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ABSTRACT 

Smartphones containing multi-core central 
processing units (CPUs) and powerful many-core 
graphics processing units (GPUs) bring 
supercomputing technology into your pocket (or into 
our embedded devices). This can be exploited to 
produce power-efficient, customized receivers with 



flexible correlation schemes and more advanced 
positioning techniques. For example, promising 
techniques such as the Direct Position Estimation 
paradigm or usage of tracking solutions based on 
particle filtering, seem to be very appealing in 
challenging environments but are likewise 
computationally quite demanding. This article sheds 
some light onto recent embedded processor 
developments, benchmarks Fast Fourier Transform 
(FFT) and correlation algorithms on representative 
embedded platforms and relates the results to the use 
in GNSS software radios. The use of embedded 
CPUs for signal tracking seems to be straight 
forward, but more research is required to fully 
achieve the nominal peak performance of an 
embedded GPU for FFT computation. Also the 
electrical power consumption is measured in certain 
load levels. 
 
INTRODUCTION 

When building a GNSS receiver we have to 
accomplish three major tasks: detection of GNSS 
signals, tracking them, and using the obtained 
ranging information to compute the user position. In 
contrast to hardware GNSS receivers, a software 
GNSS receiver allows engineers to easily adapt the 
used algorithms and design principles to each 
application domain. For the above-mentioned three 
core tasks there are various characteristic numerical 
operations that must be performed. For GNSS signal 
acquisition, the use of the FFT is virtually inevitable. 
For signal tracking, the correlation of the received 
signal with internally generated replica signals has to 
be performed. This is realized either as a dot-product 
operation with multiply-and-add commands or as an 
exclusive-OR operation if 1-bit sampling is used. 
Positioning filters typically make use of various 
floating point operations to compute, for instance, 
satellite positions or update the navigation filter.  
 
In mass-market receivers the first two tasks are 
accomplished by application specific integrated 
circuits (ASICs) and the user position is computed 
either on the ASIC or by a general purpose processor. 
Current ASIC technology is highly efficient and an 
ASIC-based GNSS receiver can solve the above-
mentioned tasks consuming only milliwatts of power 
allowing to track the user position in the background, 
facilitating applications like geofencing, user motion 
detection in wearables etc [1]. However, the 
accuracy of those receivers is still in the order of 
several (dozens of) meters or worse, especially if 
operated in a mobile phone under degraded signal 
conditions [2]. Needless to say, mass market 
receivers have limited capabilities to be tailored for 
specific applications as the core algorithms are built 
into the silicon chip and positioning algorithms are 
intentionally kept simple to maintain the low power 
consumption. 
 

Realizing all three receiver tasks in software, 
generally allows implementation of more flexible 
algorithms by a larger community of engineers and 
researchers. The time to build or adapt a so-called 
software receiver is significantly lower since, apart 
from the RF front-end, no dedicated hardware 
development is involved. Indeed nowadays software 
GNSS receivers are the gold standard in research and 
development (R&D) especially when developing 
new algorithms, testing new navigation signals or 
fusing of GNSS with other sensors. R&D software 
receivers typically run on a conventional desktop 
personal computer (PC) or a laptop, which not only 
allows real-time processing of hundreds of channels, 
but also re-processing the same signal many times to 
test various algorithms and parameters.  
 
This R&D market is definitely not very large, but the 
technology fully profits from the ongoing 
developments in the PC sector including more and 
more powerful CPUs and graphics processors.. 
Around eighteen years after Dennis Akos presented 
a first post-processing software GPS receiver in his 
PhD thesis [3], all-in-view tracking of the complete 
GNSS constellation is possible on a PC costing the 
same as it did eighteen years ago.  
 
At the latest when Samsung introduced the quad-
core mobile phone S4 with its embedded powerful 
graphics processor, it became clear that we have 
entered the era of mobile super-computing. Within 
one of the latest phones (Samsung Note 4) the 
graphics chip Adreno 420 is able to perform more 
than one hundred billions floating point operations 
per second (GFlop/sec), enabling hyper-realistic 3D 
gaming. Naturally, the power consumption and the 
form factor of the chips and boards in question is 
now much more intriguing for using mobile 
supercomputing devices to design and build a new 
generation of software receivers able to leave the 
R&D niche behind and extend into a wider 
application market, which may have significant 
benefits for the end-user. For example, precise 
positioning in degraded or indoor environments is 
still a challenge not achieved with conventional 
technology. In this context, sophisticated methods of 
GNSS/INS integration and/or nonlinear estimation 
filters could make much better use of the available 
information from the GNSS signals than existing 
technology does. In this article we will for example 
discuss how Direct Position Estimation (DPE) fuses 
GNSS signal tracking and position estimation and 
how more flexible software receivers can foster its 
adoption.  
 
Also niche markets like GNSS space receivers are 
possibly more efficiently realized as software 
receivers, as they can better adapt to the challenging 
environment and specific requirements. For example 
launch receivers not only face a bad satellite signal 
geometry (and thus rather low received signal power) 
due to the mounting of the antenna but they have to 



cope together with high signal dynamics. The 
European Space Agency (ESA) is investigating this 
technology for its application within a space borne 
receiver. The use of GNSS for space applications is 
manifold, and includes launch monitoring or precise 
injection of satellites into geostationary orbits; 
applications which exhibit a high user dynamics. 
Standard GNSS space applications are positioning in 
low Earth orbits or on geostationary orbits and partly 
centimeter accuracy is achieved. Also formation 
flying or rendezvous and docking with the help of 
GNSS is demanding in terms of the required 
accuracy. Navigation in geostationary orbits, on 
highly elliptical orbits or navigation to and from the 
Moon requires a very high sensitivity of the GNSS 
receiver. All those applications could potentially 
benefit from a software receiver based approach as it 
can be fully optimized for the specific application. 
 
In the remainder of this article, we first summarize 
the current state of mobile supercomputing and then 
match those developments to the GNSS software 
receiver core activities. Benchmarks will be 
presented for power consumption, FFT and signal 
tracking, all evaluated on embedded platforms 
purchased at the end of the year 2014. The results 
will be mapped into the effective number of 
correlators available for signal acquisition and the 
number of receiver channels. The obtained numbers 
are matched to the nominal peak performance of the 
platform and an explanation is given, if it is not 
achieved. The article is completed with a discussion 
of the importance of these computing advances in the 
implementation feasibility of advanced tracking and 
positioning techniques, which would benefit from 
the supercomputing capabilities of current processor 
technology. 
 
RECENT COMPUTING DEVELOPMENTS 

It is common wisdom that computers get ever faster, 
smaller, and more efficient. In the world of 
supercomputers there is actual empirical data to back 
up and quantify this impression. The Top500 project 
(www.top500.org) has been tracking the 
performance of the world’s 500 most powerful 
computing systems for over 20 years. The No. 1 
system on the first issue of the list in June 1993 
achieved a whopping 59.7 GFlop/sec when solving a 
linear system of equations using an LU 
decomposition approach. This benchmark is still 
used today to determine performance in the form on 
the Linpack application. 
 
When looking at the historic development of the 
Top500 list provided in Figure 1, we can identify a 
remarkable performance growth since 1993. The 
average performance of the 500 top systems (green 
points) grew by a factor of 84% per year since 1993 
and the performance of the number one system 
(yellow points) improved even faster (90 % per year). 
This improvement is fundamentally fueled by 

advances in semiconductor technology governed by 
Moore’s law, which states that the number of 
transistors doubles roughly every 18 months (or, in 
other words, improves by about 60% per year). 
Computer architecture enhancements (in the past) 
and increased parallelism (a more recent trend) 
account for the performance growth beyond what 
Moore’s law predicts. 
 

 
Figure 1: The Top500 list of supercomputers 

 
The trend towards parallelism is however not limited 
to supercomputers. While the big systems in the Top 
500 list are today composed of hundreds of 
thousands of cores, multi- and manycores are 
dominating desktop and server systems and have 
more recently also appeared in mobile and 
embedded platforms. One speaks of a multi core 
system, if it utilizes a few (below or around a dozen) 
computational units, and a many core system may 
have hundred or more units. Multiple computing 
cores are however not the only form of parallelism 
employed by modern architectures. A particularly 
efficient form of parallelism is known as SIMD 
(single instruction multiple data), which is employed 
in virtually all computers today. Here, the same 
operation is performed on multiple data items 
instead of just one. For some application areas, such 
as dense linear algebra, this directly translates to 
increased performance. SIMD (with the number of 
data items that can be processed in parallel) is 
constantly increasing. For desktop CPUs the SIMD 
registers are today 256 bits wide and they can thus 
operate on 4 double precision floating point (FP) 
numbers or 8 single precision FP numbers at the 
same time. Upcoming processor generations will 
double the SIMD width to 512 bits. 
 
For mobile and embedded systems there is an ever 
increasing need to provide strong computing 
capability to support a variety of demanding 
applications (video encoding, augmented reality, 
gaming). This has driven the performance of these 
platforms where they can actually be compared to 
supercomputers of the past. A modern mobile device 



can achieve a Linpack performance of 2-4 GFlop/sec, 
which means that it would indeed have been placed 
on the Top500 list in the early 1990s. 
 
At least as important as the improvement in raw 
performance is the energy efficiency of computing 
devices. Analysis of historic devices going back to 
the 1940s has uncovered what is sometimes referred 
to as Koomey’s law: The amount of computations 
that can be performed per unit energy improves by 
about 58% per year. The energy efficiency metric 
has the nice property that it can be used to compare 
across the whole spectrum of computing devices. 
Figure 2 shows such a comparison between the 
achieved energy efficiency of systems in the Top 500 
list (blue dots), the prediction made by Koomey’s 
law as red line, and the Apple iPad2 as an example 
mobile system. Highlighted are systems that have 
been specifically designed for energy efficiency (the 
BlueGene line of systems by IBM) and more recent 
accelerator platforms based on Xeon Phi and GPU 
hardware plus the iPad2. 
 

 
Figure 2: Computational power per kilowatt 

 
TEST HARDWARE 

For benchmarking the software receiver algorithms 
we use several development platforms. All are 
shown in Figure 3. 
 
The first one is the ~200 $ ArndaleOcta board with a 
Samsung Exynos 5420 CPU consisting of four 1.8 
GHz Cortex-A15 cores plus an ARM Mali-T628 
GPU. It is used in some versions of the Samsung 
Galaxy S5 mobile phone. The GPU has a remarkable 
floating point performance of 102 GFlop/sec if all 
six GPU cores are used. Our benchmark application 
utilises only four GPU cores due to minimisation of 
the implementation effort in the Linux Kernel 
yielding a theoretical peak performance of 68 
GFlop/sec for the GPU. 
  
The second embedded board is a HardKernel 
ODROID-XU3 Lite featuring a Samsung Exynos 
5422 CPU (Cortex-A15 1.8GHz quad core and 
Cortex-A7 quad-core). We used this board only for 
tracking benchmarks and not for FFT tests. The 
tracking benchmarks were carried out on one of the 
A15 cores running at 1.8 GHz. 
 

The third platform is the Firefly single board 
computer using a Rockchip RK3288 CPU with a 
Cortex-A17 1.8 GHz quad-core. The tracking 
benchmarks were run on one of the Cortex-A17 
cores with 1.8 GHz. 
 
The fourth test platform is a One Plus One mobile 
phone based on a Qualcomm Snapdragon 801 
processor. Again it was used only for tracking 
benchmarks on one of the Krait 400 cores. In 
contrast to the first three Linux boards, it runs 
Android 5.0 in the CyanogenMod version CM12S. 
 

  

 
 

Figure 3: Embedded test platforms: Upper left: 
Arndale Octa, upper right: Odroid, lower left: 

Firefly, lower right: One Plus One 
 

SOFTWARE RECEIVER CORE 

IFEN is currently developing a new embedded 
software receiver which combines the algorithmic 
performance of the PC-based software receiver SX3 
with the efficiency of the firmware from the field-
programmable-gate-array (FPGA) based receiver 
NavX-NTR. This new embedded software receiver 
runs under the Linux Operating System but can in 
principle also be compiled for Android or without 
any operating system at all. Additionally Windows 
is supported but for Windows, the IFEN’s SX3 
software receiver delivers more features.  
 
The embedded software receiver receives IF samples 
via USB, TCP/IP or from file input. It is designed as 
a multi-GNSS and multi-frequency receiver plus 
inertial measurement unit (IMU) support. Currently 
it only supports multiple correlators for tracking in 
DLL, FLL or PLL mode, but will be upgraded to 
vector tracking and deep GNSS/IMU integration 
soon. It operates most efficiently with 1-bit samples 
and signal tracking is performed on the CPU. Signal 
acquisition uses either the CPU or the GPU and a 
FFT based algorithm with resampling is employed 
[4].  
 
Current applications are to proof the concept of a 
dual frequency GPS/Galileo space software receiver 
in low Earth orbit, and to be used for precise 
positioning with an integrated RTK or PPP module 
within UAVs also supporting GPS and Galileo. A 



screenshot of the minimal user interface is shown in 
Figure 4 with the receiver in low Earth orbit mode. 
 
BENCHMARKS 

The following sections cover the power consumption, 
acquisition (FFT) and tracking benchmarks. 
 
POWER CONSUMPTION 
Mobile applications often have some power 
constraints, especially in the aviation or space sector, 
where the power-to-weight ratio plays a dominant 
role. Thus the power consumption of such an 
embedded software receiver is an interesting 
attribute which we have measured for typical load 
levels. One has to be careful when performing a 
power consumption measurement for a specific 
application due to the fact that also (for the specific 
application unnecessary) peripherals, such as the 
video connection, can contribute to the overall power 
balance significantly. This video connection is part 
of our Arndale development board and can not be 
deactivated. 
 
Three measurement scenarios were set up to 
determine the power consumption of the Arndale 
Octa development board running a software receiver 
acquiring and tracking common GPS L1 signals. All 
power measurements are listed in Table 1. 
 
The test setup consists of the ArndaleOcta 
connetected to a power adapter delivering 5V up to 
3 Ampere in form of Direct Current (DC). A 
multimeter was used to measure the actually 
consumed current by serial placement within the 
power supply circuit. The consumed power P is 
calculated with P=V*I, while V refers to the voltage 
of 5V and I to the measured current. 
 

The first measurement acts as a baseline and 
determines the power consumption of the board with 
the default peripheral settings and only the Linux 
operating system running. The second scenario 
determines the increase of power consumption 
during nominal tracking (after acquiring the signals). 
This is achieved by setting 12 tracking channels and 
switching off the acquisition unit. The third scenario 
is similar to the second, but with the acquisition unit 
permanently active, which causes an additional 
increase in CPU load and is heavily loading the GPU. 
The overall power consumption with acquisition 
activated increases to 4.35 W with the largest part 
attributed to the background power. 
 

 System state CPU 
load 

[%] 

No. 
tracked 
channel 

Power 
consumption 
[W]  

1 OS Linux started 

SW Receiver Off 

0.20 - 2.75 

2 SW Receiver On 

Tracking only 

52.0 12 4.08 

3 SW Receiver On 

Tracking + 
Acquisition 

70.6 12 + acq. 4.35 

 

Table 1: Power consumption of the embedded 
software receiver on the Arndale board 

 
All measurements were performed during the early 
development phase of the embedded software 
receiver. Especially for the CPU load and therefore 
in the power to number of tracking channels ratio, a 
lot of optimizations have not yet been implemented. 
The increase in CPU load during acquisition is based 
on a first implementation of the OpenCL acquisition 
which pre-computes all Doppler bins for acquisition 
search and moves the whole data to the OpenCL 
based FFT engine consuming a lot of CPU power. 

 

Figure 4: Screen shot of IFENs embedded software receiver tracking the international space station on 
L1/E1/L5/E5a 



Naturally, this should happen directly in the OpenCL 
kernel running on the GPU. Thus, the numbers listed 
in table 1 are upper limits on the power consumption, 
with potential for improvement. 
 
SIGNAL ACQUISITION 
In the FFT acquisition context, the OpenCL standard 
shall be mentioned providing a computing language 
compatible with many CPUs and GPUs. Indeed also 
our Arndale embedded test system was able to 
support OpenCL on the GPU after some Linux 
kernel patches. Without OpenCL it would have been 
virtually impossible to program the GPU on the 
embedded system at all. Furthermore, the clFFT 
library [5] exists as an open source project 
facilitating an efficient implementation of FFTs 
based on OpenCL. This library was initially 
implemented and optimized for AMD GPUs for 
desktop PCs, but also runs on other OpenCL 
compatible GPUs including our embedded test 
system to perform benchmarks. 
 
The results of the FFT benchmarks for the Arndale 
Octa board using the ARM Mali-T628 are shown in 
Table 2, where an FFT length of 8192 points was 
used. This length matches acceptable well with the 
Galileo E1 codes having 4092 chips and a PRN code 
duration of 4 ms. The Galileo E1 correlation function 
is computed with two samples per chip. 
 
Within the currently used FFT-based acquisition 
algorithm, one FFT can be used to search all code 
phases within one Doppler bin yielding a coarse 
estimate of the possible number of correlators shown 
in Table 2. As outlined in [4], the resampling FFT 
acquisition requires two forward FFTs, and one 
inverse FFT for each Doppler bin. Only the inverse 
FFTs are considered in the following as typically a 
large number of Doppler bins is considered. The 
effective number of correlators corresponds to the 
number of (hardware) correlators running in parallel 
in real-time to achieve the same result. Please note 
that the correlators discussed here are complex 
correlators including I and Q components. The 
computation of the GFlop/sec value is based on the 
usual 5Nlog2N formula estimating the number of 
floating point operations (multiplication or addition) 
for a N-point FFT. 
 
In our benchmark implementation we use clFFT to 
solely compute the inverse FFTs and to compute all 
Doppler bins in parallel on the GPU. The forward 
FFTs are computed on the CPU. All FFTs use single 
precision float data types. The stated GPU execution 
time refers to the time needed to perform all inverse 
FFTs, where each inverse FFT corresponds to a 
Doppler bin. The measured time neither considers 
the forward FFTs nor considers time needed for 
memory shifts to and from the GPU. 

No. of 
parallel 
FFTs 

GPU 
execution 
time [ms] 

GFlop/sec Effective no. 
of 
correlators 
for Galileo 
E1 
[Thousands] 

1 1.073 0.5 30 

2 1.633 0.65 40 

4 2.572 0.83 50.6 

16 8.575 1.0 60.7 

50 24.720 1.1 65.8 
 

Table 2: FFT performance on the embedded 
system 

 
We found that the GNSS signal acquisition generally 
benefits from executing the FFT operation on a GPU. 
Performing the acquisition on the GPU has the 
benefit of de-stressing the CPU and enabling more 
resources for tracking. In the embedded world, we 
realize that FFT libraries and GPU hardware exist, 
that can be more or less brought together to compute 
FFTs. Although the number of achievable 
correlators is still impressive (more than 50 
thousands), we noticed that a performance of only 
around 1 GFlop/sec was achieved, with a theoretical 
limit of 68 GFlop/sec supported by the hardware.  
 
However, a more detailed analysis reveals that this 
theoretical peak capability of the GPU can only be 
achieved if the dot product, scalar, and vector units 
are all used at the same time [6]. Any real world code 
is unlikely to be able to utilize all these units at the 
same time and the maximal possible performance 
will therefore be lower than 68 GFlop/sec. If, for 
example, a kernel can only make use of the scalar 
units, the maximal performance reduces more than 
eightfold to 8 GFlop/sec. Another point of 
consideration is that besides the compute aspect, 
application kernels can be limited by memory access. 
This situation is best visualized employing the 
roofline model [7, 8], where  FFT is known to often 
be among the memory bound kernels. This is 
consistent with our finding that executing several 
FFTs in parallel did not show a big performance gain 
if at least two FFTs were executed.  
 
In [9] a similar GPU (T-604) is benchmarked and 
only a rather low main memory bandwidth of 8.39 
GByte/s has been obtained. A similar value of 9.2 
GByte/s has been obtained on the One Plus One 
mobile phone for the device-to-device memory 
bandwidth of the Adreno 330 GPU using the 
OpenCL-Z app. It is not trivial to measure the 
required amount of memory transfers for a FFT 
implementation but assuming that each of the 
5Nlog2N multiplications or additions operates on the 
main memory an upper bound can be established. 
Each operation has two complex numbers as input 
and one as output. If working with 32-bit float 



numbers, maximally 3*2*4*5*Nlog2N bytes are 
transferred. This evaluates for 8192 FFT points to 
12.8 Mbyte taking 1.5 ms of time. The 8192 FFT 
points represent a time span of 4 ms and thus the 
memory transfer consumes a large portion of real 
time. 
  
A more detailed performance analysis for the FFT 
implementation on our embedded platforms is still 
under investigation, however we believe the 
performance gap can be significantly reduced, with 
a potential speed-up of at least an order of magnitude 
provided a detailed understanding of the MALI GPU 
and its memory cache hierarchy can be obtained. 
 
SIGNAL TRACKING 
For the signal tracking benchmark we set up a 
dedicated program, simulating a receiver tracking 
channel including code and carrier NCOs plus 
correlators. Then, we measured the number of 
samples the platform can process within one second. 
This number is called million-correlations-per-
second (MCOPS) and is measured on a single core 
of the CPU. The channel was per default configured 
to work with five correlators (e.g. very early, early, 
prompt, late and very late) but also other 
configurations with 2, 3 or 21 correlators have been 
used. The implemented correlation scheme operates 
with 1-bit samples and actually realizes the 
correlation as an exclusive-OR operation plus bit 
counting. It has been verified that the code 
correlation is the bottleneck as the same carrier NCO 
is used for all correlators. 
 
Figure 5 shows this implementation symbolically 
with a 10.24 or 20.48 MHz one bit I/Q input sample 
stream and three correlators (Early, Prompt and Late) 
as well as a typical carrier and code steering loop. As 
mentioned above, the most time consuming part 
belongs to the correlation operation. One correlation 
operation relates to correlating one sample of the 
input stream with the reference signals, thus the 
resulting number of tracking channels depends on 
the working sample rate. The benchmark is 
performed on a single CPU core, thus the maximum 
number of tracking channel is a multiple of the CPU 
cores and is calculated by #CH = MCOPS / 
SampleRate * CPUcores. 
 
The above described benchmark application was 
cross-compiled with highest compiler optimization 
flag -O2 in order to achieve highest performance on 
each development board. To get rid of bottlenecks 
caused by reading samples from any interface such 
as network, USB or internal storage, samples are 
preloaded and read from the main memory.  
 
As depicted in Table 3, increasing the number of 
correlators per channel results in a reduction of the 
MCOPS value. 
 

No. 
of 
corr. 

MCOPS 
per core 
Arndale 
Octa 

MCOPS 
per core 
Odroid  

MCOPS 
per core 
Firefly 

MCOPS 
per core 
One 
plus one 

2 428 900 825 882 

3 326 715 650 702 

5 231 490 460 470 

21 66 Not 
tested 

Not 
tested 

Not 
tested 

 

Table 3: Tracking performance on the 
embedded boards 

 
In the above table the ArndaleOcta board shows 
quite bad results compared to the other boards of 
almost similar CPUs. However, at the start of our 
work this was the only board available with a 
working OpenCL implementation under Linux. This 
was based on an unofficial board support image by 
Linaro which had OpenCL support in place but to the 
expense of only basic support for other board 
features. One of the main problems is the lack of 
support for CPU frequency handling and therefore it 
is unclear at which CPU speed the ArndaleOcta 
board was actually running in the benchmarks. For 
the other (newer) boards it could be ensured that the 
CPUs were running at full speed at 1.8 GHz. This 
can also be seen by running the openssl benchmark 
which shows less than half the performance for 
ArndaleOcta compared to the ODROID board. 
 
For a given MCOPS value, the number of possible 
tracking channels is determined by the sample rate 
and by the number of used CPU cores. Exemplary 
relationships are shown in Table 4. 
 

MCOPS 
per core 

Sample rate No. of 
used 
CPU 
cores 

Channel 
no. upper 
limit 

900 10.24 MHz 4 351 

715 20.48 MHz 4 139 

490 20.48 MHz 4 95 

66 10.24 MHz 4 25 
 

Table 4: Relating MCOPS and sample rate to 
number of tracking channels 

 
For example all the embedded system easily allows 
implementation of a single frequency GPS, Galileo, 
GLONASS plus BeiDou Receiver. Alternatively, 
wideband tracking (20 MHz bandwidth and 40 MHz 
sample rate) of dual frequency GPS is possible. 
Another conclusion that these numbers suggest is 
that multi-correlation (that is, more than 5 per 
channel) schemes are possible. The latter opens the 
door for implementing sophisticated 
synchronization and positioning solutions that 



typically use large number of correlators per 
integration time. 
 
Similar as for the FFT, a large amount of memory is 
transferred. But as the memory is accessed linearly, 
the CPU caches are much better exploited. 
 

ADVANCED TRACKING AND 
POSITIONING TECHNIQUES 

Legacy GNSS receivers use phase lock loop (PLL) 
and delay lock loop (DLL) variations to perform 
signal tracking. There is a deep literature comparing 
the various approaches, mainly based on the 
selection of different discriminator functions that 
provide enhanced performance to the receiver, for 
instance, in terms of multipath rejection capabilities. 
Typically, these PLL/DLL schemes require 3 or 5 
correlation points to operate, depending on the 
specific implementation. Arguably, these 
approaches provided a good balance between 
tracking performance and computational complexity. 
Particularly, these savings were important when the 
computational resources were scarce. As motivated 
in this article, this limitation does no longer exist in 
modern computer platforms, or it is going to vanish 
in the near future, at least if not absolute minimum 
power consumption is sought, e.g. for background 
operation of a GNSS receiver. 
 
Imagine going beyond the classical PLL/DLL 
architectures. The possibility of implementing multi-
correlation architectures turns this wish into a reality. 
For the last decades we have seen a number of 
proposals for more sophisticated tracking and 
positioning techniques, most of them requiring 
multiple (i.e. more than 5) correlation outputs to be 
of use [10-14]. Their benefits have been quantified 
in the literature in terms of performance 
enhancements with respect to legacy solutions. 
However, these proposals could not compete against 

legacy solutions in terms of complexity and 
implementation feasibility in state-of-the-art 
processing technologies. This is not the case 
nowadays and the gap will reduce quickly. 
Figure 6 shows the baseband processing diagram of 
a generic GNSS receiver with K channels. There, we 
used the complex notation for the sake of clarity, 
thus avoiding I&Q duplicated arms in the diagram. 
The focus is on the tracking and positioning 
operations, and thus acquisition is assumed as a 
previously accomplished stage. In the digital domain, 
a closed-loop receiver has to perform carrier wipe-
off and code correlation, which is fed to a Digital 
Signal Processing (DSP) block implementing the 
chosen tracking/positioning algorithm. Notice that 
we have L correlation outputs, although this number 
could vary among channels. The diagram in Figure 
6 is sufficiently generic to represent legacy and 
advanced tracking techniques. For instance, whether 
the outputs from the K channels are processed 
independently or jointly is handled at the DSP 
module. The former corresponds to the usual 
PLL/DLL schemes, where each channel tracks one 
satellite (with L ≤ 5). Then, an additional navigation 
filter is in charge of delivering position, velocity and 
time (PVT) estimates after computing the necessary 
observables.  
 
Other more sophisticated techniques fall in this 
category, such as the Multipath Estimating DLL 
(MEDLL) [14] or the Multipath Estimating Particle 
Filter (MEPF) [11]. Both techniques share the idea 
of jointly estimating the parameters of the line-of-
sight signal and those from the multipath echoes, 
with the goal of mitigating the effects of the latter in 
the former. Their main difference is in the statistical 
principle used to derive the estimators: whereas 
MEDLL is based on the Maximum Likelihood (ML) 
principle, the MEPF resort to Bayesian filtering 
theory. Their implementation is consequently 

 
Figure 5: Tracking channel block diagram 
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different, but they share the fact that L should be 
larger than the values considered in PLL/DLL 
schemes. Roughly, several tenths of correlators per 
channel should be considered when implementing 
these techniques for full exploitation of their 
capabilities and enhanced performances [13]. 
Consequently, the computational resources required 
are moderately large, particularly when a large 
number of particles are used in MEPF. However, the 
intrinsic parallelization properties of particle 
filtering should benefit from the computational 
advances in this field, with the ability to share the 
load among various processing resources. 
 
On the other hand, the receiver depicted in Figure 6 
can accommodate as well combined tracking 
structures where the outputs from the K channels are 
jointly processed. The output of this processing is the 
control signal to drive the tracking loops and the 
PVT solution. In this category we find Vector 
Tracking Loops (VTL), a convenient modification of 
the usual PLL/DLL schemes that allows for 
exploiting the synergies among channels. Therefore, 
the number of correlators in VTL schemes is driven 
by the underlying PLL/DLL techniques (L ≤ 5) and 
thus its bottleneck is not in this part of the baseband 
processing chain.  
 
An alternative, more general approach has been 
proposed under the name of Direct Position 
Estimation (DPE) [12]. DPE has been initially 
derived under the ML principle, but an 
implementation based on Bayesian filtering methods 
was presented as well. Therefore, open and closed 
loop architectures are possible for DPE, in contrast 
to VTL. In both cases, DPE was seen to enhance the 
performance of legacy receivers in terms of 

multipath mitigation, operation in weak signal 
conditions, or other challenging situations. As a 
payoff, DPE needs a receiver able to compute a 
larger number of correlator outputs L. On the order 
of tenths of them, as in the channel-per-channel 
advanced techniques mentioned earlier.  With 
regards to important operations to be performed, in a 
fully open loop DPE scheme, there is a multivariate 
optimization to be solved which involves 
systematical evaluation of an operation with 
complexity asymptotically proportional to K2. This 
systematic evaluation could be relaxed in closed-
loop DPE schemes (for instance using particle 
filtering) [10], in which case this computation could 
be parallelized.  
 
CONCLUSIONS 

The increase of computational power can be used to 
build small and power efficient GNSS software 
receivers and our experimental benchmarks show 
how well the currently available embedded 
technology can be exploited for these purposes.  
 
The tracking and correlation code on the ARM CPU 
can and has been coded without making use of 
dedicated libraries. Correlation with 1-bit samples is 
directly supported by SIMD instructions of the ARM 
architecture. The maximum number of channels is 
several hundreds, if standard tracking is used. 
Remarkably, the low power embedded platforms 
would support up to 25-50 channels with e.g. 21 
correlators covering a rather large ranging 
uncertainty of ±585 meters for high bandwidth 
signals to be used for e.g. Direct Position Estimation 
or other advanced tracking or positioning technique.  
 

 
Figure 6: Block diagram for multi-correlation track ing in a GNSS receiver 

 



The signal acquisition on the embedded GPU 
supporting OpenCL provides more than 50000 
correlators and we think that the memory bandwidth 
is limiting this number. More efficiently coded FFT 
libraries may possibly give a much larger number of 
correlators. As a positive side effect the currently 
used FFT implementation on the GPU uses only 0.3 
W of electrical power. 
 
We also pointed out that modern techniques coping 
with well-known impairments have appeared in the 
last years, promising important improvements at the 
cost of increase computational burdens. Here we 
discussed a brief sample of them, which served to 
motivate the idea that: a) multicorrelation strategies 
are the desired choice in most advanced techniques, 
and b) these techniques often require complex matrix 
operations to be computed, which sometimes can be 
parallelized. Both points are doable either with the 
current technology or that to come in the near future. 
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