3,762 research outputs found

    A Neighborhood Search for Sequence-dependent Setup Time in Flow Shop Fabrics Making of Textile Industry

    Get PDF
    Abstract This paper proposes a neighborhood search to solve scheduling for fabrics making in a textile industry. The production process consists of three production stages from spinning, weaving, and dyeing. All stages have one processor. Setup time between two consecutive jobs with different color is considered. This paper also proposes attribute’s decomposition of a single job to classify available jobs to be processed and to consider setup time between two consecutive jobs. Neighborhood search (NS) algorithm is proposed in which the permutation of set of jobs with same attribute and the permutation among set of jobs is conducted. Solution obtained from neighborhood search, which might be trapped in local solution, then is compared with other known optimal methods

    Application of Multi-Objective Optimization Based on Genetic Algorithm for Sustainable Strategic Supplier Selection under Fuzzy Environment

    Get PDF
    Purpose: The incorporation of environmental objective into the conventional supplier selection practices is crucial for corporations seeking to promote green supply chain management (GSCM). Challenges and risks associated with green supplier selection have been broadly recognized by procurement and supplier management professionals. This paper aims to solve a Tetra “S” (SSSS) problem based on a fuzzy multi-objective optimization with genetic algorithm in a holistic supply chain environment. In this empirical study, a mathematical model with fuzzy coefficients is considered for sustainable strategic supplier selection (SSSS) problem and a corresponding model is developed to tackle this problem. Design/methodology/approach: Sustainable strategic supplier selection (SSSS) decisions are typically multi-objectives in nature and it is an important part of green production and supply chain management for many firms. The proposed uncertain model is transferred into deterministic model by applying the expected value measure (EVM) and genetic algorithm with weighted sum approach for solving the multi-objective problem. This research focus on a multiobjective optimization model for minimizing lean cost, maximizing sustainable service and greener product quality level. Finally, a mathematical case of textile sector is presented to exemplify the effectiveness of the proposed model with a sensitivity analysis. Findings: This study makes a certain contribution by introducing the Tetra ‘S’ concept in both the theoretical and practical research related to multi-objective optimization as well as in the study of sustainable strategic supplier selection (SSSS) under uncertain environment. Our results suggest that decision makers tend to select strategic supplier first then enhance the sustainability. Research limitations/implications: Although the fuzzy expected value model (EVM) with fuzzy coefficients constructed in present research should be helpful for solving real world problems. A detailed comparative analysis by using other algorithms is necessary for solving similar problems of agriculture, pharmaceutical, chemicals and services sectors in future. Practical implications: It can help the decision makers for ordering to different supplier for managing supply chain performance in efficient and effective manner. From the procurement and engineering perspectives, minimizing cost, sustaining the quality level and meeting production time line is the main consideration for selecting the supplier. Empirically, this can facilitate engineers to reduce production costs and at the same time improve the product quality. Originality/value: In this paper, we developed a novel multi-objective programming model based on genetic algorithm to select sustainable strategic supplier (SSSS) under fuzzy environment. The algorithm was tested and applied to solve a real case of textile sector in Pakistan. The experimental results and comparative sensitivity analysis illustrate the effectiveness of our proposed model.Peer Reviewe

    Order Allocation and Purchasing Transportation Planning in the Garment Supply Chain: A Goal-Flexible Planning Approach

    Get PDF
    The garment supply chain is one of the most common supply chains in the world. In this supply chain, quality and cost are the most important factors that are strongly related to the selection of suppliers and the allocation of orders to them. Accordingly, the purpose of this paper is to integrate decisions for supplier selection, order allocation, and multi- source, multi-mode, multi-product shipping plans with consideration of discounts under uncertainty. For this purpose, a multi-objective mixed-integer mathematical model is presented, including the objectives of minimizing costs and products with delays and maximizing the total purchase value. In this mathematical model, the policy of purchasing materials and determining the number and type of transport equipment are specified. To solve this mathematical model, a goal-flexible programming approach with a utility function is presented. In the solution algorithm, a new possibility-flexible programming method has been developed to deal with the uncertainties in the model, which is based on the expected value method and chance constraint. Finally, using a numerical problem, the establishment of the above model in the garment supply chain is investigated. As indicated by the outcomes, the proposed model was touchy to certain boundaries, including blended leaders’ mentality, a boundary identified with fluffy imperatives, and the degree of certainty characterized by the chief for not exactly equivalent limitations

    Decision support for build-to-order supply chain management through multiobjective optimization

    Get PDF
    This is the post-print version of the final paper published in International Journal of Production Economics. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.This paper aims to identify the gaps in decision-making support based on multiobjective optimization (MOO) for build-to-order supply chain management (BTO-SCM). To this end, it reviews the literature available on modelling build-to-order supply chains (BTO-SC) with the focus on adopting MOO techniques as a decision support tool. The literature has been classified based on the nature of the decisions in different part of the supply chain, and the key decision areas across a typical BTO-SC are discussed in detail. Available software packages suitable for supporting decision making in BTO supply chains are also identified and their related solutions are outlined. The gap between the modelling and optimization techniques developed in the literature and the decision support needed in practice are highlighted. Future research directions to better exploit the decision support capabilities of MOO are proposed. These include: reformulation of the extant optimization models with a MOO perspective, development of decision supports for interfaces not involving manufacturers, development of scenarios around service-based objectives, development of efficient solution tools, considering the interests of each supply chain party as a separate objective to account for fair treatment of their requirements, and applying the existing methodologies on real-life data sets.Brunel Research Initiative and Enterprise Fund (BRIEF

    Decision models for supplier selection in industry 4.0 era: a systematic literature review

    Get PDF
    Industry 4.0 comprises the application of different technological solutions so that business processes throughout the production chain are integrated. The supplier’s selection, considering the industry 4.0 requirements, is essential in promoting collaborative strategies between suppliers and manufacturers. In this context, this study presents a systematic literature review about quantitative models to support supplier selection in the industry 4.0 era. Fourteen studies were reviewed and characterized in different perspectives such as modelling, application, and validation of the decision model. The results revealed that most of the decision models were developed combining multicriteria decision-making (MCDM) with Artificial Intelligence (AI). Among the criteria related to the Industry 4.0 environment, the most frequent ones were information sharing, technological capacity, digital collaboration and engagement. The gathered results can be useful to guide researchers and managers in the development of computational tools to assist decision-making processes for supplier selection in Industry 4.0 era.info:eu-repo/semantics/publishedVersio

    Stochastic multi-period multi-product multi-objective Aggregate Production Planning model in multi-echelon supply chain

    Get PDF
    In this paper a multi-period multi-product multi-objective aggregate production planning (APP) model is proposed for an uncertain multi-echelon supply chain considering financial risk, customer satisfaction, and human resource training. Three conflictive objective functions and several sets of real constraints are considered concurrently in the proposed APP model. Some parameters of the proposed model are assumed to be uncertain and handled through a two-stage stochastic programming (TSSP) approach. The proposed TSSP is solved using three multi-objective solution procedures, i.e., the goal attainment technique, the modified Δ-constraint method, and STEM method. The whole procedure is applied in an automotive resin and oil supply chain as a real case study wherein the efficacy and applicability of the proposed approaches are illustrated in comparison with existing experimental production planning method

    Integration of MACBETH and COPRAS methods to select air compressor for a textile company

    Get PDF
    The selection of air compressor is a Multiple Criteria Decision Making (MCDM) problem including conflicting criteria and various alternatives. Selecting the appropriate air compressor is an important decision for the company as it affects the energy consumption and operating cost. To aid the decision making process in the companies, MCDM methods are proposed in the literature. In all MCDM methods, the main goal is to select the best alternative or to rank a set of given alternatives. In this paper, the air compressor is selected for a spinning mill of a textile company with an integrated approach based on MACBETH (Measuring Attractiveness by a Categorical Based Evaluation TecHnique) and COPRAS (COmplex PRoportional ASsessment) methods. MACBETH method is utilized to determine the weights of the criteria. Then COPRAS method is used to determine the ranking of the alternatives and select the best one. © 2016 Growing Science Ltd. All rights reserved
    • 

    corecore