

Benchmarking CPUs and GPUs on Embedded
Platforms for Software Receiver Usage

T. Pany, J. Dampf, W. Bär, J. Winkel, C. Stöber

IFEN GmbH, Alte Gruber Straße 6,
85586 Poing, Germany

K. Fürlinger

Ludwig-Maximilians-University (LMU) Munich, Computer Science Department, MNM Team, Oettingenstr. 67,
80538 Munich, Germany

P. Closas

Centre Tecnològic de Telecomunicacions de Catalunya, Communcation Systems, Parc Mediterrani de la
Tecnologia (PMT) - Building B4

Av. Carl Friedrich Gauss 7, 08860 – Castelldefels, Spain

J. A. Garcia-Molina
ESA/ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands

BIOGRAPHIES

Dr. Thomas Pany works for IFEN GmbH as a
senior research engineer in the Receiver
Technologies department. He also works as a
lecturer (Priv.-Doz.) at the University FAF Munich
and for the University of Applied Sciences in Graz.
His research interests include GNSS receivers,
GNSS/INS integration, signal processing and GNSS
science.

Dr. Wolfgang Bär is head of Mobile Solutions
department at IFEN GmbH since 2014. He joined
IFEN in 2006 as a system engineer. Before, he has
been research associate at the Institute for
Geoinformatics and Remote Sensing of the
University of Osnabrück receiving his PhD in 2007.

Jürgen Dampf received his M.Sc. in Aviation
Engineering at the University of Applied Sciences in
Graz in 2013. Since 2012 he is working for IFEN
GmbH as a system engineer emphasizing on GNSS
reflectometry, particle filters and embedded software
receivers.

Dr. Jón Ó. Winkel is head of Receiver
Technologies at IFEN GmbH since 2001. He studied
physics at the universities in Hamburg and
Regensburg. He received a PhD (Dr.-Ing.) from the
University of the FAF in Munich in 2003 on GNSS
modeling and simulations.

Carsten Stöber works for IFEN GmbH as a system
engineer. He received his diploma in Geodesy at the
Technical University in Berlin in 2005. For seven
years he has been research associate at the Institute
of Space Technology & Space Application at the
University of the Federal Armed Forces in Munich.

Dr. Karl Fürlinger is a lecturer and senior
researcher at the Ludwig-Maximilians-University
(LMU) Munich, working in the area of parallel and

high performance computing. His research focuses
on performance tools and all aspects parallel
programming, algorithms, and systems. Before
joining LMU Munich he was a postdoctoral
researcher at the University of California at
Berkeley, and at the NERSC supercomputing center
and prior to that he was a senior research associate at
the University of Tennessee at Knoxville (UTK).

Dr. Pau Closas received the M.Sc. and Ph.D. in
Electrical Engineering from the Universitat
Politècnica de Catalunya (UPC) in 2003 and 2009,
respectively. He also holds a M.Sc. degree in
Advanced Mathematics and Mathematical
Engineering from UPC since 2014. Currently he is
Senior Researcher and Head of Department at the
Centre Tecnològic de Telecomunicacions de
Catalunya (CTTC) in Barcelona. His expertise is on
statistical signal processing, with applications to
GNSS receiver design, indoor positioning and
wireless communications. He is the recipient of the
EURASIP Best PhD Thesis Award 2014 and the
ninth Duran Farell Award for Technology Research,
both for his contributions in the areas of signal
processing and GNSS.

J.A. Garcia-Molina is Radio Navigation engineer at
ESA/ESTEC in Noordwijk, The Netherlands. His
primary areas of interest include signal processing,
estimation theory, GNSS receivers and signals and
navigation applications.

ABSTRACT

Smartphones containing multi-core central
processing units (CPUs) and powerful many-core
graphics processing units (GPUs) bring
supercomputing technology into your pocket (or into
our embedded devices). This can be exploited to
produce power-efficient, customized receivers with

flexible correlation schemes and more advanced
positioning techniques. For example, promising
techniques such as the Direct Position Estimation
paradigm or usage of tracking solutions based on
particle filtering, seem to be very appealing in
challenging environments but are likewise
computationally quite demanding. This article sheds
some light onto recent embedded processor
developments, benchmarks Fast Fourier Transform
(FFT) and correlation algorithms on representative
embedded platforms and relates the results to the use
in GNSS software radios. The use of embedded
CPUs for signal tracking seems to be straight
forward, but more research is required to fully
achieve the nominal peak performance of an
embedded GPU for FFT computation. Also the
electrical power consumption is measured in certain
load levels.

INTRODUCTION

When building a GNSS receiver we have to
accomplish three major tasks: detection of GNSS
signals, tracking them, and using the obtained
ranging information to compute the user position. In
contrast to hardware GNSS receivers, a software
GNSS receiver allows engineers to easily adapt the
used algorithms and design principles to each
application domain. For the above-mentioned three
core tasks there are various characteristic numerical
operations that must be performed. For GNSS signal
acquisition, the use of the FFT is virtually inevitable.
For signal tracking, the correlation of the received
signal with internally generated replica signals has to
be performed. This is realized either as a dot-product
operation with multiply-and-add commands or as an
exclusive-OR operation if 1-bit sampling is used.
Positioning filters typically make use of various
floating point operations to compute, for instance,
satellite positions or update the navigation filter.

In mass-market receivers the first two tasks are
accomplished by application specific integrated
circuits (ASICs) and the user position is computed
either on the ASIC or by a general purpose processor.
Current ASIC technology is highly efficient and an
ASIC-based GNSS receiver can solve the above-
mentioned tasks consuming only milliwatts of power
allowing to track the user position in the background,
facilitating applications like geofencing, user motion
detection in wearables etc [1]. However, the
accuracy of those receivers is still in the order of
several (dozens of) meters or worse, especially if
operated in a mobile phone under degraded signal
conditions [2]. Needless to say, mass market
receivers have limited capabilities to be tailored for
specific applications as the core algorithms are built
into the silicon chip and positioning algorithms are
intentionally kept simple to maintain the low power
consumption.

Realizing all three receiver tasks in software,
generally allows implementation of more flexible
algorithms by a larger community of engineers and
researchers. The time to build or adapt a so-called
software receiver is significantly lower since, apart
from the RF front-end, no dedicated hardware
development is involved. Indeed nowadays software
GNSS receivers are the gold standard in research and
development (R&D) especially when developing
new algorithms, testing new navigation signals or
fusing of GNSS with other sensors. R&D software
receivers typically run on a conventional desktop
personal computer (PC) or a laptop, which not only
allows real-time processing of hundreds of channels,
but also re-processing the same signal many times to
test various algorithms and parameters.

This R&D market is definitely not very large, but the
technology fully profits from the ongoing
developments in the PC sector including more and
more powerful CPUs and graphics processors..
Around eighteen years after Dennis Akos presented
a first post-processing software GPS receiver in his
PhD thesis [3], all-in-view tracking of the complete
GNSS constellation is possible on a PC costing the
same as it did eighteen years ago.

At the latest when Samsung introduced the quad-
core mobile phone S4 with its embedded powerful
graphics processor, it became clear that we have
entered the era of mobile super-computing. Within
one of the latest phones (Samsung Note 4) the
graphics chip Adreno 420 is able to perform more
than one hundred billions floating point operations
per second (GFlop/sec), enabling hyper-realistic 3D
gaming. Naturally, the power consumption and the
form factor of the chips and boards in question is
now much more intriguing for using mobile
supercomputing devices to design and build a new
generation of software receivers able to leave the
R&D niche behind and extend into a wider
application market, which may have significant
benefits for the end-user. For example, precise
positioning in degraded or indoor environments is
still a challenge not achieved with conventional
technology. In this context, sophisticated methods of
GNSS/INS integration and/or nonlinear estimation
filters could make much better use of the available
information from the GNSS signals than existing
technology does. In this article we will for example
discuss how Direct Position Estimation (DPE) fuses
GNSS signal tracking and position estimation and
how more flexible software receivers can foster its
adoption.

Also niche markets like GNSS space receivers are
possibly more efficiently realized as software
receivers, as they can better adapt to the challenging
environment and specific requirements. For example
launch receivers not only face a bad satellite signal
geometry (and thus rather low received signal power)
due to the mounting of the antenna but they have to

cope together with high signal dynamics. The
European Space Agency (ESA) is investigating this
technology for its application within a space borne
receiver. The use of GNSS for space applications is
manifold, and includes launch monitoring or precise
injection of satellites into geostationary orbits;
applications which exhibit a high user dynamics.
Standard GNSS space applications are positioning in
low Earth orbits or on geostationary orbits and partly
centimeter accuracy is achieved. Also formation
flying or rendezvous and docking with the help of
GNSS is demanding in terms of the required
accuracy. Navigation in geostationary orbits, on
highly elliptical orbits or navigation to and from the
Moon requires a very high sensitivity of the GNSS
receiver. All those applications could potentially
benefit from a software receiver based approach as it
can be fully optimized for the specific application.

In the remainder of this article, we first summarize
the current state of mobile supercomputing and then
match those developments to the GNSS software
receiver core activities. Benchmarks will be
presented for power consumption, FFT and signal
tracking, all evaluated on embedded platforms
purchased at the end of the year 2014. The results
will be mapped into the effective number of
correlators available for signal acquisition and the
number of receiver channels. The obtained numbers
are matched to the nominal peak performance of the
platform and an explanation is given, if it is not
achieved. The article is completed with a discussion
of the importance of these computing advances in the
implementation feasibility of advanced tracking and
positioning techniques, which would benefit from
the supercomputing capabilities of current processor
technology.

RECENT COMPUTING DEVELOPMENTS

It is common wisdom that computers get ever faster,
smaller, and more efficient. In the world of
supercomputers there is actual empirical data to back
up and quantify this impression. The Top500 project
(www.top500.org) has been tracking the
performance of the world’s 500 most powerful
computing systems for over 20 years. The No. 1
system on the first issue of the list in June 1993
achieved a whopping 59.7 GFlop/sec when solving a
linear system of equations using an LU
decomposition approach. This benchmark is still
used today to determine performance in the form on
the Linpack application.

When looking at the historic development of the
Top500 list provided in Figure 1, we can identify a
remarkable performance growth since 1993. The
average performance of the 500 top systems (green
points) grew by a factor of 84% per year since 1993
and the performance of the number one system
(yellow points) improved even faster (90 % per year).
This improvement is fundamentally fueled by

advances in semiconductor technology governed by
Moore’s law, which states that the number of
transistors doubles roughly every 18 months (or, in
other words, improves by about 60% per year).
Computer architecture enhancements (in the past)
and increased parallelism (a more recent trend)
account for the performance growth beyond what
Moore’s law predicts.

Figure 1: The Top500 list of supercomputers

The trend towards parallelism is however not limited
to supercomputers. While the big systems in the Top
500 list are today composed of hundreds of
thousands of cores, multi- and manycores are
dominating desktop and server systems and have
more recently also appeared in mobile and
embedded platforms. One speaks of a multi core
system, if it utilizes a few (below or around a dozen)
computational units, and a many core system may
have hundred or more units. Multiple computing
cores are however not the only form of parallelism
employed by modern architectures. A particularly
efficient form of parallelism is known as SIMD
(single instruction multiple data), which is employed
in virtually all computers today. Here, the same
operation is performed on multiple data items
instead of just one. For some application areas, such
as dense linear algebra, this directly translates to
increased performance. SIMD (with the number of
data items that can be processed in parallel) is
constantly increasing. For desktop CPUs the SIMD
registers are today 256 bits wide and they can thus
operate on 4 double precision floating point (FP)
numbers or 8 single precision FP numbers at the
same time. Upcoming processor generations will
double the SIMD width to 512 bits.

For mobile and embedded systems there is an ever
increasing need to provide strong computing
capability to support a variety of demanding
applications (video encoding, augmented reality,
gaming). This has driven the performance of these
platforms where they can actually be compared to
supercomputers of the past. A modern mobile device

can achieve a Linpack performance of 2-4 GFlop/sec,
which means that it would indeed have been placed
on the Top500 list in the early 1990s.

At least as important as the improvement in raw
performance is the energy efficiency of computing
devices. Analysis of historic devices going back to
the 1940s has uncovered what is sometimes referred
to as Koomey’s law: The amount of computations
that can be performed per unit energy improves by
about 58% per year. The energy efficiency metric
has the nice property that it can be used to compare
across the whole spectrum of computing devices.
Figure 2 shows such a comparison between the
achieved energy efficiency of systems in the Top 500
list (blue dots), the prediction made by Koomey’s
law as red line, and the Apple iPad2 as an example
mobile system. Highlighted are systems that have
been specifically designed for energy efficiency (the
BlueGene line of systems by IBM) and more recent
accelerator platforms based on Xeon Phi and GPU
hardware plus the iPad2.

Figure 2: Computational power per kilowatt

TEST HARDWARE

For benchmarking the software receiver algorithms
we use several development platforms. All are
shown in Figure 3.

The first one is the ~200 $ ArndaleOcta board with a
Samsung Exynos 5420 CPU consisting of four 1.8
GHz Cortex-A15 cores plus an ARM Mali-T628
GPU. It is used in some versions of the Samsung
Galaxy S5 mobile phone. The GPU has a remarkable
floating point performance of 102 GFlop/sec if all
six GPU cores are used. Our benchmark application
utilises only four GPU cores due to minimisation of
the implementation effort in the Linux Kernel
yielding a theoretical peak performance of 68
GFlop/sec for the GPU.

The second embedded board is a HardKernel
ODROID-XU3 Lite featuring a Samsung Exynos
5422 CPU (Cortex-A15 1.8GHz quad core and
Cortex-A7 quad-core). We used this board only for
tracking benchmarks and not for FFT tests. The
tracking benchmarks were carried out on one of the
A15 cores running at 1.8 GHz.

The third platform is the Firefly single board
computer using a Rockchip RK3288 CPU with a
Cortex-A17 1.8 GHz quad-core. The tracking
benchmarks were run on one of the Cortex-A17
cores with 1.8 GHz.

The fourth test platform is a One Plus One mobile
phone based on a Qualcomm Snapdragon 801
processor. Again it was used only for tracking
benchmarks on one of the Krait 400 cores. In
contrast to the first three Linux boards, it runs
Android 5.0 in the CyanogenMod version CM12S.

Figure 3: Embedded test platforms: Upper left:
Arndale Octa, upper right: Odroid, lower left:

Firefly, lower right: One Plus One

SOFTWARE RECEIVER CORE

IFEN is currently developing a new embedded
software receiver which combines the algorithmic
performance of the PC-based software receiver SX3
with the efficiency of the firmware from the field-
programmable-gate-array (FPGA) based receiver
NavX-NTR. This new embedded software receiver
runs under the Linux Operating System but can in
principle also be compiled for Android or without
any operating system at all. Additionally Windows
is supported but for Windows, the IFEN’s SX3
software receiver delivers more features.

The embedded software receiver receives IF samples
via USB, TCP/IP or from file input. It is designed as
a multi-GNSS and multi-frequency receiver plus
inertial measurement unit (IMU) support. Currently
it only supports multiple correlators for tracking in
DLL, FLL or PLL mode, but will be upgraded to
vector tracking and deep GNSS/IMU integration
soon. It operates most efficiently with 1-bit samples
and signal tracking is performed on the CPU. Signal
acquisition uses either the CPU or the GPU and a
FFT based algorithm with resampling is employed
[4].

Current applications are to proof the concept of a
dual frequency GPS/Galileo space software receiver
in low Earth orbit, and to be used for precise
positioning with an integrated RTK or PPP module
within UAVs also supporting GPS and Galileo. A

screenshot of the minimal user interface is shown in
Figure 4 with the receiver in low Earth orbit mode.

BENCHMARKS

The following sections cover the power consumption,
acquisition (FFT) and tracking benchmarks.

POWER CONSUMPTION
Mobile applications often have some power
constraints, especially in the aviation or space sector,
where the power-to-weight ratio plays a dominant
role. Thus the power consumption of such an
embedded software receiver is an interesting
attribute which we have measured for typical load
levels. One has to be careful when performing a
power consumption measurement for a specific
application due to the fact that also (for the specific
application unnecessary) peripherals, such as the
video connection, can contribute to the overall power
balance significantly. This video connection is part
of our Arndale development board and can not be
deactivated.

Three measurement scenarios were set up to
determine the power consumption of the Arndale
Octa development board running a software receiver
acquiring and tracking common GPS L1 signals. All
power measurements are listed in Table 1.

The test setup consists of the ArndaleOcta
connetected to a power adapter delivering 5V up to
3 Ampere in form of Direct Current (DC). A
multimeter was used to measure the actually
consumed current by serial placement within the
power supply circuit. The consumed power P is
calculated with P=V*I, while V refers to the voltage
of 5V and I to the measured current.

The first measurement acts as a baseline and
determines the power consumption of the board with
the default peripheral settings and only the Linux
operating system running. The second scenario
determines the increase of power consumption
during nominal tracking (after acquiring the signals).
This is achieved by setting 12 tracking channels and
switching off the acquisition unit. The third scenario
is similar to the second, but with the acquisition unit
permanently active, which causes an additional
increase in CPU load and is heavily loading the GPU.
The overall power consumption with acquisition
activated increases to 4.35 W with the largest part
attributed to the background power.

 System state CPU
load

[%]

No.
tracked
channel

Power
consumption
[W]

1 OS Linux started

SW Receiver Off

0.20 - 2.75

2 SW Receiver On

Tracking only

52.0 12 4.08

3 SW Receiver On

Tracking +
Acquisition

70.6 12 + acq. 4.35

Table 1: Power consumption of the embedded
software receiver on the Arndale board

All measurements were performed during the early
development phase of the embedded software
receiver. Especially for the CPU load and therefore
in the power to number of tracking channels ratio, a
lot of optimizations have not yet been implemented.
The increase in CPU load during acquisition is based
on a first implementation of the OpenCL acquisition
which pre-computes all Doppler bins for acquisition
search and moves the whole data to the OpenCL
based FFT engine consuming a lot of CPU power.

Figure 4: Screen shot of IFENs embedded software receiver tracking the international space station on
L1/E1/L5/E5a

Naturally, this should happen directly in the OpenCL
kernel running on the GPU. Thus, the numbers listed
in table 1 are upper limits on the power consumption,
with potential for improvement.

SIGNAL ACQUISITION
In the FFT acquisition context, the OpenCL standard
shall be mentioned providing a computing language
compatible with many CPUs and GPUs. Indeed also
our Arndale embedded test system was able to
support OpenCL on the GPU after some Linux
kernel patches. Without OpenCL it would have been
virtually impossible to program the GPU on the
embedded system at all. Furthermore, the clFFT
library [5] exists as an open source project
facilitating an efficient implementation of FFTs
based on OpenCL. This library was initially
implemented and optimized for AMD GPUs for
desktop PCs, but also runs on other OpenCL
compatible GPUs including our embedded test
system to perform benchmarks.

The results of the FFT benchmarks for the Arndale
Octa board using the ARM Mali-T628 are shown in
Table 2, where an FFT length of 8192 points was
used. This length matches acceptable well with the
Galileo E1 codes having 4092 chips and a PRN code
duration of 4 ms. The Galileo E1 correlation function
is computed with two samples per chip.

Within the currently used FFT-based acquisition
algorithm, one FFT can be used to search all code
phases within one Doppler bin yielding a coarse
estimate of the possible number of correlators shown
in Table 2. As outlined in [4], the resampling FFT
acquisition requires two forward FFTs, and one
inverse FFT for each Doppler bin. Only the inverse
FFTs are considered in the following as typically a
large number of Doppler bins is considered. The
effective number of correlators corresponds to the
number of (hardware) correlators running in parallel
in real-time to achieve the same result. Please note
that the correlators discussed here are complex
correlators including I and Q components. The
computation of the GFlop/sec value is based on the
usual 5Nlog2N formula estimating the number of
floating point operations (multiplication or addition)
for a N-point FFT.

In our benchmark implementation we use clFFT to
solely compute the inverse FFTs and to compute all
Doppler bins in parallel on the GPU. The forward
FFTs are computed on the CPU. All FFTs use single
precision float data types. The stated GPU execution
time refers to the time needed to perform all inverse
FFTs, where each inverse FFT corresponds to a
Doppler bin. The measured time neither considers
the forward FFTs nor considers time needed for
memory shifts to and from the GPU.

No. of
parallel
FFTs

GPU
execution
time [ms]

GFlop/sec Effective no.
of
correlators
for Galileo
E1
[Thousands]

1 1.073 0.5 30

2 1.633 0.65 40

4 2.572 0.83 50.6

16 8.575 1.0 60.7

50 24.720 1.1 65.8

Table 2: FFT performance on the embedded
system

We found that the GNSS signal acquisition generally
benefits from executing the FFT operation on a GPU.
Performing the acquisition on the GPU has the
benefit of de-stressing the CPU and enabling more
resources for tracking. In the embedded world, we
realize that FFT libraries and GPU hardware exist,
that can be more or less brought together to compute
FFTs. Although the number of achievable
correlators is still impressive (more than 50
thousands), we noticed that a performance of only
around 1 GFlop/sec was achieved, with a theoretical
limit of 68 GFlop/sec supported by the hardware.

However, a more detailed analysis reveals that this
theoretical peak capability of the GPU can only be
achieved if the dot product, scalar, and vector units
are all used at the same time [6]. Any real world code
is unlikely to be able to utilize all these units at the
same time and the maximal possible performance
will therefore be lower than 68 GFlop/sec. If, for
example, a kernel can only make use of the scalar
units, the maximal performance reduces more than
eightfold to 8 GFlop/sec. Another point of
consideration is that besides the compute aspect,
application kernels can be limited by memory access.
This situation is best visualized employing the
roofline model [7, 8], where FFT is known to often
be among the memory bound kernels. This is
consistent with our finding that executing several
FFTs in parallel did not show a big performance gain
if at least two FFTs were executed.

In [9] a similar GPU (T-604) is benchmarked and
only a rather low main memory bandwidth of 8.39
GByte/s has been obtained. A similar value of 9.2
GByte/s has been obtained on the One Plus One
mobile phone for the device-to-device memory
bandwidth of the Adreno 330 GPU using the
OpenCL-Z app. It is not trivial to measure the
required amount of memory transfers for a FFT
implementation but assuming that each of the
5Nlog2N multiplications or additions operates on the
main memory an upper bound can be established.
Each operation has two complex numbers as input
and one as output. If working with 32-bit float

numbers, maximally 3*2*4*5*Nlog2N bytes are
transferred. This evaluates for 8192 FFT points to
12.8 Mbyte taking 1.5 ms of time. The 8192 FFT
points represent a time span of 4 ms and thus the
memory transfer consumes a large portion of real
time.

A more detailed performance analysis for the FFT
implementation on our embedded platforms is still
under investigation, however we believe the
performance gap can be significantly reduced, with
a potential speed-up of at least an order of magnitude
provided a detailed understanding of the MALI GPU
and its memory cache hierarchy can be obtained.

SIGNAL TRACKING
For the signal tracking benchmark we set up a
dedicated program, simulating a receiver tracking
channel including code and carrier NCOs plus
correlators. Then, we measured the number of
samples the platform can process within one second.
This number is called million-correlations-per-
second (MCOPS) and is measured on a single core
of the CPU. The channel was per default configured
to work with five correlators (e.g. very early, early,
prompt, late and very late) but also other
configurations with 2, 3 or 21 correlators have been
used. The implemented correlation scheme operates
with 1-bit samples and actually realizes the
correlation as an exclusive-OR operation plus bit
counting. It has been verified that the code
correlation is the bottleneck as the same carrier NCO
is used for all correlators.

Figure 5 shows this implementation symbolically
with a 10.24 or 20.48 MHz one bit I/Q input sample
stream and three correlators (Early, Prompt and Late)
as well as a typical carrier and code steering loop. As
mentioned above, the most time consuming part
belongs to the correlation operation. One correlation
operation relates to correlating one sample of the
input stream with the reference signals, thus the
resulting number of tracking channels depends on
the working sample rate. The benchmark is
performed on a single CPU core, thus the maximum
number of tracking channel is a multiple of the CPU
cores and is calculated by #CH = MCOPS /
SampleRate * CPUcores.

The above described benchmark application was
cross-compiled with highest compiler optimization
flag -O2 in order to achieve highest performance on
each development board. To get rid of bottlenecks
caused by reading samples from any interface such
as network, USB or internal storage, samples are
preloaded and read from the main memory.

As depicted in Table 3, increasing the number of
correlators per channel results in a reduction of the
MCOPS value.

No.
of
corr.

MCOPS
per core
Arndale
Octa

MCOPS
per core
Odroid

MCOPS
per core
Firefly

MCOPS
per core
One
plus one

2 428 900 825 882

3 326 715 650 702

5 231 490 460 470

21 66 Not
tested

Not
tested

Not
tested

Table 3: Tracking performance on the
embedded boards

In the above table the ArndaleOcta board shows
quite bad results compared to the other boards of
almost similar CPUs. However, at the start of our
work this was the only board available with a
working OpenCL implementation under Linux. This
was based on an unofficial board support image by
Linaro which had OpenCL support in place but to the
expense of only basic support for other board
features. One of the main problems is the lack of
support for CPU frequency handling and therefore it
is unclear at which CPU speed the ArndaleOcta
board was actually running in the benchmarks. For
the other (newer) boards it could be ensured that the
CPUs were running at full speed at 1.8 GHz. This
can also be seen by running the openssl benchmark
which shows less than half the performance for
ArndaleOcta compared to the ODROID board.

For a given MCOPS value, the number of possible
tracking channels is determined by the sample rate
and by the number of used CPU cores. Exemplary
relationships are shown in Table 4.

MCOPS
per core

Sample rate No. of
used
CPU
cores

Channel
no. upper
limit

900 10.24 MHz 4 351

715 20.48 MHz 4 139

490 20.48 MHz 4 95

66 10.24 MHz 4 25

Table 4: Relating MCOPS and sample rate to
number of tracking channels

For example all the embedded system easily allows
implementation of a single frequency GPS, Galileo,
GLONASS plus BeiDou Receiver. Alternatively,
wideband tracking (20 MHz bandwidth and 40 MHz
sample rate) of dual frequency GPS is possible.
Another conclusion that these numbers suggest is
that multi-correlation (that is, more than 5 per
channel) schemes are possible. The latter opens the
door for implementing sophisticated
synchronization and positioning solutions that

typically use large number of correlators per
integration time.

Similar as for the FFT, a large amount of memory is
transferred. But as the memory is accessed linearly,
the CPU caches are much better exploited.

ADVANCED TRACKING AND
POSITIONING TECHNIQUES

Legacy GNSS receivers use phase lock loop (PLL)
and delay lock loop (DLL) variations to perform
signal tracking. There is a deep literature comparing
the various approaches, mainly based on the
selection of different discriminator functions that
provide enhanced performance to the receiver, for
instance, in terms of multipath rejection capabilities.
Typically, these PLL/DLL schemes require 3 or 5
correlation points to operate, depending on the
specific implementation. Arguably, these
approaches provided a good balance between
tracking performance and computational complexity.
Particularly, these savings were important when the
computational resources were scarce. As motivated
in this article, this limitation does no longer exist in
modern computer platforms, or it is going to vanish
in the near future, at least if not absolute minimum
power consumption is sought, e.g. for background
operation of a GNSS receiver.

Imagine going beyond the classical PLL/DLL
architectures. The possibility of implementing multi-
correlation architectures turns this wish into a reality.
For the last decades we have seen a number of
proposals for more sophisticated tracking and
positioning techniques, most of them requiring
multiple (i.e. more than 5) correlation outputs to be
of use [10-14]. Their benefits have been quantified
in the literature in terms of performance
enhancements with respect to legacy solutions.
However, these proposals could not compete against

legacy solutions in terms of complexity and
implementation feasibility in state-of-the-art
processing technologies. This is not the case
nowadays and the gap will reduce quickly.
Figure 6 shows the baseband processing diagram of
a generic GNSS receiver with K channels. There, we
used the complex notation for the sake of clarity,
thus avoiding I&Q duplicated arms in the diagram.
The focus is on the tracking and positioning
operations, and thus acquisition is assumed as a
previously accomplished stage. In the digital domain,
a closed-loop receiver has to perform carrier wipe-
off and code correlation, which is fed to a Digital
Signal Processing (DSP) block implementing the
chosen tracking/positioning algorithm. Notice that
we have L correlation outputs, although this number
could vary among channels. The diagram in Figure
6 is sufficiently generic to represent legacy and
advanced tracking techniques. For instance, whether
the outputs from the K channels are processed
independently or jointly is handled at the DSP
module. The former corresponds to the usual
PLL/DLL schemes, where each channel tracks one
satellite (with L ≤ 5). Then, an additional navigation
filter is in charge of delivering position, velocity and
time (PVT) estimates after computing the necessary
observables.

Other more sophisticated techniques fall in this
category, such as the Multipath Estimating DLL
(MEDLL) [14] or the Multipath Estimating Particle
Filter (MEPF) [11]. Both techniques share the idea
of jointly estimating the parameters of the line-of-
sight signal and those from the multipath echoes,
with the goal of mitigating the effects of the latter in
the former. Their main difference is in the statistical
principle used to derive the estimators: whereas
MEDLL is based on the Maximum Likelihood (ML)
principle, the MEPF resort to Bayesian filtering
theory. Their implementation is consequently

Figure 5: Tracking channel block diagram

Q (5 or 10 MHz)

I (5 or 10 MHz)

Carrier
Generator

x
x

cos sin

Carrier NCO
Carrier Phase Doppler

x

x

IAD

x
x

x
x

IAD

IAD

IAD

IAD

IAD

Code Shift

E
P L

DLL
Disc.

PLL
Disc.

IE
IP
IL

QE
QP
QL

IP
QP

Carrier Loop

Carrier
Loop
Filter

Code
Loop
Filter

Code Loop

Code NCO
Code

Generator

Samples 1bit I/Q
(10 or 20 MHz)

different, but they share the fact that L should be
larger than the values considered in PLL/DLL
schemes. Roughly, several tenths of correlators per
channel should be considered when implementing
these techniques for full exploitation of their
capabilities and enhanced performances [13].
Consequently, the computational resources required
are moderately large, particularly when a large
number of particles are used in MEPF. However, the
intrinsic parallelization properties of particle
filtering should benefit from the computational
advances in this field, with the ability to share the
load among various processing resources.

On the other hand, the receiver depicted in Figure 6
can accommodate as well combined tracking
structures where the outputs from the K channels are
jointly processed. The output of this processing is the
control signal to drive the tracking loops and the
PVT solution. In this category we find Vector
Tracking Loops (VTL), a convenient modification of
the usual PLL/DLL schemes that allows for
exploiting the synergies among channels. Therefore,
the number of correlators in VTL schemes is driven
by the underlying PLL/DLL techniques (L ≤ 5) and
thus its bottleneck is not in this part of the baseband
processing chain.

An alternative, more general approach has been
proposed under the name of Direct Position
Estimation (DPE) [12]. DPE has been initially
derived under the ML principle, but an
implementation based on Bayesian filtering methods
was presented as well. Therefore, open and closed
loop architectures are possible for DPE, in contrast
to VTL. In both cases, DPE was seen to enhance the
performance of legacy receivers in terms of

multipath mitigation, operation in weak signal
conditions, or other challenging situations. As a
payoff, DPE needs a receiver able to compute a
larger number of correlator outputs L. On the order
of tenths of them, as in the channel-per-channel
advanced techniques mentioned earlier. With
regards to important operations to be performed, in a
fully open loop DPE scheme, there is a multivariate
optimization to be solved which involves
systematical evaluation of an operation with
complexity asymptotically proportional to K2. This
systematic evaluation could be relaxed in closed-
loop DPE schemes (for instance using particle
filtering) [10], in which case this computation could
be parallelized.

CONCLUSIONS

The increase of computational power can be used to
build small and power efficient GNSS software
receivers and our experimental benchmarks show
how well the currently available embedded
technology can be exploited for these purposes.

The tracking and correlation code on the ARM CPU
can and has been coded without making use of
dedicated libraries. Correlation with 1-bit samples is
directly supported by SIMD instructions of the ARM
architecture. The maximum number of channels is
several hundreds, if standard tracking is used.
Remarkably, the low power embedded platforms
would support up to 25-50 channels with e.g. 21
correlators covering a rather large ranging
uncertainty of ±585 meters for high bandwidth
signals to be used for e.g. Direct Position Estimation
or other advanced tracking or positioning technique.

Figure 6: Block diagram for multi-correlation track ing in a GNSS receiver

The signal acquisition on the embedded GPU
supporting OpenCL provides more than 50000
correlators and we think that the memory bandwidth
is limiting this number. More efficiently coded FFT
libraries may possibly give a much larger number of
correlators. As a positive side effect the currently
used FFT implementation on the GPU uses only 0.3
W of electrical power.

We also pointed out that modern techniques coping
with well-known impairments have appeared in the
last years, promising important improvements at the
cost of increase computational burdens. Here we
discussed a brief sample of them, which served to
motivate the idea that: a) multicorrelation strategies
are the desired choice in most advanced techniques,
and b) these techniques often require complex matrix
operations to be computed, which sometimes can be
parallelized. Both points are doable either with the
current technology or that to come in the near future.

ACKNOWLEDGEMENTS

The research leading to the part of those results has
received funding from the European Space Agency
(ESA) under the ESA Contract no.
4000111113/14/NL/CBi/fk (eSTAR).

REFERENCES

[1] Press release: Broadcom Announces Industry's
First GNSS Location Hub Chip for Smartphones to
Support Galileo Satellite System,
http://www.broadcom.com/press/release.php?id=s8
85589

[2] P. Dabove and M. Petovello, “What are the actual
performances of GNSS positioning using
smartphone technology?”, InsideGNSS, November/
December 2014.

[3] D. M. Akos, “A Software Radio Approach to
Global Navigation Satellite System Receiver
Design,” PhD Dissertation. Ohio University.
Columbus. Ohio. USA. August 1997.

[4] T. Pany, “Navigation Signal Processing for
GNSS Software Receivers”, Artech House 2010,
ISBN: 978-1-60807-027-5

[5] Advanced Micro Devices, Inc. “clFFT”. clFFT.
GitHub, n.d. Web. 13 Feb. 2015. <
https://github.com/clMathLibraries/clFFT>.

[6] ARM White Paper "OpenCL on MALI FAQs"
<http://malideveloper.arm.com/downloads/OpenCL
_FAQ.pdf>

[7] Samuel Williams, Andrew Waterman, and
David Patterson. 2009. Roofline: an insightful visual
performance model for multicore architectures.
Commun. ACM 52, 4 (April 2009), 65-76.

 [8] Georg Ofenbeck, Ruedi Steinmann, Victoria
Caparros, Daniele G. Spampinato and Markus
Püschel "Applying the Roofline Model"; Proc.
International Symposium on Performance Analysis
of Systems and Software (ISPASS), 2014

[9] Jee Choi, Marat Dukhan, Xing Liu, Richard
Vuduc, “Algorithmic time, energy, and power on
candidate HPC compute building blocks”, Proc.
IPDPS 2014.

[10] P. Closas, C. Fernández-Prades, Bayesian
Nonlinear Filters for Direct Position Estimation , in
Proceedings of IEEE Aerospace Conference, 6-13
March 2010, Big Sky, MT (USA).

[11] P. Closas, C. Fernández-Prades, J.A.
Fernández-Rubio, “A Bayesian Approach to
Multipath Mitigation in GNSS Receivers,” IEEE
Journal of Selected Topics in Signal Processing,
special issue on Advanced Signal Processing for
GNSS and Robust Navigation. Vol. 3, No. 4, pp.
695-706, August 2009.

[12] P. Closas, “Bayesian Signal Processing
Techniques for GNSS Receivers: from multipath
mitigation to positioning,” PhD Dissertation.
Universitat Politècnica de Catalunya (UPC).
Barcelona. Spain. June 2009.

[13] A. Fernández, M. Wiz, P. Closas, C. Fernández-
Prades, F. Zanier, R. Prieto-Cerdeira, M. Crisci,
“ARTEMISA: Preliminary Results of Advanced
Receiver Techniques for Multipath Mitigation,” in
Proc. of the ION GNSS 2012 meeting, September
2012, Nashville, TN.

[14] R. D. J. Van Nee, J. Siereveld, P. C. Fenton, and
B. R. Townsend, “The multipath estimating delay
lock loop: approaching theoretical accuracy limits,”
Position Location and Navigation Symposium, pp.
246–251, April 1994.

