10,481 research outputs found

    Applying measurement-based probabilistic timing analysis to buffer resources

    Get PDF
    The use of complex hardware makes it difficult for current timing analysis techniques to compute trustworthy and tight worst-case execution time (WCET) bounds. Those techniques require detailed knowledge of the internal operation and state of the platform, at both the software and hardware level. Obtaining that information for modern hardware platforms is increasingly difficult. Measurement-Based Probabilistic Timing Analysis (MBPTA) reduces the cost of acquiring the knowledge needed for computing trustworthy and tight WCET bounds. MBPTA based on Extreme Value Theory requires the execution time of processor instructions to be independent and identically distributed (i.i.d.), which can be achieved with some hardware support. Previous proposals show how those properties can be achieved for caches. This paper considers, for the first time, the implications on MBPTA of using buffer resources. Buffers in general, and firstcome first-served (FCFS) buffers in particular, are of paramount importance as the complexity of hardware increases, since they allow managing contention in those resources where multiple requests may be pending. We show how buffers can be used in the context of MBPTA and provide illustrative examples.Peer ReviewedPostprint (published version

    Modelling probabilistic cache representativeness in the presence of arbitrary access patterns

    Get PDF
    Measurement-Based Probabilistic Timing Analysis (MBPTA) is a promising powerful industry-friendly method to derive worst-case execution time (WCET) estimates as needed for critical real-time embedded systems. MBPTA performs several (R) runs of the program on the target platform collecting the execution times in each run. MBPTA builds a probabilistic representativeness argument on whether those events with high impact on execution time, such as cache misses, arise on the runs made at analysis time so that their impact on execution time is captured. So far only events occurring in cache memories have been shown to challenge providing such representativeness argument. In this context, this paper introduces a representativeness validation method (RVS) to assess the probabilistic representativeness of MBPTA’s execution time observations in terms of cache behaviour. RVS resorts to cache simulation to predict worst-case miss scenarios that can appear during the deployment phase. RVS also constructs a probabilistic Worst-Case Miss Count curve based on the miss-counts captured in the R runs. If that curve upperbounds the impact of the predicted cache worst-case scenarios, R is deemed as a sufficient number of runs for which pWCET estimates can be reliably derived. Otherwise, the user is requested to perform more runs until all cache scenarios of interest are captured.Peer ReviewedPostprint (author's final draft

    A time-predictable many-core processor design for critical real-time embedded systems

    Get PDF
    Critical Real-Time Embedded Systems (CRTES) are in charge of controlling fundamental parts of embedded system, e.g. energy harvesting solar panels in satellites, steering and breaking in cars, or flight management systems in airplanes. To do so, CRTES require strong evidence of correct functional and timing behavior. The former guarantees that the system operates correctly in response of its inputs; the latter ensures that its operations are performed within a predefined time budget. CRTES aim at increasing the number and complexity of functions. Examples include the incorporation of \smarter" Advanced Driver Assistance System (ADAS) functionality in modern cars or advanced collision avoidance systems in Unmanned Aerial Vehicles (UAVs). All these new features, implemented in software, lead to an exponential growth in both performance requirements and software development complexity. Furthermore, there is a strong need to integrate multiple functions into the same computing platform to reduce the number of processing units, mass and space requirements, etc. Overall, there is a clear need to increase the computing power of current CRTES in order to support new sophisticated and complex functionality, and integrate multiple systems into a single platform. The use of multi- and many-core processor architectures is increasingly seen in the CRTES industry as the solution to cope with the performance demand and cost constraints of future CRTES. Many-cores supply higher performance by exploiting the parallelism of applications while providing a better performance per watt as cores are maintained simpler with respect to complex single-core processors. Moreover, the parallelization capabilities allow scheduling multiple functions into the same processor, maximizing the hardware utilization. However, the use of multi- and many-cores in CRTES also brings a number of challenges related to provide evidence about the correct operation of the system, especially in the timing domain. Hence, despite the advantages of many-cores and the fact that they are nowadays a reality in the embedded domain (e.g. Kalray MPPA, Freescale NXP P4080, TI Keystone II), their use in CRTES still requires finding efficient ways of providing reliable evidence about the correct operation of the system. This thesis investigates the use of many-core processors in CRTES as a means to satisfy performance demands of future complex applications while providing the necessary timing guarantees. To do so, this thesis contributes to advance the state-of-the-art towards the exploitation of parallel capabilities of many-cores in CRTES contributing in two different computing domains. From the hardware domain, this thesis proposes new many-core designs that enable deriving reliable and tight timing guarantees. From the software domain, we present efficient scheduling and timing analysis techniques to exploit the parallelization capabilities of many-core architectures and to derive tight and trustworthy Worst-Case Execution Time (WCET) estimates of CRTES.Los sistemas críticos empotrados de tiempo real (en ingles Critical Real-Time Embedded Systems, CRTES) se encargan de controlar partes fundamentales de los sistemas integrados, e.g. obtención de la energía de los paneles solares en satélites, la dirección y frenado en automóviles, o el control de vuelo en aviones. Para hacerlo, CRTES requieren fuerte evidencias del correcto comportamiento funcional y temporal. El primero garantiza que el sistema funciona correctamente en respuesta de sus entradas; el último asegura que sus operaciones se realizan dentro de unos limites temporales establecidos previamente. El objetivo de los CRTES es aumentar el número y la complejidad de las funciones. Algunos ejemplos incluyen los sistemas inteligentes de asistencia a la conducción en automóviles modernos o los sistemas avanzados de prevención de colisiones en vehiculos aereos no tripulados. Todas estas nuevas características, implementadas en software,conducen a un crecimiento exponencial tanto en los requerimientos de rendimiento como en la complejidad de desarrollo de software. Además, existe una gran necesidad de integrar múltiples funciones en una sóla plataforma para así reducir el número de unidades de procesamiento, cumplir con requisitos de peso y espacio, etc. En general, hay una clara necesidad de aumentar la potencia de cómputo de los actuales CRTES para soportar nueva funcionalidades sofisticadas y complejas e integrar múltiples sistemas en una sola plataforma. El uso de arquitecturas multi- y many-core se ve cada vez más en la industria CRTES como la solución para hacer frente a la demanda de mayor rendimiento y las limitaciones de costes de los futuros CRTES. Las arquitecturas many-core proporcionan un mayor rendimiento explotando el paralelismo de aplicaciones al tiempo que proporciona un mejor rendimiento por vatio ya que los cores se mantienen más simples con respecto a complejos procesadores de un solo core. Además, las capacidades de paralelización permiten programar múltiples funciones en el mismo procesador, maximizando la utilización del hardware. Sin embargo, el uso de multi- y many-core en CRTES también acarrea ciertos desafíos relacionados con la aportación de evidencias sobre el correcto funcionamiento del sistema, especialmente en el ámbito temporal. Por eso, a pesar de las ventajas de los procesadores many-core y del hecho de que éstos son una realidad en los sitemas integrados (por ejemplo Kalray MPPA, Freescale NXP P4080, TI Keystone II), su uso en CRTES aún precisa de la búsqueda de métodos eficientes para proveer evidencias fiables sobre el correcto funcionamiento del sistema. Esta tesis ahonda en el uso de procesadores many-core en CRTES como un medio para satisfacer los requisitos de rendimiento de aplicaciones complejas mientras proveen las garantías de tiempo necesarias. Para ello, esta tesis contribuye en el avance del estado del arte hacia la explotación de many-cores en CRTES en dos ámbitos de la computación. En el ámbito del hardware, esta tesis propone nuevos diseños many-core que posibilitan garantías de tiempo fiables y precisas. En el ámbito del software, la tesis presenta técnicas eficientes para la planificación de tareas y el análisis de tiempo para aprovechar las capacidades de paralelización en arquitecturas many-core, y también para derivar estimaciones de peor tiempo de ejecución (Worst-Case Execution Time, WCET) fiables y precisas

    Adapting TDMA arbitration for measurement-based probabilistic timing analysis

    Get PDF
    Critical Real-Time Embedded Systems require functional and timing validation to prove that they will perform their functionalities correctly and in time. For timing validation, a bound to the Worst-Case Execution Time (WCET) for each task is derived and passed as an input to the scheduling algorithm to ensure that tasks execute timely. Bounds to WCET can be derived with deterministic timing analysis (DTA) and probabilistic timing analysis (PTA), each of which relies upon certain predictability properties coming from the hardware/software platform beneath. In particular, specific hardware designs are needed for both DTA and PTA, which challenges their adoption by hardware vendors. This paper makes a step towards reconciling the hardware needs of DTA and PTA timing analyses to increase the likelihood of those hardware designs to be adopted by hardware vendors. In particular, we show how Time Division Multiple Access (TDMA), which has been regarded as one of the main DTA-compliant arbitration policies, can be used in the context of PTA and, in particular, of the industrially-friendly Measurement-Based PTA (MBPTA). We show how the execution time measurements taken as input for MBPTA need to be padded to obtain reliable and tight WCET estimates on top of TDMA-arbitrated hardware resources with no further hardware support. Our results show that TDMA delivers tighter WCET estimates than MBPTA-friendly arbitration policies, whereas MBPTA-friendly policies provide higher average performance. Thus, the best policy to choose depends on the particular needs of the end user.The research leading to these results has been funded by the EU FP7 under grant agreement no. 611085 (PROXIMA) and 287519 (parMERASA). This work has also been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Miloˇs Pani´c is funded by the Spanish Ministry of Education under the FPU grant FPU12/05966. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    Time-Randomized Wormhole NoCs for Critical Applications

    Get PDF
    Wormhole-based NoCs (wNoCs) are widely accepted in high-performance domains as the most appropriate solution to interconnect an increasing number of cores in the chip. However, wNoCs suitability in the context of critical real-time applications has not been demonstrated yet. In this article, in the context of probabilistic timing analysis (PTA), we propose a PTA-compatible wNoC design that provides tight time-composable contention bounds. The proposed wNoC design builds on PTA ability to reason in probabilistic terms about hardware events impacting execution time (e.g., wNoC contention), discarding those sequences of events occurring with a negligible low probability. This allows our wNoC design to deliver improved guaranteed performance w.r.t. conventional time-deterministic setups. Our results show that performance guarantees of applications running on top of probabilistic wNoC designs improve by 40% and 93% on average for 4 × 4 and 6 × 6 wNoC setups, respectively.The research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7/2007-2013] under the PROXIMA Project (www.proxima-project.eu), grant agreement no 611085. This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Mladen Slijepcevic is funded by the Obra Social Fundación la Caixa under grant Doctorado \la Caixa" - Severo Ochoa. Carles Hernández is jointly funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER funds through grant TIN2014-60404-JIN. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    On the assessment of probabilistic WCET estimates reliability for arbitrary programs

    Get PDF
    Measurement-Based Probabilistic Timing Analysis (MBPTA) has been shown to be an industrially viable method to estimate the Worst-Case Execution Time (WCET) of real-time programs running on processors including several high-performance features. MBPTA requires hardware/software support so that program’s execution time, and so its WCET, has a probabilistic behaviour and can be modelled with probabilistic and statistic methods. MBPTA also requires that those events with high impact on execution time are properly captured in the (R) runs made at analysis time. Thus, a representativeness argument is needed to provide evidence that those events have been captured. This paper addresses the MBPTA representativeness problems caused by set-associative caches and presents a novel representativeness validation method (ReVS) for cache placement. Building on cache simulation, ReVS explores the probability and impact (miss count) of those cache placements that can occur during operation. ReVS determines the number of runs R ', which can be higher than R, such that those cache placements with the highest impact are effectively observed in the analysis runs, and hence, MBPTA can be reliably applied to estimate the WCET.This work has received funding from the European Community’s FP7 program [FP7/2007–2013] under grant agreement 611085 (PROXIMA, www.proximaproject.eu). Support was also provided by the Ministry of Science and Technology of Spain under contract TIN2015-65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (published version

    Improving time predictability of shared hardware resources in real-time multicore systems : emphasis on the space domain

    Get PDF
    Critical Real-Time Embedded Systems (CRTES) follow a verification and validation process on the timing and functional correctness. This process includes the timing analysis that provides Worst-Case Execution Time (WCET) estimates to provide evidence that the execution time of the system, or parts of it, remain within the deadlines. A key design principle for CRTES is the incremental qualification, whereby each software component can be subject to verification and validation independently of any other component, with obvious benefits for cost. At timing level, this requires time composability, such that the timing behavior of a function is not affected by other functions. CRTES are experiencing an unprecedented growth with rising performance demands that have motivated the use of multicore architectures. Multicores can provide the performance required and bring the potential of integrating several software functions onto the same hardware. However, multicore contention in the access to shared hardware resources creates a dependence of the execution time of a task with the rest of the tasks running simultaneously. This dependence threatens time predictability and jeopardizes time composability. In this thesis we analyze and propose hardware solutions to be applied on current multicore designs for CRTES to improve time predictability and time composability, focusing on the on-chip bus and the memory controller. At hardware level, we propose new bus and memory controller designs that control and mitigate contention between different cores and allow to have time composability by design, also in the context of mixed-criticality systems. At analysis level, we propose contention prediction models that factor the impact of contenders and don¿t need modifications to the hardware. We also propose a set of Performance Monitoring Counters (PMC) that provide evidence about the contention. We give an special emphasis on the Space domain focusing on the Cobham Gaisler NGMP multicore processor, which is currently assessed by the European Space Agency for its future missions.Los Sistemas Críticos Empotrados de Tiempo Real (CRTES) siguen un proceso de verificación y validación para su correctitud funcional y temporal. Este proceso incluye el análisis temporal que proporciona estimaciones de el peor caso del tiempo de ejecución (WCET) para dar evidencia de que el tiempo de ejecución del sistema, o partes de él, permanecen dentro de los límites temporales. Un principio de diseño clave para los CRTES es la cualificación incremental, por la que cada componente de software puede ser verificado y validado independientemente del resto de componentes, con beneficios obvios para el coste. A nivel temporal, esto requiere composabilidad temporal, por la que el comportamiento temporal de una función no se ve afectado por otras funciones. CRTES están experimentando un crecimiento sin precedentes con crecientes demandas de rendimiento que han motivado el uso the arquitecturas multi-núcleo (multicore). Los procesadores multi-núcleo pueden proporcionar el rendimiento requerido y tienen el potencial de integrar varias funcionalidades software en el mismo hardware. A pesar de ello, la interferencia entre los diferentes núcleos que aparece en los recursos compartidos de os procesadores multi núcleo crea una dependencia del tiempo de ejecución de una tarea con el resto de tareas ejecutándose simultáneamente en el procesador. Esta dependencia amenaza la predictabilidad temporal y compromete la composabilidad temporal. En esta tésis analizamos y proponemos soluciones hardware para ser aplicadas en los diseños multi núcleo actuales para CRTES que mejoran la predictabilidad y composabilidad temporal, centrándose en el bus y el controlador de memoria internos al chip. A nivel de hardware, proponemos nuevos diseños de buses y controladores de memoria que controlan y mitigan la interferencia entre los diferentes núcleos y permiten tener composabilidad temporal por diseño, también en el contexto de sistemas de criticalidad mixta. A nivel de análisis, proponemos modelos de predicción de la interferencia que factorizan el impacto de los núcleos y no necesitan modificaciones hardware. También proponemos un conjunto de Contadores de Control del Rendimiento (PMC) que proporcionoan evidencia de la interferencia. En esta tésis, damós especial importancia al dominio espacial, centrándonos en el procesador mutli núcleo Cobham Gaisler NGMP, que está siendo actualmente evaluado por la Agencia Espacial Europea para sus futuras misiones
    • …
    corecore