171 research outputs found

    Getting better all the time - The Continued Evolution of the GNSS Software-Defined Radio

    Get PDF
    Software Defined Radio (SDR) has an infinite number of interpretations depending on the context in which it is designed and used. By way of a starting definition the authors choose to use that of ‘a reconfigurable radio system whose characteristics are partially or fully defined via software or firmware’. In various forms, SDR has permeated a wide range of user groups, from military, business, academia and to the amateur radio enthusiast

    Benchmarking CPUs and GPUs on embedded platforms for software receiver usage

    Get PDF
    Smartphones containing multi-core central processing units (CPUs) and powerful many-core graphics processing units (GPUs) bring supercomputing technology into your pocket (or into our embedded devices). This can be exploited to produce power-efficient, customized receivers with flexible correlation schemes and more advanced positioning techniques. For example, promising techniques such as the Direct Position Estimation paradigm or usage of tracking solutions based on particle filtering, seem to be very appealing in challenging environments but are likewise computationally quite demanding. This article sheds some light onto recent embedded processor developments, benchmarks Fast Fourier Transform (FFT) and correlation algorithms on representative embedded platforms and relates the results to the use in GNSS software radios. The use of embedded CPUs for signal tracking seems to be straight forward, but more research is required to fully achieve the nominal peak performance of an embedded GPU for FFT computation. Also the electrical power consumption is measured in certain load levels.Peer ReviewedPostprint (published version

    Reconfigurable Antenna Systems: Platform implementation and low-power matters

    Get PDF
    Antennas are a necessary and often critical component of all wireless systems, of which they share the ever-increasing complexity and the challenges of present and emerging trends. 5G, massive low-orbit satellite architectures (e.g. OneWeb), industry 4.0, Internet of Things (IoT), satcom on-the-move, Advanced Driver Assistance Systems (ADAS) and Autonomous Vehicles, all call for highly flexible systems, and antenna reconfigurability is an enabling part of these advances. The terminal segment is particularly crucial in this sense, encompassing both very compact antennas or low-profile antennas, all with various adaptability/reconfigurability requirements. This thesis work has dealt with hardware implementation issues of Radio Frequency (RF) antenna reconfigurability, and in particular with low-power General Purpose Platforms (GPP); the work has encompassed Software Defined Radio (SDR) implementation, as well as embedded low-power platforms (in particular on STM32 Nucleo family of micro-controller). The hardware-software platform work has been complemented with design and fabrication of reconfigurable antennas in standard technology, and the resulting systems tested. The selected antenna technology was antenna array with continuously steerable beam, controlled by voltage-driven phase shifting circuits. Applications included notably Wireless Sensor Network (WSN) deployed in the Italian scientific mission in Antarctica, in a traffic-monitoring case study (EU H2020 project), and into an innovative Global Navigation Satellite Systems (GNSS) antenna concept (patent application submitted). The SDR implementation focused on a low-cost and low-power Software-defined radio open-source platform with IEEE 802.11 a/g/p wireless communication capability. In a second embodiment, the flexibility of the SDR paradigm has been traded off to avoid the power consumption associated to the relevant operating system. Application field of reconfigurable antenna is, however, not limited to a better management of the energy consumption. The analysis has also been extended to satellites positioning application. A novel beamforming method has presented demonstrating improvements in the quality of signals received from satellites. Regarding those who deal with positioning algorithms, this advancement help improving precision on the estimated position

    System integration and verification of GNSS baseband processor

    Get PDF
    Satellite navigation, in the last three decades, has seen an evolution bringing up entirely new systems (Galileo) and modernization of existing systems (Global Positioning System). These systems have now changed the environment of the receiver design resulting in the development of Global Navigation Satellite System (GNSS) with new signal processing algorithms. GNSS receiver receives the signals from a GNSS satellite constellation, digitally processes them and provides position, velocity and time. Hardware GNSS receivers have good efficiency, good computational load and low power consumption. Such a hardware GNSS receiver is presented here. GNSS Receiver Reference Design is a fully functional L1 only GNSS receiver design. The main objective for this design is to make fully open access architecture (HW + SW) available to industry partners and researchers for development of GNSS and GNSSenhanced devices, for investigating current GNSS receivers and receiver algorithms and upcoming GNSS receiver standards. Baseband processing generates pre-processed data from received signals. It comprises digital signal processing executed by custom hardware (baseband system) and control processing implemented by a soft-core processor (COFFEE RISC core). The baseband system component performs acquisition and tracking of 6 channels. It currently provides only GPS coarse/acquisition (C/A) code. It is implemented by Field Programmable Gate Array (FPGA) logic, supported by hardware macros. The baseband system and the processor are to be integrated efficiently to manage the receiver activity. The integration is achieved by designing an interface that is compatible with the standard bus architecture. The interface is a shared system bus that contains a register database. The interface is implemented in RTL and verified in functional simulations. In this thesis, another objective of verifying the baseband system is achieved by targeting the maximum code coverage. The results show that this improves the quality of verification and provides good confidence in the design. The coverage numbers prove that the verification is extensive, close to 100%. Finally, synthesis is also needed for verifying the design implementation on gate level. Since the baseband system included many of Xilinx based models, both the subsystems are synthesized on Xilinx Virtex-II Pro platform. The synthesis results provide information on the on-chip area consumption

    Modification of a FPGA-based GPS receiver for reflectometry applications (GNSS-R)

    Get PDF
    English: Lack of frequent and global global observations from space is currently a limiting factor Earth observation missions. In recent years, as a low-cost alternative, Global Navigation Satellite System's signals Reflectometry (GNSS-R) has stood a potential powerful remote sensing technique. The existing research has shown that GNSS-R has the potential to give environmental scientist a low-cost, wide-coverage measurement network that will allow to derive geophysical parameters such as ocean altimetry, sea state or soil moisture. This data has the potential to greatly increase our knowledge of the Earth's environmental processes. During the last ten years, the Remote Sensing Laboratory of the Department of Signal Theory and Communications at the Univeristat Politècnica de Catalunya, has worked on the design and implementation of the appropriate receivers in order to track and process this GNSS-R signals in real-time to avoid the storage of huge volumes of raw data. One of its most remarkable efforts is the Passive Advanced Unit for ocean monitoring (PAU) project. In this work, the possibility of adapting an existing Global Position System (GPS) receiver for GNSS-R applications is explored. This GPS receiver is the Namuru-GPL a open source software receiver implemented for the Namuru development platform developed by the University of New South Wales Satellite Navigation and Positioning Laboratory (SNAP). A modified version of the Namuru-GPL has been implemented. This modified version of the receiver has been able to simultaneous track a C/A L1-band signal and a delayed version of it that simulated a reflected signal with the associated longer propagation path. In addition, the receiver has measured pseudorange differences with a tested resolution up 3 m with a single measurment in a controlled experimental scenario, thus validating the Namuru-GPL capabilities for GNSS-R altimetry applications. In addition, a new Acquisition Module has been developed. This module dramatically reduces the Namuru-GPL receiver average acquisition time from a few minutes to 2.5 s approximately, thanks to implementing the parallel code acquisition method. Moreover, the Acquisition Module requires low hardware resources and generates Delay Doppler Maps (DDMs). All the development process stages, including validation through testing of these proposed designs are summarized within this work.Castellano: La falta de observaciones frecuentes y a escala global desde el espacio es actualmente un factor limitador de las misiones de observación de la Tierra. En los últimos años, y como alternativa al uso de constelaciones de satélites de propósito especifico y alto coste, la reflectometría con señales de oportunidad de los sistemas globales de navegación por satélite (GNSS-R) ha demostrado ser una técnica de teledetección con gran potencial. Las investigaciones realizadas hasta ahora demuestran que las técnicas GNSS-R poseen el potencial para obtener datos ambientales de alto interés científico a bajo coste y con una amplia cobertura de las mediciones realizadas. Dichas mediciones permitirían obtener o mejorar la medida de parámetros geofísicos importantes, como el estado del mar, altimetría, o la humedad del suelo. Una mejor medida de dichos parámetros tienen el potencial de aumentar considerablemente nuestro conocimiento de los procesos ambientales de la Tierra. Durante los últimos diez años, el Remote Sesing Lab que pertenece al departamento de Teoría de la Señal y Comunicaciones (TSC) de la UPC, ha trabajado en el diseño y la implementación de receptores adecuados para adquirir y procesar señales GNSS-R en tiempo real para evitar el almacenamiento de enormes volúmenes de datos. Uno de los esfuerzos más notables es el proyecto "Passive Advanced Unit for Ocean monitoring" o proyecto PAU. En este trabajo, se explora la posibilidad de adaptar un receptor GPS para a aplicaciones GNSS-R. Este receptor es el Namuru-GPL, un receptor software open source implementado sobre la plataforma de desarrollo Namuru, desarrollada por el University of New South Wales Satellite Navigation and Positioning Laboratory (SNAP). La versión modificada del receptor Namuru-GPL que se ha implementado, ha sido capaz de seguir una señal GPS C/A en la banda L1 y simultáneamente una versión retardada de la misma que simulaba ser una señal reflejada con un camino de propagación más largo. Además, el receptor ha sido capaz de medir diferencias de pseudorangos con una resolución máxima de hasta 3 m con una única medida, en un escenario experimental controlado, validando así las capacidades del Namuru-GPL para aplicaciones de altimetría mediante GNSS-R. Además, se ha desarrollado un nuevo Módulo de Adquisición. Este módulo es capaz de reducir drásticamente el tiempo medio de adquisición del Namuru-GPL de unos pocos minutos a 2,5 s aproximadamente, gracias al método de adquisición en paralelo. Además, el Módulo de Adquisición necesita relativamente pocos recursos hardware y es capaz de generar "Delay Doppler Maps" (DDMs). Todas las etapas del proceso de desarrollo de los diseños propuestos, incluida la validación experimental se encuentran resumidos en este trabajo.Català: La manca d'observacions freqüents i a escala global des de l'espai és actualment un factor limitador de les missions d'observació de la Terra. En els últims anys, i com a alternativa a l'ús de constel·lacions de satèl·lits de propòsit específic i alt cost, la reflectometría amb senyals d'oportunitat dels sistemes globals de navegació per satèl·lit (GNSS-R) ha demostrat ser una tècnica de teledetecció amb un alt potencial. Les investigacions realitzades fins ara demostren que les tècniques GNSS-R disposen del potencial per obtenir dades ambientals d'alt interès científic a baix cost i amb una àmplia cobertura de les mesures realitzades. Aquestes mesures permetrien obtenir o millorar la mesura de paràmetres geofísics importants, tals com l'estat de la mar, altimetria, o la humitat del sòl. Una millor mesura d'aquests paràmetres té el potencial d'augmentar considerablement el nostre coneixement dels processos ambientals de la Terra. Durant els últims deu anys, el Remote Sesing Lab pertanyent al departament de Teoria del Senyal i Comunicacions (TSC) de la UPC, ha treballat en el disseny i la implementació de receptors adequats per rastrejar i processar senyals GNSS-R en temps real i evitar així haver d'emmagatzemar enormes volums de dades. Un dels seus esforços més rellevants és el projecte "Passive Advanced Unit for Ocean monitoring" o projecte PAU. En aquest treball, s'explora la possibilitat d'adaptar un receptor GPS per aplicacions GNSS-R. Aquest receptor és el Namuru-GPL, un receptor open source implementat sobre la plataforma de desenvolupament Namuru, desenvolupada pel University of New South Wales Satellite Navigation and Positioning Laboratory (SNAP). La versió modificada del receptor Namuru-GPL implementada, ha estat capaç de seguir un senyal GPS C/A a la banda L1 i simultàniament una versió retardada del mateix que simulava ser un senyal reflectit amb un camí de propagació més llarg. A més, el receptor ha estat capaç de mesurar diferències de pseudorangs amb una resolució màxima de fins a 3 m en una única mesura a un escenari experimental controlat, validant així les capacitats del Namuru-GPL per a possibles aplicacions d'altimetria mitjançant GNSS-R. També s'ha desenvolupat un nou Mòdul d'Adquisició. Aquest mòdul és capaç de reduir dràsticament el temps mitjà d'adquisició del Namuru-GPL d'uns pocs minuts a 2,5 s aproximadament, gràcies al mètode d'adquisició en paral·lel. A més, el Mòdul d'Adquisició consumeix relativament pocs recursos hardware i és capaç de generar "Delay Doppler Maps" (DDMs). Totes les etapes del procés de desenvolupament dels dissenys proposats, inclosa la seva validació experimental es troben resumits en aquest treball

    System integration and verification of GNSS baseband processor

    Get PDF
    Satellite navigation, in the last three decades, has seen an evolution bringing up entirely new systems (Galileo) and modernization of existing systems (Global Positioning System). These systems have now changed the environment of the receiver design resulting in the development of Global Navigation Satellite System (GNSS) with new signal processing algorithms. GNSS receiver receives the signals from a GNSS satellite constellation, digitally processes them and provides position, velocity and time. Hardware GNSS receivers have good efficiency, good computational load and low power consumption. Such a hardware GNSS receiver is presented here. GNSS Receiver Reference Design is a fully functional L1 only GNSS receiver design. The main objective for this design is to make fully open access architecture (HW + SW) available to industry partners and researchers for development of GNSS and GNSSenhanced devices, for investigating current GNSS receivers and receiver algorithms and upcoming GNSS receiver standards. Baseband processing generates pre-processed data from received signals. It comprises digital signal processing executed by custom hardware (baseband system) and control processing implemented by a soft-core processor (COFFEE RISC core). The baseband system component performs acquisition and tracking of 6 channels. It currently provides only GPS coarse/acquisition (C/A) code. It is implemented by Field Programmable Gate Array (FPGA) logic, supported by hardware macros. The baseband system and the processor are to be integrated efficiently to manage the receiver activity. The integration is achieved by designing an interface that is compatible with the standard bus architecture. The interface is a shared system bus that contains a register database. The interface is implemented in RTL and verified in functional simulations. In this thesis, another objective of verifying the baseband system is achieved by targeting the maximum code coverage. The results show that this improves the quality of verification and provides good confidence in the design. The coverage numbers prove that the verification is extensive, close to 100%. Finally, synthesis is also needed for verifying the design implementation on gate level. Since the baseband system included many of Xilinx based models, both the subsystems are synthesized on Xilinx Virtex-II Pro platform. The synthesis results provide information on the on-chip area consumption

    GNSS array-based acquisition: theory and implementation

    Get PDF
    This Dissertation addresses the signal acquisition problem using antenna arrays in the general framework of Global Navigation Satellite Systems (GNSS) receivers. The term GNSS classi es those navigation systems based on a constellation of satellites, which emit ranging signals useful for positioning. Although the American GPS is already available, which coexists with the renewed Russian Glonass, the forthcoming European contribution (Galileo) along with the Chinese Compass will be operative soon. Therefore, a variety of satellite constellations and signals will be available in the next years. GNSSs provide the necessary infrastructures for a myriad of applications and services that demand a robust and accurate positioning service. The positioning availability must be guaranteed all the time, specially in safety-critical and mission-critical services. Examining the threats against the service availability, it is important to take into account that all the present and the forthcoming GNSSs make use of Code Division Multiple Access (CDMA) techniques. The ranging signals are received with very low precorrelation signal-to-noise ratio (in the order of ���22 dB for a receiver operating at the Earth surface). Despite that the GNSS CDMA processing gain o ers limited protection against Radio Frequency interferences (RFI), an interference with a interference-to-signal power ratio that exceeds the processing gain can easily degrade receivers' performance or even deny completely the GNSS service, specially conventional receivers equipped with minimal or basic level of protection towards RFIs. As a consequence, RFIs (either intentional or unintentional) remain as the most important cause of performance degradation. A growing concern of this problem has appeared in recent times. Focusing our attention on the GNSS receiver, it is known that signal acquisition has the lowest sensitivity of the whole receiver operation, and, consequently, it becomes the performance bottleneck in the presence of interfering signals. A single-antenna receiver can make use of time and frequency diversity to mitigate interferences, even though the performance of these techniques is compromised in low SNR scenarios or in the presence of wideband interferences. On the other hand, antenna arrays receivers can bene t from spatial-domain processing, and thus mitigate the e ects of interfering signals. Spatial diversity has been traditionally applied to the signal tracking operation of GNSS receivers. However, initial tracking conditions depend on signal acquisition, and there are a number of scenarios in which the acquisition process can fail as stated before. Surprisingly, to the best of our knowledge, the application of antenna arrays to GNSS signal acquisition has not received much attention. This Thesis pursues a twofold objective: on the one hand, it proposes novel arraybased acquisition algorithms using a well-established statistical detection theory framework, and on the other hand demonstrates both their real-time implementation feasibility and their performance in realistic scenarios. The Dissertation starts with a brief introduction to GNSS receivers fundamentals, providing some details about the navigation signals structure and the receiver's architecture of both GPS and Galileo systems. It follows with an analysis of GNSS signal acquisition as a detection problem, using the Neyman-Pearson (NP) detection theory framework and the single-antenna acquisition signal model. The NP approach is used here to derive both the optimum detector (known as clairvoyant detector ) and the sov called Generalized Likelihood Ratio Test (GLRT) detector, which is the basis of almost all of the current state-of-the-art acquisition algorithms. Going further, a novel detector test statistic intended to jointly acquire a set of GNSS satellites is obtained, thus reducing both the acquisition time and the required computational resources. The eff ects of the front-end bandwidth in the acquisition are also taken into account. Then, the GLRT is extended to the array signal model to obtain an original detector which is able to mitigate temporally uncorrelated interferences even if the array is unstructured and moderately uncalibrated, thus becoming one of the main contributions of this Dissertation. The key statistical feature is the assumption of an arbitrary and unknown covariance noise matrix, which attempts to capture the statistical behavior of the interferences and other non-desirable signals, while exploiting the spatial dimension provided by antenna arrays. Closed form expressions for the detection and false alarm probabilities are provided. Performance and interference rejection capability are modeled and compared both to their theoretical bound. The proposed array-based acquisition algorithm is also compared to conventional acquisition techniques performed after blind null-steering beamformer approaches, such as the power minimization algorithm. Furthermore, the detector is analyzed under realistic conditions, accounting for the presence of errors in the covariance matrix estimation, residual Doppler and delay errors, and signal quantization e ects. Theoretical results are supported by Monte Carlo simulations. As another main contribution of this Dissertation, the second part of the work deals with the design and the implementation of a novel Field Programmable Gate Array (FPGA)-based GNSS real-time antenna-array receiver platform. The platform is intended to be used as a research tool tightly coupled with software de ned GNSS receivers. A complete signal reception chain including the antenna array and the multichannel phase-coherent RF front-end for the GPS L1/ Galileo E1 was designed, implemented and tested. The details of the digital processing section of the platform, such as the array signal statistics extraction modules, are also provided. The design trade-o s and the implementation complexities were carefully analyzed and taken into account. As a proof-of-concept, the problem of GNSS vulnerability to interferences was addressed using the presented platform. The array-based acquisition algorithms introduced in this Dissertation were implemented and tested under realistic conditions. The performance of the algorithms were compared to single antenna acquisition techniques, measured under strong in-band interference scenarios, including narrow/wide band interferers and communication signals. The platform was designed to demonstrate the implementation feasibility of novel array-based acquisition algorithms, leaving the rest of the receiver operations (mainly, tracking, navigation message decoding, code and phase observables, and basic Position, Velocity and Time (PVT) solution) to a Software De ned Radio (SDR) receiver running in a personal computer, processing in real-time the spatially- ltered signal sample stream coming from the platform using a Gigabit Ethernet bus data link. In the last part of this Dissertation, we close the loop by designing and implementing such software receiver. The proposed software receiver targets multi-constellation/multi-frequency architectures, pursuing the goals of e ciency, modularity, interoperability, and exibility demanded by user domains that require non-standard features, such as intermediate signals or data extraction and algorithms interchangeability. In this context, we introduce an open-source, real-time GNSS software de ned receiver (so-named GNSS-SDR) that contributes with several novel features such as the use of software design patterns and shared memory techniques to manage e ciently the data ow between receiver blocks, the use of hardware-accelerated instructions for time-consuming vector operations like carrier wipe-o and code correlation, and the availability to compile and run on multiple software platforms and hardware architectures. At this time of writing (April 2012), the receiver enjoys of a 2-dimensional Distance Root Mean Square (DRMS) error lower than 2 meters for a GPS L1 C/A scenario with 8 satellites in lock and a Horizontal Dilution Of Precision (HDOP) of 1.2.Esta tesis aborda el problema de la adquisición de la señal usando arrays de antenas en el marco general de los receptores de Sistemas Globales de Navegación por Satélite (GNSS). El término GNSS engloba aquellos sistemas de navegación basados en una constelación de satélites que emiten señales útiles para el posicionamiento. Aunque el GPS americano ya está disponible, coexistiendo con el renovado sistema ruso GLONASS, actualmente se está realizando un gran esfuerzo para que la contribución europea (Galileo), junto con el nuevo sistema chino Compass, estén operativos en breve. Por lo tanto, una gran variedad de constelaciones de satélites y señales estarán disponibles en los próximos años. Estos sistemas proporcionan las infraestructuras necesarias para una multitud de aplicaciones y servicios que demandan un servicio de posicionamiento confiable y preciso. La disponibilidad de posicionamiento se debe garantizar en todo momento, especialmente en los servicios críticos para la seguridad de las personas y los bienes. Cuando examinamos las amenazas de la disponibilidad del servicio que ofrecen los GNSSs, es importante tener en cuenta que todos los sistemas presentes y los sistemas futuros ya planificados hacen uso de técnicas de multiplexación por división de código (CDMA). Las señales transmitidas por los satélites son recibidas con una relación señal-ruido (SNR) muy baja, medida antes de la correlación (del orden de -22 dB para un receptor ubicado en la superficie de la tierra). A pesar de que la ganancia de procesado CDMA ofrece una protección inherente contra las interferencias de radiofrecuencia (RFI), esta protección es limitada. Una interferencia con una relación de potencia de interferencia a potencia de la señal que excede la ganancia de procesado puede degradar el rendimiento de los receptores o incluso negar por completo el servicio GNSS. Este riesgo es especialmente importante en receptores convencionales equipados con un nivel mínimo o básico de protección frente las RFIs. Como consecuencia, las RFIs (ya sean intencionadas o no intencionadas), se identifican como la causa más importante de la degradación del rendimiento en GNSS. El problema esta causando una preocupación creciente en los últimos tiempos, ya que cada vez hay más servicios que dependen de los GNSSs Si centramos la atención en el receptor GNSS, es conocido que la adquisición de la señal tiene la menor sensibilidad de todas las operaciones del receptor, y, en consecuencia, se convierte en el factor limitador en la presencia de señales interferentes. Un receptor de una sola antena puede hacer uso de la diversidad en tiempo y frecuencia para mitigar las interferencias, aunque el rendimiento de estas técnicas se ve comprometido en escenarios con baja SNR o en presencia de interferencias de banda ancha. Por otro lado, los receptores basados en múltiples antenas se pueden beneficiar del procesado espacial, y por lo tanto mitigar los efectos de las señales interferentes. La diversidad espacial se ha aplicado tradicionalmente a la operación de tracking de la señal en receptores GNSS. Sin embargo, las condiciones iniciales del tracking dependen del resultado de la adquisición de la señal, y como hemos visto antes, hay un número de situaciones en las que el proceso de adquisición puede fallar. En base a nuestro grado de conocimiento, la aplicación de los arrays de antenas a la adquisición de la señal GNSS no ha recibido mucha atención, sorprendentemente. El objetivo de esta tesis doctoral es doble: por un lado, proponer nuevos algoritmos para la adquisición basados en arrays de antenas, usando como marco la teoría de la detección de señal estadística, y por otro lado, demostrar la viabilidad de su implementación y ejecución en tiempo real, así como su medir su rendimiento en escenarios realistas. La tesis comienza con una breve introducción a los fundamentos de los receptores GNSS, proporcionando algunos detalles sobre la estructura de las señales de navegación y la arquitectura del receptor aplicada a los sistemas GPS y Galileo. Continua con el análisis de la adquisición GNSS como un problema de detección, aplicando la teoría del detector Neyman-Pearson (NP) y el modelo de señal de una única antena. El marco teórico del detector NP se utiliza aquí para derivar tanto el detector óptimo (conocido como detector clarividente) como la denominada Prueba Generalizada de la Razón de Verosimilitud (en inglés, Generalized Likelihood Ratio Test (GLRT)), que forma la base de prácticamente todos los algoritmos de adquisición del estado del arte actual. Yendo más lejos, proponemos un nuevo detector diseñado para adquirir simultáneamente un conjunto de satélites, por lo tanto, obtiene una reducción del tiempo de adquisición y de los recursos computacionales necesarios en el proceso, respecto a las técnicas convencionales. El efecto del ancho de banda del receptor también se ha tenido en cuenta en los análisis. A continuación, el detector GLRT se extiende al modelo de señal de array de antenas para obtener un detector nuevo que es capaz de mitigar interferencias no correladas temporalmente, incluso utilizando arrays no estructurados y moderadamente descalibrados, convirtiéndose así en una de las principales aportaciones de esta tesis. La clave del detector es asumir una matriz de covarianza de ruido arbitraria y desconocida en el modelo de señal, que trata de captar el comportamiento estadístico de las interferencias y otras señales no deseadas, mientras que utiliza la dimensión espacial proporcionada por los arrays de antenas. Se han derivado las expresiones que modelan las probabilidades teóricas de detección y falsa alarma. El rendimiento del detector y su capacidad de rechazo a interferencias se han modelado y comparado con su límite teórico. El algoritmo propuesto también ha sido comparado con técnicas de adquisición convencionales, ejecutadas utilizando la salida de conformadores de haz que utilizan algoritmos de filtrado de interferencias, como el algoritmo de minimización de la potencia. Además, el detector se ha analizado bajo condiciones realistas, representadas con la presencia de errores en la estimación de covarianzas, errores residuales en la estimación del Doppler y el retardo de señal, y los efectos de la cuantificación. Los resultados teóricos se apoyan en simulaciones de Monte Carlo. Como otra contribución principal de esta tesis, la segunda parte del trabajo trata sobre el diseño y la implementación de una nueva plataforma para receptores GNSS en tiempo real basados en array de antenas que utiliza la tecnología de matriz programable de puertas lógicas (en ingles Field Programmable Gate Array (FPGA)). La plataforma está destinada a ser utilizada como una herramienta de investigación estrechamente acoplada con receptores GNSS definidos por software. Se ha diseñado, implementado y verificado la cadena completa de recepción, incluyendo el array de antenas y el front-end multi-canal para las señales GPS L1 y Galileo E1. El documento explica en detalle el procesado de señal que se realiza, como por ejemplo, la implementación del módulo de extracción de estadísticas de la señal. Los compromisos de diseño y las complejidades derivadas han sido cuidadosamente analizadas y tenidas en cuenta. La plataforma ha sido utilizada como prueba de concepto para solucionar el problema presentado de la vulnerabilidad del GNSS a las interferencias. Los algoritmos de adquisición introducidos en esta tesis se han implementado y probado en condiciones realistas. El rendimiento de los algoritmos se comparó con las técnicas de adquisición basadas en una sola antena. Se han realizado pruebas en escenarios que contienen interferencias dentro de la banda GNSS, incluyendo interferencias de banda estrecha y banda ancha y señales de comunicación. La plataforma fue diseñada para demostrar la viabilidad de la implementación de nuevos algoritmos de adquisición basados en array de antenas, dejando el resto de las operaciones del receptor (principalmente, los módulos de tracking, decodificación del mensaje de navegación, los observables de código y fase, y la solución básica de Posición, Velocidad y Tiempo (PVT)) a un receptor basado en el concepto de Radio Definida por Software (SDR), el cual se ejecuta en un ordenador personal. El receptor procesa en tiempo real las muestras de la señal filltradas espacialmente, transmitidas usando el bus de datos Gigabit Ethernet. En la última parte de esta Tesis, cerramos ciclo diseñando e implementando completamente este receptor basado en software. El receptor propuesto está dirigido a las arquitecturas de multi-constalación GNSS y multi-frecuencia, persiguiendo los objetivos de eficiencia, modularidad, interoperabilidad y flexibilidad demandada por los usuarios que requieren características no estándar, tales como la extracción de señales intermedias o de datos y intercambio de algoritmos. En este contexto, se presenta un receptor de código abierto que puede trabajar en tiempo real, llamado GNSS-SDR, que contribuye con varias características nuevas. Entre ellas destacan el uso de patrones de diseño de software y técnicas de memoria compartida para administrar de manera eficiente el uso de datos entre los bloques del receptor, el uso de la aceleración por hardware para las operaciones vectoriales más costosas, como la eliminación de la frecuencia Doppler y la correlación de código, y la disponibilidad para compilar y ejecutar el receptor en múltiples plataformas de software y arquitecturas de hardware. A fecha de la escritura de esta Tesis (abril de 2012), el receptor obtiene un rendimiento basado en la medida de la raíz cuadrada del error cuadrático medio en la distancia bidimensional (en inglés, 2-dimensional Distance Root Mean Square (DRMS) error) menor de 2 metros para un escenario GPS L1 C/A con 8 satélites visibles y una dilución de la precisión horizontal (en inglés, Horizontal Dilution Of Precision (HDOP)) de 1.2
    corecore