Modelling Probabilistic Cache Representativeness
in the Presence of Arbitrary Access Patterns

Suzana Milutinovic™#, Jaume Abella’, Francisco J. Cazorla*"
t Barcelona Supercomputing Center (BSC). Barcelona, Spain
¥ Universitat Politécnica de Catalunya (UPC). Barcelona, Spain

* Spanish National Research Council (IITA-CSIC). Barcelona, Spain

Abstract—Measurement-Based Probabilistic Timing Analy-
sis (MBPTA) is a promising powerful industry-friendly method
to derive worst-case execution time (WCET) estimates as
needed for critical real-time embedded systems. MBPTA per-
forms several (R) runs of the program on the target platform
collecting the execution times in each run. MBPTA builds
a probabilistic representativeness argument on whether those
events with high impact on execution time, such as cache
misses, arise on the runs made at analysis time so that their
impact on execution time is captured. So far only events
occurring in cache memories have been shown to challenge
providing such representativeness argument.

In this context, this paper introduces a representativeness
validation method (RVS) to assess the probabilistic repre-
sentativeness of MBPTA’s execution time observations in
terms of cache behaviour. RVS resorts to cache simulation to
predict worst-case miss scenarios that can appear during the
deployment phase. RVS also constructs a probabilistic Worst-
Case Miss Count curve based on the miss-counts captured
in the R runs. If that curve upperbounds the impact of
the predicted cache worst-case scenarios, R is deemed as a
sufficient number of runs for which pWCET estimates can be
reliably derived. Otherwise, the user is requested to perform
more runs until all cache scenarios of interest are captured.

I. INTRODUCTION

Validation and verification of critical real-time systems
require providing evidence that system functions will per-
form correctly and timely. Timing verification is performed
by means of timing analysis methods that estimate the
worst-case execution time (WCET) of tasks. WCET es-
timates, which need to be reliable according to the level
of confidence defined in the relevant safety standards (i.e.
ARP4761 in the avionics domain [12]), must also be as
tight as possible so that tasks can be properly scheduled
minimising the amount of hardware resources required.
However, the increasing complexity of the software and
hardware used in critical real-time systems challenges state-
of-the-art methods and practices for WCET estimation [3].

Measurement-Based Probabilistic Timing Analysis
(MBPTA) [6] derives probabilistic WCET (pWCET)
estimates in the presence of high-performance hardware,
e.g. comprising caches. pWCET distributions express
the maximum probability with which one instance of
the program can exceed a given execution time bound.
The WCET value chosen is the one whose exceedance
probability is deemed sufficiently low in relation to the
integrity level of the functionality being analysed w.r.t. the
corresponding safety standard. For instance, in the case of
avionics, DAL-A software must not exceed a failure rate
of at most 10~ per hour of operation [12].

MBPTA deploys Extreme Value Theory [9], [15] (EVT)
to build the pWCET distribution (curve) based on a sam-
ple with a limited number of (runs) observations, e.g.,
R = 1,000, collected during the analysis phase. MBPTA
requires that the conditions under which measurements are
collected during the analysis phase lead to equal or worse
timing behaviour than those conditions that can arise at
operation [5]. To that end, in MBPTA-compliant proces-
sor architectures some sources of execution time variation
(jitter) are randomised [5] (e.g., cache placement) so that, if
enough runs are performed, the impact of the jitter of those
resources in execution time is captured.

In the processor architectures studied so far, the execution
time observations used as input for MBPTA capture with
high probability the impact of all timing events produced
by time-randomised hardware resources except for time-
randomised caches (TRc) [13]. In particular, set-associative
TRc deploy random placement with which in each run
addresses are randomly mapped to cache sets, defining
a random cache (set) placement. The execution time of
those runs in which the number of addresses (randomly)
mapped to a cache set exceeds its associativity (W) can
be significantly higher than when this is not the case. The
problem arises when those cache placements of interest
occur with a sufficiently high probability to be deemed
as relevant by the corresponding safety standard, but suf-
ficiently low not to be observed in the measurements at
analysis time [1], [18], [8]. For instance, for a program
accessing 5 addresses, the probability that all of them are
randomly mapped to the same set in a 32-set 4-way cache
is 1075 =~ (1/32)%, hence, of relevance in avionics and
automotive. If R = 1,000 runs are performed — a typical
value used by MBPTA - the probability that at least one run
captures the execution time impact of the cache placement
of interest where the five addresses are mapped to the same
set is very low (~ 1072), and hence, highly likely not to
be captured by MBPTA. As a result MBPTA would fail
to upperbound program’s execution time. Thus, a reliable
MBPTA application requires that those cache placements
of interest are sufficiently represented in the measurements
passed as input to EVT.

So far only the HoG [1] method has been proposed to at-
tack this problem. However, HoG only works for programs
for which the impact on execution time of mapping any
subset, bigger than W, of program addresses to a given
set is the same. This is in general only the case when
program’s addresses are accessed mostly in a round-robin

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works. DOI 10.1109/ISORC.2016.28

montse aragues
Texto escrito a máquina
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/ISORC.2016.28

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

1,0E+00

1-CDF

o
=3
i

1,0E-04

o
=]
®

1,0E-08

Probability
)
°
~

— PDF 1,0E-12

o
=)
=2

1,0E-16

Exceedance Probability

S~ coF

<3
=]
=]

u 1,0E-20 T
0 1 2 3 4 5 0 1 2 3 4
ET (ms) ET (ms)

(a) Probability distribution (b) CDF and 1-CDF
function (PDF) (logarithmic scale)

5

1,0E+00 -
Ok EVT projection

(1-CDF)

: actual h
measurements

(1-CDF)

Range of

1,0E-04 !
interest

Jueas|ey

probability

pWCET estimate \
T

1
0 1 2 3 4 5
ET (ms)

(c) Example of pWCET curve

Exceedance Probability
2|qeAJasqo J0N

jueAs[al JON ‘

time
(d) Probability ranges
of interest

Fig. 1. Synthetic program PDF, CDF, 1-CDF and pWCET curve.

fashion. However, this is not the general case since access
patterns can be arbitrarily complex and irregular.

Contribution. We present representativeness validation

by simulation (RVS), a method valid for any cache access
pattern to assess whether pWCET estimates obtained with
MBPTA - for a given number of runs — are reliable.
Otherwise RVS provides means to determine the number of
extra runs needed to regain confidence on MBPTA results.
In particular, we make the following contributions:
(1) We present a method based on space exploration search-
ing and cache simulations to determine the worst (random)
cache placements, their occurrence probability and impact
in terms of miss counts for instruction and data caches.

From the R runs performed by MBPTA, we collect miss
counts and derive a probabilistic Worst-Case Miss Count
(pWCMC) distribution, a probabilistic prediction of the
expected miss counts and their probability based on the
information collected in the R runs.

If the pWCMC distribution does not upperbound the

worst cache-placement scenarios, they are deemed as not
reliably captured in the R runs. In such a case, RVS in-
creases the number of runs iteratively until a value R’ so that
the pWCMC distribution successfully upperbounds those
scenarios. At that point, the execution time observations
of the R’ runs can be used to derive a pWCET estimate
that reliably upperbounds the impact of the worst cache-
placement scenarios.
(2) We evaluate RVS using the EEMBC automotive
suite [17]. Our results show that whenever RVS requests
more runs than those used by MBPTA (i.e R’ > R),
the pWCET curve that would have been obtained with
MBPTA’s default number of runs () might be unreliable
and the pWCET curve obtained with the RVS’s number of
runs (R’) can be regarded as reliable. Hence, this makes
RVS a fundamental step to maintain confidence on MBPTA
results. Overall, RVS helps increasing MBPTA confidence
on obtained pWCET estimates in the presence of caches.
Deploying RVS is of prominent importance since MBPTA
has already been successfully assessed in the context of
some industrial case studies [19], [20] and T Rc have been
already prototyped into FPGAs [11].

II. INPUT-DATA REPRESENTATIVENESS UNDER MBPTA

MBPTA delivers a pWCET distribution function that
describes the highest probability (e.g., 107'%) at which
one instance of a program may exceed the corresponding

execution time bound. This is better understood with the
example in Figure 1. Figure 1(a) shows the probability
distribution function (PDF) of the execution times collected
from R = 1,000 runs of a synthetic program running on
a MBPTA-compliant platform [14], [5]. The corresponding
cumulative distribution function (CDF) and the complemen-
tary CDF (1-CDF) are depicted in Figure 1(b) in logarithmic
scale. With R observations (execution time measurements),
one could estimate the pWCET at an exceedance probability
of 1/R at most. Since much smaller probabilities are needed
in the context of safety-relevant systems, EVT is used to
estimate the function that describes the rightmost tail of the
execution time distribution. For our example, Figure 1(c)
shows the result of applying EVT to estimate the pWCET
distribution. The dashed line corresponds to the 1-CDF for
the 1,000 measurements collected, whereas the continuous
line corresponds to the pWCET distribution.

MBPTA requires that analysis time conditions either
match or upperbound the timing impact of those conditions
at operation [14], [5] so that by construction the pWCET
distribution obtained upperbounds the one at operation. The
correct application of MBPTA involves a representativeness
step [S] such that evidence is provided on the fact that analy-
sis time observations capture the impact of those events that
can arise at operation and significantly impact execution
time and so, pWCET. These are called events of interest,
which we refer to as cache placements of interest for the
case of the cache. MBPTA i) either injects randomisation
in the timing behaviour of certain hardware resources (e.g.
caches and buses) so that it is possible to determine the
probability of their worst behaviour to be captured in the
analysis-time measurement runs; or ii) makes resources
to work on their worst latency so that the analysis time
measurements capture the worst timing behaviour that those
resources may have during operation [14].

In building its representativeness argument MBPTA con-
siders two probabilities, as shown in Figure 1(d).

P.g. For random events, MBPTA defines representative-
ness as the requirement by which the impact of any relevant
event affecting execution time is properly upperbounded at
analysis time. Relevant events are those occurring with a
probability above a cutoff probability (e.g. P.ry = 1079),
which is determined by the integrity level of the task and the
probability of failure allowed under such integrity level as
dictated by the corresponding functional safety standards in
the domain (e.g., DAL-A software must not exceed a failure

TABLE I
BASIC NOTATION.
S Number of sets in cache
w Number of ways in cache
cls Size in bytes of a cache line
@4 or A | Address assigned to a memory object
Q; Sequence of accesses to cache
Q@(Q;) Unique (non-repeated) addresses in Q;
|@(Q;)| | Number of addresses in Q;
aC} One combination of addresses from @Q(Q;)
|aC}| Address count in (i.e cardinality of) aC;

rate of at most 102 per hour of operation [12]).

Pobs. While those events occurring with overly low
probability become irrelevant for pWCET estimation pur-
poses, events occurring with higher probability need to be
accounted for, and this requires that their effect is captured
in the measurements taken at analysis time (see Figure 1(d)).
However, with the number of runs R carried out at anal-
ysis, only events with a relatively high probability can be
observed in the measurement runs. P, as presented in
Figure 1(d), determines the lowest probability of occurrence
of an event such that the probability of not observing
it in the analysis time measurements is below a cutoff
probability, e.g. 107°. P, is a function of the probability
of occurrence per run of the event, P,,¢y¢, and the number
of runs R (observations) collected by MBPTA at analysis
time. For instance, for a cutoff probability of 1079 and
R = 1,000 runs, we can guarantee that if Pe,epn¢ > 0.021
the event will not be observed with a probability smaller
than 1077, that is, 1079 > (1 — 0.021)%%0_ It also follows
that with a higher number of runs, events with lower
probability can be captured.

Overall, the range of probabilities in which relevant
events are unlikely to be observed (for R = 1,000) is
Poyent € [1079,0.021].

A. Cache-related representativeness challenges

TRc implement random placement by deploying a hard-
ware module to randomly map addresses to sets. The
module hashes the address being accessed with a random
number (RII) to compute the (random) set where the
address is placed [13]. RII remains constant during the
program execution so that an address is placed in the
same set during the whole execution, but it is randomly
changed across executions so that the particular set where
an address is placed is also random and independent of the
placement for the other addresses across executions. Thus,
the probability of any two addresses to be placed in the
same set is 1/.5 where S is the number of cache sets.

Heart of Gold (HoG) [1] tackles representativeness issues
of cache related events for TRc, which were also identified
in [18], [8]. In particular, HoG tackles the scenario in which
the execution times, obtained from a MBPTA-compliant
architecture deploying TRc [13], causes MBPTA to yield op-
timistic pWCET estimates. HoG identifies the cache-related
events of interest affecting execution time and determines
their probability to occur. In particular, authors in HoG [1]
notice that the number of addresses competing for a set is
the critical parameter affecting execution time noticeably:
whenever up to W addresses are mapped into the same

set, those lines end up fitting in the cache set regardless of
their access pattern. This occurs because after some random
evictions each address can be stored in a different cache
line in the set, thus not causing further misses. Conversely,
if more than W cache line addresses compete for the cache
set space, then they do not fit and evictions will occur often.
This scenario is the cache placement of interest.

However, HoG relies on the assumption that the impact of
all addresses in execution time is homogeneous, which hap-
pens, for instance, in access sequences in which addresses
are accessed in a round robin fashion.

Observation: We make the key appreciation that having
more than W addresses mapped to the same set is a neces-
sary condition to trigger a cache placement of interest, but
it is not sufficient. Whether that cache placement actually
causes an abrupt change on execution time, depends on the
access pattern for those addresses.

B. Problem statement

We introduce the problem addressed by RVS with two
illustrative examples. For simplifying the discussion in this
section we focus on direct-mapped caches, though in the
rest of the paper our focus are set-associative caches. In
the first example, the number of misses generated when a
subset of addresses is mapped to a set is the same regardless
of the particular addresses chosen — as assumed by HoG.
In the second example, different conflicting addresses (i.e.
addresses mapped to the same set) produce different miss
counts — as addressed by RVS. We resort to the notation
defined in Table L.

Let Q; = {ABABABABAB} be a sequence of mem-
ory accesses, whose unique addresses are @Q(Q;) = {A, B}
with U = |@Q(Q;)| = 2. Such a sequence may happen
when A and B are accessed inside a loop body. For a
S-set direct-mapped cache, the probability that, when A
and B are randomly mapped to a set, they conflict in
the same set is given by P.ens = S x (%)U, so 1/8
in this case. The probability that in the R measurement
runs taken at analysis — in each of which a new random
set is given to A and B — there is no run in which both
are mapped to the same set, P(s4 = sp) = Peyent, 18
given by Peyent(R) = (1 — Pevem)R. For R = 1,000, a
typical value used for MBPTA, the two rows corresponding
to |@(Q;)| = 2 in Figure 2 show Peyent and Peyent(R)
for different values of S representative of typical L1 and
L2 caches in real-time systems. Conflictive cache-mapping
scenarios are those where P.ycn: € [10_9,0.021] (for
R = 1,000), so that the event can occur with a non-
negligible probability at operation, and P,yent < Pops, SO
there is a non-negligible probability of missing this event in
the measurements taken at analysis time. We observe that
the larger the cache the lower the probability of A and B
to conflict in the same set (Peyent), wWith MBPTA likely
missing the impact of this event when S > 64 (gray cells).

Let Qo = (ABABABABABCD) be another sequence
with @(Qy) = {A,B,C,D} and U = 4. Q5 may occur
when A and B are accessed in a loop and C and D after
the loop. HoG [1] assumes that all addresses have the same
impact, so it will determine P.,¢,: as the probability of

Number of sets (S)
8 16 32 64 128 | 256 512

1024 2048 4096

@t Pevent [0.125 0.063 0.031 0.016 8E-03 |4E-03 2E-03 1E-03 5E-04 2E-04
Q1)|=2
Pevent(R)| 1E-58 9E-29 2E-14 1E-07 4E-04|0.020 0.142 0.376 0.614 0.783
Pevent [0.590 0.333 0.177 0.091 0.046|0.023 0.012 6E-03 3E-03 1E-03
|@(Q2)|=4

Pevent(R)[9E-388 6E-177 3E-85 3E-42 3E-21|6E-11 8E-06 3E-03 0.053 0.231

Fig. 2. Pevent and Peyent(R) as a function of S. (P,ps = 0.021)

any two addresses (e.g AB, AC, AD, BC, BD or CD) to
be mapped in the same set (P,yen¢ should also include the
case when 3 or 4 addresses are mapped to the same set).
This will lead to the values in the two rows corresponding
to |@(Q2)] = 4 in Figure 2. However, the true cache
placement of interest occurs only when A and B are mapped
in the same set (AB). In that case, all accesses are misses
and otherwise there will be exactly 4 misses (cold misses
for the 4 different addresses accessed). Thus, HoG fails
to determine P,,.,; for Qo. As a result, for instance, for
S = 256 HoG determines that the probability of the cache
placement of interest is 0.023 — not in the range of interest
since it is higher than 0.021 = P,;;— while in reality is
4-1073, which is in the range [107?,0.021]. In this scenario
more runs are required to provide confidence that the event
of interest is captured in the measurements, but HoG fails
to capture this situation.

Overall, increasing the confidence on MBPTA results
requires detecting those cache mappings where W + 1
addresses compete for the same cache set with a sufficiently
high probability. However, it is important to be aware of
the actual access pattern of the program under analysis so
that only those cache mappings producing a high impact
on execution time are considered. In that case, an action is
required, for instance by increasing the number of runs so
a probabilistic argument can be build on the fact that those
cache mappings are captured in the measurement runs.

ITII. RVS

The Representativeness Validation by Simulation (RVS)
method relies on identifying the conflictive combinations
(set) of addresses, aC; so that if they are randomly mapped
to the same cache set they lead to cache (set) mapping
scenarios with high impact on execution time. RVS also
estimates (upperbounds) the probability of occurrence of
those scenarios and assesses whether the pWCET distribu-
tion derived with MBPTA truly upperbounds the impact of
those scenarios. The validation is performed in the miss
count domain rather than in the execution time domain,
and it is applied for all cache memories individually (i.e.
instruction and data caches). RVS relies on the assumption
that miss counts highly correlate with execution time. This
is usually the case since cache misses have been shown to
be one of the major contributors to programs’ execution
time. Yet we perform a quantitative assessment of this fact
for our reference processor architecture (Section IV). RVS
includes the following steps:

(1) RVS considers all combinations of the most accessed
addresses. Part of our future work consists of considering,
in a first step, all addresses and quickly discarding those
combinations that cannot be the most conflictive ones, i.e

&,

.
EVT tail N\,
proj. (R)

EVT tail

probability
¥

o
o
S
=

miss count

Fig. 3. Illustrative application of RVS.

those that if mapped to the same set cause a low impact on
execution time.

(2) For each combination of addresses regarded as conflic-
tive — and also for each group of combinations — RVS (i)
determines its probability and (ii) performs a cache simula-
tion in which conflictive addresses are mapped to the same
cache set resulting in a number of misses. The probability
and miss count information helps RVS identifying those
conflictive aC); leading to bad cache mappings that must
be upperbounded. RVS uses a light-weight cache simulator
for TRc to estimate the number of misses when a given aC};
is mapped in the same cache set, where |aC;| > W.

(3) RVS also performs cache simulations in which all
addresses are randomly mapped and applies MBPTA with
a default number of runs R. From this information RVS
generates a probabilistic worst-case miss-count (pWCMC).
By validating whether the pWCMC distribution obtained
upperbounds all bad cache-set mappings (i.e miss count and
probability pairs), RVS determines whether the number of
runs R used by MBPTA suffices. If this is not the case, more
runs are performed until the validation step is passed with
R’ > R runs. Whenever it is passed, the number of runs R’
is the minimum number of execution time measurements
that MBPTA needs to use.

This is better illustrated in Figure 3, in which the solid
curve represents the pWCMC estimate generated from miss
counts obtained from R runs and the black stars and black
crosses represent the miss counts obtained for all aC; —
and their combinations — whose probability of occurrence
is above P, yr. Meanwhile their gray counter-parts are those
below P, which are discarded by RVS since their proba-
bility of occurrence is deemed as negligible. Stars are those
aC'; (and their combinations) whose miss count (i.e. impact)
is covered by the pWCMC, while the miss counts of the
aC; marked with crosses are not. In this example scenario,
RVS requires the user to increase the number of runs from
R to R’ such that the impact of those aC; is properly
upperbounded. We also observe that when increasing the
number of runs to R’ runs (with R’ > R) the resulting
pWCMC curve captures the impact of all aC;. Overall,
this results in an increased number of runs R’ for which
the obtained pWCMC estimate reliably upperbounds the
miss count of all aC; and therefore, the pWCET estimate
obtained with R’ runs also upperbounds their timing impact.

In the following subsections we describe in detail the
steps to apply RVS.

A. Generating Combinations of Conflictive Addresses

Let Q; be the sequence of accesses under analysis. In
theory all aC; such that |aC;| > W need to be properly

upperbounded. Those address combinations can be gener-
ated from @(Q;), and their number is:

3 <U) M)

k
E=W+1

where U = |@Q(Q;)|. Note that the generated aC; have
cardinalities in the range [W + 1,U]. The key element in
this first approach for RVS is that we consider U, i.e. the
number of unique addresses in Q;, to be low enough so
that all aC; can be generated and evaluated with the cache
conflict simulator. While it is computational intensive, this
exhaustive approach brings confidence on the fact that all
relevant sets of addresses have been considered. If a lower
number of unique addresses U’ < U needs to be considered,
then we will select those with highest access counts in Q;.

B. aC; Impact and Probability

Probability. The probability of a given combination of
addresses aC; to be mapped in the same set is given by:

S x (1/8)l¢!)

Impact. The impact is obtained by performing a Monte-
Carlo experiment where each observation is a cache sim-
ulation. In each simulation all the addresses in aC; are
forced to be mapped to exactly one random set. The other
addresses in Q; are mapped randomly. The number of
observations (/) needs to be sufficiently high so that the
impact of the random mapping of addresses not in aC; is
captured. The impact, i.e. miss count in our case, that is
produced for the aC; is the average miss count under all
M mappings. In our experiments we assume M = 1,000,
which provides a confidence interval of +2% with 99%
confidence. The inputs for the cache conflict simulator
include (i) the sequence of cache lines accessed; (ii) aC},
whose addresses are mapped to the same (random) set,
while the rest of the addresses in Q; are mapped randomly;
and (iii) the cache configuration.

C. Combined aC; Impact and Probability

Ultimately, RVS focuses on determining whether miss
count - probability pairs (< impact, prob >) are captured
by the pWCMC curve: if two combinations of addresses
aC; and aCj; lead to the same miss count impact, the
probability of that miss count impact is the union of the
probabilities of both combinations of addresses, since when
any of the two combinations are mapped to the same set,
they lead to that miss count. Hence, in addition to consid-
ering each combination of addresses (aC;) in isolation, it
is also needed to determine the joint probability of several
aC;. For instance, let us consider an example where aC};
and aC; have the same impact and |aC;| = |aC};|. The
probability of having one of them is P(aC;) = P(aC;) =
S x (£)1°“! but the probability of having any of them is
P(aC;UaCj) = P(aC;)+P(aCj)—P(aC;NaCyj), which is
obviously higher than any of their individual probabilities,
and the impact will be the same. However, determining the
impact and probability of joint scenarios is challenging.

700
600
& 500
B 400
& 300
= 200
100

\
\
..

h

Fig. 4. Impact (miss count) of different aC);.

Probability. Determining the total probability for the
union of any arbitrary number of aC; is overly complex
in practice because we should be able to compute the
intersections of each pair of aC};, each group of three, four,
and so on and so forth. Moreover, P(aC;) and P(aC};) are
not independent in general because addresses may repeat
across sets, thus leading to arbitrary intersections for each
group. We address this issue by upperbounding union of
probabilities as their addition. Note that upperbounding
probabilities will lead to an increased risk of not passing
the validation step because miss count and probability pairs
will be more likely to be above the pWCMC. This, however,
may imply collecting more runs than needed but will not
lead to false step passes.

Impact. The impact of having any aC; is obtained as
the average of their impacts, since any of them can occur
individually with the same probability. Note that individual
probabilities for all of them have already been considered,
and the case of having aC; and aC; simultaneously in the
same set has already been considered when analysing those
aC}, with larger cardinality such that |aCy| = |aC; U aCj|.

For each cardinality in the range [W + 1, U] we analyse
the combined impact of those aC; with higher individual
impact. Since, aC; with the same cardinality have exactly
the same probability (see Equation 2), considering those
aC; with highest impact leads to an average impact equal
or higher than for any other aC; group and the same
probabilities. As a result of this step we obtain a list of
pairs (< impact, prob >) describing the impact in misses
and the probability of those cache mapping scenarios to be
compared against the pWCMC curve.

Example. Let us assume the sequence of accesses Q1 =
{ABCDECDECDECDEFG} that repeats since those
addresses are in an outer loop with CDFE accessed in an
inner loop. In this scenario there are 35 different aC; with
cardinality 3, {ABC, ABD, ABE, ...}. Figure 4 shows the
impact when the addresses in each aC; (shown in the X
axis) are forced to be mapped in the same set (in a direct-
mapped cache) and the rest are mapped randomly. We
observe that aC; = {C, D, E} generates the highest impact.
The second step occurs when two addresses of (C, D and
E) and another address are mapped into the same set (e.g.
aC; = {C,D, F}). The lowest step in the impact occurs
when only one or none of the three most repeated addresses
is in the address combination (e.g. aCyr = {C,F,G}).
Intuitively, what RVS needs to capture is the probability —
and impact — of each step. As explained, RVS will consider
incrementally only one aC; e.g. {C, D, E}, then combi-

1

1
NormMiss A
0,8 i
----- NormET f A
ol
0,6 } .
A S g
st &
0,4 W . ..“
o 3
i r.?¥
0,2 s f
o - a2time

L T T B I I B I = =R A=)
L I Y = B I = T = Y, B = S, = T = B, B =)
o N N® o F D o R N~ ®® o6 0

Fig. 5. NormMsiss and NormET for a2t ime and bitmnp sorted by
NormMiss.

nations of aC;, for instance the case where {C, D, E} or
{A,C, D} occur, then {C, D, E}, {A,C,D} or {D, E,G},
and so on and so forth, thus always considering the worst
case for any address set count. Each of these groups will
be compared against the pWCMC distribution as illustrated
in Figure 3. This step will be repeated for all cardinalities
|aC;| in the range [W + 1,U].

D. Validation against pWCMC

The final step in the application of RVS consists in
deriving the pWCMC curve by applying EVT to the miss
count readings obtained in the R runs performed. Note that,
instead of using the miss counts collected from the runs
on the target platform, we can use those obtained with the
cache simulator since their distribution is the same. In this
case, in each simulation we process the sequence of accesses
of the program but we do not enforce any group of addresses
to be mapped together. Instead, all of them are mapped
randomly. Then we generate the pWCMC distribution and
compare it against all < impact, prob > obtained before. If
any such pair exceeds the pWCMC distribution, we regard
the pWCMC as optimistic'. In that case we need to increase
the number of runs and apply MBPTA again until the
pWCMC properly upperbounds all pairs, which will occur
eventually since those runs will include measurements with
those address combinations placed in the same set when
(1 — P(aC;))® approaches P ;.

In our case we start this iterative process by setting the
value of R’ to the number of runs required by MBPTA [6]
(R). If more runs are required, we increase the number of
runs by Ar = 10. Whenever several caches are analysed,
the number of runs to be performed is the maximum R’
across all caches obtained with RVS. In our case we have
instruction and data cache so, R’ = max(R),,.1.s R

icache)'

IV. EXPERIMENTAL RESULTS

‘We model an in-order processor with a memory hierarchy
composed of first level 4KB 2-way set-associative 32B/line
data (DL1) and instruction (IL1) caches and main memory.
Both set-associative caches implement random placement
and replacement [13]. The latency of an instruction depends
on whether the access hits or misses in the instruction cache:
a hit has 1-cycle latency and a miss has 100-cycle latency.
The memory operations access the data cache so they can
last 1 or 100 cycles depending on whether they miss or not.

'The impact of a pair is obtained within a confidence interval as
explained before. Thus, if the pWCMC distribution is within the confidence
interval, we cannot reject the hypothesis of such distribution being reliable.

The remaining operations have a fixed execution latency
(e.g. integer additions take 1 cycle).

We evaluate several EEMBC automotive benchmarks
representative of some safety-related real-time automotive
applications [17]. We consider the U = 15 most accessed
addresses for instructions and data for each benchmark
that covers on average 66.85% of the accesses across all
benchmarks. In all cases we start by applying MBPTA
with the number of runs R regarded as sufficient by the
MBPTA technique for each program [6]. Then we apply
our approach, RVS, for the instruction and data caches, and
obtain the number of runs required to pass the validation
step R'.

A. Correlating Execution Time and Miss counts

RVS requires that miss counts and execution times are
strongly correlated. While this is generally the case since
misses in cache lead to slow off-chip accesses, we perform
a quantitative assessment of this fact: we first illustrate
such correlation visually for some benchmarks and then we
evaluate quantitatively such correlation for the whole set of
EEMBC automotive benchmarks. For that purpose we use
an FPGA implementation of an in-order processor imple-
menting random placement and replacement caches [11].
Executions on this processor take much longer than the
ones on our simple simulator but, as shown next, prove
that modelling execution time mostly with cache behavior
is an extremely accurate proxy.

Qualitative assessment. First, we perform R = 1,000
runs for each benchmark collecting both their execution
times and their total number of cache misses (DL1 and
IL1 misses). In order to correlate the variation of both
metrics we normalize them: for each benchmark we sub-
tract the minimum execution time (miss count) from the
execution time (miss count) observed in each experiment.
This differential is normalized to the differential between
the minimum and maximum values observed. Formally,
normalized misses for a given execution i, referred to as
NormMiss;, are obtained as follows, where M1ss; stands
for the number of misses measured in execution ¢:

_ Miss; — (MIN;}LoMiss;)
NormMiss; = = -) - 3
(MAXj:OMzssj) — (MINjZOMZSSj)

Likewise, we compute NormFET;:

ET; — (MIN; L, ET;)

NormET; = (MAXJR;OETj) — (M[N]R:OETj)

“

where ET; is the execution time measured in execution %.

NormMiss and NormET for a2t ime and bitmnp
benchmarks are shown in Figure 5. As shown, both metrics
overlap almost completely. Only some discrepancies are
observed for a2t ime due to the effects of the store buffer.
However, the average deviation of one metric w.r.t. the other
is 0.4% and 1.5% for a2t ime and bitmnp respectively.

Quantitative correlation. In order to assess the corre-
lation between miss counts and execution times quanti-
tatively, we have used two different correlation methods

Probability

1e-17

1e-01

1e-09

> S
S (013 9 2
i [aCil=4
|aCil=5 o
o
|aCi|=6 ®
|aCil=7 pWCMC o -
|aCil=8 <Q
|aCil=9 ° ~
. 1aCil=10 by
JaCil=11 °
JaCil=12
JaCil=13
|aCil=14 ~
5 laCil=15 g .
T T T -
0 2000 4000 6000 8000 500000 1000000 1500000

Execution cycles

(b) pWCET for bitmnp

Impact (miss count)

(a) pWCMC for bitmnp

|aCil —
5000 0 o C IS
Mmoo o e |aCi4 o
[aGil=5 2
at = G
[aCil-8 _ |
o]an|=|90| o j
2Cil = 1/ ™~
a1 . |ECCDF
PWCMGC 1812 ey @
|aCil=13 5 R
[aCil=14
JaCil=15 -
T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 0 500000 1000000

Impact (miss count)

(c) pWCMC for aifirf

Execution cycles
(d) pWCET for aifirf

Fig. 6. RVS applied to the instruction accesses of bitmnp and aifirf (the analysis is performed for combinations of addresses with increasing
cardinality, |aC;| € [W + 1, U]) and pWCET estimates obtained with R and R’ runs.

to obtain correlation coefficients [16]: Pearson product-
moment correlation coefficient and Spearman’s rank corre-
lation coefficient. The Pearson product-moment correlation
coefficient measures the linear dependence between two
variables. Pearson’s method delivers as output a value in
the range [-1,1], where 1 indicates total positive correlation,
0 no correlation and -1 total negative correlation. In our
case we expect values close to 1, meaning that there
is a linear positive correlation between execution times
and miss counts. Spearman’s rank correlation coefficient
measures the statistical dependence between two variables
by assessing to what extent those variables can be modelled
using a monotonic function. As for the Pearson’s method,
the output value is in the range [-1,1], where 1 indicates total
positive correlation, O no correlation and -1 total negative
correlation. Again, we also expect values close to 1. For
both methods we use a 5% significance level (a typical value
for this type of tests).

As shown in Table II, all benchmarks obtain very high
values for these tests, so miss counts and execution times
are highly correlated and such correlation is highly linear
(high values for Pearson’s test). As shown, in some cases
values are not as high as in other cases (although still very
high). For instance, this is the case of aiifft. We have
further analyzed benchmarks with the lowest values and
have realized that they experience very low execution time
and miss count variations. Thus, other sources of execution
time variation, like those introduced by the store buffer,
have a relatively higher impact.

TABLE 11
PEARSON AND SPEARMAN CORRELATION COEFFICIENTS FOR
NormMiss AND NormET.

Pearson | Spearman
a2time | 0.997 0.933
aifftr| 0918 0911
aifirf| 0.960 0.956
aiifft| 0.923 0.913
basefp| 0.999 0.998
bitmnp| 0.998 0.998
canrdr | 0.974 0.973
idctrn| 0.950 0.951

B. RVS results: Illustrative Examples

To illustrate how RVS works we present results for one
EEMBC Automotive benchmark passing the validation step
with R runs (bitmnp) and for one requiring extra runs
(aifirf). For the purpose of this experiment, we perform
ten million runs to compute the actual distribution of misses,
referred to as ECCDF (Empirical Complementary CDF

or 1-CDF) in the following figures. A larger number of
runs was not collected due to the cost to run that many
simulations. Note that performing that number of runs is
not required for RVS application, we just perform them for
illustrative purposes in this section.

RVS passed. Figure 6(a) shows the result of applying
RVS for the instruction accesses of bitmnp. The curves on
the left show the < impact, prob > pairs derived with RVS
for each cardinality |aC;| € [W + 1, U]. It can be observed
that all < impact,prob > pairs are below the pWCMC
curve, thus meaning that the number of runs R suffices
for a reliable application of MBPTA for this benchmark.
This is corroborated in Figure 6(b), where the ECCDF is
reliably upperbounded by the pWCET estimate derived with
MBPTA with R runs.

RVS failed. In the case of aifirf, our method detects
that the number of runs obtained with MBPTA R = 4,400
is not enough to provide a reliable pWCET estimate. In
Figure 6(c) we observe that the pWCMC curve does not
upperbound the < impact, prob > pairs generated by RVS.
As a result in the timing domain, the pWCET estimate
derived with R runs does not capture the execution time of
the program that is dominated by the misses in cache. RVS
requires the number of runs to be increased to R’ = 21, 390.
If MBPTA is applied in the timing domain on the obser-
vations made on R’ runs the resulting pWCET estimate is
reliable as we can observe in Figure 6(d).

C. RVS results: EEMBC Automotive

Table III summarises for all benchmarks the number of
runs required by MBPTA (R) and RVS in the miss domain
for both DL1 and IL1. The number of runs required by
RVS is the maximum of the value for first level caches,
ie. DL1 and IL1. That is, R’ = max(R};,,Rpr,)- By
comparing R’ and R we can assess whether the number
of runs required by MBPTA in the execution time domain
could lead to optimistic pWCET distributions, which occurs
when R < R'.

We observe that this is the case for all the benchmarks
in Table III. This does not mean that results obtained with
less than R’ are necessarily incorrect, but potentially in-
correct. RVS keeps the likelihood of missing relevant cache
placement scenarios of interest below 1079, as discussed
in Section II. Instead, if we only use the number of runs,
R, determined by MBPTA, the likelihood of missing those
scenarios becomes much higher (see last column). This
decreases the confidence on the results below the levels

TABLE III
RESULTS FOR ALL EEMBC BENCHMARKS.
RVS MBPTA
Ry IR, [R’ Jlikelihood(R")| R [likelihood(R)
a2time 58,360 540 [58,360 109 2,650 0.390
aifftr| 6,840 | 5,500 | 6,840 10—9 2,200 0.001
aifirf|21,390(11,530(21,390 10—9 4,400 0.014
aiifft| 390 | 8,770 | 8,770 10—9 1,900 0.011
basefp|82,080(20,010 82,080 10~9 300 0.927
bitmnp| 4,640 | 3,510 | 4,640 1079 850 0.007
canrdr [18,610| 7,950 [18,610 109 350 0.677
idctrn|65,770(47,700 | 65,770 109 3,650 0.317

defined in the corresponding safety standards. Still it can be
the case that sometimes relevant scenarios can be observed
and, whenever they are not, their effect may be superseded
by other processor effects. Although this may result in
pWCET estimates truly upperbounding program’s execution
time, the lack of evidence on this prevents developing
sufficient arguments for certification.

V. RELATED WORK

There is a plethora of methods for the estimation of
WCET in the real-time domain [21]. Recently MBPTA
has emerged as an alternative to obtain WCET estimates
with high confidence and to apply industrial practice for
complex software running on top of complex hardware [7],
[4], [10], [6], [19], [20]. However, it has been shown that
MBPTA may lead to optimistic WCET estimates on top of
caches implementing random placement in some particular
scenarios [1], [18], [8]. Solutions for scenarios where all
accessed addresses have the same impact in terms of execu-
tion time have been proposed [1]. However, access patterns
of programs do not necessarily match such constraint and
are typically arbitrary, since addresses are accessed with
different frequencies and with arbitrary interleaving. In this
paper we tackle this issue by proposing a validation step,
RVS, able to test whether the WCET estimates obtained with
MBPTA are reliable and, if they are not, to increase the
number of runs needed until the validation step is passed.

It is worth nothing that so far in the real-time domain
EVT has been applied only to execution times [10], [6], [5],
while in other domains EVT has been applied to measure
flow floods, stock min/max values, etc. In this respect, this
paper makes the contribution of extending the use of EVT
to other metrics in the real-time domain, in particular to
miss counts.

An initial comparison between MBPTA and Static Timing
Analysis, which is out of the scope of this paper, has been
already performed [2]. Results show that MBPTA provides
competitive results with respect to those provided by Static
Timing Analysis Techniques.

VI. CONCLUSIONS

MBPTA uses EVT to estimate the pWCET of programs.
Some events affecting execution time significantly may
occur with a probability sufficiently low so that they may
not be observed during the analysis phase. This leads
to EVT lacking enough information and, hence, produc-
ing optimistic pWCET distributions. While this issue has

been solved for programs with homogeneously accessed
addresses, access patterns are arbitrary in the general case.

In this paper we introduce a validation step for MBPTA
needed to claim reliability of pWCET estimates for arbitrary
memory access patterns. Our method, RVS, differently to
other methods that only work in the execution time do-
main, performs a validation step in the domain of miss
counts. RVS identifies the worst miss counts and their
probabilities of occurrence and, by means of controlled
cache simulations, tests whether pWCET estimates can be
regarded as reliable. Our results illustrate the effectiveness
of our method. Our future work will focus on reducing the
computational cost of RVS and generalising it towards more
complex architectures.

ACKNOWLEDGMENTS

This work has received funding from the European
Community’s FP7 programme [FP7/2007-2013] under grant
agreement 611085 (PROXIMA, www.proxima-project.eu).
Support was also provided by the Ministry of Science and
Technology of Spain under contract TIN2015-65316-P and
the HIPEAC Network of Excellence. Jaume Abella has been
partially supported by the MINECO under Ramon y Cajal
postdoctoral fellowship number RYC-2013-14717.

REFERENCES

[1] J. Abella et al. Heart of Gold: Making the improbable happen to
extend coverage in probabilistic timing analysis. In ECRTS, 2014.
[2] J. Abella et al. On the comparison of deterministic and probabilistic
WCET estimation techniques. In ECRTS, 2014.
[3] J. Abella et al. WCET analysis methods: Pitfalls and challenges on
their trustworthiness. In SIES, 2015.
[4] G. Bernat and M. Newby. Probabilistic WCET analysis, an approach
using copulas. Journal of Embedded Computing, 2006.
[5] FJ. Cazorla et al. Upper-bounding program execution time with
extreme value theory. In WCET Workshop, 2013.
[6] L. Cucu-Grosjean et al. Measurement-based probabilistic timing
analysis for multi-path programs. In ECRTS, 2012.
[7]1 J.L Diaz, D.F. Garcia, K. Kim, C.G. Lee, L.L. Bello, Lépez J.M.,
and O. Mirabella. Stochastic analysis of periodic real-time systems.
In the 23rd IEEE Real-Time Systems Symposium (RTSS02), 2002.
[8] Enrico Mezzetti et al. Randomized caches can be pretty useful to
hard real-time systems. LITES, 2(1), 2015.
[91 W. Feller. An introduction to Probability Theory and Its Applications.
1996.
[10] J. Hansen et al. Statistical-based WCET estimation and validation.
In WCET Analysis workshop, 2009.
C. Hernandez et al. Towards making a LEON3 multicore compatible
with probabilistic timing analysis. In DASIA, 2015.
SAE International. ARP4761: Guidelines and Methods for Conduct-
ing the Safety Assessment Process on Civil Airborne Systems and
Equipment.
L. Kosmidis et al. A cache design for probabilistically analysable
real-time systems. In DATE, 2013.
L. Kosmidis et al. Probabilistic timing analysis and its impact on
processor architecture. In DSD, 2014.
S. Kotz et al. Extreme value distributions: theory and applications.
World Scientific, 2000.
D.A. Wolfe M. Hollander. Nonparametric statistical methods. 1973.
Jason Poovey. Characterization of the EEMBC Benchmark Suite.
North Carolina State University, 2007.
J. Reineke. Randomized caches considered harmful in hard real-time
systems. LITES, 1(1), 2014.
F. Wartel et al. Measurement-based probabilistic timing analysis:
Lessons from an integrated-modular avionics case study. In SIES,
2013.
F. Wartel et al. Timing analysis of an avionics case study on complex
hardware/software platforms. In SIES, 2013.
R. Wilhelm et al. The worst-case execution time problem: overview
of methods and survey of tools. ACM TECS, 7(3):1-53, 2008.

[11]

[12]

[13]
[14]
[15]

[16]
(17]

(18]

[19]

[20]

[21]

