
Time-randomized Wormhole NoCs for Critical

Applications

Mladen Slijepcevic, Carles Hernandez, Jaume Abella, Francisco J. Cazorla
Barcelona Supercomputing Center (BSC)

February 19, 2019

Abstract

Wormhole-based NoCs (wNoCs) are widely accepted in high-performance
domains as the most appropriate solution to interconnect an increasing
number of cores in the chip. However, wNoCs suitability in the context
of critical real-time applications has not been demonstrated yet.

In this paper, in the context of probabilistic timing analysis (PTA),
we propose a PTA-compatible wNoC design that provides tight time-
composable contention bounds. The proposed wNoC design builds on
PTA ability to reason in probabilistic terms about hardware events im-
pacting execution time (e.g. wNoC contention), discarding those se-
quences of events occurring with a negligible low probability. This allows
our wNoC design to deliver improved guaranteed performance w.r.t. con-
ventional time-deterministic setups. Our results show that performance
guarantees of applications running on top of probabilistic wNoC designs
improve by 40% and 93% on average for 4x4 and 6x6 wNoC setups, re-
spectively.

1 Introduction

Wormhole-based NoCs (wNoCs) have been widely adopted in the high-performance
computing domain as the most efficient way to connect a high number of cores
within the chip. While wNoCs were adopted as a highly scalable solution to
perform the interconnection of on-chip modules, the current manufacturing lim-
itations that emanate from the utilization of smaller transistors and wires has
made academia and industry start exploring emerging NoC technologies. In
this regard, new wNoC approaches propose replacing metal-based links by ei-
ther optical [35] or carbon-based [10] interconnections to avoid the use of power
hungry metal wires. wNoCs do not only suffer from physical limitations: chal-
lenges related with the performance scalability, reliability, and security are also
of prominent importance. Furthermore, with the advent of new applications
requiring timing guarantees, like autonomous driving systems, wNoCs are also
forced to provide good-quality performance guarantees.

1

© {Owner/Author | ACM} {2019}. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was
published in ACM Journal on Emerging Technologies in Computing Systems (JETC) - Special Issue on Emerging Networks-on-Chip and Regular Papers
(Volume 15 Issue 1, February 2019), http://dx.doi.org/10.1145/3281029

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/200267008?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this paper we aim at allowing an efficient use of wNoCs in the context
of critical-related real-time applications – such as those that can be found in
aircraft, cars or trains. Critical applications require guaranteeing the functional
and timing correctness of the system. To achieve these guarantees, a very thor-
ough verification and certification process is required.

In the context ot timing correctness, the main focus of this paper, wNoCs
complicate the derivation of good-quality performance guarantees since, un-
like buses or other existing centralized network architectures, wNoCs perform
the arbitration of communication flows in a distributed manner. In this line,
some works show that, while reliable contention upper bounds can be provided
for Commercial off-the-shelf (COTS) wNoCs [33] [30] [29], those bounds are
pessimistic, preventing an efficient use of high-performance wNoCs for mixed-
criticality real-time embedded systems (RTES).

wNoC bounds are pessimistic because, whenever timing events can lead to
the stall of a request, they are assumed to occur systematically, and hence fac-
tored in the derived contention bounds. At the NoC level, since many different
flows with different criticality levels might potentially be contending for different
resources, e.g. router ports, timing analysis techniques are forced to make the
pessimistic assumption that all contenders will simultaneously request the same
resources. A simple and intuitive way to reduce contention bound pessimism
consists in getting information about when and where communication flows in
the wNoC will occur such that the exact interference that requests experience
can be reliably and tightly factored in [37]. Unfortunately, obtaining this low-
level information is not only out of the ability (and will) of end users, but it
also breaks time composability. The lack of time composability occurs because
one task’s load on the wNoC affects the worst-case execution time (WCET)
estimates of its corunners, with devastating consequences in (incremental) sys-
tem integration: any change in a task requires reanalyzing all other tasks (i.e.
performing regression tests), which ultimately results in prohibitively high in-
tegration costs. Even worse, the WCET of a critical task could depend on
the accuracy of the information obtained for a lower criticality task, exposing
critical tasks to safety and security issues.

Measurement-based probabilistic timing analysis (MBPTA) has been pro-
posed recently as an industrially-friendly timing analysis method to derive WCET
estimates and proven in bus-based multicore industrial case studies [43]. MBPTA
relies on hardware designs that break systematic pathological behavior, so that
increasingly high contention scenarios occur with decreasing probabilities, thus
leading to low probabilistic WCET (pWCET) estimates by discarding execution
times whose upper-bounded accumulated probability can be proven negligible.
pWCET estimates in the context of MBPTA allow upper-bounding the residual
risk of a timing fault. This does not imply that software timing faults can oc-
cur, which is not acceptable for functional safety standards, such as ISO26262
in the automotive domain [13]. Instead, MBPTA allows reducing the residual
risk (quantitatively) to arbitrarily low levels (e.g. 10−9 per run or per hour
of operation), so that above that probability no exceedance can occur. Below
such probability, although the process indicates that the pWCET bound should

2

not be exceeded, information is not practically had and must be deemed as
residual risk. This information has been shown valid for certification practice
of safety-related software [40].

In this paper we propose several time-randomized wNoC designs that make
the contention in the network have a probabilistic behavior compatible with
MBPTA requirements, thus leading to reduced contention bounds. The contri-
butions of this paper can be summarized as follows:

1. We integrate efficiently random permutation arbitration [14] in wNoCs
routers to avoid systematic bad behavior and make them amenable for
probabilistic timing analysis.

2. We show that, while limiting the number of in flight requests in determin-
istic wNoCs1 does not help reducing contention bounds, it helps reducing
significantly those bounds in a probabilistic wNoC and thus, improves
WCET estimates.

3. We propose an alternative mechanism to control the injection of packets
in the wNoC based on controlling the time elapsed (frequency) between
request injections rather than the number of inflight requests. The for-
mer mechanism outperforms the latter in high contention scenarios while
requiring similar hardware complexity for the network interfaces.

Results obtained with a cycle-accurate simulator confirm that the proposed
wNoCs achieve tighter bounds than existing wNoCs and thus, enable the deriva-
tion of much tighter WCET estimates. Contention in the NoC can be reduced
significantly and that reduction becomes more significant as the size of the net-
work increases. In particular, these improvements translate into an average
reduction of the WCET estimates for EEMBC [31] workloads of 22% and 40%
for networks of 9 and 16 cores, respectively. Since deterministic WCETs for
larger networks are very pessimistic, we obtain up to 93.3% improvement for
36-core NoCs. Thus, our work enables efficient decentralized arbitration deliv-
ering high average and guaranteed performance, as needed in the context of
mixed-criticality RTES.

2 MBPTA in the Context of wNoCs

Probabilistic timing analysis (PTA) resorts on having platforms on which the
end-to-end execution time of applications can be modelled with true probabili-
ties. Note that probabilities differ from frequencies. While frequencies provide
information about past events, probabilities allow reasoning about the future
and thus, make predictions. In particular, we focus on the measurement-based
variant of PTA (MBPTA), since measurement-based timing analysis has been
shown to be closer to industrial practice in many systems [24, 20, 25]. In this

1In this paper we refer to a deterministic NoC as the one with a round-robin arbitration,
although similar conclusions are obtained with other time-deterministic policies.

3

section we review some of the key elements of MBPTA for its reliable application
for WCET estimation.

2.1 MBPTA Application Process

MBPTA relies on collecting a number of execution time measurements – typ-
ically in the order of few hundreds – of the program under analysis on top of
a MBPTA-compliant hardware/software platform [17]. The MBPTA method
defines a convergence criteria to determine the actual number of measurements
needed [9, 4]. For a sound application of MBPTA, execution time variabil-
ity must be caused by random events only. Hence, sources of execution time
variation need to be either removed (i.e. upper-bounded) or randomized. Non-
random time variability, if it does not occur with exactly the same frequencies
as during operation, cannot be properly modelled by MBPTA. Such degree of
control has been regarded as unaffordable in practice [8].

MBPTA-compliant platforms allow collecting measurements on an analysis
mode, where the different sources of execution time variation match or upper-
bound the behavior during operation, which is achieved by applying techniques
like time upper-bounding and time randomization to each individual source of
execution time variation. For instance, in the case of a shared bus to access a
second level (L2) cache in a multicore, it has been proven that its impact on
execution time can be probabilistically upper-bounded by: (1) enforcing maxi-
mum contention and (2) granting access to one of the contenders randomly [14].
In particular, maximum contention is enforced by always arbitrating across all
contender cores, regardless of whether they have pending requests and, when-
ever a core different to the one where the task under analysis runs is granted
access, it keeps the bus busy for the maximum duration of a request. Then, such
constraint can be released during operation, thus allowing the task analyzed to
contend only with the actual subset of contenders with ready requests, and
experience the contention caused by the duration of the contenders’ requests,
which may not be the maximum duration. Arbitration needs to be done ran-
domly at analysis and during operation using the same (random) policy so that
the distribution experienced at analysis matches the worst distribution that can
occur during operation. Note that by operating this way, any scenario that can
occur during operation – including that where all contenders request access to
the bus sustainedly – is upper-bounded by the contention enforced at analysis.
This allows collecting measurements in isolation representative of the worst-case
multicore behavior.

Since execution times collected at analysis correspond to a random variable
(variability is random and the random variable matches the worst probabilistic
behavior possible during operation) and real-time programs have a finite exe-
cution time, execution time measurements must necessarily fulfill the following
requirements: (1) the upper tail of execution time distributions can be modelled
with a Gumbel distribution (exponential tail), which is the type of distribution
upper-bounding any distribution with a maximum value (even if such value is
unknown). (2) The collected execution time sample needs to attain statisti-

4

Figure 1: EVT projection (i.e. probabilistic WCET)

cal independence and identical distribution (i.i.d.). Execution times are i.i.d.
probabilistically, but the sample might fail i.i.d. statistical tests. However, by
increasing the sample size, it will eventually converge to the real distribution,
so the sample will pass the tests. Both requirements, namely exponential tail
and i.i.d., are assessed empirically for the sample of execution times used for
prediction with appropriate statistical tests [9, 4].

Once those tests are passed, execution time measurements are used as input
for Extreme Value Theory (EVT) [18], which is a powerful statistical method
to approximate the tail of a distribution. In the case of MBPTA, the tail of the
distribution corresponds to high execution times. This results in a probabilistic
WCET (pWCET), which is a distribution where each execution time value has
an associated probability that upper bounds the real probability of one run
of the program exceeding such execution time (see the example in Figure 1).
The particular cutoff probability is chosen to be low enough so that it can be
regarded as residual risk, in line with safety standards requirements [13].

2.2 Requirements on the wNoC

MBPTA application requires the sources of jitter (execution time variation) to
be properly controlled so that they match or upper-bound operation time condi-
tions in either a deterministic or a probabilistic way. In the context of multicore
processors, this includes contention caused by other cores during operation. As
discussed before, probabilistic modelling allows discarding the execution times
whose accumulated probability is low enough to be regarded as residual risk.
Note that, as explained before, whether any scenario can lead to those execu-
tion times during operation can neither be proven or rejected since worst-case
conditions imposed during analysis may be unfeasible during operation. This
is, for instance, the case of contention in the wNoC. If arbitration decisions
are deterministic, the worst-case hypothetical contention scenario could occur
systematically. Instead, if those decisions are randomized, worst hypothetical

5

contention scenarios occur with (provable) low probability even if time compos-
ability is enforced by assuming that all contenders send requests at the maximum
possible rate to the worst possible target node. Next, we describe the condi-
tions under which timing measurements have to be collected so that pWCET
estimates hold valid regardless of what other tasks are consolidated on the other
cores. In Section 4 we describe how to randomize wNoC timing behavior.

2.3 Upper-bounding Contention in Probabilistic wNoCs

To be able to reliably apply MBPTA, we have to ensure that measurements for
the flow under analysis are collected under contention conditions that upper-
bound those that can occur during operation [17]. Failing to do so prevents
EVT from actually capturing unobserved contention effects into the pWCET,
which could therefore be optimistic. For instance, measurements collected un-
der contention-free conditions lead to unreliable pWCET estimates since EVT
cannot reason about the events (contention in the wNoC) not captured in those
contention-free measurements.

Such upper-bounding can be performed deterministically or probabilistically.
Upper-bounding latency deterministically only requires forcing all wNoC re-
quests to experience the worst-possible delay [30]. To illustrate probabilistic
upper-bounding, let us assume a hardware resource whose analysis-time latency
can be 1 or 2 cycles with the same probability: etda =< (1, 2) , (0.5, 0.5) >
where the first vector corresponds to the different latencies and the second to
their associated probabilities. If during operation its execution time distribu-
tion is etdo =< (1, 2) , (0.6, 0.4) >, then etda probabilistically upper-bounds
etdo since the exceedance probability for any value is higher at analysis than
during operation (e.g., latency of 2 cycles is exceeded with probability 0.4 during
operation and 0.5 at analysis).

In case of probabilistic designs, whether one request or another is granted
access upon arbitration, depends on random choices. Hence, given a particular
request of the task under analysis, the particular requests that it will find in front
of it causing backpressure must have been selected randomly, those requests arbi-
trated simultaneously have reached the particular router also based on random
choices, and arbitration will be random, thus granting forward progress to a
random request among contending ones. Therefore, while the worst contention
scenario is practically possible, it can only occur with a given (typically low)
probability, as opposed to the deterministic case, where it could occur systemat-
ically if events align temporally in specific manners. In the case of a probabilistic
design, even with the same initial time alignment of events, random arbitration
will lead to contention scenarios better than the worst one with relevant prob-
ability. If we multiply this effect for all requests, naturally the probability of
the hypothetical worst contention occurring for all (or many) requests drops
rapidly.

Therefore, probabilistic upper-bounding requires collecting measurements
during the analysis phase with a wNoC whose contention is equal or higher
than that occurring during operation disregarding the time alignment of re-

6

Table 1: Summary of the main symbols used.

Symbol Description

WCD Time-composable upper-bound to contention delay
Fi Packet stream traversing the same source-destination

route and requiring the same grade of service along
the path.

Hi Number of hops in a flow Fi

Rj
i Router (hop) j in a flow Fi (see Figure 2(a))

rki Packet (request) k in a flow Fi

NRj
i Number of queues that can potentially contend for an

output port that Fi is targeting at Rj
i

ω(i, j) Function that returns the index x of the worst possi-
ble destination flow Fx that starts at the hop Rj+1

i
and reaches the worst possible destination in terms of
indirect blocking of packets of flow Fi

quests, which is naturally randomized by random arbitration policies. This
can be practically achieved by making all contender cores inject packets in the
wNoC at the highest frequency allowed, and targeting the node that creates
highest contention for the task under analysis, which is assumed to be in a par-
ticular core. If the core where the task will be run is unknown, then the core
experiencing highest contention needs to be chosen to guarantee that analysis
conditions reliably upper-bound operation conditions. These conditions produce
the highest (probabilistic) latency for each arbitration choice and the highest
(probabilistic) backpressure on the requests of the task under analysis.

In summary, probabilistic upper-bounding allows WCET to be time-
composable, aka independent of the actual traffic generated by contending
applications during operation.

3 Problem Formulation

Deterministic time-composable bounds in COTS wNoCs are pessimistic since
we cannot make any assumption on the contending flows and, therefore, we need
to assume that all flows will produce the highest interference. In this section we
describe the target setup and we show why contention bounds are pessimistic
on time-deterministic wNoCs.

3.1 Network Baseline

We consider a mesh network topology as it is the most common topology used
in wNoCs, though the analysis presented in this section and the wNoC designs
proposed in this paper are also suitable for other network topologies (e.g. torus).
The symbols used in this paper are summarized in Table 1.

In our reference mesh wNoC configuration (see Figure 2), each node com-
prises a PME (Processor/Memory element) and a router that communicates
with the other nodes. The PME can be either a processor core, main memory,

7

Figure 2: 3x3 Mesh.

I/O, etc. In the network, several traffic flows (Fi) may be active at the same
time. Each node can be identified using (x,y) coordinates and the router located
at coordinates (x,y) is referred to as R(x, y).

In a wNoC, the routing algorithm determines the path that a packet follows
within the network, and consequently, the number of routers or hops (H), a
given flow requires to move from a source to a destination node. Hence, a
router can also be identified as Rj

i , in which j represents the hop j of flow
Fi, when moving towards its destination. Therefore, routing determines the
flows that potentially contend with Fi at every router in its path. Deterministic
routing has been shown to provide time analyzability [33]. We use XY routing,
as it is the preferred deterministic routing algorithm for regular NoCs due to its
low implementation cost, although a similar analysis is possible for any other
deterministic routing policy. With XY routing, packets are forced to use the X
dimension first: In the X dimension the position of the target node w.r.t. the
source node determines whether to go right (X+) or left (X-) direction. The
same approach is used for the Y dimension. Once a packet is routed using the
Y dimension, it cannot be forwarded back to the X dimension. These routing
restrictions determine the maximum number of flows contending with Fi at a
given router for an output port (NRj

i).
Communication flows comprise multiple NoC packets. A packet is the mini-

mum arbitration unit in the network and it can be split into one or several flits
(short of control flow units). The first flit of a packet is called header flit and
contains the information required to forward the packet to the destination. We
refer to the k-th packet generated by flow Fi as rki . In general, one-flit pack-
ets are usually preferred for real-time workloads in order to improve wNoCs
performance guarantees [29].

A typical wormhole router comprises several modules including input buffers,
routing, virtual-channel allocation, switch allocation, and crossbar traversal
modules. Routing modules determine the router output port based on the
destination bits included in the control information of the header flit. Once
the destination is known, the target port is requested in the arbitration mod-

8

ule included in the allocation stage. Then, based on a given arbitration policy,
the router arbiter decides which packet is granted access to the output port.
The majority of COTS wNoCs use round-robin to arbitrate amongst packets
requesting access to a given output port. Arbitration only occurs at the packet
level and for the header flit. Once a connection is established between an input
and output port, it remains until the tail of the packet leaves the router. At
this moment a new arbitration can be performed in case other requests are also
requesting this output port.

3.2 Contention in the wNoC

The latency experienced by a packet to traverse the network in the absence of
contention is referred to as zero-load latency (zll). However, contention may
cause the header flit to get stalled. When this happens, the remaining flits of
the packet get also stalled and latency experienced by a given packet is higher
than zll.

The first element to consider when computing the contention in the network
is the number of flows that will be actually contending for the different shared
resources. In our case, as we are after time-composable contention delay bounds,
no assumptions can be made on the particular active flows in the wNoC. That
is, it is assumed that any node in the network is entitled to send and receive
packets from any other node. Similarly, when computing the contention delay
for a packet, we assume that, by the time it is injected in the network, any other
potential contending flow is also active at that moment, transmitting its packets
in a way that it produces the worst possible contention scenario. In order to
reproduce the worst possible contention scenario we need to consider the worst
direct contention and the worst indirect contention [15].

Let us illustrate the process of measuring contention in the wNoC with an
example. Let us consider a 3x3 wNoC setup like the one shown in Figure 2. We
want to measure the worst contention experienced by a packet Pi of flow Fi. Fi

is the flow originated at the node attached to R(0, 0) with destination the node
attached to R(0, 2). At R1

i , first router, a request rx coming from port X−
might be potentially contending with Pi for the same output port and in the
worst-case rx will be granted access first. However, due to the backpressure flow-
control it is not guaranteed that, at the time rx is granted access, it will leave the
router as the input buffer of the next router (R(0, 1)) might be occupied. In the
plot R(0, 1) input buffer is occupied by r′x. In general, to measure contention
it is required to iterate from the destination node backwards to analyze the
time that is required by a packet to leave a given router. That is, to have a
slot available in an R(0, 1) input buffer, we need to consider the time that r′x
requires to leave R(0, 1) that in turns depends on the time r′′x needs to leave the
input buffer at R(0, 2). Equation 1 was proposed in [30] and provides a general
formulation for the worst contention experienced in wNoCs under the scope of
time-composability.

9

WCDi =

Hi∑
j=1

(NRj
i − 1)×

Hω(i,j)∏
m=1

NRm
ω(i,j)

 (1)

In the equation above, the first multiplicand (NRj
i − 1) corresponds to the

contention introduced by the round robin arbitration in each of the routers that
the flow Fi traverses. It represents the contention caused by the flows contending
with Fi in the current router. However, in wNoCs the effect of backpressure may
also prevent Fi to progress when the arbiter grants it access to the output link.
This contention corresponds to the indirect contention delay and it is modeled by

the second multiplicand
∏Hω(i,j)

m=1 NRm
ω(i,j). The worst indirect contention delay

in each hop is the one caused by the worst possible destination flow Fω(i,j).
The number of hops in the worst possible destination flow is Hω(i,j). The
worst possible destination depends on the routing algorithm as well as on the
actual number of ports that routers have. Sometimes it matches the farthest
destination but this is not necessarily always the case. The choice of Fω(i,j)

depends on the routing algorithm used. For instance, in a wNoC mesh with
XY routing, as the one considered in this paper, the worst destination of flow
Fω(i,j) corresponds to the farthest node that can be reached from the next Fi

hop’s input port depending on the traversing direction.
The first question that raises from the contention formulation above is whether

the assumptions on top of which this model is built are pessimistic or not. We
want to know if considering that nodes in the network are injecting packets in
an uncontrolled manner or, in other words, that the number of in-flight requests
per node in the network is unlimited, is the reason why composable contention
delay bounds are pessimistic [30].

Interestingly, as already shown in [30], limiting the injection of the flow under
analysis, has no impact on WCD since this only affects intra-task contention
and not the contention due to inter-task interferences. The reason is that time-
composable WCET estimates require considering the worst possible interleaving
of requests in the wNoC and this causes, in general, worst situations to be also
possible when allowing only one in-flight request per flow. In Section 5 we
corroborate this hypothesis with an empirical evaluation.

4 Probabilistic wNoC Designs

Unlike deterministic wNoCs, probabilistic network designs do not require the
timing analysis to consider that all accesses systematically experience their
worst possible contention. Instead, random events occur with true probabil-
ities. Therefore, the probabilistic analysis made by MBPTA arises as a suitable
approach to reduce the pessimism factored in the contention in wNoCs. To
enable the derivation of pWCET estimates with MBPTA, two conditions must
hold in the wNoC design: (i) conflicts in the wNoC must have a probabilistic
nature (i.e. should occur with a given probability); and (ii) the execution con-
ditions (contention) under which the timing measurements of the application

10

are collected at analysis are actually an upper bound of those that will occur
during operation. Condition (i) requires modifications in the arbitration unit of
the router (Section 4.1) and condition (ii) requires defining a contention scenario
which safely upper-bounds the worst possible one (Section 2.3). In this section
we present how a COTS wNoC must be adapted to make them compatible with
MBPTA and how to optimize them to make pWCET estimates tight, which are
the main contributions of this work.

4.1 MBPTA-compliant wNoC Router Design

To make a wNoC design MBPTA-compliant, we have to make packet jitter
follow a probabilistic behavior. To do so, hardware changes are required in
the arbitration unit of the NoC router. An intuitive, but inefficient, MBPTA-
compliant policy to grant access to a given output port is to simply select one of
the requests randomly. This might cause a given request to take long (in theory
infinite) time to be granted access. Instead, from the different MBPTA-friendly
arbitration policies, we choose random permutations as it delivers superior per-
formance and bounded contention [14]. Random permutations grant access to N
contenders in a round-robin fashion, but in a random order. Such order changes
every N arbitrations, so that each contender is granted access once every N
slots, but in a random order.

To implement random permutations in the wNoC router, we modify the
arbiter to be able to generate a random permutation Pi of all four inputs for
every output port, where the four inputs and the output port belong to the
group (X+, X−, Y+, Y−, In). Whenever one or more packets request access to
a given output port, the arbiter grants access according to Pi and an arbitration
pointer. When a permutation is generated the arbitration pointer points to the
first input port in the permutation. If the first input in the permutation is
not requesting the output port then the next input port in the permutation is
selected. This process is repeated until an input port with a pending request
is selected. Then the arbitration pointer is moved to the input port in the
permutation after the one granted access. When the pointer reaches the end of
the permutation, a new random permutation window is generated.

Each output port has two probabilistic arbitration windows (paw), aka
permutations with all inputs: the one being used (pawlow) and another one
(pawhigh). The generation of a new permutation occurs when the pointer
reaches the end of pawlow so that the new permutation is available for the
next arbitration. At that point, pawhigh becomes pawlow and the new permu-
tation becomes pawhigh. This avoids generating an arbitration window at the
same time that one of its elements needs to be selected. Figure 3 shows how
the proposed random arbiter works. In particular, in the figure the arbitration
pointer has been increased exceeding the boundaries of pawlow. At this time,
pawhigh would become pawlow, and pawlow would be initialized with a new
random permutation.

Hardware implementation. Random permutations can efficiently be im-
plemented using a configuration like the one shown in Figure 3a. We implement

11

(a) Random permutations schematic (b) Router integration

Figure 3: Schematic of the random permutations implementation in the wNoC
router architecture.

Figure 4: PRNG integration with the core and the router.

them for each of the 5 output ports using N = 4 inputs, so that they need only
N · log2N bits for the register and N − 1 random bits. Those random bits are
produced by a pseudo-random number generator (PRNG) as the one proposed
in [6]. Additionally, the costs of implementing a PRNG generator can be mini-
mized if the PRNG unit is shared between the core and the router as shown in
Figure 4.

This router is the basic component on top of which the two probabilistic
wNoC designs proposed later in this paper relies on. The random arbitration
performed in this router allows leveraging the impact of contention in the mea-
surements to probabilistically represent the contention in the wNoC. While ar-
bitration decisions are random, they carry out dependences across arbiters since
the actual requests contending for a given output port in a router often depend
on the (random) decisions taken in other routers. Any state of the wNoC in
terms of contention moves to any other state with a given probability due to
the purely random nature of all arbitration choices. Therefore, each sequence of

12

states occurring during the execution of the task under analysis occurs with a
given probability and hence, each potential execution time has a true probability
to occur, as needed to apply MBPTA.

4.2 Reducing Contention in Probabilistic wNoCs

By combining worst-contention scenarios with the probabilistic router architec-
ture proposed in section 4.1 we can produce execution conditions during analysis
that upper-bound those during operation. Execution time measurements col-
lected under this setup can be used reliably to apply MBPTA in order to derive
WCET estimates. However, if we do not anyhow limit the contention in the net-
work, the stalls experienced by the requests of the task under analysis can be
very high and thus, WCET estimates will account for high contention for all re-
quests, similarly to the case of time-deterministic wNoCs. In time-deterministic
wNoCs the worst-case contention with, for instance, round-robin arbitration, is
accounted for all requests regardless of the degree of contention in the network.
In the case of probabilistic wNoCs, requests experience the actual contention
of the worst-case scenario modelled at analysis, which is enforced not to be ex-
ceeded during operation. Therefore, decreasing maximum contention by design
opens the door to obtaining lower WCET estimates with probabilistic wNoCs,
as already shown for tree wNoCs [39].

In order to decrease contention and derive tighter WCET estimates in the
wNoC, we propose two mechanisms: (1) Limiting the number of in-flight re-
quests or (2) limiting the injection frequency. The first approach is more suit-
able for applications that are sensitive to network latency while the latter for
applications with high throughput requirements. It is important to mention
that reducing contention by reducing the number of requests in the network
is suitable for probabilistic wNoCs because, in such designs, requests interleave
probabilistically and therefore, worst-case alignment of flows and arbitration de-
cisions do not need to be accounted for systematically (as opposed to the case of
time-deterministic wNoCs). In other words, already proposed techniques for re-
ducing contention in time-deterministic wNoCs, such as injection throttling [41],
cannot obtain tighter WCET estimates.

4.2.1 Limiting the number of in-flight requests (LNR)

Contention in the network can be reduced by limiting the number of requests
in-flight for all the nodes in the network. With our proposed MBPTA-compliant
router design, we remove the need to know the exact alignment and we only
need to ensure that, during the analysis phase, the task under analysis can have
up to n requests in-flight and all the other cores have always exactly n requests
in flight. In this case, execution times obtained for the task under analysis are
obtained under worst possible contention conditions.
Hardware support. LNR can be easily implemented at the network interfaces
by having a counter for the number of requests in the network. This counter
is increased when a new request is injected in the wNoC and it is decreased

13

once a response from an injected request is received back at the node the task
under analysis is attached to. Note that such an approach is conservative since
an additional request could be sent once the target node has served it, but
it is not sent until the response does not arrive back to the sender. If such
hardware mechanism is in place, the generation of the maximum contention
scenario at analysis can be implemented in software by using microbenchmarks
that constantly send requests to the node that affects the most the flows of the
core under analysis.

4.2.2 Limiting injection frequency (LFR)

In this case, to be able to derive tight contention delay bounds, we propose to
control injection frequency at wNoC nodes. Similarly to the previous proposal,
during the analysis phase the task is run in isolation. Requests of the task
under analysis are allowed to be injected if at least Minimum Inter-request Delay
(MID) cycles have elapsed since the previous request was injected. For all the
other cores, we have to generate requests at the maximum allowed frequency,
i.e. once every MID cycles to create maximum contention.
Hardware support. For the hardware implementation of LFR we need at
the network interface a counter from 0 to up to MID-1 cycles to control the
maximum frequency at which requests (from contenders and the core under
analysis) are injected in the network. Stressing scenarios can be reproduced by
software means as for LNR.

Since we do not assume any specific pattern and maximum contention is
enforced during analysis, time-composability is preserved. During operation
all cores can inject requests with the same restrictions imposed during the
analysis (keeping up to n requests in-flight for LNR or at least MID cycles
after the previous injection for LFR), which can only lead to equal or lower
contention than that accounted for in the pWCET estimates.

5 Evaluation

5.1 Methodology

Target Processor Architecture. We model a wNoC-based manycore pro-
cessor with pipelined in-order cores2 with a simulator based on the SoCLib
simulation framework [3]. Each core has separated first level instruction (I1)
and write-through data (D1) caches, a partitioned-across-cores write-back L2
cache and main memory. I1 and D1 are 16KB, 4-way and 16B/line and the L2
has 128KB 4-way per core to discount L2 cache effects from the analysis. All
caches implement random placement and replacement policies [16]. Hit/miss
latencies are 1 and 3 cycles for I1/D1 and 2 and 7 cycles for L2.

2Note that more complex processor cores, although compatible with our proposals, are
very hard to time-analyze and thus, not suitable for hard-real time applications.

14

wNoC. We model the wNoC with an enhanced version of the gNoCsim [2]
simulator, that has been integrated with the SoCLib framework. Cores and
memories are connected using a mesh network topology with XY routing. For
a NxN mesh we index routers from R(0,0) to R(N-1,N-1). The shared L2 cache
memory and a shared memory controller are connected at router R(N-1,N-1).
The memory controller implements random permutation policy. Two virtual
networks are used to split requests and responses. Routers are pipelined and
consist of 4 stages: input buffer, routing, switch allocation, and crossbar traver-
sal. In line with other works [30, 29] in all wNoC setups we use packetization to
have single-flit packets only. The number of VCs is 1. Additional virtual chan-
nels would not provide higher guaranteed performance in our setup, as discussed
in [30].

Having packets with more than 1 flit would penalize WCET significantly.
This occurs because, to achieve reliable estimates, each contending packet has
to be assumed to have the maximum allowed length, making the maximum
waiting time to get access to a specific output port grow. In particular, given
that read (write) requests use 1 flit (4 flits for writes) and responses 4 flits (1 flit
for writes), using packets of up to 4 flits would increase contention for the 1-flit
packets by 4x, since contender packets must have the largest size to preserve
time composability. Therefore, each communication involving 5 flits (either 1+4
for reads or 4+1 for writes) would experience around 60% higher contention with
4-flit packets than with 1-flit packets since, assuming A arbitration rounds lost
per packet, a n-flit packet wNoC would cause n · A · numpackets contention
per communication (where n is the maximum packet size and numpackets the
number of packets sent). Hence, for 1-flit packets we would have 1 ·A · 5 = 5 ·A
contention, whereas for 4-flit packets we would have 4 ·A · 2 = 8 ·A contention,
thus a ratio of 8 vs 5. Hence, we use 1-flit packets since they minimize WCET
estimates as discussed in [30].

The impact of virtual channels depends on the allocation technique used.
When virtual channels are allocated dynamically, with the aim of reducing in-
stantaneous head of line blocking situations, they have a negative impact on
the worst contention a given flow may suffer since, in the worst-case, the task
under analysis will have to wait for all packets in all VCs of each input port.
With a static virtual channel allocation, there are some cases for which a partic-
ular VC allocation would reduce the contention due to decreasing the maximum
contention that some specific flows can cause in the task under analysis. Unfor-
tunately, in the context of all-to-one communication, since all flows target the
same destination, head of line blocking is not a consequence of inter-flow con-
flicts but just a consequence of the limited ejection capabilities of the network.

Authors in [30] showed that measuring inter-task interferences in a wNoC us-
ing the Worst Contention Delay (WCD) metric results in much tighter WCET
estimates than using Worst-Case Traversal Time (WCTT) and it allows obtain-
ing time-composable WCET estimates. Therefore, we compare our probabilistic
wNoC design with a deterministic setup that experiences WCD. For synthetic
traffic results, the flow under analysis experiences WCD since all flows in the
wNoC are injecting packets at the maximum rate allowed. For obtaining WCET

15

Table 2: I.i.d. test results for LNR1 and LFR20 on a 4x4 mesh setup.

Benchmark a2time aifirf basefp bitmnp cacheb canrdr iirflt pntrch puwmod rspeed tblook ttsprk
LNR1 indep 0.47 0.20 0.74 0.34 0.41 0.48 0.86 0.24 0.98 0.63 0.99 0.48
LNR1 i.d. 0.31 0.99 0.53 0.78 0.49 0.06 0.60 0.16 0.14 0.51 0.12 0.79
LFR20 indep 0.47 0.07 0.82 0.53 0.30 0.25 0.44 0.88 0.17 0.30 0.47 0.35
LFR20 i.d. 0.34 1.00 0.26 0.42 0.70 0.39 0.42 0.71 0.41 0.53 0.24 0.15

estimates, we artificially enforce requests to experience WCD to make simula-
tion times affordable. The rest of the platform features are kept identical in
both setups, deterministic and probabilistic ones, to understand the differences
in the guaranteed performance provided by the wNoC since both setups are
compatible with MBPTA.
Workload. For characterizing wNoC performance we use synthetic traffic.
Worst-contention scenarios are created by artificially injecting requests in the
wNoC targeting worst-possible destinations and at the maximum allowable rate.
As representative real-time workloads we use the EEMBC Autobench suite [31],
which reflects current real-world demand of some automotive critical real-time
embedded systems. Hence, each benchmark is run in the core that theoretically
can experience highest contention due to contending flows3, and the other cores
inject traffic sustainedly at the highest rate allowed targeting the node that leads
to highest contention for the task under analysis4. This analysis scenario upper-
bounds the contention that any real workload could produce, thus delivering
time-composable pWCET estimates. During operation, contention due to other
tasks cannot be higher than the one enforced during analysis (in fact it will be
typically much lower), so analysis time measurements can be reliably used for
pWCET estimation. Further details on probabilistic upper-bounding in NoCs
can be found in Section 2.3.
WCET estimation. We follow MBPTA process to obtain pWCET estimates.
For each task we collect 1000 runs and present pWCET estimates for a cutoff
probability of 10−13 per run, although the same trends are obtained for other
cutoff probabilities. As part of the MBPTA application process, execution time
samples (of 1000 runs each) have been statistically tested for independence
and identical distribution, a prerequisite for the use of EVT. In particular, we
have used the Ljung-Box independence test and the Kolmogorov-Smirnov two-
sample identical distribution tests as prescribed in [4], with a significance level
α = 0.05, thus meaning that i.i.d. hypothesis is rejected only if one of the
tests delivers a result below 0.05. All execution time samples passed those tests.
Table 2 provides results for LNR with 1 in-flight request (LNR1) and LFR
with MID = 20 (LFR20) for both tests on a 4x4 mesh setup for illustration

3While determining the core that could suffer highest contention is done as in time-
deterministic wNoCs, we have empirically verified that such core (the farthest one from
destination) is the one leading to highest pWCET estimates by repeating the experiments
placing the task under analysis in each core in the multicore.

4While we perform such injection with hardware means, we have verified empirically that
creating tasks that perform sustained requests to the same target nodes produces exactly the
same effect (probabilistically).

16

(a) 1 request 3x3 (LNR) (b) 5 requests 3x3 (LNR) (c) Contention in a 4x4 with LFR

Figure 5: Contention in 3x3 and 4x4 wNoC setups with LNR and LFR.

3x3 4x4 6x6
LNR 0.333 0.119 0.118
LFR 0.856 0.795 0.327
DET 0.333 0.111 0.007

Table 3: Minimum guaranteed throughput w.r.t ideal case. DET refers to a
deterministic setup.

purposes. As explained, all tests deliver results above the significance level, so
the i.i.d. hypothesis cannot be rejected.

5.2 Characterizing wNoCs Performance

We have used synthetic traffic to characterize the performance of the proba-
bilistic wNoC. Figure 5 shows the measured contention when nodes have 1 (a)
and up to 5 (b) requests in a 3x3 network setup for the flow that goes from
R(0, 0) to R(2, 2). The vertical red line represents the WCD for these flows and
it has been computed analytically [30]. As shown, contention in a probabilistic
wNoC setup follows a probabilistic distribution. This probability distribution is
centered around WCD (the worst contention in a deterministic wNoC setup).
Interestingly, the shape and location of the distribution is almost identical re-
gardless of the number of in-flight requests, one or five.

The conclusions we draw from this analysis are twofold. First, as shown in
[30], worst-contention situations in the wNoC are also possible when allow-
ing only one request in-flight per core. Second, probabilistic wNoCs do not
allow reducing network contention per se as in average the worst contention
experienced in the network remains the same.

Figure 5c shows the results of an additional experiment that analyzes to
what extent the contention in the network can be reduced by controlling the
frequency at which network interfaces issue requests. In this plot, the analyt-
ically computed WCD is represented by the horizontal dashed red line. As
shown, average contention delay for a 4x4 mesh decreases for our probabilis-

17

(a) 3x3

(b) 4x4

Figure 6: LNR pWCET estimates normalised w.r.t. a deterministic wNoC (Ln
means up to n requests in-flight allowed).

Figure 7: LNR for 6x6 mesh normalized w.r.t. a deterministic wNoC.

tic wNoC as we decrease injection frequency flattening when the total injection

18

rate of the mesh leads to a non-saturated network so that traffic effects decrease.
Contention starts to decrease at an injection frequency of 1 request every 16 cy-
cles per core, so that all 16 cores inject at most 1 request per cycle in total
on average, which is the maximum ejection rate of the network when all nodes
target the same destination. On the other hand, with decreasing injection fre-
quency, we also postpone requests of our core, so then we need to find a good
balance between low contention and large delay for our requests. Furthermore,
we also see how the WCD in the 4x4 mesh is much higher than in the 3x3 setup
due to the non-linear increase in the number of flows contending in the wNoC.

Table 3 shows minimum per node guaranteed throughput normalised w.r.t.
the ideal scenario in which a node in a NxN wNoC setup is able to eject flits from
each of the nodes at a 1/(NxN) rate. As shown in the table, both probabilistic
setups outperform guaranteed throughput values provided by the deterministic
wNoC setup and LFR is the one able to retrieve more bandwidth. The de-
terministic wNoC setup provides very poor bandwidth guarantees for big and
medium size wNoCs because of the distributed nature of the arbitration, which
allocates a very small fraction of the bandwidth to the farthest nodes when the
network is fully congested [29].

5.3 Performance Evaluation

For evaluating the performance guarantees of our probabilistic wNoC setups,
we use the EEMBC single-threaded workloads as the task under analysis. In
these experiments, the task under analysis is placed at the node attached to
R(0, 0) and the rest of the cores are forced to cause worst-possible contention as
described in Section 4. Figures 6 and 7 show the pWCET estimates achieved by
limiting the number of in-flight requests (LNR) for the different benchmarks.
Results are normalized w.r.t. the case of the deterministic wNoC. All the exist-
ing task communications target the shared memory controller that is attached
to R(2, 2) in the 3x3 case and to R(3, 3) and R(5, 5) in the 4x4 and 6x6 case5.
Other possible task placements provide similar comparative results. As shown
in Figures 6 and 7, LNR wNoC setup outperforms the performance guarantees
achieved by the deterministic wNoC design.

LNR trades off two opposite effects: a low number of in-flight requests
decreases contention but delays request issue times, and vice versa. For small
wNoCs (e.g. 3x3), the optimal point consists of allowing two in-flight requests
per core since, despite the increased relative contention, the wNoC is able to
eject requests fast enough due to the low number of cores. As we increase
the core count (e.g. 4x4), contention becomes the dominant effect since more
cores inject requests whereas the ejection rate remains as for smaller wNoCs (1
request per cycle). Hence, the number of in-flight requests must be kept as low
as possible. Still for 4x4 wNoCs, the difference between 1 and 2 in-flight requests
is small. However, such difference grows dramatically when using larger wNoCs

5Although our approaches scale smoothly regardless the core count, we do not consider
larger manycores due to the increasingly poor scaling of deterministic wNoCs for larger core
counts.

19

Figure 8: LFR pWCET estimates w.r.t a deterministic wNoC in a 4x4 mesh.

(e.g. 6x6 in Figure 7), and allowing only 1 in-flight request is, by far, the best
choice.

It might not seem obvious the reason why LNR behaves better than a de-
terministic setup since, as already shown in Figure 5, requests in both setups
experience the same average contention. The reason lies in the way contention
is distributed. For a deterministic approach, where a particular alignment of re-
quests cannot be assumed, it needs to be considered systematically that requests
will be absorbed at a constant rate that is equal to WCD. On the contrary, in a
probabilistic approach roughly 50% of the requests will get absorbed faster than
WCD. These fast requests make it possible to take advantage of the store buffer
of the pipeline more frequently than for a deterministic approach and allow a
higher overlapping between computation and communication, thus leading to
smaller execution time6. In particular, the behavior of the deterministic wNoC is
a fill-and-stall behavior of the store buffer in front of store bursts, thus stopping
pipeline progress always. Conversely, the probabilistic wNoC allows releasing
store buffer entries sometimes earlier due to lower contention delay, and for the
time a new store arrives at the store buffer, there is space available so that the
pipeline keeps progressing in parallel with the processing of stores in the wNoC.

Figures 8 shows pWCET estimates for the LFR approach for 4x4 network
setups. Note that the plot shows only results for three benchmarks representing
the best, the average and the worst case. As we can see, the improvement
achieved by the LFR approach is very significant being 40% on average for the
case of 20 Minimum Inter-request Delay cycles. In general, LFR reaches the
best results when the injection frequency (MID) is the highest (so lower number
of cycles between request injections), but without exceeding the ejection rate,
which is 1 request per cycle. Hence, given a wNoC with N cores, MID must
be strictly above N cycles not to saturate the wNoC, which would lead a fully-
congested wNoC, thus with very high execution times and pWCET estimates.
For instance, in the case of the 4x4 setup, MID ≥ 16. In general, if the overall
injection rate of the wNoC is close to the ejection rate (e.g. MID → 16 for

6This holds for timing-anomaly-free processors like the one used in our experiments.

20

Figure 9: LFR for 6x6 mesh normalized w.r.t. a deterministic wNoC (LFRn
stands for LFR with MID=n).

a 4x4 wNoC), there is still some meaningful contention, so the sweet spot is
typically a MID value a bit higher than the wNoC core count.

If we move to a 6x6 mesh, LFR brings huge guaranteed performance benefits:
in Figure 9 we see that we have 93.3% improvement on average for LFR50
(i.e. LFR with MID=50 cycles). This occurs because latency bounds grow
linearly with distance with LFR, whereas they grow exponentially for time-
deterministic approaches, that need to account for the worst potential behavior
for all requests, which is extremely unlikely and far above the typical case for
LFR. If we compare LNR and LFR for the 6x6 setup, we observe that LNR1
provides pWCET estimates 75% lower than those on a deterministic network,
but this is still almost 4x higher than LFR, which is clearly the best choice as
the size of the mesh grows.

Figure 10 shows how LFR and LNR aproaches outperform significantly the
results of the deterministic wNoC. We only show 3x3 and 4x4 results since
deterministic bounds for the 6x6 network are too high to make it usable (more
than 5,000 cycles for the farthest flow). A direct comparison of results for both
approaches, LNR and LFR, for 3x3, 4x4 and 6x6 network setups is shown
in Figure 11. In this plot, we build on the results for the the best possible
configuration for LNR and LFR. Note that the best configuration, the number
of in-flight requests in the case of LNR and the actual frequency of requests for
the case of LFR providing the best performance, only depends on the properties
of the task under analysis and not on the actual load that co-runners put in the
network.

Finally, we have measured how far LNR and LFR pWCET estimates are
from the ideal case. To do so, we compare the results of probabilistic wNoC
setups with the results for tasks running in isolation, so experiencing always
zero-load delay. On the one hand, for small networks LNR achieves pWCET
results that are relatively close to the case without any contention, on average
9% for the 3x3 setup and 34% for 4x4, whereas for 6x6 it is around 330% above

21

(a) 3x3

(b) 4x4

Figure 10: LNR and LFR WCET estimates normalised to the WCET of the
deterministic setup.

the no-contention scenario. On the other hand, when increasing the size of the
network the performance cost of the LFR mechanism drops significantly: 35%
and 32% for 3x3 and 4x4 setups respectively, and only 5% for the 6x6 setup w.r.t.
no contention since requests are much less likely to contend anywhere in the NoC
when the NoC size increases. Therefore, LNR and LFR are complementary
solutions fitting small and large NoCs respectively.

5.4 Implementation Overheads

The proposed wNoC designs require the introduction of some modifications in
the router and the network interfaces. In this section, we evaluate the area
requirements of the proposed solution w.r.t. canonical wNoC router require-
ments. Area estimates are based on synthesis results using the 45nm nangate
library [1]. For the canonical router implementation, we used the architecture
described in [34]. The area of this canonical 2D-mesh routing with XY rout-
ing implementation and 4 flit buffers is 17651µm2 with no virtual channels and

22

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

LF
R

 P
W

C
ET

 v
s

LN
R

 P
W

C
ET

3x3 4x4 6x6

Figure 11: Scalability of the LNR and LFR approaches. Results show LNR
pWCET divided by LFR pWCET.

89976µm2 when implementing 5 virtual channels.
Randomizing the arbitration requires producing some random bits using a

PRNG. For the PRNG, we opt for the implementation proposed in [6] that has
been shown compatible with MBPTA requirements. This implementation re-
quires a 168-bit linear feedback shift register producing 32 random bits. This
PRNG implementation requires 691.2µm2. However, since MBPTA also re-
quires cores implementing randomization features the overhead of producing
these random bits for the router arbitration is minimized. In fact, out of these
32 bits, only 15 bits are required by the wNoC router proposed and the remain-
ing 17 bits are sufficient to randomize the required core features as described
in [6].

Random permutation arbitration can be implemented as described in Sec-
tion 4. Following this approach, the random permutation implementation in
a 2D mesh router requires 224µm2 for arbitrating the access to the 5 output
ports.

In summary, the proposed router modifications are affordable involving area
overheads equivalent to 3.1% of the area of a canonical wNoC router without
virtual channels and 0.6% of the area of a 5 virtual channel router. These
overheads include both the arbitration logic for the random permutations and
the area corresponding to 15-bits of the PRNG.

5.5 Limitations and Future Extensions

As discussed in this section, we target systems with single-threaded tasks, thus
meaning that no cache coherence support is needed in the hardware. In par-
ticular, data-sharing is restricted to specific OS routines and communication
between tasks/partitions is performed through memory, as suggested by AR-

23

INC653 [5]. Second, cache coherence protocols have not been yet shown time-
analyzable, so their use in the context of real-time is generally precluded. Over-
all, tasks do not share any data within time partitions and communication
across tasks occurs at the boundaries of those time partitions, when the OS
copies data from the output buffer of the producer to the input buffer of the
consumer. Then, the OS flushes all caches at time partition boundaries, thus
preserving cache coherence without any specific hardware support.

By considering single-threaded applications, and for the sake of facilitating
timing analysis, cache space is either private per core (e.g. DL1) or partitioned
(e.g. shared L2 cache). These configurations avoid interference in shared cache
contents since other cores are neither allowed to alter the private nor the shared
(partitioned) cache contents of any given core. Hence, this allows estimating
the WCET (the pWCET in our case) of any given task in isolation as long
as contention conditions considered in the access to shared resources (e.g. the
wNoC) match or upper-bound those during operation.

Overall, our approach is proven compatible with systems building upon par-
titioned shared caches and software-managed cache coherence. However, on
the other hand, our approach is not necessarily restricted to these configura-
tions and could be extended to systems allowing multi-threaded tasks and/or
non-partitioned shared caches. The use of our approach would require the use
of measurement collection protocols where conditions observed during analysis
match or upper-bound probabilistically those occurring during operation in all
relevant aspects including (1) contention in the access to shared resources, (2)
interference in shared cache space, and (3) interference due to coherence both
in terms of wNoC messages as well as cache interference. While cache space
interference has already been shown to be compatible with MBPTA [38], how
to integrate those designs with wNoCs and multi-threaded applications remains
as future work.

6 Related work

We classify the existing research in NoCs for real-time applications in the follow-
ing four categories: (1) Real-time specific NoCs, (2) NoC calculus, (3) analytical
worst-case bounds, and (4) probabilistically analyzable interconnects. Our work
fits in the 4th category and represents the first general realization of wNoC de-
signs for probabilistic time analysis. Main differences across the four approaches
are summarized in Table 4.

Real-time specific NoCs. We distinguish two main groups in this cat-
egory. (1a) NoCs using TDMA [12] allow an easy derivation of composable
WCET estimates but require specific designs only suitable for real-time appli-
cations that provide poor average performance. (1b) Approaches using flit-level
virtual-channel (VC) prioritization [36] bound the contention in the NoC by for-
warding first flows with higher priority. In general, flit-level VC prioritization
schemes require abundant VC resources, although some approaches have shown
how the amount of VCs can be effectively reduced in certain scenarios [26, 27].

24

Bounds
Computation

Composable
WCET

HW
Changes

Performance Real-time

(1a) Analytical Yes Deep Low Hard
(1b) Analytical (*)Partial Moderate Moderate Hard
(2a) NoC Calculus No None High Hard
(2b) NoC Calculus No None Very High Soft
(3) Analytical Yes None Low Hard
(4) Not needed Yes Moderate Moderate Hard

Table 4: Approaches for achieving NoC performance guarantees. Category (4)
includes the wNoC proposed. (*)Composability of this approach is restricted to the flows
using the highest priority.

VC prioritization schemes require knowing the exact details of the critical flows
in the network to derive WCET estimates, which complicates achieving time-
composable estimates.

Network Calculus. Works based on Network Calculus [21] abstract com-
munication flows using arrival curves that upper-bound the amount of traffic
within any time interval. With the upper-bounded arrival curve and lower-
bounded service curve, delay bounds can be derived. Time composability is
lost with this approach unless worst possible traffic conditions are considered
and (2a) deterministic – rather than (2b) stochastic [23] – delay bounds are
used [32]. However, these assumptions defeat the whole purpose of Network Cal-
culus. Thus, Network Calculus is appropriate when traffic information available
during analysis is accurate, which may be for off-chip traffic, but is generally
unaffordable for on-chip traffic.

Analytical wNoCs bounds. Another set of works focuses on determining
wNoC packets worst-case traversal time (WCTT) by (3) considering worst-case
conditions, first assuming limitations on the packet-injection rate [22], and later
without this limitation [33, 11]. Finally, authors in [30] showed that measuring
inter-task interferences in a wNoC using the Worst Contention Delay (WCD)
metric results in much tighter WCET estimates than using WCTT. The fea-
sibility of achieving composable estimates in the context of time-deterministic
wNoCs has been analysed in [30] and [42].

MBPTA compliant interconnects. (4) MBPTA compliance has been
achieved for bus designs [14] either using Lottery arbitration [19] or proposing
random permutations. TDMA-based buses have also been proven amenable for
MBPTA by padding execution time measurements conveniently [28]. A tree
NoC implementing wormhole routers with random arbitration and intended for
all-to-one communication has also been shown to be amenable for MBPTA [39].
However, trees do not fit well all-to-all communication.

Summary. Our work targets achieving time-composable WCET estimates
on high-performance wNoC designs for all-to-all communication. To do so, we
rely on existing MBPTA randomization techniques. Like [23], [7] we exploit
probabilistic analysis to avoid overdimensioning network contention. However,

25

we introduce modifications (randomization) in the network that make contention
to have by construction a probabilistic behavior instead of modeling application
traffic probabilistically. Thus, we enable the derivation of WCET estimates with
MBPTA by smartly limiting contention.

7 Conclusions

In this paper we show that appropriate probabilistic approaches are highly ef-
ficient dealing with contention in wNoCs. Pathological worst-contention sce-
narios occur with (provable) negligible probability and hence, there is no need
to account for them. We propose two different wNoC setups, LNR and LFR,
that are able to provide much better performance guarantees than deterministic
approaches by making use of a wormhole router with randomized arbitration.
LNR is particularly suitable for scenarios with moderate WCD values and for
applications that are very sensitive to latency, and LFR suits better large NoCs
where WCD values are expected to be huge.

Acknowledgements

The research leading to these results has received funding from the European
Community’s Seventh Framework Programme [FP7/2007-2013] under the PROX-
IMA Project (www.proxima-project.eu), grant agreement no 611085. This work
has also been partially supported by the Spanish Ministry of Science and Inno-
vation under grant TIN2015-65316-P and the HiPEAC Network of Excellence.
Mladen Slijepcevic is funded by the Obra Social Fundación la Caixa under grant
Doctorado “la Caixa” - Severo Ochoa. Carles Hernández is jointly funded by
the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER
funds through grant TIN2014-60404-JIN. Jaume Abella has been partially sup-
ported by the MINECO under Ramon y Cajal postdoctoral fellowship number
RYC-2013-14717.

References

[1] The NanGate 45nm Open Cell Library. http://www.nangate.com.

[2] NanoC: NaNoC design platform. http://www.nanoc-project.eu.

[3] Soclib, http://www.soclib.fr/trac/dev, 2012.

[4] Jaume Abella, Maria Padilla, Joan Del Castillo, and Francisco J. Cazorla.
Measurement-based worst-case execution time estimation using the coeffi-
cient of variation. ACM Trans. Des. Autom. Electron. Syst., 22(4):72:1–
72:29, June 2017.

[5] Aeronautical Radio, Inc. Avionics Application Software Standard Interface:
ARINC Specification 653. Aeronautical Radio, Inc, 2013.

26

[6] I. Agirre et al. IEC-61508 SIL3 compliant pseudo-random number genera-
tors for probabilistic timing analysis. In DSD, 2015.

[7] P. Bogdan, M. Kas, R. Marculescu, and O. Mutlu. Quale: A quantum-
leap inspired model for non-stationary analysis of noc traffic in chip
multi-processors. In 2010 Fourth ACM/IEEE International Symposium
on Networks-on-Chip, pages 241–248, May 2010.

[8] F.J. Cazorla et al. Upper-bounding program execution time with extreme
value theory. In WCET Workshop, 2013.

[9] L. Cucu-Grosjean et al. Measurement-based probabilistic timing analysis
for multi-path programs. In ECRTS, 2012.

[10] Sujay Deb, Kevin Chang, Xinmin Yu, Suman Prasad Sah, Miralem Cosic,
Amlan Ganguly, Partha Pratim Pande, Benjamin Belzer, and Deukhyoun
Heo. Design of an energy-efficient cmos-compatible noc architecture with
millimeter-wave wireless interconnects. IEEE Transactions on Computers,
62(12):2382–2396, 2013.

[11] T. Ferrandiz et al. A sensitivity analysis of two worst-case delay computa-
tion methods for spacewire networks. In ECRTS, 2012.

[12] K. Goossens, et. al. Aethereal network on chip: concepts, architectures,
and implementations. Design Test of Computers, IEEE, 2005.

[13] International Organization for Standardization. ISO/DIS 26262. Road Ve-
hicles – Functional Safety, 2009.

[14] J. Jalle et al. Bus designs for time-probabilistic multicore processors. In
DATE, 2014.

[15] B. Kim et al. A real-time communication method for wormhole switching
networks. In ICPP, 1998.

[16] L. Kosmidis et al. A cache design for probabilistically analysable real-time
systems. In DATE, 2013.

[17] L. Kosmidis et al. Fitting processor architectures for measurement-based
probabilistic timing analysis. Microprocess. Microsyst., 47(PB):287–302,
November 2016.

[18] S. Kotz and S. Nadarajah. Extreme value distributions: theory and appli-
cations. World Scientific, 2000.

[19] K. Lahiri et al. Lotterybus: a new high-performance communication archi-
tecture for system-on-chip designs. In DAC, 2001.

[20] S. Law and I. Bate. Achieving appropriate test coverage for reliable
measurement-based timing analysis. In ECRTS, 2016.

27

[21] J.-Y. Le Boudec and P. Thiran. Network calculus: a theory of deterministic
queuing systems for the internet. Springer-Verlag, 2001.

[22] Sunggu Lee. Real-time wormhole channels. Journal Of Parallel And Dis-
tributed Computing, 63:299–311, 2003.

[23] Z. Lu et al. Towards stochastic delay bound analysis for network-on-chip.
In NoCS, pages 64–71, 2014.

[24] E. Mezzetti and T. Vardanega. On the industrial fitness of wcet analysis.
In WCET Workshop, 2011.

[25] M. Di Natale, J. Abella, J. Reineke, A. Hamann, and G. Farrall. Predictable
system timing – probab(ilistical)ly? In DAC (panel in automotive track),
2016.

[26] Borislav Nikolic, Hazem Ismail Ali, Stefan M. Petters, and Lúıs Miguel
Pinho. Are virtual channels the bottleneck of priority-aware wormhole-
switched noc-based many-cores? In 21st International Conference on
Real-Time Networks and Systems, RTNS 2013, Sophia Antipolis, France,
October 17-18, 2013, pages 13–22, 2013.

[27] Borislav Nikolic and Lúıs Miguel Pinho. Optimal minimal routing and
priority assignment for priority-preemptive real-time nocs. Real-Time Sys-
tems, 53(4):578–612, 2017.

[28] M. Panic, et. al. Enabling TDMA arbitration in the context of MBPTA.
DSD, 2015.

[29] M. Panic, et. al. Improving performance guarantees in wormhole mesh noc
designs. In DATE, 2016.

[30] M. Panic, et. al. Modeling high-performance wormhole nocs for critical
real-time embedded systems. RTAS, 2016.

[31] J.A. Poovey et al. A benchmark characterization of the EEMBC benchmark
suite. IEEE Micro, 29, 2009.

[32] Y. Qian et al. Analysis of worst-case delay bounds for best-effort commu-
nication in wormhole networks on chip. In NoCS, pages 44–53, 2009.

[33] D. Rahmati, et. al. Computing accurate performance bounds for best effort
networks-on-chip. IEEE Transactions on Computers, 2013.

[34] Antoni Roca. Floorplan-Aware High Performance NoC Design. PhD thesis,
Universitat Politecnica de Valencia, 2012.

[35] A. Shacham, K. Bergman, and L. P. Carloni. Photonic networks-on-chip
for future generations of chip multiprocessors. IEEE Transactions on Com-
puters, 57(9):1246–1260, Sept 2008.

28

[36] Z. Shi and A. Burns. Real-time communication analysis for on-chip net-
works with wormhole switching. In NoCS, 2008.

[37] Z. Shi and A. Burns. Real-time communication analysis with a priority
share policy in on-chip networks. ECRTS, 2009.

[38] M. Slijepcevic et al. Time-analysable non-partitioned shared caches for
real-time multicore systems. In DAC, 2014.

[39] M. Slijepcevic, et. al. pTNoC: Probabilistically time-analyzable tree-based
noc for mixed-criticality systems. In DSD, 2016.

[40] Z. Stephenson, J. Abella, and T. Vardanega. Supporting industrial use of
probabilistic timing analysis with explicit argumentation. In INDIN, 2013.

[41] Mithuna Thottethodi, Alvin R. Lebeck, and Shubhendu S. Mukherjee. Self-
Tuned Congestion Control for Multiprocessor Networks. In HPCA, 2001.

[42] S. Tobuschat and R. Ernst. Real-time communication analysis for networks-
on-chip with backpressure. In Design, Automation Test in Europe Confer-
ence Exhibition (DATE), 2017, pages 590–595, March 2017.

[43] F. Wartel et al. Timing analysis of an avionics case study on complex
hardware/software platforms. In DATE, 2015.

29

