1,052 research outputs found

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Ultrasound-Augmented Laparoscopy

    Get PDF
    Laparoscopic surgery is perhaps the most common minimally invasive procedure for many diseases in the abdomen. Since the laparoscopic camera provides only the surface view of the internal organs, in many procedures, surgeons use laparoscopic ultrasound (LUS) to visualize deep-seated surgical targets. Conventionally, the 2D LUS image is visualized in a display spatially separate from that displays the laparoscopic video. Therefore, reasoning about the geometry of hidden targets requires mentally solving the spatial alignment, and resolving the modality differences, which is cognitively very challenging. Moreover, the mental representation of hidden targets in space acquired through such cognitive medication may be error prone, and cause incorrect actions to be performed. To remedy this, advanced visualization strategies are required where the US information is visualized in the context of the laparoscopic video. To this end, efficient computational methods are required to accurately align the US image coordinate system with that centred in the camera, and to render the registered image information in the context of the camera such that surgeons perceive the geometry of hidden targets accurately. In this thesis, such a visualization pipeline is described. A novel method to register US images with a camera centric coordinate system is detailed with an experimental investigation into its accuracy bounds. An improved method to blend US information with the surface view is also presented with an experimental investigation into the accuracy of perception of the target locations in space

    Navigated Ultrasound in Laparoscopic Surgery

    Get PDF

    The Challenge of Augmented Reality in Surgery

    Get PDF
    Imaging has revolutionized surgery over the last 50 years. Diagnostic imaging is a key tool for deciding to perform surgery during disease management; intraoperative imaging is one of the primary drivers for minimally invasive surgery (MIS), and postoperative imaging enables effective follow-up and patient monitoring. However, notably, there is still relatively little interchange of information or imaging modality fusion between these different clinical pathway stages. This book chapter provides a critique of existing augmented reality (AR) methods or application studies described in the literature using relevant examples. The aim is not to provide a comprehensive review, but rather to give an indication of the clinical areas in which AR has been proposed, to begin to explain the lack of clinical systems and to provide some clear guidelines to those intending pursue research in this area

    Advanced Endoscopic Navigation:Surgical Big Data,Methodology,and Applications

    Get PDF
    随着科学技术的飞速发展,健康与环境问题日益成为人类面临的最重大问题之一。信息科学、计算机技术、电子工程与生物医学工程等学科的综合应用交叉前沿课题,研究现代工程技术方法,探索肿瘤癌症等疾病早期诊断、治疗和康复手段。本论文综述了计算机辅助微创外科手术导航、多模态医疗大数据、方法论及其临床应用:从引入微创外科手术导航概念出发,介绍了医疗大数据的术前与术中多模态医学成像方法、阐述了先进微创外科手术导航的核心流程包括计算解剖模型、术中实时导航方案、三维可视化方法及交互式软件技术,归纳了各类微创外科手术方法的临床应用。同时,重点讨论了全球各种手术导航技术在临床应用中的优缺点,分析了目前手术导航领域内的最新技术方法。在此基础上,提出了微创外科手术方法正向数字化、个性化、精准化、诊疗一体化、机器人化以及高度智能化的发展趋势。【Abstract】Interventional endoscopy (e.g., bronchoscopy, colonoscopy, laparoscopy, cystoscopy) is a widely performed procedure that involves either diagnosis of suspicious lesions or guidance for minimally invasive surgery in a variety of organs within the body cavity. Endoscopy may also be used to guide the introduction of certain items (e.g., stents) into the body. Endoscopic navigation systems seek to integrate big data with multimodal information (e.g., computed tomography, magnetic resonance images, endoscopic video sequences, ultrasound images, external trackers) relative to the patient's anatomy, control the movement of medical endoscopes and surgical tools, and guide the surgeon's actions during endoscopic interventions. Nevertheless, it remains challenging to realize the next generation of context-aware navigated endoscopy. This review presents a broad survey of various aspects of endoscopic navigation, particularly with respect to the development of endoscopic navigation techniques. First, we investigate big data with multimodal information involved in endoscopic navigation. Next, we focus on numerous methodologies used for endoscopic navigation. We then review different endoscopic procedures in clinical applications. Finally, we discuss novel techniques and promising directions for the development of endoscopic navigation.X.L. acknowledges funding from the Fundamental Research Funds for the Central Universities. T.M.P. acknowledges funding from the Canadian Foundation for Innovation, the Canadian Institutes for Health Research, the National Sciences and Engineering Research Council of Canada, and a grant from Intuitive Surgical Inc

    Real-time Prostate Motion Tracking For Robot-assisted Laparoscopic Radical Prostatectomy

    Get PDF
    Radical prostatectomy surgery (RP) is the gold standard for treatment of localized prostate cancer (PCa). Recently, emergence of minimally invasive techniques such as Laparoscopic Radical Prostatectomy (LRP) and Robot-Assisted Laparoscopic Radical Prostatectomy (RARP) has improved the outcomes for prostatectomy. However, it remains difficult for surgeons to make informed decisions regarding resection margins and nerve sparing since the location of the tumour within the organ is not usually visible in a laparoscopic view. While MRI enables visualization of the salient structures and cancer foci, its efficacy in LRP is reduced unless it is fused into a stereoscopic view such that homologous structures overlap. Registration of the MRI image and peri-operative ultrasound image either via visual manual alignment or using a fully automated registration can potentially be exploited to bring the pre-operative information into alignment with the patient coordinate system at the beginning of the procedure. While doing so, prostate motion needs to be compensated in real-time to synchronize the stereoscopic view with the pre-operative MRI during the prostatectomy procedure. In this thesis, two tracking methods are proposed to assess prostate rigid rotation and translation for the prostatectomy. The first method presents a 2D-to-3D point-to-line registration algorithm to measure prostate motion and translation with respect to an initial 3D TRUS image. The second method investigates a point-based stereoscopic tracking technique to compensate for rigid prostate motion so that the same motion can be applied to the pre-operative images

    On uncertainty propagation in image-guided renal navigation: Exploring uncertainty reduction techniques through simulation and in vitro phantom evaluation

    Get PDF
    Image-guided interventions (IGIs) entail the use of imaging to augment or replace direct vision during therapeutic interventions, with the overall goal is to provide effective treatment in a less invasive manner, as an alternative to traditional open surgery, while reducing patient trauma and shortening the recovery time post-procedure. IGIs rely on pre-operative images, surgical tracking and localization systems, and intra-operative images to provide correct views of the surgical scene. Pre-operative images are used to generate patient-specific anatomical models that are then registered to the patient using the surgical tracking system, and often complemented with real-time, intra-operative images. IGI systems are subject to uncertainty from several sources, including surgical instrument tracking / localization uncertainty, model-to-patient registration uncertainty, user-induced navigation uncertainty, as well as the uncertainty associated with the calibration of various surgical instruments and intra-operative imaging devices (i.e., laparoscopic camera) instrumented with surgical tracking sensors. All these uncertainties impact the overall targeting accuracy, which represents the error associated with the navigation of a surgical instrument to a specific target to be treated under image guidance provided by the IGI system. Therefore, understanding the overall uncertainty of an IGI system is paramount to the overall outcome of the intervention, as procedure success entails achieving certain accuracy tolerances specific to individual procedures. This work has focused on studying the navigation uncertainty, along with techniques to reduce uncertainty, for an IGI platform dedicated to image-guided renal interventions. We constructed life-size replica patient-specific kidney models from pre-operative images using 3D printing and tissue emulating materials and conducted experiments to characterize the uncertainty of both optical and electromagnetic surgical tracking systems, the uncertainty associated with the virtual model-to-physical phantom registration, as well as the uncertainty associated with live augmented reality (AR) views of the surgical scene achieved by enhancing the pre-procedural model and tracked surgical instrument views with live video views acquires using a camera tracked in real time. To better understand the effects of the tracked instrument calibration, registration fiducial configuration, and tracked camera calibration on the overall navigation uncertainty, we conducted Monte Carlo simulations that enabled us to identify optimal configurations that were subsequently validated experimentally using patient-specific phantoms in the laboratory. To mitigate the inherent accuracy limitations associated with the pre-procedural model-to-patient registration and their effect on the overall navigation, we also demonstrated the use of tracked video imaging to update the registration, enabling us to restore targeting accuracy to within its acceptable range. Lastly, we conducted several validation experiments using patient-specific kidney emulating phantoms using post-procedure CT imaging as reference ground truth to assess the accuracy of AR-guided navigation in the context of in vitro renal interventions. This work helped find answers to key questions about uncertainty propagation in image-guided renal interventions and led to the development of key techniques and tools to help reduce optimize the overall navigation / targeting uncertainty

    Augmented Reality in Minimally Invasive Surgery

    Get PDF
    In the last 15 years Minimally Invasive Surgery, with techniques such as laparoscopy or endoscopy, has become very important and research in this field is increasing since these techniques provide the surgeons with less invasive means of reaching the patient’s internal anatomy and allow for entire procedures to be performed with only minimal trauma to the patient. The advantages of the use of this surgical method are evident for patients because the possible trauma is reduced, postoperative recovery is generally faster and there is less scarring. Despite the improvement in outcomes, indirect access to the operation area causes restricted vision, difficulty in hand-eye coordination, limited mobility handling instruments, two-dimensional imagery with a lack of detailed information and a limited visual field during the whole operation. The use of the emerging Augmented Reality technology shows the way forward by bringing the advantages of direct visualization (which you have in open surgery) back to minimally invasive surgery and increasing the physician's view of his surroundings with information gathered from patient medical images. Augmented Reality can avoid some drawbacks of Minimally Invasive Surgery and can provide opportunities for new medical treatments. After two decades of research into medical Augmented Reality, this technology is now advanced enough to meet the basic requirements for a large number of medical applications and it is feasible that medical AR applications will be accepted by physicians in order to evaluate their use and integration into the clinical workflow. Before seeing the systematic use of these technologies as support for minimally invasive surgery some improvements are still necessary in order to fully satisfy the requirements of operating physicians

    Toward Real-Time Video-Enhanced Augmented Reality for Medical Visualization and Simulation

    Get PDF
    In this work we demonstrate two separate forms of augmented reality environments for use with minimally-invasive surgical techniques. In Chapter 2 it is demonstrated how a video feed from a webcam, which could mimic a laparoscopic or endoscopic camera used during an interventional procedure, can be used to identify the pose of the camera with respect to the viewed scene and augment the video feed with computer-generated information, such as rendering of internal anatomy not visible beyond the image surface, resulting in a simple augmented reality environment. Chapter 3 details our implementation of a similar system to the one previously mentioned, albeit with an external tracking system. Additionally, we discuss the challenges and considerations for expanding this system to support an external tracking system, specifically the Polaris Spectra optical tracker. Because of the relocation of the tracking origin to a point other than the camera center, there is an additional registration step necessary to establish the position of all components within the scene. This modification is expected to increase accuracy and robustness of the system
    corecore