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Abstract  

This paper aims to identify the gaps in decision-making support based on 

multiobjective optimization for build-to-order supply chain management (BTO-

SCM). To this end, it reviews the literature available on modelling build-to-order 

supply chains (BTO-SC) with the focus on adopting multiobjective optimization 

(MOO) techniques as a decision support tool. The literature has been classified based 

on the nature of the decisions in different part of the supply chain, and the key 

decision areas across a typical BTO-SC are discussed in detail. Available software 

packages suitable for supporting decision making in BTO supply chains are also 

identified and their related solutions are outlined. The gap between the modelling and 

optimization techniques developed in the literature and the decision support needed in 

practice are highlighted and future research directions to better exploit the decision 

support capabilities of MOO are proposed. 

 

Key words: Supply chain management; Build-to-order; Decision support; 

Multiobjective optimization; Pareto-optimal front. 

 

1. Introduction  

A build-to-order supply chain (BTO-SC) is a production system that delivers goods 

and services based on individual customer requirements in a timely and cost 

competitive manner (Gunasekaran & Ngai 2009). Build-to-order and configure-to-

order markets, driven by mass customization and e-commerce, force retailers and 

manufacturers to shorten planning cycles, reduce manufacturing lead time, and 
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expedite distribution (Tyan & Duc 2003).  The available evidence indicates that BTO 

has significant business potential to promote sales and cost savings. It allows for 

improved customer satisfaction and provides an opportunity for massive savings in 

inventory costs (Sharma & LaPlaca 2005). According to a U.S. survey, 74% of car 

buyers in the U.S. would prefer to order a customized vehicle rather than buy from a 

dealer’s inventory if they could get delivery in less than 3 weeks (Business Wire, 

2001 cited in Christensen et al. 2005). Nissan Motor estimated that a full 

implementation of a BTO strategy could save up to $3600 per vehicle (Economist, 

2001 cited in Christensen et al. 2005).  Dell, arguably the pioneer of BTO in the PC 

industry, generated a 160% return on its invested capital by allowing customers to 

order customized computers online, which were then manufactured and delivered 

within 5 days (The Wall Street Journal, 1999 cited in Ghiassi & Spera 2003).  

Autoliv, the vehicle safety system provider, reduced 37% of their plant inventory by 

coordinating orders online with suppliers (The Wall Street Journal, 2001 cited in 

Swaminathan & Tayur 2003). 

 

Efficient management of BTO-SCs has attracted the attention of researchers and 

practitioners following successful implementation by companies like Dell, Compaq 

and BMW (Gunasekaran & Ngai 2005). Considering the growing importance of more 

informed and timely decision making in BTO-SCs, Gunasekaran & Ngai (2009) 

encourage further research on the modelling and analysis of such systems. They 

classify the BTO-SC decisions into: i. configuration and ii. coordination levels. 

Furthermore, they emphasize  the importance of further research in several directions 

in BTO-SCM including: developing suitable planning and scheduling models and 

techniques for managing the material flow, and modeling and analysis of the 

coordination-level issues (Gunasekaran & Ngai 2009). 

 

In order to expand BTO market share, several aspects of operations management need 

fundamental improvement. The German car industry for instance, has invested a lot of 

effort in recent years to further increase this share via shorter delivery times, high 

delivery reliability and a faster responsiveness (Meyr 2004). The current trend within 

the German automotive industry from build-to-stock (BTS) to BTO is mostly a shift 

in the ‘order share’ from retailers’ forecast of market orders towards real customers’ 

confirmed orders (Meyr 2004). Major strategic goals include: shorter delivery lead 
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times, more reliable promised due dates and flexibility in accepting change of 

customer options in very short time (Stautner 2001 cited in Meyr 2004). Furthermore, 

it is evident that the BTO market is not restricted to standard or premium products any 

more. In particular, it is becoming popular in the retail industry with the rapid growth 

of internet shopping. For instance, Ewatchfactory1 (a watch manufacturer) and 

timbuk22 (a bag producer) allow customers to design their own products 

(Swaminathan & Tayur 2003). 

 

With these emerging trends, timely and informed decision making is becoming crucial 

for the longterm success of businesses. However, different members of a BTO-SC 

may have their own preferences in response to dynamic customer orders which in 

many cases are likely to be conflicting. Effective decision support is thus essential to 

enable interested parties to evaluate the consequences of countless decisions being 

made,  in real time, across the whole supply chain. Effective decision support would 

help business opportunities to be exploited and help to solidify collaboration in the 

chain. The current global economic downturn has further emphasized the importance 

of optimization to support managerial decision making to maintain competitive 

advantage towards business goals. 

 

The main contributions of this paper can be summarized as follow: 

 

• our work has identified the gaps in the theoretical research for applying MOO 

as part of a decision support system (DSS) for BTO-SCM;  

• our work has identified the existing body of literature in the field of 

optimization in either BTO-SCM, or general SCM with a dyadic or network 

perspective (i.e. with two or more parties involved in decision making);  

• the papers with a combined BTO and dyadic/network perspective have been 

further analyzed from different perspectives (decision type, decision interface, 

nature of objectives, solution tools and source of data), thus providing a 

systematic review and classification; 

                                                
1 www.ewatchfactory.com 
2 www.timbuk2.com 
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• central to the goals of our analysis, we have distinguished between MOO and 

non-MOO papers, thus identifying non-MOO optimization problems that have 

the potential to be reformulated as MOO instances; 

• we provide an analysis of the aforementioned  literature that identifies the 

main foci  of the links among supply chain parties where optimization has 

been applied. By doing this, we have also identified the gaps that need future 

attention; and   

• we provide and initial analysis of existing software packages to establish to 

what extent they provide MOO-based decision support for the BTO context. 

 

The organization of this paper is as follows: Section 2 discusses decision making in 

BTO-SCs and the role of multi-objective optimization in this regard. The research 

methodology is presented in Section 3. Section 4 reviews five different decision 

problems in BTO supply chains and discusses optimization modelling techniques used 

in this field.  Section 5 presents various software packages capable of solving relevant 

BTO decision problems. Finally, Section 6 presents our discussion and proposes 

future directions and further extensions in modelling and optimizations of BTO 

supply chains.  

 

2. Decision making in BTO-SC 

A BTO-SC is primarily formed to create a sustainable competitive advantage for all 

members of the supply chain which is ultimately measured by success in the market 

(Christensen et al. 2005). However, the interests of all players are not necessarily in 

line with each other and therefore, cannot be fully satisfied all the time. As a result, 

management of BTO-SCs necessarily involves extensive compromise and trade-offs 

due to inherent conflict among the different parties. For example, customers might 

look for reduced price and shorter delivery lead times while manufacturers try to 

enhance utilization of their facilities with reduced inventory and setup changeover. 

Similarly, suppliers may favor smooth demand whereas logistic providers will look 

for high fleet utilization. It is obvious that all of these objectives cannot be attained at 

the same time. We argue that multi-objective optimization (MOO) has significant 

potential to facilitate decision-making in such instances by provision of insights as to 

the consequences of any action taken towards satisfying one performance metric on 
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the rest of objectives. The key role of MOO in this scenario is to find the set of 

nondominated solutions from which decision makers can choose based on their 

preferences. Figure 1 shows a conceptual framework for decision making in a typical 

BTO-SC. The model is a simplified illustration of interfaces between a manufacturer 

and other parties, i.e: customer(s), supplier(s), logistic provider(s) and distributer(s) 

where MOO can act as a decision support to facilitate better informed decision 

making. Other interfaces, for instance a three-way interface between supplier, 

manufacturer and logistics provider could also be incorporated in the model. We have 

not incorporated such interfaces at this stage for the sake of simplicity.  

 

 
Figure 1. The conceptual decision model for BTO-SC.  

 
 

2.1 Decision support for BTO-SC 

Higher levels of responsiveness to the changes in customer demands, a cost effective 

production scheme for a small volume of product, as well as fast and reliable 

distribution methods are the key success factors of the BTO-SC (Chow et al., 2007).  

 

To achieve this, multiple independent SC members may take joint decisions on 

production and logistics for large parts of their collective supply chain  work 

(Akkermans et al., 2004) which requires both information and knowledge flow for 

supporting decision-making (Choi and Hong, 2002).   
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Little (2004) defines a Decision Support System (DSS) as a “model-based set of 

procedures for processing data and judgments to assist a manager in his decision 

making.”  Bonczek et al. (1980) define a DSS as a computer-based system consisting 

of three interactive components: a language system, a knowledge system, and a 

problem-processing system. Turban and Aronson (2001) argue that the basis for 

defining DSS has been developed from the perceptions of what a DSS does (such as 

support decision making in unstructured problems) and from ideas about how the 

DSS’s objective can be accomplished (such as components required, appropriate 

usage pattern, and necessary development processes).  In general, a DSS application 

contains four main components: Database (DB), Model Base (MB), Knowledge Base 

(KB), and a Graphical User Interface (GUI) (see Figure 2). The database stores the 

data, model and knowledge bases store the collections of models and knowledge, 

respectively, and the GUI allows the user to interact with the database, model base, 

and knowledge base. The knowledge base may contain simple search results for 

analyzing the data in the database. 

 

The model base comprises the models used to perform optimization, simulation, or 

other algorithms for advanced calculations and analysis. These models allow the 

decision support system to not only supply information to the user but aid the user in 

making a decision. While there is substantial literature on database, knowledge base, 

and GUI (Chow et al., 2007; Sharif et al., 2007), in this research we are interested in 

analyzing optimization techniques that have been applied in the model base 

component of DSSs to support decisions in BTO-SC.  

 



7 
 

 

Figure 2. A schematic view of a typical decision support system 

 

 

2.2 Multiobjective optimization and decision support 

The multiobjective optimization problem (MOOP) can be defined as the problem of 

finding a vector of decision variables x~ , which optimizes a vector of M objective 

functions )~(xfi
where i = 1, 2, . . . ,M; subject to inequality constraints 0)~( ≥xgi

and 

equality constraints 0)~( =xhk where j = 1, 2, . . . , J and k = 1, 2, . . . ,K. 

The set of objective functions constitute a multi-dimensional space in addition to the 

usual decision space. This additional space is called the objective space, Z. For each 

solution x~in the decision variable space, there exists a point in the objective space: 

T

MzzzZxf ),...,,()~(
~

21==  

In a MOOP, we wish to find a set of values for the decision variables that optimizes a 

set of objective functions. A decision vector x~  is said to dominate a decision vector y~  

(also written as yx ~~
> ) if: 

},...,2,1{)~()~( Miyfxf ii ∈∀≤  

and 

)~()~(|},...,2,1{ yfxfMi ii ≤∈∃  

All decision vectors that are not dominated by any other decision vector are called 

nondominated or Pareto-optimal and constitute the Pareto-optimal front. These are 

Decision Support System (DSS) 

Database 

Knowledge Base Model Base 

GUI 
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solutions for which no objective can be improved without detracting from at least one 

other objective. 

 

There are several approaches to find the Pareto-optimal front of a MOOP. Among the 

most widely adopted techniques are: sequential optimization, −ε constraint method, 

weighting method, goal programming, goal attainment, distance based method and 

direction based method. For a comprehensive study of these approaches, readers may 

refer to Collette & Siarry (2004). Considering the complexity of MOOPs, 

metaheuristics and in particular Evolutionary Algorithms (EAs) have extensively been 

used to find approximations of Paretooptimal frontiers of large-sized problems. 

Interested readers for detailed discussion on application of EAs in multiobjective 

optimization are referred to Coello Coello et al. (2002) and Deb (2001). 

 

2.3 A generic example 

To elaborate on the potential of MOO in facilitating negotiations and decision 

making, we make use of a generic due date promising problem between a customer 

and a manufacturer.  The potential customer is considering to place an order for a 

customized product. The manufacturer offers a selling price, possibly beyond the 

customer’s budget, based on a fixed due date or delivery lead time. The customer 

might not be happy with the combination of price and due date and therefore, may be 

reluctant to place the order. The potentially missed opportunity for the manufacturer 

could have been avoided if the original price offered could be negotiated at the 

expense of an increased due date. This scenario could well be formulated as a MOOP 

with the following set of objectives:  

 

Minimize (f1 = cost, f2 = due date) 

 

Figure 3 illustrates a schematic representation of the Pareto-optimal front for this 

problem obtained via MOO. An option b is initially offered to the customer. Based on 

the trade-off analysis, it is revealed that by only 10% increase in the delivery time at 

point a, a 30% reduction in cost could be offered to the customer. This might interest 

the customer and result in the purchase of the product. On the other hand, customers 

who desire a speedy delivery might be willing to pay extra to compensate for 

overtime working hours. Such scenarios could be evaluated on the trade-off curve.  



 

Figure 3. Trade-off between cost and due 
deliveries can be promised at higher cost while lower cost can be offered with longer 
lead times. 
 

This example indicates how MOO can contribute to the long term business goals

actors in the supply chain. 

available to the respective decision makers

requirements of on-line shopping in a BTO

crucial to the success of MOO as a pract

 

3. Research methodology 

In this research, a literature survey 

methodology for studying the applications of 

decision aid for managing 

optimization and BTO-SC has been collected primarily from high rank

the fields of management science, operation research, 

supply chain management. The 

keywords such as: build to order

mass customization, quick 

and/or multi objective optimization. We used 

literature on applications of 

International Journal of Production 

Research, International Journal of Production

9 

off between cost and due date as a Pareto-optimal front. Faster 
deliveries can be promised at higher cost while lower cost can be offered with longer 

how MOO can contribute to the long term business goals

.  Such decision aids need to be configured and made 

available to the respective decision makers in a short time, for example to meet the 

line shopping in a BTO-SC.  For this, efficient solution tools are 

crucial to the success of MOO as a practical decision support. 

 

In this research, a literature survey approach has been employed as the research 

methodology for studying the applications of multiobjective optimization as a 

decision aid for managing BTO-SCs. The literature on both multiobjective

SC has been collected primarily from high ranking journals in 

the fields of management science, operation research, operations management and

. The literature search was conducted using combinations of 

to order, make to order and configure to Order, just in 

uick response and postponement, along with optimization 

ptimization. We used the following journals to collect 

literature on applications of optimization and MOO in the supply chain context

nternational Journal of Production Economics, European Journal of Operation

nternational Journal of Production Research, Journal of Operatio

 

front. Faster 
deliveries can be promised at higher cost while lower cost can be offered with longer 

how MOO can contribute to the long term business goals of 

configured and made 

to meet the 

this, efficient solution tools are 

has been employed as the research 

optimization as a 

multiobjective 

journals in 

operations management and 

conducted using combinations of 

ust in time, 

optimization 

urnals to collect the 

the supply chain context: 

Economics, European Journal of Operational 

Journal of Operations 
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management, Management Science, Production and Operations Management, 

Production Planning & Control, Production, Manufacturing and Logistics, Computers 

& Industrial Engineering, IEEE Transactions on Systems, Man and Cybernetics, and 

Annals of Operations Research. From these sources, relevant references to other 

resources were identified and included in the survey.  

 

The majority of the literature in the area of supply chain planning and scheduling 

considers the traditional make-to-stock (MTS) environment (Demirli and Yimer, 

2008). Furthermore, many researchers have developed local optimization models by 

focusing on just one part (echelon) of the supply chain.  We, however, were interested 

in the use of mathematical modelling techniques between links in the supply chain. 

 

Our main purpose is to examine the potential of MOO as a decision support in the 

BTO supply chain context.  Our goal was to examine the literature from multiple 

perspectives in order to identify both (a) the existing applications of MOO in the BTO 

supply chain context, but also (b) to identify candidate applications for MOO in the 

BTO supply chain context.  The former was, by definition, clearly defined, that is 

literature contributions incorporating the use of MOO in a BTO environment.    

 

The latter (i.e. (b)) required broader searching and filtering of the literature as, by 

implication the candidates would not necessarily be explicitly labelled with MOO or 

BTO.   As mentioned above, in our conceptualization, to qualify as a candidate for the 

application of MOO as a decision support in the BTO supply chain context, the 

optimization problem needed to include the objectives of at least two parties in the 

supply chain.  In other words, the multiobjective nature of the optimization problem 

was that it incorporated either a dyadic or a network perspective.  A single echelon 

problem (non-dyadic or –network) did not qualify.  Thus, in our conceptualization, 

MOO is tied to the context of the decision problem - multiobjective refers to the 

presence of the (competing) objectives of more than one supply chain party. 

 

Hence, in the first instance we were interested in identifying any literature 

contributions that have dealt with optimization in the BTO environment.  Next, we 

were interested in identifying any literature contributions that have dealt with supply 

chain related optimization problems in which more than two parties are involved in 
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the decision making (contributions not explicitly labelled as being in the BTO 

environment, but might or might not be).  Thus, using these search strategies, 46 

papers were selected that met one or more of the following two classification criteria 

(Table 1): 

 

i. Type of supply chain: papers that analyze BTO supply chain. 

ii. Level of analysis: papers that concern supply chain in a dyadic or network 

perspective, where a dyadic (or network) perspective reflects the involvement 

of two or more parties in the decision problem.  

 

Table 1 provides a summary of the issues addressed in these papers. It further 

specifies for each paper whether a BTO and/or dyadic/network relation have been 

considered. These are indicated by � and � symbols in the last two columns.   

 

Of the 46 papers, 18 were identified that whilst dealing with optimization problems 

involving two or more parties, were not explicitly labelled as being in the BTO supply 

chain context.  Our close examination of these 18 papers revealed that in fact none 

were concerned with a BTO environment.  Although not of interest for our subsequent 

analysis, we had nevertheless identified 18 general supply chain context candidates 

for the application of MOO.  This itself is a valuable contribution. 

 
 

4. Review of decision problems and modelling techniques in BTO-SC 

This section reviews in more detail a subset of papers from Table 1 which address 

optimization of BTO-SCs with dyadic or network perspective. These include 21 

papers with a � sign in the last two columns of Table 1.  These papers employ 

various optimization models for decision making in different parts of supply chain. 

Our detailed analysis is summarised in Table 2. The optimization/decision problem 

addressed in the papers represent the decision types which we use as a criterion for 

sub-classifying the papers. These decision types include: order promising or due-date 

assignment, procurement and inventory control, production planning and scheduling, 

network design and product design.  It is important to explain here that this 

classification has been developed through an iterative process of reviewing the 21 

papers. Initially, as guidance, seven decision types were chosen based on the general 
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Table 1. Summary of the papers addressing either (i) a BTO problem and/or (ii) a 
general SCM problem with a dyadic or network perspective 

Authors Issues addressed BTO 
Dyadic or 
network 

Kingsman et al. 

(1996) 
Customer enquiries in MTO companies  

� � 

Wang et al. (1998) Due-Date negotiations for the MTO manufacturing  � � 

Moodie and 
Bobrowski (1999) 

Trade-off negotiation between price and delivery  
� � 

Easton, and Moodie 
(1999) 

Pricing and lead time decisions for MTO firms with 
contingent orders 

� � 

Chen et al. (2001a) Quantity and due-date quoting in ATP � � 

Hegedus and Hopp 
(2001) 

Due-date setting with supply constraints using MRP 
� � 

Chen et al. (2001b) Coordination mechanisms for distribution systems  � � 

Agnetis et al. (2001) Set-Up coordination in two stages of SC � � 

Joines et al. (2002) Multiobjective simulation optimization in SC � � 

Song and Yao 
(2002) 

Performance analysis and optimization of ATO with 
random lead times 

� � 

Rajagopalan (2002) Modelling and application of MTO and MTS � � 

Chen et al. (2002)  Batch AATP modelling � � 

Chena et al. (2003) Design of BTO/CTO shop floor control systems � � 

Zhoua et al. (2003) Bi-criteria allocation of customers to warehouses using 
GA 

� � 

Sadeh et al. (2003) Decision support for Agent-Based E-Supply Chain � � 

Masaru and 
Masahiro (2003) 

Supply planning optimization under uncertain demand 
using GA 

� � 

Ha et al. (2003) Price and delivery logistics competition in a SC � � 

Moses et al. (2004) Real-time due-date promising in BTO environments � � 

 Pibernik (2005) AATP  methods for operations and inventory  
management 

� � 

Mukhopadhyay and 
Setoputro (2005) 

Optimal return policy and modular design for BTO 
products 

� � 

Kawtummachaiand 
Hop (2005) 

Order allocation in a multiple-supplier environment 
 

� � 

Andersona et al. 

(2005) 
MOO for operational variables in a waste incineration 
plant 

� � 

Xue et al. (2005) DSS for design-supplier-manufacturing planning with 
MOEA 

� � 

Watanapa and 
Techanitisawad 

(2005) 

Price and due date settings for multiple customer 
classes � � 

Lu and Song 
 (2005) 

Order-based cost optimization in ATO  
� � 
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Table 1. Continued from previous page 

Authors Issues addressed BTO 
Dyadic or 
network 

Zhao et al. (2005) Optimization-based ATP with Multi-stage resource 
availability 

� � 

Venkatadria et al. 

(2006) 
Optimization-based DSS for order promising  

� � 

Ding et al. (2006) Simulation-based MOGA approach for networked 
enterprises optimization 

� � 

Lamothe et al.  

(2006) 
Product family selection and SC design  
 

� � 

Amodeo et al. 

(2007) 
Multiobjective supply chain optimization 

� � 

Babu and Gujarathi1 
(2007) 

MODE for optimization of SC planning and 
management 

� � 

Serrano et al. (2007) SC disruptions management with the NSGA-II � � 

Aigbedo  (2007) Effect of MC on suppliers’ inventory levels in JIT 
manufacturing systems  

� � 

Selim et al. (2008) Collaborative production–distribution planning in SC � � 

Demirli and Yimer 
(2008) 

Fuzzy scheduling of BTO SC 
� � 

Crnkovic et al. 

(2008) 
DSS  for exploring SC tradeoffs 

� � 

Galasso et al. (2008) DSS for SC planning under uncertainty � � 

Zhou et al. (2009) Product configuration optimization in ATO 
manufacturing  

� � 

Nagarajan and 
Bassok (2008) 

A bargaining framework for the assembly problem in 
SC 

� � 

Sahin et al. (2008) MPS policy and rolling schedules in a two-stage MTO  � � 

Stefansson et al. 

(2009) 
Risk reduction of delayed deliveries in MTO 
production 

� � 

Amodeo et al. 

(2009) 
Multiobjective simulation-based optimization for 
inventory management using Methaheuristic 

� � 

Ding et al. (2009) Stochastic multiobjective production-distribution 
network design  

� � 

Rudberg and Thulin 
(2009)  

Centralised SC master planning employing APS  
� � 

Song and Kusiak 
(2009) 

Pareto-optimal modules for delayed product 
differentiation 

� � 

Graman (2009) Partial-postponement decision cost models � � 
  MTO = Make-to-Order               NSGA = Non-dominated Sorting Genetic Algorithm    GA = Genetic Algorithm 
  MTS = Make-to-Stock                              MOEA = Multi Objective Evolutionary Algorithm       SC = Supply Chain                               
  BTO = Build-to-Order                              MOEA = Multi Objective Differential Evolution          ATP = Available-to-Promise 
  MC = Mass Customization                       AATP = Advanced Available-to-Promise                     ATO = Available-to-Order 
  MOO = Multi Objective Optimization     MRP = Material Requirement Planning                        DSS = Decision Support System 
  MPS = Master Production Scheduling      APS = Advanced Planning System 
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knowledge of operations management and SCM. These were then reduced to the final 

five categories as we proceeded with the review.  These decision type categories are 

shown in column 1 in Table 2.  

 

For each problem type, the decision interfaces representing the actors involved in the 

decision making are identified (column 2). The papers in each interface are then 

described with more details as to their objectives, key decision variables, the 

optimization/analytical technique and the nature of the data used for validating the 

approach. In order to provide more insights as to the nature of objectives considered 

in the models, they are classified into the following categories (column 3):  

 

• category M: Money-based objectives. This category represents objectives 

defined around metrics like cost and profit;  

• category S: Service-based objectives. Aspects of customer service are 

reflected in this category by means of metrics such as due date, lateness and 

stock-out; and 

• category O: Operation-based objectives. Those objectives which improve 

efficiency of operations are listed in this category and include metrics such as 

production smoothness and flow time.     

 

The following five sub-sections in turn review the literature for each of the five BTO-

SC decision types. 
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Table 2.  Summary of decision problems in BTO-SC with dyadic/network relations among multiple parties 

Decision Type Interface Description Objectives* 
MOO/ 

non-MOO 
Key Decision 

Variables 
Technique 

Data Type / 
Industry 

Reference 

Order 
Promising 
( Due-date 

assignment) 

Supplier-
Manufacturer-

Customer 

A model to provide an order-promising 
and fulfilment solution for a batch of 
orders within a batching interval. 

Maximize overall profit 
(M) 

 
non-MOO 

Batching Interval 
Size; 

Quantity 
promised to be 
delivered by 

requested 
delivery time; 

MIP 
Maxtor (Hard 

Disk Drive 
Producer) 

Chen et al. 
(2002) 

The model determines which order to 
accept and specifies the corresponding 
delivery time and delivery quantity. 

Maximize overall profit 
(M) 

non-MOO 
Deliver Time; 

Delivery 
Quantity; 

MIP Toshiba Japan PC 
Chen et al. 

(2001) 

Manufacturer-
Distributer-
Customer 

A network flow problem which allows 
customers to negotiate due dates and 
price with the manufacturer. 

Minimize overall 
ordering cost (M) 

non-MOO 
Purchase Cost; 

Due-date; 
LP Synthetic 

Venkatadria et 

al. (2006) 

Manufacturer-
Customer 

 

An assignment problem of customers to 
finished goods. The model generates 
available to promise schedules (Order 
Sequence). 

Maximize overall profit 
(M) 

non-MOO 
Order Quantities; 

Due-dates; 
 

MIP Conceptual (N/a) Pibernik (2005) 

The model determines delivery dates by 
considering available resources relative to 
a batch of orders. 

Minimize due date 
violation (S); 

Minimize inventory 
holding cost (M); 

Minimize day-to-day 
production smoothness 

measure (O) 

MOO 

Due date; 
Quantity 

Produced in each 
Factory; 

 

MIP Toshiba Japan 
Zhao et al. 

(2005) 

The model estimates the portion of lead 
time due to queuing for resources by 
considering time-phased resource 
availability. 

Minimize median and 
standard deviation of 

absolute flow time (O) 
and lateness error (S) 

non-MOO 
Flow Time; 
Lateness; 

Simulation Synthetic 
Moses et al. 

(2004) 

The model determines the optimal due 
dates by considering the manufacturer’s 
resource availability when customer can 
request earlier due dates by paying a 
higher price to cover the extra 
manufacturing cost. 

Minimize completion 
time (S) 

non-MOO 
Due-dates; 

Cost; 
Fuzzy 
Logic 

Furniture 
Manufacturer 

Wang et al. 

(1998) 
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Table 2. Continued from previous page 

Decision Type Interface Description Objectives* 
MOO/ 

non-MOO 
Key Decision 

Variables 
Technique 

Data Type / 
Industry 

Reference 

Order 
Promising 
( Due-date 

assignment) 
continues 

Manufacturer-
Customer 
Continued 

The model quotes due dates for demand 
orders with requested due dates. 

Minimize total cost 
(tardiness + inventory 

cost) (M) 
non-MOO 

Due Dates; 
 

Approxima
tion 

Synthetic 
Hegedus and 
Hopp (2001) 

The model chooses the biding decision 
that estimates the contract price-due date 
pairs. 

Maximize expected 
profit (M) 

non-MOO 
Price; 

Delivery date; 
Cost; 

Approxima
tion 

Synthetic 
Easton and 

Moodie (1999) 

Procurement 
and Inventory 

Control 
(Resource 
Planning) 

Supplier-
Manufacturer 

The model determines optimum 
sequences and presents tradeoffs between 
level of customization and inventory level 
of supplier. 

Minimize maximum 
amount of inventory 

that prevents stockout 
(S) 

non-MOO 
Inventory Level; 
No. of Variant in 

Order; 
Simulation Automotive Aigbedo (2007) 

The model compares pricing and 
delivery-frequency decisions to achieve 
the optimum performance for both 
parties. 

Minimize overall cost 
(M) 

non-MOO 

Delivery 
Frequencies; 

Delivery 
Quantities; 

Price; 

Game 
Theory 

Synthetic Ha et al. (2003) 

Production 
Scheduling 
(Production 
Planning) 

Manufacturer-
Customer 

The model ensures that orders for MTO 
items are fulfilled within a lead time with 
a specified probability. 

Minimize inventory 
costs of MTS items (M) 

non-MOO 
Lead Time; 
Batch size; 

MIP Synthetic 
Rajagopalan 

(2002) 

Planning and scheduling in a multi-
product flow-shop production to meet the 
quantity and delivery date of customer 
orders. 

Minimizing 
unproductive 

production time (O) 
non-MOO 

Production Cost; 
Production 
Sequence; 

 

MIP 
LP 

Pharmaceutical 
Stefansson et al. 

(2009) 

A bidding model with multiple customer 
segments. 

Maximize expected 
marginal revenue (M) 

non-MOO 

Bid Price; 
Promised Due 

Dates; 
Sequencing 

Position for each 
Job; 

Simplified 
Pattern 
Search 

Synthetic 
Watanapa and 

Techanitisawad 
(2005) 

Manufacturer-
Distributer 

The model presents tradeoffs between the 
manufacturer’s desires for scheduling 
flexibility versus the vendors’ need for 
schedule stability. 

Minimize Schedule 
Cost (M); 

Minimize Schedule 
Instability (O) 

MOO 

Vendor’s Cost 
Manufacturing 

Cost; 
Instability; 

Simulation Synthetic 
Sahin et 

al.(2008) 
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 Table 2. Continued from previous page 

Decision Type Interface Description Objectives* 
MOO/ 

non-MOO 
Key Decision 

Variables 
Technique 

Data Type / 
Industry 

Reference 

Network 
Design 

Supplier-
Manufacturer-

Distributer-
Customer 

The model proposes a capacity and 
resource plan by maintaining the desired 
customer service level. 

Minimize the overall 
operating cost (M) 

non-MOO 

Inventory Level; 
Assembled 
Volume in 

Regular Time; 
Assembled 
Volume in 
Overtime; 

MIFP Synthetic 
Demirli and 

Yimer (2008) 

The model chooses the location of plants 
and distribution centres and determines 
the inventory policy and control 
parameters associated with it. 

Minimize total average 
cost per each filled 

demand (M); 
Maximize demand fill 

rate (S) 

MOO 

Open or Close 
Decision; 

Production Order 
Assignment 

weight; 
Order Quantity 

(Q); 
Reorder Point 

(R); 

MOGA 
Simulation 

Automotive and 
Textile 

Ding et al. 
(2009) 

Product 
Design 

(Configuration 
Optimization) 

Supplier-
Manufacturer 

The model to identify the product family 
and its relevant supply chain. 

Minimize operation 
costs (M) 

non-MOO 

Cost; 
Bill-of-materials; 

Shipping 
Channel; 

MILP Automotive 
Lamothe et al. 

(2006) 

Manufacturer-
Customer 

A product configuration optimization 
model to deliver customized products at 
the lowest cost. 

Maximize the ratio 
between customer-

perceived utility and 
cost (M, S) 

non-MOO 
Utilities; 

Cost; 
MOGA 

Notebook 
Producer 

Zhou et al. 
(2009) 

The model jointly selects the optimal 
policies for return policy and modularity 
levels. 

Maximize expected 
profit (M) 

non-MOO 
Return Quantity; 

Cost; 
Approxima

tion 
Synthetic 

Mukhopadhyay 
and Setoputro 

(2005) 

A framework for finding optimal modules 
in a delayed product differentiation 
scenario. 

Minimize mean no. of 
assembly operations 

(O); 
 Minimize expected 

pre-assembly cost (M); 

MOO 
Products 

Attributes; 
No. of Moduls; 

MOGA 
Truck 

Manufacturer 
Song and 

Kusiak (2009) 

*  Objective codes: M (Money-based); S (Service-based); O (Operation-based) 
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4.1 Order promising decisions 

Order promising or due-date assignment is one of the most important customer 

service decisions (Moses et al. 2004). With increased standards and expectations 

involving due date quoting within a supply chain, organizations require sophisticated 

approaches to execute  order promising and fulfilment, especially in today’s high-mix 

low-volume production environment (Zhao et al., 2005). Build-to-order firms have 

few standard products and volatile, difficult-to-predict demand (Easton and Moodie, 

1999) and do not build an inventory of standard products, thus they generally lack the 

ability to provide promised completion dates to customers that are achievable, tight 

and computed in real time for dynamic order arrivals (Moses et al. 2004). The basic 

decision faced by a supplier or manufacturer is whether to commit to a requested due 

date for a customer order. Ideally, suppliers or manufacturers would like to quote (be 

able to commit to) as many orders as possible on the customers’ requested due dates 

to gain more profit. Order promising models and systems must directly link customer 

orders with various forms of available resources, including both material and 

production capacity. A variety of constraints, such as raw material availability, 

production capacity, material compatibility and customer preferences are considered 

by authors who have developed different models for quoting due dates in BTO 

environments. As can be seen in Table 2, both simulation and analytical approaches 

have been used in the literature to determine the optimum due dates which maximize 

overall firms’ profit while considering these aforementioned constraints.  Mixed 

Integer Programming (MIP) has commonly been used to solve the problem of due 

date assignment. 

 

Wang et al. (1998) address joint due date assignment and production planning under 

fuzzy assumptions. They develop a bargainer tool that can be used at the customer-

manufacturer interface to decide on delivery due date and cost for a make-to-order 

(MTO) manufacturing system. This tool works with ‘sales management’ and 

‘production planning’ modules of a manufacturing resource planning (MRP-II) 

system. They propose a three phase solution approach assuming for a number of fixed 

orders at a given time. After initializing the system with near optimal due dates from 

the manufacturer’s point of view, customers may start bargaining for shorter delivery 

lead times one at a time. In the bargaining process, alternative due dates are offered to 

the customers at the expense of extra cost required to pay for delayed delivery of 
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already agreed due dates with other customers. The solution tool is tested on a small-

scale scenario where six orders were available for an MTO manufacturer. The authors 

conclude that the proposed solution approach requires fundamental improvement so it 

can be used for dynamic daily orders from several customers at the same time. As 

such, this approach would seem not to be suitable for BTO-SC where theoretically 

thousands of customers can interact with manufacturers on a daily basis. Moreover, 

the current constraint of dealing with customers one-by-one needs to be addressed so 

that it can be used for global supply chains where customers interact with the sales 

management module virtually independently of each other, and often simultaneously. 

 

Easton and Moodie (1999) analyze the problem of competitive biding with contingent 

orders for a static, single resource MTO firm. They use a two-dimensional logit 

model, based on contract price and lead time, to estimate the probability of a 

successful bid. Their model focuses on establishing the price and lead time for a 

single job, but does not consider the dynamic arrivals of jobs in real-time situations.  

Another limitation of the model is that they use an enumerative solution procedure 

which can not be applied in large scale problems with multiple customers and 

hundreds of contingent orders. More efficient search techniques like heuristic-based 

search procedures are needed to establish bid prices and lead times for real life 

problems.  Hegedus and Hopp (2001) propose a model for quoting due dates in a 

MTO environment where customers request due dates. Their model incorporates a 

two-stage production system that describes inventory cost, fill rate, and service level 

issues.  They simplify the manufacturing phase of the production process into a news 

vendor-like problem formulation and obtain a simple optimal policy for both single 

and multiple demand order problems.  

 

Chen et al. (2001a, 2002) propose a model to provide a delivery date and committed 

quantity for each order requested by a customer. Their model considers multiple 

products and a flexible bill of materials which allows the customer to configure their 

products at both the material type level and supplier level. They also investigate the 

sensitivity of supply chain performance to changes in certain parameters such as 

batching intervals size and customer order flexibility with simulation experiments. 

Moses et al. (2004) present a model for real-time promising of order due dates that is 

applicable to discrete BTO environments facing dynamic order arrivals. Their 
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approach estimates the portion of lead time due to queuing for resources by 

considering time-phased resource availability.  

 

Pibernik (2005) proposes a theoretical framework for the development of models and 

algorithms supporting order quantity and due date quoting. Pibernik classifies 

Advanced Available-to-Promise (AATP) techniques, different tools and methods to 

enhance the responsiveness of order promising and reliability of order fulfilment, into 

eight generic AATP methods. In this classification three characteristics are 

considered: 1- availability level (finished goods or supply chain resource), 2- 

operating mode (real-time or batch), and 3- Interaction with manufacturing resource 

planning (active or passive). Venkatadri et al. (2006), most recently present an 

optimization-based decision support system (DSS) for quoting due dates and prices in 

an eCommerce context.  Their proposed DSS addresses four questions about 

negotiations between the buyer and the supplier on the quantity, marginal cost, and 

lead time of each product unit.  

 

4.2 Procurement and inventory control decisions 

In a typical supply chain raw materials are procured and stored in buffer inventory 

while finished items are produced in manufacturing centres, stored in internal finished 

products’ inventory or stored in intermediate warehouses and then shipped to buyers 

or distribution centres (Diponegoro and Saker, 2006).  Adopting a BTO strategy 

would allow firms to effectively customize their products to a greater degree towards 

meeting specific customer requirements, and it could also effect large cost savings by 

reducing raw material, work-in-process (WIP) and finished good inventories while 

improving production flexibility (Demirli and Yimer, 2008). Managing inventory 

levels for raw materials, WIP, and finished goods at different stock points is a 

complex task involving trade-off analysis between inventory cost, lead times and 

customer service level. Although carrying inventories is essential to enhance the 

customer service level and cut shortage costs, excess inventories are usually barriers 

to achieving high responsiveness and minimum operating costs (Demirli and Yimer, 

2008).  

 

Two research papers were found that deal with procurement and inventory issues in 

BTO-SC. Ha et al. (2003) examine the role of delivery frequency in supplier 
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competition.  They propose several models with different assumptions on how pricing 

and delivery frequency decisions are made within the supply chain. They show that 

delivery frequency can be a source of competitive advantage. Aigbedo (2007) propose 

a framework to examine the effect of mass customisation (MC) on inventory of parts 

used in a just-in-time (JIT) manufacturing environment. Aigbedo investigates the 

extent to which customization impacts the average inventory of each variant that 

should be maintained to meet the Original Equipment Manufacturer (OEM)’s need. 

By using computer simulation Aigbedo finds that mass customization tends to 

increase the average amount of inventory of the parts variants needed to be held 

constantly to prevent stock outs.  

 

4.3  Production planning decisions 

Production planning and scheduling is an established and extensively studied field 

within the supply chain management domain and has received great attention and 

interest from both practitioners and academics. Regardless of adopting BTO or MTS 

strategies, all manufacturing firms make decisions on production planning and 

scheduling on a regular basis.  In an MTO environment, at each arrival of customer, 

the firm needs to dynamically determine prospective due date and price quotation 

based on the streamlined information from the capacity planning and production 

scheduling (Kingsman et al., 1996). In practice, the manufacturer tries to optimize the  

production schedule and then release purchase orders one at a time to vendors. 

However, the manufacturer may transfer operational inefficiencies to upstream 

suppliers in an attempt to minimize their cost, thereby causing sub-optimal system 

performance (Lee et al., 1997). There is a substantial literature on planning and 

scheduling techniques, particularly, on resource(s) allocation and sequencing.    

 

Rajagopalan (2002) develop a nonlinear, integer programming model to analyze the 

impact of various problem parameters on MTO versus MTS decisions, and  finds that 

the average number of setups of an item selected for MTS production is always less 

than half the average number of setups of the item if it were to be made to order. 

Watanapa and Techanitisawad (2005) propose a bidding model with multiple 

customer segments classified based on parameters of willingness to pay, sensitivity to 

short delivery time, quality level requirement, and intensity of competition to optimize 

the biding price and due date for each incoming order. They apply a Simplified 
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Pattern Search (SPS) method to efficiently find optimal price and due dates with the 

help of resequencing and utilization of production capacity. Using simulation, they 

show that the model could increase the marginal revenue for the bidding system 

significantly.   

 

Sahin et al. (2008) present a framework for jointly analyzing the impact of Master 

Production Schedule (MPS) and Advanced Order Commitment (AOC) in two-stage 

supply chains.  Using computer simulation they evaluate the impacts of environmental 

and MPS design factors on optimal policy design by measuring schedule cost and 

stability factors. They find that the vendor’s order-size flexibility is the major factor 

impacting system performance. They conclude that the manufacturer’s optimal MPS 

policy is often inefficient for the vendor which results in total costs being significantly 

greater than the optimal system policy. Stefansson et al. (2009) introduce a modelling 

approach for creating robust production plans and schedules under uncertain and 

varied demand conditions. They propose a multi-scale hierarchically structured 

algorithm with three levels of decisions. At each level they apply several optimization 

methods to provide support for the relevant decision. They prove that their approach 

was capable of obtaining a realistic and profitable solution within acceptable 

computational times by testing it with industrial data from an MTO pharmaceutical 

plant.  

 

4.4 Network design decisions 

Production-distribution design has significant impacts on a supply chain’s long-term 

performance. The number of plants and/or distribution centres as well as their 

geographical locations must be determined at the network design phase. This leads to 

many complex decision making processes and trade-off analysis regarding conflicting 

criteria, for example costs and customer service level.  Ding et al. (2006) state that the 

design of enterprise networks requires the determination of: 

 

• the number, location, capacity, and type of manufacturing plants, warehouses, and 

distribution centres to be used; 

• the set of suppliers to be engaged; 

• the transportation modes to be used; and 
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• the quantity of raw materials and finished products to purchase, produce, store and 

transport among suppliers, plants, warehouses, distribution centres, and customers. 

 

They develop a tool box - “ONE” - for supply chain network simulation and 

optimization. One tool is a decision making tool that can be used on supplier 

selection, transportation links allocation and central warehouse inventory control. 

Multi Objective Genetic Algorithm (MOGA) is adopted in ONE to perform stochastic 

search for solutions regarding network structure as well as operational parameters, for 

example inventory control parameters and transportation allocation parameters.  

 

Demirli and Yimer (2008) develop a fuzzy mathematical programming model of 

integrated production-distribution planning for a multi-echelon BTO furniture supply 

chain. Their production subsystem includes raw material suppliers, component 

fabricators and product assemblers and their distribution subsystem consists of 

finished products warehouses, intermediate distribution centres, retailers and end-user 

customers. The objectives of their model include minimizing the most possible 

imprecise total cost, maximizing the possibility of obtaining a lower total cost and 

minimizing the risk of a higher total cost. By introducing a factor for decision 

satisfaction level they reduce the Multi Objective Linear Programming (MOLP) 

problem to an equivalent single goal satisfying the linear programming problem.  The 

demonstrative example they present in their paper supports the applicability of the 

proposed model.  

 

4.5 Product design decisions 

A BTO strategy gives firms the opportunity to customize the product to the 

requirements of customers. Internet-based configuration systems allow customers to 

configure products by selecting desired features. However, maintaining a large 

number of different product configurations increases production complexity and can 

extend delivery lead time (Da Cunha et al., 2007). In general, the most research 

literature related to customer-driven product configuration optimization is focused on 

modular product design or product family design. The concept of developing product 

families and modular architectures are of interest to manufacturing companies in the 

quest to meet diverse customer requirements while maintaining an economy of scale 

(Farrell and Simpson, 2003). Different products can be easily obtained through 



24 
 

different combinations of modules. Chakravarty and Balakrishnan (2001) argue that 

modular design of product is one way to achieve higher product performance without 

increasing manufacturing cost in a disproportionate manner. When designing a new 

product family, a consistent approach is necessary to quickly define a set of product 

variants and their relevant supply chain, in order to guarantee the customer 

satisfaction and to minimize the total operating cost of the global supply chain 

(Lamothe et al., 2006).  

 

Mukhopadhyay and Setoputro (2005) develop a model to yield the optimal policies 

regarding return and the design modularity for BTO products. Their model analyzes 

the effect of modularity and return policy on the product demand, amount returned, 

and profit. They propose design modularity as a means of achieving generous and 

economically viable return policy for BTO products.  Lamothe et al. (2006), propose 

a design approach that allows defining simultaneously a product family and its supply 

chain while facing a customer demand with a large diversity. They present a Mixed 

Integer Linear Programming (MILP) model to identify the product family and its 

relevant supply chain, while optimizing a cost function. Their model analyzes three 

kinds of diversity, namely Market diversity, Product diversity and Supply chain layout 

diversity.  

 

Zhou et al. (2009) propose an optimization method for product configuration 

considering both customer and designer’s viewpoints for Assemble-to-Order (ATO) 

manufacturing enterprises. They employ a utility function to model and measure 

customer preference. Subsequently they formulated a mathematical model with the 

objective of maximizing the utility per cost. They use Genetic Algorithm (GA) to 

solve the combinatorial optimization problem of product configuration. Song and 

Kusiak (2009) present a general framework of mining Pareto-optimal modules from 

historical sales data. They consider two different objectives for determining optimal 

product modules as: minimizing mean number of assembly operations and 

minimizing the expected pre-assembly cost. They apply an evolutionary computation 

algorithm to select product modules based on multiobjective criteria.   
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5. Available software packages 

Numerous supply chain solution tools are readily available to companies and the SCM 

software industry is gaining increased attention as companies try to maximize return 

on investment and gain a competitive edge in the market.  However, few vendors 

provide optimization tools and solutions suitable for BTO supply chains. For 

example, in ‘order promising’ decision problems, the SCM system needs to take a 

customer request for a product configuration and provide an accurate delivery date for 

that request. A comprehensive solution should then provide trade-off analysis on 

delivery date, product option content and price for both the firm and the prospective 

customer. The software should be capable to promise accurate due dates by directly 

scheduling the product against inventory, the sequence and master schedule and the 

production and distribution plan.  

 

Based on an initial survey on the internet and using other public resources, we 

identified five SCM software packages that are capable of providing decision support 

in BTO environments. Table 3 outlines these packages and the decision interfaces for 

which they can be used.  It also identifies the corresponding decision type (column 3 – 

Solution) and it is evident that the decision types tackled by these packages colosely 

correspond to the five decision types found in the BTO-SC optimization literature.  

However, as the description of objectives (column 4) demonstrates, in most cases, a 

single objective is considered for the optimization problem at hand. Some of the 

packages seem to be capable of simulation based scenario analysis taking into account 

alternative solutions defined by the users. As a primary observation, it can be 

concluded that the theory of MOO has not been applied and integrated to its full 

potential in the current packages in providing the complete or approximations of 

Pareto optimal front. It should however be noted, that due to the lack of detailed 

information about the underlying algorithms used in these commercial packages, we 

were not able to verify this in more detail.     
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Table 3. The elements of major software packages for decision making in BTO environment 

Package Interface Solution Description of objectives Key decision variables 

Oracle  
E-Business 
Suite SCM 

Manufacturer Production Scheduling Optimizes the usage of critical resources and determines the schedule that 
best meets a firm’s objectives. Enables to compare schedules with 
different delivery performance and cost. 

Overtime working cost; 
delivery performance 

Supplier-
Manufacturer-

Distributer-
Customer 

Strategic Network 
Optimizer 

Designs the entire supply chain and determines the best possible network 
configuration based on supply chain’s costs and constraints.  

Transportation cost; 
cash flow; working capital; 

production cost 

Supplier-
Manufacturer-

Distributer 

Inventory Optimization Enables to balance revenue, cost, customer service levels and inventory 
budgets and determine inventory postponement strategy. Determines how 
much and where to hold inventory in different stages of production. 

Customer service level; 
inventory level; 
inventory cost 

Supplier-
Manufacturer-

Distributer-
Customer 

Global Order Promising Calculates order fulfilment dates considering the allocated material and 
capacity at each level of the supply chain. Determines the best location 
based on the product and order request date. 

Due dates 
 

SAP SCM 

Supplier-
Manufacturer 

Material Requirements 
Planning-based Detailed 

Scheduling 

Create feasible production plans across different production locations to 
fulfil demand to the schedule.  

Order sequence 
 

Manufacturer Production Planning and 
Detailed Scheduling 

Generates optimized schedules for machine, labour, and overall capacity 
utilization.  

Due date; 
production sequence 

Manufacturer -
Customer 

Sales Order Processing Determines specific delivery dates for different product configuration and 
quantity 

Order quantity; 
delivery date 

i2  Manufacturer-
Distributer-
Customer 

Order Promising Provides alternatives and tradeoffs for a product configuration and 
delivery date for the distributor or customer. 

Delivery date; 
product option content; 

price 

IBM Supplier-
Manufacturer-

Distributer-
Customer 

General Business 
Simulation Environment 

Chooses the location of plants and distribution centres and determines the 
inventory policy.  Open or close decision; 

order quantity; reorder point 

LogicTools 
Manufacturer-

Distributer 
ILOG Inventory Analyst Determines the right inventory policies and strategic positioning of 

inventory to reduce inventory while improving customer service level. 
Customer service level; 

inventory level; 
inventory cost 



6. Discussion and future directions

After examining the existing body of work in the area of MOO for BTO

previous sections, here we discuss our major observations and suggestions 

directions for future research. 

 

As shown in Figure 4, among the five major decision types, order promising has 

received the largest attention

product design, then network design and resource planning. 

importance of methodologies where customer input is crucial in planning supply chain 

activities in the areas of order promising and product (or configuration) design. 

 

Figure 4. Percentage of the articles addressing problems in the five 

 

As shown in table 2, only 4

identified were already using a MOO technique

MOO techniques. These papers 

expansion or reformulation of their objective functions to facilitate more multifaceted 

decision support through future research.

 

An important factor in the design and development of different optimization models 

for each paper is the parties involved in 

papers can be categorized based on the different interfaces (decision points) in a 

supply chain. The major decision makers in a typical BTO

manufacturers, distributors, and customers. Figure 5 sh
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Discussion and future directions 

After examining the existing body of work in the area of MOO for BTO

previous sections, here we discuss our major observations and suggestions 

research.  

igure 4, among the five major decision types, order promising has 

received the largest attention in the literature followed by production planning

network design and resource planning. These statistics reflect the 

importance of methodologies where customer input is crucial in planning supply chain 

activities in the areas of order promising and product (or configuration) design. 

Figure 4. Percentage of the articles addressing problems in the five decision type

only 4 of the BTO-SC optimization contributions that we 

entified were already using a MOO technique while the other 17 papers did not use 

papers (non-MOOs) are therefore candidates for 

xpansion or reformulation of their objective functions to facilitate more multifaceted 

decision support through future research. 

design and development of different optimization models 

parties involved in the decision-making for each problem. Thus, 

papers can be categorized based on the different interfaces (decision points) in a 

ajor decision makers in a typical BTO-SC are 

istributors, and customers. Figure 5 shows the various combinations 
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After examining the existing body of work in the area of MOO for BTO-SC in 

previous sections, here we discuss our major observations and suggestions of 

igure 4, among the five major decision types, order promising has 

followed by production planning and 

reflect the 

importance of methodologies where customer input is crucial in planning supply chain 

activities in the areas of order promising and product (or configuration) design.  

 

decision type areas 

SC optimization contributions that we 

did not use 

are therefore candidates for the 

xpansion or reformulation of their objective functions to facilitate more multifaceted 

design and development of different optimization models 

for each problem. Thus, 

papers can be categorized based on the different interfaces (decision points) in a 

SC are suppliers, 

the various combinations 
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of decision-making parties (i.e. the interfaces) that we observed in the reviewed BTO-

SC literature, and shows the number of papers reviewed for each interface.  

 

 

Figure 5.  Number of papers in each interface 

 

As figure 5 illustrates, more than half of the previous publications (57%) have been 

focused on the manufacturer-customer interface (12 papers). It appears that it is 

primarily for simplification purposes that those studies tend to analyze a two-stage 

BTO supply chain consisting of a manufacturer with different customers. Not 

surprisingly, we also observe that the manufacturer has been a focal party in all of the 

studies.  Given the increasing proportion of economic activity in the West centred on 

the service sector, one potential avenue for further research would be development of 

decision supports for interfaces not involving manufacturers, in particular between 

customer and service providers who provide customized services.  The distributor link 

was the least represented decision party in the BTO-SC optimization literature.  

Another salient finding, in reference back to Figure , is the absence of logistics 

providers in the current BTO-SC literature.  With  the increasing separation of 

logistics service provision from the manufacturer and the rising cost of transportation 

in general, it would appear that significant opportunities exist to develop MOO 

decision support for the interfaces of manufacturer-logistic provider and distributor-

ogistics provider.  

 

As is illustrated in Figure 6, the money-based objectives are dominant followed by 

service-based and operation-based criteria.  Applications and developments centred 
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on money-based objectives are expected to be as important in the future. At the same 

time, it could be speculated that service

in the future as a main area for competition

for cost reduction in the long run

 

Figure 6. Percentage of the three objective categories considered in the existing 

 

Classical optimization tools have been extensively used in previous work. MIP and 

MILP are among the most common models in this area. Considering 

computational complexity of the decision models for real

research is essential to develop efficient algorithms and metaheuristics capable of 

providing good approximations of Pareto

Such developments are crucial for MOO to be considered as a practical decision 

support for real time decision

There is an immediate area for application of MOO to the extant optimization models 

for BTO-SC problems with a dyadic and network perspective. In this way, 

interests of each party can be considered as a se

treatment of their requirements. A similar approach in dealing with the users’ 

requirements (Finkelstein, et al. 2009) can be applied in this regard.
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based objectives are expected to be as important in the future. At the same 

time, it could be speculated that service-based objectives will become more important 

in the future as a main area for competition as globalization leaves less and less room 

for cost reduction in the long run.   

 

Figure 6. Percentage of the three objective categories considered in the existing 
literature. 

Classical optimization tools have been extensively used in previous work. MIP and 

MILP are among the most common models in this area. Considering 

computational complexity of the decision models for real-life applications, further 

to develop efficient algorithms and metaheuristics capable of 

providing good approximations of Pareto-optimal solutions in a short amount of time
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provide the research community with real data sets upon which efficient MOO tools 

can be developed. 

 

Our initial observations of existing software packages for supply chain applications 

indicate a huge gap in the commercialization of existing and or new MOO 

methodologies. Part of this gap might be due to the lack of justifiable market for such 

functionalities from potential users. With expected developments in the solution 

algorithms combined with superfast computational infrastructures, for example  

parallel and grid computations, together with the ever increasing importance of 

informed decision making and future BTO-SC optimization priority research avenues 

identified here, it could be expected that a promising market for such services 

emerges in the coming years. Such advances and further research, in turn, can provide 

the investment justification for the development of MOO-based decision support in 

future releases of existing SCM software packages.     
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