we decided it was a higher priority to first start track-

ing so we could evaluate the initial tracking frames, and after a small amount of good

tracked frames, initialising the projection of content over the walls. Considering the

purpose of the users’ visit being the museum’s artwork, to be able to superimpose con-

tents while maintaining the artwork visible, the templates’ masks already generated

and used while building the bundles, are used here. With all the templates following

each other, an example can be seen of Fig. 3.1; we are able to find where the corre-

sponding vanishing line end and another perpendicular wall commences, allowing us

to generate a perspective matrix corresponding to the projected wall(s). With this in-

formation, we can project specific content on different walls throughout the museum’s
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rooms. A desired result is presented on Fig. 3.4.

3.3 Conclusions

The current state of this module shows promising results, presenting the fusion of

two different methods previously introduced that allow for a better filtering and also

recovery of bad homographies, while introducing an additional geometric tracking

method. With the possibility of acquiring mainly good homographies, it is possible

to consider the calculations of the user’s camera pose on the real world (Elqursh and

Elgammal (2011); Bartoli and Sturm (2005); Vincent and Laganiére (2001)), which in

future work is being considered to be reprojected into a 2D map of the museum and

the localisation and direction of the users being computed using Kalman Filters to

reject the remaining bad homographies.

The presented form of the templates are considered the final version, with the com-

plete wall height and shape in the templates being used to retrieve the walls’ hori-

zontal limits and localisation while also using masks to discard the unwanted features

retrieved from the paintings’ frames, and being continuous to each other in the real

world, allowing the calculation of an accurate perspective matrix in order to superim-

pose content.

Regarding the search and matching between templates and the camera frame, this

was also addressed with the introduction of a mixed FLANN indexes search engine,

which has shown excellent time results and allows for a faster and broader localisation

while remaining with a more specific matching intended for the AR superimposition

method.

For future work, the unexpected occurrence of few returned indexes while adding

and training using the ASIFT method to the current algorithm could be further ex-

plored and evaluated. Although, with the environment’s vanishing lines, it is also

possible to continue the tracking into more obtuse view perspectives, as can be seen

on Fig. 3.3, which could disprove the necessity of properly implementing the ASIFT
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method.

With the expected algorithm fully implemented, a battery of tests shall be produced

to evaluate the performance and quality of this module in real-time and introducing

additional rooms with different configurations.
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4
AR Contents Superimposition

on Walls and Persons

Abstract

When it comes to visitors’ experiences at museums and heritage attractions, objects

speak for themselves. With the aim of enhancing a traditional museum visit, a mo-

bile Augmented Reality (AR) framework was developed during the M5SAR project.

This paper presents two modules, the wall and human shape segmentation with AR

content superimposition. The first, wall segmentation, is achieved by using a BRISK

descriptor and geometric information, having the wall delimited, and the AR contents

superposed over the detected wall contours. The second module, person segmenta-
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tion, is achieved by using an OpenPose model, which computes the body joints. These

joints are then combined with volumes to achieve AR clothes content superimposition.

This paper shows the usage of both methods in a real museum environment.

4.1 Introduction

Augmented Reality (AR) (Azuma et al. (2001)) is no longer an emergent technology,

thanks mainly to the mobile devices increasing hardware capabilities and new algo-

rithms. As cornerstone, AR empowers a higher level of interaction between the user

and real world objects, extending the experience on how the user sees and feels those

objects, by creating a new level of edutainment that was not available before. While

many mobile applications (App) already regard museums (InformationWeek (2017);

TWSJ (2017)), the use of AR in those spaces is much less common, albeit not new, see

e.g. Vainstein et al. (2016); Rodrigues et al. (2017); Portales et al. (2010); Gimeno et al.

(2017).

The Mobile Image Recognition based Augmented Reality (MIRAR) framework (Pereira

et al. (2017)) (developed under M5SAR project (Rodrigues et al. (2017))) focuses on the

development of mobile multi-platform AR systems. One of the MIRAR’s requirements

is to only use the mobile devices RGB cameras to achieve its goals. A framework that

integrates our presented goals is completely different from the existing AR software

development kits – SDK, frameworks, content management systems, etc.(Artoolkit

(2017); Catchoom (2017); Layar (2017)).

This chapter focuses on two particular modules of MIRAR, namely: (a) the recog-

nition of walls, and (b) the segmentation of human shapes. While the first module

intends to project AR contents onto the walls (e.g., to project text or media), the second

contemplates the overlap of clothes onto persons. The wall detection and recognition is

supported upon the same principles of the object’s recognition (BRISK descriptor) but

uses images from the environment to achieve it. On the other hand, the human detec-

tion and segmentation uses Convolutional Neural Networks (CNN) for the detection
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(namely, the OpenPose model (Cao et al. (2018))). The overlapping of contents in the

museum environment is done over the area limited by the wall or using the body joints

along with clothes volumes to put contents over the persons. The main contribution of

this paper is the integration of AR contents in walls and persons in real environments.

The chapter is structured as follows. The contextualization and a brief state of the

art is presented in Sec. 4.2, followed by the wall segmentation and content overlapping

sub-module in Sec. 4.3, and the human shape segmentation and content overlapping

in Sec. 4.4. The paper concludes with a final discussion and future work, Sec. 4.5.

4.2 Contextualization and State of the Art

AR image-based markers (Cheng and Tsai (2013)) allow adding in any environment

easily detectable pre-set signals (e.g. paintings and statues), and then use computer

vision techniques to sense them. In the AR context, there are some image-based com-

mercial and open source SDK and content management systems, such as Catchoom

(2017), Artoolkit (2017) or Layar (2017). Each of the above solutions has pros and cons

and, to the best of your knowledge, none has implemented wall and person segmen-

tation with information overlapping.

The ability of segmenting the planar surfaces of any environment continues to be a

challenge in computer vision, mainly if only a monocular camera is used. One of the

directest approach to an environment’s scanning is the use of RGB-D cameras (Gupta

et al. (2015)) or LiDaR devices (Hulik et al. (2014)) to directly acquire a 3D scan of the

cameras’ reach. A more indirect approach – more based on computation than hardware

– is the Simultaneous Localization and Asynchronous Mapping (SLAM) (Durrant-

Whyte and Bailey (2006)). SLAM’s methods for indoor and outdoor navigation has

shown new advances either by using the Direct Sparse Odometry (Engel et al. (2018)),

or with a feature matching method like the ORB SLAM (Mur-Artal et al. (2015)) or even

a Semi-Dense (Engel et al. (2013)) or Large-Scale Direct Monocular SLAM (Engel et al.

(2014)).
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Another usual approach is the cloud of points method or the structure from mo-

tion, which is part of the SLAM’s universe, relying on multiple frames to be able to

calculate a relation in-between the features – 3D points – and the camera’s position.

There have been developments in the outdoor, or landmark, recognition (Babahajiani

et al. (2014)), an also simple objects detection and its layout prediction using the cloud

of oriented gradients (Ren and Sudderth (2016)). Another example, proving the possi-

bilities of a proper environment’s layout analysis, is the use of a structure from motion

algorithm using the natural straight lines in an environment, through representation,

triangulation and bundle adjustment (Bartoli and Sturm (2005)).

One of the main novelties is the use of CNN to solve any complex computer vision

challenge, including environment’s layout prediction (Tateno et al. (2017)), although

the current state is not useful in runtime. On the other hand, in every common human-

based construction there can be found the presence of lines or edges in its geometric

perspective. These vanishing lines allows us to predict the orientation and position

of planes (Haines and Calway (2012)). It is even possible to compute a relative pose

estimation using the present lines in the environment (Elqursh and Elgammal (2011)).

These techniques, applied to the indoor layouts’ prediction, allows us to compute the

existence of natural planar surfaces (Serrão et al. (2015)), even by using the edges of

maps available on any indoor layout (Mallya and Lazebnik (2015)). One major advance

in the outdoor camera localization is the PoseNet (Kendall et al. (2015)), which also uses

a CNN. It is important to stress that none of those methods presents the superimposing

of contents over an environment know a priori, on a monocular mobile device and in

runtime.

The second module to be presented in this work focuses on human segmentation

and pose estimation, which is also a challenging problem due to several factors, such

as body parts occlusions, different viewpoints, or human motion (Fang et al. (2017)).

In the majority of models based on monocular cameras, the estimation of occluded

limbs is not reliable. Nevertheless, good results for a single person’s pose estimation

can be achieved (Fang et al. (2017)). Conversely, pose estimation for multiple people
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is a more difficult task because humans occlude and interact between them. To deal

with this task, two types of approaches are commonly used: (a) top-down approach

(He et al. (2017)), where a human detector is used to find each person and then running

the pose estimation on every detection. However, top-down approach does not work

if the detector fails to detect a person, or if a limb from other people appears in a single

person’s bounding box. Moreover, the runtime needed for these approaches is affected

by the number of people in the image, i.e., more people means greater computational

cost. (b) The bottom-up approach (Cao et al. (2017); Fang et al. (2017)) estimates human

poses individually using pixel information. The bottom-up approach can solve both

problems cited above: the information from the entire picture can distinguish between

the people’s body parts, and the efficiency is maintained even as the number of persons

in the image increases.

As in the wall detection, the best results for pose estimation are achieved using R-

CNN (Regions - CNN) (Girshick et al. (2014)) or evolutions, such as the Fast R-CNN

(Girshick (2015)), Faster R-CNN (Ren et al. (2015)) or the Single Shot MultiBox Detector

(SSD) (Huang et al. (2017)). A comparison between those methods can be found in

Huang et al. (2017). The results show that SSD has the highest mAP (mean average

precision) and speed. With good results, OpenPose (Cao et al. (2017)) can also be used

for pose estimation, being based on Part Affinity Fields (PAFs) and confidence maps

(or heatmaps). The method’s overall process can be divided in two steps: estimate the

body parts (ankles, shoulders, etc.) and connect body parts to form limbs that result

in a pose. In more detail, the method takes an input image and then it simultaneously

infers heatmaps and PAFs. Next, a bipartite matching algorithm is used to associate

body parts and, at last, the body parts are grouped to form poses. The OpenPose can be

used with a monocular camera and run in “real-time” on mobile devices. Additionally,

the estimated 2D poses can be used to predict 3D poses using a “lifting” system, that

does not need additional cameras (Tome et al. (2017)).

Several methods exist for clothes overlapping. A popular one is Virtual Fitting

Room (VFR) (Erra et al. (2018)), which combines AR technologies with depth and
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colour data in order to provide strong body recognition functionality and effectively

address the clothes overlapping process. Most of these VFR applications overlap 3D

models or pictures of a clothing within the live video feed and then track the move-

ments of the user. In the past, markers were used to capture the person (Araki and

Muraoka (2008)). In that case, specific joints are used to place the markers, which dif-

fer in colours according to the actual position on the body. From a consumer’s point

of view, a general disadvantage is the time consumed placing the markers and the dis-

comfort of using them. Isıkdogan and Kara (2012) use the distance between the Kinect

sensor and the user to scale a 2D model over the detected person, only depicting the

treatment of t-shirts. Another similar approach, presented in Erra et al. (2018), uses 3D

clothing with skeleton animation. Two examples of the several commercial applica-

tions are Facecake (2016) and Fitnect (Kft. (2016)).

4.3 Wall Detection and Information Overlapping

Previously, the authors followed two distinct approaches to solve the environments’

surfaces detection (Pereira et al. (2017); Rodrigues et al. (2018); Veiga et al. (2017, 2018)).

A first approach assumes that the vanishing lines present in the environment follow

an expected geometric shape; and a second approach focuses on retrieving the walls’

proportions using the features extraction and matching method, followed by the ho-

mographies’ computation. The methods were then combined in order to achieve a

harmonious detection, recognition and localization of the environment, allowing to

dynamically superimpose different types of content over the walls, such as images,

video, animations, or 3D objects.

As detailed next, the present algorithm is designed to work over regular plane

walls, which are known a priori through a previously bundle creation phase. Being the

purpose of this AR application the ability to run seamlessly on any current monocular

smartphones, from which only a RGB image is provided by the camera (i.e., without

any additional depth information), it is important to assure an ideal performance using
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less computational’ eager algorithms.

Our current algorithm divides itself in five different stages: (a) the bundle creation,

(b) the recognition and localization, (c) corners’ adjustment, (d) tracking, and (e) su-

perimposition.

The first stage of the algorithm – the bundle creation (a) – is pre-executed, i.e., not

performed during runtime. For this task two distinct types of bundles are generated: a

FLANN (Fast Library for Approximate Nearest Neighbours) (Muja and Lowe (2012))

Index (FI) bundle, and a FLANN Based Matcher (FBM) bundle. This odd combination

is due to a better performance being obtained by a hybrid version of both FLANN

matchers instead of only one, as presented in Veiga et al. (2018). Reasons for this

choices will be better detailed during the recognition and localization (b) phase.

Museums’ environments are full of detail and some of its areas gather enough sig-

nificant information to be considered keypoints, which can be detected and define by

computing its descriptors. In this approach, the BRISK keypoint detector and descrip-

tor extractor (Leutenegger et al. (2011)) is used, due to its capabilities of performing

well with image scaling. Images of continuous walls, as can be seen in Fig. 4.1 top

two rows, allow not only to project content, but also retrieve the users’ localization

through the sparse unique keypoints inside the artworks. The retrieved features are

stored during the bundle creation, allowing the comparison during runtime with the

ones obtained from the smartphones’ cameras.

As observed in Veiga et al. (2018), the paintings’ wooden frames are rich in similar

features, which often would lead to cross-matched in between them. To prevent this

false matches, the templates are pre-processed before training the FLANN indexes,

defining masks where only the features from the artworks could be obtained, as it can

be seen on Fig. 4.1 bottom row. Additional final templates examples can be observe on

Fig. 4.2. The motive behind the shape and form of the templates will be explained in

detail during the next phases.

Although FBM is built upon FI, previous performance tests showed that the bare FI

returns results similar to the ones obtained with FBM, but with an average of 60.66%
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Figure 4.1: Top two rows, from top left to bottom right: Example of five templates
following of the same wall. Bottom row, pre-processing of the templates. Left to right,
input image with the complete desired height of the wall, mask applied over removing
the wooden frames, features retrieved and computed.

less processing time (Veiga et al. (2018)), which justifies the choice of building an FI

bundle. While both methods retrieve the same template index, the FBM also retrieves

the matching between features, which is essential for the computation of the homog-

raphy. Following this necessity, a bundle is created for each matching method, which

allows to generate a hybrid FLANN matching method. This method, starts by search-

ing across our templates with the FI bundle and then only process the top retrieved

results with FBM, which was proved to be a faster matching method, when compared

to using exclusively FBM (Veiga et al. (2018)).

Both methods – FI and FBM – used the same index parameters, and the same

searching algorithm, the Locality-Sensitive Hashing (LSH), which performs extremely

well with non-patent binary descriptors. The LSH used a single hash table with a

key size of 12, and only 1 multiprobe level. The addition of a multiprobe to the LSH,

allows to reduce the number of hash tables, obtaining a better computational perfor-

mance without affecting precision. As presented in Veiga et al. (2018), it was noted

an average reduction of 76.56% of processing time across different binary features de-
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Figure 4.2: Example of some of the templates used during the bundle creation stage.

tectors and descriptors (AKAZE, BRISK, ORB) (Tareen and Saleem (2018)) while using

only 1 hash table, versus the 6 hash tables originally recommended.

The runtime computation starts with the recognition and localization stage (b).

While no localization information or previous match is available, the retrieved frame

from the camera is resized to a resolution of 640× 480 pixels (px), and processed with

the BRISK feature detector through the FI feature matcher, returning a list of proba-

bilities for the index of each template, as can be seen on the top-left and top-centre of

Fig. 4.3. Similar to the top-5 rank in CNN, the image with highest probability is not

occasionally matched, although one within the top-5 is used. Then the FBM is applied

through the top-5 indexes and the results are subjected to the Lowe’s ratio test, where

only the matches with distances to each other with a relation between 55% and 80% are

considered. If at least 20 of these matches are obtained, then the algorithm continues,

otherwise it skips this frame’s processing. It is also important to stress that in order

to achieve a near real-time performance, the previous frame’s processing time is corre-

lated with the total amount of descriptors for the current frame, with all being firstly

sorted by their response parameter, which correlates the level of similarity between the

templates and frames’ descriptors.

With the computation of the homography’s matrix between the correlated matches

of the template and the camera’s frame, the perspective transformation of the 2D tem-

plate can be computed as an object within the 3D world, which can be observe in
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Figure 4.3: Pipeline of the environments’ superimposition algorithm. Left to right, top
to bottom: input frame, keypoints and descriptor computation, homography’s calcula-
tion, demonstration of the relation between matches and the homography, Canny edge
detection, Probabilistic Hough Transform, vanishing lines post-processing, content su-
perimposed.

Fig. 4.3 – top-right. Normally, the homography only requires 4 matches to be able to

calculate but, with the user navigating through out the museum, steady results for

this AR application were obtained only when the minimum limit of matches was in-

creased to 20 points. We also discard the bad homographies verifying if the computed

matrix presents a possible solution which could match our desired output: direction,

proportion, and perspective. A demonstration of this process can be seen in Fig. 4.3 –

centre-left and right.

During the bundle creation stage (a) the templates’ shape form where made for a

specific purpose: the ability to find the upper and bottom margins of any specific wall,

as well the left and right limits when necessary. The current arrangement of templates

is divided between two rooms, one regular – cuboid – and one irregular. The aim for

the regular room is to be able to localize the exact position and angle that the user is

pointing. Furthermore, using the continuous templates from the same wall, as shown

in Fig. 4.1 – top two rows, an automated mixed 3D layout of the museum’s room is

being designed, with the objetive of further exploring the AR applications without the
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need for advanced 3D calculations. In the irregular room, the walls are used to project

any desired content, e.g., a video-documentary related to the artwork exposed on that

specific wall without the ability to project over the entire environment’s layout.

With the homography already known, the next step is the corner’s adjustment stage

(c), which is the result of the combination of several methods (Pereira et al. (2017);

Rodrigues et al. (2018); Veiga et al. (2017, 2018)). The frame’s edges are computed by

applying a Gaussian filter to blur the frame, followed by a dynamic Canny (1986) edge

detection using the Otsu (1979) threshold to replace the high Canny’s threshold, which

decides if a pixel is accepted as an edge, while the lower threshold, which decides if a

pixel is rejected, varies with a direct proportion of 10% to the higher. The computed

edges can be seen on the centre-right of Fig. 4.3. Afterwards, the Probabilistic Hough

Transform (Kiryati et al. (1991)) is applied in order to retrieve the lines present in the

frame, as seen in the bottom-left of Fig. 4.3.

Next, the obtained lines are filtered by discarding the extremely uneven lines in

relation to the horizon line, followed by the calculation of the similar ones, resulting

only in the expected environment’s vanishing lines. The lines’ intersecting points were

clustered using a K-means clustering method, where the densest cluster is chosen, and

its centroid is considered as the vanishing point of said lines. Considering the original

location of the homography’s corner points, with the known vanishing point, these

corners can be adjusted to existing lines in the environment – upper and lower limit of

the wall –, as observed in the bottom-centre of the Fig. 4.3.

Previously, the application of Kalman filters to the vanishing point and its corre-

sponding corner’s coordinates was introduced in Veiga et al. (2018), allowing for a

better perception of the user’s movement, and consequently smoothing the transitions

of the superimposed content. Although the current state of the present algorithm re-

tains this step, Kalman filters are no longer used for tracking, with its main function

being the validation of a proper template’s perspective found on the processed frames.

More precisely, the Kalman filtering of the coordinates allows to predict their next po-

sition and estimate if the ones retrieved behaved as noise or valid inputs. This favors
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the obtention of more precise coordinates in time with more harmonious trajectories –

it is important to refer that the obtained homographies are not perfect and their per-

spective fluctuates significantly, which leads to noisy coordinates. This probaly is due

to the recursiveness of the Kalman filters but, there was only the need to adjust the

uncertainty matrix to our specific application and no additional past information is

required to be able to process in real time. Before advancing to the last two stages of

the algorithm, the previous steps are computed again using a mask retrieved from the

calculated coordinates. When the Kalman filters stabilizes, the process proceeds to the

next stage.

Regarding the tracking stage (d), with the corresponding template’s coordinates

found, the good features to track within our current frame’s mask are computed, using

the Shi and Tomasi (1993) method. Afterwards, the optical flow between the previ-

ous and the current frame is calculated using the iterative Lucas-Kanade method with

pyramids (Bouguet (2001)). Using this method, a more accurate homography between

frames can be computed, which results in a more fluid and smooth tracking using

even less computation than our previous approach. It should be noticed some impor-

tant aspect of this approach such as the fact that the smartphones’ cameras are different

between brands and models, sometimes even between the operating system versions,

which results in different features match across the devices. Through this method, a

lighter computational tracking in any device and in multiple conditions was possi-

ble. The Shi-Tomasi corners continues to be obtained through the tracking, which en-

ables the visitor to continue walking through the museum without the AR experience

– which enables the visitor to explore the content in a higher detail.

Following the previous stage, the superimposition stage (e) can finally processed.

With the improved tracking stage, the overlay of content over the environments’ pre-

vious known walls, allowing the visitors’ movement, is possible, without affecting the

projected content. The result can be seen in the bottom-right of Fig. 4.3. Although, it

is only presented the projection of content over the corresponding template’s shape, it

is also possible to use the template’s mask and re-purpose the artwork’s surrounding
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empty walls with content without covering the artwork. With the different templates,

specific content can be projected on different walls throughout the museum’s divisions.

4.4 Person Detection and Clothes Overlapping

As mention, the goal of the Person Detection and Clothes Overlapping module is to

use a mobile device to project AR content (clothes) over persons that are in a museum.

On other words, the goal is “to dress” museums’ users with clothes from the epoch

of the museums’ objects. The module has two main steps: (i) the person detection

and pose estimation, and the (ii) clothes overlapping. Those steps will be explained in

detail in the following sections.

The implementation was done in Unity (2018) using the OpenCV library (Asset for

Unity). In order to verify the implementation’s reliability, computational tests were

done in a desktop computer and in a mobile device, namely using a Windows 10 desk-

top with an Intel i7-6700 running at 3.40 GHz and an ASUS Zenpad 3S 10” tablet.

The method used for pose estimation was OpenPose (see Sec. 4.2 and Cao et al.

(2017); Kim (2018)). OpenPose was implemented on TensorFlow (Google (2018)) and

the CNN architecture for feature extraction is MobileNets (Howard et al. (2017b)). The

extracted features serve as input for the OpenPose algorithm, that produces confidence

maps (or heatmaps) and PAFs maps which are concatenated. The concatenation con-

sists of 57 parts: 18 keypoint confidence maps plus 1 background, and 38 (= 19×2)

PAFs. The component joint/body part of the body, e.g., the right knee, the right hip, or

the left shoulder, are shown in Fig. 4.4, where red and blue circles indicate the per-

son’s left and right body parts. A pair of connected parts, limb, e.g., the right shoulder

connection with the neck are shown in the same figure, the green line segments.

A total amount of 90 frames of expected user navigation were the input to the CNN.

Furthermore, two input sizes images for the CNN were tested: 368×368 and 192×192

px. Depending on the size of the input, the average process time for each frame was

236ms/2031ms (milliseconds) and 70ms/588ms, respectively in the desktop and tablet.
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Figure 4.4: Left to right, example of confusion between left and right ankle, the cor-
rect detected pose, and the pose estimation with spatial size of the CNN equal to
368×368px and 192×192px.

As expected, reducing the input size images of the CNN allow attaining improvements

on the execution time, but the accuracy of the results dropped. The pose is always

estimated, but the confidence map for a body part to be considered valid must be

above 25% of the maximum value estimated in the confidence map (this value was

empirically chosen), otherwise is not considered. A missing body part example for a

192×192px image which was detected in the 368×368 px image is shown in Fig. 4.4,

right most image. The same figure also shows an example of error that sometimes

occurs in the identification of the right and left hands/legs (left most image).

Besided the presented cases, a stabilization method was needed because pose esti-

mated (body part) can wrongly “change" position, for instance due to light changes.

The stabilization is done using groups of body parts from the estimated pose. The

body parts selection for each group is based on the change that body parts do when

any single one moves, see Fig. 4.5.

The stabilization algorithm is as follows: (a) for each one of the 5 groups present in

Fig. 4.5, a group of RoIs (one for each body part), with 2% of the width and height of

the frame (value chosen empirically), is used to validate if all the body parts from the

group have changed position or not. (b) To allow a body part to change position, all

the other group body parts must change, i.e., they must have a position change bigger
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Figure 4.5: Pose estimation stabilization groups.

Figure 4.6: Examples of volume 2D views.

than the RoIs mentioned before. (c) Depending of the group, if one or two body part(s)

have a value bigger than the predefined RoIs, this wrong body part(s) is/are replaced

by the correct ones, that was/were estimated in a previous frame.

To solve the incorrect detection of the body parts problem, the estimated pose view

is used, i.e., to distinguish between right and left body parts it is necessary to validate

if the body is in a front or in a back view. (d) This is done by observing that in a front

view, the x coordinates of the right side body parts should be smaller than the ones

from the left side. To replace a missing body part from a pose is used the previously

estimated pose.

In the second phase, the clothes overlapping methods has as input the estimated

body parts. For clothes overlapping, three methods were tested: (i) segments, (ii) tex-

tures, and (iii) volumes. The first two methods were presented in Bajireanu et al. (2018),

showing some lack precision and the limitation of only working in frontal view.

For the third method (volumes), the two main steps are: (a) rotate and resize the

volume, (b) project the (clothes) volume over the person.

In the first step, (a.1) a clothe volume was developed in 3DS MAX (2018) and (a.2)

imported to Unity. Then, (a.3) the volume was rotated horizontally accordingly to four
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Figure 4.7: Created views conditions represented horizontally. A detected part is rep-
resented by 1 and not detected by 0.

pose views, as presented in Fig. 4.6 where frontal, back, side right, and side left views of

the volume can be seen. (a.4) The views were then associated to the OpenPose detected

and non detected body parts (namely: nose, right eye, left eye, right ear and left ear)

according with the conditions presented in Fig. 4.7, where 1 represents a detected body

part, and 0 a non detected body part. Additionally, (a.5) to strengthen the assurance of

front or back view, the x coordinates distance between right and left hips and shoulders

coordinates should be more than 5% of the frame width (this value was empirically

chosen). (a.6) A previous view is used if none of the above conditions are met. Finally,

(a.7) the volume is resized using the distance between ankles and neck which is an

approximation to the person’s height.

The resized volume is now project over the detected person (b). To achieve the

referred projection, the volume body parts keypoints (see Fig. 4.8 left) are (b.1) over-

lapped over the estimated OpenPose pose body part keypoints, and (b.2) rotated ac-

cordingly to the angle (αi) between a vertical alignment and each OpenPose’s i-limb,

see Fig. 4.8 right.

Figure 4.9 shown results of the overlapped volume in a museum environment. The

overlapping volumes over a person takes an average processing time of 6.1ms/31.4ms

for the desktop and mobile respectively. In general, the overall process takes a mean

time of 76.1ms (70ms + 6.1ms) and 590.4ms (559ms + 31.4ms) for the desktop and

mobile.
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Figure 4.8: Left, volume keypoints. Right, example of a limb’s angle.

Figure 4.9: Examples of human shape superimposition using “volumes”.

4.5 Conclusions

This chapter presents two modules to be integrated in MIRAR framework (Pereira et al.

(2017)), namely: the wall segmentation with overlapping of information and the hu-
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man shapes segmentation with clothes overlapping. Furthermore, the modules were

integrated as it can be seen in the examples in Fig. 4.10.

Regarding the walls’ detection and information overlapping, the current results

present a functional and fluid experience of content superimposition even with visi-

tors’ movements or with acute angles between the camera’s position and the superim-

posed walls. Nevertheless, further tests in different conditions and new environments’

implementations are required to improve and evolve the present algorithm into a more

broad and stable performance.

For human clothes overlapping in real involvements (museum in this case), the pro-

posed method combines OpenPose body parts detection with volumes overlapping.

For better pose estimation accuracy in mobile devices, a stabilization method and the

pose views were created. For real-time performances on mobile devices an OpenPose

model with a MobileNet architecture was used and two input image sizes were tested

(namely, 368×368 and 192×192px). The smallest size is the best option for mobile de-

vices in term of execution time, but it is worse in term of accuracy, nevertheless is a

good trade-off for the application.

For future work, a faster and more accurate performance with OpenPose could

be achieved by testing new network architectures, new training strategies and other

datasets. Another way to get better pose estimation results could be achieved by test-

ing models like PersonLab (Papandreou et al. (2018)) or others. For this specific mod-

ule, other way to do pose view estimation is to train a model to do body/foot keypoints

estimation and use the foot keypoints position to know the pose view. Additionally,

to predict 3D poses by using the estimated 2D poses, the “lifting” system implemen-

tation could be done. In the case of the indoor localization through only computer

vision is still not resolved, with the necessity of creating a new compatible method to

our present tracking system. There is also a need to develop a mixed 3D layout of

the regular museums’ rooms in order to be able to totally replace the environment if

needed. This would also allow, especially with the seamless tracking, the possibility

of superimposing advanced 3D models contents that could offer better information,
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Figure 4.10: Examples of both modules working together.

orientation or navigation through the user’s visit, fully immersing the visitor in this

new era museums’ experience.
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5
Efficient Small-Scale Network for Room

Spatial Layout Estimation

Abstract

In this paper, we focus on the challenging task of retrieving the spatial layout of dif-

ferent cluttered indoor scenes from monocular images, using a smaller deep neural

network than the existing proposals. Older geometric solutions are prone to failure

in the presence of cluttered scenes because they depend strongly on hand-engineering

features and the expectation of the possibility of the vanishing points’ calculation. With

the growth of neural networks, the geometric methods were either replaced or fused

within the emerging area of deep learning. The more recent solutions rely on dense
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neural networks with additional adjustments, either by the calculation of the vanishing

points, position based, or by layout ranking. All these methods presented valid solu-

tions to this challenge with the flaw of being computationally demanding. We present

a more lightweight solution, running the segmentation on a smaller neural network

and introducing a discriminative classifier for the posterior layout ranking and opti-

mization. Our proposed method is evaluated by two standard dataset benchmarks,

achieving near state of the art results even with a fraction of the required parameters

than the available state of the art methods.

5.1 Introduction

The conventional geometrical form present on the vast majority of our day-to-day in-

door environments is similar to a 3D box or cuboid. Our main task, presented in

this paper, is the delimitation and segmentation of an indoor environment’s limits:

walls, floor and ceiling, into corners and edges using only a single monocular image,

as shown in Fig. 5.1.

When we are inside any room, our viewpoint orientation and position defines the

captured spatial layout, which carries three-dimensional information about the indoor

scene. This is a challenge for monocular images due to the lack of a depth channel.

These parametric rooms, where we consider the planes’ boundaries to be perpendicu-

lar between each other, is normally referred as the Manhattan assumption (Coughlan

and Yuille (2001)). Although it seems trivial for our eyes to find any common room’s

layout, it is a challenging task in the field of computer vision to estimate its boundaries.

The complexity of this case increases exponentially when the indoor scene is cluttered

with furniture and/or other objects.

Most of the challenges for monocular indoor layout estimation are not related to the

rooms’ architecture but to the additional amount of information distributed through

the image. Although, in a cuboid room its boundaries converge to three mutually or-

thogonal vanishing points (Rother (2002)), which can be found by finding the ’Manhat-
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Figure 5.1: LSUN dataset example. Left to right: input image, segmentation map,
superimposed segmentation map, superimposed edge map.

tan lines’ (Ramalingam and Brand (2013)) and their intersections points, indoor scenes

are usually filled with additional expected or unexpected objects, whose nature and

shape can influence the retrieval of the present environment’s lines and corners. Due

to the aleatory distribution of the clustered objects, we know that in most rooms, their

boundary could be partially or completely occluded. Nonetheless, the same tridimen-

sional shapes are present on most man-made constructions, which allows us to antici-

pate the presence of edges across the planes’ intersections. Prior work, until the intro-

duction of fully convolutional networks (FCN) to achieve pixelwise labelling (Mallya

and Lazebnik (2015)), focused on obtaining the room’s geometry through similar meth-

ods based on the location of the vanishing points.

Recent methods focus on the use of FCN or deep convolutional neural networks

(DCNN), with encoder-decoder, iterative or double refinement architectures, either for

the retrieval of edges, or segmentation of the present layout, room’s points and type,

or points and edges. There is normally present a posteriori refinement processing over

the convolutional network result, which adjusts the layout reconstruction based on

layout ranking, or position based. All the existing state-of-the-art methods already

present significant results comparing with the ground-truth, either by corner or pixel

error. Our presented approach introduces a novel implementation of the room spatial

layout estimation, which replaces the previous heavy backbones of VGG16, ResNet50

ResNet101 for a more small-scale network aimed for mobile use, the MobileNetv2 for

backbone network plus DeepLabV3 for semantic segmentation model, followed by a

discriminative classifier and a sliding window for layout ranking and refinement. We

69



used an input image resolution of 224 × 224, which is the default for MobileNetV2

and also, coincidently, the same size used on Zhang et al. (2019), one of the top three

state-of-the-art methods.

The spatial layout estimation is an important task which allows us to predict an in-

door environment’s geometric limits, which as applications in the fields of augmented

reality, indoor modelling (Xiao and Furukawa (2014); Martin-Brualla et al. (2014); Liu

et al. (2015)), indoor navigation (Boniardi et al. (2019a); Xu et al. (2014)), robotics (Bo-

niardi et al. (2019b)), virtual reality, and visual cognition (Hedau et al. (2010); Qiao

et al. (2015)). The proposed method is an important step towards a cloudless indoor

layout estimation due to its lightweight performance, aimed to edge or mobile devices

implementations, which would benefit the human and robot interaction with our sur-

roundings.

The chapter is structured as follows. Related works and state of the art are reviewed

in Sec. 5.2, followed by the description of the proposed method in Sec. 5.3. Experimen-

tal results are presented in Sec. 5.4, and its applications in Sec. 5.5. The concluding

remarks and future work are drawn in Sec. 5.6.

5.2 Related Work

The main turning point for the indoor layout estimation was its reformulation as a

structuring learning problem, firstly introduced by Hedau et al. (2009), which also pre-

sented the first benchmark dataset for this kind of estimation. The idea to approxi-

mate a cuboid to a three-dimensional indoor scene was also presented and is derived

from the Manhattan assumption (Ramalingam et al. (2013)). Pixelwise geometric labels

were also introduced: left wall, middle wall, right wall, floor, ceiling, object. The authors

adapted techniques from Hoiem et al. (2007) and divided their methodology in two

stages. First, a large number of layout hypotheses are generated by multiple rays from

three vanishing points (Rother (2002)), which were obtained by the Manhattan Lines

(Ramalingam and Brand (2013)). Some of these hypothesis presented low accuracy
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due to the amount of clutter and were impossible to be recovered on the second stage.

Afterwards, every hypothesis was scored and ranked using a structured regressor and

the features from the labels to find the fitting cuboid with the highest ranking.

A similar layout hypothesis ranking was presented on Lee et al. (2009), which asso-

ciated the layouts to orientation maps generated by line segments that represented the

different regions orientation. Gupta et al. (2010) and Hedau et al. (2010) introduced 3D

object reasoning and estimation to refine the structured predictions. Wang et al. (2010)

used the indoor clutter to model the room layout. In Del Pero et al. (2012) and Del Pero

et al. (2013) Markov Chain Monte Carlo (Gilks et al. (1995)) were used to search for the

generative model parameters, while considering both the indoor spatial layout and the

3D cluttered objects. Similarly, Schwing et al. (2012) Schwing et al. (2013), also used the

Wang et al. (2010) method, and applied a dense sampling and introduced the integral

geometry decomposition method for a efficient structure estimation. Chao et al. (2013)

presented a different concept which uses human detections to estimate the vanishing

points more accurately, improving highly cluttered indoor scenes 3D interpretation.

The evolution of convolutional neural networks (CNN) and the birth of the FCNs

(Long et al. (2015)) started a new age of state of the art achievements in multiple com-

puter vision topics, including semantic segmentation, scene classification and object

detection. Mallya and Lazebnik (2015) was the first proposed method exploring the

FCNs to predict the informative edge maps, obtaining rough contours that were after-

wards added as new features to the layout hypothesis ranking, together with the line

membership (Hedau et al. (2009)) and geometric context (Hoiem et al. (2005)). Zhang

et al. (2016b) continued this path exploring the deconvolutional networks, with and

without fully connected layers. In Dasgupta et al. (2016), instead of learning edges, the

authors used FCNs to predict semantic labels. Although the post-processing still relied

on the vanishing lines to refine the results, the used previous edge map was replaced

by a heat map of semantic surfaces. Ren et al. (2016) proposed a refinement from the

coarse result obtained by the a multi-task convolutional neural network (MFCN) (Dai

et al. (2016)) combining the layout contours and the surfaces properties.
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Figure 5.2: DeepLabV3 Encoder-Decoder Architecture (Chen et al. (2018)).

Lee et al. (2017) presented a novel formulation to the indoor layout problem, with

an end-to-end network that estimates the locations of the room’s layout keypoints in-

stead of its edges. Zhao et al. (2017) also introduced an unique solution estimating

the edges through semantic segmentation and proposing a physics inspired optimiza-

tion scheme. Zou et al. (2018) and Sun et al. (2019) explored retrieving the room spa-

tial layout from single panoramic images, using similar methods to Lee et al. (2017)

and also recurrent neural networks (RNN), like the long short-term memory (LSTM)

architecture. Lin et al. (2018) proposed the use of a deep fully convolutional neural

network with a layout-degeneration method to remove the need for post-processing

refinements. The Manhattan assumption (Ramalingam et al. (2013)) is also used in

Hsiao et al. (2019), combining a pre-processing of vanishing points to a Resnet50 (He

et al. (2016)) to post-process into a flat room layout representation. Zhang et al. (2019)

presented a dual decoder network that is fed by the same encoder, obtaining simulta-

neously and edge and segmentation maps, which are then combined into the scoring

function for ranking and refinement of the layout hypothesis estimation.
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5.3 Method

5.3.1 Overview

In the context of indoor spatial layout estimation, most research methods proposed

are based o the ’Manhattan World’ assumption (Ramalingam et al. (2013)), where any

room in an image contains three orthogonal directions coinciding on three vanishing

points (Rother (2002)). Hedau et al. (2009) represented its layout model using the rays

from the outside vanishing points and the inside frame vanishing point. Our proposed

method doesn’t rely on the vanishing points for training or refinement, but still follows

the Manhattan assumption indirectly. An associated application is presented further

in Sec. 5.5.

The estimation of a room layout can be divided in tree type of maps: edges, key-

points, and segmentation. Each of these heat maps have their advantages and disad-

vantages, according to the complexity of the input image: amount of clutter, type of

room, occlusion of important spatial edges or corners, randomness of unusual objects.

All the obtained results are pixelwise, or pixel-independent, and so each pixel of these

maps contains the probability of belonging to a class. Edges maps consist of three lay-

ers to distinguish between the boundaries edges: wall-wall, wall-floor, wall-ceiling; or

they only contain a single layer without differentiating the labels. The keypoints map

consists of multiple layers for each keypoint that are scored afterwards. The segmen-

tation heat map is formed by five layers, one for each label: left wall, center wall, right

wall, floor, and ceiling.

Our proposed method adopts a semantic segmentation approach in conjugation

with a discriminative classifier and layout refinement by a sliding window. The pipeline

follows as described on Fig. 5.2, with the input image being fed into the MobileNetV2

network inside the DeepLabV3 semantic segmentation model, the coarsed layout re-

sult type is then classified by a support vectoring machine (SVM), and a type cor-

responding layout is slided vertically and horizontally over the previous obtained

coarsed layout.
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5.3.2 Network Architecture

An indoor scene can be captured from different viewpoints; the geometric layout present

in that view can be approximated to one of the eleven types of layout present on the

LSUN dataset (Zhang et al. (2015)), as can be seen in Fig. 5.3. The ground truth of any

room layout, either in a cluttered room or a open indoor scene, will coincide with some

of the features that can be extracted from an image, such as the Manhattan lines. With

the introduction of deep convolutional neural networks (DCNN) to tackle the room

layout estimation, most of these low-level features and context clues were merged in

end-to-end pipelines.

Similar to some previously proposed methods, we also used a encoder-decoder

for semantic segmentation of the labels: wall left, wall center, wall right, floor, ceiling.

With most of the state of the art results on the PASCAL VOC segmentation challenge

(Everingham et al. (2011)) being achieved through the use of DCNN, it was a natural

transition from the prior methods to the age of deep learning.

Our proposed method was developed aimed to edge and mobile devices. There-

fore, we chose a more lightweight implementation, replacing the common VGG16,

ResNet101, and ResNet50 previously used with the MobileNetV2 as backbone and

DeepLabV3 as the semantic segmentation model of our network. In Fig. 5.2 is possi-

ble to observe the DeepLabV3 architecture, as introduced in Chen et al. (2017). The

first block, the DCNN, is where the MobileNetV2 lies. As was proposed in Sandler

et al. (2018), the use of shortcut connections between the bottlenecked layers allowed

for a better preservation of relevant information throughout the network. Where the

lightweight depthwise convolutions on the intermediate expansion layers allowed the

filtering of non-linear features, which in this precise problem, is a benefit. With this

framework as backbone, we are able to use only 4.52 million parameters, compared

to the 138 millions of the VGG16. The DeepLabV3 model, with the proposed atrous

spatial pyramid pooling module, which is a peculiar case of dilated residual networks,

allows for a better probe of the convolutional features at multiple scales.

We fine-tuned a DeepLabV3 (Chen et al. (2017)) model pre-trained on the PAS-
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CAL VOC 2012 dataset (Everingham et al. (2011)) with the network backbone of a

MobileNetV2 (Sandler et al. (2018)) pre-trained on the MS-COCO dataset (Lin et al.

(2014)). The information fed during the training to the network was the image and its

semantic segmentation map, as can be seen on top and middle in Fig. 5.3.

Type 0 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Type 9 Type 10

Figure 5.3: Different type of room layouts available on LSUN. From left to right, each
room type is indexed from 0 to 10 as in Zhang et al. (2015). On top we see the images,
on the middle the segmentation maps, and on the bottom the edge maps.

5.3.3 Layout Refinement

During the training of the network, we also trained a discriminative classifier. In-

spired by the famous MNIST digits handwritten recognition (Deng (2012)), we trained

a supporting vector machine (SVM) with the edges layouts, as the ones present on the

bottom of Fig. 5.3.

After we obtained a coarse semantic segmentation from the DeepLabV3 model, we

isolated its edges to became a binary image and fed it to the SVM to classify the room

type, performing a layout hypothesis ranking. With the obtained result, we use ran-

domly the original corresponding layout types. We called this stage the sliding win-

dow, as inspired by the single shot detectors (SSD) method (Liu et al. (2016)). Starting

in the middle, with an additional margin of 5 pixels to each side, we move the image

left and right, up and down, creating a heat map based on the coinciding edges be-

tween the neural network and the multiple layout templates. Afterwards, when the

heat map coincides, or we pass of a maximum of 100 layout estimations, we assume

the pixelwise maximum values across the heat map as the estimated layout. Is impor-

tant to note that the LSUN dataset has unbalanced room layout types, which can be
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Figure 5.4: Distribuition of the amount of samples per type of the training images from
the LSUN dataset.

further analysed on table 5.2. Therefore, when a room layout type, limited to a lower

sampling, if the heat map obtained by the sliding window does not coincide, the next

in the ranking obtained by the SVM is considered as a possibility.

5.4 Experimental Results

5.4.1 Datasets

Our network was trained on the Large-scale Understanding Challenge (LSUN) room

layout dataset (Zhang et al. (2015)), which contains a diverse collection of indoor scenes

organized in: bedroom, classroom, conference room, dinette home, dining room, hotel room,

living room, and office. All the provided layouts can be approximated to cuboids and

are also divided in 11 different types of layouts, as can be seen in Fig. 5.3. The dataset

is composed of 4000 training images, 394 validation images, and 1000 testing images.

This dataset is unbalanced in terms of type distribution, as is shown in Fig. 5.4, which

influences its ability to properly generalize and predict the under-sampled room layout

types. We also performed tests on the Hedau et al. (2009) dataset, which is consisted of
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Method Pixel Error (%) Training Dataset

Hedau et al. (2009) 21.20 Hedau

Del Pero et al. (2012) 16.30 Hedau

Gupta et al. (2010) 16.20 Hedau

Zhang et al. (2016b) 14.50 Hedau

Ramalingam et al. (2013) 13.34 Hedau

Mallya and Lazebnik (2015) 12.83 Hedau+

Schwing et al. (2012) 12.80 Hedau

Del Pero et al. (2013) 12.70 Hedau

Dasgupta et al. (2016) 9.73 Hedau

Zou et al. (2018) 9.69 LSUN

Ren et al. (2016) 8.67 Hedau

Lee et al. (2017) 8.36 Hedau+LSUN

Zhang et al. (2019) 7.94 Hedau

Ours 7.63 LSUN

Lin et al. (2018) 7.41 LSUN

Zhang et al. (2019) 7.36 LSUN

Zhao et al. (2017) 6.60 SUNRGBD+LSUN

Hsiao et al. (2019) 5.01 LSUN

Table 5.1: Room layout estimation performance on Hedau et al. (2009) dataset.

209 training images and 104 testing images, using our LSUN pretrained model. Mallya

and Lazebnik (2015) also introduced an augmentation of the Hedau et al. (2009) called

Hedau+, but we didn’t use it in our benchmarks.

5.4.2 Accuracy

The performance evaluation is measured by two standard metrics: pixel error, and

corner error. On the Hedau et al. (2009) dataset, only the pixel error was measured.

The pixel error consists on measuring the pixelwise accuracy of the obtained layout

with the ground truth, across all images, and average it. The corner error is relative

to the Euclidean distances between the obtained corners and their associated ground

truth, averaged across all images. The LSUN room layout challenge dataset (Zhang

et al. (2015)) provides a toolkit to measure this evaluations.
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Method Pixel Error (%) Corner Error (%)

Hedau et al. (2009) 24.23 15.48

Mallya and Lazebnik (2015) 16.71 11.02

Dasgupta et al. (2016) 10.63 8.20

Lee et al. (2017) 9.86 6.30

Ren et al. (2016) 9.31 7.95

Ours 6.94 5.46

Hsiao et al. (2019) 6.68 4.92

Zhang et al. (2019) 6.58 5.17

Lin et al. (2018) 6.25 −
Zhao et al. (2017) 5.29 3.84

Table 5.2: Room layout estimation performance on LSUN (Zhang et al. (2015)) dataset.

5.4.3 Experimental Results

We trained the network only on the LSUN dataset (Zhang et al. (2015)), but also per-

formed the evaluation measuring on the Hedau et al. (2009) dataset.

The LSUN dataset presents a wide range of resolutions, therefore, we rescaled to

224x224 using bi-cubic interpolation prior to training. We also performed image aug-

mentation while training by colour shifts, cropping, horizontal flipping, and jittering.

Vertical flipping wasn’t considered due to the nature of the room’s orientation.

Table 5.1 compares the efficiency of the different available methods on the Hedau

dataset, since the Hedau et al. (2009) publication. This benchmark only has pixelwise

error evaluation. Note that the state of the art present in this benchmark was achieved

using a different dataset for training. Even though our method was trained only on the

LSUN dataset, we were still able to obtain good results and generalization.

On Table 5.2, we compare the obtained results using the LSUN toolkit. Here we

have a pixelwise error rate and also a corner error. Although our results seem average,

it is important to notice that we are achieving results over the average with a more

smaller neural network. Some of the obtained room layout results are demonstrated in

Fig. 5.5.

The proposed algorithm was implemented using tensorflow on a PC with an Intel
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Figure 5.5: Examples of room layout estimations using our method on the LSUN
dataset. From left to right: input image, semantic segmentation ground truth, our
network prediction, final estimation after refinement.

i9-9900K CPU and a Nvidia GTX 2070 Super, with the semantic segmentation being

obtained in 12ms, and the posterior refinement in 9ms. While these results are achieved

on a PC, the authors are already developing an implementation on a mobile device.
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5.5 Applications

5.5.1 Camera Pose Estimation

An interesting application over the retrieved indoor spatial layout, following the Man-

hattan assumption (Ramalingam et al. (2013)), is estimating a relative camera’s pose.

This application is suitable only when we have a good 2D approximation of the com-

plete center wall with all the corners present, which only occurs in LSUN room layout

type 0, as can be seen in Fig. 5.3.

Figure 5.6: Example of the camera’s pose relation to the vanishing points.

After using the proposed method, we estimated the outer vanishing points by the

borders of the center wall, without the need for Manhattan lines (Ramalingam and

Brand (2013)) calculation, and the inner vanishing point through the edges between

walls-floor and walls-ceiling. Similar to what was used in Gakne and O’Keefe (2017)

and using the opposite route of what was proposed in Wilczkowiak et al. (2001), we

are able to obtain a prediction of the camera’s pose estimation through the use of the

estimated vanishing points. The inner vanishing point will be aligned with the cen-

ter of the camera and will be used to find the camera’s translation, while the outer

vanishing points will be used to retrieve the camera’s rotation matrix, as can be seen

in Fig. 5.6. Without the camera’s intrinsic matrix, we are unable to predict the scale.
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Using our proposed method, some of the demanding computational operations, for

example line segments ou Hough transform are replaced by estimations, which result

in a lightweight application to retrieve a relative camera’s pose estimation.

5.6 Conclusions and Future Work

We presented an efficient room layout estimation method based on a smaller neural

network, with MobileNetV2 as backbone and DeepLabv3 as the semantic segmenta-

tion model, with a posterior process of layout ranking based on a discriminative clas-

sifier of the edges and a sliding window method to refine the layout estimation. Our

method is the first to implement a MobileNetV2 plus DeepLabv3 network for room

layout estimation, with only a fraction of the parameters used on previous methods:

VGG16 has 138 million, ResNet101 has 44.5 million, ResNet50 has 25.6 million, Mo-

bileNetV2 has 4.52 million. Even that our proposed method doesn’t outperform the

current state of the art, we demonstrated that a network with a fraction of the parame-

ters can achieve near state of the art results in either the Hedau, as the LSUN, datasets.

Future work will focus on implementing our method on edge and mobile devices,

improving the sliding window method, and also transitioning and evaluating our

method with a backbone of MobileNetV3, small and large, plus DeepLabV3+
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6
Conclusions

This thesis presented the progress into the development of a monocular camera’s pose

estimation solution with the main goal of superimposing dynamic content over a rect-

angular cuboid room’s vertical planes - walls. The developments and innovations were

divided across the previous three chapters, with the different stages of the pipeline be-

ing further detailed in each publication. Although each chapter contain its own con-

clusion and discussion of the work done, it follows below a final remark over the work

done.

Since the main goal only requires at the end the replacement of the correspond-

ing pixels in a frame to achieve the desired superimposition, it is necessary to explore

what was done to achieve that result. Environment recognition is an arduous task, ei-

ther computational, or in terms of algorithms. Normally it involves the use of depth
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cameras to easily retrieve the 3D shape of a scene. As one of the necessities for this the-

sis is the use of a monocular camera associated with the limits of the mobile devices’

performance, such widespread solutions weren’t viable at the time of this thesis cre-

ation. In order to achieve this goal it was necessary to explore the limits of markerless

image recognition and to find a way to initially calculate the camera’s location.

With the developed solution, there’s a scalable possibility of using the initial recog-

nition across an entire museum, and not only a specific room without using any ad-

ditional localization method besides computer vision. Within this research, enhanced

hybrid searching methods were developed and a further comprehensive homography

refinement was created, increasing the frame’s validation, which allowed for a better

camera pose estimation calculation, with less sparse results.

Another innovation presented was the fusion of the previous developed method

for retrieving the environments’ geometric shapes with the homography calculation

of the first localization, allowing for the recalculation of an almost perfect planar ho-

mography even with uncalibrated cameras, allowing for the estimation of the camera’s

matrix. This method can filter almost all the sparse and outlier estimations of the cam-

era’s pose in the real-world environment.

The progressive tracking introduced the possibility of a continuous superimposi-

tion regardless of the monocular camera’s quality, only requiring the initial localiza-

tion. This plane tracking method is extremely effective performance-wise, and achieves

exceedingly obtuse angles which are not possible using only markerless based planar

recognition and homography. The incorporation of Kalman filters, not only to the out-

side world, but also to the camera’s 6DoF, allowed for a more smooth and seamless

content superimposition.

Furthermore, the room spatial layout estimation method proposed offers a novel

solution to the problem using smaller networks with less parameters and a discrim-

inative classifier and sliding windows for refinement of the layout hypothesis. This

lightweight method offers the possibility of an edge or mobile device implementation,

being another step to a cloudless interaction with our surroundings. The application
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for camera orientation introduced using this method presents one of its possibilities.

6.1 Future Work

The presented work was done in only one museum, the Archaeological and Lapidary

Museum Prince Henry the Navigator in Faro. In terms of future work, it is necessary

to expand into different environments, either other museums, layouts or places. Al-

though the algorithm is currently heavily dependent on the initialization of the local-

ization, there is a possibility of isolating part of the algorithm and removing the initial

scan, allowing it to function over any distinct vertical planes, which would allow for a

more diverse application.

It is also imperative the creation or adaptation of this work to a proper dataset so

that a feasible benchmark can be produced. This is specially complicated due to the

fact that almost all of the available datasets are aimed at depth cameras, or to obtain

the flow estimation while driving a car. This work focuses primarily in localizing and

tracking the camera’s direction using only the walls available in the surrounding envi-

ronment in a bi-dimensional correspondence to the tridimensional geometric layout.

The current implementation also lacks a proper performance evaluation on a mo-

bile device across the environments. It is necessary to implement an additional method

so when the tracking is lost the pose estimation can continue to be estimated, i.e., mo-

bile devices magnetometers, gyroscopes or accelerometers. An analysis using multiple

mobile devices with distinct camera specifications would also be beneficial to test the

behaviour of the uncalibrated homography reconstruction and the progressive track-

ing performance.

The hybrid searching method could evolve into a more complete localization if it

would allow for additional information to be associated while scanning the existent

rooms, i.e., GPS, beacons, magnetometer readings, wi-fi ssids. With the current evo-

lution in the artificial intelligence field, there should be room for major improvements

and restructuring in the artificial neural network methods used in conjugation with the
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binary feature descriptors.

Nevertheless, the proposed objectives were reached, with even additional inno-

vation in-between them, including several publications. Even though improvements

could be made, this thesis proved that it is possible to continuously obtain the camera’s

pose estimation across a room, even with uncalibrated monocular cameras, and only

processing 2D information.

Regarding the room layout estimation using machine and deep learning, which

is the latest method presented on this thesis, there is still room for improvements

and additional benchmarks and applications development. A deep analysis can also

be performed using different models for backbone and other semantic segmentations

models. Nonetheless, the implementation and benchmark of this proposed method is

crucial on edge and mobile devices.

6.2 Publications

While pursuing my master’s degree, several peer review works were published, be-

ing a total of seven articles for international conferences, one submission for a journal

and three other publications for local conferences. Amidst the following list there are

present the same four documents presented through the main chapters of this thesis.

• Veiga, R., Bajireanu, R., Pereira, J., Sardo, J., Cardoso, P.J.S., and Rodrigues, J.M.F.

(2017). Indoor environment and human shape detection for augmented reality:

an initial study. In Procs 23rd edition of the Portuguese Conference on Pattern

Recognition, Amadora, Portugal, 28 Oct., pp. 67-68

• Pereira, J.A.R., Sardo, J.D.P., Freitas, M.A.G., Veiga R., Cardoso, P.J.S., Rodrigues,

J.M.F. (2017) MIRAR: Mobile Image Recognition based Augmented Reality

Framework, accepted for Int. Congress on Engineering and Sustainability in the

XXI Century, 11 - 13 October, Faro, Portugal

• João D. P. Sardo, João A. R. Pereira, Ricardo J. M. Veiga, Jorge Semião, Pedro J. S.
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Cardoso, João M. F. Rodrigues. (2018) Multisensorial Portable Device for Aug-

mented Reality Experiences in Museums. International Journal of Education

and Learning Systems, 3, 60-69

• Pedro J.S. Cardoso, Pedro Guerreiro, João A. R. Pereira, Ricardo J.M. Veiga (2018)

A Route Planner Supported on Recommender Systems Suggestions: Enhanc-

ing Visits to Cultural Heritage Places. In Procs 8th International Conference on

Software Development and Technologies for Enhancing Accessibility and Fight-

ing Info-exclusion, Thessaloniki, Greece, 20-22 June

• Rodrigues, J.M.F., Veiga, R., Bajireanu, R., Lam, R., Pereira, J., Sardo, J., Cardoso,

P.J.S., and Bica, P. (2018) Mobile augmented reality framework - MIRAR. In 12th

International Conference on Universal Access in Human-Computer Interaction,

integrated in the 20th HCII, Las Vegas, USA, pp. 102–121

• Bajireanu, R., Pereira, J., Veiga, R., Sardo, J., Cardoso, P.J.S., Lam, R., and Ro-

drigues, J.M.F. (2018) Mobile human shape superimposition: an initial approach

using OpenPose. In Procs 18th International Conference on Applied Computer

Science, Dubrovnik, Croatia, 26-28 Sep.

• Ricardo J. M. Veiga, João A. R. Pereira, João D. P. Sardo, Roman Bajireanu, Pedro

J. S. Cardoso, João M. F. Rodrigues (2019). Augmented Reality Indoor Envi-

ronment Detection: Proof-of-Concept. In WSEAS Transactions on Mathematics,

ISSN / E-ISSN: 1109-2769 / 2224-2880, Volume 18, 2019, Art. 28, pp. 203-210

• Rodrigues J.M.F., Veiga R.J.M., Bajireanu R., Lam R., Cardoso P.J.S., Bica P. (2019)

AR Contents Superimposition on Walls and Persons. In: Antona M., Stephani-

dis C. (eds) Universal Access in Human-Computer Interaction. Theory, Methods

and Tools. HCII 2019. Lecture Notes in Computer Science, vol 11572, pp. 638-645,

Springer, Cham. DOI: 10.1007/978-3-030-23560-4_46

• Veiga, Ricardo J.M., Rodrigues, João M.F. (2019) Indoor Wall Detection, Track-

ing and Superimposition. In Procs 25th edition of the Portuguese Conference on
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Pattern Recognition, Porto, Portugal, 31 Oct, pp. 125-128.

• Veiga, Ricardo J.M., Cardoso, Pedro J.S., Rodrigues, João M.F. (2020) Efficient

Small-Scale Network for Room Spatial Layout Estimation In Submission to

14th International conference on Universal Access in Human-Computer Inter-

action, integrated in the 22nd HCII, Copenhagen, Denmark, 19-24 July
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