
Getting better all the time.
The Continued Evolution of the GNSS
Software-Defined Radio

James T. Curran, Carles Fernández-Prades, Aiden Morrison, and Michele Bavaro

1 Introduction
Software Defined Radio (SDR) has an infinite number of interpretations depending on the
context in which it is designed and used. By way of a starting definition the authors choose
to use that of ‘a reconfigurable radio system whose characteristics are partially or fully
defined via software or firmware’. In various forms, SDR has permeated a wide range of
user groups, from military, business, academia and to the amateur radio enthusiast.

It has evolved steadily over the decades following its birth in the mid 1980s, with various
surges of activity being generally aligned with new developments in related technologies
(processor power, serial busses, signal processing techniques, SDR chipsets). At present, it
appears that we are experiencing one such surge, and GNSS SDR is expanding in many
directions. The proliferation of collaboration and code-sharing sites such as GitHub has
enabled communities so share and co-develop receiver technology; the rise in the maker-
culture and crowdsourcing has led to the availability high-performance radio-frequency
front-ends; and the adoption of SDR by some major telecommunications industry has led to
the availability suitable integrated circuits. Combined, these contributing factors have seen
an increased uptake of GNSS SDR in military, scientific, and commercial applications. In this
article, we explore some of the recent trends and the technology behind them.

2 SDR Topologies

Figure 1: A simplified depiction of different SDR topologies

Software defined radio for GNSS has evolved over the past decade, both in terms of the
adoption of new frequencies, new signals and new systems, as they have become available;

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZENODO

https://core.ac.uk/display/211829278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

as well as the adoption of new processing platforms and their associated processing
techniques. Depicted in Figure 1 is a (simplified) depiction of how the topology of the
software-defined GNSS receiver has evolved over the years (a-d) with a hint at where it
might go next (e,f).

In a traditional SDR GNSS receiver, as depicted in Figure 1 (a), the radio-frequency front-end
typically interfaces with the general-purpose processor (GPP) through a standard bus, and
intermediate-frequency (IF) samples are streamed to a buffer. Once on the GPP, basic
operations such as correlation, acquisition/tracking, measurement generation and
positioning were performed.

Of all of the operations performed by a GNSS receiver, correlation is (by some orders of
magnitude) the most computationally intensive. However the correlation operations are
relatively simple, often requiring only integer arithmetic, and can be easily parallelized.
When running on modern processors, optimized software receivers can avail of
multithreading (task parallelism) or the operations can be vectorized to exploit data
parallelism (single-instruction, multiple data).

Beyond a certain number of GNSS signals, and a certain bandwidth, a GPP simply cannot
cope, and many SDR receivers looked to hardware-acceleration for the correlation process.
This either took the form of a graphics processing unit (GPU), or a field-programmable gate-
array (FPGA), as depicted in Figure 1 (b), both of which are well suited to highly parallel
tasks. These processing platforms can be powerful, and efficient, and so can almost alleviate
all challenges associated with correlation. This is not the only way to alleviate the processing
burden, as it also possible to delegate the correlation task to a network of computers. This
`cloud’ receiver architecture, depicted in Figure 1 (e) received particular attention of late,
showing promise for certain niche applications. This trend has partially reverted with the
proliferation of many-core desktop and mobile processors, but at a certain level of signal or
processing complexity the extensions remain applicable.

At this point, data throughput becomes an important consideration. When considering
multi-constellation, multi-frequency receivers, the objective is often to preserve signal
quality, which implies high bandwidth and high digitizer resolution. A triple-frequency front-
end might easily produce in excess of 100 or even 500 MB/s. When this data is delivered to
the GPP or somewhere in the host computer, and then offloaded to the GPU (or any other
hardware acceleration), it might be `handled’ twice, exacerbating the bottle-neck. To
overcome this problem (and for other practical architectural reasons) it can be preferable to
interface the front-end directly with the accelerator, where correlation was performed, and
leave the `brains’ of the receiver (loop-closure, data processing, PVT, etc.) on the GPP. This
is a particularly convenient approach when using an FPGA accelerator, as is shown in Figure
1 (d).

A very similar architecture can be achieved using modern system-on-chip (SoC) integrated
circuits (ICs), which can offer a large FPGA and a powerful GPP on the same silicon, as
depicted in Figure 1 (d). Indeed, a number of receivers using this architecture have seen
commercial and scientific success, having many of the benefits of dedicated silicon while
retaining the benefits of software-defined radio, for example the Swift Navigation Piksi

Multi GNSS Module. Recent developments in the field have seen the world’s first radio-
frequency system-on-module (RFSoM), or system-on-chip (RFSoC), targeting 5G
applications. With an architecture similar to that of Figure 1 (f), the IC touts up to 8x8 MIMO
with 12 bit ADCs/DACs running at rates of 2/4 Gs/s. Depending on how this trend evolves
(assuming `lighter’ versions become available), this might offer an exciting new platform for
SDR for GNSS, simultaneously capable of multifrequency and multi-antenna operation.

3 RF Hardware: The enabler
GNSS SDR `sees’ the world through a hardware peripheral, and the capability of this
hardware defines the perimeter between what the receiver can and cannot do. In essence,
the front-end peripheral converts one or more analog RF signals at the antenna to a stream
or sequence of packets of digital baseband/IF data to the GPP.

Software-defined radio for GNSS benefits greatly from being flanked on both sides by signals
that are of interest to the civilian population. Applications such as DVB-T/DVB-S2 receivers
have resulted in the availability of a wide range of low-cost RF ICs that are tunable to GNSS
(typically spanning 900 MHz to 2.1 GHz) which, along with dedicated GPS ICs, were at the
heart of early GNSS SDR front-ends. Later developments in ICs designed around the 2/3/4G
mobile communications standards brought another generation of ICs, bringing higher
instantaneous bandwidth, higher ADC resolution and MIMO, and re-transmit capability.
With the the increase in popularity of software defined radio for cognitive-radio, WiFi, 3G,
LTE, and enjoying the benefits of a crowdfunding movement, a wide range of front-end
peripherals quickly appeared. Many of these front-ends are compatible with GNSS, offering
significantly increased performance relative to their predecessors. A selection of some
GNSS-compatible SDR peripherals (both new and old) is shown in Table 1.

Front-End Interface Freq. Range Bandwidth ADC Resolution IC Mode

ADALM-Pluto USB 2.0 325 MHz - 3.8 GHz 61.44 MHz 12 bit I/Q Analog Devices AD9363 Full Duplex

Airspy Mini USB 2.0 24 MHz - 1.8 GHz 6 MHz 12 bit I/Q Rafael Micro R820T2 Rx

BladeRF USB 3.0 300 MHz - 3.8 GHz 40 MHz 12 bit I/Q LimeMicro LMS6002D Full Duplex

FreeSRP ● U
S
B
3.
0
g

70 MHz - 6 GHz 61.44 MHz 12 bit I/Q Analog Devices AD9364 Full Duplex

HackRF USB 2.0 1 MHz - 6 GHz 20 MHz 8 bit I/Q Maxim MAX2837 / 5864 Half Duplex

LimeSDR USB 3.0/PCIe 100 kHz – 3.8 GHz 61.44 MHz 12 bit I/Q Lime Micro LMS7002M Full Duplex

RTL-SDR USB 2.0 24 MHz - 1.766 GHz 2.4 MHz 8 bit I/Q Realtek RTL2832U Rx

SDRplay USB 2.0 1 kHz - 2 GHz 6 (10) MHz 14 (8) bit I/Q Mirics Msi001 Rx

Sidekiq Mini PCIe 70 MHz - 6 GHz 50 MHz 12 bit IQ Analog Devices AD9361* Full Duplex

SiGe GN3S USB 2.0 1.57542 GHz 8 MHz 4 bit I/Q SiGe SE4110L Rx

USRP N210 Gigabit Eth. 0 - 6 GHz 25 MHz (50 MHz) 14 (8) bit IQ Analog Devices AD9361 Full Duplex

USRP X310 Giga. Eth. 0 - 6 GHz 200 MHz 14 bit IQ Analog Devices AD9361 Full Duplex

XTRX Mini PCIe 100 kHz – 3.8 GHz 160 MHz 14 bit IQ Lime Micro LMS7002M Full Duplex

Table 1. A selection of GNSS-compatible SDR front-ends.

3.1 Reference Oscillators
Although many of the requirements of modern telecommunications ICs are beyond what is
needed for GNSS (i.e. ADC resolution, frequency-range, bandwidth, linearity), clock stability
is often inadequate. Communications signals are generally received at high SNR and so the
carrier can be easily recovered, even given very poor clock stability.

In contrast, clock stability can be critical for GNSS applications, due to comparatively long
coherent integration period (i.e. 1+ ms). Firstly, because the `search-space’ granularity is
related to the integration period and the size of the search space to the frequency
uncertainty, clock accuracy is important, as an uncertainty of some tens of kHz might
increase acquisition time. Secondly, the short-term stability is important as a large amount
of phase wander can be challenging when attempting to track the carrier phase with a loop-
update rate below 1 kHz. In fact, this issue was so pronounced on early RTL-SDR DVB-T
front-ends, that later revisions upgraded the quartz reference oscillator to a more
respectable 0.5 ppm temperature-compensated crystal oscillator (TCXO). Typically a TCXO
with an accuracy of better than 1 ppm is preferable, but this metric alone is far from
sufficient.

Depending on the class of signals which the SDR front-end will be used for, the
characteristics of the oscillator, the configuration of its support electronics, and even
whether the mixers and analog to digital conversion process utilize the same reference can
vary. For example, not all TCXOs are suitable for GNSS applications due to the way in which
they internally apply their temperature compensations. If a given TCXO uses a stepwise
compensation configuration based on any form of digital feedback the size of the resulting
steps can severely impact the GNSS tracking loops. Even if a given TCXO has a suitable
compensation curve and implementation, as well as a low and acceptable intrinsic phase
noise, every other link in the clock ‘chain’ must preserve this performance. In some front-
end implementations swapping out a low quality clock for a higher quality one is sufficient,
but on others there can be design limitations in one or more of the oscillator power supply,
the oscillator signal conditioning, subsequent clock generation steps, or distribution routing
that can prevent the design from ever being suitable for GNSS use. This can be critical in
cases where the carrier phase is of interest, for example, where phase coherence between
channels is important for multi-frequency linear combinations, or for multi-antenna
systems.

Fortunately, many modern SDR front-ends support the use of an external clock. This feature
can also be important when attempting to combine two front-end peripherals to effect a
dual-frequency or dual-antenna software receiver.

3.2 The BUS
An intrinsic bottleneck for any SDR system is the fact that some form of connection or bus is
needed to carry data from the collection point to the processing element. In a fully

integrated system this connection still exists, but is typically a trace on a circuit board or
even within an integrated device. In contrast, in an SDR this often takes the form of a cable
or connector between the physically discrete system modules. In cases where the devices
are discrete, it is often necessary to implement some data buffering on both ends of the
bus.

The suitability of a particular bus is often determined by the sustained data throughput rate
required by the application, and in some cases, the latency of the bus. An example of a
number of interfaces popular in modern SDR front-ends is shown in Figure 2, illustrating the
nominal throughput and the minimum latency of each. In the case of GNSS SDR, the
minimum conceivable throughput required would be hundreds of MB/s, but a system could
easily use in excess of 200 MB/s for multi-frequency, high bit depth data. Of course, in post-
processing applications, bus latency is not a factor, however in certain applications may
require that this latency is small, or bounded, or somehow deterministic. Applications such
as closed-loop vehicle control or certain safety systems might impose tight requirements on
latency. High or unpredictable latency in GNSS measurements might lead to loop instability,
in the case of a control system, or might erode safety margins. Although the trend in
modern interfaces is for higher throughput, only certain interfaces offer low latency.

Figure 2. Bandwidth/Latency Scatter-Plot for Popular Buses

3.3 The Silicon
In comparison with less flexible fixed function GNSS receiver chips, GNSS SDR hardware
platforms provide the opportunity to exchange 1-3 orders of magnitude of power
consumption and system size to gain substantial control over the characteristics of the
design. Moreover, one of the other main differences between GNSS front-ends and general
purpose SDR front-ends are the number of bits and the linearity. Both contribute to power
consumption. However, may be worth considering that GNSS-specific front-ends have not
received as much attention as comms front-ends and, consequently, there is at least a
generational gap in silicon mask technology (most GNSS products are at the 350 nm level).

In terms of GNSS-specific devices, products such as the SiGe SE4110L, the Maxim MAX2769,
Saphyrion’s SM1027U, providing a solution for slightly flexible L1 GPS, Galileo or in some
chip revisions GLONASS operation, these kinds of chips support a few sampling rates and
filtering configurations.

In the middle ground are the much more flexible chips from Maxim including the MAX2120
and MAX2112 which provide total L-band coverage, a myriad of filtering options, and
adjustable gain control all within a 0.3 Watt power budget per channel (RF portion only).
These chips allow for single band coverage of adjacent GNSS signals such as GPS and
GLONASS L1 or L2 in a single non-aliased RF band.

In terms of multi-channel options, devices such as the Maxim MAX19994A, or the NTLab
NT1065, respectively offer dual, or quad channel functionality. Similar functionality can be
achieved by pairing downconversion and IF receiver ICs, such as, for example, the Linear
Technologies, LTC5569 dual active downconverting mixer, and the Analog Devices AD6655
IF receiver, which might offer sufficient performance for high-accuracy dual-frequency
positioning.

Higher up the cost, power and complexity structure radios designed explicitly to support
SDR applications that happen to cover GNSS bands such as the Lime LMS6002d/LMS7002M
or the Analog Devices AD9364. Notably, these provide RX and TX channels and frequency
coverage up to 6 GHz. While another interesting and relevant trend is in the use of direct RF
sampling ICs, which offer the possibility of full L-band coverage and/or multi-antenna
support. Examples of these include the Texas Instruments ADS54J40, which offers dual-
channel, 14-bit, 1.0-GSPS ADC, or the ADS54J40 offering a 7.6 bit, quad-channel, 1.25 GSPS,
ADC.

3.4 Future Trends, Limitations & Opportunities
The majority of innovation in software defined radio peripherals has taken place in the
telecommunications domain, focusing on systems like DVB, WiFi, 2/3G, BLE, and more
recently 4/5G. Because of the large community that such a wide spread of technologies can
attract, efforts to develop low-cost and high-performance SDR transceivers have enjoyed
support from crowdsourcing or venture capital. The GNSS SDR community, being
comparatively small, has benefited from these innovations, insofar as they were applicable,
but has had little influence over the design.

Looking at the bigger picture, it is clear that GNSS SDR will simply have to follow the road
paved by telecoms SDR. We will have to use what is made available, and so future trends in
GNSS SDR will likely be driven by the needs of the telecoms SDR community.

So what are they, and will they be aligned with GNSS trends? The answer seems to be yes,
and no. One of the bigger trends in modern GNSS receivers is the move to dual or multi-
frequency and a second trend is towards multi-antenna receivers for attitude
determination, or multi-element antennas for interference management. Meanwhile
telecoms are almost universally using multi-input multi-output (MIMO) transceivers,
however they don’t seem to be using multiple (simultaneous) carriers.

What is particularly interesting, is that the requirements for a MIMO transceiver are well
aligned with that of a null-steering antenna: namely high linearity and ADC-resolution, and
phase-coherence between channels (for example, the Lime Microsystems LMS7002M or the
Analog Devices AD9361). As a result, it is possible (or even likely) that we will see more
innovation in GNSS SDR in the area of multi-antenna processing than in multi-frequency
processing in the near future.

4 Signal Processing Techniques for SDR
As mentioned above, the signal correlation for the acquisition/tracking is the most
computationally intensive operation conducted by the GNSS receiver. In software receivers,
many signal acquisition strategies are built around FFT algorithm, while signal tracking `rake’
of 3 or more correlators per signal. When targeting real-time processing, these operations
need to be applied to a stream of signal samples arriving at a rate of many Msps. This is a
challenge for GPPs when implementing a multi-constellation, multi-frequency GNSS
receiver.

The processing task can either be alleviated or accelerated. Assistance data can allow the
receiver to skip or reduce the search acquisition space, thereby dramatically reducing the
overall computational load. In many cases, the software receiver is running on a host
computer with many connectivity options. Alternatively, a variety of options are available
for accelerating the tasks.

4.1 Parallelization
The main approach to accelerate GNSS signal processing is parallelization. Shared-memory
parallel computers can execute different instruction streams (or threads) on different
processors, or by interleaving multiple instruction streams on single processor
(simultaneous multithreading, or SMT), or both. This approach is referred to as task
parallelism, and is well supported by the main programming languages, compilers and
operating systems. This approach fits naturally with the architecture of a GNSS receiver,
which has many channels (one per satellite and frequency band) operating in parallel over
the same input data. When programmed with the appropriate design, execution can be
accelerated almost linearly with the number of processing cores. However, the spreading of
processing tasks along different threads must be carefully designed in order to avoid
bottlenecks (either in the processing or in memory access).

Figure 3: Illustration of the operation of SIMD processors, which take a multiple data (arguments) and

produces multiple results, given a single instruction operated in parallel in a set of processing units (PUs).

In combination with task parallelization, software-defined receivers can still resort to
another form of parallelization: instructions that can be applied to multiple data elements at
the same time, thus exploiting data parallelism. This computer architecture is known as
Single Instruction Multiple Data (SIMD), where a single operation is executed in one step on
a vector of data, as illustrated in Figure 3. In GNSS receivers this type of instruction can
implement operations like multiply-and-accumulate in across multiple (16, 32, 64, etc.)
samples in a single clock-cycle. Intel introduced the first instance of 64-bit SIMD extensions,
called MMX, in 1997. Later SIMD extensions, (SSE 1 to 4), added multiple 128-bit registers.
AMD, quickly followed and SIMD is now present in almost all modern processors. Later, Intel
introduced more new instruction sets called Advanced Vector Extensions (AVX) featuring,
256-bit registers, new instructions and a new coding scheme. In 2013 AVX-2 expanded most
integer commands to 256 bits, by 2016 the introduction of AVX-512 provided 512-bit
extensions. SIMD technology is also present in embedded systems: NEON technology is a
128-bit SIMD architecture extension for the ARMv7 Cortex-A series processors, providing 32
registers, 64-bits wide (dual view as 16 registers, 128-bits wide), and AArch64 NEON for
ARMv8 processors, which provides 32 128-bit registers. In many cases, well written code
will be automatically implemented as some combination of these SIMD `intrinsics’. In other
cases, they can be coded explicitly.

4.2 Hardware Acceleration
Another possibility for accelerating signal processing is to offload computation-intensive
portions of the workload to a device external to the main GPP executing the software. This
is the case of graphics processing units (GPUs). Such processor architecture follows another
parallel programming model, called Single Instruction, Multiple Threads (SIMT). While in
SIMD elements of short vectors are processed in parallel, and in SMT instructions of several
threads are run in parallel, SIMT is a hybrid between vector processing and hardware
threading. Currently, OpenCL is the most popular open GPU computing language that
supports devices from several manufacturers, while CUDA is the dominant proprietary
framework specific for NVIDIA GPUs. The key idea is to exploit the computation power of
both GPP cores and GPU execution units in tandem for better utilization of available
computing power. The main constraint in using GPUs is memory bandwidth. If not

programmed carefully, most of the time will be spent on transferring data back and forth
between the GPP and the GPU, instead of in the actual processing. A possible solution to
this is an approach known as “zero copy” operations, which consists of a unified address
space for the GPP and the GPU that facilitates the passing of pointers between them, thus
reducing the memory bandwidth requirements.

Similar benefits can be had by offloading correlation to reconfigurable hardware such as
FPGAs. The correlation duties can be offloaded to FPGA and the loop-closure and navigation
engine can remain in the GPP. The FPGA is particularly well suited to the GNSS correlation
tasks and can implement dedicated low-resolution (e.g. 1-4 bit) multiply-and-accumulate
blocks, where the equivalent 8, 16, or 32 bit operations on a GPP would be excessive or
inefficient. Early approaches involved an FPGA connected as a peripheral device via
Ethernet, PCIe or a similar bus. However, similar to the GPU, the data transfer quickly
becomes a bottle-neck. This challenge is addressed by integrating the GPP-FPGA packages.
Early examples of this being the Intel Atom E6x5C package hosting an Altera FPGA. More
recent examples are the Xilinx’s Zynq 7000 family integrating ARM and FPGA processors in a
single encapsulation. These SoCs allow the direct injection of signal samples from the RF
front-end into the FPGA, greatly reducing the amount of information to be interchanged
with the GPP. This approach provides flexibility with regards to how tracking and correlation
resources are allocated, allowing configurable architectures according to the targeted
signals of interest and application at hand, and enabling the execution of full-featured
software-defined receivers in small form factor devices.

5 The Cloud
This ability to manage resources as logical entities instead of as physical, hardwired units
dedicated to a given application has materialized in business models such as Software as a
Service (SaaS); Platform as a Service (PaaS); and Infrastructures as a Service (IaaS). A
network of software-defined GNSS receivers executed in the cloud, appears to be the next
natural step in this technology trend, in which the GNSS receiver is no longer a physical
device but a virtualized function provided as a service.

A virtualized software application is a program that can be executed regardless of the
underlying computer platform. This can be achieved by packaging the application and all its
software requirements (the operating system, supporting libraries and programs) in a single,
self-contained software entity, that can be then run on any platform. An instance of a
software-defined GNSS receiver executed in a virtual environment can then be called a
virtualized GNSS receiver.

Early virtualization was in the form of full or machine virtualization (virtual machine, VM)
which is a software application that emulates the hardware environment and functionality
of a physical computer. With VMs, a software component called a hypervisor interfaces
between the VM environment and the underlying hardware (CPU), providing the necessary
layer of abstraction. A VM can run a full operating system, so conventional software
applications (e.g., a software-defined GNSS receiver) can run within a VM without any
required change.

Recently, the use of operating system virtualization, or software containers, has become
more popular, as they are often faster and more lightweight. Instead of a hypervisor,
software containers use a daemon that supplements the host kernel, and can therefore be
more efficient in making use of the underlying hardware. Examples of these software
containers are Docker and Ubuntu Snaps. An example of an open source software-defined
GNSS receiver packed as a Docker container is available at
https://github.com/carlesfernandez/docker-gnsssdr.

Virtualized GNSS receivers bring important benefits in two fields: business-wise, as a
technology enabler for new GNSS-based services; and also the use of SDR GNSS as scientific
tools, to ensure reproducibility.

As a service enabler, virtualized GNSS receivers allow for: 1) automatic and elastic creation,
execution and destruction of application instances as required, and, 2) intelligent spread of
the running instances across computing resources, regardless of processor architecture,
host operating system or physical location. Several solutions are reported in the technical
literature, many based on the GNSS snapshot-receiver, in which a short batch of data is sent
to the software for PVT computation. Notable examples of such approach are Microsoft’s
energy-efficient GPS sensing with cloud offloading [Liu12, Liu16] and the system running on
Amazon Web Services presented in [Luc16a, Luc16b]. These approaches allow extremely
low power consumption to the user equipment, at the expense of limited accuracy (ranging
from 10 to 100 m of error) and high latency. In [Fer17], authors proposed a system
architecture based on optical networks and automated orchestration tools to deliver
continuous service with high-accuracy performance to users with high-bandwidth
connectivity. Commercially, Trimble offers Catalyst, a subscription-based GNSS receiver
cloud-based service in which the user is charged according to the provided accuracy level,
although the exact details are not yet public.

Figure 4: Illustration of cloud-based GNSS signal processing paradigm (Courtesy of SPCOMNAV, Universitat

Autònoma de Barcelona)

Virtualization technologies also offer a convenient solution for security-related applications
(e.g. GPS M code, Galileo PRS), since the encryption module remains on the service
provider's premises, and there is no need for a security module in the receiver equipment.

This approach may enable the widespread use of restricted/authorized signals by the civilian
population [NSL].

Finally, virtualization also offers important benefits for science. The flexibility of SDR
receivers makes them an ideal tool for scientific experiments, since an implementation
released under an open source license would allow the scientist to share a complete
description of the processing from raw signal samples to the final research results. However,
a key aspect in order to obtain meaningful results is reproducibility: the ability to reproduce
an entire experiment, either by the researcher or by someone else working independently.
Often software-defined GNSS receivers do not rely exclusively on their source code, and
require features provided by the underlying operating system as well as a set of supporting
libraries. In this context, software virtualization appears as an excellent solution for ensuring
reproducibility, since it allows sharing the full software stack, data and all the scripts
required to reproduce the plots from the original paper.

6 Standardization Efforts
GNSS signals are generally introduced to the front-end through a standard interface,
perhaps an SMA, MCX, or U.FL connector, and the digitized signals depart through another
standard interface, perhaps USB, PCIe, or RJ45. However for GNSS SDR, this is where the
standardization ends. As discussed above, it is clear that there is a wide range of possibilities
when capturing and digitizing GNSS spectrum. Before processing this stream of digitized
samples, details such as sample-rate, center-frequency, sample resolution and
format/packing, and a variety of other parameters must be established. This is particularly
important in a variety of scenarios: such as when sharing/post-processing archived datasets
in scientific applications; when offloading computational burden to a cloud-computer.; or
when interfacing different data-capture devices with different receivers. Ad-hoc methods of
digitized data formats do not encourage interoperability and instead cultivates potential for
technology segmentation.

Figure 5. The benefits of SDR metadata

To address this challenge, the Institute of Navigation has lead an effort to develop a
specification for a standardized metadata which would accurately and unambiguously
describe the digitised data. Adoption of this metadata standard both by the data collection
hardware, and the software-defined radio receiver, can promote interoperability, and can
reduce the potential for error. Similarly, an SDR processor’s utility is extended when it is
capable of supporting many file formats from multiple sources seamlessly. An illustration of
how this metadata might be processed in conjunction with the digitized samples is shown in
Figure 5. For more detail on the initiative, readers are encouraged to visit sdr.ion.org.

7 New Frontiers: GNSS SDR in Space
In space, GNSS receivers need to operate in scenarios which are quite different from those
of ground-based receivers: higher (albeit predictable) dynamics conditions, low signal-to-
noise-density ratio and poor poor positioning geometry. It is then an excellent scenario for
SDR, since it requires non-standard features from the receiver.

However space is a harsh environment for semiconductor devices. Charged particles and
gamma rays create ionization, which can alter device parameters. In addition to
permanently damaging to CMOS ICs, radiation may cause single-event effects, which are
caused by ionizing radiation strikes that discharge the charge in storage elements, such as
configuration memory cells, user memory, and registers. When those effects happen, the
system is usually recoverable with a power reset or a memory rewrite, but they also may
destroy the device.

Until recently, radiation-hardened solutions were limited to ASICs and one-time-
programmable solutions, however recently there has been an increase in the availability of
space-grade FPGA and memory devices. As examples, we can mention Xilinx’s Virtex-5QV,
Microsemi’s RTG4 and Atmel’s ATF80 FPGA processors, and commercial SDR platforms such
as GOMspace’s GOMX-3. Those devices allow the implementation of space-qualified GNSS
receivers fully defined by software.

SDR receivers offer both reprogrammability (or upgradeability) and self-healing (or auto-
remediation) capabilities. Examples could be the possibility to upload algorithms yet-to-be-
invented at the receiver’s launch time, or the ability to recover from single-event effect by
remotely rewriting damaged functionalities, reducing the need of onboard redundancy.

8 The Economics of SDR
Flexibility has a cost - and more flexibility costs more. This is why an FPGA implementation
of a complex system can never compete with the unit-cost with a fixed function ASIC.

An example of a virtuous overlap might be seen in the Maxim 2120 and 2112 line of DVB-S2
TV receiver ICs, which have been successfully co-opted for GNSS SDR front-ends due to their
features (configurable mixers, gains, filters, operating power range etc.) happen to be a
‘good enough’ match for the GNSS domain. On initial inspection, this allows for flexibility
between the two applications spaces and provides an ideal platform for SDRs supporting
both TV decoding or GNSS on the same hardware radio module, but soon problems appear.

The MAX21xx series are designed for TV applications, and TV applications tend to use 75
ohm impedances while GNSS has standardized on 50 ohms. Certainly one could add a
‘software defined’ impedance selector block to the design, but we are now spending real
hardware resources to accommodate SDR options. Adding an application which requires RX
and TX such as wifi adds an entire signal chain to the design, as well as a large increase in
the required dynamic range of the system. Adding an application which exploits MIMO
multiplies the hardware resources needed.

The flexibility of SDR makes it an indispensable research, development, validation and
hobbyist tool, but system design is about target selection and trade-offs. To quote one of
the most successful engineers of the current era and Eckert-Mauchly award winner Dr.
Robert P. Colwell “Pick your [technical] targets judiciously. ... Pick your vision and then
chase it. You can’t pick everything as your vision, that’s a recipe for mediocrity. If you can’t
pick your target you’re not going to hit any of them.” For SDR based systems, this would
seem to mean that we should focus on applications where the flexibility afforded offsets the
inevitable platform cost push, or where it allows ‘targets of opportunity’ that require a
subset of the capabilities of the platform already being used.

At the same time, our earlier definition of SDR as ‘‘a reconfigurable radio system whose
characteristics are partially or fully defined via software or firmware’’ means that SDR is
already everywhere around us on some level. Cellular phones provide an example of
devices that connect a large number of hardware radios to a dizzying array of applications
that process, consume, modify and sometimes retransmit the received data, while
consumer devices such as wireless routers can often add support for protocol changes or
tweaks via firmware. While the economics might prevent radio systems from being
universal on all dimensions, there are very few radio devices now sold that don’t expose at
least a few parameters via software.

9 References:
[Liu12] J. Liu, B. Priyantha, T. Hart, H. S. Ramos, A. A. F. Loureiro, and Q. Wang, “Snapshot
positioning for unaided GPS software receivers,” in Proc. of the 10th ACM Conference on
Embedded Networked Sensor Systems, Toronto, ON, Nov. 2012, pp. 1–14.

[Liu16] J. Liu, B. Priyantha, T. Hart, Y. Jin, W. Lee, V. Raghunathan, H. S. Ramos, and Q.
Wang, “CO-GPS: Energy efficient GPS sensing with cloud offloading,” IEEE Transactions on
Mobile Computing, vol. 15, no. 6, pp. 1348–1361, June 2016, DOI:
10.1109/TMC.2015.2446461.

[Luc16a] V. Lucas-Sabola, G. Seco-Granados, J. A. López-Salcedo, J. A. García-Molina, and M.
Crisci, “Demonstration of cloud GNSS signal processing,” in Proc. of the 29th Intl. Technical
Meeting of the Satellite Division of The Institute of Navigation, Portland, OR, Sep. 2016, pp.
34–43.

[Luc16b] V. Lucas-Sabola, G. Seco-Granados, J. A. López-Salcedo, J. A. García-Molina, and M.
Crisci, “Computational performance of a cloud GNSS receiver using multi-thread

parallelization,” in Proc. of the 8th Satellite Navigation Technologies and European
Workshop on GNSS Signals and Signal Processing, Noordwijk, The Netherlands, Dec. 2016,
DOI: 10.1109/NAVITEC.2016.7849357.

[Fer17] C. Fernández-Prades, C. Pomar, J. Arribas, J.M. Fàbrega, J. Vilà-Valls, M. Svaluto
Moreolo, R. Casellas, R. Martínez, M. Navarro, F.J. Vílchez, R. Muñoz, R. Vilalta, L. Nadal and
A. Mayoral, “A Cloud Optical Access Network for Virtualized GNSS Receivers,” in
Proceedings of the 30th International Technical Meeting of The Satellite Division of the
Institute of Navigation (ION GNSS+ 2017), Portland, OR, Sept. 2017, pp. 3796-3815.

[Pen11] R. D. Peng. Reproducible research in computational science. Science,
334(6060):1226–1227, Dec. 2011. DOI: 10.1126/science.1213847.

[BG17] B. K. Beaulieu-Jones and C. S. Greene. Reproducibility of computational workflows is
automated using continuous analysis. Nature Biotechnology, 35(4):342–346, Apr. 2017. DOI:
10.1038/nbt.3780.

[Swift] Swift Navigation, “Piksi Multi GNSS Module”, https://www.swiftnav.com/piksi-multi

[Trimble] Trimble Inc., “Catalyst: Subscription-based, software GNSS”
https://catalyst.trimble.com/howitworks.htm , 2017

[VazXilinx] B. Vaz et al., "16.1 A 13b 4GS/s digitally assisted dynamic 3-stage asynchronous
pipelined-SAR ADC," 2017 IEEE International Solid-State Circuits Conference (ISSCC), San
Francisco, CA, 2017, pp. 276-277.

[Xilinx] Xilinx, “RFSoC: Radio Frequency System on Chip”,
https://www.xilinx.com/products/technology/rfsoc.html

[NSL], NSL, “TRUSTED NAVIGATION: AUTHENTICATED GNSS RECEIVERS”, http://nsl.eu.com/nsl-
jcms/advanced-gnns-hw-sw/authenticated-gnss-receivers, October 2016

Biographies

James T. Curran received Ph.D. in Electrical Engineering in 2010, from the Department of
Electrical Engineering, University College Cork, Ireland. He has worked as a research
engineer with the PLAN Group in the University of Calgary, and as a grant-holder at the Joint
Research Centre of the EC in Italy. He is currently a radio-navigation engineer at the
European Space Agency, in the Netherlands. His research interests include signal processing,
information theory, cryptography and software defined radio for GNSS

Aiden Morrison received his PhD degree in 2010 from the University of Calgary, where he
worked on ionospheric phase scintillation characterization using multi frequency civil GNSS
signals. Currently, he works as a research scientist at SINTEF Digital. His main research
interests are in the areas of GNSS and multi-user collaborative navigation systems.

Carles Fernández-Prades received the M.Sc. and Ph.D. degrees in electrical
engineering from the Universitat Politecnica de Catalunya (UPC), Barcelona, Spain,in
2001 and 2006, respectively. In 2001, he joined the Department of Signal Theory and
Communication at UPC as a Research Assistant, getting involved in European and
National research projects both with technical and managerial duties. He also was
Teaching Assistant in the field of Analog and Digital Communications (UPC 2001-2005).
In 2006 he joined CTTC, where he currently holds a position as Senior Researcher and serves
as Head of the Communications Systems Division. His primary areas of interest include
signal processing, estimation theory and nonlinear Bayesian filtering, with applications in
positioning, communications systems, software radio and the design of RF front-ends. He
proudly served as Thesis advisor of works acknowledged by the European Association
for Signal Processing with the Best Ph.D. Thesis Award in 2014 and 201

Michele Bavaro received his master degree in computer science from the University of Pisa,
Italy. Shortly afterwards he started his work on Software Defined Radio technologies applied
to navigation, first in Italy, then in The Netherlands at the European Space Agency. In the
United Kingdom he worked for NSL on several projects being directly involved with the
design, manufacture, integration, and test of radionavigation satellite system (RDSS)
equipment and supporting customers in the development of their applications. After
working on his own consulting firm, mostly on SDR and low cost precision positioning, he
was appointed as technical officer at the Joint Research Center (JRC) of the European
Commission. Michele works now at Swift Navigation in California in the Measurement
Engine team.

