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ABSTRACT 

 

This paper describes a GPS software receiver design 

made of inexpensive and physically small hardware 

components. The small embedded platform, known as the 

Parallella-16 computer has been utilized in conjunction 

with a commercial RF front-end to construct a 4-channel 

real time software GPS receiver. The Parallella-16 board 

is a kickstarter-funded platform consisting of a dual-core 

ARM A9 CPU, an integrated FPGA and a 16-core 

coprocessor known as the Epiphany. The main 

contribution in this paper has been the development of a 

GPS tracking algorithm, which utilizes the parallelism in 

the Epiphany processor. The total cost of the hardware is 

below 150$ and the size is comparable to a credit-card. 

The receiver has been developed for research in 

GNSS/INS integration on small Unmanned Aerial 

Vehicles (UAVs).  

 

INTRODUCTION 

 

In this paper, a 4-channel real-time software defined GPS 

receiver implemented on a low-cost, credit-card sized 

parallel-computing platform is presented. The chosen 

hardware is the kickstarter-funded Parallella-16 board 

from Adapteva [1]. The Parallella-16 provides a flexible 

base with a Xilinx Zynq-7010 System on a Chip (SoC) 

[2], which features a Processing System (PS) consisting 

of a dual-core ARM Cortex A9 processor and 

Programmable Logic (PL) from an integrated FPGA with 

28000 logic cells. In addition the board contains a 16-core 

coprocessor, Epiphany E16G301 developed by Adapteva. 

The Parallella-16 design resources; software, HDL 

sources and schematics are open source and has a 

growing community for support and further development. 

The receiver front-end is the Maxim MAX2769 GNSS  

RF front-end, which provides flexible operation and 

capability to receive GPS L1, GLONASS G1 and Galileo 

E1 frequency bands. 

 

The reasoning behind the choice of hardware has been to 

develop a low-cost GPS software defined receiver (SDR) 

which utilizes parallel processing in the Epiphany multi-

core processor and thus provides a flexible base with 

direct access to low-level tracking variables. The receiver 

is intended to be used for research, with a special focus on 

integration schemes for inertial sensors in UAV 

applications. Parallel implementations of GNSS 

acquisition- and tracking algorithms are not a new 

concept. The work of [3] describes how OpenMP and 

MPI implementations significantly can speed up 

algorithms on multi-core processors. A number of authors 

have published papers for executing GNSS algorithms 

utilizing the massive parallelism of modern GPU’s using 

CUDA or OpenCL [4], [5]. The aforementioned work, 

mostly applies to desktop-computers and in the design of 

high-end software receivers. In our work, we utilize 

parallelism in the small, low-cost Epiphany multi-core 

processor. The key advantages of the presented system 

are the flexibility of the software-defined receiver and the 

compact size of the hardware as it could easily be 

equipped into small UAVs. The integrity and performance 

of the receiver, has been compared to a MATLAB-based 

SDR [6].  

 

 
Figure 1: Parallella-16 board (top view) [1] 



 

 

The paper begins with a brief review of the GPS C/A 

signal, as the tracking algorithm has been based on this. 

 

A short review of the hardware architecture of the 

Parallella-16 board is then given and an explanation of 

how the data acquisition from the front-end is 

implemented in PL. 

 

Hereafter, the developed parallel tracking algorithm for 

the Epiphany processor is discussed and it is shown how 

the receiver is able to process data within real-time 

constraints by using multiple cores per channel. 

 

Finally the tracking of the receiver is compared to the 

aforementioned MATLAB-SDR implementation and 

further development and outlook is discussed. 

   

GPS C/A Signal 

 

The GPS Coarse / Acquisition (C/A) code is a 1023 chip 

Pseudo-Random Noise (PRN) sequence transmitted on 

the GPS L1 band with a carrier frequency of 1575.42 

MHz. The C/A code is modulated on to the carrier by 

Binary Phase Shift Keying (BPSK). As all GPS satellites 

are using the same carrier-frequency, a Code Division 

Multiple Access (CDMA) coding scheme is applied on 

the C/A code. The C/A code is for each satellite a unique 

PRN code known as a gold code. Gold codes have a 

guaranteed minimum cross-correlation with other gold 

codes and hence the satellite transmitting the signal can 

be identified by correlation with a receiver generated 

replica.  

 

The chiprate of the C/A code is 1.023 Mchips/s, 

corresponding to a code-sequence length of 1 ms. The 

C/A code is modulated with the satellite navigation 

message, which contains the ephemeris, time etc. for the 

satellite. The signal structure for the GPS L1 C/A signal is 

visualized in Figure 2. 

 

Mathematically the broadcast signal is defined as: 

 

 𝑆𝑆𝑉(𝑡) = sin(2 ⋅ 𝜋 ⋅ 𝑓𝑐𝑎𝑟𝑟 ⋅ 𝑡 + 𝜙) (1) 

 𝜙 = 𝜋 ⋅ (𝑆𝐶/𝐴(𝑡) ⊕ 𝑆𝑁𝑎𝑣(𝑡)) (2) 

 

where ⊕ is modulo-2 addition, also commonly referred 

as an XOR operation. 𝑆𝐶/𝐴(𝑡) is the unique gold code for 

the satellite and 𝑆𝑁𝑎𝑣(𝑡) is the satellite navigation 

message. (1-2) assumes the binary levels of the C/A code 

and navigation message is [0; 1]. 
If we instead should assume the levels to be [−1; 1] we 

could equivalently state the broadcast signal to be: 

 

𝑆𝑆𝑉(𝑡) = sin(2 ⋅ 𝜋 ⋅ 𝑓𝑐𝑎𝑟𝑟 ⋅ 𝑡) ⋅ (𝑆𝐶/𝐴(𝑡) ⊕ 𝑆𝑁𝑎𝑣(𝑡)) (3) 

  

The final equation (3) is commonly used in the GNSS 

literature. 

 

HARDWARE DESCRIPTION 

 

The system architecture of the receiver is based on the 

MAX2769 GNSS RF front-end [7] and the Parallella-16 

board [1]. A high-level diagram of the hardware 

utilization is shown in Figure 3. The Figure furthermore 

shows the basic architecture of the Parallella-16 hardware. 

The RF front-end is configured to receive GPS L1 signals 

(𝑓𝑐𝑎𝑟𝑟 = 1575.42𝑀𝐻𝑧) and down-convert the signal to 

an Intermediate frequency (IF) of 𝑓𝐼𝐹 = 4.092𝑀𝐻𝑧. The 

front-end discretizes the IF signal at a sampling rate of 

16.368𝑀𝐻𝑧 with a resolution of up to 4-bits. The sign 

bit from the AD conversion and a reference clock is 

connected to digital inputs on the Parallella-16 board. 

Data acquisition of the Discretized IF signal (DIF) has 

been implemented in the PL on the Zynq SoC, in order to 

store the samples in a circular-buffer in DDR memory. 

Finally, the Epiphany multi-core processor is utilized for 

tracking of the satellites. 

 

RF Front-end (MAX2769) 

 

The RF Front-End is based on the super heterodyne 

receiver principle, by using a local oscillator with a fixed 

frequency to down convert (mix) the incoming RF signal 

down to IF. The local oscillator can be programmed to 

any given frequency in the range 1550-1610 MHz. In our 

application we have used a low side injection oscillation 

frequency of 𝐹𝑂𝑆𝐶 = 1571.328𝑀𝐻𝑧, as this gives the 

desired IF of 𝐹𝐼𝐹 = 𝐹𝑅𝐹 − 𝐹𝑂𝑆𝐶 = 1575.42 −
1571.328 = 4.092𝑀𝐻𝑧. The IF bandpass filter can be 

programmed to have a bandwidth of 2.5 MHz, 4.2 MHz, 8 

MHz and 18 MHz. In addition the filter can be 

implemented as a 3
rd

 or 5
th

 order polyphase filter. We 

 
Figure 2: Modulation of C/A code and Navigation 

Message for GPS L1. 
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Figure 3: High-level block diagram for the developed 

GPS receiver. 
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have selected the bandwidth to 2.5 MHz using the 5th 

order filter setting. 

 

Data Acquisition (Zynq PL/FPGA) 

 

The data acquisition of the system is implemented in the 

PL of the Zynq7010 SoC. The design consists of Xilinx 

DMA IP core and a developed acquisition module. The 

implementation is made using VHDL and Xilinx ISE 

development tools. In Figure 4, a block diagram of the 

acquisition system is shown. The data acquisition block is 

connected to the sign-bit of the ADC output from the 

MAX2769 front-end and a reference sample clock. In the 

other end, an Advanced eXtensible Interface (AXI) 

stream master port connects to a Direct Memory Access 

(DMA) core [8]. The DMA core is a soft Intellectual 

Propererty (IP) core from Xilinx. The core is connected 

through a General Purpose (GP) and a High Performance 

(HP) interconnect to the Zynq PS. The IP core is memory 

mapped, such that configuration registers can be set 

directly from the PS by writes to a specific address in the 

memory-system. The DMA core can be configured in a 

simple operating mode, where each transfer is initiated by 

the Processing System writing to the memory-mapped 

control registers. In this design, the DMA is configured 

for Scatter-Gather operation. This allows the DMA to 

automatically process a linked-list of DMA descriptors, 

without requesting processing time from the PS system. 

 

Host Processor (Zynq PS) 

 

The host processor (Zynq PS) of the parallella-16 

hardware is a dual-core ARM Cortex A9 processor 

running at 667 MHz. The processor features Gbit Ethernet 

connectivity, USB 2 compliance, 32 KB Level 1 cache for 

each core and a 512 KB Level 2 cache shared between the 

cores. In addition the ARM cores are equipped with a 

128-bit Single-Instruction Multiple Data (SIMD) engine, 

NEON™, which can help accelerate multimedia and 

signal processing tasks. The processor is equipped with 1 

GB DDR3 external memory. 

 

The host-processor runs an ubuntu distribution and 

controls all peripheral devices in the Zynq SoC. The PS 

furthermore controls loading and launching of programs 

in the Epiphany multicore coprocessor. 

 

Epiphany coprocessor 

 

The basic layout of the Epiphany processor is shown in 

Figure 5. The processor is designed as a network-on-chip 

and consists of 16 mesh-nodes arranged in a 2D grid, 

where each node containing a DMA engine, a RISC 

processing core, a network interface and 32 KB of local 

memory. The cores are operated at 600 MHz and capable 

of doing two floating point operations and one integer 

calculation per clock-cycle. The entire memory system of 

the Epiphany can be accessed from each node, where 3 

interconnects are responsible for write transactions, read 

transactions and off-chip memory access. For more 

detailed specifications about the Epiphany architecture the 

reader is referred to [9]. The programming of the 

Epiphany cores has been done using a native bare-metal 

C/C++ framework controlled from the Zynq PS. An 

OpenCL implementation would also have been possible, 

since a free compiler for the Epiphany architecture is 

available. The native framework allows loading of 

separate programs to each node. It furthermore allows 

configuration of a workgroup, where a single program can 

be loaded to each member simultaneously (SPMD). The 

definition of the workgroup, allows for relative 

addressing, such that each core can be identified from a 

relative row and column index.  

 

BASEBAND PROCESSING  

 

In the previous section, it was described how data 

continuously is stored in a circular buffer in the DDR 

memory. In this section, the hardware utilization and the 

algorithms necessary for processing and demodulation of 

the DIF signal is described. The first task is to identify 

which satellites are in sight and subsequently start 

tracking and demodulate the navigation message.  

 
Figure 4: Block diagram of Data Acquisition system in 

Zynq SoC. 
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Figure 5: Epiphany eMesh architecture [9] 



 

 

 
Satellite Acquisition 

 

During receiver initialization, the Zynq PS performs 

satellite acquisition using the parallel code phase search 

algorithm (Figure 6) utilizing the fftw-library [10]. From 

version 3.3.1 the fftw-library includes support for the 

NEON™ hardware accelerator / 

SIMD engine featured in the ARM cores. Experiments 

was initially made with acquisition using the Epiphany 

multi-core processor, but ultimately have been discarded 

because of current lack of support for optimized FFT 

libraries, such as the fftw. After satellite acquisition, 

tracking loops are initialized in the Epiphany multi-core 

processor. 

 

Tracking 

 

Preliminary estimates of Doppler frequency and code-

delay from satellite acquisition are used to initiate 

tracking for the acquired satellites. A satellite tracking 

algorithm for one channel was initially designed to be 

executed on a single Epiphany core. Despite various 

optimization efforts, this approach however proved 

undoable for real-time operation. Due to the high 

computational demands of the tracking algorithm, we 

have chosen to distribute the execution of the tracking 

algorithm for one channel to a workgroup consisting of 

multiple cores to obtain processing in real-time. The parts 

of the tracking algorithms which are executed in parallel 

are illustrated in Figure 7.  

 

The tracking of a GPS satellite requires a Phase-Locked 

Loop (PLL) for keeping track of the down-converted 

carrier wave and a Delay-Locked Loop (DLL) for 

aligning the received C/A code sequence with a receiver 

generated replica. In Figure 7, the carrier discriminator 

and carrier-filter blocks comprises the PLL. A special 

note on the PLL is that it should be insensitive to phase-

shifts induced by transitions in the navigation message. 

This has been accomplished by using a so-called Costas 

loop, with the following discriminator function: 

 

The DLL is comprised of the code discriminator and the 

code filter blocks. The discriminator function is evaluated 

from the Early, Prompt and Late correlations between the 

incoming DIF signal and receiver generated replicas of 

the C/A code.   

 

The Early and Late correlators have in our 

implementation shifted the C/A code phase by 0.5 chips. 

The code-discriminator function has been implemented 

as: 

 

 
𝐷𝐷𝐿𝐿 =

(𝐼𝐸
2 + 𝑄𝐸

2) − (𝐼𝐿
2 + 𝑄𝐿

2)

(𝐼𝐸
2 + 𝑄𝐸

2) + (𝐼𝐿
2 + 𝑄𝐿

2)
 

(5) 

 

 

In Figure 7, the parallel region includes carrier wipe off 

for the DIF signal, PRN (gold-code) generation, early, 

prompt and late correlations and integrations. The basic 

mathematical principle for parallelization to 4 cores is 

shown in (6) for calculation of the IP correlator output. 

 

𝐼𝑃 = ∑𝑆𝐷𝐼𝐹(𝑘) ⋅ 𝑆𝑐𝑎𝑟𝑟(𝑘) ⋅ 𝑆𝐶𝐴(𝑘)

𝑁

𝑘=0

=  ∑ 𝑆𝐷𝐼𝐹(𝑘) ⋅ 𝑆𝑐𝑎𝑟𝑟(𝑘) ⋅ 𝑆𝐶𝐴(𝑘)

(𝑁/4)−1

𝑘=0

+

 ∑ 𝑆𝐷𝐼𝐹(𝑘) ⋅ 𝑆𝑐𝑎𝑟𝑟(𝑘) ⋅ 𝑆𝐶𝐴(𝑘)

(𝑁/2)−1

𝑘=𝑁/4

+

 ∑ 𝑆𝐷𝐼𝐹(𝑘) ⋅ 𝑆𝑐𝑎𝑟𝑟(𝑘) ⋅ 𝑆𝐶𝐴(𝑘)

3(𝑁/4)−1

𝑘=𝑁/2

+

 ∑ 𝑆𝐷𝐼𝐹(𝑘) ⋅ 𝑆𝑐𝑎𝑟𝑟(𝑘) ⋅ 𝑆𝐶𝐴(𝑘)

𝑁

𝑘=3(𝑁/4)



 

 

 

 

 

 

 

 

 

(6) 

 

Where 𝑁 is the number of samples for one CA code 

sequence, 𝑆𝐷𝐼𝐹 is the DIF samples from the front-end, 

𝑆𝑐𝑎𝑟𝑟  and 𝑆𝐶𝐴 are the receiver generated carrier and C/A 

code respectively. 

 

A flow-chart for the implementation of the tracking 

algorithm in the Epiphany multi-core processor are shown 

in Figure 8. 

 

 
𝐷𝑃𝐿𝐿 = arctan(𝑄𝑃/𝐼𝑃) (4) 

 
Figure 6: Parallel Code Phase Search 
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Figure 7: Tracking loops for one channel 
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The parallelization of the tracking loops have been 

obtained by assigning a master-thread for estimating the 

number of DIF samples for the C/A code sequence and 

later updating the code- and carrier tracking loops. The 

master thread is furthermore responsible for distributing 

sub-indices of the DIF samples for processing to the slave 

threads.   

 

A barrier function is used to synchronize the cores after 

processing has been completed. The results are then read 

back to the master-thread. An analogy of the work 

distribution of the slave threads can be drawn to the 

OpenMP fork-and-join execution model. Finally, the 

master-thread combines the results and updates the NCO 

of the code- and carrier tracking loops before the next 1 

ms period is being processed. 

 

BENCHMARKING OF TRACKING ALGORITHM  

 

In terms of benchmarking, Table 1 shows the number of 

processor-cycles for various program stages in the 

algorithm. The data has been generated using one core per 

tracking channel and based on 2000 ms prerecorded DIF 

samples with a sample rate of 16.368 MHz. 

 
Task Number of cycles Execution time 

Read samples from 
DDR-memory 

190933053 0.318 s 

Update PLL and 

DLL 

25300772 0.042 s 

Correlation-Loops 2627483517 4.379 s 

Total  4.739 s 

Table 1: Timings for single core tracking algorithm (2000 ms 

DIF data) 

From the table, it is evident that most cycles are spent in 

the correlators, which accounts for 92 % of the total 

runtime. Transfer times from the DDR memory accounts 

for approximately 7 % of the total runtime.  Finally 

computation of block-sizes, code- and carrier tracking 

variables accounts for less than 1 % of the total runtime.  

 

The speed-up obtained by using 2-4 cores per tracking 

channel and the respective execution time is listed in 

Table 2. 

 

 
The obtained speed up from 2 cores is 1.73 times, the 

speed up using 3 cores is 2.42 times and finally the speed-

up for 4 cores is 2.91 times. From Table 2, it can be seen 

that both 3 and 4 core workgroups obtains processing 

within real-time constraints. The parallel implementation, 

does introduce some parallel-overhead in terms of 

synchronization messages and barrier functions which 

limits the theoretical speed-up. Another limiting factor is 

the total bandwidth of the Epiphany interconnects. Each 

Epiphany core has a dedicated DMA engine, but DMA 

transfers are utilizing the same communication bus for 

off-chip (DDR) memory access and thus cannot obtain a 

linear speed-up by distributing transfers to multiple cores. 

 

 

IMPLEMENTATION 

 

The implementation in software is shown in Figure 9.  

A GPS_main routine controls all the processes of the 

receiver. Initially a dma driver process is started, which is 

responsible for constantly updating a fixed-size circular 

buffer in DDR memory with DIF samples. As earlier 

explained, the PL handles the actual dma transfers, but it 

Number of cores 

pr. channel 

Speed-Up [x] Execution time 

[s] 

1 - 4.739 

2 1.73 2.741 

3 2.42 1.964  

4 2.91 1.627 

Table 2: Parallel speed-up for 2000 ms of DIF data 

 
Figure 8: Flow-chart and thread synchronizing between 

master and slave cores. 
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is the PS responsibility to occasionally update the tail-

pointer of the dma-descriptors, such that the transfers are 

executed continuously. This process continues throughout 

the execution of the program. The following action is then 

to obtain a coarse acquisition to determine which satellites 

are in view. In this phase the parallel-code phase 

algorithm are executed for all the gold codes and with a 

frequency interval of 500 Hz. After the coarse acquisition, 

the task returns the cross-correlation values for each gold 

code and initiates a fine acquisition search for the 4 SV’s 

with the highest correlation. The fine acquisition task, use 

a frequency interval of 50 Hz to obtain better estimates of 

the Doppler frequency and the code-delay. After the 

completion of the fine-frequency search, a tracking 

process is executed in the PS. The tracking process 

allocates 4 Epiphany cores to a workgroup for each 

channel and subsequently starts the programs. It should be 

noted from Table 2, that 3 cores theoretically is enough to 

ensure real-time operation, but since there is some control 

and management operation performed from the PS, this 

introduce some additional overhead. In the current 

implementation, navigation processing has not yet been 

implemented. Instead the IP and QP correlator outputs are 

stored in a csv file for inspection in MATLAB. The 

developed software provides an option for saving the raw 

DIF data into a binary file, such that the produced 

tracking results can be verified using the MATLAB SDR 

implementation provided by [6].   

 

RESULTS 

 

In this section, results from the RF front-end and a visual 

comparison of the tracking algorithm compared with a 

post-processed MATLAB version are made. In addition 

an 𝐶/𝑁0 estimate has been calculated for both 

implementations. 

 

RF Front-End 

 

A power spectral density plot based on 10 ms of 1-bit DIF 

data is shown in Figure 10. The figure has been made 

using a 10-ms average from Welch’s power spectral 

density estimate in MATLAB.  

 

From the figure, it is evident that the passband bandwidth 

of 2.5 MHz is achieved, with a center frequency of 4 

MHz, which is in correspondence with the programmed 

settings. 

 

Tracking 
 
The system is able to acquire and track satellites from DIF 

data with a sample rate of 16.368 MHz for 4 channels 

simultaneously meeting real-time constraints.  

 

In order to validate the obtained results, we have used the 

MATLAB SDR implementation [6] as a reference to 

compare the tracking of GPS SV12. The results for 5000 

ms DIF data processed by the Parallella SDR system and 

the reference MATLAB implementation are shown in 

Figure 11.  

 

A zoom-in on IP outputs in the interval from 1500 to 

3500 ms are shown in Figure 12. The Figures show, that 

our implementation is able to track the SV. The Parallella-

16 implementation has more visible noise and smaller 

amplitude than the reference implementation at the IP 

 
Figure 10: Power-spectral density plot of 10 ms of DIF 

data. 

 

 

Figure 11: Comparison of 5000 ms output from IP and 

QP correlator outputs from MATLAB (top) and 

Parallella-16 implementations (bottom). 

 
Figure 12: Comparison of IP correlators 
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correlator. This is believed to be caused by numerical 

precision issues, as the Parallella-16 implementation 

operates with single precision and the MATLAB 

implementation uses double precision. Another factor 

could be that the Parallella-16 implementation uses a 

square-wave approximation of the IF carrier-wave. 

 

A carrier-to-noise density (𝐶/𝑁0) estimate has been 

calculated on basis of the IP and QP correlator-outputs for 

both receivers. The estimation algorithm is the commonly 

known, narrow-band over wide-band power method first 

described by [11]. The 𝐶/𝑁0 estimate, for both the 

Parallella SDR and the MATLAB SDR are shown in 

Table 3. 

 

The estimates are calculated over the same sequence for 

both receivers using a 1 second average. 

 

The MATLAB SDR performs approximately 0.9 dB-Hz 

better than the Parallella-SDR implementation.  

 

Future Developments 

 

At the current implementation only GPS L1 C/A code is 

tracked, it is however a future priority to incorporate 

support for multi-constellation operability, with inclusion 

of Galileo E1 and GLONASS L1 signals.  

 

The MAX2769 RF front-end is already capable of 

reception of GLONASS L1 and Galileo E1 band signals, 

so the main challenge is to modify the tracking algorithm. 

 

The maximum number of channels is currently limited to 

4. Adapteva has announced a 64-core version of the 

Parallella-board is in the pipeline, which would expand 

the number of tracking channels with the current 

implementation to 16.  Another option for adding more 

channels could be to use a cluster of parallella-16 boards.  

 
CONCLUSION 

 

In this paper, we have presented a parallel, low-cost 

system able to perform GPS tracking satisfying real-time 

constraints. A software design for a tracking algorithm 

utilizing parallel execution within the Epiphany multi-

core processor has been presented and demonstrated.  

 

Real-time Software-Defined GPS/GNSS receivers are 

becoming more and more accessible aided by the rapid 

evolution of computer technology. The current trend of 

using a higher numbers of cores in parallel requires that 

programmers are able to exploit the parallelism and 

identify which parts of a program that can be suitable for 

parallel execution. A number of publications have been 

made on parallel implementations of GPS/GNSS 

algorithms. Commonly these implementations, has been 

made on high-end dedicated hardware, GPUs or desktop 

computers.  

 

Our implementation has been based on the small-size, 

low-cost and commercially available Parallella-16 board, 

which with the addition of a GPS/GNSS RF front-end can 

be configured as a real-time Software-Defined GPS 

receiver. The size and weight of the platform makes it 

ideally suited for applications with e.g. small UAVs. 
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Receiver 𝑪/𝑵𝟎 

MATLAB-SDR 44.4781 dB-Hz 

Parallella-SDR 43.5427 dB-Hz 

Table 3: C/N0 estimates of MATLAB and Parallella 

receiver based on IP and QP outputs. 


