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Abstract—Critical Real-Time Embedded Systems require func-
tional and timing validation to prove that they will perform their
functionalities correctly and in time. For timing validation, a
bound to the Worst-Case Execution Time (WCET) for each task
is derived and passed as an input to the scheduling algorithm to
ensure that tasks execute timely. Bounds to WCET can be derived
with deterministic timing analysis (DTA) and probabilistic timing
analysis (PTA), each of which relies upon certain predictability
properties coming from the hardware/software platform beneath.
In particular, specific hardware designs are needed for both DTA
and PTA, which challenges their adoption by hardware vendors.

This paper makes a step towards reconciling the hardware
needs of DTA and PTA timing analyses to increase the likelihood
of those hardware designs to be adopted by hardware vendors. In
particular, we show how Time Division Multiple Access (TDMA),
which has been regarded as one of the main DTA-compliant
arbitration policies, can be used in the context of PTA and, in
particular, of the industrially-friendly Measurement-Based PTA
(MBPTA). We show how the execution time measurements taken
as input for MBPTA need to be padded to obtain reliable and
tight WCET estimates on top of TDMA-arbitrated hardware
resources with no further hardware support. Our results show
that TDMA delivers tighter WCET estimates than MBPTA-
friendly arbitration policies, whereas MBPTA-friendly policies
provide higher average performance. Thus, the best policy to
choose depends on the particular needs of the end user.

Index Terms—worst-case execution time; processor design;
arbitration policy; probabilistic analysis; time randomization

I. INTRODUCTION

Timing analysis is a critical step in the development of real-
time embedded systems, especially for those implementing
some kind of safety- or mission-critical functionality. Timing
analysis derives estimates to the Worst-Case Execution Time
(WCET), which are combined by the task scheduler with
other task information such as deadline, period and priority, to
validate that the budget provided to each task is sufficient to
satisfy the tasks’ execution time needs.

Deterministic-Timing Analysis techniques [53], either static
or measurement-based (SDTA and MBDTA), rely on archi-
tectures whose response time is deterministic to derive upper-
bounds to the access time to each hardware resource. SDTA
uses those bounds to create a timing model of the hardware.
MBDTA enforces those bounds by means of hardware/software

support [42], [4] when collecting the measurements used to
estimate the WCET.

Probabilistic Timing Analysis (PTA) [6], [9], [13], [31],
[5], which includes its static (SPTA) and measurement-based
(MBPTA) variants, builds upon systems whose operation-phase
timing behavior can be upper-bounded during the system’s
analysis phase, either deterministically or probabilistically.
Deterministic upper-bounding of requests’ access latency to
hardware resources is performed similarly to DTA. Probabilistic
bounding is performed for time-randomized resources [30] for
which it can be associated a probability to each potential latency
the resource can take to serve a request.

Both PTA and DTA are challenged by mixed-criticality
applications running on multicores since the time it takes a
request from a given task to be granted access to a resource
depends on the load other co-running tasks put in that resource.
Under DTA, this dependence is controlled by advocating for
hardware support that isolates tasks against each other, e.g.
using TDMA arbitration [25], or allows upper-bounding the
maximum impact of contention, e.g. round-robin arbitration.
Such isolation is a key enabler for mixed-criticality systems
by preventing interferences across criticality levels. Under
MBPTA1, it is required that the impact of contention captured
in the measurements taken during the analysis phase of the
system upper-bounds, deterministically or probabilistically [30],
the impact of contention that can occur during the operation
phase of the system. In this line, round-robin arbitrated shared
resources, usually deployed in the context of DTA, have also
been proven analyzable with MBPTA [20]. However, this is
not the case for TDMA arbitrated shared resources.

Contribution. In this paper, which extends our former
publication in [40], we analyze in detail TDMA in the context
of MBPTA and provide means to allow TDMA resources to be
analyzed with MBPTA. This is of high relevance since TDMA
arbitration fulfills isolation requirements coming from mixed-
criticality applications. Furthermore, we show that TDMA

1In this paper we focus only on MBPTA since it has been shown to be
closer to industrial practice for timing analysis than Static Probabilistic Timing
Analysis (SPTA). Further, MBPTA has been already evaluated with avionics
case studies [51].
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allows obtaining tighter WCET estimates than round-robin by
padding execution time once instead of padding the latency
of each request. On the other hand, we show that average
performance for TDMA is worse than for the other arbitration
policies. To reach these objectives:

1) We analyze the timing characteristics of TDMA in the
context of MBPTA from a theoretical perspective. We
show that TDMA cannot be directly analyzed with
MBPTA. The difficulty lies in the variable (i.e. jittery)
nature of the delay that a request incurs to get access
to the arbitrated resource and that a probability cannot
be assigned to each specific delay value, thus failing to
attain the properties required by MBPTA [30].

2) We show that the effect of TDMA on execution time
is limited to the duration of a single TDMA window
when there is a single TDMA-arbitrated resource for
asynchronous requests, as already proven for synchronous
ones in [25]. Also, we show that the effect of TDMA
for several chained arbitrations is limited to the least-
common-multiple of the TDMA windows.

3) Based on the previous appreciation of the limited im-
pact of TDMA on execution time, we apply a simple
modification to the application of MBPTA as a means
to enable the analysis of TDMA resources. In particular,
we augment the execution time observations collected
when running the task of interest in the target system,
which are used as input to MBPTA.

4) We identify how the use of TDMA in the context of
MBPTA impacts timing anomalies. Our analysis shows
that, if timing anomalies can occur, TDMA cannot trigger
new types of timing anomalies but, instead, alter the
number of anomalies triggered of the existing types.

Our analysis not only advances the limits on the arbitration
policies that can be analyzed with MBPTA without requiring
MBPTA-customized designs [20], but also helps promoting
one-design-fits-all for arbitration policies. The latter makes
that different timing analysis techniques are enabled on the
same hardware. This increases the impact that the research on
time-analyzable hardware may have on chip vendors to adopt
such hardware in actual processor designs, hence, reaching
the goal of having time-analyzable multicores. Our solution,
based on padding, produces 9% lower WCET estimates for
TDMA in comparison to the best MBPTA-specific arbitration
policy on average. However, average performance for TDMA
is 18% worse than that for MBPTA-specific arbitration policies.
Therefore, in the context of MBPTA, TDMA can be regarded
as the most convenient solution when most of the time budget
needs to be devoted to tasks with hard real-time constraints.
However, if a large fraction of the time budget needs to be
devoted to tasks with soft real-time or non real-time constraints,
then work-conserving arbitration policies such as, for instance,
random permutations [20], are more convenient due to their
higher average performance.

The rest of this paper is organized as follows. Section II
introduces how contention is handled under DTA and MBPTA.

Section III describes how TDMA impacts execution time.
Section IV analyzes TDMA in the context of MBPTA and
introduces how to enable its use. Section V analyzes the impact
of timing anomalies when TDMA is used together with MBPTA.
Section VI provides some results. Related work is presented
in Section VII and conclusions in Section VIII.

II. CONTENTION ANALYSIS FOR DTA AND MBPTA

Since mid 90’s, critical real-time embedded systems have pro-
gressively shifted towards an integrated architecture paradigm
(e.g. IMA [2]) in domains such as avionics: a modular approach
in which multiple functions are allocated to a single hardware
unit. A key design principle is incremental qualification,
whereby each component can be subject to qualification in
isolation. At the timing level, this requires time composability so
that the timing properties of a software component in isolation,
i.e. its WCET estimate, do not change when the system is
integrated. Time composability, therefore, reduces the cost of
system development, integration and qualification. It is worth
noting that this usually comes at the cost of some overestimation
of the WCET.

The advent of multicores challenges achieving time com-
posability, though. This occurs because the access latency to
hardware shared resources becomes jittery. In particular, the
access latency to a hardware shared resource includes the
arbitration delay and the service latency. The former is the
time a request spends to get access to the resource. The latter
is the time that the request takes to be processed once it is
granted access. Both of them may be impacted by (inter-task)
contention, especially the arbitration delay. For multicore on-
chip resources (the focus of this paper), we aim at providing
time composability in the access latency for WCET estimation.
Thus, the access latency has to be upper-bounded such that the
load that other tasks put on that resource does not exceed
the bound used for WCET estimation purposes. This not
only prevents avoiding interferences across tasks with mixed
criticalities in the timing domain, but also enables incremental
development and qualification.

A. SDTA and MBDTA

SDTA [53], [36] abstracts a model of the hardware, which
is fed by a representation of the application code, to derive a
single WCET estimate. On the contrary, MBDTA [53] makes
extensive testing on the target system with stressful, high-
coverage input data. The longest observed execution time across
all tests is recorded and an engineering margin is added to
make safety allowances for the unknown. This engineering
margin is extremely difficult to determine in the general case.

Under SDTA, reliable WCET estimates can be attained in
the presence of contention by different means:

1) At analysis time, requests are assumed to experience
always the worst-case latency in the access to the
shared resource [19]. For instance, with round-robin,
SDTA assumes that, whenever the request becomes
ready, it has the lowest arbitration priority, so it has
to wait for all other cores to be arbitrated before getting



access. As analysis-time latencies upper-bound operation
ones, the execution time derived at analysis time for
the program upper-bounds the impact of the shared
resource. More sophisticated methods allow assuming
lower contention latencies by analyzing the abstracts
states during the timing analysis [18]. Note that, with
MBDTA, it is not assumed that requests suffer an upper-
bound contention latency but, instead, this is enforced
by a specific hardware mechanism [42] making each
request be delayed as if it was experiencing the highest
contention possible2.

2) Alternatively, at analysis time, each request is assumed
to suffer a fixed impact on its duration. This approach
is used by SDTA when applied to TDMA-arbitrated
resources by determining the alignment of each request
w.r.t. the TDMA window and hence, the delay it suffers
until its next available slot.

3) With SDTA, it is possible to carry out a combined timing
analysis of all the tasks simultaneously running in the
multicore [24]. This may reduce the impact of contention
on WCET estimates since only the actual contention
generated by the co-running tasks is considered. However,
it comes at the cost of losing time composability since any
change in the tasks in the workload requires reanalyzing
all the tasks in it.

B. MBPTA
MBPTA derives a distribution, called probabilistic WCET

or pWCET, that associates a probability of exceedance to
each WCET value. The exceedance probability, which upper-
bounds the probability that a single run of the task exceeds its
WCET budget, can be set arbitrarily low in accordance with
the requirements of the corresponding safety standard.

MBPTA reaches this goal by relying on end-to-end measure-
ments taken on the platform to derive a WCET distribution,
rather than a single WCET estimate per task, as it is the case
for SDTA. MBPTA requires understanding and controlling the
nature of the different contributors to the execution time of a
program [10]. These contributors, also known as sources of
execution time variability (setv), include (i) the initial conditions
of hardware and software (e.g. cache state), (ii) those functional
units with input-dependent latency (e.g. an integer divider), (iii)
the particular addresses where memory objects are placed, (iv)
the number of contenders in the access to shared resources, and
(v) the execution paths of the program. MBPTA requires that
the jitter, a.k.a. execution time variability, of all setv captured in
the end-to-end execution times collected at analysis time upper-
bounds the jitter of each setv when the system is deployed
(operation phase). In [30] it is explained how upper-bounding
these setv enables collecting execution time observations that
can be regarded as independent and identically distributed, as
required by MBPTA [13].

Jitter can be upper-bounded deterministically [30] by en-
forcing setv to experience a single latency at analysis time

2Without hardware support, measurements need to capture high contention
scenarios, but reliability of the WCET estimates is hard to be proven.

TABLE I
RANDOM ARBITRATION BUS EXAMPLE.

(a) Probability of getting the bus in a given round

(b) Accumulated prob. of getting the bus in the first X rounds

latandet that upper-bounds any latency that the setv may take at
operation, latop,idet . That is, ∀i : latandet ≥ latop,idet . For instance,
enforcing functional units with input-dependent latencies to
operate at their highest latency during the analysis phase leads
to deterministic upper-bounding, as their latency at analysis
time is constant. During operation, real latencies will be equal
or lower than those at analysis time.

Jitter can also be upper-bounded probabilistically [30] by
enforcing the latencies of a setv to have a probabilistic
distribution at analysis time such that, for any exceedance
probability (e.g. 10−3), the latency at analysis time is equal
or higher than that of the distribution during operation. For
instance, let us assume a random-permutations arbitrated
bus [20] shared by Nc cores (with random permutations, on
every arbitration window a random permutation of the slots
is created so that in every window the contenders access the
bus in a random fashion [20]). Further, let us assume that,
during operation, the bus is arbitrated only across all cores
with pending requests, which are a subset of all Nc cores. In this
scenario, the analysis-time delay distribution experienced due
to contention upper-bounds that during operation if, at analysis
time, arbitration always occurs across Nc cores. This upper-
bounding is probabilistic since such delay is not a fixed value
but a distribution. Table I(a) shows the probability of getting
the bus in a given round under different contender (core) counts,
while Table I(b) shows the accumulated probability, that is, the



Fig. 1. Example of application of MBPTA for a program with R = 1, 000.
Measurements are taken during the analysis phase. The pWCET distribution
derived with EVT holds at operation. In the X-axis ms stands for milliseconds.

probability of getting the bus in any of the first X rounds3.
We observe that, when all Nc = 4 cores are assumed active, as
it is the case at analysis time, the accumulated probability of
getting the bus is smaller than when the number of cores is 3
or 2. Hence, given that during operation the number of active
cores is at most 4, the analysis time contention distribution
upper-bounds that experienced during operation, rendering this
arbitration policy as MBPTA-analyzable.

Once the requirements of MBPTA are fulfilled, a number (R)
of execution time measurements of the program are collected –
R is typically in the order of few hundreds or thousands. Then,
those R measurements are tested for independence and identical
distribution so as to enable the use of Extreme Value Theory
(EVT) [32]4. EVT is a powerful statistical tool to predict the
tail of a distribution based on a sample. In the context of
MBPTA, EVT is used to predict the distribution of the high
execution times (so the pWCET). Execution time measurements
are also tested for exponentiality of their uppermost tail so that
the pWCET can be approximated with a Gumbel distribution,
which has been regarded the appropriate (and very convenient)
distribution to model the pWCET [13]. Finally, MBPTA is
applied on the R measurements collected. An example of
application of MBPTA on a synthetic program is shown in
Figure 1, where we depict the complementary cumulative
distribution function (CCDF) – also known as tail distribution
– of the R measurements (1,000 in the example) as well as
the pWCET distribution produced by MBPTA. As explained
before, the pWCET value to be used is the one at the desired
exceedance probability (10−14 per run in the example).

III. TDMA IMPACT ON EXECUTION TIME

TDMA ensures that the load a task puts on shared resources
does not affect the WCET of its co-runners [19], thus isolating

3Note that random permutations works similarly to TDMA but sorting slots
randomly within each window. Thus, the maximum arbitration delay is always
below two TDMA windows.

4In some cases independence is not strictly needed if maxima are independent
or if the dependence is weak [12], [47].

tasks with different criticality levels. In this section, we make
a detailed analysis of TDMA impact on the timing behavior
of the application. Without loss of generality, we focus on a
bus as the resource arbitrated with TDMA.

We assume canonical TDMA so that it splits time into
windows of size w cycles, each of which is further divided into
slots of size s. Each bus contender (processor cores in our case)
is assigned one such slot in a cyclic fashion. During a given
slot, only its owner can send requests. Request duration cannot
exceed the slot duration. When a contender has no pending
requests, the bus remains idle for that slot even if there are
pending requests from other contenders (non-work-conserving
approach). We call tdma-relative cycle or simply relative cycle
(cycreli ) the cycle in which a request, ri, becomes ready within
the TDMA window. It can be computed as shown in Equation 1,
where cycabsi stands for the absolute execution cycle.

cycreli = cycabsi mod w (1)

A. Request Types

We consider a timing-anomaly free architecture [35], [52],
[45], [23]. A discussion on the impact of timing anomalies
is provided in Section V. A number of definitions have
been provided for timing anomalies. In our case, a processor
architecture free of timing anomalies refers to an architecture
for which an increase in the access latency of a request
(belonging to the program) to any resource, e.g. due to
contention, cannot result in lower program’s execution time.

We consider both synchronous and asynchronous requests.
Synchronous requests are blocking. This means that they stall
the corresponding pipeline stage until served. In our reference
architecture this is the case of load operations that miss in first
level (L1) caches and access the second level cache (L2).

Asynchronous requests, instead, are kept in a buffer until
served, not stalling any pipeline stage unless the buffer is
full. This is the case, for instance, of those processors that
do not stall the pipeline on a store (write) operation. Since
no instruction in the core has to wait for the results of such
write operation, the store operation is put in a store-buffer,
which sends the request to the data cache afterwards. The store
operation is considered as committed (serviced) when it is
sent to the store-buffer. However, the write request may take
a variable number of cycles to access the bus. This creates
asynchronous accesses to the bus.

Split transactions are used when the target resource for the
request, L2 in our case, takes long to answer (e.g. ARM AMBA
bus [1] implements them). Instead of holding the bus for tens
of cycles, the L2 answers the request with a ‘split transaction’
command, allowing the other contenders to use the bus while
L2 processes the request in background.

B. TDMA impact on execution time for synchronous request

The slot alignment delay (sad) for each request defines the
time the request has to wait for its slot in a TDMA window so
it can be granted access. In the worst case, a request becomes



ready one cycle after its slot expires making it wait sadtdma

cycles, as defined in Equation 2.

sadtdma = (Nc− 1)× s (2)

Note that, without loss of generality and for the sake of
simplifying formulation, we have assumed that the access time
of a request is one cycle. In the general case, assuming a request
latency latr, the worst scenario occurs when it becomes ready
during its slot latr − 1 cycles before it elapses, making the
request wait sadtdma−gen cycles, as defined in Equation 3.

sadtdma−gen = (Nc− 1)× s+ latr − 1 (3)

The particular sad of a request may make it be served
right away (so 0 delay) or delayed by up to (Nc − 1) ×
s + latr − 1 cycles. Given that latr ≤ s so that the request
fits in the slot, and assuming the worst case where latr = s,
sadtdma−gen = w−1. Therefore, given a program with a single
synchronous request ri, the execution time of the program
can vary up to w − 1 cycles depending on how ri aligns
with the TDMA window as already shown in [25]. Further,
if multiple synchronous requests exist in the program, the
execution time variation that the TDMA resource can introduce
is still up to w−1 cycles as proven in [25]. The intuition behind
this effect lies on the fact that a particular sad achieves the
fastest execution time across the w different sad (w different
alignments w.r.t. the TDMA window). Under any other sad,
the program only needs to be stalled by up to w − 1 cycles to
align with the TDMA window as the fastest sad, and execute
identically from that point onwards. We refer the interested
reader to the work by Kelter et al. [25] for a formal proof.

Let us assume that the program under analysis has a single
request ri to the bus during its whole execution. That request
may suffer a slot alignment delay sadi which can take values
within the range: sadv = {0, 1, ..., (Nc−1)×s}. For instance,
for a 4-core scenario in which cores access a TDMA resource
with s = 2, and hence w = 8, sadv = {6, 5, 4, 3, 2, 1, 0}. The
particular sad suffered by the request depends on the relative
cycle in which the request becomes ready, cycreli , which can
take w different values. In the particular example above, if the
request arrives in any of the 2 cycles of its slot, i.e. cycreli = 0
or cycreli = 1, it is served immediately, hence sad = 0 in both
cases. If it arrives in the cycreli = 3 then sad = 6, whereas
if cycreli = 4 then sad = 5, and so on so forth. Overall,
we observe that each value of cycreli affects sadi and hence
program execution time.

C. sad for Multiple Synchronous Requests

Let us now assume that the program under analysis, P, has
several requests to the bus: RP = {r0, r1, ..., rn}. Let δinji be
the injection delay between a preceding instruction generating
request ri−1 and the instruction generating request ri. The
injection delay can be measured as the time elapsed since ri−1
is fetched into the processor until ri is fetched. Hence, for the
program P we have ∆inj

P = {−, δinj1 , ..., δinjn }.

If the requests generated by those instructions are syn-
chronous (and other pipeline stages do not create stalls), the
delay since a request ri−1 is served until the next request ri
accesses the bus is fixed, that is δbusi is fixed. The inter-request
delay for all requests is defined as: ∆bus

P = {−, δbus1 , ..., δbusn }.
The relative cycle in which the first request becomes ready,

cycrel0 , defines a sad scenario in which the alignment that the
subsequent requests, ri : i > 0, suffer may vary. This is better
illustrated with the example in Figure 2, in which there are
5 requests with ∆inj = {−, 1, 3, 2, 1}. In the figure, we use
di to refer to the cycles in which the request ri is ready but
delayed due to sad. We use si to refer to the cycle in which
the request ri is served. Each row represents a different cycrel0

scenario in which r0 becomes ready in a different relative cycle.
Requests can only be served during slots s0 (see second row).
In the first cycrel0 scenario, r0 is ready in cycle 0 and served
immediately. r1 gets ready one cycle later, in cycle 1 (second
element in ∆inj), and is served in cycle 1, still during slot s0
of window w0. r2 becomes ready 3 cycles after r1 is served
(see third element in ∆inj), so in cycle 4, but has to wait for
the next slot s0 until cycle 8. r3 becomes ready 2 cycles after,
so in cycle 10, and has to wait until cycle 16 for the next s0
slot. Finally r4, that becomes ready right after r3, so in cycle
17, is served immediately. Overall, in this first sad all requests
are served after 18 cycles (from cycle 0 till cycle 17). In the
second sad r0 is ready in cycle 1 and served immediately. r1
gets ready in cycle 2, but has to wait then until cycle 8. r2
gets ready 3 cycles later, in cycle 11, and has to wait for slot
s0 until cycle 16. r3 gets ready in cycle 18, so it has to wait
until cycle 24 to be served. Then r4 gets ready in cycle 25
and is served immediately. Thus, under this sad, all requests
are served after 25 cycles (from cycle 1 till 26). Overall, each
different sad takes 18, 25, 24, 23, 22, 21, 20 and 19 cycles
respectively.

We observe different sad for all requests that are determined
by cycrel0 . Each of the cycrel0 different w scenarios determines
the sad experienced by the remaining requests, leading to a
maximum of w execution times for the program.

Observation 1: The impact of sad on a program with
different synchronous requests is determined by cycrel0 . Under
each different cycrel0 scenario, the sad for each request – and
hence the impact on the program’s execution time – may vary.

As shown in the previous example, the execution time
difference between the fastest and the slowest scenarios is
exactly w − 1 cycles. In the example, the first scenario takes
18 cycles (from cycle 0 until cycle 17), whereas the second
scenario takes 25 cycles (from cycle 1 until cycle 25). This
occurs because, in the slowest of both scenarios, it may happen
that a given request, ri, cannot be served as quickly as in the
fastest scenario and it experiences some delay. However, such
delay is strictly smaller than w, as this is the longest time
it may take ri to reach its next slot. Eventually, this request
will align with its slot identically as in the fastest case in up
to w − 1 cycles, and beyond that point its execution will be
identical to that of the fastest case. In this case, we say that
both sad scenarios become synchronous after ri.



Fig. 2. Example of 5 requests with ∆inj = {−, 1, 3, 2, 1} and their sad. di are the cycles in which the request is ready but blocked due to sad; si represents
cycle in which the request gets access to the bus. Finally blanks represent the cycles with no pending requests.

Definition 1: Two sad scenarios, sada and sadb, are
synchronous starting from a given request ri when the relative
cycles when that request is served is the same under both
scenarios, i.e. cycrel,sad1

i = cycrel,sad2

i , regardless of the
particular TDMA window in which the request is served. In
this scenario, all subsequent requests after ri suffer the same
sad under both scenarios.

Hence, the maximum execution time impact between the
different sad that a program with synchronous requests may
suffer is strictly smaller than a TDMA window (w cycles): up
to w − 1 cycles to synchronize and identical execution time
after synchronizing.

It may also be the case that, in the slowest scenario, ri
is served in the next TDMA window at the beginning of
the slot, whereas it is executed at a later relative cycle in
the fastest scenario, hence having a lower relative cycle in
the slowest scenario than in the fastest one. Eventually, a
subsequent request, rj where j > i may be further delayed
until it fully synchronizes with the fastest scenario. In any case,
the accumulated delay of all those requests can only be at most
w − 1 cycles, as this is the maximum time to align their slots
identically as in the fastest case.

Observation 2: The maximum execution time impact be-
tween the different sad that a program with synchronous
requests may suffer is strictly smaller than a TDMA window
(w cycles). The execution time difference among two particular
r0 TDMA alignments, i.e. cycrel0 , is up to w − 1 cycles.

D. sad for Multiple Asynchronous Requests

In the case of synchronous requests, the time between
requests accessing the bus is fixed, regardless of the particular
sad each of them suffers. However, this is not the case for
asynchronous requests (e.g. stores). Let δinji be the injection
delay between a preceding instruction generating request ri−1
and the instruction generating request ri. The injection delay
can be measured as the time elapsed since ri−1 is fetched into
the processor until ri is fetched. Hence, a program P with n+1
requests can be represented as ∆inj

P = {−, δinj1 , ..., δinjn }. If
the injection delay is fixed, ∆inj

P for the store operations in
P , the access time of those requests to the bus, and hence

the time among them, ∆bus
P , may vary depending on the sad

scenario.
In order to illustrate this scenario we assume a program with

∆inj
P = {−, 4, 1} in which all operations are stores. Stores

are sent to a 2-entry store buffer from where they access a
TDMA-arbitrated bus. Figure 3 shows the timing of the different
requests depending on the relative ready cycle of r0. Note that
requests are considered as completed once they are sent to the
store buffer. For instance, in the first scenario (cycrel0 = 1, so
the first shaded row), r0 becomes ready in cycle 0 in which it
is buffered (b0) and it is served in cycle 1 (s0). r1 becomes
ready 4 cycles after that, and it is put in the buffer b1 until
the next slot for the core starts in cycle 8. Once r1 is in the
buffer, in cycle 4, it is considered completed, so in cycle 5
r2 is processed, i.e. also sent to the buffer b2. Once the slot
for this core starts in the second TDMA window, r1 and r2
are served consecutively in cycles 8 and 9. Thus, it takes 10
cycles to send all requests (from cycle 0 till 9). In the second
scenario (cycrel0 = 2) r0 enters the store buffer in cycle 1 and
cannot be sent to the bus in cycle 2 because the S0 slot has
elapsed. r1 is queued in cycle 5 and the store buffer is full.
Thus, although r2 gets ready in cycle 6, it cannot enter the
buffer until an entry is released, which occurs in cycle 8 when
r0 is sent to the bus. Then r1 is sent in cycle 9 and r2 has
to wait until cycle 16 to be granted access to the bus. Thus,
it takes 16 cycles to send all requests (from cycle 1 till 16).
Overall, each different sad takes 10, 16, 15, 14, 13, 13, 12 and
11 cycles respectively.

In Figure 3 we observe that the number of different sad
scenarios, impacting both the sad of the different requests and
the program execution time, is limited to w − 1. This leads to
the following observation.

Observation 3: The impact of sad on a program with
different asynchronous requests is determined by cycrel0 . Under
each different cycrel0 scenario, the sad for each request – and
hence the impact on the program’s execution time – may vary.

As with synchronous requests, the execution time difference
between different sad can only be up to w − 1 cycles. To
illustrate it, let us take as a reference the scenario executing
the fastest (e.g. first scenario in Figure 3) and any other arbitrary
sad scenario. Let shiftsad be the cycle count difference



Fig. 3. Example of 3 requests with ∆inj = {−, 4, 1} and their sad. bi are
the cycles in which the request is ready but waiting in the buffer due to sad;
si represents cycle in which the request gets access to the bus. Finally blanks
represent the cycles with no requests on the bus.

between both scenarios – sadfastest and sadslow – such
that sadslow synchronizes with sadfastest as described in
Section III-B. By construction, shiftsad < w given that there
are w different sad where the shiftsad for the w − 1 slowest
ones w.r.t. the fastest one is 1, 2,... w − 1 cycles respectively.
Eventually, in sadslow requests can wait shiftsad cycles and
execute identically as in sadfastest, or it may be the case
that they execute faster because during those shiftsad cycles
some requests find an available slot. This reasoning applies to
each request individually given that, although they are injected
synchronously (e.g. instructions are fetched synchronously),
they access the bus asynchronously due to some buffering
mechanism (e.g. requests are buffered in the store buffer without
stalling the fetch stage). Thus, given that all requests can be
served as in the fastest case if they get delayed by shiftsad

cycles, the execution time would be increased by shiftsad at
most, where shiftsad < w. If any request is served earlier,
this cannot increase the execution time further because we rely
on a processor free of timing anomalies. Hence, sadslow can
only take up to shiftsad < w more cycles than sadfastest.

Observation 4: The maximum execution time impact be-
tween the different sad that a program with asynchronous
requests may suffer is strictly smaller than a TDMA window
(w cycles). The execution time difference among two particular
r0 TDMA alignments, i.e. cycrel0 , is up to w − 1 cycles.

E. Multiple TDMA resources

When several TDMA-arbitrated resources are used in the
system (e.g., k TDMA resources), with each resource i with its
own TDMA window wi, at most lcm(w1, w2, ..., wk) different

Fig. 4. Different combinations – in a two TDMA-window case – for
cycrel,TDMA1

0 and cycrel,TDMA2
0 .

sad scenarios across all k TDMA resources exist, where lcm
stands for the least common multiple.

The key factor in determining the impact of crossing k
TDMA resources is the relative cycle in which the first
request, r0, becomes ready across all TDMA windows. Hence,
for the case of two TDMA windows, there are a total of
lcm(w1, w2) combinations of cycrel,tdma1

0 and cycrel,tdma2
0 .

For instance, in Figure 4 we have an example with two TDMA
resources, each one with two slots. Slots in the first and
second TDMA resource have 3 and 2 cycles respectively.
Thus, wtdma1 = 6 and wtdma2 = 4. This leads to a total
of lcm(wtdma1, wtdma2) = 12 different sad, shown in the last
row. In this case, we consider all those 12 sad scenarios. Based
on the arguments given before, the execution time in the worst
sad scenario is at most 11 cycles worse (slower) than in the
best sad, as this is the longest time needed to align the slots
across both TDMA resources. Thus, the same rationale used
for a single TDMA resource can be applied in this case.

Observation 5: When multiple TDMA resources are used,
those TDMA resources can create execution time variations of
up to lcm(w1, w2, ..., wk)− 1 cycles due to sad.

F. Other considerations

Split Requests. As explained before, some requests to the
bus are split. For example, a L1 cache miss may require a split
request to access first the L2 cache, get a response indicating
it misses in L2, and some time later get the data back with
the second part of the request that has been split. In any
case these two requests originated by the split mechanism are
either synchronous or asynchronous and the same observations
presented in previous sections for independent synchronous
and asynchronous requests apply in this case.

Variable injection rate. Let fc(Iri) be the cycle in which
the instruction generating a request to the bus is fetched. So
far, in our discussion, we have assumed a fixed injection rate
across sad scenarios. That is, δinji = fc(Iri) − fc(Iri−1) is
the same for any consecutive pair of instructions under any two
sad scenarios. In reality, however, if under some scenarios the
instructions between Iri and Iri−1

, block the pipeline after the
execution of Iri−1

such that Iri cannot be fetched, then δinji

varies across sad scenarios. However, δinji is determined by a
combination of synchronous and asynchronous events: pipeline



stalls bring the synchronous component whereas buffering
capabilities of the pipeline bring the asynchronous component.
Hence, delaying timing events by at most the cycles between
the current sad and the one leading to the fastest execution is
enough to have the same execution behavior from that point
onwards. Anything occurring with a delay shorter than that
cannot lead to a longer execution time in a processor free of
timing anomalies. Overall, the maximum impact on execution
time of TDMA is limited to lcm(w1, w2, ..., wk)− 1 cycles.

IV. TDMA IN THE CONTEXT OF MBPTA

In this section, we show how TDMA affects WCET esti-
mation under MBPTA. We start by introducing the particular
timing characteristics of MBPTA-compliant processors.

A. Timing of MBPTA-Compliant Processors

DTA-compliant processors experience deterministic latencies
in the different resources and hence, execution time can be
regarded as deterministic given a set of initial conditions. This
occurs because each event leads to a single (deterministic)
outcome and so, a single processor state can be reached. This
is not the case for MBPTA-compliant processors, in which a
number of random events may alter the execution time, thus
leading to a different number of states, each of which is reached
with a given probability as shown in [27]. We refer to those
states as probabilistic processor states.

We illustrate, through a synthetic example, how those
different states influence the latency between different bus
requests. We consider a processor in which instructions take
a fixed latency and where memory operations are all loads.
Load operations access a time-randomized data cache [28],
which is the only source of execution time variability (the
instruction cache is assumed perfect)5. The total latency of a
load that misses in cache, in the absence of any contention,
is 100 cycles: 1 cycle to access cache, 1 cycle to traverse
the bus and 98 cycles to fetch data. Note that, in this simple
example, we assume no contention to send data from memory
to the core. In this first experiment, we also consider that,
whenever a load misses in cache, main memory is reached
through a bus that creates no contention. Let us assume that
the program under analysis has the following sequence of
instructions I = {ld0, i0, i1, ld1, i2, ld2, i3, i4, i5, i6, i7, ld3}.
Further assume that ld0 always misses in cache and the
other three load operations — ld1, ld2 and ld3 — have an
associated hit probability of 75%, although the actual value
of those probabilities is irrelevant for the example. Other core
instructions — i0, i1,... i7 — do not access the data cache and
have a fixed 1-cycle latency.

In this architecture, load operations generate a new probabilis-
tic state in the execution, as shown in Figure 5. Every access
leads to two possible probabilistic states (hit or miss), each with
an associated probability. In that respect, there is a probability
for each of the 8 possible combinations of hit-miss outcomes

5These assumptions simplify the discussion in this section. In Section VI
we consider a multicore processor with time-randomized data and instruction
caches.

Fig. 5. Different probabilistic states in which the processor may be after the
execution of each of the 3 loads in the example.

of the 3 load instructions (hhh, hhm, hmm, ...,mmm), which
can be easily derived (e.g. 0.75 ·0.25 ·0.75 = 0.140625 for the
hmh case). Interestingly, any execution of the program leads to
a single state out of those 8 probabilistic processor states, and
for each of them, the delay among requests is fixed. Moreover,
each such state (and set of delays among requests) occurs
with a given probability. For instance, for the sequence mhm,
which occurs with a probability of 0.046875, ∆inj = {−, 3, 8}
since 3 cycles elapse between ld0 and ld1, in which i0 and i1
are executed, and ld1 requires an extra cycle to access cache.
Analogously, 8 cycles elapse between ld1 and ld3 to execute
seven 1-cycle instructions before ld3 accesses cache.

In a second experiment, instead of assuming a no-contention
bus, we assume TDMA arbitration for the bus that is shared
among 4 cores. For TDMA, the slot for each core is s = 2
cycles with windows of w = 8 cycles. The execution time of
the program under each probabilistic state is affected by the
bus contention. Hence, the observations made in Section III for
the impact of TDMA on execution time are to be considered
for each probabilistic state in a MBPTA-compliant processor.

B. TDMA analysis with MBPTA

As explained in Section III-B, a shared resource implement-
ing a TDMA arbitration policy may introduce execution time
variations of up to w − 1 cycles, where w is the window size.
From the point of view of MBPTA, the sad suffered by each
request is, indeed, a setv. Hence, sad for TDMA is ruled by the
same principles as other setv: its jitter has to be upper-bounded
deterministically or probabilistically.

Observation 6: In the absence of MBPTA-specific support,
by default TDMA is not analyzable with MBPTA because one
cannot prove that the delay experienced by each request (and
hence the whole program) at analysis time, due to the alignment



Fig. 6. Full-program padding in the context of MBPTA.

with the TDMA slots, upper-bounds the impact of TDMA during
operation.

In the case of MBPTA, we have shown that each probabilistic
state leads to a different ∆inj , thus making the impact of the
TDMA slot alignment different for each such states. Intuitively,
one should consider the TDMA sad alignment individually
for each probabilistic state to account for TDMA impact in
execution time. However, this may be overly expensive since
the number of probabilistic states grows exponentially with the
number of probabilistic events [27], [5]. A different approach
is needed to account for TDMA impact on execution time and
pWCET estimates.

C. Per-request padding

One possible and intuitive solution to deal with TDMA jitter,
i.e. sad alignment, is to assume, during the analysis, that each
request suffers its worst sad delay (see Equation 2). Under
MBPTA, this would mean having a hardware mechanism, such
as the worst-case mode [42] so that, during the analysis phase,
the program is run in isolation and each of its requests is
artificially delayed by sadtdma cycles. Given that sadtdma is
higher than any sad a request can suffer, the execution time
observations collected at analysis time upper-bound the impact
of the jitter caused by TDMA.

In essence, this approach consists in deterministically upper-
bounding sad per request. However, it has been shown that
assuming that each request suffers sadtdma has an overly
pessimistic impact on execution time [19]. Hence, this approach
effectively enables the use of MBPTA with TDMA resources,
but at the cost of pessimistically increasing pWCET estimates.

D. Full-program padding

We rely on the knowledge acquired in Section III on the
maximum impact that TDMA can incur in the execution time
of a program to propose a solution that has minimum impact on
pWCET estimates. In particular, we show that the maximum
impact that the alignment w.r.t. the TDMA window that a
program can suffer is limited to w, so the maximum difference
in execution time (i.e. jitter) between two runs of the same
program due to TDMA is limited to w − 1 cycles when one
TDMA-arbitrated resource is used and lcm(w1, w2, ..., wk)−1
when k > 1 TDMA resources are used.

Hence, we could increase the execution time observations
obtained at analysis time by w − 1 cycles without breaking

MBPTA compliance and reliably upper-bound the effect of
TDMA alignment in the execution time. The process is as
depicted in Figure 6. MBPTA [13], [31] performs several runs
of the program under analysis on the target platform for a set
of input vectors, labeled as ivj in Figure 6. These runs are done
under a setup in which the seeds for the hardware random
generators, as well as other setup parameters, are properly
initialized by the system software. As a result of this step,
several execution time observations (eti) are obtained. With
the full-program padding approach, there is no need to control
the sad for each run. Each of eti is augmented, leading to
a set of augmented execution time observations, as shown
in Equation 4, where k is the number of TDMA-arbitrated
resources.

aeti =

{
eti + w − 1 if k = 1

eti + lcm(w1, w2, ..., wk)− 1 if k > 1
(4)

The augmented observations, which deterministically upper-
bound the maximum impact of TDMA sad alignment, are
passed as input to MBPTA that obtains a pWCET estimate
reliably upper-bounding the impact of TDMA sad. Note that
augmenting all observations may be pessimistic since the actual
sad experienced might not be the fastest one. However, as
shown later in our evaluation, such pessimism is irrelevant in
practice.

V. IMPACT OF TIMING ANOMALIES

As explained in Section III-A, our analysis focuses on
processor designs free of timing anomalies. Although the
definitions of timing anomalies are abundant [35], [52], [45],
[54], here we stick to the following (informal) definition: a
timing anomaly occurs when, by advancing the time when a
instruction request is served, the execution time of the program
increases. In other words, a local speedup turns out to produce
a global slowdown.

Architectures free of timing anomalies have been referred
to as fully timing compositional architectures according to the
classification in [54]. This is the assumption for the architecture
considered so far. Instead, if timing anomalies can occur
but they cannot trigger domino effects, then the architecture
is classified as a compositional architecture with constant-
bounded effects according to [54]. In those cases, one can
account for the impact of timing anomalies by counting how
many times they can occur and multiplying that number by
the maximum impact of a timing anomaly in execution time.
Finally, non-compositional architectures in [54] are those that
may experience timing anomalies and domino effects. Authors
in [54] detail some means to make those architectures behave
as compositional architectures with constant-bounded effects.

How to account for the impact of timing anomalies is beyond
the scope of this paper. However, in this section we analyze
how the use of TDMA arbitration may influence the occurrence
of timing anomalies. In particular, we use an example of a
timing anomaly and illustrate how the use of TDMA cannot
create new types of anomalies, but create or eliminate some



Fig. 7. Regular execution. (FI stands for fetch from IL1, FB for bus access
during fetch, D for decode, R for register read, E for execute, ED for DL1
access during execute, EB for bus access during execute and W for write-
back). Grey boxes correspond to bus stalls and yellow boxes to bus accesses.
In this case i3 occupies the bus delaying both i1 and i2.

Fig. 8. Timing anomaly that occurs when delaying i3 by 2 cycles, which
results in a decrease of the overall execution time. (FI stands for fetch from
IL1, FB for bus access during fetch, D for decode, R for register read, E
for execute, ED for DL1 access during execute, EB for bus access during
execute and W for write-back). Grey boxes correspond to bus stalls and yellow
boxes to bus accesses.

that could already occur without TDMA. Finally, we discuss
how these anomalies are avoided in our processor design.

A. An Example of Timing Anomaly

TDMA, as any other arbitration policy for shared resources,
influences the arrival time of requests to the target device. For
instance, TDMA implemented in a bus has an impact on the
arrival time of the requests of the cores to the second level
cache (L2) that sits in the other side of the bus. For instance,
TDMA may, indirectly, reorder L2 or memory requests issued
by a particular core. Let us assume that our processor issues
L2 instruction accesses and L2 data accesses in order locally.
That is, all instruction accesses occur in order (and so it is
the case for data accesses), and the core always prioritizes
the request from the oldest instruction when choosing among
instruction and data requests. This leads to prioritizing globally
the ready request from the oldest instruction. However, requests
can be issued out-of-order if a request from a given instruction
becomes ready after a request from a younger instruction has
already been granted access to the bus.

Let us assume a program where 3 instructions are executed
as shown in Figure 7. i1 is a load to address @A, which is
not present in first level data cache (DL1). Thus, i1 fetches
the instruction from the first level instruction cache (IL1) in
cycle 0 (FI), decodes it in cycle 1 (D), reads its operands in
cycle 2 (R), accesses DL1 in cycle 3 (ED, execute-DL1) and
misses, waits for the bus to be available during 3 cycles, and
then it spends 4 cycles to access L2 and retrieve the data (EB,
execute-bus), which is placed in register R1. i2 is a division
that reads R1, so until the data is not read from L2 (cycle
11), it cannot start its execution. The division takes 8 cycles
to execute (E) and the result is written back to the register file
(W) in cycle 19. Finally, i3 is an addition that misses in IL1.
Thus, it accesses IL1 in cycle 2 and misses, and sends a request
to the bus in cycle 3 (FB, fetch-bus). Since no further request
is ready in cycle 3, it is granted access and gets the instruction
from L2, thus keeping the bus busy until cycle 6. Then, it
continues its execution and writes back the result in cycle 20

Fig. 9. Example in which a TDMA window of size w = 8 cycles (two slots
of 4 cycles each) prevents the timing anomaly presented in Figure 8 from
occurring. (FI stands for fetch from IL1, FB for bus access during fetch, D
for decode, R for register read, E for execute, ED for DL1 access during
execute, EB for bus access during execute and W for write-back). Grey boxes
correspond to bus stalls and yellow boxes to bus accesses.

to preserve in-order finalization of instructions. Overall, the
program takes 21 cycles to execute. If we artificially enforce
i3 to start 2 cycles later (in cycle 4), the bus access from i1 is
ready before the one from i3, so i1 is not delayed, as illustrated
in Figure 8. Hence, i2 completes its execution earlier, and the
program finishes in cycle 17. Thus, by delaying i3 the program
executes 3 cycles faster, so revealing a timing anomaly.

B. Example in the Context of TDMA

If we assume a TDMA bus shared across 2 cores with a
window of 8 cycles (4-cycle slots per core), this timing anomaly
may not occur. This is illustrated in Figure 9, where requests
are allowed to start in cycles 4, 12, 20, etc. As shown, in cycle
4 requests from both i1 and i3 are ready, but i1 is granted
access since it is the oldest instruction. Instead, i3 needs to
wait until cycle 12 to access the bus. This makes the program
finish in cycle 19. In this example, by delaying i3 start time we
could never execute the program faster, so the timing anomaly
cannot occur.

Note that other programs and/or time alignments of the
TDMA window could still allow requests to be reordered,
which could trigger some timing anomalies. However, since
TDMA arbitration can only introduce delays, it may only
avoid or create some reordering scenarios, thus creating or
eliminating some timing anomalies of a type already existing
without TDMA (e.g. due to request reordering).

If timing anomalies can occur due to, for instance, contention
in the use of some other resources (e.g. an arithmetic unit),
TDMA could also remove or trigger some of them due to the
potential delay TDMA could introduce in the execution of some
instructions, which could arrive at the conflictive resource in
different order. However, TDMA delays do not reorder events
that could not occur in arbitrary order. For instance, fetch and
write-back occur always in-order, and therefore, TDMA cannot
alter such behavior that is already enforced by hardware means.

C. Avoiding Timing Anomalies

In our particular design, this timing anomaly is avoided by
not allowing instruction misses access the bus until all older
instructions with data accesses (loads and stores) have reached
their execution stage, so that any request reaching the L2 cache
does it always in the program order. This is basically the same
solution illustrated in Figure 8, where i3 execution is delayed
until all older requests (the one by i1) are issued to the bus and
hence, access order to shared resources is preserved. If other
timing anomalies can occur due to, for instance, contention



Fig. 10. Schematic of the multicore processor considered.

in some other resources (e.g. an arithmetic unit), there are
two ways to also avoid them by construction: replicating those
resources so that no contention can occur or making them
serve a request only when no request from older instructions
may arrive to the resource.

VI. RESULTS

In this section we first introduce the evaluation framework,
then we examine how TDMA sad impacts execution time
and finally we compare 3 arbitration policies: TDMA, IARA
(interference-aware resource arbiter) based on round-robin [42]
and a MBPTA-specific randomized arbitration policy called
random permutations [20].

A. Evaluation Framework

Processor setup. We use a cycle-accurate modified version
of the SoCLib [34] framework modeling a multicore processor
as the one shown in Figure 10. We use 3-stage in-order
execution cores. Caches implement random placement and
random replacement6. DL1 and IL1 caches are 8KB, 4-way
with 32-byte lines. DL1 is write-through. The L2 is 128KB,
8-way with 32-byte lines. The L2 deploys cache partitioning, in
particular way-partitioning as implemented in real processors
like ARM A9 or Cobham NGMP [11], so that each core has
exclusive access to 2 ways. This prevents contention in the
cache as it is hard to account for in WCET estimates. These
cache designs have been proven MBPTA compliant [28], [29],
[51]. Cache access latencies are 1 cycle for DL1/IL1 and 2
cycles for L2. Note that L2 turnaround time can be typically
around 10 cycles due to 2 bus traversals to send the request and
receive its corresponding answer. There are two independent
buses to send requests from cores to L2 and to send answers
from L2 back to the cores. Both buses have a 2-cycle latency
once access is granted.

6Time-randomized caches have been shown to provide the randomization
properties required by MBPTA [28], [29]. The potential implications of random
placement on MBPTA have been discussed in [44], [3], [37].

TABLE II
WORKLOADS FOR AVERAGE PERFORMANCE EVALUATION. C0

CORRESPONDS TO THE BENCHMARK UNDER CONSIDERATION. C1, C2 AND
C3 CORRESPOND TO THE BENCHMARKS RUNNING IN THE OTHER CORES.

C0 C1 C2 C3
a2time aiifft iirflt tblook
aifftr idctrn pntrch idctrn
aifirf pntrch canrdr a2time
aiifft cacheb cacheb aifirf

basefp cacheb basefp aifftr
bitmnp rspeed bitmnp idctrn
cacheb rspeed canrdr bitmnp
canrdr iirflt puwmod ttsprk
idctrn aiifft basefp iirflt
iirflt a2time idctrn cacheb

matrix matrix basefp a2time
pntrch aiifft idctrn canrdr

puwmod idctrn basefp matrix
rspeed bitmnp matrix aifirf
tblook ttsprk matrix matrix
ttsprk ttsprk a2time aiifft

We use a time-analyzable memory controller [41] with per-
request queues. We assume a CPU frequency of 800MHz and
DDR2-800E SDRAM with the memory controller implement-
ing close-page and interleaved-bank policies, which delivers
16-cycles access latency and 27-cycles inter-access latency [22].
Thus, an access completes in 16 cycles once it is granted access
to memory, but the next access has to wait 11 extra cycles to
start to allow the page accessed to be closed. This typically
leads to memory latencies around 100 cycles due to contention
and access delay.

In our experiments, to control the access to both the bus
and memory controller, we deploy three different arbitration
policies: random permutations [20], IARA based on round-
robin [42], [19] and TDMA. The particular policy used in each
experiment is indicated conveniently.

Although the particular setup used in this work has not
been explicitly validated against real hardware, a non-MBPTA-
compliant configuration with modulo placement and LRU
replacement in all caches, and FIFO bus and memory controller
arbitration has been assessed against the Cobham NGMP
processor for the Space Domain [11] showing performance
differences between 1% and 5% for different microbench-
marks and relevant applications used by the European Space
Agency [21]. Therefore, we are confident on the conclusions
reached based on the results obtained with this simulator.

Benchmarks. We consider the EEMBC Autobench bench-
marks [43], a well-known suite reflecting the current real-world
demand of some automotive embedded systems.

In order to derive pWCET estimates, we collected 1,000
execution times for each benchmark, which have been shown
enough for MBPTA [13] application. The observations collected
in all the experiments passed the independence and identical
distribution tests as required by MBPTA [13].

For these experiments focused on deriving reliable pWCET
bounds, it is assumed that each request of the task under



TABLE III
MAXIMUM EXEC. TIME VARIATIONS DUE TO TDMA sad.

TDMA TDMA bus
Bench. bus only and mem.ctrl.
a2time 7 215
aifftr 7 215
aifirf 7 111
aiifft 7 215
basefp 7 215
bitmnp 7 215
cacheb 7 111
canrdr 7 111
idctrn 7 215
iirflt 7 111
matrix 7 215
pntrch 7 111
puwmod 7 111
rspeed 7 111
tblook 7 111
ttsprk 7 111

analysis is arbitrated against requests from the other cores.
While in reality this is not always the case, since the contention
on the average case is lower, this ensures that derived estimates
are actually an upper-bound to the execution time of the task
when it runs during operation regardless of the load contender
tasks put on the bus and memory.

In order to study average performance, for each EEMBC
Autobench benchmark we created one workload with 3 other
randomly selected benchmarks. The benchmark in the first
core is the one under analysis while the other three in cores
1, 2 and 3 are contending benchmarks. We perform 100 runs
collecting execution times of the benchmark in core 0. In the
experiments, benchmarks in cores 1, 2 and 3 are restarted if
they finish before the program under analysis (core 0). The
particular workloads evaluated are shown in Table II, where
column C0 corresponds to the benchmark being analyzed.

B. Impact of TDMA sad on Execution Time

In this section we empirically confirm that the impact of
TDMA resources is at most w cycles when a single TDMA
resource is used and lcm(w1, w2, ..., wk) cycles for k TDMA
resources.

Single TDMA resource. For this experiment we use a
TDMA-arbitrated bus to access L2. Bus latency is 2 cycles
and wbus = 8 (4 slots for the 4 cores, each slot of s = 2
cycles). The responses from the L2, which is assumed perfect
(i.e. all accesses hit) arrive in a fixed latency of 2 cycles.
DL1/IL1 cache memories are always initialized with the same
seeds so that the random events produced are exactly the same
across all experiments. In this way, the only setv is the sad
for the bus. We run 8 experiments with the 8 different sad for
each benchmark. The “TDMA bus only” column in Table III
shows the maximum execution time variation observed for
each benchmark. As shown, all benchmarks observe exactly a
maximum difference of wbus − 1 = 7 cycles. In fact, we have
corroborated that execution times for the 7 slowest sad of each
benchmark are exactly 1, 2, 3, 4, 5, 6 and 7 cycles higher than
that of the fastest sad. This means that, in all runs, at some

Fig. 11. pWCET estimates for a cutoff probability of 10−15 normalized w.r.t.
time-randomized arbitration.

point requests get delayed until they align (synchronize) with
TDMA as in the fastest case, and then execution continues
identically.

Multiple TDMA resources. For this experiment we use the
original processor setup. We have 3 TDMA resources: the buses
to reach L2 and get answers from it, and the memory controller.
Both buses have wbus = 8, 2-cycle slots. The memory
controller has 27-cycle slots, so wmemctrl = 108 cycles
due to the 4 contender cores. Thus, lcm(8, 8, 108) = 216.
Experiments are run as before, fixing seeds for caches so
that execution time variations are produced only due to the
alignment with TDMA resources. We have run 216 experiments
for each benchmark with the 216 different sad. The “TDMA
bus and mem. ctrl.” column in Table III shows the maximum
execution time variation observed for each benchmark. As
shown, such difference is at most lcm(8, 8, 108) − 1 = 215
cycles, thus further corroborating our hypothesis. In fact, in 7
out of the 16 benchmarks such difference is exactly 215 cycles.
In the other 9 cases it is 111 cycles. Those 111 cycles come
from the fact that the memory controller window is much larger
than the bus one, and in some cases it is enough to align with
such window to get identical or near-identical timing behavior
as in the fastest case. This explains wmemctrl−1 = 107 cycles.
The other 4 cycles correspond exactly to the misalignment of
the TDMA bus windows after wmemctrl = 108 cycles.

C. Worst-Case Performance (pWCET) Comparison

We evaluate arbitration policies in terms of worst-case
performance, which is measured with the probabilistic WCET
estimates provided by MBPTA. In all experiments, we use
the same arbitration policy in the buses and in the memory
controller. Seeds for the caches are initialized randomly on
each run. We use the following setup for each policy:
• Time-randomized. We use random permutations arbitra-

tion, with which on every arbitration window a random
permutation of the slots is created so that in every window
the contenders access the bus in a random fashion [20].

• IARA uses as baseline arbitration round-robin. In the worst
case, the bus latency of an access is: 3 x 2 cycles of delay
that the request may suffer waiting for the requests of
the other cores, plus its own 2 cycles to access the bus.



Fig. 12. Average execution time normalized w.r.t. time-randomized arbitration.

Likewise, the longest memory latency is 97 cycles due to
the 3 slots for the other cores (3 x 27) and the 16-cycle
access of the current request.

• TDMA. With TDMA experiments are run assuming always
an arbitrary sad. We use full-program padding increasing
the observations passed to MBPTA by 215 cycles.

In order to ensure that pWCET estimates are time-
composable (i.e. do not depend on the co-runners as needed to
isolate across different criticalities), for these experiments we
use non-work-conserving versions of all arbitration policies.
Hence, the task under analysis can only access the resources
in its slots (time-randomized and TDMA). In those slots in
which it is not granted access, the task cannot access the shared
resource even if it is idle.

Figure 11 shows the pWCET estimates for each benchmark.
We use a cutoff probability of 10−15 per activation as it has
been shown appropriate in some industrial case studies [51].
Results have been normalized with respect to the time-
randomized bus.

We observe that IARA is 15% worse than random permu-
tations on average. IARA is, in fact, the worst policy since
it assumes each request to experience its worst-case latency.
TDMA is 9% better on average than random permutations
because TDMA slots for a given core are homogeneously
distributed in time, thus leaving some time between consec-
utive slots. Conversely, random permutations may lead, with
relatively high probability, to consecutive slots assigned for a
given core in the memory controller because it is granted access
last in one permutation and first in the next one. However, some
cycles elapse since the data reaches the core for a load request
until the next request (either a load or a store) from this core
reaches the memory controller. This is enough to miss its
opportunity and the request has to wait for a later slot that
will not arise until the next permutation. Overall, although
the average time between slots for random permutations and
TDMA is the same, under random permutations some slots
cannot be used and so pWCET estimates are affected.

Differences for individual benchmarks w.r.t. the average case
occur due to the random variations that affect measurements,
which may lead to higher or lower tightness in some cases [49].
Still, results are quite consistent across benchmarks.

D. Average performance

Figure 12 shows the average execution time for the 100
runs of each configuration for each benchmark in its respective
workload assuming operation conditions. Results have been
normalized with respect to the time-randomized bus for the
sake of readability. As shown, TDMA performs clearly worse
than random permutations (RandPerm in the plot) and IARA.
In particular, TDMA performs 18% worse than RandPerm
and 19% worse than IARA on average. This occurs because
RandPerm and IARA assume worst contention at analysis,
but actual contention during operation, and actual contention
is typically low. Thus, pWCET estimates hold, but tasks are
not isolated, thus contending in the use of shared resources.
Potential contention is upper-bounded at analysis time, but
tasks are allowed to contend freely during operation (work-
conserving arbitration). Conversely, TDMA enforces isolated
time slots for each task, in such a way that the timing behavior
observed at analysis matches the one observed during operation.
Thus, the requests of any task can be stalled since they have to
wait for the corresponding slot to access the shared resource,
even if the resource is idle (non-work-conserving arbitration).

In summary, TDMA is the best choice in terms of pWCET
estimates, whereas RandPerm is the second best choice. In
terms of average performance RandPerm and IARA are the
best choices by far.

In the light of this results, if the most critical resource is the
time budget available for hard real-time tasks, then TDMA is
the most convenient arbitration policy despite its relatively low
average performance. Instead, if the time budget for hard real-
time tasks is large (e.g. because few tasks have hard real-time
constraints), then RandPerm is the most convenient solution.
Finally, IARA is only the most convenient policy if virtually
all tasks have soft or non real-time constraints since its average
performance is marginally better than that of RandPerm while
offering significantly worse pWCET estimates.

VII. RELATED WORK

Several works analyze, from a SDTA point of view, the im-
pact of on-chip bus arbitration policies, especially TDMA [46],
[25] and round-robin [42], [18], on WCET. In [25] an analysis
and evaluation of a TDMA arbitrated bus under the context
of SDTA considering both, architectures with and without
timing anomalies, is performed. In [42] an analysis of the
delay that every request can suffer when accessing a round-
robin arbitrated resource is carried out. Jacobs et al. [18]
focus on extending SDTA to consider multicore contention
for event-driven arbitration policies such as round-robin by
accounting for it in the abstract states kept during the analysis.
This allows deriving WCET bounds for in-order and out-of-
order processors, valid for any contender or suited for specific
contention scenarios.

More complex inter-connection architectures such as
meshes [48] or rings [39] based on the use of TDMA and
round-robin have also been shown to be analyzable with SDTA
techniques. For the TDMA case, the Time-Triggered Architec-
ture [26] (TTA) implements time-predictable communication by



means of customized TDMA schedules. Other approaches like
T-CREST [48] deliver low complexity TDMA-based NoCs with
global schedule that enable straightforward WCET analysis. For
round-robin, several studies [7], [8] propose offering several
levels of round-robin arbitration for asymmetric upper-bound
delay (ubd) so that high priority tasks may enjoy lower ubd.
In [24], [19] authors present a comparison of TDMA and round-
robin for SDTA and MBDTA considering different metrics.

Probabilistic timing analysis on non-MBPTA-compliant
architectures has been considered in several works [6], [15],
[16], [14], [38] including WCET estimation and scheduling
techniques. Those solutions cannot be applied in the context
of MBPTA since they do not provide means to relate the
conditions experienced during timing analysis with those
during operation (e.g. memory placement, shared resource
contention, etc). Among those works, we notice that Palopoli
et al. [38] explore solutions related to ours, although at the task
scheduling level. Authors reason about the timing behavior of
tasks building on the temporal isolation provided by resource
reservation in a similar way to how we reason about temporal
isolation provided by TDMA at shared resource request level.

For MBPTA, several specific arbitration policies have been
proposed, which include random lottery access [33] and random
permutations [20], both based on the idea of introducing some
type of randomization when granting access to the different
contenders. With the lottery bus, on every (slot) round the grant
is given randomly to one of the resource contenders. With
random permutations, on every window a random permutation
of the slots is assigned so that in every window the contenders
access the bus in a random fashion. To the best of our
knowledge, this is the first attempt to analyze the benefits
of TDMA, a DTA-amenable arbitration policy, in the context
of MBPTA.

More complex inter-connection architectures have been
considered in the context of MBPTA such as trees [50], which
provide advantages over buses for large core counts at the
expense of some additional hardware complexity. Those designs
also consider variations of the arbitration policies to meet
mixed-criticality constraints. While not specifically devised for
MBPTA-compliant architectures, novel arbitration policies [17]
have been devised for mixed-criticality environments with
multi-level arbiters, to some extent similar to those of the
MBPTA-compliant tree in [50], and able to adapt dynamically
to different scenarios.

VIII. CONCLUSIONS

Different types of timing analyses impose heterogeneous
constraints on hardware designs, so chip vendors have to face
the challenge of deciding which timing analysis to support (if
any). Hence, proving that the same hardware design can be
used to obtain reliable and tight WCET estimates with different
families of timing analyses is of prominent importance to
increase the chance of those hardware designs being realized.

In this paper we prove that shared resources implementing
TDMA arbitration, which meet mixed-criticality systems re-
quirements, can be analyzed in the context of MBPTA. We

introduce small changes to the application of MBPTA with
which WCET estimates obtained are 9% lower on average than
those obtained with MBPTA-compliant designs.
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