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Abstract 

Researcher: Xianping Du 

Title: A Data Mining Methodology for Vehicle Crashworthiness Design 

Institution: Embry-Riddle Aeronautical University 

Degree: Doctor of Philosophy in Mechanical Engineering 

Year: 2019 

This study develops a systematic design methodology based on data mining theory for 

decision-making in the development of crashworthy vehicles. The new data mining 

methodology allows the exploration of a large crash simulation dataset to discover the 

underlying relationships among vehicle crash responses and design variables at multiple 

levels and to derive design rules based on the whole-vehicle safety requirements to make 

decisions about component-level and subcomponent-level design. The method can 

resolve a major issue with existing design approaches related to vehicle crashworthiness: 

that is, limited abilities to explore information from large datasets, which may hamper 

decision-making in the design processes.  

At the component level, two structural design approaches were implemented for detailed 

component design with the data mining method: namely, a dimension-based approach 

and a node-based approach to handle structures with regular and irregular shapes, 

respectively. These two approaches were used to design a thin-walled vehicular structure, 

the S-shaped beam, against crash loading. A large number of design alternatives were 

created, and their responses under loading were evaluated by finite element simulations. 

The design variables and computed responses formed a large design dataset. This dataset 
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was then mined to build a decision tree. Based on the decision tree, the interrelationships 

among the design parameters were revealed, and design rules were generated to produce 

a set of good designs. After the data mining, the critical design parameters were identified 

and the design space was reduced, which can simplify the design process. 

To partially replace the expensive finite element simulations, a surrogate model was used 

to model the relationships between design variables and response. Four machine learning 

algorithms, which can be used for surrogate model development, were compared. Based 

on the results, Gaussian process regression was determined to be the most suitable 

technique in the present scenario, and an optimization process was developed to tune the 

algorithm’s hyperparameters, which govern the model structure and training process. 

To account for engineering uncertainty in the data mining method, a new decision tree for 

uncertain data was proposed based on the joint probability in uncertain spaces, and it was 

implemented to again design the S-beam structure. The findings show that the new 

decision tree can produce effective decision-making rules for engineering design under 

uncertainty. 

To evaluate the new approaches developed in this work, a comprehensive case study was 

conducted by designing a vehicle system against the frontal crash. A publicly available 

vehicle model was simplified and validated. Using the newly developed approaches, new 

component designs in this vehicle were generated and integrated back into the vehicle 

model so their crash behavior could be simulated. Based on the simulation results, one 

can conclude that the designs with the new method can outperform the original design in 
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terms of measures of mass, intrusion and peak acceleration. Therefore, the performance 

of the new design methodology has been confirmed. 

The current study demonstrates that the new data mining method can be used in vehicle 

crashworthiness design, and it has the potential to be applied to other complex 

engineering systems with a large amount of design data. 
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Chapter 1 Introduction 

1.1 Motivation 

Vehicle design requires complex systems engineering, where a large number of attributes 

must be systematically considered. Among these attributes, safety ranks as the top 

priority. In recent years, the auto industry has experienced greater demand than ever 

before from customers, governments, and media to achieve five-star safety ratings for 

vehicles with satisfactory crashworthiness performance. The terminology 

“crashworthiness” denotes a measure of plastic deformation of the vehicular structure and 

its maintenance of a sufficient survival space for its occupants during crashes involving 

reasonable deceleration loads. 

To be compliant with crashworthiness design requirements, the vehicle structure must 

manage the crash energy effectively in various crash modes likely to be encountered in 

fleet service. Crash energy management means controlling, by design, the dynamic 

behavior of multiple subsystems in the very violent and complex environment of a 

collision. Many design factors, such as load path, structural deformations and component 

collapse sequence as well as vehicle size, weight, geometry, and more must be considered 

simultaneously. To design such a complicated system, efficient design methods are 

necessary. 

The energy absorbing structures (EASs) on the vehicle are essentially designed as thin-

walled beams or columns assembled to sustain plastic deformation when crushed in a 

crashworthy car. Traditional engineering structural analysts typically study structures 

using elastic analysis to design them to withstand service loads without yielding or 
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collapsing. Automotive structures, however, must meet all previously mentioned service 

load requirements in addition to deforming plastically in a short time (milliseconds) and 

within a limited crush space to absorb the crash energy in a controllable manner. During 

an impact, a large number of such structures work together as a system to dissipate the 

crash energy. When one component is changed in the design, the other parts must be 

revised or redesigned accordingly. This type of complex interaction among different 

components is often invisible and makes the design problem highly nonlinear. Without 

sufficient knowledge about interrelations of different components, decision-making to 

achieve an effective and efficient design for this complex system would be difficult.  

1.2 General vehicle crashworthiness design process 

The whole-vehicle design can generally be implemented as a four-step procedure, as 

shown in Figure 1.1. In Step 1, the overall performance (e.g. maximum speed, 

dimensions and weight) is defined as the design requirements. Then, to achieve these 

objectives, in Step 2, the overall layout design is performed for all subsystems, such as 

body, electric system, engine and chassis. This is followed by the detailed design of each 

subsystem in Step 3. After the detailed design is completed and verified, the vehicle is 

manufactured and integrated. 

In Step 2, a coarse design of the vehicle crashworthiness system is implemented using 

various methods, such as a lumped mass-spring model (Choi et al., 2019), multi-body 

model (Carvalho and Ambrósio, 2010, Ambrosio and Dias, 2007), vehicle frame with 

plastic joint model (Gui et al., 2018, Zuo and Bai, 2016) or topology optimization 
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(Duddeck and Volz, 2012). The design of each component in this system is carried out in 

Step 3 to satisfy the safety requirements, and this is the focus of the present study. 

The vehicle safety requirements, such as Federal Motor Vehicle Safety Standards 

(FMVSS) and those from the New Car Assessment Program (NCAP) and the Insurance 

Institute for Highway Safety (IIHS) have defined many specific performance indices for 

vehicle crash safety (NHTSA, 1997, IIHS, 2002, NHTSA, 2008). These indices are 

related to the crash peak force and acceleration, passenger compartment intrusion and 

Anthropomorphic Test Dummy (ATD) responses. To comply with these criteria, the 

vehicle energy absorption structures must be designed in a top-down sequence at (1) the 

main EAS system level to meet the overall safety requirements and then (2) the 

component level with the proper boundary conditions. At both levels, large design 

datasets are generated, since a large number of crash simulations or tests are carried out 

to verify the design. Although existing Computer-Aided Engineering (CAE) based design 

methodologies can significantly speed up product development cycles and reduce the 

cost, they are not suited to achieve a fast, efficient and accurate design for complex 

systems due to their limited ability to explore information from large design datasets to 

link different levels. A detailed literature review and an analysis of the existing methods 

are presented in Chapter 2. 
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Figure 1.1. General procedure of vehicle design. 

1.3 Research tasks 

The objectives of this research are as follows: (a) to provide a systematic design 

methodology by exploring large crash simulation datasets to discover the underlying 

complicated relationships between response and design variables at multiple levels 

(primary energy-absorbing features at system, components, and geometric levels) and to 

derive design rules based on the whole-vehicle body safety requirements to make 

decisions about the component and subcomponent-level design and (b) to demonstrate 

the feasibility of this method by applying it to a numerical or CAE passenger car model. 

Uncertainty is also considered and quantified in the design process. 

1.4 Dissertation outline 

The organization of this dissertation is illustrated in Figure 1.2. The remaining eight 

chapters are outlined briefly below. 
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Figure 1.2. Organization of the dissertation. 

In Chapter 2, a literature review is made on the existing design methodologies for vehicle 

crashworthiness. A detailed comparison and analysis are presented. 

To overcome the limitations identified in Chapter 2, Chapter 3 proposes a new 

methodology based on data mining (DM) theory that can design a multilevel, 

complicated mechanical system such as a crashworthy vehicle.  

The new method is implemented for the detailed design of critical energy-absorbing 

structures in a vehicle with a regular and irregular geometries implemented in Chapters 4 

and 5, respectively. The modeling procedures in both cases are described in detail. 

Chapter 6 is a study of an engineering method known as surrogate modeling, which with 

high accuracy can partially replace expensive numerical simulations. A detailed 
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parametric study is performed to identify the most suitable surrogate model for the 

present structural design problem and determine its parameters. 

In Chapter 7, a new algorithm is developed to quantify the uncertainty in the design 

process. The basic algorithm is validated and integrated into conventional data mining.  

In Chapter 8, the new methodology developed in this study is applied in the 

crashworthiness design of a typical passenger car to verify its rationality and 

performance.  

The whole study is summarized in Chapter 9, and future studies are suggested. 
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Chapter 2 Literature review 

2.1 Introduction 

In this chapter, three main methods for vehicle crashworthiness design are reviewed: 

namely, iteration, population and knowledge-based approaches. Their design strategy, 

application and performance are compared. 

2.2 Iteration-based design 

This method is a traditional mechanical design approach that includes several trial-and-

error loops (Zhu et al., 2012, Weng et al., 2010) as presented in Figure 2.1. The process 

starts with design variables, which are usually geometric features or material properties 

of vehicular components. Within the specified range of design variables (termed the 

design space), a design alternative is generated. A vehicle crash analysis is then 

performed (frequently by means of finite element (FE) simulations) and the predicted 

crush responses of the whole vehicle, such as energy absorption, intrusion and peak force 

and acceleration, are compared with the design requirements. If the performance is 

satisfactory, the current design can be accepted as final. Otherwise, the values of design 

variables are changed to form a new design alternative, and the analysis is run again. This 

iterative cycle is repeated until a satisfactory design is identified. 

It is often the case that only a small number of design variables can be modified in each 

iteration, since this method depends on intensive human intervention. The final result is 

highly dependent on the initial design, which increases the reliance on the designer’s 

intuition, experience and skill. Therefore, such a design approach with trial-and-error 
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loops is of low efficiency when designing a complex system such as a vehicle and is not 

likely to lead to the best possible design.  

 

Figure 2.1. The general procedure of the trial-and-error method.  

2.3 Population-based design 

Automatic population-based approaches are widely used for vehicle structure 

optimization. Depending on the nature of the computational model used, these can be 

categorized into simulation-based and surrogate-based approaches. 

2.3.1 Simulation-based optimization 

Simulation-based optimal design is realized by integrating numerical simulations, such as 

the FE model, with an automatic heuristic searching algorithm. The workflow is 

illustrated in Figure 2.2. With this method, a large number of design alternatives are 
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created within the design space, and each one is termed a design of experiments (DOE). 

These DOEs are computed using FE analysis subject to the predefined constraints. Based 

on the evaluation results, the heuristic algorithm was used to determine the population of 

the next generation based on current and previous generations until the final optimum or 

the termination criterion is reached. Many heuristic algorithms can be used in this step, 

such as evolutional, genetic, simulated annealing and particle swarm algorithms. 

 

Figure 2.2. The general procedure of the simulation-based optimization approach. 

Unlike the traditional trial-and-error method, this method automatically realizes an 

optimal or ultimate design search process under the control of a heuristic algorithm. 

However, due to the high computational cost of FE modeling of vehicle crashes, it is 

time-consuming to generate a large number of design alternatives and perform the 

simulations. In addition, for highly nonlinear problems, it is difficult to realize the 

optimization process. Applications of this method to crashworthiness design have been 
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reported in the literature (Yildiz and Solanki, 2012, Hou et al., 2012, Liao et al., 2008, 

Fang et al., 2005, Fu and Sahin, 2004, Sobieszczanski-Sobieski et al., 2001). 

2.3.2 Surrogate-based optimization 

To reduce the computational cost of FE simulations, surrogate models (SMs) can be used 

to supplement or partially replace the simulations. The general procedure for this is 

illustrated in Figure 2.3. The surrogate model is a mathematical model that learns the 

relationship between the design variables and the response from a dataset and then 

predicts the responses of new designs. A wide variety of surrogate modeling techniques 

have been reported in the literature, such as the polynomial response surface model 

(PRSM) (Shimoyama et al., 2009), Kriging (Qian et al., 2019, Fan et al., 2019), radial 

basis functions (RBFs) (Kitayama et al., 2013), artificial neural networks (ANNs) 

(Roshanian et al., 2018) and support vector regression (SVR) (Prado et al., 2018). By 

replacing the FE simulation with the appropriate surrogate model, the computational cost 

of the design can be greatly reduced. Using this approach, medium- to high-dimensional 

design problems can also be brought to converge more efficiently and effectively by 

increasing the number of heuristic generations. 

These surrogate modeling techniques and their variations, for example, the sequential 

surrogate model (Kitayama et al., 2013, Hutter et al., 2011), the surrogate ensemble 

(Ferreira and Serpa, 2017, Goel et al., 2007) and surrogate model automatic selection 

(Mehmani et al., 2017, Bagheri et al., 2016), have been successfully applied to 

crashworthiness design (Ozcanan and Atahan, 2019, Fan et al., 2019, Roshanian et al., 

2018). Although surrogate models can significantly speed up the product development 
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process, their accuracy is sometimes a concern, especially in highly nonlinear crash 

problems.  

 

Figure 2.3. The general procedure for the surrogate-based optimization approach. 

From the point of view of system design, the population-based approaches described 

above have numerous limitations: 

(a) Lack of capability in revealing intrinsic interrelations or coupling effects among 

components or design variables: 

These methods cannot explain the interrelationship or coupling effect among various 

components implied in design datasets. Since in complex systems such as a vehicle, 

the components are integrated by complex joints, they have a coupling effect and 

cannot be deemed independent. Some components are “parents” whose behaviors 



12 
 

can influence “children” components and then the overall response of the vehicle. In 

design practice, the parent components must be determined first, followed by the 

children components (Huang, 2002). Such intrinsic coupling effects between 

components or design variables are complicated and are usually implicit and hidden 

in the vast amount of simulation data. Without the knowledge of these effects, 

however, it is challenging to generate suitable designs and decision-making rules to 

tune components in the right sequence. 

(b) Difficulty linking the detailed geometric variations of each component to the overall 

vehicle response: 

In all of the studies reviewed in Section 2.3, the design variable is limited to the wall 

thickness of each beam or column, which by itself is not able to fully describe the 

detailed profile of a component. In other words, the relationship between 

subcomponent-level geometric variations and vehicle level response is not 

established. Since a vast number of variables are needed to describe the geometry of 

a component accurately, the inclusion of all these variables will significantly 

increase the number of DOEs and generally make the computational cost 

unaffordable. 

(c) Intensive human intervention if a bottom-up design strategy is used: 

Some attempts have been made to address limitation (b) above by decomposing a 

complex structure into several substructures and then designing these substructures 

separately. For example, Kim et al. (2001), Chase et al. (2012) and Gandikota et al. 

(2015) proposed applying a multi-hierarchical strategy to design complex systems 

(Gandikota et al., 2014, Kim and Wierzbicki, 2001, Chase et al., 2012). Specifically, 
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the vehicle is first decomposed into several functional systems and these are 

decomposed further into subsystems. The design starts from the subsystem level in 

and progresses in a bottom-up sequence. Once a lower-level design is completed, the 

resulting design information is passed to the higher levels, then up to the top level. 

However, to achieve the final design, a large number of iterations between different 

levels are needed, which means intensive intervention by the designer and hence low 

efficiency (Kim et al., 2003). Again, in population-based approaches the coupling 

effects among components and design variables cannot be identified, thus making it 

extremely difficult to establish efficient design rules to determine the sequence of 

component design. As a result, it is very costly to establish a decision-making 

workflow that moves from the vehicle-level functional requirements to the detailed 

component design. 

2.4 Knowledge-based design (KBD) 

As indicated above, the existing design methodologies have limitations that hamper the 

efficient development of a complicated engineering product such as a crashworthy 

vehicle. All three limitations identified in Section 2.3 are associated with a lack of ability 

to mine information from large datasets. To overcome these limitations, a new design 

approach is required that is able to discover the desired relationships by exploring a large 

amount of design data. With this knowledge obtained, design rules can be generated to 

make appropriate decisions in a top-down sequence without intensive human 

intervention, as demonstrated in this study. 
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As one of the most promising solutions to overcoming the limitations of the two 

traditional methods, knowledge-based methods have been developed that can extract 

useful knowledge from design datasets and apply it to improve the design process for 

complex systems. This type of approach enables designers to condense a large amount of 

data, discover hidden patterns, reveal new relations and patterns and extract anticipative 

and useful information implicit in large datasets. Many knowledge-based design (KBD) 

methodologies have been used to help the design of numerous products, such as airfoils 

(Mosavi, 2014a, Mosavi, 2014b), vehicle side frames (Kim and Ding, 2005), bridges 

(Burrows et al., 2011), rock tunnel boring machines (Tao et al., 2009), ships (Yang et al., 

2012) and vehicle restraint systems (Zhao et al., 2010). These methods are used not only 

for response prediction but also for information exploration and decision-making for 

understanding the problem. It has been widely accepted that KBD is superior traditional 

design optimization approaches, which are focused on prediction only (Huang, 2006). 

KBD can potentially have a great impact on the development of complex systems. 

However, to the best of our knowledge, KBD has not yet been implemented in the 

systematic design of a complex system such as a vehicle. 

2.5 Summary 

In this chapter, three methods that have been used for vehicle crashworthiness design 

were reviewed and compared. The iteration-based method, which features a large number 

of trial-and-error iterations, is unable to deal with highly complex vehicle 

crashworthiness design problems due to its low efficiency and effectiveness. The 

population-based methods generate a group of evaluated designs by means of either 

numerical simulations or surrogate models. Such methods can automate the design 
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process and achieve an optimal design by applying a wide range of optimization 

algorithms. However, because they cannot mine large datasets, they are unable to 

discover the implicit complex interrelationships of components and design variables that 

would allow them to derive design rules for a complex multilevel system. 

Data-driven KBD approaches can be used to overcome the limitations related to the 

aforementioned methods and to discover the desired relationships by exploring a large 

amount of design data. This study proposes and demonstrates a knowledge-discovery 

method from which design rules can be generated to make appropriate decisions in a top-

down sequence without intensive human intervention. 
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Chapter 3 Vehicle crashworthiness design based on data mining method (DMM) – 

The theoretical framework 

3.1 Introduction 

As indicated in the literature review, the existing optimal design methodologies have 

limitations that hamper the efficient development of a crashworthy vehicle. There is a 

great need for a new knowledge-based systematic design method that can discover the 

desired relationships by exploring a large amount of design data. With this knowledge 

obtained, design rules can be generated to make correct decisions in a top-down sequence 

without extensive human intervention. Using these functional requirements, the proposed 

design methodology is based on a data mining method (DMM) (Han et al., 2011) that has 

been developed to explore and analyze, by automatic or semiautomatic means, large 

quantities of data to discover meaningful patterns and rules. The data mining tools enable 

designers to filter a large amount of data, discover hidden data, reveal new relations and 

patterns and extract anticipative and useful information implicit in large datasets. Section 

3.2 briefly introduces the basic theory of DMM. Then, in Section 3.3, the workflow of 

this method as applied in vehicle crashworthiness design is outlined step by step. 

3.2 Theoretical introduction 

Data mining is used to explore hidden patterns and rules in data. These rules are often 

implicit but are critical for decision-making. For multilevel system design, these rules can 

also reveal the hidden interrelations and can bridge the gaps between different levels. In 

this work, a rule-generation data mining algorithm, decision tree, is used to achieve these 

objectives. 
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The decision tree algorithm is characterized by a tree-like model with a number of 

decision-making rules, as demonstrated by a simple credit evaluation process in Figure 

3.1. Generally, a decision tree is composed of leaf and non-leaf nodes and their 

connections. The top non-leaf node is called the root node, which is also the origin of 

each branch. By following the path from the top root node to a bottom leaf node linked 

by connections, the implicit decision-making rules are interpreted explicitly in an if-then 

manner. In Figure 3.1, by following the leftmost branch, the salary of a loan applicant is 

evaluated first. If the applicant’s salary is not more than $100k per year and if the 

applicant’s profession is teacher, the credit can be labeled as “good.” The other rules 

corresponding to the labels in their leaf nodes can be generated by following each branch 

in a similar fashion. 

 

Figure 3.1. A typical decision tree for an individual’s credit evaluation. 

In a similar manner, using engineering data, the interrelations or patterns in design 

attributes may be identified and used to efficiently determine the performance of a new 

design. With these attributes, decision-making rules can be generated using a similar tree-

like structure to design components in a top-down sequence.  
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To induct a decision tree from data, many algorithms are available, including Iterative 

Dichotomiser 3 (ID3), C4.5 (extension of ID3 ), Classification and Regression Tree 

(CART), Naive Bayes Tree (NBTree), Random Forest and Regression tree representative 

(REPTree) (Han et al., 2011, Witten et al., 2011). In this study, the C4.5 algorithm is used 

because it has superior performance and is widely applied in engineering design. 

Decision tree training is a process to determine the splitting points of each non-leaf node 

recursively. The goal is to split the current dataset and make its subsets as pure as 

possible. Several indices have been developed to quantify the purity of a dataset label, 

such as the information gain (used in ID3), information gain ratio (used with C4.5) and 

Gini index (used with CART). The information gain ratio GR(A) is used in C4.5 and can 

be calculated using the following equation: 

( )
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  ,                                                  (3.1) 

where G(A), defined in Eq. 3.2, is the information gain to split the current dataset (D) by 

the attribute or splitting point A. ( )ASplitf D  is the “split information,” which is a 

measure of the potential information generated from the splitting of current dataset D into 

two subsets. It can be calculated using Eq. 3.3. 
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where jD  is the jth sub-dataset of dataset D corresponding to a split. |·| represents the 

dataset size. Nv  (2 in this study) is the number of resulting partitions when the set is split 

based on the selected attribute or splitting point. Info(D) and InfoA(D), as defined in Eq. 
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3.4 and 3.5, respectively, are the information or entropy of the original dataset and the 

expected information required when partitioning by A: 
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where m is the number of label classes, and pi is the portion of the ith class in the current 

dataset. Using the information gain ratio as the index in C4.5, a decision tree can be 

generated in a recursive manner. The detailed algorithm is shown in Figure 3.2. 

Algorithm: Generate a decision tree 

Input: D: Labeled dataset 

SpliL: Split points list:  

Index: Split point selection criterion: 

Output: a decision tree model 

Method: 

For the current node N, 

(1) if tuples in D are all of the same class C, then 

return N as a leaf node labeled with the class C; 

(2) if SpliL is empty, then 

return N as a leaf node labeled with the majority class in D; 

(3) else apply the index to find the best splitting point for a binary split; 

for each of two outcomes, let Dj be the sub-dataset in D satisfying outcome j (j = 

1, 2); 

(31) if Dj is empty, attach a leaf labeled with the major class in D to node N; 

(32) else attach the child nodes returned by the splitting point to node N; 

End  

Return N and its next generation. 

Figure 3.2. A general procedure for a binary decision tree construction. 
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3.3 The data mining method for vehicle crashworthiness design 

Based on the data mining theory and decision tree method introduced above, a system 

design methodology was developed that is capable of exploring the simulation dataset to 

uncover the hidden knowledge and design rules. The procedure of this approach is 

illustrated in Figure 3.3, where the dashed arrows indicate the information flow, and the 

solid arrows are the workflows. The whole design process can be divided into three steps: 

1) design at the system level; 2) design at the component level; 3) design verification 

using the whole-vehicle model. The steps are briefly described below. 

 

Figure 3.3. The procedure of the data mining method for vehicle crashworthiness design. 
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3.3.1 Step 1: Design at the system level 

This step aims to establish a large simulation dataset and to mine data for the main 

energy-absorbing structure at the system level to identify the relationship between 

vehicular overall response and the behavior of critical components. Based on the 

information explored, decision-making rules are derived to determine the sequence of 

component design and calculate the boundary conditions for these components. In this 

step, the system and component design are linked by these rules as generated through two 

primary operations: the dataset generation and data mining. 

A selected or developed vehicle FE model is used to generate the system-level simulation 

dataset. After model validation, a preliminary crash simulation is performed, and the 

components with high energy absorption are considered to be the main energy-absorbing 

components. This screening operation is a critical step to exclude noncritical components 

to reduce the design cost. 

The geometric design of each component is changed, in principle, to modify its average 

stiffness (avgstiff) under the corresponding crash condition. This parameter can be 

regarded as a feature of each component, since it is closely related to energy absorption, 

acceleration and intrusion. The system-level design is to determine the avgstiff 

requirement of each main energy-absorbing component so that their combination ensures 

the vehicle’s overall safety. In this step, the design synthesis is coarse, and the geometric 

parameters meant to change each part’s attribute (i.e. avgstiff) level are limited to a small 

number (≤3). The wall thickness, diameter and bounding box are some typical geometric 

parameters. Using a sampling algorithm such as the Latin hypercube method (LHM), a 
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large number of DOEs for critical components can be created and simulated, and the 

results form a large dataset. This dataset contains the information and simulation results 

for selected components (i.e. main geometric parameters, mass, energy absorption, 

deflection, etc.) and the response of the main EASs (i.e. total energy absorption, 

intrusion, peak acceleration, etc.). 

Based on the requirements specified in the safety regulations or the designer’s preference, 

the overall performance of each DOE (e.g. specific energy) is labeled as “good/g,” 

“intermediate/m,” or “poor/p.” Then, the decision tree method described in Section 3.2 is 

used to classify the performance of each key component and link the components to the 

overall performance label. Likewise, the boundary condition for each component is 

determined by following the decision-making rules for a specific leaf node. 

3.3.2 Step 2: Design at the component level 

This step establishes large simulation datasets and conducts data mining at the component 

level to identify the relationships between the responses and the detailed geometric 

features. The interrelationships among the key geometric design variables and responses 

are also revealed. Based on the information explored, a decision-making rule at the 

component level can be derived and used in the detailed component design. 

The critical components identified in Step 1 are further screened from a selected route. 

Before the detailed design takes place, these components are parameterized with a 

number of geometric features (for a simple geometry) or data points (for a complex 

geometry) to describe their profile. For complex geometries, a dimension-reduction 

algorithm can be used to decrease the dimensions of the design variables. DOEs of the 
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components selected are generated by modifying the design variables, that is, the 

geometric features for simple geometries and point locations for complex geometries. 

Component crush simulations are conducted on these DOEs to generate the simulation 

dataset at the component level. Based on the predefined design objectives, the 

performance of each component again labeled as “good/g,” “intermediate/m,” or 

“poor/p.” The component simulation dataset is mined to generate a decision tree for each 

component. The optimum route through each tree is identified. It represents the 

interrelationships among the design variables and the design rule, from component level 

to design variables. New designs with expected performance can also be generated by 

following the rules identified from this route. 

3.3.3 Step 3: Design method verification 

This task is to verify the performance of the design methodology using a whole-vehicle model. 

The critical energy absorbing components designed through Steps 1 and 2 are integrated 

into the vehicle FE model as replacement for the original designs. The whole-vehicle 

crash simulations are performed again, and the simulated responses, such as peak 

acceleration, energy absorption and maximum intrusion, are compared with the result of 

the original design. Better performance would indicate design improvement and verify 

the advancement of the new method. 

3.4 Summary 

This chapter proposed a systematic design methodology for vehicle crashworthiness 

based on data mining theory. This technique allows exploration of a large crash 

simulation dataset to discover underlying complicated relationships between response 
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and design variables at multiple levels (main energy-absorbing systems, components, and 

geometric features) and allows derivation of design rules based on the whole-vehicle 

safety requirements that can inform decisions about the component- and subcomponent-

level design. Full vehicle and component simulation datasets are mined to build decision 

trees at two levels. Based on the decision trees, the interrelationships among the design 

variables can be revealed, and decision-making rules that lead to a set of good designs 

can be determined. To verify this method, an additional whole-vehicle crash simulation 

based on the updated components will be conducted, and the results are compared to 

those with the original design. 
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Chapter 4 Detailed component design: A dimension-based approach 

4.1 Introduction 

Building on the theoretical framework proposed in Chapter 3, in this chapter, the focus is 

on the methodology for detailed component design. The goal is to explore the 

interrelationships of design variables (or geometric features) and to establish the design 

rules for the critical energy-absorbing components identified in the first step. The profile 

of a component can be represented by a number of geometric parameters, such as the 

length, angle and thickness. By systematically adjusting these dimension values, the 

detailed design can be developed. This process is known as the dimension-based 

approach, which is widely used to design structures with a relatively regular shape. 

These geometric parameters or features can be used as the input features in the 

subsequent data mining. For those parts with highly irregular shapes, a node-based 

approach will be used, as detailed in Chapter 5. 

This chapter is organized as follows: Section 4.2 introduces the workflow of the 

dimension-based design method. Then, in Sections 4.3 and 4.4, dataset generation and 

data mining processes are described. 

4.2 Workflow 

The four-step workflow for the dimension-based structural design process is shown in 

Figure 4.1. In Step 1, the structure to be designed is parameterized by its geometric 

features, together with the constraints determined prior to the component-level design. 

The geometric features are represented by their dimensions, and their ranges are also 
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determined. To consider different combinations of these parameters, a large number of 

DOEs are generated in Step 2. Each DOE represents a design alternative, and the 

population of DOEs forms a design space. Their geometric models are then built using 

Computer-Aided Design (CAD) software and converted to finite elements using a mesh 

tool. FE simulations are conducted on all DOEs; the results form a large dataset. 

 

Figure 4.1. Workflow of the detailed component design using the dimension-based 

approach. 

In Step 3, the simulation dataset is mined to discover the relationships among design 

variables and their influence on the results. A decision tree is built to determine decision-
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making rules or the workflow to link the key geometric parameters and design results. In 

this way, the variables leading to satisfactory design sets can be determined in the right 

sequence. In Step 4, using the decision-making rules obtained, the design space is 

reduced, and the subsequent designs are developed within this reduced space. The 

strategies to identify high-impact design variables and to reduce their design space are 

termed critical parameter identification (CPI) and design domain reduction (DDR), 

respectively. These two strategies are detailed in Section 4.4.3. A group of designs with 

good performance are generated and evaluated using FE simulation. The results are then 

used to verify the new design method. 

4.3 Dataset generation 

System-level design was carried out for a typical passenger car, the Ford Taurus. The FE 

model for this car was obtained from the National Highway Traffic Safety Administration 

(NHTSA: http://www.nhtsa.gov/) database. The whole-vehicle frontal crash simulation 

results show that the thin-walled side rail (also known as S-shaped beam or S-beam) is the 

critical structure for energy absorption in the frontal impact scenario. Therefore, the S-

shaped beam was selected for detailed component design.  

4.3.1 Component parameterization and geometry modeling 

To conduct a detailed geometry design on the S-beam, its profile must be parameterized. 

The fully parameterized S-beam model is shown in Figure 4.2. The total length of the 

beam is 1,000 mm. The geometric parameters, including upper segment length (UL), 

upper radius (UR), slope segment angle (AN), bottom segment radius (DR), height (H), 

tube cross-section length (CL) and thickness (T), are design variables. Points r and f are 

http://www.nhtsa.gov/
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two center points at the ends. Points a-d are the transition points between different 

segments of this beam. 

 

Figure 4.2. Parameterization of an S-shaped beam. 

The following geometric constraints were used: H – (UR + DR) × (1 - cos(AN)) > 0 in the 

vertical direction, which makes the length of segment bc greater than zero. 1,000 – (UL + 

H/tan(AN) + (UR + DR) × tan(AN/2)) > 0 in the horizontal direction, which guarantees the 

length of segment ra is greater than zero. The ranges of the design variables are as 

follows: 100 mm ≤ UL ≤ 400 mm; 150 mm ≤ UR ≤ 600 mm; 20° ≤ UL ≤ 40°; 150 mm ≤ 

DR ≤ 600 mm; 150 mm ≤ H ≤ 300 mm; 50 mm ≤ CL ≤ 70 mm; and 1.5 mm ≤ T ≤ 3.0 

mm. The performance of a crashworthy structure can be quantified by specific energy 

absorption (SEA), which reflects energy-absorbing efficiency (Bai et al., 2015) in the 

form of 

intE
SEA

M
  ,                                                    (4.1) 

where intE  is the total internal energy, and M  represents the mass of the S-shaped beam. 

Our goals in this study are (1) discovering the influence of the design variables on SEA 

and the interrelationships among design variables and SEA and (2) determining the right 
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design sequence. To achieve these goals, a large design space was built. Based on the 

geometric constraints and parametric ranges indicated above, 150 DOEs were generated 

with the LHM (Chen et al., 2013, Iman, 2008) using commercial multidisciplinary 

optimization software modeFRONTIER v4.5 (ESTECO, Trieste, Italy). A CAD tool, 

Catia V5 (Dassault, Courbevoie, France), was then coupled with modeFRONTIER to 

generate 150 geometry models automatically. The 3D geometric models were saved in 

“.stp” format, ready for a batch meshing process with the control of element quality. 

4.3.2 Finite element modeling and simulation dataset generation 

Meshing was implemented using the software Hypermesh V13 (Altair, Detroit, MI). The 

S-shaped beam geometric model was converted to an FE model with 8-mm quadrilateral 

shell elements, which are fine enough to model S-shaped beam crash problems (Nguyen 

et al., 2014). To account for the vehicular mass inertia, a 500 kg mass block was attached 

to the far end of the beam, as shown in Figure 4.3 (Khakhali et al., 2010b). A rigid block 

was attached to the frontal end of the beam to represent a highly simplified bumper. 

Then, an initial velocity of 10 m/s was assigned to the S-shaped beam and it was made to 

hit a rigid wall (Khakhali et al., 2010b), which is similar to the conditions used in the 

NCAP frontal impact test (NHTSA, 2008). Contact interfaces were used to model the 

interaction between the beam and the wall. The simulations were performed using the FE 

analysis software package LS-DYNA V971_R4.2.1 (LSTC, Livermore, CA).  

The beam FE model was validated against published data to ensure its accuracy 

(Khakhali et al., 2010a). The material was described using an elasto-plastic material law 

with the following parameters: density ρ = 7,800 kg/m3, Young’s modulus E = 206 GPa, 
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Poisson’s ratio υ = 0.3, tangent modulus ET = 1.4 GPa, yield stress σ0 = 162 MPa. The 

geometric parameters of five design cases, as well as a comparison of model predictions 

and the data in the literature, are shown in Table 4.1. The results show that the maximum 

discrepancy of the model predicted energy absorption values (denoted as “Model”) and 

the data reported in the literature (denoted as “Ref”) is 6.3% (<10%), which indicates 

good agreement. Therefore, the beam FE model can be deemed as sufficiently validated. 

 

Figure 4.3. FE model of the S-shaped beam and boundary and loading conditions. 

Table 4.1  

Geometric parameters of five S-beam design cases and comparison between the model 

predicted energy absorption values (denoted as “Model”) and the data reported in the 

literature (denoted as “Ref”)  

NO. 
NO. in 

Ref. 

UL 

(mm) 
UR/mm 

AN 

(˚) 

DR 

(mm) 

H 

(mm) 

CL 

(mm) 

T 

(mm) 

Energy (J) 
Error/% 

Ref Model 

1 A1 255 435 33 435 150 40 3 4,826 4,841 0.32 

2 A3 370 150 60 150 150 60 2 4,026 3,869 -3.92 

3 A4 370 150 60 150 150 70 2 4,507 4,487 -0.44 

4 D2 240 300 60 300 300 60 2.5 3,689 3,796 2.90 

5 D3 240 300 60 300 300 70 2 2,787 2,963 6.30 
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It should be noted that in the model validation, no strain-rate effect was taken into 

account in the material law. This was done to maintain consistency with the conditions 

reported in the literature. After the model was validated, the material model was updated 

by including the strain-rate effect. In this work, the Cowper–Symonds model was used, 

which is in the form of (Huh and Kang, 2002). 

1/

0

1 ( / ) PYd C







   ,                                       (4.2) 

where Yd  is the dynamic yield stress, 0  is the quasi-static yield stress, 


is the 

effective strain rate, and C and P are the strain-rate-dependent constants. The actual 

material constants are listed as follows (Bai et al., 2015): density ρ = 7,800 kg/m3, 

Young’s modulus E = 210 GPa, Poisson’s ratio υ = 0.3, yield stress σ0 = 162 MPa, rate-

dependent parameters C = 40.1/s, P = 5. All of the 150 design cases were simulated under 

the aforementioned loading conditions, and the simulation results formed a large dataset 

for further data mining and analysis. 

4.4 Data mining 

4.4.1 Dataset labeling 

After the simulation dataset was created, based on the requirements specified in the safety 

regulations or the designer’s preference, the predicted SEA of each DOE was classified and 

labeled as “good/g,” “intermediate/m” or “poor/p.” In this study, the vehicle performance 

was labeled as “g” if SEA ≥ 2,000 J/kg, as “m” when 1,500 J/kg ≤ SEA < 2,000 J/kg, and 

as “p” for SEA < 1,500 J/kg. A decision tree was then built based on the C4.5 (J48 in the 

Weka software) algorithm using the software Weka v3.8.0 (Waikato University, New 
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Zealand), as shown in Figure 4.4. This was used to classify the performance of each key 

design variable and to link each to the overall performance label. 

4.4.2 Decision tree analysis 

In the decision tree, the nodes of design variables and performance are represented as 

elliptical and rectangular boxes, respectively. In the box of a leaf node, the number 

behind the label p/m/g indicates the number of DOEs in that particular class. The node 

splitting criteria are shown on the paths. The whole decision tree includes ten leaf nodes 

that correspond to 8 branches (labeled as b1 to b8). Each branch represents a decision-

making process for a particular design subset. 

 

Figure 4.4. A decision tree generated by the S-beam simulation dataset (labels for 

structural energy absorbing performance: g = good, m = intermediate and p = poor). 
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With the decision tree in Figure 4.4, the design of an S-shaped beam starts from the top 

node, that is, wall thickness T. The top node has the greatest influence on the response 

classification. If the thickness is greater than 2 mm, we then move to the right path and 

check its child node, which is T again. If T  2.5 mm, then this design produces an 

“intermediate” level of performance. If the thickness is greater than 2.5 mm, we then 

check the next child node, AN. If its value is equal to or less than 36˚, a “good” design is 

achieved. There may be more than one path yielding designs with a “g” label. If the path 

with the greatest number of cases is selected, this implies a larger subspace and 

robustness. The best path, b6, is marked in green in Figure 4.4. 

4.4.3 Critical parameters identification (CPI) and design domain reduction (DDR) 

As indicated in the workflow in Figure 4.1, after the construction of a decision tree, the 

CPI and DDR can be performed. CPI is to identify those design variables that have a 

substantial effect on the system performance. Based on these key variables, DDR is then 

performed to reduce the range of values of the variables, thus decreasing the design 

space.  

In the decision tree shown in Figure 4.4, following branch b6 identifies two design 

variables (AN and T) as the key parameters, and the S-beam design process will focus on 

these two variables. The correlation analysis also confirms that AN and T have the most 

significant effects on the response. The ranges of their values have been determined and 

are clearly shown on branch b6. With the reduced range for AN and T values, DDR is 

achieved, as shown in Table 4.2. The other five design variables, namely, DR, UL, UR, H 

and CL, do not have a significant influence on the energy-absorption response. They are 
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set as constants and assigned to their corresponding values from the best design of the 

original dataset, as listed in Table 4.2.  

Table 4.2  

Comparison between initial and reduced design spaces after data mining 

Design 

variables 

The best design in the 

original dataset 

(SEA = 3,979.6 J/kg) 

Initial design space Reduced design space 

Lower 

limit 

Upper 

limit 

Lower 

limit 

Upper 

limit 

AN/ ˚ 22 20 40 20 36 

T/ mm 2.75 1.5 3 2.75 3 

DR/ mm 200 150 600 200 

UL/ mm 100 100 400 100 

UR/ mm 150 150 600 150 

H/ mm 290 150 600 290 

CL/ mm 52 50 70 52 

 

4.5 Discussion 

4.5.1. Comparison between DMM and conventional approach 

After the CPI and DDR are completed, the S-shaped beam design process can be highly 

simplified by using a smaller number of design variables in a narrower design domain. In 

this section, the same structure is designed using a conventional response surface method 

(RSM) (Craig et al., 2005, Kurtaran et al., 2002, Shimoyama et al., 2009) and the new 

method. The results are then compared to verify the performance of the new DMM. 

Based on the results of CPI and DDR, 20 designs were generated for the S-beam design 

using the DMM. This number of design alternatives should be sufficient to ensure the 
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accuracy of results in the current reduced design space (Shi et al., 2012, Yang et al., 

2005). Another design was then developed with the conventional approach using the 

original 150 designs without CPI and DDR. In both designs, the design objective (i.e. 

SEA) can be expressed as a nonlinear polynomial function (i.e. RSM) of design variables 

by fitting the response-design variable curves. Using the DMM with CPI and DDR, only 

two key design variables (i.e. AN and T) and their combinations need to be considered; 

whereas if CPI and DDR are not used, all seven geometric parameters and their 

combinations must be taken into account. The comparison of the two RSM functions in 

Table 4.3 shows that with the DMM, the structural response can be predicted using a 

much shorter equation, which results in a faster convergence time and less computational 

cost, as confirmed by the smaller convergence iterations and times in Table 4.3. 

Additionally, the new DMM exhibits a higher accuracy in terms of sum of squares for 

error (SSE), R and discrepancy between simulation results and RSM predictions, since 

the irrelevant information was eliminated during the generation of the decision-making 

rules. 

Figure 4.5(a) and (b) illustrate the SEA values as a function of two key design variables, 

AN and T, predicted by the conventional method and the DMM, respectively, together 

with the simulation results. The color stripes quantify the simulated SEA of the designs, 

while the contour lines with numbers are RSM-predicted SEA. In Figure 4.5(a), the 

dependence of the SEA value on the variation of two key design variables, AN and T, is 

shown without including the other five parameters, although they also contribute to the 

results. The SEA increases with a larger T and a smaller AN in the original design space. 

However, after the DDR, the range of T values was reduced from 1.5 mm  T  3 mm to 
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2.75 mm  T  3 mm. As shown in Figure 4.5(b), SEA is not sensitive to T within that 

small range but decreases almost linearly with an increase of the value of AN. This 

finding indicates that for a given design objective and constraints, a highly nonlinear 

problem (i.e. Figure 4.5(a)) can be simplified to a nearly linear problem (i.e. Figure 

4.5(b)) using CPI and DDR.  

Table 4.3  

Comparison of the two design methods (with/without CPI and DDR) in the S-beam 

design 

 Data mining 

method 

Conventional method 

Polynomial 

RSM equation 

SEA = 1.023 

- 2.483 × 

AN + 0.008 

× T + 1.464 

× AN2 - 

0.057 × T2 + 

0.151 × AN 

× T 

SEA = 0.238 - 0.145 × DR + 0.458 × H- 0.129 × CL 

- 0.499 × AN + 0.261 × T + 0.06 × UR + 0.188 × 

UL + 0.002 × DR2 + 0.061 × H2 + 0.022 × CL2 + 

0.285 × AN2 + 0.039 × T2 + 0.02 × UR2- 0.319 × 

UL2 - 0.01 × DR × H + 0.103 × DR × CL + 0.21 × 

DR × AN - 0.038 × DR × T - 0.005 × DR × UR + 

0.074 × DR × UL - 0.019 × H × CL - 0.416 × H × 

AN +  0.041 × H × T - 0.325 × H × UR - 0.325 × H 

× UL - 0.047 × CL × AN - 0.025 × CL × T - 0.069 × 

CL × UR + 0.197 × CL × UL - 0.081 × AN × T + 

0.270 × AN × UR + 0.166 × AN × UL + 0.137 × T × 

UR - 0.021 × T × UL - 0.084 × UR × UL 

Fitting time/ s 2 1,761 

Iterations 18 21 

Loss2 0.039 0.516 

R 0.99 0.92 

Difference3 11.9 74.6 

Note: 1) The data used to construct the RSMs were normalized so that the coefficients 

could be limited to the same order of magnitude. The equation, �̅� =

(𝑋 − 𝑋𝑚𝑖𝑛) (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)⁄  , was used, where for a specific design variable, 𝑋 ̅and 𝑋 are 

variable values after and before normalization; 𝑋𝑚𝑎𝑥 and 𝑋𝑚𝑖𝑛are upper and lower 

bounds of its values, respectively. 2) Loss: sum of squares for error (SSE); 3) Difference: 

max difference with simulation/ % 
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(a) 

 

(b) 

Figure 4.5. SEA values as a function of two key design variables, AN and T, predicted by 

(a) the conventional design method based on the initial DOE (150 designs) and (b) the 

data mining method based on the new DOE (20 designs). Color fringe: simulation results; 

contour lines with numbers: RSM predicted results 
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Regarding the RSM accuracy, Figure 4.5(a) and (b) also show the comparison of 

simulated SEA (color stripes) and RSM predicted results (contour lines with numbers) 

without and with CPI and DDR, respectively. Compared with the results of the 

conventional method (Figure 4.5(a)), the DMM yields a better match between design and 

simulation, since the highly nonlinear RSM equation in the traditional method is not able 

to accurately describe the complicated mutual effects of design variables. After data 

mining, the nearly linear response shown in Figure 4.5(b) can be easily captured by the 

simplified RSM model. Moreover, the better response, shown in Figure 4.5(b), was 

caused by the elimination of the redundant “poor” design subspace through data mining.  

The accuracy of the RSM predictions with the two methods is further compared in Figure 

4.6, where the simulated SEA is plotted against the RSM predictions using the response 

equations. The perfect match line with the slope of 1 indicates perfect agreement, and the 

distance from this line represents the degree of discrepancy. From the results, it is clear 

that the DMM is more accurate (i.e. its results are closer than the conventional method 

results to the perfect match line). 

Another comparison was conducted on the speed of convergence. Optimal designs on the 

S-beam were carried out based on the two equations in Table 4.3 with a genetic algorithm 

(GA) (Goldberg and Samtani, 1986, Goel et al., 2010). As a general optimization method, 

a GA can solve a wide range of problems whether or not the analytical solutions are 

available. The optimization was ended after 50 generations with 20 populations in each 

generation. The iteration records of these two methods are illustrated in Figure 4.7 to 

show the convergence histories. The data mining method predicts a maximum SEA of 

4,549.6 J/kg, which is higher than that predicted by the conventional method (4,279.2 
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J/kg). Moreover, the data mining method reaches convergence in only two iterations, 

much faster than the conventional method, which converges after 15 iterations. This is 

because the CPI and DDR reduced the design domain by eliminating “poor” designs, 

leaving the “good” designs remaining in the design space, as shown in Figure 4.5(b). This 

suggests that for a system with high-dimensional design variables, the data mining design 

method could overcome the limitations of the conventional approach and improve 

efficiency through CPI and DDR. 

 

Figure 4.6. Comparison of the accuracy of RSM predictions based on two design 

methods against simulation results. The red and black stars represent the maximum 

discrepancies from the simulation data of the data mining method and the conventional 

method, respectively. 
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Figure 4.7. The iteration histories to maximize SEA using the data mining method and 

the conventional design method 

4.5.2 Bending mode analysis 

A further analysis was carried out on the failure modes of the beams in the g, m and p 

groups. The typical modes in all three groups predicted by the simulations are shown in 

Figure 4.8, where the design case number and values of design variables are also 

included. In Figure 4.8, the fringe levels indicate the value of internal energy density, 

which is defined as energy dissipation per unit volume, and it is proportional to the 

magnitude of SEA. One can see that design case 886 in the good design class exhibits the 

highest internal energy density (0.66 J/mm3), followed by case 953 in the intermediate 

class (0.56 J/mm3) and case 938 in the poor class (0.34 J/mm3). The difference in energy 

absorption is believed to be caused by different strain values at the location of plastic 

bending. The bending modes shown in Figure 4.8(b) and (c) generally should be avoided. 
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(a) 

  

(b) 

 

(c) 

Figure 4.8. Typical failure modes in the (a) good, (b) intermediate and (c) poor design 

groups predicted with the simulations (fringe: internal energy density in J/mm3). 
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4.6 Summary 

A dimension-based design methodology was established and applied to the detailed 

design of a thin-walled vehicular structure, that is, an S-shaped beam, against crash 

loading. The component was parameterized by a number of geometric features, which 

can be used as design variables. The method allows the mining of the large crash 

simulation dataset to build a decision tree, with which one can discover the underlying 

relationships between response and design variables and derive design rules based on the 

structural response (SEA) to make decisions about the geometric design. Using the 

decision tree, CPI and DDR were performed to ensure a more efficient design. The 

results suggest that the newly developed approach can be used to design a high-

dimensional system efficiently and effectively and that it outperforms conventional 

methods. However, this approach still has a limitation. For a component with complex 

geometry that cannot be readily represented by a small number of geometric features, 

different parameterization methods must be used. For example, the profile of such a 

component can be expressed in the form of a nonuniform rational basis spline (NURBS) 

using a large number of control points, and these control points can then be used as 

design variables and mined. This method is presented in detail in Chapter 5. 
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Chapter 5 Detailed component design: A node-based approach 

5.1 Introduction 

As demonstrated in Chapter 4, the dimension-based method can work quite well for 

structures with a regular shape, where only a small number of design variables are 

needed. However, complicated structures with irregular profiles can hardly be 

represented concisely by these geometric features. Thus, they cannot be conveniently 

designed in this traditional way. 

To resolve this issue, one can use node-based design methods, which apply a group of 

nodes, or a cloud of points, as design variables to represent a complex geometry. The 

node group can serve as the nodes in the FE model or the control points of the geometric 

profile. By moving the locations of the nodes, the local or global shape of any structure 

can be changed. If an FE model is used, mesh morphing techniques are applied frequently 

to avoid mesh distortion (Hojjat et al., 2014, Georgios and Dimitrios, 2009). Most 

morphing methods, however, are implemented by defining morphing boxes and changing 

the initial FE model by changing the parameters of boxes and predefined handles 

(Georgios and Dimitrios, 2009). Although the morphing is widely used, it is still difficult 

to be applied to the design of structures with large deformations (Duddeck and Zimmer, 

2013), since they may lead to the deterioration of mesh quality. To better model large 

geometric changes and control the mesh quality, another option, for example, a geometry 

point cloud such as the control points of a NURBS (Clune et al., 2014, Vishwanathan, 

2017), can be taken as design variables. However, given the vast number of points, it is 

expensive to develop a good design with satisfactory structural performance by changing 
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the location of each node or point. This is an intrinsic issue with most node-based 

approaches, such as implicit parameterization (Duddeck and Zimmer, 2013). 

To overcome the problem of dataset size, in this study, a new principal component 

analysis (PCA)-based structural design method is developed. The new method follows 

the basic idea of a point- or node-based modeling strategy. The surface of a structure is 

described by the control points in the form of a NURBS (Lee, 1999, Clune et al., 2014, 

Mosavi et al., 2012, Vishwanathan, 2017). The large control point dataset is compressed 

using a technique known as PCA. PCA is a mathematical procedure to reduce high-

dimensional data by expressing them with a set of linearly uncorrelated orthogonal basis 

vectors, or principal components (PCs). The original dataset can be recovered using a 

decompression procedure by multiplying the orthogonal basis with the principal 

component scores (PCSs) (Li et al., 2011, Reed and Parkinson, 2008). This mathematical 

theory has been applied to a number of engineering applications, for example, complex 

shapes analysis such as human-body anthropometry feature derivation (Li et al., 2011, 

Reed and Parkinson, 2008), experimental corridor development (Sun et al., 2016) or 

osteoarthritis analysis (Bredbenner et al., 2010).  

In a particular dataset, the PC matrix is unique, and the PCSs can be regarded as the 

weight of each PC vector, which can be seen as specific geometry features hidden in the 

initial geometry set. By changing the value of the PCSs, the geometry of the part can be 

modified by the decompression process of PCA. Through this method, instead of directly 

handling a massive number of control points, one can perform the design by adjusting the 

values of a small number of PCSs, and thus the computational cost is significantly 

reduced. To demonstrate the performance of this strategy, the S-beam is selected again as 
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the component to be redesigned. After the design is completed, to fully take advantage of 

the simulation dataset generated a data mining process is performed to explore the 

implicit interrelationships between design variables (i.e. PCSs) and create design rules to 

guide the design procedure.  

The remaining parts of this chapter are organized as follows: Section 5.2 describes the 

basic PCA design algorithm for structures and the workflow of the PCA design method 

with a data mining process. A case study on the S-shaped beam design is then presented 

step by step in Section 5.3, which includes the initial geometry dataset generation, the 

shape parameterization by PCA , the simulation dataset generation and the DMM 

implementation. Based on the results, design rules are derived in Section 5.4. 

5.2 Theory and method 

5.2.1 Node-based shape design by principal component analysis (PCA) 

PCA is a mathematical process used to reduce the dimensions of a dataset by taking the 

first several PCs to represent the original high-dimensional dataset (Han et al., 2011). For 

a specific initial dataset, after PCA the average and PC matrices are unique, and each 

sample in the initial dataset can be represented by the linear combination of PCs with its 

PCSs as the coefficients. 

The theory of PCA is detailed in the literature (Li et al., 2011, Reed and Parkinson, 2008) 

and briefly summarized here. The geometry dataset Dnm is composed of n samples, and 

each sample is a vector with m design variables. Each sample, meaning all nodes of a 

geometry model, contains information on the geometric features. PCA can compress the 
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dataset to reduce the number of dimensions. In the proposed PCA design algorithm, a 

dataset of geometry matrix Dnm is expressed in the form of PC matrix (Pmm) and PCS 

matrix (Snm) as presented in Eq. 5.1: 

n m n m n m m m   D = D +S P  ,                                                                             (5.1) 

where each row of n mD (mean matrix) is the mean vector of matrix Dnm. Snm and Pmm 

are PCS and PC matrices, respectively, which can be calculated by eigenvalues and 

eigenvectors analysis of the covariance matrix of the centralized matrix n mC  in Eq. 5.2: 

 1 2 3; ; ; ;n m n m n m mc c c c      C = D - D  =  ,                                                      (5.2) 

where ic (i = 1, 2, 3, ··m) is the row of the centralized matrix n mC , and then the 

covariance matrix for each dimension ( ic ) in n mC is expressed in Eq. 5.3: 
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In Eq. 5.3, the covariance element can be calculated by  
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 ,                                                           (5.4) 

where ic is the mean value of the dimension ic  in Eq. 5.2.  

The eigenvalues and eigenvectors of the covariance matrix n m m m COV(C )  can then be 

calculated. The unit eigenvectors are reorganized as the rows of the matrix m mP  with the 

descending order of corresponding eigenvalues, which can be written as 
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 1 2 3; ; ; ;m m mp p p pP =  .                                                                                          (5.5) 

With Eqs. 5.2 and 5.5, the matrix n mS  in Eq. 5.1 is calculated by 

T

n m n m m m  S  = C   P  .                                                                                                  (5.6) 

All unit eigenvectors are orthogonal with each other, and the sequence of eigenvectors in 

m mP  represents the order of deviation in this direction, which means that the first unit 

eigenvector defines the direction with the maximum deviation with respect to the mean of 

the original dataset. Using a small number of eigenvectors, such as the first k (n = k), the 

original dataset can be described with lower-dimensional variables as 
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D D +S P = D +  , (5.7) 

where *

n mD  is the approximation of the initial geometry dataset by its first k (k < n) 

principal components. Sn×k and Pk×m are the first k columns and rows of PCS and PC 

matrices, respectively. In Eq. 5.7, for a specific data set of geometry and a determined k 

value, the PC matrix Pk×m and mean matrix 
n mD  are unique, and the elements in each 

row of matrix Sn×k measure the weight of each PC for a specific sample corresponding to 

this row. The geometric variations among different samples in the initial geometry 

dataset can be presented by different values in Sn×k. Thus, changing the value of all PCSs 

would move the locations of control points and thus change the geometry. Therefore, the 

PCSs can be used as the design variables in the shape design to govern the locations of 

control points implicitly. Through the inverse process of PCA with calculated and 

selected k PCSs and PCs, the updated geometry model can be reconstructed. 
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5.2.2 The node-based design method combined with DMM 

The aim of this new design method is to design structures with complex geometries to 

satisfy performance requirements using a reduced number of design variables. The whole 

procedure can be divided into four main steps, as shown in Figure 5.1.  

In the first step, the geometry of the part to be designed (i.e. an S-beam) is parameterized. 

In other words, the continuous profile is represented by discrete NURBS control points. 

The initial geometry dataset is obtained by collecting the geometric models of several 

existing designs. They are all parameterized with control points, which determine the 

envelope (i.e. upper and lower bounds) of the structural geometry. In this procedure, the 

initial geometry (control points) dataset is generated. 

Using the geometry dataset, PCA is performed in the second step. The PCs and PCSs are 

calculated for the geometry dataset, and the dataset is compressed using these. The 

number of PCSs can be determined by the designer considering a number of factors such 

as accuracy and computational cost. A larger number of PCSs increases modeling 

accuracy but requires more computational power. These PCSs are adopted as the design 

variables in the subsequent design process. The range for each PCS value is determined, 

and thus the design space is created. 

In the third step, within the design space defined in Step 2, the geometry can be modified 

after decompression by adjusting the values of PCSs. A large number of design 

alternatives are generated in this way, and they are then decompressed to recover the 

geometry and are further converted into FE models to simulate their response(s) under 

specific loading conditions (such as frontal or side impact). Although the nodes in the FE 
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model can be directly used as the control points, the large local location change of these 

nodes will cause severe mesh distortion, lower the computational accuracy and 

potentially even stop the simulation process. Therefore, instead of using FE nodes, 

NURBS control points are employed in this study, as these are related only to the 

geometry and are independent of the mesh. After the structural profiles are generated 

from the NURBS, these surfaces are then remeshed. In the case study of this chapter, 

SEA and crush force efficiency (CFE) are the structural responses of interest. They are 

calculated, and the simulation results together with the design variables form the 

simulation dataset. 

In Step 4, the simulation dataset obtained in the third step is mined. The decision tree 

method is used to identify the interrelationships of design variables and the effect of each 

design variable (i.e. each PCS) on the results. Design rules are also generated from the 

decision tree. Based on the design rules derived in this step, new designs can be produced 

and should be evaluated by FE simulation to demonstrate the effectiveness of the new 

method. 
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Figure 5.1. Workflow of the new node-based design method with DMM. 

5.3 Application of DMM to the S-beam design 

5.3.1 Generation of an initial geometry dataset for PCA 

In this study, the S-shaped beam was assumed to have a complex shape. The envelope of 

the initial design (i.e. upper and lower corridors of the component geometry) was 

determined using six existing designs on commercially available passenger cars 

(https://www.nhtsa.gov/crash-simulation-vehicle-models#ls-dyna-fe), namely, Buick 

Regal, Dodge Neon, Honda Accord, Toyota Camry, Toyota Corolla and Toyota Yaris. 

https://www.nhtsa.gov/crash-simulation-vehicle-models#ls-dyna-fe
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All passenger cars selected were within a similar weight class to ensure that the S-beams 

on the vehicles are of similar size but with different shapes. 

 

Figure 5.2. CAD models of the S-shaped beams from six passenger cars (different metal 

sheets are denoted with different colors). 

The CAD models of the six beams were aligned at the frontal (left) end and were all cut 

off at the same 1.0-m length in the longitudinal direction, as shown in Figure 5.2, in 

which different colors represent different parts of the beam. The S-beam of the Buick 

Regal is used as an example to illustrate the control point generation procedure, which 

was presented in Figure 5.3. To simplify the geometry and subsequent modeling work, 

some unnecessary features such as small holes were removed. These small features, as 

well as thickness variations of different parts, were not modeled in the next steps. The S-
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beam was redesigned as a single part, and only the basic size was kept, to fit the 

dimensions of the vehicle. It should be emphasized that the only purpose of using the six 

existing designs was to determine the dimensional range of initial designs. 

 

(a) 

 

(b) 

Figure 5.3. (a) Geometry model for the S-beam on the Buick Regal and (b) its 

corresponding NURBS control points. 

Adjusting the positions of these control points changed the profile of the structure, and 

new designs were achieved. Using this beam as the baseline model, its control points 

were mapped to the surfaces of the other five beam geometry models to obtain their 
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control points. After this geometry preprocessing step, all six beam models had the same 

number of control points, and these control points had the same relative positions. 

The control points of all six models were then exported to form the initial geometry 

dataset. With this dataset, the envelope of initial geometry models (i.e. upper and lower 

corridors of the component geometry) was determined in the 3D space. In other words, 

the geometry variations of the new designs are limited to within this domain determined 

by the six original geometric models. In this study, 7,289 control points were generated 

for each beam.  If the control points were used as design variables, considering the three 

degrees of freedom (x, y and z) for each control point, the total number of design 

variables would be 21,867. The optimal design or near-optimal design for this structure is 

costly. 

5.3.2 Construction of design space 

In this step, PCA was conducted on the geometry (control points) dataset built in the last 

step. The PCA converted the design variables from the coordinates of control points to 

PCSs. As a result, a 6 × 21,867 PCS matrix was generated, and a 21,867 × 21,867 PCs 

matrix was constructed. Generally, a larger value for k in Eq. 5.7 would increase the 

accuracy of modeling but also increase the computational cost. In the present study, six (n 

= 6) samples were used to demonstrate the proposed method, and only five nonzero 

columns of n mS , in Eq. 5.1, were calculated. Hence, in this study, k was set to equal 5, 

with all nonzero PCS elements included, which could ensure the original data would 

regenerate completely. 
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The calculated PCS values for the six beams and their ranges are listed in Table 5.1. The 

highest and lowest values for each PCS were set as the upper and lower bounds. The 

design space was determined by scaling up the initial range of PCSs with a scaling factor 

of 1.2. In this way, the design could be implemented in a larger space to reduce the 

chance that good design alternatives would be missed. Even larger scaling factors, such 

as 2, would increase the design space, but they could significantly change the size of the 

structures so that they may not fit the vehicles well. The larger scaling factor could also 

lead to geometry deterioration and then some unrealistic structural profiles. The geometry 

could be changed between the upper and lower bounds determined by the design space 

(the scaled PCS range in Table 5.1) and controlled by the combinations of PCS values. 

Table 5.1  

PCS values and their ranges for the six S-beams 

PCS 1st PCS 2nd PCS 3rd PCS 4th PCS 5th PCS 

PCS 

values 

Buick Regal 1,164.4 788.0 -56.8 1,429.4 5.5 

Honda Accord -5,156.0 2,083.6 164.6 -537.8 -0.4 

Toyota Camry 716.7 -858.4 1,126.4 -129.4 -126.4 

Toyota Corolla 728.1 -911.1 1,154.9 -205.3 122.5 

Dodge Neon 7,248.2 495.6 -1,001.4 -570.2 -1.1 

Toyota Yaris -4,701.4 -1,597.7 -1,387.8 13.3 -0.1 

PCS 

ranges 

Max 7,248.2 2,083.6 1,154.9 1,429.4 122.5 

Min -5,156.0 -1,597.7 -1,387.8 -570.2 -126.4 

Scaled PCS ranges 
8,697.9 2,500.3 1,385.9 1,715.3 147.0 

-6,187.2 -1,917.3 -1,665.4 -684.2 -151.7 
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5.3.3 Generation of a design dataset for DMM 

In this step, within the design space defined in the last section, the geometry of the S-

beam can be modified after decompression by adjusting the values of PCSs. A large 

number of design alternatives (DOEs) were created in this way and converted into FE 

models so their crash responses could be simulated. The simulation results together with 

the design variables formed a simulation dataset for further data mining. 

In the present study, the objective is to apply the PCA algorithm to achieve a fast and 

robust structural design and to use a simple case study to verify its performance. In actual 

vehicle crashworthiness design practice, the proposed design method can be applied to all 

of the main energy-absorbing structures in the car simultaneously to implement the 

system-level design with more realistic boundary conditions. 

The S-beam of the Buick Regal described above was used as an example and baseline 

model to show the FE modeling procedure. The basic element was defined as an 8 mm  

8 mm shell (Nguyen et al., 2014) with a constant thickness (3 mm). In the present study, 

the thickness was not taken as a design variable, since the design is implemented by 

changing the locations of the control points, which may produce an effect equivalent to 

thickness variation. In addition, a uniform thickness could reduce the number of design 

variables since each original part has its own thickness value and make it possible to 

model the entire structure using one single part. The value of the thickness (3 mm) was 

determined based on the results of our previous study (Du and Zhu, 2018) and the range 

(1 to 4 mm) reported in other literature (Nguyen et al., 2014, Khakhali et al., 2010b, Fang 



56 
 

et al., 2017, Tian et al., 2015, Khakhali et al., 2010a). The material, loading and boundary 

conditions were set to match those in Chapter 4, and the details are not repeated here. 

The simulated deformation mode of the baseline model and the internal energy 

distribution is illustrated in Figure 5.5(a). The results show that the impact energy was 

mainly dissipated at three locations (marked with red circles 1, 2, 3) due to large plastic 

bending. Figure 5.5(b) shows the impact force–displacement relationship. The response is 

consistent with previous studies in the literature in terms of the magnitude and shape of 

the curve (Fang et al., 2017, Khakhali et al., 2010a, Khakhali et al., 2010b, Nguyen et al., 

2014, Tian et al., 2015, Zhou et al., 2011, Abbasi et al., 2015, Yin et al., 2013). 

 

Figure 5.4. FE model setup for the S-beam under frontal impact. 
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Together with the SEA used in Chapter 4, another response, CFE, was employed as the 

second design objective to evaluate the performance of the S-beam. Both parameters 

taken together can generally reflect the overall crashworthiness of the structure. The two 

quantities are defined in Eq. 4.1 and 5.8, respectively (Abbasi et al., 2015, Yin et al., 

2013). 

max

meanF
CFE

F
  ,                                                     (5.8) 

where Eint is the internal energy absorbed by the S-beam, and m is the mass; Fmax is the 

peak force, and Fmean is the mean crush force, which is determined by 

int
mean

E

E
F

S
  ,                                                       (5.9) 

where intE  is the absorbed internal energy, and SE is the maximum crush distance. 

Using the five PCSs as design variables, within the design space determined in Table 5.1, 

a total of 8,400 CAD models were built by changing the values of the five PCSs. To date, 

no research has been devoted to discussing the effect of DOE value, and it has been 

generally accepted that the number of designs depends on specific problems. Based on 

our previous studies on similar design problems, 8,400 design cases could be deemed as 

sufficient in the present study. Simulations were then conducted with the aforementioned 

loading and boundary conditions. 
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(a) 

 

(b) 

Figure 5.5. Simulation results of the S-beam baseline model: (a) deformation mode and 

distribution of internal energy per unit volume (unit: J/mm3); (b) impact force-

displacement relationship. 
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5.3.4 Data mining on the design dataset 

Before the data could be mined, the design alternatives were labeled in terms of 

simulated SEA and CFE performances. The labeling criteria can be set in an arbitrary 

way based on the costumer’s requirements or the designer’s experience. In the present 

study, the following criteria were used: 

g: SEA > 1,800 J/kg and CFE > 0.1 

m: 1,400 < SEA ≤ 1,800 J/kg and 0.08 < CFE ≤ 0.1 

p: SEA ≤ 1,400 J/kg and CFE ≤ 0.08 

The distribution of the simulation results (SEA and CFE) and design alternatives with 

corresponding labels is illustrated in Figure 5.6. Data mining was performed on the 

labeled simulation dataset by generating a decision tree, which is illustrated in Figure 5.7. 

 

Figure 5.6. Distribution of the SEA and CFE responses of all design alternatives with 

corresponding labels. 
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5.4 Results and discussion 

5.4.1 Decision tree analysis 

In Figure 5.7, the whole decision tree includes five leaf nodes that correspond to five 

branches (labeled as b1 through b5). Each branch represents a decision-making process 

or design rule for a particular design subset. The design started from the root node (i.e. 

the first PCS), which was identified as the most critical design variable. If it was greater 

than -4, then we moved to the right path and checked its child node, which was the first 

PCS again. If its value was less than or equal to 3,883.9, then this design path produced 

an “intermediate/m” design. In this way, all of the design alternatives were classified with 

the decision tree, and the interrelationships between design variables as well as the ranges 

of their values were clearly revealed. Each branch of the decision tree represents a 

decision-making rule. 

 

Figure 5.7. Decision tree generated by mining the S-beam simulation dataset. 
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Figure 5.7 indicates that out of the five branches of the decision tree, three branches (b2, 

b3 and b4) yielded “intermediate/m” designs and only one branch produced “good/g” 

designs and one “poor/p” designs.  The numbers on each leaf node indicate the accuracy 

of the partition. For example, on leaf node b1, g (5,536/694) means that 5,536 samples 

were classified as “good/g” designs with 694 non-“good/g” design alternatives included. 

The classification accuracy of each branch can be estimated by the percentage of 

correctly classified instances. Figure 5.7 indicates that the classification accuracy levels 

for “g,” “m” and “p” are 87.5%, 84.2% and 85.6%, respectively. The average 

classification accuracy for all of the three groups is 86.1%, which can be deemed as good 

enough for data mining (Zhao et al., 2010). 

5.4.2 Decision tree validation and bending modes study 

Additional validation on the decision tree performance was conducted by generating 300 

new design alternatives using the decision rules shown in Figure 5.7. In each 

performance class, 100 new designs were created using LHM (Chen et al., 2013, Du and 

Zhu, 2018), which could ensure relatively uniform distribution in the corresponding 

design subspace. All of the 300 new designs were converted to FE models so their 

structural responses could be simulated under the aforementioned loading conditions 

shown in Figure 5.4. The simulation results (i.e. the SEA and CFE values) are plotted in 

Figure 5.8, which shows reasonable data mining accuracy. The calculated correct 

classification rates are 90%, 88% and 88% for the “g,” “m” and “p” design groups, 

respectively. With these new design cases, the accuracy of the decision tree predictions 

can be verified. 



62 
 

 

Figure 5.8. A plot of 300 new design alternatives generated using the decision rules 

shown in Figure 5.7 (100 in each performance class) and their simulation results. Three 

design cases (denoted with stars) in each category were selected randomly and their 

bending modes were studied. 

Three designs were randomly selected from each of the three design groups, as denoted 

with stars in Figure 5.8, and used as samples to study the effect of deformation mode on 

structural responses. The simulated deformation modes at the maximum crush for these 

nine designs are compared in Figure 5.9, together with the internal energy distribution. 

The results show that the deformation of all of the beams is dominated by large plastic 

bending. Three good designs in the b1 group tend to bend in the XZ plane of the vehicle 

system, while the poor designs in the b5 group are bent in the XY plane. Those 

“intermediate” designs in the b2, b3 and b4 groups exhibit a mixed mode combining the 
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deformation patterns of good and poor designs. The findings suggest that the structural 

responses of an S-beam rely on the deformation modes, which are further dependent on 

geometric designs. In the PCA method, the geometric information in the six initial 

designs is well described by the five design variables (i.e. the PCSs) since the geometry 

could be fully recovered from the compressed dataset using these design variables. The 

information hidden in the design dataset can be effectively revealed through the DMM. 

 

(a) 

 

(b) 

 

(c) 

Figure 5.9. Deformation modes and internal energy density (unit: J/mm3) of 

representative S-beam designs in the three groups of designs: (a) b1/g; (b) b2, b3 and 

b4/m; and (c) b5/p. 
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5.4.3 Design rules 

In this section, the geometric designs in the three performance classes (g, m and p) are 

compared to reveal the relationship between the beam features and structural responses. 

The design results in the three “intermediate/m” branches (b2, b3, and b4) exhibit similar 

levels of performance, and the b4 group has the highest classification accuracy. Therefore 

b4 was selected as the representative of intermediate/m design. Figure 5.10 illustrates the 

graphic comparison of the ranges of the design variables in the three design groups, 

together with the whole design space from Table 5.1. These ranges (i.e. upper and lower 

bounds) of the PCSs were determined through the decision tree shown in Figure 5.7, and 

they quantitatively reflect the geometric features, namely, the upper and lower bounds of 

the beam profiles. 

The comparison results show that the ranges of the first three PCSs (the first, second and 

third PCSs) are subsets of the design space. The ranges of first PCS values for “good/g” 

and “poor/p” designs tend to be close to the lower and upper bounds of design space, 

respectively, while the “intermediate/m” designs are in the middle. In terms of the second 

PCS and third PCS, the good design groups exhibit larger ranges, which are still close to 

the lower bound of the design space, while the other two groups have ranges that span the 

entire design space. For the fourth PCS and fifth PCS, all groups have the same range, 

which spans the original design space. This finding indicates that the first PCS is the key 

design variable for distinguishing the three design groups, and it has the greatest impact 

on the design results. The second PCS and third PCS can distinguish the good designs 

from the other two groups, but they have less impact on the results than does the first 

PCS. The fourth PCS and fifth PCS should have little influence on the classification, 
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since all of the groups have a range equal to the full design space. This result is consistent 

with the predictions of the decision tree in Figure 5.7, where fourth PCS and fifth PCS 

are not included. 

 

Figure 5.10. Ranges (i.e. upper and lower bounds) determined through the decision tree 

of the PCSs in the three design classes (b1, b4 and b5), together with the range of the 

whole design space as shown in Table 5.1. 

An additional comparison of the geometric profiles of the beams in the three design 

groups is made in Figure 5.11 that considers only extreme conditions, meaning the 

profiles of the beams corresponding to the PCS values at the lower and upper bounds. As 

seen in the side view in Figure 5.11(a), the “good/g” designs tend to have a straighter 

profile in the longitudinal direction. In other words, larger angles (or smaller curvature) 

in the transition area of two segments in the XZ plane would lead to higher 
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crashworthiness performance. A similar trend can also be observed in the top view 

(Figure 5.11(b)), where the good designs have a smaller curvature in the XY plane. 

Actually, the straight shape of the S-beam would increase its stiffness and its bending 

moment, which influences energy absorption. These findings suggest that a good design 

is characterized by a smaller curvature in the XZ and XY planes. 

 

(a)                                                              (b) 

Figure 5.11. Upper and lower bounds of the geometry profiles of the three design groups 

(b1/g; b4/m; b5/p): (a) side view; (b) top view. 

5.5 Summary 

In this chapter, the DMM was implemented in node-based shape design based on PCA 

theory to handle high-dimensional design variables.  This approach could be used to 

design vehicular structures with complex geometries to satisfy the requirements of crash 

energy-absorbing performance using a reduced number of design variables and to 
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discover the clear implicit interrelationships of these variables. An S-beam with an 

irregular shape was used as a case study to demonstrate the method’s performance.  

In this design process, the geometry of the beam was initially parameterized by a large 

number of NURBS control points. The initial geometry dataset was obtained by 

collecting the geometric models of several existing designs. PCA was then performed on 

this dataset, and the PCs and PCSs were calculated, with the PCs regarded as the 

extracted geometric features. The PCSs were adopted as the design variables in the 

subsequent design process to modify the beam’s geometry. A large number of design 

alternatives were generated, and the geometry was then recovered and further converted 

into FE models to simulate the designs’ responses to a frontal impact. Two structural 

responses, SEA and CFE values, were calculated and stored in the simulation dataset. 

After the simulations were completed to generate a dataset, the decision tree method was 

used to identify the interrelationships of design variables and the effect of each design 

variable (i.e. each PCS) on the results. Design rules, that is, the workflows to determine 

the values of the design variables, were also derived. The results demonstrate that the 

new PCA-based approach can be used to efficiently design a complicated structure with 

an irregular shape. The relationships among geometric features, failure behavior and 

crash performance were also revealed. The findings suggest that the data mining process 

enhances the design procedure by uncovering the important interrelations hidden in the 

design datasets, which helps designers better understand the design problem and improve 

design performance. 
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Chapter 6 Study of surrogate modeling as applied in structural analysis 

6.1 Introduction 

In the previous chapters, a large number of FE simulations were run to generate datasets 

for data mining. The high computational cost of numerical modeling and these many 

simulations could be a concern. To bring down the computational cost, surrogate models 

(Boursier Niutta et al., 2018, Du and Zhu, 2018) have been widely adopted as substitutes 

for FE simulations and used to predict structural responses. A surrogate model can 

approximate the system response by fitting a mathematical model using a design dataset. 

This process is known as model training. Once the model is trained, more designs can be 

generated by this surrogate model at a relatively low cost. To high accuracy surrogate 

model, machine learning algorithms (MLAs) have been applied to develop surrogate 

models because of the powerful learning abilities and high prediction accuracy of these 

algorithms (Ben Salem and Tomaso, 2018, Mehmani et al., 2017, Shi et al., 2012, Díaz-

Manríquez et al., 2011, Couckuyt et al., 2011, Jin et al., 2001, Zhao and Xue, 2010). In 

the open literature, however, MLAs are often used as “black-boxes” in surrogate 

modeling, without comprehensive analyses of the effects of their parameters (Song et al., 

2012). Lacking this knowledge makes it very difficult to fully understand and improve 

the performance of these algorithms in engineering design practice. 

A typical MLA includes two types of parameters: model parameters and hyperparameters 

(Hutter et al., 2011, Snoek et al., 2012, Bardenet et al., 2013). Model parameters are 

constants, which can be optimized and trained with datasets, while hyperparameters are 

the control parameters governing the training process and model structure. They should 
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be specified prior to model training and have a great influence on model accuracy and 

robustness (Snoek et al., 2012, Bardenet et al., 2013, Yogatama and Mann, 2014, Klein et 

al., 2016). To date, very few studies have been reported that have studied the effects of 

hyperparameters associated with MLAs in engineering structural design, and their values 

are often determined using very rough estimation methods, such as several trial-and-error 

experiments. A more detailed study of these important parameters is imperative for 

surrogate modeling. 

In this chapter, the performances of four machine learning methods, namely Gaussian 

process regression (GPR), support vector machine (SVM), random forest regression 

(RFR), and ANNs are compared. These MLAs were selected because they are the most 

frequently used methods in structural engineering, according to the literature review as 

summarized in Table 6.1. In this study, the levels of accuracy of these four methods are 

studied by modeling four typical structures with various geometries, materials, and 

loading and boundary conditions. Their associated hyperparameters are also optimized to 

compare optimal performances. One of the MLAs studied here (i.e. GPR) is also used in 

Chapter 7 to build a surrogate model for uncertainty analysis. 

The remaining parts of this chapter are organized as follows: Section 6.2 presents the 

multi-objective hyperparameters optimization strategy. Section 6.3 describes the four 

structural analysis examples and corresponding development of the FE model used to 

generate the datasets for training the MLAs. Section 6.4 details the surrogate modeling 

and hyperparameter optimization with a comprehensive analysis of the effects of 

hyperparameters in GPR. The chapter is summarized in Section 6.5.
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Table 6.1  

Literature on machine learning algorithms applied as surrogate modeling techniques in structural engineering 

Literature Algorithms Applications 

(Mukherjee and Deshpande, 1995) ANN RC beam design 

(Kapania and Liu, 1998) ANN An aerospace continuum beam design with lattice structure 

(Nagendra et al., 2004) ANN 
A turbine disk optimal design prediction using various input 

parameters 

(Lee et al., 2007) ANN A suspension design 

(Tang and Chen, 2009) SVM 
Robust design of sheet metal forming process and demonstrated by a 

cup drawing example  

(Guo and Bai, 2009) SVM Reliability analysis of deployable mechanism for huge space station 

(Pan et al., 2010) SVM B-pillar weight minimization under roof crush and side impact loading 

(Wang et al., 2010) LS-SVM The response prediction of a cylinder and whole-vehicle crash 

(Huang et al., 2011) GPR Optimal design of aeroengine turbine disc 

(Zhu et al., 2012) SVM 
Vehicle crashworthiness and lightweight design under roof crush and 

frontal crash conditions, respectively 

(Zhang et al., 2012) GPR To optimize the crashworthiness of a foam-filled bitubal square column 

(Haleem and Gan, 2013) RFR 
To predict the severity of traffic accident with respect to some 

numerical and categorical factors 

(Song et al., 2013) 
RSM, GPR, SVM 

and RBF 
A foam-filled tapered thin-walled structure response prediction 

(Yin et al., 2014) 
RSM, RBF, GPR 

and SVM 
Foam-filled, multi-cell, thin-walled structures 
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(Lukaszewicz et al., 2014) and 

(Lukaszewicz and AG, 2015) 
RFR 

To predict the influence of manufacturing variations on structure 

impact performance 

(Rodriguez-Galiano et al., 2014) and 

(Rodriguez-Galiano et al., 2015) 

ANN, DT, RFR 

and SVM & RFR 

Used to map the statistical distribution of mineral prospectivity based 

on images 

(Fang et al., 2014) GPR 
To explore the multi-objective design of foam-filled bitubal structures 

under uncertainty 

(Ferreira and Serpa, 2015) 
RSM, GPR, 

RBNN and SVM 
Analytical and real-world vehicle crashworthiness analysis 

(Fang et al., 2015) GPR For optimization of multi-cell tubes  

(Tang et al., 2016) RFR 
To predict the response of a train crash with respect to different 

parameters 

(Liu et al., 2016) GPR 
Demonstrated by a thin-walled box beam and a long cylinder pressure 

vessel example 

(Yu et al., 2018) ANN Deep learning for topology design without iterations 

(Raihan et al., 2018) RFR Used to find important variables for accident data explaining 

(Duan et al., 2018) SVM Multi-objective optimization of a new vehicle longitudinal beam 

(Palar and Shimoyama, 2018) GPR Airfoil models design 

Note: 

1) GPR is similar with the Kriging method. 

2) RBF: radial basis function; RBNN: radial basis neural network; DT: decision tree; LS-SVM: least square-SVM
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6.2 Hyperparameter optimization 

As important parameters in MLAs, hyperparameters have a great effect on model 

accuracy, and their values should be assigned before training. Optimization of 

hyperparameters could improve the learning ability of the MLA. To achieve this 

optimization, a strategy is proposed to tune their hyperparameters automatically. Four 

MLAs selected for the surrogate modeling study are introduced under the context of 

surrogate modeling in Appendix A. 

6.2.1 Measures 

Prior to the optimization process, the measures to be used as surrogate model accuracy 

indices should be determined. In this study, the root mean square error (RMSE) is used as 

a measure, as expressed in Eq. 6.1. 

1

( ( ) ( ))
N

i i

i

f x f x

RMSE
N








 ,                                (6.1) 

where ( ) ( )i if x f x  is the error of response prediction relative to the real value of the ith 

design (xi), and N is the number of training or test data points. 

Maximum absolute error (MXAE) is also used to assess the maximum prediction error 

using Eq. 6.2, which represents the local error control ability of the MLA. 

Max( ( ) - ( ) )i iMXAE f x f x                                    (6.2) 

Finally, the training computational time (T) of MLAs is also evaluated. This helps inform 

a decision on the selection of a suitable MLA and dataset size in terms of computational 

cost.  
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6.2.2 Multi-objective hyperparameter optimization 

Hyperparameter tuning for MLAs is often a manual process involving a few training 

trials. However, optimal values cannot be obtained in this way. In addition, the effects of 

these important parameters are not well understood, and therefore, the manually tuning 

results are not very informative (Bardenet et al., 2013, Yogatama and Mann, 2014). To 

better quantify hyperparameters, they can be optimized using a number of algorithms. In 

this work, sequential model-based optimization (SMBO) is selected, as it has been 

frequently applied in tuning hyperparameters. Its basic scheme is illustrated in Figure 6.1 

(Yogatama and Mann, 2014, Klein et al., 2016).  

Figure 6.1 shows that the first step in SMBO is to define the hyperparameters’ space, 

including the objective measures of optimization, hyperparameters selection and their 

tuning domain. After that, the initial designs, that is, combinations of hyperparameters, 

are generated and evaluated by the MLA using the values of objective measures. The 

training dataset is then constructed with the determined hyperparameter values and 

corresponding measures, which can be used to train a surrogate model. The relationship 

between evaluation measures and hyperparameters is approximated by a surrogate model. 

Based on the surrogate model, optimal design alternatives can be generated by 

acquisition function and then evaluated by MLA. When the termination criterion, for 

example, the number of evaluations, is reached, this tuning process is complete. 

Otherwise, these new designs are added back to the training dataset and used to update 

the surrogate model.  
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No

New designs added back

Surrogate model training

 

Figure 6.1. The algorithm for multi-objective hyperparameter optimization.  

Some effective evaluation criteria can be used to achieve the proper trade-off between the 

exploration and exploitation of the generated designs, for example, the expected 

improvement (EI), the GP upper confidence bound, the maximum possibility of 

improvement, the minimum conditional entropy or the lower confidence bound (LCB) 

(Yogatama and Mann, 2014, Klein et al., 2016, Bischl et al., 2017). In this study, the 

lower confidence bound is used:  

ˆ ˆ( ,φ) ( ) φ ( )LCB s  x x x  ,                                 (6.3) 

where ˆ ( ) x  and ˆ( )s x are the posterior mean and standard deviation, respectively, and 

is a constant. The workflow in Figure 6.1 is established and used to optimize the 

hyperparameters. At a specific training cost (100 evaluations in this study), 30 initial 

designs are sampled for a preliminary surrogate model. 
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6.3. Structural analysis cases for evaluation of MLAs 

In this study, four representative engineering structures are taken as examples to compare 

the performances of the aforementioned MLAs and optimize their hyperparameters. In 

these four problems, the variations of geometry (bar, sheet and block), loading (static vs. 

dynamic) and boundary conditions (fully constrained and contact), as well as deformation 

modes (small vs. large deformation) are all considered. Hence, the methods and results 

associated with these case studies can be easily extended to a wide range of structures. 

 Structures subject to static loading 

Under static loading conditions, two typical models are adopted, namely, a 10-bar planer 

truss (TbPT) (Lee et al., 2017) and a torque arm (TqA) (Kim and Chang, 2005, Van 

Miegroet, 2012, Cai et al., 2014, Bennett and Botkin, 1985), as shown in Figure 6.2, since 

they are frequently used as examples to verify structural design algorithms. In the TbPT 

model, the circular cross-section areas are taken as design variables with the range from 

0.6 to 225.8 cm2, and the other dimensions are listed in Figure 6.2(a). Two loads with the 

same magnitude (444.8 kN) are applied on joints T and S, and the vertical displacement 

of joint S is taken as the response of this system. 

To design the TqA, geometric constraints must be considered. The constant thickness of 

this structure is 3 mm, and the distance between the two circle centers is 420 mm. The 

design variables and their ranges are listed in Table 6.2. The left circle is fully 

constrained, and loads are added to the right circle, as presented in Figure 6.2(b). To 
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avoid structural failure, the stress is limited to under 800 MPa, and the total mass is used 

as the objective. 

 

(a) 

 

(b) 

Figure 6.2. Two structures under static loading: (a) TbPT and (b) TqA. 

 Structures subject to dynamic loading 

Under dynamic loading conditions, two crashworthy components are studied: the thin-

walled S-shaped beam (ShB) discussed in our previous studies (Du et al., 2017, Du and 

Zhu, 2018) and a thin-walled octagonal multi-cell tube (OMcT) reported in literature (Bai 

et al., 2018). The geometry parameterization and FE models of these two components are 

illustrated in Figure 6.3. As critical energy-absorbing parts on a passenger car, these 
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structures can sustain large plastic deformation and dissipate a large amount of kinetic 

energy from an impact. 

In Figure 6.3(a), the shape of the ShB is fully described by seven design variables, and its 

total length is 1,000 mm. Figure 6.3(a) also shows the FE model of the ShB, which is 

subjected to a frontal impact at 10 m/s. The SEA is set as the design objective in Eq. 4.1. 

In the OMcT model, the cross-section is composed of the inner and outer octagons with 

the ribs connected. The edge sizes of inner and outer octagons are 30 and 60 mm, 

respectively, and the total length is 310 mm. Different colors in Figure 6.3(b) represent 

ribs with different thicknesses. Each thickness is considered one design variable; 

therefore, there are nine design variables in total. The OMcT FE model impacts a fully 

constrained rigid wall (velocity: 30 km/h) with the rear end attached to a mass block (600 

kg) to represent the vehicle inertia effect. The CFE is calculated as the design objective to 

assess the energy-absorption efficiency as defined by Eq. 5.8. 

Table 6.2  

Design variables and their ranges for the TqA structure 

Design 

variable 

Initial 

value/mm 
Range/mm 

Design 

variable 

Initial 

value/mm 
Range/mm 

𝑦1 52 [30, 62] 𝑦8 48 [22, 58] 

𝑦2 50 [26, 60] 𝑦9 46 [18, 56] 

𝑦3 48 [22, 58] 𝑦10 44 [14, 54] 

𝑦4 46 [18, 56] 𝑥1 120 [60, 200] 

𝑦5 44 [14, 54] 𝑥2 270 [110, 395] 

𝑦6 52 [30, 62] 𝑟1 10 [10, 40] 

𝑦7 50 [26, 60] 𝑟2 10 [5, 40] 
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The detailed material parameters and loading and boundary conditions can be seen in 

Chapters 4 and 5. These two models were validated in those studies, and the validation is 

not repeated here. In the current study, the impact speed is increased to 50 km/h to 

represent the loading condition defined in the NCAP standard (National Highway Traffic 

Safety Administration https://www.nhtsa.gov/laws-regulations). 

 

(a) 

 

(b) 

Figure 6.3. Two structures under dynamic loading: (a) the vehicle frontal S-shaped side 

beam (ShB) and (b) the octagonal multi-cell tube (OMcT), together with design variables 

and FE models. 

https://www.nhtsa.gov/laws-regulations
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6.4. The performance of MLAs 

Once the basic structural FE models are developed, they are used to generate datasets for 

MLA training by FE simulations. Using the simulation dataset, the best performance of 

the MLAs is reached using the hyperparameter optimization process. Subsequently, the 

optimized ML models are compared in terms of their structural response prediction 

capability. 

6.4.1 Data collection and preprocessing 

After the four structural FE models are developed, they are used to generate datasets by 

DOEs and FE simulations. In this study, the uniform LHM is used to sample the design 

points in the design space. Then, 1,000 designs are sampled for each structure, the 

corresponding FE models are developed and their responses are calculated using FE 

simulations. In these 1,000 designs for each structure, 800 designs are used for training 

and 200 for validation. 

It is also noted that in these four structure models, design variables, such as H and T in 

ShB, may be of different orders of magnitudes. This difference would mean features with 

larger values would outweigh features with smaller values (Mohamad and Usman, 2013). 

Therefore, normalization is used to scale the values of different design variables into the 

same range [0, 1] by 

min

max min

X X
X

X X





 ,                                            (6.6) 

where, for a specific variable, X  is the normalized value, X is the variable value, and 

maxX and minX  are the maximum and minimum values of this variable, respectively. 
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6.4.2 Hyperparameter optimization 

Using the algorithm shown in Figure 6.1, the hyperparameters for GPR, SVMs, RFR, and 

ANNs are optimized. Although the optimal hyperparameters may vary for different 

datasets, the values of good hyperparameters would be close for different design datasets 

with similar sizes and design variable dimensions (Brochu et al., 2010, Yogatama and 

Mann, 2014). In other words, the optimal hyperparameter values obtained from this study 

can be applied to other similar design problems without significant change or can be used 

as the basis for optimization (Bardenet et al., 2013).  

In each algorithm, the hyperparameters should be specified in advance. For GPR, the 

only hyperparameters are the kernel parameters, that is, the bold parameters in Eq. 6.3. 

2
RBF: k( , ') = exp(- ' )

Polynomial: k( , ') = ( < , '> + )
: 

Hyperbolic tangent (tanh): k( , ') = tanh( < , '> )

Laplacian: k( , ') = exp(- ' )

x x x x

x x x x

x x x x

x x x x

 





 

deg
scale offset

Kernels
scale offset





 ,          (6.3) 

where < , '>x x  and 'x x  are the dot product and Euclidean distance of vectors x and 

x’, scale and offset are used to scale the result of < , '>x x  and add an offset, deg defines 

the degree of the polynomial kernel, and  is a parameter to account for the weight of 

nodes with different distances to the current node. 

For an SVM, as a kernel-based algorithm, in addition to these kernel parameters, the  

bounds and the error penalization weighting factor C are also hyperparameters. For RFR, 

the number of trees in the random forest is a critical factor for regression accuracy, which 

also influences the computational cost: that is, more decision trees equals a higher 
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computational cost. Meanwhile, the decision-tree-related hyperparameters are also tuned: 

the number of randomly selected features for each split (NF), the minimum terminal node 

size (Min TS) and the maximum numbers of terminal nodes (Max TN). 

For ANNs, considering the current structural complexity and dataset size, one hidden 

layer will be sufficient. Some critical hyperparameters related to the ANN structure are 

selected for optimization: the number of hidden-layer neurons, activation functions, 

optimizers, mini-batch sizes and learning speed parameters, that is, learning rate and 

momentum, where the momentum is only applicable to Stochastic gradient descent (sgd) 

optimizer. 

RMSE and MXAE are taken as the objectives of the multi-objective hyperparameter 

optimization process, which has been defined in Eqs. 6.1 and 6.2. For each of the 16 

tuning models (4 MLAs  4 examples), 30 initial designs are generated to construct the 

initial surrogate model. Another 70 evaluations are used to optimize the hyperparameters 

iteratively and assess the results, update the surrogate model and reach the Pareto front.  

The 5-fold cross-validation is used to train the model, which divides the training dataset 

into five subsets to train the model in iterations. After the hyperparameter optimization, 

one hyperparameter group is selected randomly from the Pareto front for each model and 

summarized in Table 6.3 with corresponding mean loss values of five cross-validations. 
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Table 6.3  

Selected optimal hyperparameters for ML models with respect to the four structural 

datasets 

Models Hyperparameters Loss 

G 

P 

R 

  Kernels Degree Scale Offset RMSE MXAE 

TbPT polynomial 3 7.22 -2.24 0.060 0.379 

TqA polynomial 2 1.73 1.07 0.052 0.459 

ShB polynomial 3 2.30 1.08 0.041 0.234 

OMcT polynomial 3 7.67 9.30 0.055 0.219 

 

S 

V 

M 

 C ɛ Kernels  Degree Scale Offset RMSE MXAE 

TbPT 0.81 0.07 polynomial NA 7 2.73 5.87 0.063 0.378 

TqA 2.81 0.41 polynomial NA 1 4.03 -2.09 0.055 0.495 

ShB 9.77 0.13 Laplacian 0.37 NA NA NA 0.047 0.324 

OMcT 9.20 0.05 polynomial NA 2 9.25 2.96 0.073 0.258 

 

R 

F 

R 

 
Trees NF Min TS Max TN RMSE MXAE 

TbPT 773 10 1 304 0.046 0.417 

TqA 569 9 1 682 0.095 0.441 

ShB 718 7 1 1,000 0.045 0.298 

OMcT 879 9 1 493 0.079 0.377 

 

A 

N 

N 

 

Hidden 

neurons 

Activ-

ation Optimizer 

Batch 

size 

Learning 

rate Momentum RMSE MXAE 

TbPT 26 relu sgd 199 0.77 0.83 0.047 0.295 

TqA 19 relu adagrad 108 0.57 NA 0.051 0.450 

ShB 8 tanh adagrad 85 0.30 NA 0.041 0.257 

OMcT 36 tanh sgd 98 0.97 0.92 0.042 0.159 

Note: relu: rectified linear unit; tanh: hyperbolic tangent; adagrad: Adaptive subgradient; 

 

https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
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Using the optimal hyperparameters in Table 6.3, 16 models are trained. The RMSE and 

MXAE values of 5-fold cross-validation are presented in Figures 6.4 and 6.5, 

respectively, as boxplots. The corresponding training time for a single cross-validation 

process is also presented in Figure 6.6 with the standard error among 5-fold cross-

validation. 

 

Figure 6.4. Comparison of RMSE accuracy of four regression methods trained by the 

four structural datasets using the hyperparameters in Table 6.3, presented in the box plots 

using the RMSE data from the test loss of 5-fold cross-validation. 

From Table 6.3, for GPR, the third-degree polynomial kernel is recommended. It also 

performs well for the SVM. Although more regression trees in RFR could increase its 

accuracy, it is preferred to set the number of trees equal to one-half to three-quarters of 

dataset size. The minimum terminal node size should be as small as possible for a small 

dataset, due to the low computational cost as shown in Figure 6.6. Also, all design 

variables should be ready for each node split if the input feature dimension is not high.  
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After 2000 epochs of training, the ANN shows higher performance if the adagrad or sgd 

is used as the optimizer with the tanh or relu activation function. It is better to keep the 

total number of weights less than one-quarter of the training dataset size. Additionally, 

dividing the whole dataset into 4 to 10 mini-batches, that is, a mini-batch size of 80 to 

200 in this study, is a good practice to obtain a satisfactory trade-off between accuracy 

and training time. Meanwhile, a learning rate between 0.1 and 0.9 is recommended, 

which is important to increase training efficiency. 

 

Figure 6.5. Comparison of MXAE accuracy of four regression methods trained by the 

four structural datasets using the hyperparameters in Table 6.3. 

As shown in Figs. 6.4 and 6.5, the ANN exhibits the best performance, indicated by its 

relatively low RMSE and MXAE, and is followed by GPR. However, considering the 

high computational cost of ANN training (approximately 70 times that of GPR, on 
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average) shown in Figure 6.6, GPR would be more suitable under limited computational 

resources and a large dataset size. 

 

Figure 6.6. Comparison of the four regression methods in terms of their training time 

based on the hyperparameters in Table 6.3 (computational power: Dell Precision Tower 

5810 with Intel Xeon CPU E5-2690 v3: 2.6 GHz turbo up to 3.5 GHz and 32 GB RAM). 

In Figure 6.6, the SVM training time varied greatly with the change of hyperparameters 

in Table 6.3. For the SVM trained by the OMcT dataset, the large error penalization C 

(i.e. 9.2) means that the error term in Eq. A-8 takes a high weight. Meanwhile, the low  

(i.e. 0.05) in Table 6.3 suggests more samples may have fallen out of -bounds and more 

error items were added into the error term in Eq. A-8, which increased the objective 

function complexity, the number of C. These facts cause the high computational cost of 

training with the OMcT dataset. Hence, a smaller C and larger  could reduce the 

computational cost. 
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In this section, the two MLAs demonstrating better performance, GPR and ANN, were 

further analyzed. The effects of their hyperparameters were also discussed. In this part,  

RMSE was the only measure used to quantify modeling accuracy. 

6.4.3 Hyperparameter effects on GPR 

The only hyperparameters in GPR are kernel-related parameters. Four kernel functions, 

the RBF, polynomial, tanh and Laplacian, as listed in Eq. 6.3, are used. The GPR 

performances with different Sigma () values are plotted in Figure 6.7(a) and (b) for the 

Laplacian and RBF kernels, respectively. The low-level  (< 2) has a critical influence. 

The best GPR performance  values are 1 and 0 for the RBF and Laplacian kernels, 

respectively. 

Regarding the polynomial kernel, different degrees significantly influence the model 

accuracy. Figure 6.8(a) illustrates the standard error bars of loss to account for the effect 

of scale and offset variation. Table 6.3 shows that the optimal degrees would be 2 or 3, so 

low-level degrees in Figure 6.8(a) are amplified in Figure 6.8(b) to reveal the details of 

their effect. The results also match well with the data in Table 6.3, and the second- or 

third-order polynomial would be good choices. The influence of scale and offset increase 

with higher degrees, which is indicated by the larger standard errors. 
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(a)                                                                    (b) 

Figure 6.7. Effects of kernel hyperparameter sigma on the GPR performance for (a) RBF 

dot and (b) Laplacian kernels. 

 

(a)                                                                          (b) 

Figure 6.8. Effect of the polynomial kernel degree on the GPR performance with the 

error to account for the influence of the scale and offset: (a) the full range of degrees and 

(b) the enlarged view when the degree is in the range (1~4). 
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Furthermore, for scale and offset, their absolute values should be greater than 1, since this 

will significantly reduce the RMSE error, as shown in Figure 6.9. Absolute values greater 

than 1 for scale and offset should generally work well for a high-accuracy GPR, although 

their optimal RMSE values vary across the four cases. 

 

(a)                                                                              (b) 

 

(c)                                                                           (d) 

Figure 6.9. GPR performance with different scale and offset for polynomial kernel 

functions under degrees shown in Figure 6.8(b): (a) ShB with degree 3, (b) OMcT with 

degree 3, (c) TbPT with degree 2 and (d) TqA with degree 2. 
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(a)                                                                    (b) 

 

(c)                                                                   (d) 

Figure 6.10. GPR performance with the change of the tanh kernel function’s scale and 

offset for (a) ShB, (b) OMcT, (c) TbPT and (d) TqA. 

The tanh kernel function also has only two hyperparameters: scale and offset. Figure 6.10 

shows the performance changes of GPR with different values for them, indicating a 

similar trend in the four cases. For a high-accuracy GPR model, recommended scale and 

offset values are 1 and 10, respectively. Likewise, large scale and low offset values 

should be avoided to prevent the deterioration of model accuracy.  
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In summary, the RMSE accuracy of 16 models (4 kernels  4 structural cases) trained 

with the best kernel hyperparameter values is presented in Figure 6.11. Clearly, the 

polynomial kernel shows the best performance in terms of GPR accuracy, while the RBF 

kernel demonstrates a large scatter and unstable performance. 

 

Figure 6.11. Comparison of the modeling performances of the four kernel functions in 

the GPR algorithm. 

6.5 Summary 

In this section, four MLAs were selected to study their ability to predict structural 

responses through modeling of four typical engineering structures. These MLAs can be 

used to build surrogate models to supplement or partially replace expensive numerical 

modeling and simulations. Using a multi-objective hyperparameter optimization 

framework, the hyperparameters of these four MLAs were optimized and their optimal 

performances compared. The results show that GPR and ANN outperformed the other 
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two MLAs. In addition, the effects of hyperparameters on the GPR results were discussed 

in detail. A summary follows.  

1) The multi-objective hyperparameter optimization algorithm could tune the 

hyperparameters effectively and efficiently and produce a highly accurate surrogate 

model within a limited number of evaluations (100 in this study). 

2) The result shows that in the current structural design problems, GPR would be the 

best choice to train a high-accuracy model with low computational cost, while the 

ANN has more potential to be improved by additional training data and iterations. 

3) The polynomial kernel is preferred for GPR with degree 2 or 3; its scale and absolute 

offset value should be equal to or greater than 1.  

The GPR algorithm with corresponding tuned hyperparameters is used in Chapter 7 to 

build the surrogate model for uncertainty analysis. 
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Chapter 7 Data mining method (DMM) with uncertainty 

7.1 Introduction 

In the previous chapters, the decision tree algorithms were created at various levels by 

learning from deterministic datasets. However, they have no ability to learn the decision-

making rules from an uncertain dataset. In vehicle crashworthiness design, uncertainty is 

unavoidable due to the design and manufacturing process as well as the working 

conditions (Fang et al., 2014, Eichmueller and Meywerk, 2019), such as thickness 

variations in the sheet metal due to manufacturing (Zimmermann et al., 2017, Hesse et 

al., 2017), mechanical property changes resulting from heat treatment (Li et al., 2017) 

and random numerical errors in the simulations. These factors may cause uncertainty in 

both design variables and responses. A new algorithm for decision tree development from 

an uncertain dataset is needed.  

Several MLAs have been proposed to handle uncertain datasets (Sun et al., 2014, 

Angiulli and Fassetti, 2013, Tavakkol et al., 2017). Efforts have also been made to extend 

regular decision trees to learn from uncertain data (Meenakshi and Venkatachalam, 2015, 

Tsang et al., 2011, Qin et al., 2010). Although the performance of these algorithms has 

been verified by some public datasets, they cannot generate consistent results. In 

addition, no such design trees have been reported in engineering design applications. To 

resolve these issues, a new decision tree for uncertain datasets (DTUD) is developed and 

presented in this chapter. Section 7.2 introduces its basic theory and implementation. The 

new algorithm is then applied in Section 7.3 to design an S-beam. Additional analysis of 

its performance is presented in Section 7.4. 
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7.2 Methods 

To represent uncertainty in this study, the input features or design variables were 

assumed to have an interval with a certain distribution.  

7.2.1 A new decision tree for uncertain datasets (DTUD) 

In traditional decision tree construction, a key step is the selection of a split point. 

Typically, all attribute values are taken as candidates for split points. In the current 

dataset of a non-leaf node, the selected split point should result in a maximum or 

minimum value for splitting criteria, for example, information gain in ID3, gain ratio in 

C4.5 or Gini index in CART (Han et al., 2011). However, the interval with uncertain data 

is not an exact value but a range with no available exact values as candidates for split 

points. To generate some exact values, N points are placed evenly in each interval. If a 

specific value (Sj) of the jth feature is selected as the split point, it may have three 

possible conditions with respect to its ith interval ([
CL

ijA
CU

ijA ]). 

Prior to an in-depth discussion of the three conditions, two basic definitions should be 

introduced. Tuple probability (TP) is the probability of a tuple belonging to a specific 

partition or, finally, a leaf node. In this way, the summation of the tuple probabilities of 

an observation is equal to one. The label probability (LP) is the probability of a specific 

label in a dataset. Demonstrably, the summation of LPs for all labels in a dataset is also 

equal to one. 

1) If the split point falls to the left side of interval (Sj ≤ 
CL

ijA ), this tuple is assigned to the 

right branch with TP 𝑝𝑅
𝑡  calculated by Eq.7.1 and with the left branch TP 𝑝𝐿

𝑡 = 0. 
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𝑝𝑅
𝑡 = ∫ ⋯∫ ⋯∫ 𝑓(𝑥 )𝑑𝑥 

𝐴𝑖𝑛
𝐶𝑈

𝐴𝑖𝑛
𝐶𝐿

𝑨𝒊𝒋
𝑪𝑼

𝑨𝒊𝒋
𝑪𝑳

𝐴𝑖1
𝐶𝑈

𝐴𝑖1
𝐶𝐿

 ,                                 (7.1) 

where 𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑗 , ⋯ , 𝑥𝑛) represents the vector of the input feature, and 𝑓(𝑥 ) 

is the joint probability of input features. 𝑨𝒊𝒋
𝑪𝑳 and 𝑨𝒊𝒋

𝑪𝑼 are the lower and upper limits 

of the ith tuple’s jth feature interval in the current dataset, respectively. 

2) If the split point falls within the interval (
CL

ijA <Sj ≤ 
CU

ijA ), this tuple is partitioned into 

two parts. The left half (≤ Sj) is assigned to the left branch with TP calculated in Eq. 

7.2. 

𝑝𝐿
𝑡 = ∫ ⋯∫ ⋯∫ 𝑓(𝑥 )𝑑𝑥 

𝐴𝑖𝑛
𝐶𝑈

𝐴𝑖𝑛
𝐶𝐿

𝑺𝒋

𝑨𝒊𝒋
𝑪𝑳

𝐴𝑖1
𝐶𝑈

𝐴𝑖1
𝐶𝐿

                                       (7.2) 

The right half (> Sj) is included in the right branch with TP determined in Eq. 7.3. 

𝑝𝑅
𝑡 = ∫ ⋯∫ ⋯∫ 𝑓(𝑥 )𝑑𝑥 

𝐴𝑖𝑛
𝐶𝑈

𝐴𝑖𝑛
𝐶𝐿

𝑨𝒊𝒋
𝑪𝑼

𝑺𝒋

𝐴𝑖1
𝐶𝑈

𝐴𝑖1
𝐶𝐿

                                      (7.3) 

3) If the split point falls to the right side of the interval (
CU

ijA ≤ Sj), this tuple is assigned 

to the left branch with TP 𝑝𝐿
𝑡  expressed in Eq. 7.4 and with the right branch TP 𝑝𝑅

𝑡 =

0. 

𝑝𝐿
𝑡 = ∫ ⋯∫ ⋯∫ 𝑓(𝑥 )𝑑𝑥 

𝐴𝑖𝑛
𝐶𝑈

𝐴𝑖𝑛
𝐶𝐿

𝑨𝒊𝒋
𝑪𝑼

𝑨𝒊𝒋
𝑪𝑳

𝐴𝑖1
𝐶𝑈

𝐴𝑖1
𝐶𝐿

                                    (7.4) 

If all input features are independent of each other, the joint distribution 𝑓(𝑥 ) can be 

represented by the multiplication of all individual distributions. Thus, an observation can 

be partitioned into several leaf nodes. It is counted by its TP in each leaf. Accordingly, 

two basic parameters used in the traditional decision tree for calculating attribute 
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selection measures can be adjusted in this new algorithm. The LP (𝑃𝐿𝑡) that a tuple 

belongs to label Lt in the current dataset can be calculated by Eq. 7.5. 

𝑃𝐿𝑡 =
∑ 𝑝𝑖

𝑡𝐿𝑡  
𝑛𝐿𝑡
𝑖=1

∑ 𝑝𝑖
𝑡𝑛𝑐

𝑖=1

 ,                                                                     (7.5) 

where 𝑝𝑖
𝑡𝐿𝑡  denotes the TP of the ith tuple (with Lt label), and 𝑛𝐿𝑡 is the number of tuples 

with label Lt in the current dataset; 𝑛𝑐 and 𝑝𝑖
𝑡 are the total number of tuples in the current 

dataset and their TP, respectively. The 𝑃𝐿𝑡 is related only to the label content of the 

current dataset. Another parameter is the weight of each partition with respect to a 

specific split point, which, traditionally, is estimated by the portion of tuples in each 

partition. In a DTUD, it can be expressed by Eq. 7.6 for each of the two resulting 

partitions. 

|𝐷𝑠𝑝|

|𝐷|
=
∑ 𝑝

𝑖

𝑡𝑠𝑝𝑛𝑠𝑝
𝑖=1

∑ 𝑝𝑖
𝑡𝑛𝑐

𝑖=1

                                                                      (7.6) 

Unlike in Eq. (7.5), the numerator here is changed to the ratio of a partition’s total TP to 

the TP summation in the current dataset; 𝑛𝑠𝑝 and 𝑝
𝑖

𝑡𝑠𝑝
 are the numbers of tuples in the 

spth partition and the ith TP, respectively. Based on these definitions, the attribute 

selection measures can be calculated to grow a decision tree in a recursive way. 

To evaluate the accuracy of a decision tree in training, the classification accuracy (ACC) 

is calculated by dividing the TP summation of correctly classified tuples by the total 

dataset size, as in Eq. (7.7). Following the partition rules defined, the content in each leaf 

node is the TP summation of all tuples for each label but not the exact number of 

observations. Furthermore, LP in a leaf node can be calculated by Eq. 7.5. If an exact 
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label should be assigned for a leaf node to define the correct classification, the label with 

the maximum probability can be designated. 

𝐴𝐶𝐶 =
∑ 𝑃𝑖

𝑐𝑛𝑙
𝑖=1

𝑛𝑚
 ,                                                                                (7.7) 

where nm is the size of training dataset, and nl and 𝑃𝑖
𝑐 are the number of leaf nodes and 

the TP summation of correctly classified tuples in the ith leaf node, respectively.  

A method similar to the training method is followed to evaluate the validation ACC. An 

uncertain observation may be assigned to multiple leaf nodes with corresponding TP 𝑃𝑠
𝑡 

(s = 1, 2, ⋯, nl) calculated by Eqs. 7.1–7.4. The label predicted by a tree can be 

determined as the label with the maximum value of the summation of 𝑃𝑠-weighted leaf 

LPs, as expressed in Eq. 7.8. 

𝑀𝑎𝑥   (𝑝𝐿⃗⃗⃗⃗ = 𝑃𝑠
𝑡 ∙∑ 𝑝𝑖𝐿⃗⃗⃗⃗ 

𝑛𝑙

𝑖=1
   ) ,                                                           (7.8) 

where 𝑝𝑖𝐿⃗⃗⃗⃗  and 𝑝𝐿⃗⃗⃗⃗  are the vectors of LP of the ith leaf node and the calculated 𝑃𝑠
𝑡-weighted 

LP summation, respectively. 

7.2.2 Implementation of the new algorithm 

Before the DTUD training, the joint probability distribution of design variables should be 

determined. Due to the influence of random events (e.g. vibration, measurement and 

deformation) in engineering design and manufacturing, we use the Gaussian distribution 

as the default one if there is no prior knowledge of the interval distribution (e.g. 

[𝐴𝑖𝑗
𝐶𝐿 , 𝐴𝑖𝑗

𝐶𝑈]), where 𝐴𝑖𝑗
𝑚 =

𝐴𝑖𝑗
𝐶𝐿+𝐴𝑖𝑗

𝐶𝑈

2
 is defined as the mean. The 3-sigma rule, which could 
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cover most probability distributions, is adopted over the whole interval range with the 

probability density function defined in Eq. 7.9. 

𝑓(𝐴𝑖𝑗) = C ∙ 𝑁(𝐴𝑖𝑗
𝑚, (

(𝐴𝑖𝑗
𝐶𝑈−𝐴𝑖𝑗

𝐶𝐿)/2

3
)2) ,                                 (7.9) 

where 𝑁 is the normal distribution, and C = 1/0.997 is a factor to adjust the probability 

within an interval to 1. To fully present the validation process, we used the dataset for the 

S-beam from Chapter 4 as an example. A part of the dataset is shown in Figure 7.1. To 

generate an uncertain dataset, each original value was used as the mean (𝐴𝑖𝑗 = 𝐴𝑖𝑗
𝑚), and 

a ratio (R = 0.1 in this example) of the mean was taken as the deviation (𝑹 ∙ 𝐴𝑖𝑗 =

(𝐴𝑖𝑗
𝐶𝑈 − 𝐴𝑖𝑗

𝐶𝐿)/2). Due to their independent nature, the joint distribution of seven design 

variables can be seen as the multiplication of individual Gaussian distributions. 

 

Figure 7.1. Transforming the deterministic dataset to an uncertain dataset for the S-beam 

design described in Chapter 4. 
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Using the generated uncertain dataset, a decision tree with uncertainty was built using the 

algorithm introduced in Section 7.2, as shown in Figure 7.2. The first design in Figure 7.1 

was selected as an example to show the validation or prediction process. Normal 

distribution was defined for each interval feature of this tuple. By following the DTUD, 

this tuple can be assigned to branches b1, b2, b3 and b6. Each non-leaf node partitions a 

current interval feature into two parts. The final TPs of this tuple in each of four leaves 

were calculated by Eq. (7.10) as 

{
 
 
 

 
 
 𝑃𝑏1 = C ∙ ∫ 𝒩 (2.25, (

0.25

3
)
2

) d𝑇 =
2.5

2.4
0.035 

𝑃𝑏2 = C ∙ ∫ 𝒩 (2.25, (
0.25

3
)
2

)d𝑇 =
2.4

2.36
0.057

𝑃𝑏3 = C
2 ∙ ∫ 𝒩 (2.25, (

0.25

3
)
2

) d𝑇 ∙ ∫ 𝒩 (200, (
20

3
)
2

) d𝐷𝑅
215.5

180
= 0.9

2.36

2.0

𝑃𝑏6 = C2 ∙ ∫ 𝒩 (2.25, (
0.25

3
)
2

)d𝑇 ∙ ∫ 𝒩 (200, (
20

3
)
2

) d𝐷𝑅
220

215.5
=

2.36

2.0
0.008

 .      (7.10) 

The predicted LP of this tuple is then 

𝑃𝑔
𝑃𝑚
𝑃𝑝

} = 0.035 ∗ 𝑝𝑏1
𝐿 + 0.057 ∗ 𝑝𝑏2

𝐿 + 0.9 ∗ 𝑝𝑏3
𝐿 + 0008 ∗ 𝑝𝑏6

𝐿 = {
0.263
0.724
0.013

 ,                     (7.11) 

where 𝑝𝑏1
𝐿 , 𝑝𝑏2

𝐿 , 𝑝𝑏3
𝐿  and 𝑝𝑏6

𝐿  are the LPs of branches b1, b2, b3 and b6, respectively. 

Although this aforementioned design alternative is a “g” design in the original dataset, it 

is labeled as an “m” design by the uncertain design rules, which is the same prediction 

result achieved with the deterministic decision tree in Chapter 4.  
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Figure 7.2. A decision tree with uncertainty for the S-beam described in Chapter 4. 

7.3 Design of the S-beam by DTUD 

Based on these analyses, the DTUD was verified by some datasets from the University of 

California, Irvine (UCI) public repository (https://archive.ics.uci.edu/ml/datasets.php) for 

MLAs. The details are included in Appendix B. In this section, the process of designing 

an S-beam using the DTUD is described in detail. 

7.3.1 S-beam parameterization 

The S-beam was designed based on the dimension-based approach but parameterized in a 

way different from that used in Chapter 4 to facilitate the uncertain design. Figure 7.3 

shows the strategy. W and H represent the width and height of the bounding box, 

https://archive.ics.uci.edu/ml/datasets.php
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respectively. The total length of the S-beam is fixed as 1,000 mm with three segments 

(S1, S2 and S3), and their corresponding thicknesses are T1, T2 and T3, respectively. T2 is 

assumed to be the mean of T1 and T3 to represent a gradual change. L1 and L2 are the 

lengths of S1and S2, respectively. In Figure 7.3, the heights of four cross-sections (H1, 

H2, H3 and H4) are also defined as design variables, since the ratio of width and height 

can influence the structural response significantly. In S1 and S3, the height of any cross-

section is assumed as a linear interpolation between the heights of their cross-sections at 

the two ends. 

Using these rules, an initial design was created with the design variable values as follows: 

L1 = 300 mm, L2 = 400 mm, H1 = 75 mm, H2 = 75 mm, H3 = 75 mm, H4 = 75 mm, T1 = 

2.0 mm, T2 = 2.0 mm, T3 = 2.0 mm, H = 75 mm and W = 60 mm. The dimension 

constraints for these 11 design variables were assumed as 300 mm ≤ L1 ≤ 500 mm; 200 

mm ≤ L2 ≤ 400 mm; 50mm ≤ H1 ≤ 100 mm; 50 mm ≤ H2 ≤ 100 mm; 50 mm ≤ H3 ≤ 100 

mm; 50 mm ≤ H4 ≤ 100 mm; 1 mm ≤ T1 ≤ 3 mm; 1 mm ≤ T3 ≤ 3 mm; 200 mm ≤ H ≤ 500 

mm; 150 mm ≤ W ≤ 300 mm and T2 = (T1 + T3)/2. The geometric model of the S-beam 

was further converted to an FE model to simulate the frontal impact response. The 

loading and boundary conditions have been described in Chapters 4 and 5 and are not 

repeated here. 
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Figure 7.3. Parameterization of the S-beam for uncertainty analysis. 

7.3.2 Generation of an uncertain design dataset 

Similar to the design problem formulated in Chapter 4, specific energy (SEA) was used 

as the main response or objective in this chapter for uncertainty design. 3,000 design 

alternatives were generated by FE simulations. To reduce the computational cost, a GPR 

surrogate model was trained using 80% of the simulation data. The SEA values computed 

by FE models are compared with those from the GPR model predictions for validation in 

Figure 7.4. Figure 7.4 shows a good match, which verifies the GPR accuracy. 
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Figure 7.4. SEA values computed by FE models vs. those by GPR model predictions. 

Using the trained GPR model, 1,000 additional design alternatives were generated. To 

include the uncertainty, Gaussian noise with a zero mean and 10% standard deviation of 

parameter value was added to the values of design variables. The Gaussian distribution 

was also defined over the whole interval of each design variable by applying the 3-sigma 

rule. 

7.3.3 Uncertain dataset mining 

The frequencies for SEA values of the 1,000 new designs created with GPR are plotted in 

Figure 7.5. The labeling criteria are defined as good (“g”): SEA > 1,200 J/kg; 

intermediate (“m”): 800 J/kg < SEA ≤ 1,200 J/kg and poor (“p”): SEA ≤ 800 J/kg.  
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Figure 7.5. The distribution of SEA value frequencies of the 1,000 new designs created 

with GPR. 

To train a DTUD, 80% of samples were used in the training process. To control the 

complexity of the generated tree, the number of layers was limited to six. Using the 

proposed algorithm, a decision tree was established and then validated with the remaining 

20% of designs in the dataset. 

7.3.4 Decision tree for the S-beam with uncertainty 

Using the uncertain dataset for the S-beam, a decision tree was trained and validated, as 

shown in Figure 7.6. Training and validation classification accuracy were 0.77 and 0.73, 

respectively. The decision tree contains six layers and 23 leaf nodes. The content in each 

leaf node is the LP. If a design falls into this node, its performance should follow this 

probability density function (PDF). If a new design falls into multi-leaf nodes, its 

performance PDF can be calculated by following the strategies illustrated in Figure 7.2. 

In this way, it can be determined that the decision tree in Figure 7.6 contains five 
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branches for “g,” 10 branches for “m” and eight branches for “p.” The design rules for 

“g” can also be generated by following the paths from the root to the “g” leaf nodes; 

examples include b12 and b14, due to their high LPs for “g.” 

 

Figure 7.6. An uncertain decision tree generated using the S-beam uncertain dataset 

where six branches, that is, “g”: b12 and b14; “m”: b1 and b8; “p”:  b2 and b17, are 

selected as the representatives of their labels (Y: Yes; N: No). 

7.4 Discussion 

In this section, additional analyses are performed to discuss (1) the ability of the DTUD 

to generate designs with expected performance and (2) the influence of uncertainty on the 

DTUD performance. 
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7.4.1 Ability of DTUD to generate designs with expected performance 

To quantify the probability of generating designs with expected performance, two 

branches were selected as representatives for each class, as shown in Figure 7.7. A total 

of 50,000 designs were randomly created using the Monte Carlo method (MCM) in the 

subspace for each branch. The probability distribution of the GPR predicted response 

(measured by the SEA) exhibits a normal distribution, as shown in Figure 7.7 with the 

labeling bounds. The distribution parameters, for example, the mean and standard 

deviation, and the probability for each class are summarized in Table 7.1. 

In Figure 7.7, the mean value of SEA distribution for each branch falls into its 

corresponding labeling value range, which indicates a high labeling probability or 

accuracy of the DTUD prediction. In Table 7.1, the b12 branch with the higher “g” LP 

(0.95) has a higher probability (0.90) of generating a good design than b14, which has a 

“g” LP of 0.81 and a “g” TP of 0.71. This suggests that the branch with higher LP could 

have a higher probability of generating expected performance designs. 

Table 7.1  

The normal distribution and label probability for each branch calculated using the Monte 

Carlo method (MCM) 

Branches Mean SD 

Probability 

g m p 

b12/g 1,404.6 161.7 0.90 0.10 0.00 

b14/g 1,270.3 128.8 0.71 0.29 0.00 

b1/m 980.1 163 0.09 0.78 0.13 

b8/m 994.2 119.5 0.04 0.91 0.05 

b2/p 582.2 101.4 0.00 0.02 0.98 

b17/p 659.1 71.8 0.00 0.03 0.98 
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Figure 7.7. The performance (SEA) probability density function (PDF) for six branches  

produced by the DTUD. 

7.4.2 Influence of uncertainty on DTUD performance 

Uncertainty may influence design performance and the DTUD predictions. To evaluate 

such influences, 10 design alternatives were generated for each of the two “g” 

representatives (i.e. b12 and b14). Using R = 10%, the original exact values for design 

variables in these branches were replaced by distributions in intervals to reflect the 

uncertainty. The Gaussian distributions with a 3-sigma rule were defined for each design 

variable. These uncertain designs were tested by the decision tree to assess their LPs, 
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with the results listed in Table 7.2. Meanwhile, MCM was also adopted to quantify the 

response uncertainty of these 20 designs. Their “g” probabilities are listed in Table 7.2. 

Table 7.2  

The DTUD and Monte Carlo Method (MCM)-computed “g” probabilities of the 10 

uncertain designs for b12 and b14 

Design No. 
b12 (“g” LP: 0.95) b14 (“g” LP: 0.81) 

DTUD MCM DTUD MCM 

1 0.95 1.00 0.77 1.00 

2 0.95 0.99 0.81 0.93 

3 0.91 1.00 0.81 0.68 

4 0.95 0.99 0.78 0.63 

5 0.68 0.29 0.79 1.00 

6 0.82 0.01 0.65 0.05 

7 0.86 0.05 0.69 0.29 

8 0.95 1.00 0.76 0.94 

9 0.95 1.00 0.45 0.43 

10 0.94 1.00 0.80 0.99 

In Table 7.2, there are three designs (bolded) in each group that present much lower 

probabilities than the nominal LP in their original leaf nodes. After adding the 

uncertainty, a design may be partitioned into multi-leaves, which may cause a decrease of 

“g” probability, especially for designs near the splitting bounds. When evaluated on 

performance distribution using the MCM, these three designs demonstrate a rather low 

“g” probability. This suggests that the performance of designs may be degraded by 

including uncertainty. This trend can also be indicated by the DTUD in predicted LPs 

that are much lower than the nominal LPs in leaf nodes. 
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7.5 Summary 

To account for the uncertainty in engineering design, a DTUD algorithm was developed 

for the data with a given distribution. The accuracy of the algorithm was established by 

using nine datasets from a public UCI repository. To demonstrate the algorithm’s 

capability in engineering design, the S-shaped beam model described in the previous 

chapters was employed again as an example. The design dataset for this component was 

generated using a GPR surrogate model.  

A DTUD with six layers was built using this dataset. Its structure and accuracy were 

analyzed by examining the LP prediction capability. The results show the following: 

1) A branch with a high LP can produce a design with a high probability of delivering the 

expected performance.  

2) When considering uncertainty, the performance of a design rule may be degraded. This 

trend can be captured by the DTUD. 

In summary, the DTUD offers an effective tool to deal with uncertain datasets with good 

classification accuracy. However, the DTUD based on the current algorithm can only be 

used for datasets with independent design variables and a label without uncertainty. In 

addition, the capability of this technique to handle categorical features and uncertainty in 

the response should be further developed. 
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Chapter 8 A comprehensive case study of whole-vehicle crashworthiness design 

using the new methodology 

8.1 Introduction 

To demonstrate the new design methodology developed in this work, a comprehensive 

case study was conducted. Here, a typical passenger car, a 2010 Toyota Yaris, was taken 

as the vehicle model for subsequent crashworthiness design. As described in the previous 

chapters, the design process includes the following steps: The FE model for the vehicle is 

first cleaned, simplified and validated using existing test data. Then, the system-level 

design is developed for the vehicle using the DMM (i.e. a decision tree) to identify the 

key energy-absorbing components, their boundary conditions and their design sequence. 

The following detailed design is focused on these components. Their simulation datasets 

are mined with the second decision tree to identify the key design variables and establish 

the design rules for the components. These redesigned components are then integrated 

back into the vehicle model to replace the original parts. A new crash simulation is 

conducted on the updated vehicle model to verify the performance of the new design 

methodology.   

8.2 The basic vehicle model simplification and validation 

A 2010 Toyota Yaris model was used in this case study. It is available in the NHTSA 

database (https://www.nhtsa.gov/es/crash-simulation-vehicle-models). It was developed 

by the National Crash Analysis Center (NCAC) of George Washington University 

through reverse engineering. The whole-vehicle model includes 974,383 elements, as 

illustrated in Figure 8.1(a). The response of this model has been validated by NHTSA 

https://www.nhtsa.gov/es/crash-simulation-vehicle-models
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according to the NCAP full frontal impact conditions, as shown in Figure 8.2. More 

information related to this vehicle model is available on the NHTSA’s website and is not 

repeated here. 

 

(a) 

 

(b) 

Figure 8.1. The full and simplified FE models of the 2010 Toyota Yaris subject to an 

NCAP full frontal impact. 

Under the frontal impact, the rear end of the vehicle is less important, since most of the 

impact energy is absorbed by the frontal structures and the deformation of the rear end is 

minor. Therefore, the whole vehicle can be simplified by removing the rear elements. A 

mass point can be added to ensure the simplified vehicle remains at the same weight, as 
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shown in Figure 8.1(b). The number of elements was reduced from 974,383 to 427,068. 

In this way, the computational cost of the simulations was significantly reduced. The 

simplified model was then validated under the same condition using two test cases (Nos. 

05667 and 06221) available in NHTSA vehicle crash test database. Figure 8.2 shows the 

comparison of simulated accelerations by the simplified model and test data, together 

with the prediction of the original whole-vehicle model. Due to the elimination of rear 

seats, the mass point acceleration was taken as the substitute for the rear seat. The results 

show that the responses of the original and simplified are similar and can match the test 

data. Therefore, the response accuracy of the simplified model has been validated. 

 

 

Figure 8.2. Validation of the original and simplified vehicle models. 
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8.3 Design at the system and component levels 

Using the simplified vehicle model validated in Section 8.2, system-level and 

component-level crashworthiness designs were developed using the methods described in 

Chapters 3 through 7. The main steps are graphically shown in Figure 8.3. 

8.3.1 System level 

Based on the strategy in Chapter 3, prior to the design, one simulation was carried out to 

screen the key energy-absorbing components. The results show that four components 

absorb 85% of the energy. They are identified as P1: bumper (①), P2: front frame (② + 

③), P3: rail (④ + ⑤) and P4: floor support (⑥ + ⑦). The subsequent design was then 

focused on these four components. Following the method in Chapter 3, the average 

stiffness (avgstiff) of each component was used as the attribute at the system-level design. 

The adjustment of this parameter could be implemented by changing the metal sheet 

thickness. Their ranges were determined as 2.0  T1, T6, T7  3.0, 1.5  T2, T4, T5, T8  2.5 

and 1.0  T3  2.0, where Ti is the thickness of Pi (i = 1, 2, ···8). In this way, 150 design 

alternatives were generated by LHM and evaluated by the simplified model. The initial 

ranges for avgstiff values were as follows (unit: kN/m): 1,848.1  P1  10,243.7; 382.0  

P2  949.2; 178.6  P3  988.2; and 120.5  P4  296.1. The intrusion into the passenger 

compartment, the peak impact force (PkF) and the mass of four selected parts were 

selected as the design objectives. The labeling strategy for these parameters was 

determined as “good” or “g”: PkF < 800 kN, Intrusion < 220 mm and Mass < 27 kg; 

“intermediate” or “m”: PkF < 800 kN, Intrusion  260 mm and Mass  28 kg; and “poor” 

or “p”: other values. 
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Figure 8.3. Systematic framework to develop the vehicle crashworthiness design in the 

case study. 

Using the labeled dataset, a decision tree was trained as shown in Figure 8.4 containing 

13 non-leaf and 14 leaf nodes. Branch b4 was selected as the “g” representative because 

it had the highest accuracy on the classification of good (“g”) design cases. Using the 

rules for b4, three key components (P2, P3 and P4) were identified. Since P1 was not 

included in the decision tree, it is not shown in Figure 8.3. The ranges of avgstiff values 

for P2, P3 and P4 as well as the boundary conditions were determined. All of this 

information could be used in the next step for detailed component-level design. 
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Figure 8.4. System-level decision tree in the current case study, where avgstiff1 

represents the avgstiff of P1. 

8.3.2 Component level 

Based on the results of the system-level design, detailed designs for the aforementioned 

three components were performed. The parameterization of these components was 

achieved using node locations defined in several selected cross-sections, as shown in 

Figure 8.3. By changing the locations of the nodes, the geometry could be morphed to a 

new model correspondingly. For each component, 300 design alternatives were generated 

by LHM and simulated. Using the SEA and component mass as responses, the dataset 

was labeled and used to train a DTUD as introduced in Chapter 7 for each component. 

Design rules were generated for each component to help designers understand the 

component's design. 
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8.4 New design generation and whole-vehicle evaluation 

Using the decision-making rules derived for components, CPI and DDR were performed 

to identify the key design variables and their value ranges. Then, new designs were 

generated. 

8.4.1 New design generation and evaluation 

For each of the three identified critical components, 10 design alternatives were 

generated randomly within the reduced design subdomain. In this way, each of the three 

components could be regarded as a discrete design variable with 10 values. Therefore, 

there were 1,000 ( = 10 × 10 × 10) possible combinations in total. Twenty combinations 

were randomly generated from these 1,000 cases for further evaluation. These 20 

combinations can be regarded as 20 new designs. 

The 20 newly created designs were integrated back in to replace the corresponding parts 

in the whole-vehicle model to conduct the system-level simulations. The masses of four 

parts and passenger compartment intrusion were taken as the responses of interest. The 

mass and intrusion distributions of the 20 designs are shown in Figure 8.5, together with 

the results of the original design (mass = 25.3 kg and intrusion = 238.1 mm). The result 

shows that most of the designs produced by the new design method performed better in 

terms of both responses. The maximum mass saving is 13.4% (21.9 kg), and the 

maximum intrusion reduction is 25.9% (176.5 mm). This indicates the performance 

improvement from using the new design methodology. 
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Figure 8.5. Distribution of the mass and intrusion for all 20 new designs, together with 

the results for the original design. 

Likewise, the intrusion and mass of the 20 designs both exhibit a normal distribution. It 

can be determined that the probabilities that the new designs’ intrusion and mass have 

lower values than those of the original design are 94.3% and 85.7%, respectively. This 

again indicates the high performance of the new method. 

8.4.2 Dynamic response analysis 

An additional comparison was made on the acceleration–time history at the location of 

the mass point, as shown in Figure 8.6. A lower acceleration indicates better 

crashworthiness. The results show that the acceleration response of the original design 

and four randomly selected new designs exhibit a similar pattern. The peak acceleration 
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occurs between 0.04 s and 0.05 s. The magnitudes of peak acceleration in the new 

designs are reduced by 4.2% ~ 12.5% compared to the original design. 

 

 

Figure 8.6. Comparison of acceleration history and peak value in the original design and 

new designs (Nos. 5, 6, 14 and 17). 

In an additional comparison, the firewall deformation was examined. The firewall is a 

nearly 2D structure separating the engine and passenger compartment, and its intrusion or 

degree of deformation is another indicator of vehicle crashworthiness. The deformation 

contours of the four selected designs when t = 90 ms are shown in Figure 8.7, together 
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with the result for the original design. The comparison shows that the new designs can 

decrease the maximum deformation of the firewall by 20.3~35.6%. 

 

Figure 8.7. Comparison of the firewall deformation contours of the original design and 

four new designs at t = 90 ms. The maximum deformation magnitude is also shown 

together with the percentage decrease of maximum deformation compared to the original 

design. 
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8.5 Summary 

A comprehensive case study was conducted to demonstrate the performance of the new 

design methodology developed in this research. A 2010 Toyota Yaris was taken as an 

example for subsequent crashworthiness design. The validated whole-vehicle FE model 

taken from the NHTSA database was simplified to reduce the computational cost. Using 

the simplified car model, DOEs were generated and simulated to form a simulation 

dataset at system level. A decision tree was created to identify the key energy-absorbing 

components, determine their boundary conditions and derive the design rules. 

Using this information discovered at the system level, detailed designs were developed 

for the identified key components. Component-level decision trees were built for each 

component to identify the critical design variables, their ranges and the design rules.  

Based on the above information at the component level, new component designs were 

generated and these new components were integrated back into the simplified vehicle 

model to simulate a frontal impact test. The results showed the designs based on the new 

method could outperform the original design in terms of the mass, intrusion and peak 

acceleration. The maximum decreases of these responses were 13.4%, 12.5% and 35.6%, 

respectively. Therefore, the performance of the new design methodology has been 

confirmed. 
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Chapter 9 Conclusions and future work 

9.1 Conclusions 

This research develops a new data-driven, knowledge-based methodology to design a 

complex mechanical system, such as a crashworthy vehicle, effectively and efficiently. A 

comprehensive literature review indicates that the two commonly applied traditional 

design methods cannot be used to achieve this goal. The iteration-based method, which 

features a large number of trial-and-error iterations, is unable to deal with complex design 

problems due to its low efficiency and effectiveness. The population-based methods 

generate a group of designs for performance evaluation by means of either numerical 

simulations or surrogate models. Such methods automate the design process and achieve 

an optimal design by applying a wide range of optimization algorithms.  However, 

because they are unable to mine large datasets, they are unable to discover the implicit 

complex interrelationships of different components and design variables or to derive 

design rules for explaining a complex multilevel system. Knowledge-based design 

(KBD) approaches can be used to overcome the limitations associated with the 

aforementioned methods and to discover the desired relationships by exploring a large 

amount of design data. Such approaches can also be used to generate design rules to 

make appropriate decisions in a top-down design sequence without intensive human 

intervention. 

The new design methodology for vehicle crashworthiness was developed based on data 

mining theory. The method allows the exploration of large crash simulation datasets to 

discover the underlying complicated relationships between response and design variables 
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at multiple levels (main energy-absorbing system, components and geometric features) 

and derive design rules based on the whole-vehicle body safety requirements, which can 

then be used to make decisions about the component and subcomponent-level design. 

The decision tree is a decision support tool that uses a tree-like graph to model decisions 

and their possible consequences. It is well suited to representing categorical knowledge 

such as design performance classes. Based on the decision trees, the interrelationships 

among the design variables can be revealed, and the design rules leading to good design 

sets can be derived by following the corresponding branches on the tree.  

Based on the data mining method (DMM), two approaches were developed for the 

detailed component design, namely, a dimension-based method and a node-based 

method. A thin-walled vehicular structure, that is, an S-shaped beam, was designed using 

these two approaches to against crash loading. In the dimension-based approach, the 

component was represented by a number of geometric features, such as edge length, 

circle radius and sheet thickness. By adjusting the dimensions of these features, the 

design can be modified. Therefore, these geometric features with corresponding 

dimensions can be used as design variables. A large number of design alternatives were 

created, and simulations were conducted to evaluate their response as measured by 

specific energy absorption (SEA). The design variables and computed response formed a 

large design dataset. This dataset was then mined to build a decision tree. Based on the 

decision tree, the interrelationships among the design variables were revealed, and design 

rules were generated to produce good design sets. The accuracy of this design method 

was verified by using additional simulation data. After the data mining, the critical design 

parameters were identified and the design space could be reduced.  Through these two 
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steps, future designs for similar problems can be significantly simplified. However, the 

dimension-based approach can only be applied to components with a regular shape. For 

those structures with a highly irregular shape, the node-based method should be used, 

because it is able to model complex shapes. 

In the node-based approach, the geometry of the structure was initially parameterized by 

a large number of nonuniform rational basis spline (NURBS) control points. Principal 

component analysis (PCA) was then performed on this dataset, and the principal 

components (PCs) and principal component scores (PCSs) were calculated. The PCSs 

were adopted as the design variables in the subsequent design process to modify the 

geometry of the beam. Instead of directly handling a large number of NURBS points, one 

can modify the design by adjusting a small number of PCSs. A large number of design 

alternatives were generated in this way, and their geometries were recovered from the 

PCSs to the NURBS points and further converted into FE models to simulate their 

responses to a frontal impact. Two structural responses, SEA and CFE, were calculated 

and stored in the simulation dataset. Based on this dataset, the decision tree method was 

used to identify the interrelationships of design variables (i.e. PCSs) and their effects on 

the response. Design rules, that is, the workflows to determine the values of the design 

variables, were also derived. The results demonstrate that this new node-based approach 

powered by a PCA technique can be used to efficiently design a complex structure with 

an irregular shape.  

To reduce the high cost of a large number of numerical modelings and simulations, 

efforts were made to select a proper surrogate model to supplement or partially replace 

the simulations. In this research, four learning algorithms (MLAs) for regression that 



123 
 

could be used to develop surrogate models were selected and compared: Gaussian 

process regression (GPR), support vector machines (SVMs), random forest regression 

(RFR) and artificial neural networks (ANNs). Four typical structural analysis problems 

were used to evaluate their performance. Using a multi-objective hyperparameter 

optimization strategy, the hyperparameters of these four MLAs were also optimized. The 

results show that GPR and ANN outperform the other two in terms of prediction accuracy 

and computational cost. GPR was used in the subsequent uncertainty analysis. The 

findings also show that the multi-objective hyperparameter optimization algorithm could 

tune the hyperparameters effectively and efficiently and reach a highly accurate surrogate 

model within a limited number of evaluations. 

To account for the unavoidable uncertainty in engineering design, a decision tree for 

uncertain data (DTUD) algorithm was developed for the data with a given distribution. Its 

accuracy was proved using nine datasets from a public UCI repository. To demonstrate 

the DTUD’s capability in engineering design, the S-shaped beam model described in the 

previous chapters was again employed as an example. The design dataset for this 

component was generated using a GPR surrogate model, and a DTUD with six layers was 

built using this dataset. Its structure and accuracy were analyzed by examining its label 

probability (LP) prediction ability. The results show that a branch with a high LP has a 

high probability of producing designs that achieve the expected performance. When 

considering uncertainty, the performance of a design rule may be degraded. This trend 

can be captured by the DTUD. 

A comprehensive case study was conducted to design a vehicle system against a frontal 

crash to evaluate all of the new approaches developed in this work. A 2010 Toyota Yaris 
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was used as an example. The validated FE model was simplified to reduce computational 

cost. Using this simplified model, design alternatives were generated and simulated to 

form a simulation dataset at the system level. A decision tree was created to identify the 

key energy-absorbing components, determine their boundary conditions and derive 

design rules. Using this information discovered at the system level, detailed designs were 

developed for the identified key components. Component-level decision trees were built 

for each of these components to identify the critical design variables, their ranges and 

design rules. Based on the knowledge gained at the component level, new component 

designs were generated, and these new components were integrated back into the 

simplified vehicle model to simulate a frontal impact test. The results show that the 

designs based on the new method outperform the original design in terms of the mass, 

intrusion and peak acceleration. The maximum decreases of these responses were 13.4%, 

12.5% and 35.6%, respectively. Therefore, the performance of the new design 

methodology has been confirmed. 

9.2 Future work 

Based on the results of the present research, the following future studies are suggested: 

1) In the generation of decision trees, only one basic algorithm, C4.5, was used. The 

design results in the present study have proven its high performance. However, no 

comparison was made between this algorithm and the others available in the 

literature. Future work will include a comprehensive comparison of accuracy, 

robustness and computational cost. 
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2) Quality (e.g. degree of scattering) of the design space for DOEs and the size of 

datasets could influence the generated decision tree, and this issue will be 

considered in the future. 

3) A high level of accuracy in a decision tree increases model complexity, which 

induces difficulties in generating clear decision-making rules. The trade-off 

between model accuracy and rule-generation will be studied. 

4) Four surrogate models were discussed in this study, as they are commonly used in 

structural engineering. However, there are several others that can also potentially 

be used to design a complex system. These algorithms will be examined in detail 

as applied to mechanical system design. 

5) In the present study, a DTUD offers an effective tool to deal with an uncertain 

dataset with good classification accuracy. A DTUD based on the current 

algorithm, however, is only suited to datasets with independent design variables. 

In addition, the capability of this technique to handle categorical features and 

uncertainty in the response is limited. These limitations will be considered in 

future work. 

6) The data-driven method developed in this study has been applied to improve 

current vehicle safety design. An effort will be made to extend it as a general 

approach and apply it to the design of other complex mechanical systems as well, 

such as multi-physics vehicle battery systems and multi-scale material design. 
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Appendix A 

Introduction of four regression machine learning algorithms 

In this appendix, four MLAs, i.e. the GPR, SVM, RFR, and ANN, are briefly introduced 

in the context of engineering design. The design variables are presented as R
n

x  (real 

value space with n dimensions), and the responses are noted as R
m

y . The surrogate 

modeling aims to establish a prediction function between design variables and responses. 

A.1 Gaussian Process Regression (GPR) 

GPR is a non-parametric regression through Gaussian processes (GP), which is similar 

with the Kriging model with relative low training cost. It takes the function as a sample in 

GP and can be presented in the following form 

( )f  y x                                                                                                  (A-1) 

where,   is a random noisy variable with standard normal distribution. The prior 

distribution of ( )f x  is assumed to be a zero-mean Gaussian distribution (in Eq. A-2) to 

simplify the modeling since the mean value can be fitted easily. Hence, GPR only models 

the residual errors by 

'( ) (0, ( , ))f kx x x∼                                                                                 (A-2) 

where ( , )k '
x x  denotes covariance function. The training set is T  = (X, Y), so any set of 

new or test dataset input *
X  have joint multivariate Gaussian distribution with the 

training dataset in the form 

*

* *

* * *

( , ) ( , )
( ), ( ) , ( , )

( , ) ( , )

 
         

 
0

K X X K X X
f X f X X X N

K X X K X X
                      (A-3) 
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By computing the conditional distribution, the prediction result *( )f X is also a Gaussian 

distribution: 

* * * *( ) ( ), , ( , )    f X f X X X N                                                  (A-4) 

where, 

* * 1( , ) ( , )  YK X X K X X                                                            (A-5) 

* * * * 1 *( , ) ( , ) ( , ) ( , )
  K X X K X X K X X K X X                           (A-6) 

Covariance functions K are also called kernel functions, e.g. the linear, polynomial, 

exponential, Gaussian, Laplacian kernels, etc. Even the kernel parameters can be 

estimated by training, they can also be taken as hyperparameters for tuning a better model 

performance. Therefore, its tunable hyperparameters include the selection of kernel 

functions and corresponding different kernel parameters. 

A.2 Support Vector Machine (SVM) 

Different from the GP-based GPR, the SVM seeks to fit the structural response linearly 

with respect to the design variables although it also a kernel-based method. However, a 

complex structure often exhibits highly nonlinear responses and therefore, it can not be 

fitted linearly. In SVM, by mapping input features (independent variables) into a new 

higher h dimensional space, it can realize a linear regression in this new space with the 

scheme shown in Figure A-1. All data points can be fitted linearly by ( )f x  by 

( ) = ( ) +Tf bx x                                                                             (A-7) 

where ( ) x  is the mapping function: ( ) Rh

i i x x , ix  is the input features of an 

observation.  
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Figure A-1 Mechanism of design space mapping in the SVM: the original data on the left 

was mapped to a space with higher dimensions on the right 

The training objective of SVM can be summarized as Eq. A-8. The model complexity is 

controlled by the first term, i.e. 
1

2

T  . As presented in Figure A-1, the Vapnik’s  - 

intensive cost function penalizes the data points outside  -bands, which defines the 

penalization proportional to the distance from a specific  -bounds. This is represented by 

the second term in Eq. A-8 under the constraints defined by Eq. A-9. 

*

1

1
( )

2 


NT

i
min      + C                                                          (A-8) 

subject to: 

*

*

( ( ) )

( ( ) )

, 0

T

i i i

T

i i i

i i

y k b

k b y

 

 

 

    


   
 

x

x



                                                             (A-9) 

where C represents the weight of error penalization, which defines the trade-off between 

the model complexity and error term. i  and 
*

i  are two slack variables to deal with the 

points out of the   bounds introduced by Vapnik et al. (Vapnik, 2013), which takes these 

points out of the   bounds back to constraints. The Lagrange method is used by 
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introducing the constraints into the objective through Lagrange multiplier   and 
*  and 

solving a dual problem through the quadratic programming procedure with the solution in 

Eq. A-10. 

*

1
( ) ( ) ( ), ( )

n

i i ii
f x b   


   x x                                             (A-10) 

where the dot product of ( )i x  and ( ) x , ( , ) ( ), ( )i iK x x   x x  is the kernel function 

in GPR, so the kernel function selection and the kernel-related parameters are also tuned 

as hyperparameters. Meanwhile, the C and   are two important hyperparameters also for 

SVM, which is also a specific feature different from other kernel-based methods. 

A.3 Random Forest Regression (RFR) 

RFR is a non-parametric method to train an ensemble of regression decision trees and 

uses the mean of all trees output as the output in Eq. A-11. Different from other method, 

it can take the categorical variable directly. Each decision tree is trained by using the 

error reduction method as the splitting criterion.  

RN

1
R

1
( ) ( )

N
dd

f D


 x x                                                                  (A-11) 

where RN  is the pre-defined number of decision trees; ( )dD x is the output of the dth 

decision tree. 

The bagging technique is used to train an RFR model, which samples training data into 

some subsets randomly with replacement before training. Each subset is used to train a 

single decision tree. This could increase the diversity of decision trees and then, improve 

its robustness and reduces the generalization error. Meanwhile, each decision trees is 
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grown without pruning, which increases its diversity and soften the boundaries of 

decision tree node splitting. This could also reduce the prediction variance and then 

further improve the robustness. For RFR, the structure related parameters, e.g. the 

number of decision trees, maximum number of terminal nodes et al were tuned. 

A.4 Artificial Neural Network (ANN) 

ANN is inspired by the bio-nervous system. Generally, one input layer, multi-hidden 

layers, and one output layer are fully connected by their neurons. For a single hidden 

layer ANN as shown in Figure A-2(a), the sum of weighted (wij) design variables (xi) is 

taken as the input of jth hidden neuron and the activation function’s result is its output in 

Eq. A-12, where bj is a bias. After training, the weights and biases can be learned from 

the dataset and the trained model can predict new designs’ responses. 

1

( )
n

j ij i j

i

u f w x b


                                                                        (A-12) 

where, ix (i = 1, 2, , n) is a design variable; n is the number of design variables; f()  is 

the activation function. Some activation functions can be used, for example, tanh, 

sigmoid, relu, softrelu, etc. (Figure A-2b). The model output is expressed in Eq. A-13 

without activation function. 

1

hn

o jo j

j

f w u


                                                                                 (A-13) 

where, hn  is the number of hidden neurons. An activation function can also be used in the 

output neuron similar to the definition in Eq. A-12. 
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(a)                                                                         (b) 

Figure A-2 (a) General structure of ANN and (b) four activation functions for ANN 

hidden neurons 

The training is to seek the optimum by using the gradient descent method to find a local 

minimum of a pre-defined loss function, e.g. the root mean square error. Some 

optimizers, e.g. sgd, adagrad, adadellta, adam, etc., can be used to control the optimum 

searching process. The optimizers and related parameters, activation functions, hidden 

layers, number of neurons in each hidden layers, etc. are tunable hyperparameters to 

improve the model accuracy and robustness. 
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Appendix B 

DTUD verification by the datasets from UCI repository 

From the UCI machine learning repository, nine datasets with real number input features 

are selected with the basic information summarized in Table B.1. For applying these 

datasets in the DTUD, their corresponding uncertain datasets were formed by following 

the same procedure in Chapter 7 with R = 10%. In this way, nine corresponding uncertain 

datasets are generated with interval input features. The Gaussian distribution with 3-

sigma rule is also used to represent the probability on intervals. For each interval, 10 

splitting points were distributed evenly. For each dataset, 80% observations were used in 

training and the remained data will be used in the validation process. To demonstrate the 

DTUD performance, the traditional decision tree (DTDD) is also adopted and trained by 

the corresponding deterministic dataset of these uncertain dataset for comparison. 

The validation results are presented in Table B.2. Meanwhile, the validation ACCs of 

DTUD and DTDD are compared. In Table B.2, DTUD presents higher ACC than DTDD 

in seven of nine datasets, which suggest the superior performance of the DTUD by 

considering the uncertainty in the original dataset. 
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Table B.1  

Basic information of nine datasets from the UCI repository 

Names 
No. of 

tuples 

No. of input 

features 

No. of 

labels 
Years References 

BA 1372 4 2 2013 (Lohweg et al., 2013) 

Ecoli 336 7 6 1996 (Horton and Nakai, 1996) 

Glass 214 9 6 1987 (Evett and Spiehler, 1987) 

Iris 150 4 3 1988 (Fisher, 1936) 

Parkinsons 195 22 2 2008 (Little et al., 2007) 

BT 784 4 2 2008 (Yeh et al., 2009) 

Seeds 210 7 3 2012 (Charytanowicz et al., 2010) 

VC 2D 310 6 2 2011 (Rocha Neto and Alencar Barreto, 2009) 

VC 3D 310 6 3 2011 (Berthonnaud et al., 2005) 

Note: VC: Vertebral Column; BA: Banknote Authentication; BT: Blood Transfusion 

Table B.2  

Comparison of ACC between DTUD and DTDD on nine datasets 

Datasets DTUD Validation DTDD Validation 

BA 0.98 0.96 

Ecoli 0.84 0.80 

Glass 0.84 0.65 

Iris 1.00 0.94 

Parkinsons 0.87 0.82 

BT 0.73 0.76 

Seeds 0.93 0.89 

VC 2D 0.74 0.82 

VC 3D 0.85 0.82 
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