

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Nov 08, 2017

Software-Defined GPS Receiver Implemented on the Parallella-16 Board

Olesen, Daniel Haugård; Jakobsen, Jakob; Knudsen, Per

Published in:
Proceedings of the 28th International Technical Meeting of The Satellite Division of the Institute of Navigation
(ION GNSS+ 2015)

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Olesen, D. M., Jakobsen, J., & Knudsen, P. (2015). Software-Defined GPS Receiver Implemented on the
Parallella-16 Board. In Proceedings of the 28th International Technical Meeting of The Satellite Division of the
Institute of Navigation (ION GNSS+ 2015) (pp. 3171 - 3177). Institute of Navigation, The.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/43254641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/softwaredefined-gps-receiver-implemented-on-the-parallella16-board(230321d8-5fbb-46ae-be11-ca69bb9a2e39).html

Software-Defined GPS receiver Implemented on

the Parallella-16 Board

Daniel Olesen, Jakob Jakobsen, Per Knudsen, DTU Space

BIOGRAPHY

Daniel Olesen obtained his MSc. degree in Electronics

engineering with specialties in control theory and robot-

technology from the Technical University of Denmark

(DTU) in 2012. He is currently a PhD student researching

in GPS/GNSS and inertial navigation methods for small

UAVs at the department of Geodesy at DTU Space.

Jakob Jakobsen, researcher at DTU Space department of

Geodesy, PhD, has worked with research, development

and teaching related to GPS/GNSS for more than 20

years. His main interests are precise positioning and

navigation for small UAVs.

Per Knudsen, Head of Department of Geodesy, PhD, is

responsible for R&D activities related to GPS/GNSS at

DTU Space/National Space Institute as well as for the

operation of permanent GPS reference stations in

Greenland.

ABSTRACT

This paper describes a GPS software receiver design

made of inexpensive and physically small hardware

components. The small embedded platform, known as the

Parallella-16 computer has been utilized in conjunction

with a commercial RF front-end to construct a 4-channel

real time software GPS receiver. The Parallella-16 board

is a kickstarter-funded platform consisting of a dual-core

ARM A9 CPU, an integrated FPGA and a 16-core

coprocessor known as the Epiphany. The main

contribution in this paper has been the development of a

GPS tracking algorithm, which utilizes the parallelism in

the Epiphany processor. The total cost of the hardware is

below 150$ and the size is comparable to a credit-card.

The receiver has been developed for research in

GNSS/INS integration on small Unmanned Aerial

Vehicles (UAVs).

INTRODUCTION

In this paper, a 4-channel real-time software defined GPS

receiver implemented on a low-cost, credit-card sized

parallel-computing platform is presented. The chosen

hardware is the kickstarter-funded Parallella-16 board

from Adapteva [1]. The Parallella-16 provides a flexible

base with a Xilinx Zynq-7010 System on a Chip (SoC)

[2], which features a Processing System (PS) consisting

of a dual-core ARM Cortex A9 processor and

Programmable Logic (PL) from an integrated FPGA with

28000 logic cells. In addition the board contains a 16-core

coprocessor, Epiphany E16G301 developed by Adapteva.

The Parallella-16 design resources; software, HDL

sources and schematics are open source and has a

growing community for support and further development.

The receiver front-end is the Maxim MAX2769 GNSS

RF front-end, which provides flexible operation and

capability to receive GPS L1, GLONASS G1 and Galileo

E1 frequency bands.

The reasoning behind the choice of hardware has been to

develop a low-cost GPS software defined receiver (SDR)

which utilizes parallel processing in the Epiphany multi-

core processor and thus provides a flexible base with

direct access to low-level tracking variables. The receiver

is intended to be used for research, with a special focus on

integration schemes for inertial sensors in UAV

applications. Parallel implementations of GNSS

acquisition- and tracking algorithms are not a new

concept. The work of [3] describes how OpenMP and

MPI implementations significantly can speed up

algorithms on multi-core processors. A number of authors

have published papers for executing GNSS algorithms

utilizing the massive parallelism of modern GPU’s using

CUDA or OpenCL [4], [5]. The aforementioned work,

mostly applies to desktop-computers and in the design of

high-end software receivers. In our work, we utilize

parallelism in the small, low-cost Epiphany multi-core

processor. The key advantages of the presented system

are the flexibility of the software-defined receiver and the

compact size of the hardware as it could easily be

equipped into small UAVs. The integrity and performance

of the receiver, has been compared to a MATLAB-based

SDR [6].

Figure 1: Parallella-16 board (top view) [1]

The paper begins with a brief review of the GPS C/A

signal, as the tracking algorithm has been based on this.

A short review of the hardware architecture of the

Parallella-16 board is then given and an explanation of

how the data acquisition from the front-end is

implemented in PL.

Hereafter, the developed parallel tracking algorithm for

the Epiphany processor is discussed and it is shown how

the receiver is able to process data within real-time

constraints by using multiple cores per channel.

Finally the tracking of the receiver is compared to the

aforementioned MATLAB-SDR implementation and

further development and outlook is discussed.

GPS C/A Signal

The GPS Coarse / Acquisition (C/A) code is a 1023 chip

Pseudo-Random Noise (PRN) sequence transmitted on

the GPS L1 band with a carrier frequency of 1575.42

MHz. The C/A code is modulated on to the carrier by

Binary Phase Shift Keying (BPSK). As all GPS satellites

are using the same carrier-frequency, a Code Division

Multiple Access (CDMA) coding scheme is applied on

the C/A code. The C/A code is for each satellite a unique

PRN code known as a gold code. Gold codes have a

guaranteed minimum cross-correlation with other gold

codes and hence the satellite transmitting the signal can

be identified by correlation with a receiver generated

replica.

The chiprate of the C/A code is 1.023 Mchips/s,

corresponding to a code-sequence length of 1 ms. The

C/A code is modulated with the satellite navigation

message, which contains the ephemeris, time etc. for the

satellite. The signal structure for the GPS L1 C/A signal is

visualized in Figure 2.

Mathematically the broadcast signal is defined as:

 𝑆𝑆𝑉(𝑡) = sin(2 ⋅ 𝜋 ⋅ 𝑓𝑐𝑎𝑟𝑟 ⋅ 𝑡 + 𝜙) (1)

 𝜙 = 𝜋 ⋅ (𝑆𝐶/𝐴(𝑡) ⊕ 𝑆𝑁𝑎𝑣(𝑡)) (2)

where ⊕ is modulo-2 addition, also commonly referred

as an XOR operation. 𝑆𝐶/𝐴(𝑡) is the unique gold code for

the satellite and 𝑆𝑁𝑎𝑣(𝑡) is the satellite navigation

message. (1-2) assumes the binary levels of the C/A code

and navigation message is [0; 1].
If we instead should assume the levels to be [−1; 1] we

could equivalently state the broadcast signal to be:

𝑆𝑆𝑉(𝑡) = sin(2 ⋅ 𝜋 ⋅ 𝑓𝑐𝑎𝑟𝑟 ⋅ 𝑡) ⋅ (𝑆𝐶/𝐴(𝑡) ⊕ 𝑆𝑁𝑎𝑣(𝑡)) (3)

The final equation (3) is commonly used in the GNSS

literature.

HARDWARE DESCRIPTION

The system architecture of the receiver is based on the

MAX2769 GNSS RF front-end [7] and the Parallella-16

board [1]. A high-level diagram of the hardware

utilization is shown in Figure 3. The Figure furthermore

shows the basic architecture of the Parallella-16 hardware.

The RF front-end is configured to receive GPS L1 signals

(𝑓𝑐𝑎𝑟𝑟 = 1575.42𝑀𝐻𝑧) and down-convert the signal to

an Intermediate frequency (IF) of 𝑓𝐼𝐹 = 4.092𝑀𝐻𝑧. The

front-end discretizes the IF signal at a sampling rate of

16.368𝑀𝐻𝑧 with a resolution of up to 4-bits. The sign

bit from the AD conversion and a reference clock is

connected to digital inputs on the Parallella-16 board.

Data acquisition of the Discretized IF signal (DIF) has

been implemented in the PL on the Zynq SoC, in order to

store the samples in a circular-buffer in DDR memory.

Finally, the Epiphany multi-core processor is utilized for

tracking of the satellites.

RF Front-end (MAX2769)

The RF Front-End is based on the super heterodyne

receiver principle, by using a local oscillator with a fixed

frequency to down convert (mix) the incoming RF signal

down to IF. The local oscillator can be programmed to

any given frequency in the range 1550-1610 MHz. In our

application we have used a low side injection oscillation

frequency of 𝐹𝑂𝑆𝐶 = 1571.328𝑀𝐻𝑧, as this gives the

desired IF of 𝐹𝐼𝐹 = 𝐹𝑅𝐹 − 𝐹𝑂𝑆𝐶 = 1575.42 −
1571.328 = 4.092𝑀𝐻𝑧. The IF bandpass filter can be

programmed to have a bandwidth of 2.5 MHz, 4.2 MHz, 8

MHz and 18 MHz. In addition the filter can be

implemented as a 3
rd

 or 5
th

 order polyphase filter. We

Figure 2: Modulation of C/A code and Navigation

Message for GPS L1.

+

φ

L1 Carrier (1575.42 MHz)

C/A code (1.023 MChips/s)

Navigation Message (50 bit/s)

Satellite Broadcast Signal

Baseband Signal

Figure 3: High-level block diagram for the developed

GPS receiver.

MAX2769
GNSS Front-End

FPGA
(Data-collection)

ARM Cortex A9 (x2)
Host processor

(Navigation
Processing)

Epiphany cores
(Baseband
processing)

DDR Memory

ZYNQ 7010

Parallella-16

have selected the bandwidth to 2.5 MHz using the 5th

order filter setting.

Data Acquisition (Zynq PL/FPGA)

The data acquisition of the system is implemented in the

PL of the Zynq7010 SoC. The design consists of Xilinx

DMA IP core and a developed acquisition module. The

implementation is made using VHDL and Xilinx ISE

development tools. In Figure 4, a block diagram of the

acquisition system is shown. The data acquisition block is

connected to the sign-bit of the ADC output from the

MAX2769 front-end and a reference sample clock. In the

other end, an Advanced eXtensible Interface (AXI)

stream master port connects to a Direct Memory Access

(DMA) core [8]. The DMA core is a soft Intellectual

Propererty (IP) core from Xilinx. The core is connected

through a General Purpose (GP) and a High Performance

(HP) interconnect to the Zynq PS. The IP core is memory

mapped, such that configuration registers can be set

directly from the PS by writes to a specific address in the

memory-system. The DMA core can be configured in a

simple operating mode, where each transfer is initiated by

the Processing System writing to the memory-mapped

control registers. In this design, the DMA is configured

for Scatter-Gather operation. This allows the DMA to

automatically process a linked-list of DMA descriptors,

without requesting processing time from the PS system.

Host Processor (Zynq PS)

The host processor (Zynq PS) of the parallella-16

hardware is a dual-core ARM Cortex A9 processor

running at 667 MHz. The processor features Gbit Ethernet

connectivity, USB 2 compliance, 32 KB Level 1 cache for

each core and a 512 KB Level 2 cache shared between the

cores. In addition the ARM cores are equipped with a

128-bit Single-Instruction Multiple Data (SIMD) engine,

NEON™, which can help accelerate multimedia and

signal processing tasks. The processor is equipped with 1

GB DDR3 external memory.

The host-processor runs an ubuntu distribution and

controls all peripheral devices in the Zynq SoC. The PS

furthermore controls loading and launching of programs

in the Epiphany multicore coprocessor.

Epiphany coprocessor

The basic layout of the Epiphany processor is shown in

Figure 5. The processor is designed as a network-on-chip

and consists of 16 mesh-nodes arranged in a 2D grid,

where each node containing a DMA engine, a RISC

processing core, a network interface and 32 KB of local

memory. The cores are operated at 600 MHz and capable

of doing two floating point operations and one integer

calculation per clock-cycle. The entire memory system of

the Epiphany can be accessed from each node, where 3

interconnects are responsible for write transactions, read

transactions and off-chip memory access. For more

detailed specifications about the Epiphany architecture the

reader is referred to [9]. The programming of the

Epiphany cores has been done using a native bare-metal

C/C++ framework controlled from the Zynq PS. An

OpenCL implementation would also have been possible,

since a free compiler for the Epiphany architecture is

available. The native framework allows loading of

separate programs to each node. It furthermore allows

configuration of a workgroup, where a single program can

be loaded to each member simultaneously (SPMD). The

definition of the workgroup, allows for relative

addressing, such that each core can be identified from a

relative row and column index.

BASEBAND PROCESSING

In the previous section, it was described how data

continuously is stored in a circular buffer in the DDR

memory. In this section, the hardware utilization and the

algorithms necessary for processing and demodulation of

the DIF signal is described. The first task is to identify

which satellites are in sight and subsequently start

tracking and demodulate the navigation message.

Figure 4: Block diagram of Data Acquisition system in

Zynq SoC.

Data
Acqusition

AXI
DMA Engine

CLK

ADC[MSB] S2MM

AXI HP
Interconnect

AXI GP
Interconnect

Memory-
Interconnect

DDR3
Memory

Central
Interconnect

ARM
Cortex

A9

ARM
Cortex

A9

L2 + Memory
ControllerAXI-Lite

(Config)

AXI-Stream
(Data)

ZYNQ7010

PSPL (FPGA)

AXI-SG (Scatter-
Gather)

Figure 5: Epiphany eMesh architecture [9]

Satellite Acquisition

During receiver initialization, the Zynq PS performs

satellite acquisition using the parallel code phase search

algorithm (Figure 6) utilizing the fftw-library [10]. From

version 3.3.1 the fftw-library includes support for the

NEON™ hardware accelerator /

SIMD engine featured in the ARM cores. Experiments

was initially made with acquisition using the Epiphany

multi-core processor, but ultimately have been discarded

because of current lack of support for optimized FFT

libraries, such as the fftw. After satellite acquisition,

tracking loops are initialized in the Epiphany multi-core

processor.

Tracking

Preliminary estimates of Doppler frequency and code-

delay from satellite acquisition are used to initiate

tracking for the acquired satellites. A satellite tracking

algorithm for one channel was initially designed to be

executed on a single Epiphany core. Despite various

optimization efforts, this approach however proved

undoable for real-time operation. Due to the high

computational demands of the tracking algorithm, we

have chosen to distribute the execution of the tracking

algorithm for one channel to a workgroup consisting of

multiple cores to obtain processing in real-time. The parts

of the tracking algorithms which are executed in parallel

are illustrated in Figure 7.

The tracking of a GPS satellite requires a Phase-Locked

Loop (PLL) for keeping track of the down-converted

carrier wave and a Delay-Locked Loop (DLL) for

aligning the received C/A code sequence with a receiver

generated replica. In Figure 7, the carrier discriminator

and carrier-filter blocks comprises the PLL. A special

note on the PLL is that it should be insensitive to phase-

shifts induced by transitions in the navigation message.

This has been accomplished by using a so-called Costas

loop, with the following discriminator function:

The DLL is comprised of the code discriminator and the

code filter blocks. The discriminator function is evaluated

from the Early, Prompt and Late correlations between the

incoming DIF signal and receiver generated replicas of

the C/A code.

The Early and Late correlators have in our

implementation shifted the C/A code phase by 0.5 chips.

The code-discriminator function has been implemented

as:

𝐷𝐷𝐿𝐿 =

(𝐼𝐸
2 + 𝑄𝐸

2) − (𝐼𝐿
2 + 𝑄𝐿

2)

(𝐼𝐸
2 + 𝑄𝐸

2) + (𝐼𝐿
2 + 𝑄𝐿

2)

(5)

In Figure 7, the parallel region includes carrier wipe off

for the DIF signal, PRN (gold-code) generation, early,

prompt and late correlations and integrations. The basic

mathematical principle for parallelization to 4 cores is

shown in (6) for calculation of the IP correlator output.

𝐼𝑃 = ∑𝑆𝐷𝐼𝐹(𝑘) ⋅ 𝑆𝑐𝑎𝑟𝑟(𝑘) ⋅ 𝑆𝐶𝐴(𝑘)

𝑁

𝑘=0

= ∑ 𝑆𝐷𝐼𝐹(𝑘) ⋅ 𝑆𝑐𝑎𝑟𝑟(𝑘) ⋅ 𝑆𝐶𝐴(𝑘)

(𝑁/4)−1

𝑘=0

+

 ∑ 𝑆𝐷𝐼𝐹(𝑘) ⋅ 𝑆𝑐𝑎𝑟𝑟(𝑘) ⋅ 𝑆𝐶𝐴(𝑘)

(𝑁/2)−1

𝑘=𝑁/4

+

 ∑ 𝑆𝐷𝐼𝐹(𝑘) ⋅ 𝑆𝑐𝑎𝑟𝑟(𝑘) ⋅ 𝑆𝐶𝐴(𝑘)

3(𝑁/4)−1

𝑘=𝑁/2

+

 ∑ 𝑆𝐷𝐼𝐹(𝑘) ⋅ 𝑆𝑐𝑎𝑟𝑟(𝑘) ⋅ 𝑆𝐶𝐴(𝑘)

𝑁

𝑘=3(𝑁/4)

(6)

Where 𝑁 is the number of samples for one CA code

sequence, 𝑆𝐷𝐼𝐹 is the DIF samples from the front-end,

𝑆𝑐𝑎𝑟𝑟 and 𝑆𝐶𝐴 are the receiver generated carrier and C/A

code respectively.

A flow-chart for the implementation of the tracking

algorithm in the Epiphany multi-core processor are shown

in Figure 8.

𝐷𝑃𝐿𝐿 = arctan(𝑄𝑃/𝐼𝑃) (4)

Figure 6: Parallel Code Phase Search

FFTDIF

Complex
Conjugate

FFT

Code

IFFT

)2sin(tf)2cos(tf

};;{ DIFDIF ffffff

Threshold
Detector

Figure 7: Tracking loops for one channel

PRN generator

carrier
discriminator

code
discriminator

carrier
filter

NCO
carrier

generator

90°

code filter

NCO

DIF Q

I

E P L

IP QP

Parallel-region

IP

QP

The parallelization of the tracking loops have been

obtained by assigning a master-thread for estimating the

number of DIF samples for the C/A code sequence and

later updating the code- and carrier tracking loops. The

master thread is furthermore responsible for distributing

sub-indices of the DIF samples for processing to the slave

threads.

A barrier function is used to synchronize the cores after

processing has been completed. The results are then read

back to the master-thread. An analogy of the work

distribution of the slave threads can be drawn to the

OpenMP fork-and-join execution model. Finally, the

master-thread combines the results and updates the NCO

of the code- and carrier tracking loops before the next 1

ms period is being processed.

BENCHMARKING OF TRACKING ALGORITHM

In terms of benchmarking, Table 1 shows the number of

processor-cycles for various program stages in the

algorithm. The data has been generated using one core per

tracking channel and based on 2000 ms prerecorded DIF

samples with a sample rate of 16.368 MHz.

Task Number of cycles Execution time

Read samples from
DDR-memory

190933053 0.318 s

Update PLL and

DLL

25300772 0.042 s

Correlation-Loops 2627483517 4.379 s

Total 4.739 s

Table 1: Timings for single core tracking algorithm (2000 ms

DIF data)

From the table, it is evident that most cycles are spent in

the correlators, which accounts for 92 % of the total

runtime. Transfer times from the DDR memory accounts

for approximately 7 % of the total runtime. Finally

computation of block-sizes, code- and carrier tracking

variables accounts for less than 1 % of the total runtime.

The speed-up obtained by using 2-4 cores per tracking

channel and the respective execution time is listed in

Table 2.

The obtained speed up from 2 cores is 1.73 times, the

speed up using 3 cores is 2.42 times and finally the speed-

up for 4 cores is 2.91 times. From Table 2, it can be seen

that both 3 and 4 core workgroups obtains processing

within real-time constraints. The parallel implementation,

does introduce some parallel-overhead in terms of

synchronization messages and barrier functions which

limits the theoretical speed-up. Another limiting factor is

the total bandwidth of the Epiphany interconnects. Each

Epiphany core has a dedicated DMA engine, but DMA

transfers are utilizing the same communication bus for

off-chip (DDR) memory access and thus cannot obtain a

linear speed-up by distributing transfers to multiple cores.

IMPLEMENTATION

The implementation in software is shown in Figure 9.

A GPS_main routine controls all the processes of the

receiver. Initially a dma driver process is started, which is

responsible for constantly updating a fixed-size circular

buffer in DDR memory with DIF samples. As earlier

explained, the PL handles the actual dma transfers, but it

Number of cores

pr. channel

Speed-Up [x] Execution time

[s]

1 - 4.739

2 1.73 2.741

3 2.42 1.964

4 2.91 1.627

Table 2: Parallel speed-up for 2000 ms of DIF data

Figure 8: Flow-chart and thread synchronizing between

master and slave cores.

Master Slave(s)

Calculate
BlkSize

Syncronize
data to slave

devices

Initialize
Program

Correlation Correlation

Syncronize
results

Combine
results

Update NCO
of code and

carrier-
tracking loops

Barrier

Barrier

Initialize
Program

Read Samples
from DDR
memory

Read Samples
from DDR
memory

Read Tracking
parameters

Figure 9: UML Sequence diagram of process execution

(Zynq PS)

dma_driver GPS_main Coarse_acquisition Fine_acquisition

Start Data Acquisition

Coarse Acquisition

Fine Acquisition

Tracking

Start Tracking

Return results

Return results

is the PS responsibility to occasionally update the tail-

pointer of the dma-descriptors, such that the transfers are

executed continuously. This process continues throughout

the execution of the program. The following action is then

to obtain a coarse acquisition to determine which satellites

are in view. In this phase the parallel-code phase

algorithm are executed for all the gold codes and with a

frequency interval of 500 Hz. After the coarse acquisition,

the task returns the cross-correlation values for each gold

code and initiates a fine acquisition search for the 4 SV’s

with the highest correlation. The fine acquisition task, use

a frequency interval of 50 Hz to obtain better estimates of

the Doppler frequency and the code-delay. After the

completion of the fine-frequency search, a tracking

process is executed in the PS. The tracking process

allocates 4 Epiphany cores to a workgroup for each

channel and subsequently starts the programs. It should be

noted from Table 2, that 3 cores theoretically is enough to

ensure real-time operation, but since there is some control

and management operation performed from the PS, this

introduce some additional overhead. In the current

implementation, navigation processing has not yet been

implemented. Instead the IP and QP correlator outputs are

stored in a csv file for inspection in MATLAB. The

developed software provides an option for saving the raw

DIF data into a binary file, such that the produced

tracking results can be verified using the MATLAB SDR

implementation provided by [6].

RESULTS

In this section, results from the RF front-end and a visual

comparison of the tracking algorithm compared with a

post-processed MATLAB version are made. In addition

an 𝐶/𝑁0 estimate has been calculated for both

implementations.

RF Front-End

A power spectral density plot based on 10 ms of 1-bit DIF

data is shown in Figure 10. The figure has been made

using a 10-ms average from Welch’s power spectral

density estimate in MATLAB.

From the figure, it is evident that the passband bandwidth

of 2.5 MHz is achieved, with a center frequency of 4

MHz, which is in correspondence with the programmed

settings.

Tracking

The system is able to acquire and track satellites from DIF

data with a sample rate of 16.368 MHz for 4 channels

simultaneously meeting real-time constraints.

In order to validate the obtained results, we have used the

MATLAB SDR implementation [6] as a reference to

compare the tracking of GPS SV12. The results for 5000

ms DIF data processed by the Parallella SDR system and

the reference MATLAB implementation are shown in

Figure 11.

A zoom-in on IP outputs in the interval from 1500 to

3500 ms are shown in Figure 12. The Figures show, that

our implementation is able to track the SV. The Parallella-

16 implementation has more visible noise and smaller

amplitude than the reference implementation at the IP

Figure 10: Power-spectral density plot of 10 ms of DIF

data.

Figure 11: Comparison of 5000 ms output from IP and

QP correlator outputs from MATLAB (top) and

Parallella-16 implementations (bottom).

Figure 12: Comparison of IP correlators

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

-3000

-2000

-1000

0

1000

2000

3000

MATLAB-SDR (IP)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

-3000

-2000

-1000

0

1000

2000

3000

MATLAB-SDR (QP)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

-3000

-2000

-1000

0

1000

2000

3000

Parallella-SDR (IP)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

-3000

-2000

-1000

0

1000

2000

3000

Parallella-SDR (QP)

1500 2000 2500 3000 3500

-3000

-2000

-1000

0

1000

2000

3000

MATLAB-SDR (IP)

1500 2000 2500 3000 3500

-3000

-2000

-1000

0

1000

2000

3000

Parallella-SDR (IP)

correlator. This is believed to be caused by numerical

precision issues, as the Parallella-16 implementation

operates with single precision and the MATLAB

implementation uses double precision. Another factor

could be that the Parallella-16 implementation uses a

square-wave approximation of the IF carrier-wave.

A carrier-to-noise density (𝐶/𝑁0) estimate has been

calculated on basis of the IP and QP correlator-outputs for

both receivers. The estimation algorithm is the commonly

known, narrow-band over wide-band power method first

described by [11]. The 𝐶/𝑁0 estimate, for both the

Parallella SDR and the MATLAB SDR are shown in

Table 3.

The estimates are calculated over the same sequence for

both receivers using a 1 second average.

The MATLAB SDR performs approximately 0.9 dB-Hz

better than the Parallella-SDR implementation.

Future Developments

At the current implementation only GPS L1 C/A code is

tracked, it is however a future priority to incorporate

support for multi-constellation operability, with inclusion

of Galileo E1 and GLONASS L1 signals.

The MAX2769 RF front-end is already capable of

reception of GLONASS L1 and Galileo E1 band signals,

so the main challenge is to modify the tracking algorithm.

The maximum number of channels is currently limited to

4. Adapteva has announced a 64-core version of the

Parallella-board is in the pipeline, which would expand

the number of tracking channels with the current

implementation to 16. Another option for adding more

channels could be to use a cluster of parallella-16 boards.

CONCLUSION

In this paper, we have presented a parallel, low-cost

system able to perform GPS tracking satisfying real-time

constraints. A software design for a tracking algorithm

utilizing parallel execution within the Epiphany multi-

core processor has been presented and demonstrated.

Real-time Software-Defined GPS/GNSS receivers are

becoming more and more accessible aided by the rapid

evolution of computer technology. The current trend of

using a higher numbers of cores in parallel requires that

programmers are able to exploit the parallelism and

identify which parts of a program that can be suitable for

parallel execution. A number of publications have been

made on parallel implementations of GPS/GNSS

algorithms. Commonly these implementations, has been

made on high-end dedicated hardware, GPUs or desktop

computers.

Our implementation has been based on the small-size,

low-cost and commercially available Parallella-16 board,

which with the addition of a GPS/GNSS RF front-end can

be configured as a real-time Software-Defined GPS

receiver. The size and weight of the platform makes it

ideally suited for applications with e.g. small UAVs.

ACKNOWLEDGMENTS

The authors would like to thank the Innovation Fund

Denmark for partial funding of the first author’s PhD

study. We would also like to thank Michael H. Avngaard,

assistant engineer at DTU Space for his help and

assistance in the laboratory during the development of the

GPS software-defined receiver.

REFERENCES

[1] Adapteva, Parallella-1.x Reference Manual,

Lexington, 2014.

[2] Xilinx, Zynq-7000 All Programmable SoC Overview

(DS190), 2013.

[3] C.-C. Sun and S.-S. Jan, "GNSS signal acqusition

and tracking using a parallel approach," IEEE/ION

Position, Location and Navigation Symposium,

Vol.1-3, pp. 1332-1340, 2008.

[4] U. Haak, H. G. Busing and P. Hecker, "Performance

analysis of GPU based GNSS signal processing,"

25th Internation Technical Meeting of the Satellite

Division of The institute of Navigation, pp. 2371-

2377, 2012.

[5] R. Petr, O. Jakubov, P. Kovar, P. Karmarik and F.

Vejrazka, "GNSS signal processing in GPU,"

Artificial Satellites, Vol. 48, pp. 2051-61, 2013.

[6] K. Borre, D. Akos, N. Bertelsen, P. Rinder and S.

Jensen, A Software-Defined GPS and Galileo

Receiver, Birkhauser, 2007.

[7] Maxim Integrated, "MAX2769 Datasheet," San Jose,

2010.

[8] Xilinx, LogiCORE IP AXI DMA v6.03a (PG021),

2012.

[9] Adapteva, Epiphany Architecture Reference,

Lexington, 2014.

[10] M. Frigo and S. Johnson, "The Design and

Implementation of FFTW3," Proceedings of the

IEEE, Vol 93, Issue 2, pp. 216-231, 2005.

[11] A. J. V. Dierendonck, "GPS Receivers," in "Global

Positioning System: Theory and Applications",

Volume I, Edited by B.W. Parkinson, J.J. Spiker Jr.

Receiver 𝑪/𝑵𝟎

MATLAB-SDR 44.4781 dB-Hz

Parallella-SDR 43.5427 dB-Hz

Table 3: C/N0 estimates of MATLAB and Parallella

receiver based on IP and QP outputs.

