971 research outputs found

    Influence of Vehicle Inspection Tests on Crashworthiness of School Bus in Nairobi County, Kenya

    Get PDF
    The vehicle structure, designs and materials on school bus body crashworthiness as regulated by different government agencies in bus body building firms was the topic under research study. In Kenya, thousands of vehicles are involved in vehicle collisions or crashes every year resulting in fatal accidents and severe injuries to the passengers. The specific objective was the influence of vehicle inspection testson crashworthiness of school bus in Nairobi City County. This study adopted Dym’s, Suh’s Axiomatic theory. The pragmatic paradigm and explanatory research design were used. The target population was 1500 respondents from bus body building firms and government regulatory institutions. The sample size was 315 respondents. Questionnaires,interview schedules and observation were data collection instruments. Expert judgment was used to establish validity ofthe questionnaires. Cronbach’s Alpha Coefficient was used to determine the reliability of the research instrument. The datacollected was analyzed using descriptive and inferential analysis with the aid of SPSS V22 software. The coefficient ofdetermination (R squared) of .206 showing that 20.6% of the variation in crashworthiness of a bus can be explained byvehicle inspection tests. There was a positive significant influence of vehicle inspection tests on crashworthiness of abus (β=0.396 and p <0.05). The study concluded that the vehicle inspection tests had a significant influence on thecrashworthiness of school bus. The management of school bus body construction companies need to conduct all the terminaltest needed before releasing the vehicle in order to enhance crashworthiness of a bus. The Transport authority shouldexamine and check the mandatory requirements and periodically amend them in accordance with the safety, engineering and ecological standardization

    A Data Mining Methodology for Vehicle Crashworthiness Design

    Get PDF
    This study develops a systematic design methodology based on data mining theory for decision-making in the development of crashworthy vehicles. The new data mining methodology allows the exploration of a large crash simulation dataset to discover the underlying relationships among vehicle crash responses and design variables at multiple levels and to derive design rules based on the whole-vehicle safety requirements to make decisions about component-level and subcomponent-level design. The method can resolve a major issue with existing design approaches related to vehicle crashworthiness: that is, limited abilities to explore information from large datasets, which may hamper decision-making in the design processes. At the component level, two structural design approaches were implemented for detailed component design with the data mining method: namely, a dimension-based approach and a node-based approach to handle structures with regular and irregular shapes, respectively. These two approaches were used to design a thin-walled vehicular structure, the S-shaped beam, against crash loading. A large number of design alternatives were created, and their responses under loading were evaluated by finite element simulations. The design variables and computed responses formed a large design dataset. This dataset was then mined to build a decision tree. Based on the decision tree, the interrelationships among the design parameters were revealed, and design rules were generated to produce a set of good designs. After the data mining, the critical design parameters were identified and the design space was reduced, which can simplify the design process. To partially replace the expensive finite element simulations, a surrogate model was used to model the relationships between design variables and response. Four machine learning algorithms, which can be used for surrogate model development, were compared. Based on the results, Gaussian process regression was determined to be the most suitable technique in the present scenario, and an optimization process was developed to tune the algorithm’s hyperparameters, which govern the model structure and training process. To account for engineering uncertainty in the data mining method, a new decision tree for uncertain data was proposed based on the joint probability in uncertain spaces, and it was implemented to again design the S-beam structure. The findings show that the new decision tree can produce effective decision-making rules for engineering design under uncertainty. To evaluate the new approaches developed in this work, a comprehensive case study was conducted by designing a vehicle system against the frontal crash. A publicly available vehicle model was simplified and validated. Using the newly developed approaches, new component designs in this vehicle were generated and integrated back into the vehicle model so their crash behavior could be simulated. Based on the simulation results, one can conclude that the designs with the new method can outperform the original design in terms of measures of mass, intrusion and peak acceleration. Therefore, the performance of the new design methodology has been confirmed. The current study demonstrates that the new data mining method can be used in vehicle crashworthiness design, and it has the potential to be applied to other complex engineering systems with a large amount of design data

    Aeronautical Engineering: A special bibliography with indexes, supplement 74

    Get PDF
    This special bibliography lists 295 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1976

    Application of optimization techniques to vehicle design: A review

    Get PDF
    The work that has been done in the last decade or so in the application of optimization techniques to vehicle design is discussed. Much of the work reviewed deals with the design of body or suspension (chassis) components for reduced weight. Also reviewed are studies dealing with system optimization problems for improved functional performance, such as ride or handling. In reviewing the work on the use of optimization techniques, one notes the transition from the rare mention of the methods in the 70's to an increased effort in the early 80's. Efficient and convenient optimization and analysis tools still need to be developed so that they can be regularly applied in the early design stage of the vehicle development cycle to be most effective. Based on the reported applications, an attempt is made to assess the potential for automotive application of optimization techniques. The major issue involved remains the creation of quantifiable means of analysis to be used in vehicle design. The conventional process of vehicle design still contains much experience-based input because it has not yet proven possible to quantify all important constraints. This restraint on the part of the analysis will continue to be a major limiting factor in application of optimization to vehicle design

    Mathematical Modelling and Analysis of Vehicle Frontal Crash using Lumped Parameters Models

    Get PDF
    A full-scale crash test is conventionally used for vehicle crashworthiness analysis. However, this approach is expensive and time-consuming. Vehicle crash reconstructions using different numerical modelling approaches can predict vehicle behavior and reduce the need for multiple full-scale crash tests, thus research on the crash reconstruction has received a great attention in the last few decades. Among modelling approaches, lumped parameters models (LPM) and finite element models (FEM) are commonly used in the vehicle crash reconstruction. This thesis focuses on developing and improving the LPM for vehicle frontal crash analysis. The study aims at reconstructing crash scenarios for vehicle-to-barrier (VTB), vehicleoccupant (V-Occ), and vehicle-to-vehicle (VTV), respectively. In this study, a single mass-spring-damper (MSD) is used to simulate a vehicle to-barrier or a wall. A double MSD is used to model the response of the chassis and passenger compartment in a frontal crash, a vehicle-occupant, and a vehicle-tovehicle, respectively. A curve fitting, state-space, and genetic algorithm are used to estimate parameters of the model for reconstructing the vehicle crash kinematics. Further, the piecewise LPM is developed to mimic the crash characteristics for VTB, VO, and VTV crash scenarios, and its predictive capability is compared with the explicit FEM. Within the framework, the advantages of the proposed methods are explained in detail, and suggested solutions are presented to address the limitations in the study.publishedVersio

    Application of Surrogate Based Optimisation in the Design of Automotive Body Structures

    Get PDF
    The rapid development of automotive industry requires manufacturers to continuously reduce the development cost and time and to enhance the product quality. Thus, modern automotive design pays more attention to using CAE analysis based optimisation techniques to drive the entire design flow. This thesis focuses on the optimisation design to improve the automotive crashworthiness and fatigue performances, aiming to enhance the optimisation efficiency, accuracy, reliability, and robustness etc. The detailed contents are as follows: (1) To excavate the potential of crash energy absorbers, the concept of functionally graded structure was introduced and multiobjective designs were implemented to this novel type of structures. First, note that the severe deformation takes place in the tubal corners, multi-cell tubes with a lateral thickness gradient were proposed to better enhance the crashworthiness. The results of crashworthiness analyses and optimisation showed that these functionally graded multi-cell tubes are preferable to a uniform multi-cell tube. Then, functionally graded foam filled tubes with different gradient patterns were analyzed and optimized subject to lateral impact and the results demonstrated that these structures can still behave better than uniform foam filled structures under lateral loading, which will broaden the application scope of functionally graded structures. Finally, dual functionally graded structures, i.e. functionally graded foam filled tubes with functionally graded thickness walls, were proposed and different combinations of gradients were compared. The results indicated that placing more material to tubal corners and the maximum density to the outmost layer are beneficial to achieve the best performance. (2) To make full use of training data, multiple ensembles of surrogate models were proposed to maximize the fatigue life of a truck cab, while the panel thicknesses were taken as design variables and the structural mass the constraint. Meanwhile, particle swarm optimisation was integrated with sequential quadratic programming to avoid the premature convergence. The results illustrated that the hybrid particle swarm optimisation and ensembles of surrogates enable to attain a more competent solution for fatigue optimisation. (3) As the conventional surrogate based optimisation largely depends on the number of initial sample data, sequential surrogate modeling was proposed to practical applications in automotive industry. (a) To maximize the fatigue life of spot-welded joints, an expected improvement based sequential surrogate modeling method was utilized. The results showed that by using this method the performance can be significantly improved with only a relatively small number of finite element analyses. (c) A multiojective sequential surrogate modeling method was proposed to address a multiobjective optimisation of a foam-filled double cylindrical structure. By adding the sequential points and updating the Kriging model adaptively, more accurate Pareto solutions are generated. (4) While various uncertainties are inevitably present in real-life optimisations, conventional deterministic optimisations could probably lead to the violation of constraints and the instability of performances. Therefore, nondeterministic optimisation methods were introduced to solve the automotive design problems. (a) A multiobjective reliability-based optimisation for design of a door was investigated. Based on analysis and design responses surface models, the structural mass was minimized and the vertical sag stiffness was maximized subjected to the probabilistic constraint. The results revealed that the Pareto frontier is divided into the sensitive region and insensitive region with respect to uncertainties, and the decision maker is recommended to select a solution from the insensitive region. Furthermore, the reduction of uncertainties can help improve the reliability but will increase the manufacturing cost, and the tradeoff between the reliability target and performance should be made. (b) A multiobjective uncertain optimisation of the foam-filled double cylindrical structure was conducted by considering randomness in the foam density and wall thicknesses. Multiobjective particle swarm optimisation and Monte Carlo simulation were integrated into the optimisation. The results proved that while the performances of the objectives are sacrificed slightly, the nondeterministic optimisation can enhance the robustness of the objectives and maintain the reliability of the constraint. (c) A multiobjective robust optimisation of the truck cab was performed by considering the uncertainty in material properties. The general version of dual response surface model, namely dual surrogate model, was proposed to approximate the means and standard deviations of the performances. Then, the multiobjective particle optimisation was used to generate the well-distributed Pareto frontier. Finally, a hybrid multi-criteria decision making model was proposed to select the best compromise solution considering both the fatigue performance and its robustness. During this PhD study, the following ideas are considered innovative: (1) Surrogate modeling and multiobjective optimisation were integrated to address the design problems of novel functionally graded structures, aiming to develop more advanced automotive energy absorbers. (2) The ensembles of surrogates and hybrid particle swarm optimisation were proposed for the design of a truck cab, which could make full use of training points and has a strong searching capacity. (3) Sequential surrogate modeling methods were introduced to several optimisation problems in the automotive industry so that the optimisations are less dependent on the number of initial training points and both the efficiency and accuracy are improved. (4) The surrogate based optimisation method was implemented to address various uncertainties in real life applications. Furthermore, a hybrid multi-criteria decision making model was proposed to make the best compromise between the performance and robustness

    Reconfiguring passenger ship internal environment for damage stability enhancement

    Get PDF
    The traditional risk control option adopted in naval architecture to meet safety-related objectives is by regulations, targeting damage limitation, nominally instigated in the wake of maritime accidents claiming heavy loss of life. These primarily concern the introduction of watertight bulkheads, i.e., permanent (passive) reconfiguration of the internal ship environment to enhance damage stability. This has been the most common measure, manifesting itself in the wake of every serious flooding accident since the beginning, back in the 19th century. However, traditional flooding protection through watertight subdivision, to an extent dictated by IMO regulations, has a physical limit which, if exceeded, a safety plateau is reached. This is currently the case and with damage stability standards progressively increasing, the safety gap between existing and new ships is dangerously widening and with design stability margins progressively eroding, stability management is unsustainable, leading to loss of earnings at best. The need for managing the residual risk through active intervention/protection over the life-cycle of the vessel drives industry to searching and adopting a new normal. This new normal is the innovation being explained in this paper by addressing safety enchantment through a systematic reconfiguration of the ship environment for passive and active protection in flooding accidents. In this respect, the "design-optimal" internal arrangement of a vessel, is adapted and reconfigured, using passive and active containment systems for flooding incidents, in the form of high-expansion foam products. The innovation is briefly explained, claiming transformational reduction in flooding risk in the most cost-effective way available. To support wider understanding and appreciation for the latter, the paper critically reviews the whole evolution of internal ship space reconfiguration, chronologically and systematically, concluding that new technological developments and breakthroughs will bring sustainable changes to the traditional evolutionary maritime safety enhancement
    • …
    corecore