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Abstract

A full-scale crash test is conventionally used for vehicle crashworthiness analysis.
However, this approach is expensive and time-consuming. Vehicle crash recon-
structions using different numerical modelling approaches can predict vehicle be-
havior and reduce the need for multiple full-scale crash tests, thus research on the
crash reconstruction has received a great attention in the last few decades. Among
modelling approaches, lumped parameters models (LPM) and finite element mod-
els (FEM) are commonly used in the vehicle crash reconstruction. This thesis fo-
cuses on developing and improving the LPM for vehicle frontal crash analysis. The
study aims at reconstructing crash scenarios for vehicle-to-barrier (VTB), vehicle-
occupant (V-Occ), and vehicle-to-vehicle (VTV), respectively.

In this study, a single mass-spring-damper (MSD) is used to simulate a vehicle
to-barrier or a wall. A double MSD is used to model the response of the chassis
and passenger compartment in a frontal crash, a vehicle-occupant, and a vehicle-to-
vehicle, respectively. A curve fitting, state-space, and genetic algorithm are used to
estimate parameters of the model for reconstructing the vehicle crash kinematics.
Further, the piecewise LPM is developed to mimic the crash characteristics for VTB,
VO, and VTV crash scenarios, and its predictive capability is compared with the
explicit FEM. Within the framework, the advantages of the proposed methods are
explained in detail, and suggested solutions are presented to address the limitations
in the study.

xvii
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Chapter 1

Introduction

1.1 Background

Car accidents contribute significantly to the rate of mortality in the modern world.
To reduce this rate, vehicle manufacturers usually perform crash tests on a sample of
vehicles to analyse the impact of the crashes, and make sure that the final products
meet the requirements of safety standards. For this reason, vehicle crashworthiness
analysis is a significant problem to be addressed.

Traditionally, vehicle crash analysis relies on physical crash tests, which are
subdivided into (1) component crash test (CCT) and (2) full-scale crash test (FSCT).
The former is usually carried out on an isolated component subjected to dynamic or
static loading, while the latter is a collision of a guided vehicle, being accelerated
into a barrier or another vehicle at a predetermined initial velocity. To assess the
vehicle crashworthiness, there exist crash test programs responsible for setting up
the standard test procedures to be followed. Among others, there are the New Car
Assessment Program (NCAP), a department of the National Highway Traffic Safety
and Administration (NHTSA) [1], and the Insurance Institute for Highway Safety
(IIHS) [2]. According to the NHTSA, the main objective of the crash test is to
assess how a vehicle would protect the occupant during a crash event [3]. Car
producers incorporate safety devices into the design of their vehicles for assessing
the crashworthiness performance.

Although FSCT is a useful technique to assess crashworthiness, it is costly be-
cause it requires expensive infrastructure and highly qualified personnel to conduct
such a test. Analytical or numerical approaches are utilized to assess the vehicle
crashworthiness before FSCT. The earliest method used for crashworthiness assess-
ment is the lumped parameter model (LPM) but nowadays, because of rapid devel-
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opment in computer-aided software, the LPM is out-performed by the explicit finite
element model (FEM).

The frontal structure of the vehicle plays an important role in vehicle crashwor-
thiness because it is the most affected part during a frontal crash event. The frontal
structures of modern vehicles are generally designed with deformable zones, which
can absorb the kinetic energy during a crash. The structural cage surrounding the
occupant should be robust enough so that it does not crumple around the occupant.
During a collision, the occupant is subjected to inertia forces that can result in a
severe injury. When a vehicle crashes against a rigid barrier or another vehicle,
reaction forces causing the vehicle to stop suddenly are generated. A crashwor-
thy vehicle structure should be able to absorb the kinetic energy from a sudden
crash event. The frontal structure of a lightweight vehicle is mainly composed of:
bumper, crash boxes, longitudinal beams, sub-frames, and upper rails. These parts
should be deformed plastically during a crash scenario and withstand the impact
forces as indicated by arrows on the three load paths in Figure 1.1. In most frontal
crashes, the crash boxes absorb more than 50 % of the total energy [4]. The pas-
senger compartment, framed by A-pillar and B-pillar, roof, firewall, sill beams, and
floor panel, should be rigidly assembled. When designing a vehicle for crashwor-
thiness, the firewall should be strong enough so that it can prevent any intrusion
into the passenger compartment. Hence, the firewall ensures enough survival space
for the occupant. Nowadays, the physical structures of vehicles are manufactured
mainly of steel panels of different tensile strengths, being connected using various
fastening techniques [5]. For example, A and B-pillars are made from high to ultra-
high-strength steel alloys with a yield strength from 800 to 1000 MPa [6–8] while
the crash boxes are made from low to medium strength materials that can easily ab-
sorb the kinetic energy [9]. Based on the capabilities of the crash box to absorb the
kinetic energy, a vehicle can be modeled as a mass-spring-damper system, because
spring and damper are energy absorbing elements.
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Figure 1.1: Modern vehicle structure with load paths [4].

1.2 Research Motivation

With the advancement in computer simulation software, all car manufacturers today
incorporate the explicit finite element model (FEM) into the car design process. The
FEM became the most common technique for crash simulation and crashworthiness
analysis.

However, the finite element models (FEM) are a double-edged sword. On one
hand, these models can provide detailed information about vehicle behavior during
the crash event. On the other hand, the price of this detailed information is the over-
all complexity of the model. This complexity leads to long computational time and,
more importantly, a high amount of man-hours put into assembling and debugging
a model for vehicle crash simulation. The former is easily handled by the availabil-
ity of powerful computers, while the latter severely limits the possibility of using
the finite element models for vehicle crash reconstruction and crashworthiness re-
search. The amount of man-hours required to assemble a finite element model of
a vehicle is often beyond a single researcher’s capacity. This is reserved for large
research and development centers. Simple mathematical models for vehicle crash
reconstruction are less informative than FEM, but they still might be able to provide
relevant information about the vehicle crashworthiness. Therefore, it is important to
investigate various techniques used for vehicle crash reconstruction to gain deeper
knowledge of the applicability of each technique. The motivations of this thesis are
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summarized in the following research questions:

• Can a double mass-spring-damper system mimic the responses of the chassis
and passenger compartment in a vehicle frontal crash? If yes, is it possible to
estimate the responses of the chassis and passenger compartment from only
one acceleration measurement? The capabilities of curve-fitting (CF), eigen-
system realization (ERA), and the state space (SS) approaches for estimating
the parameters of the proposed model are investigated to address the above
questions.

• When it comes to vehicle-occupant crash analysis, full-scale crash would be
quite expensive because of the extra cost of dummies. Therefore, to reduce
the overall cost, FEM or LPM may be used to simulate the vehicle–occupant
frontal crash and validate the model results with the actual crash test. Does
an LPM have the capabilities to simulate a vehicle-occupant during a frontal
crash scenario? This challenge can be investigated with the help of a double-
mass-spring-damper system.

• When a full-scale crash test is conducted for a vehicle-to-vehicle crash con-
figuration, the cost will be doubled because of two vehicles being involved in
the crash event. Which efficient and accurate approach could cut down the
cost and mimic a vehicle-to-vehicle crash without performing a FSCT? An
LPM is investigated for addressing this research question.

• It is well known that FEM has the predictive capability to analyse vehicle
crash but it has its significant draw backs. Can LPM predict the crashworthi-
ness parameters in a similar manner as the well established FEM? This can
be confirmed by comparing the two approaches.

• Which optimization algorithm could estimate the physical structure charac-
teristics of a vehicle during a frontal crash? This could help car designer to
use simple models in the earlier design phase without relying only on the
complicated and expensive approaches.

1.3 State of the Art

In vehicle crash analysis, as it is for other dynamical systems, parameters estimation
is the most challenging step. In many cases, laws of physics are used to obtain a
model of the system. However, in some situations, including crash events, laws
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of physics cannot provide sufficient insight into the specific behavior of a physical
system. Hence, the model has to be tuned using information from experimental
data. This leads to a research area referred to as system identification [10]. Figure
1.2 shows a typical flowchart of a system identification procedure.

 

Prior 

knowledge 

 

Data acquisition 

Model validation 

No 

 Yes 

 Propose a model structure 

 Parameters estimation 

Validation 

data set 

End 

Does the model meet 

the validation criteria? 

Start 

Figure 1.2: System identification flowchart. [11]

In general, the system identification can be subdivided into the theoretical and
experimental modelling.
Theoretical modelling: The physical knowledge about the system, is employed to
obtain a model consisting of differential or algebraic equations among physical pa-
rameters. When a model is identified based purely on physical knowledge of the
system, the approach is termed as white box identification [11]. FEM and LPM
belong to this type of system identification.
Experimental modelling: Measurements of several variables of a dynamical sys-
tem are taken and a model is constructed by identifying a model that matches the
measured variables. The situation that a model is identified from experimental data,
and without taking particular account of the physical parameters of the system, is
referred to as black box system identification [11]. Data-based models, Artificial
Neural Networks and Fuzzy logic are typical examples of this category of system
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identification.

System identification algorithms (SIA) have been developed for different ap-
plications. Examples of SIA include: State-space identification, eigensystem re-
alization algorithm (ERA) and data-based regressive model approaches. Typical
examples of using SIA can be found in literature [12–15].

Gandhi and Hu in [16], made a significant contribution to the data-based ap-
proach in modelling vehicle crash. In their work, the authors reconstructed the
vehicle crash by developing analytical model directly from crash test measurement
using system identification approach. The analytical model was in two parts: (1) a
differential equation consisting of a mass, a spring and a damper, and (2) the trans-
fer function consisting of the autoregressive moving average (ARMA) structure.
In [17–21], much work was conducted for reconstructing the vehicle crash using
the data-based modelling techniques with linear parameters, varying autoregressive
moving average with exogeneous input (ARMAX), and ARMA structures.

1.3.1 Vehicle crash modelling by a double LPM using curve-
fitting and state space approaches

 k 

k 

k 

c 

c 

c 

1 

1 

1 

1 

2 

2 

2 

2 

(a) (b) 

(c) 
(d) 

Figure 1.3: Schematic representation of energy absorbing elements (a) Spring, (b) Damper,
(c) Kelvin, and (d) Maxwell elements [22].

Constructing mathematical models of dynamical systems based on measured
input-output data is very challenging in an accident reconstruction. In case of a
vehicle crash, a system identification algorithm using lumped parameter models
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(LPM) or mass-spring-damper systems, consists of retrieving the unknown param-
eters such as the spring stiffness and damping coefficient. A possible approach is to
identify these parameters directly from experimental dynamical data.

LPM have been utilized in crashworthiness analysis since the early 1970s. These
models are extensively used in the field of vehicle crashworthiness due to the ad-
vantage of reducing computational burdens of FEM. Figure 1.3 shows the symbolic
representations for the energy absorbing elements commonly used to represent an
LPM [22].

Pawlus et al. [23–25] developed several mathematical models based on the
mass-spring-damper system. In [23], the authors developed a mathematical model
of a vehicle crash based on elastoplastic unloading scenarios of spring-mass mod-
els. In [24], the authors used a double mass-spring-damper system to simulate a
vehicle into a barrier, while in [25], the authors proposed a model being suitable for
localized collisions simulation.

Another method most used for extracting model parameters is the eigensystem
realization algorithm (ERA). It is a system identification approach used mostly in
civil engineering, particularly in structural health monitoring (Junfeng et al. [26], Li
et al. [27], Angelis et al. [28] to name a few). This technique consists of generating
a system realization using the time domain response (multi input-output data). The
theory of ERA can be found in Juang et al. [29–31]. Juang and Pappa [31] devel-
oped an ERA to extract the natural frequencies and damping ratios of a dynamical
system. Yang and Yeh [32] determined the model parameters of vibrating structures
from experimental data. The authors used the ERA to identify the system matrices
of the structure from displacement and excitation forces. Guida et al [33] used a
state space system identification approach to identify the parameters of a two de-
grees of freedom mechanical system. The identification process was based on the
ERA to extract the model’s parameters where the algorithm was tested on a light-
damped mechanical linear apparatus. Brownjohn in [34] used an ERA to study the
performance of a building under wind and seismic loads. The application of ERA
for vehicle crashworthiness analysis is missing from the current state of the art. In
this framework, it is thus useful to apply this concept to vehicle crash analysis.

Another time-domain based method used for system identification is the state
space (SS) approach, which has been used in different fields. Minh Quach et al.
in [35] used the SS approach in modelling a biological network. Ali Emadi in [36]
used a SS approach for modelling and analyzing multi-converter DC power elec-
tronic systems. Marzbanrad and Pahlavani in [37, 38] used a system identification
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algorithm to identify the parameters of a vehicle lumped parameter model in frontal
crash analysis.The authors developed the state space model from the dynamic equa-
tion of a five degrees of freedom system for a vehicle frontal crash.

The computational burden in the eigensystem realization and curve-fitting (CF)
techniques for vehicle crash is challenging, requiring a better approach. Since it
was found that the SS approach was effective in many fields, it can be utilized to
reduce the burden of the ERA and CF in vehicle crash reconstruction.

1.3.2 Mathematical model for vehicle-occupant frontal crash

In modern society, traffic road accidents are one of the leading causes of mortality
or disability. To address this issue, vehicle manufacturers have tried to incorporate
a wide range of safety devices and features into their vehicles. The common safety
devices include airbags, energy-absorbing steering columns, side door beams, etc.
To evaluate the effectiveness of these protective devices would require investigating
the dynamic response of the human body in a traffic accident scenario, which is
hard to analyse.

Finite element model (FEM) is the most used approach to model the effect of
vehicle-occupant during a crash scenario because of the advancements in computer-
aided software. Dummies are used in FEM of vehicle-occupant in a crash event to
mimic the occupant behavior [39]. Yehia A, and Abdel-Nasser [40] used a FEM
developed with ABAQUS model to simulate a vehicle frontal crash against light-
ing columns. FEM required detailed dimensions and proper material parameters
as a general description of the model design, starting from meshing up to model
validation.

Different methods have been attempted to simulate a vehicle-occupant in crash
events without using the finite element analysis. Tso et al. [41] analysed the dy-
namic response of vehicle-occupant in frontal crash using a multi-body dynamics
method. The authors assessed the injuries sustained to the occupant’s head, chest
and pelvic regions, respectively. Sousa et al. [42] and Carvalho [43], proposed opti-
mization procedures to assist multi-body vehicle model development. The authors
devised the topological structure of the multi-body system representing the structure
of a vehicle and described the most relevant mechanisms of deformation. Alnaqi et
al. [44], proposed an approach for controlling the seat belt restraint system force
during a frontal crash to reduce thoracic injury. Application of lumped parameters
models to simulate vehicle-occupant frontal crashes is limited and hard to find in
literature.

10



Introduction

1.3.3 Optimization of vehicle frontal crash model based on mea-
sured data

In the last few decades, much effort has been made in the area of vehicle crash
reconstruction. Jonsén et al. [45] identified an LPM based on results from crash tests
of a Volvo S40. In [46], the authors developed a simple LPM for reconstructing the
kinematics behaviour in vehicle-to-vehicle crash. Elmarakbi in [47] used a mass-
spring-damper system to investigate and to enhance crashworthiness of vehicle-to-
vehicle full and offset frontal collisions.

Some drawbacks of LPMs have been reported in literature. In [48], it was con-
cluded that LPMs were only valid for data used for their creation. Hesham in [49]
highlighted that LPMs require prior knowledge of the spring characteristics of the
system. It is observed from the current state-of-the-art that many published papers
could reconstruct the kinematics of the car crash, but the nonlinear behavior of the
deformed vehicles involved in vehicle-to-vehicle crash scenarios was not well taken
into consideration. The problem of reconstruction of a piecewise linear model for a
vehicle-to-vehicle frontal crash scenario based on the genetic algorithm, has not yet
been completely considered in literature.

The pioneer in developing the LPM for vehicle crash analysis is Kamal, who
first simulated a frontal car crash at velocities ranging from 0 to 48 km/h [50]. After
the Kamal’s initiative, many others intensively contributed to the development of
LPMs for vehicle crash reconstructions. Huang [22] developed a good number
of vehicle crash models based on the LPM, which became an inspired source to
many researchers. Pawlus et al. in [24, 48] used the theory from Huang to develop
several models based on one mass-spring-damper system. Klausen et al. in [51,52]
introduced a nature-inspired approach (a firefly optimization technique) to optimize
the parameters of a single LPM for reconstructing a vehicle crash test. Ofochebe
et al.in [53] expanded the Kamal’s model to a five degrees of freedom system to
study the performance of a frontal vehicle’s structure subjected to a full-frontal
crash. Ofochebe et al. [54], presented the absorbable energy monitoring scheme
(AEMS) by suggesting a new design protocol that attempted to overcome problems
associated with the high-order numerical computational models such as the dynamic
finite element model. The authors used a two degrees of freedom lumped-mass-
spring (LMS) model for evaluating the vehicle structure crashworthiness.

The common challenge for LPM in a vehicle crash reconstruction is to find an
accurate method to extract the unknown model parameters from acceleration mea-
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surements. Vehicle crash is a complex phenomenon, which is difficult to describe
using traditional mathematical models. A SISAME (Structural Impact Simulation
And Model Extraction) software developed by NHTSA is dedicated mainly to ex-
tract optimal lumped-parameter structural impact models from actual or simulated
vehicle crash event data. Typical examples, where SISAME was applied, include
the work of Lim [55] and Mentzer et al. [56, 57]. However, difficulties of using
SISAME software have limited its application as reported in [58]. FEM is informa-
tive, being known as the most used technique for vehicle crash reconstruction. Many
researchers have developed the FEM for simulating the crash event and came up
with outstanding results. Top records in the development of explicit finite element
codes are credited to John Hallquist’s work at Lawrence Livermore laboratories
when he released the DYNA code in 1976 as reported by Belytschko in [59] and also
in the LS-DYNA Keyword user manual [60]. LS-DYNA succeeded in simulating
vehicle large deformation for the first time in 1986 and the commercial version was
distributed in 1989 for vehicle crashworthiness. Other explicit nonlinear finite ele-
ment softwares such as RADIOS, HYPER-CRASH, ABAQUS, PAM-CRASH [61],
are also reported to perform crash simulation and reconstruct the crash event effec-
tively. An overview of the theoretical background for explicit finite element for-
mulation and an associated code for crash analysis can be found in the manual of
particular simulation programs such as LS-DYNA in [62]. The FEM procedures can
be found in many textbooks such as Finite Element Procedure, by K.J. Bath [63]
and An Introduction to the Finite Element Method, by J.N.Reddy [64], to name a
few. Explicit FEM has been frequently used to calibrate the LPM for simulating ve-
hicle crash effectively. Deb and Srinivas in [65], Ofochebe et al. in [66], Tanlak et
al. in [67] applied FEM to simulate crash events. Although FEM outperformed the
LPM in many applications, it has significant drawbacks. An explicit finite element
model of a vehicle may be complex and hence needs lots of crash simulation cycles,
increasing the computation time and cost. The cost and time of finite element model
are increased by the extensive representation of the major mechanisms in the crash
event. This approach requires powerful computational tools for producing accurate
results. Additionally, selecting proper material properties of the colliding vehicle
and its surrounding is the biggest challenge of this approach [18, 68]. Evidence
from literature showed that the two methods used for vehicle crash reconstruction
have their merits and limitations. Although outstanding results for reconstructing
the crash using LPMs can be found in literature [24,45,48,51–53,69], their predic-
tive capabilities have not yet fully exploited. A comparison between the predictive
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capability of LPM against the well established FEM would give a better evaluation
on the mentioned approaches in the field vehicle crashworthiness.

1.4 Contributions

This thesis presents simplified and accurate lumped parameters models which re-
construct vehicle crash scenarios. The vehicle crash configurations investigated are:
vehicle to barrier, vehicle-occupant and vehicle-to-vehicle crashes. The parameters
of the model are optimized using the genetic algorithm. Further, the predictive ca-
pability of the lumped parameters model (LPM) to reconstruct crash kinematics for
a vehicle-to-rigid wall, is compared with that of the FEM. For all configurations, the
computation time taken to reconstruct the crash with the LPM was short as com-
pared to that of a FEM. Much efforts have been made to verify if simple LPMs
could reconstruct the crash event. It was proved that with the application of ap-
propriate algorithm, it was possible to predict the spring and damper characteristic
of the model from the acceleration measurement. Different approaches for vehicle
crash reconstruction were investigated. The main contributions of this thesis can be
summarized as follows:

• A double spring-mass-damper system was developed to model the real vehi-
cle frontal crash scenario. It was found that a nonlinear least-square curve
fitting approach could quickly determine the structural parameters, namely
natural frequencies, damping factors, spring stiffness, and damping coeffi-
cients of a vehicle from only one acceleration measurement.

• An eigensystem realization algorithm (ERA) was proposed to formulate the
state space (SS) matrices of the double mass-spring-damper model from only
one acceleration measurement. From the formulated SS, the natural frequen-
cies and damping ratios of the system were extracted.

• A state space (SS) system identification procedure based on the time-domain
analysis of input and output signals was presented to model a vehicle frontal
crash. It was found that the ratio of the two-mass system influenced the re-
sponses (displacement-time histories) of the chassis and passenger compart-
ment, respectively. Further, the estimated dynamic crush was closer to the
real crash when the mass of the front mass is 2/3 of the total mass of the ve-
hicle. The SS approach could give a better estimation of the dynamic crush

13



Introduction

than the curve-fitting approach. The poles of the system have a significant
influence on the response of the chassis and passenger compartment.

• A lumped parameter model for reconstructing the kinematic time-histories
of both vehicle and occupant was developed in this work. The developed
double-mass-spring-damper system could reconstruct the response of both the
vehicle and the occupant with high accuracy. Within the framework, linear
and nonlinear springs and dampers were combined to develop the studied
model, and a genetic algorithm was proposed to accurately estimate the model
parameters, namely spring and damping coefficients.

• A mathematical model was proposed to predict the behavior of the vehicle
frontal structures during a vehicle-to-vehicle crash, and a piecewise linear
LPM was found to be able to estimate both vehicles’ frontal structures. The
genetic algorithm is proved to be an accurate optimization approach for ex-
tracting the model parameters. The proposed algorithm could assist car de-
signers or vehicle manufacturers in reducing the cost of multiple full-scale
crash tests.

• This work presents a simple piecewise LPM for vehicle crashworthiness ana-
lysis. It was found that the piecewise LPM could greatly assist the modelling
of a vehicle crash with a less computational burden as compared to the well
established FEM. The parameters of the presented piecewise LPM were ac-
curately estimated by genetic algorithm, allowing predicting the crashworthi-
ness parameters (dynamic crush and acceleration severity index) effectively at
different impact velocities. Hence, this approach was proposed for avoiding
multiple crash tests. It was found that a good agreement between the devel-
oped model and FEM in terms of vehicle crash reconstruction confirms that
the LPM was valid even outside the calibration point.
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1.5 Thesis outline

This thesis is composed of two parts. Part I comprises four chapters organised as
follows: Chapter 1 is a general introduction comprising the motivations of the re-
search, state-of-the-art, and scientific contributions. Next, Chapter 2 provides the
methodology and a step-by-step procedure followed to address the research ques-
tions mentioned in Chapter 1. Chapter 3 outlines important results from this re-
search and detailed discussions of the findings. Finally, the concluding remarks and
further work are provided in Chapter 4. Part II is a collection of publications.
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Chapter 2

Research Methodology

This thesis comprises four phases as shown in Figure 2.1. The preliminary work
(Phase 0) consists of data acquisition and pre-processing of the measured signals.
The data of interest are acceleration signals measured from the center of gravity
of the vehicle. Any noise observed from the acceleration measurements is filtered
before further analysis. After the filtering process, the acceleration signals are in-
tegrated twice for extracting the velocity and displacement responses, respectively.
The main parameter for monitoring the impact severity level is the dynamic crush,
being determined from the maximum displacement on the displacement-time his-
tory curve. After determining the maximum dynamic crush, mathematical models
of reconstructing the kinematics time-history are developed and presented in Phase
I and II.

Phase I uses crash test data from the University of Agder vehicle crash test
database. The response of the front and real parts of the vehicle crashing into barrier
are estimated using least-squares curve fitting (LSCF) and state space approaches.
The state space model is formulated using the system identification toolbox and the
eigensystem realization algorithm (ERA). Initially, the model parameters (spring
stiffness and damper coefficients) are assumed as constants during the crash event.

In Phase II, mathematical models for three vehicle crash configurations (vehicle-
to-barrier, vehicle-occupant and vehicle-to-vehicle crashes) are developed. The
frontal structure of the vehicle is modeled by piecewise linear lumped parameters,
which are expressed as functions of displacement and velocity, respectively. Then a
genetic algorithm (GA) is applied to estimate and optimize the model’s parameters.

Phase III presents a verification of the LPM against a finite element model
(FEM) and a full-scale crash test (FSCT) at various impact velocities. This veri-
fication is only performed for a vehicle-to-rigid wall.
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Figure 2.1: Flowchart summarizing the thesis structure.
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2.1 Crash tests data acquisition and pre-processing

Two sources of data, one from the University of Agder [70] and the other from the
National Highway Traffic and Administration (NHTSA) open database [71], were
used to verify the mathematical models proposed in this thesis.

2.1.1 University of Agder crash test data-base

Two sets of data, raw and filtered acceleration signals, for vehicle frontal crash into a
fixed pole, were obtained from the research center at the University of Agder, under
the initiative of professor Kjell G. Robbersmyr [70]. The raw data were filtered
according to the International Standard, ISO 6487 [72]. The following instruments
were used to collect the data: 1) A 3-D accelerometer, 2) a gyroscope, 3) and an
inductive vehicle speed monitor. The accelerometer was a piezoresistive tri-axial
sensor with an accelerometer range of ±1500 g. This accelerometer was mounted
on a steel bracket at the center of gravity (COG) of the vehicle. Screws fastened the
bracket to the vehicle’s chassis. The acceleration measurements in longitudinal (X),
lateral (Y), and vertical (Z) directions were taken from the COG of the vehicle. The
yaw rate was measured using a gyroscope at a rate of 1°/ms. The location of the
COG was determined by weighing the vehicle in different positions using four load
cells. The dimensions of the tested vehicle are listed in Table 2.1, being illustrated
in Figure 2.2 with all dimensions in meters [m].

Table 2.1: Relevant Vehicle’s Dimensions [m]

Width Height Frontal overhang Wheel track: front axle

1.58 1.39 0.66 1.38

Length Wheel base Rear overhang Wheel track: rear axle

3.64 2.28 0.70 1.34

The locations of the vehicle’s COG in longitudinal, lateral, and vertical direc-
tions are calculated as follows [73]:
Longitudinal location: the horizontal distance between COG and centerline of the
front axle:

CGx =

(
m3 +m4

mv

)
· l (2.1)
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Figure 2.2: Characteristic dimensions of the tested vehicle [73].

Lateral location: the horizontal distance between the COG and the longitudinal
median plane of the vehicle:

CGy =

(
m1 +m3 − (m2 +m4)

mv

)
· d

2
(2.2)

Vertical location: location of COG above a plane through the wheel centers

CGz =

(
m1 +m2 −mf

mv tan θ

)
· l (2.3)

where

• m1 = 257 kg: mass of the front left wheel,

• m2 = 237 kg: mass of the front right wheel,

• m3 = 154 kg: mass of the rear left wheel,

• m4 = 150 kg : mass of the rear right wheel,

• mv = 798 kg: total mass of the vehicle,

• mf = 444 kg: front mass in the tilted position,

• mb = 354 kg: rear mass in the tilted position,

• θ = 28.4°: tilted angle,

• l = 2.28 m: wheelbase,
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• d = 1.73 m: distance across the median plane between the vertical slings from
the lift brackets at the wheel centers and the load cells.

Substituting the above values in Equations 2.1 to 2.3 results in CGx = 1.0971 m,
CGy = 0.0260 m, CGz = 0.3337 m.

Data from the accelerometer were fed to an eight-channel data logger having
a sampling rate of 10 kHz [73]. The initial velocity of the vehicle was 35 km/h,
and its mass (including instrumentation) was 873 kg. The sequence of a vehicle
undergoing the deformation is shown in Figure 2.3 and the kinematic time-histories
for both the raw and filtered acceleration signals are shown in Figure 2.4.

The challenge was that the data from the University of Agder did not contain
all specific information required for the completion of this work. For example, no
data for the vehicle-to-vehicle crash was available from the University of Agder
database. Hence, another set of data was useful for model calibration and verifica-
tion.

 

 
(a)

 

 
(b)

Figure 2.3: A full-scale frontal crash test of a standard Ford Fiesta 1.1 L 1987 model at 35
km/h, (a) Test vehicle during impact (b) Test vehicle after impact [70].

The filtered acceleration was first imported and processed into MATLAB, then
the dynamic crush was obtained by double integrating the acceleration signal. The
maximum dynamic crush is the pick on the displacement-time history, where the
relative velocity approaches zero. When the acceleration tends to zero, the vehicle
rebounds and gets separated from the barrier. From Figure 2.4b, the maximum
dynamic crush, the time of dynamic crush, and the rebound velocity are 50.63 cm,
0.0748 s, and 2.7 km/h, respectively.
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Figure 2.4: Data post-processing for vehicle into barrier (a) Noizy and filtered
acceleration. (b) Kinematics time-histories after filtering.

2.1.2 NHTSA crash test data-base

The new data set was obtained from the National Highway Traffic and Safety Ad-
ministration (NHTSA) database. A set of crash test data (acceleration signals) for
the vehicle into a barrier, vehicle-occupant, and vehicle-to-vehicle, was collected. It
was challenging to interpret the data since they contained noises of high-frequency
components. The noise signals cause imperfect representation in the data. There-
fore, the data had to be filtered before a further analysis. Filtering is the most
important step in the processing of crash signal. The American Society of Auto-
motive Engineers’ standard, SAE J211-1:1995 [74] and the International Standard,
ISO 6487 designate four chanel frequency classes (CFC) of filters for crash data
processing, which are abbreviated as CFC 60, 180, 600, and 1000.

CFC filters are derived from analog Butterworth filters that have the cut off
frequency of CFC

0.6
[75]. The CFC 60 and 180 are mainly used to filter vehicle

structural accelerations integrated for velocity or displacement. CFC 600 is used
for a component analysis, while CFC 1000 is used for head accelerations.

In this work, a CFC 180, 4th order Butterworth low pass filter with a sampling
rate of 10 kHz was used to filter the acceleration signals following the mentioned
standard. The noise signal was eliminated from the useful acceleration signal. This
was achieved by filtering the acceleration signal twice using the difference equation.
Let X[t] be the input sampled at intervals of T seconds in the sequence of the
unfiltered digital signal, and Y [t] the corresponding sample in the filtered output
signal. A general transfer function of an N th order digital Butterworth filter, in z
domain, between the output and input signal is expressed as
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H(z) =
Y (z)

X(z)
=

M∑
k=0

akz
−k

1−
N∑
k=1

bkz
−k

, N ≥M. (2.4)

For the 2nd order Butterworth filter, the transfer function becomes

Y (z)

X(z)
=
a0 + a1z

−1 + a2z
−2

1− (b1z−1 + b2z−2)
, (2.5)

Equation 2.5 can be converted into a linear constant-coefficient difference equation
(LCCDE) via the z-transform as follows

Y [z] = a0X[z] + a1X[z−1] + a2X[z−2] + b1Y [z−1] + b2Y [z−2]. (2.6)

The block diagram of a Butterworth low pass filter is illustrated in Figure 2.5.
Converting Equation (2.6) to the discrete form by replacing (z) with (t) yields an

 

+ 

+ 

+ 

z-1 

z-1 

Y[t] X[t] 
a0 

a1 

a2 

b1 

b2 

Figure 2.5: Second order Butterworth low pass filter block diagram.

output equation:

Y [t] = a0X[t] + a1X[t− 1] + a2X[t− 2] + b1Y [t− 1] + b2Y [t− 2], (2.7)
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where:

• X[t] = X[z] is the current filter input,

• X[t− 1] = X[z−1] is the previous one sample old the filter input,

• X[t− 2] = X[z−2] is the previous two samples old filter input,

• Y [t] = Y [z] is the current filter output,

• Y [t− 1] = Y [z−1] is the previous one sample old filter output,

• Y [t− 2] = Y [z−2] is the previous two samples old filter output,

• t is the sampling instant in time,

• a0, a1, a2, b1, b2 are the coefficients of the 2nd order Butterworth low-pass fil-
ter and are dependent on a particular CFC.

The goal of a filter design is to find the coefficients ak and bk such that the filter
meets specific characteristics. The digital filter algorithm in Equation 2.7 is the 2nd

order Butterworth filter, which may introduce a phase shift in the output signal. To
avoid phase shifts in the filtered signal, the 4th order filter is designed such that the
signal passes through the 2nd order filter twice (i.e.once forward and once back-
ward). According to the society of automotive engineers (SAE J211-1) standard,
the constants in Equation 2.7 are defined as follows [74]:

a0 =
ω2
a

1 +
√

2ωa + ω2
a

, a1 = 2a0, a2 = a0

b1 =
−2(ω2

a − 1)

1−
√

2ωa + ω2
a

, b2 =
−1 +

√
2ωa − ω2

a

1 +
√

2ωa + ω2
a

where

ωa = tan

(
ωdT

2

)
, ωd = 2π

(
CFC

0.6

)
1.25

and T is the sample period in seconds and CFC
0.6

is the cut-off frequency of the
Butterworth filter. A CFC180 was chosen for filtering the noisy signal and a zero-
phase filtering was implemented using the following MATLAB routine
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Figure 2.6: Frequency response for CFC180 Butterwoth low pass filter.
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Figure 2.7: Data pre-processing for vehicle into barrier (data from the NHTSA) (a) Noizy
and filtered acceleration. (b) Kinematics time-histories after filtering.

Y = filtfilt(b, a,X) (2.8)

where a = [a0, a1, a2] and b = [1,−b1,−b2]. Equation 2.8 performs a zero-phase
digital filtering by processing the input data, X, in both the forward and reverse
directions. After filtering the data in the forward direction, filtfilt reverses the
filtered sequence and runs it back through the filter. The characteristics of the de-
signed filter is shown in Figure 2.6.

In crash dynamics, one is often concerned with the magnitude and duration
of the acceleration signal at a low frequency that will be input into the passenger
through the structure to the seat. Consequently, the high-frequency component is
now of little interest [76].
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Figure 2.8: Filtered kinematics time-histories for vehicle-occupant crash (a) Vehicle, (b)
Occupant
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Figure 2.9: Data pre-processing for vehicle-to-vehicle (data from the NHTSA ) (a) Bullet
vehicle. (b) Target vehicle.
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Figure 2.10: Filtered kinematics time-histories for vehicle-to-vehicle crash (a) Bullet
vehicle. (b) Target vehicle.
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The unfiltered and filtered acceleration signals, for vehicle-to-barrier, vehicle-
occupant, and vehicle-to-vehicle (Bullet and Target vehicles) are shown in Figures
2.7 to 2.10. The filtered data were then used for verification of the mathematical
models developed in this thesis as reflected in the published papers.

2.2 Approaches to reconstruct the crash pulse

A crash pulse signal of interest is the acceleration measurement from the center
of gravity of the vehicle. The model described in Papers A and B is a lumped
parameter model (LPM) composed of the double mass-spring-damper system, as
shown in Figure 2.11. This model was used to estimate the response of the chassis
and that of the passenger compartment. The nonlinear least-squares curve fitting
(LSCF) algorithm, the eigensystem realization algorithm (ERA) and the state space
(SS) approach were applied to estimate the parameters of a vehicle frontal crash
model.
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m1 
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                     mv  
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k 

Figure 2.11: A double mass-spring-damper model of a vehicle frontal crash.
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2.2.1 Nonlinear least squares curve fitting approach

A nonlinear least squares curve fitting (LSCF) problem is a minimization of an error
between the model and experimental observation. Having a set of n experimental
data points (ti, yi) (i = 1, 2, . . . , n), and a function f(t; p), p = (p1, p2, . . . , pm),
with m ≤ n, the LSCF consists of finding the vector p, such that f(t; p) fits the
experimental data.

To optimize the parameters (p) of the model, the fitting error defined as the sum
of squared deviations (residuals, Ri) should be minimized. The residuals Ri are
defined in the following equation

Ri = f(t; p)− y(ti), (2.9)

and the fitting error (Er) between the data and f(ti,p) is

Er =
n∑
i=1

R2
i =

n∑
i=1

(
f(t; p)− y(ti)

)2

. (2.10)

The minimum sum of squares is obtained by setting the gradient or the first
derivative of the error to zero. Because the model contains m parameters, there are
m gradient equations, i.e

∂Er
∂pj

= 0 =⇒ 2
n∑
i=1

(
f(t; p)− y(ti)

)
∂f(t; p)

∂pj
= 0, (j = 1, 2, . . . ,m) (2.11)

wherem is the number of parameters to be estimated. Solving Equation 2.11 results
in the values of vector p.

The objective of curve fitting is to describe the experimental data by a model
function and find the parameters of the model so that it fits the experimental data as
accurately as possible. The best-fitting depends on the estimated parameters.

To develop a mathematical model of the crash test data, the data points were first
plotted, and subsequently, a model was developed for describing the general trend
in the displacement-time history as shown in Figure 2.4b.

The developed model is the second-order system represented by a double mass-
spring-damper system in Figure 2.11. The mass of the vehicle is split into two
masses,m1 andm2. The massm1 represents the mass of frame rail (chassis) and the
massm2 represents the passenger compartment such that the average deceleration of
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the two masses is equivalent to that of COG of the vehicle. The decelerations of the
two masses in the double mass-spring-damper model are defined in the following
equations:

q̈1 =
1

m1

[
− (c1 + c2)q̇1 − (k1 + k2)q1 + c2q̇2 + k2q2

]
, (2.12)

q̈2 =
1

m2

[
c2q̇1 − c2q̇2 − k2q2 + k2q1

]
, (2.13)

where the springs k1 and k2, dampers c1 and c2 are parameters to be estimated, q̇1

and q̇2, q1 and q2 are the velocities and positions of masses m1 and m2, respectively.
The challenge was to estimate the parameters (k1, k2, c1 and c2).

2.2.2 Eigensystem realization algorithm

Eigensystem realization algorithm (ERA) is a method developed for identification
of model parameters from test data. This algorithm consists of determining the state
space representation of a system, (i.e system state matrix A, input matrix B, and
output matrix C) by making the Hankel matrix using singular value decomposition
[77]. The following are the main steps to implement the ERA as referred to Jer-Nan
Juang [78]:

• Assemble the experimental data into a Hankel Matrix,

• Factorization of the Hankel Matrix using singular value decomposition,

• Extract the controllability and observability matrix and calculate the system
realization matrix,

• Solve the eigenvalue problem for the system realization matrix,

• Calculate the natural frequencies and the damping factors from the obtained
eigenvalues.

In this thesis, the ERA was used to formulate the state space realization model from
vehicle crash test data (acceleration signal), then the natural frequencies and the
damping factors were extracted. A detailed description of the application of ERA
for vehicle crash analysis is presented in Paper A.
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2.2.3 State space modelling approach

A state space model of a system is a structured form of a set of the first-order
differential equations. The state space formulation of a double mass-spring-damper
system for a vehicle to a rigid pole was obtained by reducing the second-order
differential equations (2.12) and (2.13) into a system of four first-order differential
equations. The state variables (positions and velocities) of the two masses (m1 and
m2) in Figure 2.11 were defined as follows: x1 = q1, x2 = q̇1, x3 = q2, x4 = q̇2 and
the output variables as positions of m1 and m2 are : y1 = x1 = q1, y2 = x3 = q2.

ẋ1 = q̇1 = x2,

ẋ2 = q̈1 =
1

m1

(−(c1 + c2)x2 − (k1 + k2)x1 + c2x4 + k2x3) +
1

m1

u,

ẋ3 = q̇2 = x4,

ẋ4 = q̈2 =
1

m2

(c2x2 − c2x4 − k2x3 + k2x1) +
1

m2

u. (2.14)

The system of the first order equations 2.14 is written in state space form as


ẋ1

ẋ2

ẋ3

ẋ4


︸ ︷︷ ︸

Ẋ

=


0 1 0 0

−k1+k2
m1

− c1+c2
m1

k2
m1

c2
m1

0 0 0 1

k2
m2

c2
m2

− k2
m2
− c2
m2


︸ ︷︷ ︸

A


x1

x2

x3

x4


︸ ︷︷ ︸

X

+


0 0
1
m1

0

0 0

0 1
m2


︸ ︷︷ ︸

B

u, (2.15)

[
y1

y2

]
︸︷︷︸

y

=

[
1 0 0 0

0 0 1 0

]
︸ ︷︷ ︸

C


x1

x2

x3

x4


︸ ︷︷ ︸

X

+

[
0 0

0 0

]
︸ ︷︷ ︸

D

u. (2.16)

where equations (2.15) and (2.16) are the state and output equations, respec-
tively. In a frontal crash, a deformation force equivalent to the inertia of the car is
applied to the system. This inertia force is defined as

u = −m× ax, (2.17)

30



Research Methodology

where m is the total mass of the vehicle and ax is the longitudinal acceleration.

The input and output (inertia force( u) and acceleration) signals from the crash
test were imported into the MATLAB system identification toolbox for being suit-
able for identification of the model. A state space and transfer function models from
the crash test were thereafter estimated using the system identification toolbox. The
physical parameters (spring stiffness and damping coefficients) are embedded in the
input state matrix A.

A transfer function of the LPM, which is derived from the state matrix, is

Tmodel(s) =
Num(s)

Den(s)
(2.18)

where

Num(s) = c2s+ k2

Den(s) = m1m2s
4 − (m1c2 +m2(c1 + c2))s3 + (m1k2 +m2(k1 + k2) + c1c2)s2

+ (c1k2 + c2k1)s+ k1k2,

and the estimated four-pole transfer function from the experimental data is

Te(s) =
−0.0139s+ 0.5942

s4 + 97s3 + 3810s2 + 87170s+ 35718
. (2.19)

Then by inspection, the unknown parameters are obtained by comparing the de-
nominators of Equations (2.18) and (2.19). A nonlinear system of equations with
unknown stiffness and damper coefficients is formed and solved. The estimated pa-
rameters (k1, k2, c1, c2) are finally substituted in the following two dynamical equa-
tions of the model

q̈1(i) =
1

m1

[
− (c1 + c2)q̇1(i)(q1(i))0.5 − (k1 + k2)q1(i) + c2ẋq2(i)(q2(i))0.5

+ k2q2(i)
]
,

(2.20)

q̈2(i) =
1

m2

[
c2q̇1(i)(q1(i))0.5 − c2q̇2(i)q2(i))0.5 − k2q2(i) + k2q1(i)

]
, (2.21)

where i = 1 : (length(t)− 1), where t is a time vector, whose length equals to that
of the acceleration signal in real crash. A detailed discussion of the results from
a double mass-spring-damper model using the state space approach is presented in
Paper B.
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2.3 Further improvement of the developed models

The frontal structure of the car was modeled as piecewise linear spring (k(xi))
and damper (c(xi)) and optimized by a genetic algorithm (GA). An initial popu-
lation, a guess of parameters, was chosen randomly and substituted in the piecewise
spring and damper defined as functions of displacement and velocity, respectively
as shown in Figure 2.12, and defined as follows:

k(xi) =



ki1 + s1xi xi ≤ xi1,

ki2 + s2(xi − xi1) xi1 ≤ xi ≤ xi2,

ki3 + s3(xi − xi2) xi2 ≤ xi ≤ Ci,

(2.22)
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𝑐 𝑥 𝑖  

𝑥 𝑖  

Figure 2.12: Proposed piecewise lumped parameters characteristics

c(ẋi) =



ci1 − d1ẋi ẋi ≤ ẋi1,

ci2 − d2(ẋi − ẋi1) ẋi1 ≤ ẋi ≤ ẋi2,

ci3 − d3(ẋi − ẋi2) ẋi2 ≤ ẋi ≤ v0,

(2.23)
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where the subscript i = 1, 2 stand for the 1st and 2nd mass, respectively. Ci is
the dynamic crush of the vehicle or occupant maximum displacement, and v0 is
the initial impact velocity. The slopes for spring stiffness and damping coefficients
functions are si and di, respectively. The same piecewise functions, without the
subscript i, are used to model the vehicle-to-barrier (Figure 2.13). The equations of
motion (EoM) for vehicle-to-barrier, vehicle-occupant, and vehicle-to-vehicle crash
models shown in Figures 2.13 to 2.15 were solved using the Newton’s second law
of motion.

A genetic algorithm was tuning the piecewise lumped parameters until when an
optimum solution was obtained. Then the optimum values of stiffness and damping
coefficients were substituted into the dynamic equations of the models defined in
Subsection 2.3.1 to 2.3.3. The kinematic time-histories from the model results were
finally compared with the kinematic time-histories from the crash test.

2.3.1 Vehicle-to-barrier model

The dynamic equation of the model- with linear spring and damper- for a vehicle-
to-barrier shown in Figure 2.13 is defined as follows:

ẍ =
1

M
(−cẋ− kx), (2.24)

where M , x, and ẋ are the mass, displacement, and velocity of the vehicle, respec-
tively. k and c are spring stiffness and damping coefficient of the vehicle’s front
structure, respectively.

When the nonlinearity of the spring and damper is considered, Equation 2.24
can be rewritten as

ẍ =
1

M
(−cẋ− cnlẋ3 − kx− knlx3), (2.25)

where knl and cnl are the cubic nonlinear components for the spring and damper,
respectively.

A classical approach to estimate the linear spring and damper in the model pre-
sented in Figure 2.13 is to extract the circular natural frequency and damping factor
from the crash test as referred in [22].

Initially, a vehicle crash test was conducted on a typical mid-speed vehicle to
pole collision. Based on the response from the test, a piecewise linear lumped pa-
rameters model (LPM) was developed and a nature-inspired algorithm was used to
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Figure 2.13: Vehicle into barrier model.

optimize the parameters. This algorithm is described later in the text (see Section
2.3.4). Under an assumption that the deforming spring and damping forces - de-
veloped at the time of the crash- are piecewise functions in x and ẋ, respectively.
A comparison between the model response and the experimental test results for a
vehicle into a fixed pole is shown in Paper E. It was observed that the model results
agree with the crash test. The maximum dynamic crushes (maximum displace-
ments), the times at dynamic crush, the rebound velocities for both the model and
the crash test are similar. This is a proof of the accuracy of the piecewise linear
lumped parameters modelling approach for vehicle frontal crash.

2.3.2 Vehicle-occupant model

The accelerations of the vehicle-occupant model, presented in Figure 2.14, are de-
fined in the following:

ẍv =
1

Mv

[
− ko(xv − xo − δ)− co(ẋv − ẋo)− (kvxv + cvẋv)

]
, (2.26)

ẍo =
1

Mo

[
ko(xv − xo − δ) + co(ẋv − ẋo)

]
, (2.27)

for xv − xo ≥ δ,

where
• ẍv and ẍo, ẋv and ẋo, xv and xo, are accelerations, velocities and displacements
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Figure 2.14: Vehicle-occupant model.

of the vehicle and occupant, respectively.
•Mv, k1 and c1 represent the mass of the vehicle with energy absorbers (spring k1

and damper c1).
•Mo, k2 and c2 represent the mass of the occupant with the restraint system (spring
k2 and damper c2).
• δ is the restraint slack, a clearance distance between the occupant’s torso and the
restraint system.

Based on the nonlinear characteristics of velocity and displacement of the ve-
hicle and the forward movement of the occupant, the springs and dampers in the
model were modeled as piecewise linear functions. The dynamic equations for
vehicle-occupant presented as a double-mass-spring-damper model, are defined in
Equations 2.26 and 2.27, where k1 and c1- are piecewise linear spring stiffness and
damper coefficient of the front vehicle structure, respectively. k2 and c2 are also
the piecewise linear spring stiffness and damper coefficient for the restraint system,
respectively.

2.3.3 Vehicle-to-vehicle model

Two sets of Kelvin models present a vehicle-to-vehicle model, a double mass-
spring-damper system, as shown in Figure 2.15 where M1 represents the mass of
bullet vehicle and M2 is the mass target vehicle.

35



Research Methodology

 

x1 
k2 

c2 

x2 

 

             M2 

k1 

c1 

 

             M1 

Figure 2.15: Vehicle-to-vehicle model.

To simplify the analysis, the two sets of Kelvin models were combined into one
resultant Kelvin model with an effective mass,Me, moving at a relative velocity (ẋ).
Expressions for accelerations of masses M1 and M2 are defined in the the following
and the detailed derivation can be found in Paper D.

ẍ1 = γ1(c(ẋ1 + ẋ2)− k(x1 + x2))/Me (2.28)

ẍ2 = −γ2(−c(ẋ1 + ẋ2)− k(x1 + x2))/Me (2.29)

where k and c are the equivalent spring stiffness and damper coefficient, respec-
tively. Me is the equivalent mass, γ1 and γ2 are mass reduction ratios, respectively.

2.3.4 Parameters optimization using genetic algorithm

The following are important steps of a genetic algorithm (GA): Initialization of
populations of chromosomes, selection according to the fitness function, crossover
to produce new offspring, and random mutation of new offspring.

A GA begins with a randomly chosen assortment of chromosomes, serving as
the first generation (initial population). Then each chromosome in the population
is evaluated by the fitness function to test how well it solves the problem [79]. The
fitter a chromosome is, the more likely it is to be selected.

In this work, mathematical models for vehicle-to-barrier, vehicle-occupant, and
vehicle-to-vehicle crashes were developed. To estimate and optimize the model
parameters, a GA, which minimizes a fitness function in Equation (2.30), was pro-
posed.
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The fitness function was defined as follows:

min
Ẍ,p

f(Ẍest, p)

s.t LB ≤ p ≤ UB

Er =
n∑
i=1

√(
Ẍest − Ẍexp

)T × (Ẍest − Ẍexp

)
→ 0,

(2.30)

where p denotes a set of unknown parameters, which are the LPM (springs and
dampers) in the model, LB and UB are the lower and upper bounds of parame-
ters respectively- Ẍest (1 × n vector) and Ẍexp (1 × n vector) are estimated and
experimental accelerations, respectively. Er is the error between the estimated and
the experimental (measured) accelerations. Basic steps of genetic algorithm are
shown in Figure 2.16. When the fitness function is minimized the solver termi-
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Figure 2.16: Basic steps of a Genetic Algorithm.

nates, otherwise the GA tunes the parameters so that the error between the model
and experimental results is minimum. One of the following conditions may cause
the GA to terminate:
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• When there is no improvement in the population for a pre-defined number of
generations,

• when the fitness function reaches a certain pre-defined value,

• when the maximum number of generations is reached.

In this work, the last condition was chosen as a stopping condition to optimize
the parameters. Depending on the population size (the number of parameters to be
estimated), the maximum number of generations equals 100 times of the parameter
number.

2.4 Verification of LPM against FEM

A full-scale post-crash test for a Ford Taurus model (2004) crashing into a rigid
wall and its Finite Element Model (FEM) input collected from the NHTSA, were
used to verify the predictive capability of the LPM presented in subsection 2.3.1.
The FEM of the vehicle consisted of 804 parts, 922007 nodes, 10 beam elements,
838926 shell elements, and 134468 solid elements. The closing velocity was set
to 56 km/h, and the mass of the simulated vehicle was 1739 kg. The deceleration
signal was measured from the center of gravity of the vehicle.

The rigid wall was included to the Ford-Taurus FEM, and an automatic-single-
surface contact was defined between the vehicle and the rigid wall. After assem-
bling, the model was analyzed using LS-DYNA software version R8.10, and the
results were visualized using the LS-PREPOST.

A debugging was performed on the model to check the possible sources of error.
A negative volume calculation was causing premature termination. To avoid the
early termination, the material stress-strain curves were stiffened up at large strains.
The model’s credibility was tested by checking the ratio of the hourglass energy
to the internal energy, which should be less or equal to the recommended value
(0.1). The results of interest were obtained by activating the global statistics and
the material energy key words. A D3 plot was displayed by setting a time interval
between outputs to 0.005 seconds.

The model was simulated for various impact velocities (40, 48, 56, 64 and 72
km/h) with an actual computational time between one and two days for each simu-
lation. Then a GA was applied to calibrate the LPM against full-scale crash test and
FEM to test the predictive capability of the LPM. The prediction of LPM was valid
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even outside the calibration point. The main contributing factors for occupant in-
jury, such as the maximum dynamic crush and the acceleration severity index were
predicted. A comparison between the piecewise linear lumped parameters model
and the FEM is detailed in Paper H.

2.5 Indicator of model accuracy

To test the performance of the developed models, it is necessary to define the index
that can be used to evaluate their performance. The most commonly used perfor-
mance indicators in predictive model are the root mean square error (RMSE) and
the mean absolute error (MAE) [80]. The RMSE is defined as

RMSE =

√∑N
i=1

(
yi − ŷi

)2

N
, (2.31)

and the mean absolute error (MAE) is expressed as

MAE =

∑N
i=1

∣∣yi − ŷi∣∣
N

, (2.32)

where yi and ŷi are the experimental and simulated variables, respectively, and N is
the number of samples in the measured data.

In this work the RMSE is chosen to measure the model’s accuracy on the fol-
lowing kinematic variables:
a(t): Acceleration time-history,
v(t): Velocity time-history,
d(t): Displacement time-history.
A small value of RMSE is a good indicator of the performance of the model. This
index is applied in Chapter 3.
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Chapter 3

Results and Discussions

This chapter presents and discusses significant key findings for vehicle crash recon-
struction. The accuracy of the developed models, is tested using the Root Mean
Square Error (RMSE), between the result from the simulation and experimental
data. The following notations are used in Table 3.2 to 3.7: V0: Initial velocity, Vr:
Rebound velocity, Cm: Dynamic crush,Cmo: Maximum occupant travel, tm: time
when the vehicle reaches the dynamic crush.

3.1 Estimation of the responses of a vehicle’s chassis
and passenger compartment

The results from curve-fitting (CF), and state space (SS) approaches are first dis-
cussed. Here the vehicle crash configuration is a vehicle to a rigid pole. The model
representing the crash is a double mass spring damper (MSD) system, where the
front mass (m1) represent the chassis and the rear mass (m2) represents the passen-
ger compartment.

Comparisons between the kinematic time-histories of the chassis and the pas-
senger compartment, using the CF and SS, are presented in Figures 3.1 and 3.2,
respectively. The dynamic crush from the test, is 50.6 cm and occurs after 0.075 s
(see the mark on the black broken line in the plots).

After fitting the dynamic equation of the double mass-spring-damper model to
real experimental displacement, it is found that displacement dm1(t) curve of mass
(m1) is lagging the displacement curve dm2(t) of mass (m2).

The displacement dm(t) of the COG of a double MSD model is obtained by a
cumulative average of dm1(t) and dm2(t).
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Figure 3.1: Kinematic time-histories for a VTB with a double MSD by CF.
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Figure 3.2: Kinematic time-histories for VTB with a double MSD by SS approach.
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The dynamic crushes obtained from the CF and SS approaches are nearly equal
(48.76 and 48.22 cm) and they occur around 0.10 s. However, the difference is
observed on the velocity curves, where the rebound velocities are 5.66 and 1.34
km/h for CF and SS, respectively.

The maximum displacement of mass m2 (the passenger compartment), in the
SS model, is closer to that from the full-scale crash test. That indicates the dynamic
crush of the state space model.

However, above approaches share the same limitation. None of the methods
could reconstruct the velocity (v(t)) and acceleration (a(t)) signals. The reason
for inaccuracy is attributed to the constant parameters (springs and dampers) used
to model the crash. The estimated lumped parameters from both approaches are
shown in Table 3.1. The crash characteristic parameters and the RMSE are shown
in Table 3.2. The results are improved when the springs and dampers are modeled
as piecewise functions of displacement and velocity, respectively, as can be seen in
Figure 3.3.
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Figure 3.3: Kinematic time-histories for VTB with a double MSD optimized.
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Table 3.1: Parameters estimated using curve-fitting and State-space approaches

Approach k1[N/m] c1[Ns/m] k2[N/m] c2[Ns/m]

Curve fitting 1,983,100 226,260 21,510 5,105
State-space 15,116 36,588 337,670 6,735

Table 3.2: Characteristic crash pulse parameters for VTB with double MSD

Parameter Test Curve-fitting State-space Optimized LPM
V0[km/h] 35 35 35 35
Vr[km/h] -3 -6 -1 -4
Cm[cm] 50.63 48.76 48.22 50.63
tm[s] 0.075 0.107 0.104 0.074
RMSE
a(t)[g] 84.7 79.45 47.77
v(t)[km/h] 1.41 0.99 0.67
d(t)[cm] 0.044 0.028 0.056

3.2 Vehicle crash reconstruction by one MSD system

The kinematic time-histories for a vehicle to barrier are presented in Figures 3.4
to 3.6. Here, the model is a single mass-spring-damper (MSD) system. Figure
3.4 represents the reproduced results from the existing approach in literature [22],
where the circular natural frequency and the damping factor were extracted from the
experimental data. The natural frequency ωn extracted from the experimental data
is 3.0544 rad/s, and the damping ratio ζ equals to 0.001. Then the estimated spring
stiffness and damping coefficient are 321,540 N/m and 33.5082 Ns/m, respectively.

It is observed from Figure 3.4 that the maximum dynamic crush is estimated, but
the displacement curve oscillates and does not follow the trend of the experimental
displacement curve. The differences in the timing and magnitude of response be-
tween the test and the mass-spring-damper model are attributed to the insignificant
damping in the model where the damping ratio is 0.001. By stiffening the spring
with cubic nonlinearity, the results are much improved, as shown in Figure 3.5.

The results are further improved when Piecewise LPM, optimized by a genetic
algorithm, is used to simulate the frontal structure of the vehicle. It can be observed
that the displacement and velocity curves fit well the corresponding experimental
data, as shown in Figure 3.6. However, the acceleration curve from the model
does not capture the maximum peaks of the acceleration signal from the test. The
characteristic crash pulse’s parameters from the test and the models are shown in
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Table 3.3. It is clear that the PWLPM is much more accurate than the constant and
nonlinear LPm, as justified by their respective RMSE values. A smaller RMSE is a
good indicator of the accuracy in reconstructing the crash scenario.
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Figure 3.4: Crash responses for one MSD model using Huang’s approach [22]
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Figure 3.6: Crash responses for one MSD model with Piecewise LPM.

Table 3.3: Characteristic crash pulse parameters for VTB with single MSD

Parameter Test Constant LPM Nonlinear LPM PWLPM
V0[km/h] 35 35 35 35
Vr[km/h] -3 -35 -0.5 -3
Cm[cm] 50.63 50.51 48.99 50.61
tm[s] 0.075 0.081 0.080 0.076
RMSE
a(t)[g] 125.182 65.7594 53.7372
v(t)[km/h] 5.5278 0.4921 0.1422
d(t)[cm] 0.5012 0.0090 0.00089

3.3 Vehicle-occupant crash modelling

A genetic algorithm is used to optimize the spring stiffness and the damping coeffi-
cients of the proposed piecewise LPM. The test data are labeled with broken lines,
while the results from the models are continuous line in Figures 3.7 and 3.8.

The test data show that the maximum occupant deceleration occurs at 0.074 s,
0.016 s before the vehicle reaches its dynamic crush at 0.090 s. The maximum
occupant stopping distance (the maximum restraint deformation) is about 30 cm
and occurs around 0.085 s, just before the vehicle rebounds around 0.12 s.

The first attempt to reconstruct the vehicle-occupant crash event is the introduc-
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tion of linear and nonlinear component of spring and damper in the LPM. It can
be shown from the kinematic time-history curves in Figure 3.7 that the model, with
nonlinear spring and damper components, cannot accurately reconstruct the crash
test kinematics. As it has been shown for the case of a VTB model, the piecewise
LPM reconstructs the vehicle-occupant crash with sufficient accuracy, as shown in
Figure 3.8. The characteristic of vehicle-occupant (V-Occ) crash pulse’s parameters
and the RMSE are shown in Tables 3.3 and 3.4, respectively. It is observed that the
PWLPM model is accurate than the model with nonlinear spring and damper, as
justified by small RMSE values.
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Figure 3.7: Estimation of Vehicle-occupant’s kinematics by a nonlinear LPM.

Table 3.4: Characteristic crash pulse’s parameters and RMSE for VO using nonlinear LPM

Parameter Test-Vehicle Model-Vehicle Test-Occupant Model-Occupant
V0[km/h] 56 56 56 56
Vr[km/h] -3.7 -2 -13 -13.49
Cm[cm] or Cmo[cm] 73 65.87 30 27
tm[s] or tmo[s] 0.090 0.093 0.087 0.092
RMSE
a(t)[g] 109.3349 167.5613
v(t)[km/h] 0.8864 4.0884
d(t)[cm] 0.0464 0.2401
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Figure 3.8: Estimation of Vehicle-occupant’s kinematics by a piecewise LPM.

Table 3.5: Characteristic crash pulse’s parameters and RMSE for VO using PWLPM

Parameter Test-Vehicle Model-Vehicle Test-Occupant Model-Occupant
V0[km/h] 56 56 56 56
Vr[km/h] -2.4 -2.4 -13 -12.6
Cm[cm] or Cmo[cm] 73 72.65 37 30
tm[s] or tmo[s] 0.090 0.093 0.087 0.086
RMSE
a(t)[g] 100.18 135.79
v(t)[km/h] 0.25 3.4
d(t)[km/h] 0.0082 0.19

3.4 Vehicle-to-vehicle crash modelling

Two crash tests, a Caravan-to-Neon and a Dodge-to-Chevrolet were analysed. Here
only the result for the Caravan-to-Neon are presented. Figure 3.9, shows the real
after-crash test for one of the studied cases. Only a piecewise LPM is used to
simulate a vehicle-to-vehicle crash scenario since its performance was sufficient for
the previous cases.

The simulation results from the model are shown in Figure 3.10 and 3.10. It is
observed that the model results agree with the crash test. The target vehicle (Neon)
re-bounces after being impacted by the bullet vehicle (Caravan). The rebound ve-
locities are -19.78 m/s and -19.7 m/s from the test and the model respectively. From
the test, it is seen that the maximum dynamic crush of 74 cm is observed on the
target vehicle, while the dynamic crash from the model is 73.9 cm, while the bullet
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Figure 3.9: Vehicles deformations after crash (Caravan on right, Neon on left [1])

vehicle does not re-bounce at all. This is shown from the velocity curves of the two
vehicles, with a negative velocity for the target vehicle and a positive velocity for
the bullet vehicle. The frontal structure of the target vehicle’s structure experiences
a residual deformation (RD) of 12 cm, while the front structure of the bullet ve-
hicle behaves elastically after the impact. The value of RD is calculated from the
displacement curve in Figure 3.11 using the centroid time and the dynamic crush,
according to [22]. The characteristic crash pulse’s parameters from the test and the
models are shown in Table 3.5. The results for Dodge-to-Chevrolet crash can be
found in Paper D.
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Figure 3.10: Kinematic time histories for the Bullet vehicle (Caravan) model vs test results

49



Results and Discussions

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Time [s]

-100

-80

-60

-40

-20

0

20

40

60

80

100
A

cc
[g

], 
V

el
[k

m
/h

], 
D

is
pl

 [c
m

]
 Model vs Experimental-Targert

a(t)-Ex
v2

a(t)-m
v2

v(t)-Ex
v2

v(t)-m
v2

d(t)-Ex
v2

 d(t)-m
v2

Figure 3.11: Kinematic time histories for the Target vehicle (Neon) model vs test results

Table 3.6: Characteristic crash pulse’s parameters for vehicle-to-vehicle crash

Parameter Test-Bullet Model-Bullet Test-Target Model-Target
V0[km/h] 58 58 58 58
Vr[km/h] +1 +6 -20 -20
Cm[cm] - - 74.01 73.9
tm[s] - - 0.068 0.0705
RMSE
a(t)[g] 62.13 133.98
v(t)[km/h] 1.06 0.38
d(t)[cm] 0.085 0.0056
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3.5 Verification of PWLPM against FEM

The predictive capabilities of a PWLPM are compared with those from a FEM using
a Ford Taurus model obtained from the NHTSA database. The FEM is simulated
for a range of velocities from 40 to 72 km/h, as illustrated in Figure 3.12. Only
three plots, the lowest velocity (40 km/h), a calibration velocity (56 km/h), and the
highest velocity (72km/h), are used as an illustration of the FEM simulations.

(a)

(b)

(c)

Figure 3.12: Deformed vehicle frontal structure through FEM at impact velocities of (a) 40
km/h, (b) 56 km/h and (c) 72 km/h

The PWLPM and FEM are first calibrated to the FSCT at 56 Km/h, as shown in
Figure 3.13, then utilized to predict the crash at different impact velocities (below
and above the calibration point) as shown in Figures 3.14 and 3.15, respectively.
Additionally, PWLPM is also calibrated to the FEM. The crash pulse characteristics
from the test and the models (i.e., LPM and FEM) and RME values are shown in
Table 3.7. The PWLPM is well calibrated to FSCT than the FEM as it is shown in
Figure 3.13a and in Table 3.7.
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Figure 3.13: Comparison of PWLPM and FEM to FSCT at 56 km/h (a) LPM vs FSCT, (b)
FEM vs FSCT.

Table 3.7: Characteristic crash pulse’s parameters and RMSE for FEM and PWLPM

Parameter FSCT FEM PWLPM
V0[km/h] 56 56 56
Vr[km/h] -25 -8.5 -23
Cm[cm] 75.66 71.81 77.4
tm[s] 0.072 0.078 0.07
RMSE
a(t)[g] 114 75.33
v(t)[km/h] 2.64 0.59
d(t)[cm] 0.076 0.018
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Figure 3.14: Vehicle frontal crash prediction using PWLPM
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Figure 3.15: Vehicle frontal crash prediction using FEM

Small RMSE values for PWLPM for all kinematic variables are indicators of
the accuracy of the proposed model. Specifically, the predictive capabilities of the
PWLPM can be observed from the displacement curves in Figures 3.14 and 3.15.
When the LPM is calibrated to FSCT, a constant increment of 11 cm for the max-
imum dynamic crush is observed for a corresponding increase of 8 km/h for the
impact velocity. Similarly, a 10 cm increment is seen on the maximum dynamic
crush when the LPM is calibrated to a FEM. It can be concluded, based on the ob-
servation from the prediction by FEM and PWLPM, that the PWLPM can reduce
the computation time when simulating a vehicle crash event.

Further results, including the prediction of acceleration severity index at differ-
ent velocities, can be found in Paper F.
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Chapter 4

Concluding remarks

4.1 Conclusions

In this thesis, the performance of different vehicle crash reconstruction techniques
was investigated. A nonlinear least-squares curve fitting (CF) method, an eigensys-
tem realization algorithm (ERA), a state space (SS) approach, and a nature-inspired
optimization algorithm were used for estimating model’s parameters.

Initially, CF, ERA, and SS were tested on a double mass-spring-damper system,
in which the front and rear masses represent the chassis and passenger compartment.
It was possible to calibrate the double mass-spring-damper system parameters out
of a single acceleration signal, measured from the center of gravity of the vehicle.
SS produced slightly more accurate results than the CF and ERA, but the overall
accuracy of the reconstruction deemed not sufficient.

Further improvement of the accuracy was achieved by introducing a genetic al-
gorithm and upgrading the LPMs from linear to piecewise linear. GA was efficient
in determining the model parameters, enabling PWLPM to reconstruct vehicle-to-
barrier, vehicle-occupant, and vehicle-to-vehicle crash scenarios with sufficient ac-
curacy. However, it takes a significant amount of time for GA to find proper initial
parameters. This is attributed to the fact that the GA is a random search algorithm
and it required several simulation cycles to find a good initial guess. In this work,
the main focus was the accuracy of vehicle crash reconstruction, not the conver-
gence rate of parameter calibration.

Finally, to verify the accuracy of the PWLPM, the predictive capability of the
LPM was compared against that of an explicit FEM. Two parameters that charac-
terize the collision of a vehicle with an obstacle, the maximum dynamic crush (Cm)
and the acceleration severity index (ASI), were predicted and a good agreement be-
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tween the two modelling approaches was observed. It can be concluded that the
proposed PWLPM is a promising tool to reconstruct the crash event. It can assist
vehicle designers in predicting the crash before performing physical tests or devel-
oping complex finite element models.

4.2 Further Work

Further work can be extended to include the following:

• Although LPM performed well for a vehicle to a rigid barrier, the integration
of flexible barrier in the crash scenario was not considered in this work. The
integration of flexible barrier could be investigated in future work.

• Finding a good guess of parameters in the optimization routine using the GA
was a challenging task. The performance of other nature-inspired algorithms
could be tried in future work and compared with the current results. Other al-
gorithms could be differential evolution, simulated annealing, particle swarm
optimization, etc.

• The predictive capability of LPM was verified for a vehicle to a rigid wall
frontal crash. However, further studies are essential to consider the predic-
tive capability of LPM for a vehicle-to-vehicle crash, side, oblique and offset
impacts, respectively.

• Due to the stochastic behavior of the crash pulse, it was hard to reconstruct
the acceleration signals from the crash test. Artificial intelligent approaches
like artificial neuro network might address this challenge.
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Abstract — An Eigensystem Realization Algorithm (ERA) approach for es-
timating the structural system matrices is proposed in this paper using the
measurements of acceleration data available from the real crash test. A math-
ematical model that represents the real vehicle frontal crash scenario is pre-
sented.The model’s structure is a double-spring-mass-damper system, whereby
the front mass represents the vehicle chassis and the rear mass represents the
passenger compartment.The physical parameters of the model are estimated
using curve fitting aproach and the estimated state system matrices are esti-
mated by using the ERA approach. The model is validated by comparing the
results from the model with those from the real crash test.

Keywords— Modeling, vehicle frontal crash, curve fitting, eigensystem realiza-
tion algorithm.

A.1 Introduction

Car crash test is usually performed in order to ensure safe design standards in crash-
worthiness ( the ability of a vehicle to be plastically deformed and yet maintains a
sufficient survival space for its occupants during crash scenario). Nowadays, due
to advanced research in computer simulation software, simulated crash tests can be
performed beforehand the full-scale crash test. Therefore, cost associated with real
crash test can be reduced. Vehicle crashworthiness can be evaluated in four dis-
tinct modes: frontal, side, rear and rollover crashes. Several researches have been
carried out in this field, which resulted in several novel computational models of
vehicle collisions in literature. In [1], a mathematical model is proposed to estimate
the maximum occupant deceleration - which is one of the main tasks in the area
of crashworthiness study by a Kelvin Model which contains a mass together with
spring and damper connected in parallel. An application of physical models com-
posed of springs, dampers and masses joined together in various arrangements for
simulating a real car collision with a rigid pole was presented in [2].

In [3], the authors presented an overview of the kinematic and dynamic rela-
tionships of a vehicle in a collision, where the work was to identify the parameters
of the vehicle crash model using experimental data set. In [4] and [5], a lumped
parameter modeling in frontal crash was investigated and analyzed in five degrees
of freedom and have been used to analyze the response of occupant during the im-
pact. In [6] and [7], an optimization procedure to assist multi-body vehicle model
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development and validation was proposed. The authors first devised the topological
structure of the multi-body system representing the structural vehicle components
and described the most relevant mechanisms of deformation. In the work of [8], the
authors proposed an approach to control the seat belt restraint system force during
a frontal crash to reduce thoracic injury.
The main challenge in accident reconstruction is the system identification described
as the process of constructing mathematical models of dynamical systems using
measured input-output data. In case of vehicle crash, system identification algo-
rithm consists of retrieving the unknown parameters such as the spring stiffness and
damping coefficient. A possible approach is to identify these parameters directly
from experimental dynamical data.
From literature, System Identification Algorithms (SIA) have been developed for
different applications. Among others we can state: subspace identification, genetic
algorithm, eigensystem realization algorithm and data-based regressive model ap-
proaches. Typical examples where these SIA have been used can be found in [9]
and [10], [4] and [11], [12] and [13] respectively.

System identification using ERA has so far received considerable attention, as
evidenced by the work of Jer-Nan Juang [14], Chiang and Chang [15], Ko and
Hung [16], Juang and Papa [17] and Yang and Yeh [18]. For instance, in [17],
the author developed the ERA to estimate the natural frequencies and damping ra-
tios of a dynamical system from known Markove parameters and in [18], the au-
thors used the ERA to identify the system matrices of a vibrating structure from
the displacement-based Markov parameters, which were estimated from measured
displacement responses together with the exitation forces.
The main contribution of this paper is the development of a mathematical model for
a double spring-mass-damper system which reconstructs a vehicle frontal crash sce-
nario and estimate structural parameters such as natural frequencies, spring stiffness
and damping coefficients of the system. In this paper, an ERA is used to identify the
system matrices of a vehicle impacting a rigid barrier, modeled by a double spring-
mass-damper system. The model represents the inertia of the vehicle chassis and
the passenger compartment. The state - space representation of the model is esti-
mated from the acceleration - based Markove parameters which are extracted from
the measured acceleration response. To estimate the physical parameters ( stiffness
and damping coefficient) of the model, a curve fitting method is used. It is noting
that the effectiveness and accuracy of simulation modeling results are verified by
the real physical experiments. The novelty in this paper as compared to those ref-
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ered to is that the physical parameters , stiffness and damping coeficients, were first
estimated and finally the model was simulated and results compared with experi-
mental results. For instance in [2], [4] and [11] the authors validated their models
from numerical examples with known parameters.

A.2 Vehicle crash experimental test

The real vehicle crash experiment was conducted on a typical mid-speed vehicle
to pole collision. Its elaboration was the initiative of Robbersmyr (2004). A test
vehicle was subjected to impact with a vertical, rigid cylinder. The acceleration
field was 100 meter long and had two anchored parallel pipelines. The vehicle
was steered using those pipelines that were bolted to the concrete runaway. Setup
scheme is shown in FigureA.1.

 

 

 

 

Figure A.1: Vehicle crash Experimental setup [19]

During the test, the acceleration was measured in three directions (x - longitudi-
nal, y - lateral, and z - vertical) together with the yaw rate from the center of gravity
of the car. Using normal speed and high - speed video cameras, the behavior of
the safety barrier and the test vehicle during the collision was recorded. The initial
velocity of the car was 35 km/h, and the mass of the vehicle (together with the mea-
suring equipment and dummy) was 873 kg. The obstruction was constructed with
two steel components - a pipe filled with concrete and a baseplate mounted with
bolts on a foundation. The car undergoing the deformation is shown in Figure A.2.
The accelerometer is located at the mass center of gravity of the vehicle in the pas-
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senger compartment. Since we are interested in the frontal crash, only the measured
acceleration in the longitudinal direction is considered in this study. The acclerera-
tion data is imported and processed in matlab for analysis. The deformation of the
vehicle is obtained by integrating twice the acceleration signal.

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2: Vehicle undergoing deformation [19]

A.3 Mathematical Modeling Theoretical Background

Mathematical models describe the dynamic behavior of a system as a function of
time. During frontal crash, the vehicle is subjected to an impulsive force caused by
the obstacle. The model for vehicle crash simulates a rigid barrier impact of a vehi-
cle where m1 and m2 represent the frame rail (chassis) and passenger compartment
masses, respectively.
Parameters to be estimated are springs k1 and k2, dampers c1 and c2, as shown in
Figure A.3. When the vehicle impacts on a rigid barrier, the two masses will ex-
perience an impulsive force during collision. The method for solving the impact
responses of the two masses is adapted from te method used in the free vibration
analysis of a two-degrees of freedom damped system [20].
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k1 k2 

c1 c2 

 

m1 

 

m2 

x1 x2 

Figure A.3: A double spring-mass-damper model

The dynamic equations of the two mass-spring-damper model are shown in
Equation(A.1).

m1ẍ1 + (c1 + c2)ẋ1 + (k1 + k2)x1 − c2ẋ2 − k2x2 = 0

m2ẍ2 − c2ẋ1 + c2ẋ2 + k2x2 − k2x1 = 0 (A.1)

or

[
m1 0

0 m2

][
ẍ1

ẍ2

]
+

[
k1 + k2 −k2

−k2 k2

][
x1

x2

]
+

[
c1 + c2 −c2

−c2 c2

][
ẋ1

ẋ2

]
=

[
0

0

]

The solution for for xi, i = 1, 2, can be respresented as

xi = Cie
skt (A.2)

with k= 1,. . . ,4.

where Ci and sk may be complex numbers. Substituting (A.2) into (A.1), we
get

R1kC1 −R2kC2 = 0

− S1kC1 + S2kC2 = 0 (A.3)
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C2

C1

=
R1k

R2k

=
S1k

S2k

(A.4)

R1k = R2k ∗
S1k

S2k

(A.5)

R1k ∗ S2k −R2k ∗ S1k = 0 (A.6)

where
R1k = m1s

2
k + (c1 + c2)sk + (k1 + k2)

R2k = c2sk + k2

S1k = c2sk + k2

S2k = m2s
2
k + c2sk + k2

After substituting R1k, R2k, S1k and S2k into (A.3), we get.

[
m1s

2
k + (c1 + c2)sk + k1 + k2 −c2sk − k2

−c2sk − k2 m2s
2
k + c2sk + k2

][
C1

C2

]
=

[
0

0

]
(A.7)

Now for a nontrivial response i.e., for non-zero values of C1 and C2, the deter-
minant of their coefficient matrix must vanish. That is:

[
m1s

2
k + (c1 + c2)sk + k1 + k2

][
m2s

2
k + c2sk + k2

]
+ (c2sk + k2)2 = 0 (A.8)

Expansion of (A.8) leads to a characteristic equation of the system, obtained as
shown in (A.9).

s4
k + ts3

k + us2
k + vsk + w = 0 (A.9)

where
t = m1c2+m2(c1+c2)

m1m2
, u = m1k2+m2(k1+k2)+c1c2

m1m2
, v = k1c2+k2c1

m1m2
, w = k1k2

m1m2

Equation (A.9) is a fourth order polynomial in s and is to be solved to get four
roots. All the coefficients of this polynomial are physical parameters of the system
shown in Figure A.3 and are all positive. For that reason such a polynomial cannot
have positive roots. Three allowable configurations of roots are as follows [20]:

1. Two pairs of complex conjugates.

2. One pair of complex conjugates and two real and negative roots.
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3. Four real and negative roots.

Case 1: Two pairs of complex conjugates
The system in this case has moderate damping. The rate of decay is defined by
p1, the real part of the root, and the frequency of vibration is specified by q1, the
imaginary part. The two pairs of complex conjugates are:
(1)s1 = −p1 + iq1, s2 = −p1 − iq1,
(2)s3 = −p2 + iq2, s4 = −p2 − iq2.
where p1, p2, q1, and q2 are all positive. s1 and s2 are the first pair of complex
conjugates, and s3 and s4, the second pair.
The two roots s1 and s2 in the first pair will yield the solutions X11 and X21, where
the first subscript refers to the mass index and the second subscript refers to the pair
number of the complex conjugate. The displacement components X11 and X21 due
to s1 and s2 respectively are given by:

X11 = A11e
−p1t × sin(q1t+ φ11)

X21 = A21e
−p1t × sin(q1t+ φ21) (A.10)

where

A2
11 = 4C11C12

A21 = 4C21C22

C11 = m2s
2
1 + c2s1 + k2

C21 = c2s1 + k2

C12 = m2s
2
2 + c2s2 + k2

C22 = c2s2 + k2

The general solution is:

Xi =

2∑
j=1

xij

= Ai1e
−p1tsin(q1t+ φi1) +Ai2e

−p2tsin(q2t+ φi2) (A.11)

Case 2: One pair of complex conjugate and two real and negative roots:
The general displacement solutions are shown in (A.12).

Xi = Ai1e
−ptsin(qt+ φi1) + Ci3e

s3t + Ci4e
s4t (A.12)
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where i = 1,2.
Case 3: Four real and negative roots:
The system has a large damping. When it is disturbed, the system will settle to
its equilibrium configuration without oscillation. The solutions of the 4th order
polynomial yield four real and negative roots. In [2], the authors focused just on the
first case. In this paper we will also focus on the third case. The third case is for
the system which has a large damping. When it is disturbed, the system will settle
to its equilibrium configuration without oscillation. The displacement signal of the
real crash is simular to a case of an overdamped vibrating system. Hence the third
case would represent the vehicle frontal crash reconstruction. The solution for the
case 3 is:

Xi(t) = Ci1e
s1t + Ci2e

s2t + Ci3e
s3t + Ci4e

s4t (A.13)

with i = 1, 2, where si are roots of the characteristic equation (A.9)

A.3.1 Estimation of model parameters by Curve Fitting

When (A.13) is curve fitted into displacement experimental data, the constants Cik
and sk (i=1,2 and k=1,. . . ,4) can be easily found and resulting in a system of equa-
tions that can be solved for k2 and c2.

C1k = m2s
2
k + c2sk + k2 (A.14)

C2k = c2sk + k2 (A.15)

For k = 1, . . . , 4, equation (A.14) can be written in a matrix form as


1 s1

1 s2

1 s3

1 s4


[
k2

c2

]
=


C11 −m2s

2
1

C12 −m2s
2
2

C13 −m2s
2
3

C14 −m2s
2
4

 (A.16)

Let
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A =


1 s1

1 s2

1 s3

1 s4

 ,B2 =


C11 −m2s

2
1

C12 −m2s
2
2

C13 −m2s
2
3

C14 −m2s
2
4

 ,V2 =

[
k2

c2

]

Then, (A.16) can be represented as

A ∗ V2 = B2 (A.17)

and, using the pseudo-inverse, we can obtain

V2 = (AT ∗ A)−1 ∗ B2 (A.18)

The spring stiffness k1 and damping coefficient c1 are calculated from (A.21).


1 s1

1 s2

1 s3

1 s4


[
k1

c1

]
=


R11 − (m1s

2
1 + c2s1 + k2)

R12 − (m1s
2
2 + c2s2 + k2)

R13 − (m1s
2
3 + c2s3 + k2)

R14 − (m1s
2
4 + c2s4 + k2)

 (A.19)

Remark 1: From (A.5), it was shown that R1k = R2k ∗ S1k

S2k
. Let

V1 =

[
k1

c1

]
,B1 =


R11 − (m1s

2
1 + c2s1 + k2)

R12 − (m1s
2
2 + c2s2 + k2)

R13 − (m1s
2
3 + c2s3 + k2)

R14 − (m1s
2
4 + c2s4 + k2)

 (A.20)

then, we have

V1 = (AT ∗ A)−1 ∗ B1 (A.21)
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A.3.2 Eigensystem Realization Algorithm

In this section, a state-space representation (SSR) of the model is derived from the
dynamic equation of a vehicle subjected to a frontal crash. The same representation
is also retrieved from the system Markov parameters.

A.3.2.1 Formulation of the SSR from the model dynamic equations

Considering an input force u1 acting on the front mass m1, equation (A.1) can be
rewritten as ẍ1 = −k1+k2

m1
x1 + k2

m1
x2 − c1+c2

m1
ẋ1 + c2

m1
ẋ2 + 1

m1
u1

ẍ2 = k2
m2
x1 − k2

m2
x2 + c2

m2
ẋ1 − c2

m2
ẋ2

(A.22)

The dymamic equation (A.22) can be rewritten in matix compact form as:

M

[
ẍ1

ẍ2

]
+ L

[
ẋ1

ẋ2

]
+ K

[
x1

x2

]
=

[
u1

0

]
(A.23)

with

M =

[
m1 0

0 m2

]
,L =

[
c1 + c2 −c2

−c2 c2

]
,K =

[
k1 + k2 −k2

−k2 k2

]

In general, the equation of motion for N degrees of freedom is expressed in a
matrix form as:

Mẍ + Lẋ + Kx = Bcu (A.24)

or, equivalently,

ẍ = −M−1Lẋ−M−1Kx + M−1Bcu (A.25)

Where M ∈ IRN×N , L ∈ IRN×N and K ∈ IRN×N are the mass, damping, and stiff-
ness matrices respectively, while Bc ∈ IRN×r, is the input matrix.
ẍ, ẋ and x are vectors of generalized acceleration, velocity and displacements re-
spectively, and the vector u of dimension r × 1 is the input force containing r

external excitations acting on the systems.
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Let define new state variables

x1 = x1, x2 = ẋ1, x3 = x2 and x4 = ẋ2.

Substituting these variables into (A.22) and combining in state equations we get


ẋ1

ẋ2

ẋ3

ẋ4

 =


0 1 0 0

−k1+k2
m1

− c1+c2
m1

k2
m1

c2
m1

0 0 0 1

k2
m2

c2
m2

− k2
m2
− c2
m2




x1

x2

x3

x4

+


0

1
m1

0

0

u (A.26)

Using the original state variables and interchanging rows 2 and 3, columns 2
and 3 of (A.26), we get


ẋ1

ẋ2

ẍ1

ẍ2

 =


0 0 1 0

0 0 0 1

−k1+k2
m1

k2
m1

− c1+c2
m1

c2
m1

k2
m2

− k2
m2

c2
m2

− c2
m2




x1

x2

ẋ1

ẋ2

+


0

0

1
m1

0

u (A.27)

The output equation or the measurement vector y(t), which may contain any
combination of modal displacements, velocities, and / or accelerations is given by:

y =


Cpx

Cvẋ

Caẍ

 (A.28)

Where Cp, Cv and Ca are the output influence matrices for position, velocity and
acceleration respectively. In our experiment the acceleration is measured. There-
fore, the output equation is the acceleration measurement

y = Caẍ1 (A.29)

From (A.27)
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y = ẍ1 =
[
−k1+k2

m1

k2
m1
− c1+c2

m1

c2
m1

]

x1

x2

ẋ1

ẋ2

+
[

1
m1

]
u (A.30)

Therefore, the continuous-time state-space model of the dynamic system is writ-
ten as

ẋ = Acx + Bcu

y = Ccx + Dcu (A.31)

with

Ac =


0 0 1 0

0 0 0 1

−k1+k2
m1

k2
m1

− c1+c2
m1

c2
m1

k2
m2

− k2
m2

c2
m2

− c2
m2

 ,Bc =


0

0

1
m1

0

 ,

Cc =
[
−k1+k2

m1

k2
m1
− c1+c2

m1

c2
m1

]
,Dc =

[
1
m1

]
Where Ac is the state matrix, Bc is the input matrix or the state influence matrix,

Cc is the output matrix or the measurement influence matrix and Dc is the feed-
forward matrix or the direct transmission matrix.

Once the Ac, Bc, Cc and Dc matrices are known, it is easy to find the transfer
function (TF) and impulse response function (IRF) of the system. By using these
matrices, system’s response to any input can be found in time domain or frequency
domain. The state-space representation is useful for constructing the mathematical
model in MATLAB environment.

The discrete-time state-space representation of a MIMO system is given by
equation (A.32).

x(k + 1) = Âx(k) + B̂u(k)

y(k) = Ĉx(k) + D̂u(k) (A.32)
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Where k is the integer discrete-time index at time instant t = k∆t, x(k) is the
state vector at the discrete-time k, u(k) is the force vector, y(k) is the output vector,
Â is the discrete state system matrix, and B̂ is the discrete input influence matrix for
the state vector x(k). The output matrix Ĉ = Cc and the direct transition matrix D̂ =

Dc during the zero-order-hold operations. Because experimental data are discrete
in nature, equation (A.32) form the basis for the system identification of linear time
invariant, dynamical systems. The state matrix Â and the influence matrix B̂ of the
discrete-time model are related to the matrices Ac,Bc of the continuous-time model
by the following expression [14]:

Â = eAc∆t

B̂ =

∫ ∆t

0

eAcτdτ · Bc (A.33)

The continuous-time model is calculated from the discrete-time model by

Ac = ln(Â)/∆t

Bc = Ac(Â− I)−1 ∗ B̂ (A.34)

where ∆t is a constant interval.
The dimensions of the discrete-time system are equal to those of the continuous
system.

A.3.2.2 ERA from the system Markov parameters

ERA is a minimum order realization technique that uses singular value decomposi-
tion technique. A Flowchart for the ERA is shown in Figure A.4.

If the excitations of the dynamic system is measured by the m input quantities
in the vector u, the equations of motions and the set of output equations can both be
respectively rewritten in terms of the state vector.
ERA begins with the definition of the Markov parameter of a state-space model. The
method for deriving the expression for the system matrices is adapted from [14].
Consider a discrete-time state-space model (A.33).
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Aurora Pisano Structural System Identification: Advanced Approaches and Applications
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Figure 2.1: Flowchart for the ERA 

After Juang J.N. (1994) ‘Applied System Identification’. 
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Figure A.4: Flowchart for the ERA by J.N. Juang [14]

The state-space model (A.33) has an impulse response

y(k) =


D̂ k = 0,

ĈÂ
k−1

B̂ k ≥ 1

(A.35)

The discrete-time Markov parameters can be defined in the same way as (A.35).
The term of ĈÂ

k−1
B̂ is called the Markov parameter of the system. By using these

parameters one can define the impulse response of the system.
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Y [k] = ĈÂ
k−1

B̂ (A.36)

Y [0] = D̂, Y [1] = ĈB̂, Y [2] = ĈÂB̂, ...., Y [k] = ĈÂ
k−1

B̂ (A.37)

Consequently, the identification problem is: Given values of Y [k]′s, construct
the constant matrices to identify the system.
The algorithm begins by constructing a r × s generalized Hankel matrix,

Given a number of input and output measurements uk and yk generated by a
system of unknown parameters, it is requested to identify the order of the system as
well as the discrete state matrices (Â, B̂, Ĉ, D̂) of the system. Then the identified
continuous state matrices (Ac,Bc, Cc, Dc) that has the same size as the physical
model, can be estimated from (A.34) and finally extract the respective parameters.
All minimum realizations have the same set of eigenvalues and eigenvectors, which
are the modal parameters of the system itself. Assume that the state matrix Â of
order n has a complete set of linearly independent eigenvectors {Ψ1,Ψ2, ...,Ψn}
with corresponding eigenvalues {λ1, λ2, ...λn}:

ÂΨ = ΨΛ (A.38)

where Λ is a diagonal matrix of the eigenvalues and Ψ is the matrix of the eigen-
vectors. The realization {Â, B̂, Ĉ} can be transformed in the realization {Λ, Ψ−1B̂,
ĈΨ} by using the eigenvalues and eigenvectors matrices. The diagonal matrix Λ

contains the informations of modal damping rates and damped natural frequencies.
The matrix Ψ−1B̂ defines the initial modal amplitudes and the matrix Ĉ Ψ denotes
the mode shapes at the sensor points.
All the modal parameters of a dynamic system can thus be identified by the triplet
{Λ, Ψ−1B̂, ĈΨ}.

The real part of Λ, into the continuous time model, gives the modal damping
rates, while the imaginary part gives the damped natural frequencies.
After identifying the combined system and observer gain Markov parameters, the
next step consist of forming the generalized Hankel matrix H(k−1):
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H(k−1) =


Yk Y(k+1) . . . Y(k+β+1)

Yk+1 Y(k+2) . . . Y(k+β)

...
...

...
...

Y(k+α−1) Y(k+α) . . . Y(k+α+β−2)

 (A.39)

when k=1 we get:

H(0) =


Y1 Y2 . . . Yβ

Y2 Y3 . . . Y(β+1)

...
...

...
...

Yα Yα+1 . . . Yα+β−1

 (A.40)

In order to compute a minimum order realization of the system {Â, B̂, Ĉ} , it is
necessary to construct a shifted Hankel matrix H(1):

H(1) =


Y2 Y3 . . . Yβ+1

Y3 Y4 . . . Yβ+2

...
...

...
...

Y(α+1) Y(α+2) . . . Y(α+β)



Substituting the Markov parameters from (A.37) into (A.39) and decomposing
H(k − 1) into three matrices yield

H(k − 1) = ObÂ
k−1Ct (A.41)

whereOb and Ct are
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Ob =



Ĉ

ĈÂ

ĈÂ2

...

ĈÂα−1


,Ct =

[
B̂ ÂB̂ Â2B̂ . . . Âβ−1B̂

]

The block matrix Ob is the observability matrix, whereas the block matrix Ct is
the controllability matrix.

Denote column submatrices of B̂ by B̂i and row submatrices of Ĉ by Ĉj . The
ERA data block matrix can be expressed by

H(k−1) = [Ysi+k+tj ];Ysi+k+tj = CjÂ
si+k−1+tjBi (A.42)

H(k) = ObÂ
kCt (A.43)

Assume that there exists a matrix H† satisfying the relation

ObH
†Ct = In (A.44)

where In is an identity matrix of order n. The matrixH† which is the pseudo-inverse
of H(0) plays a major role in deriving the ERA. It is observed that

H(0)H†H(0) = ObCtH
†ObCt = ObCt = H(0)

The ERA process starts with the factorization of the block data matrix (A.40)
using singular value decomposition,

H(0) = R
∑

ST (A.45)

where the column of matrices R and S are orthonormal and
∑

is a rectangular
matrix ∑

=

[∑
n 0

0 0

]
with

∑
n = diag {σ1, σ2, . . . , σi, σi+1, . . . σn}.

LetRn and
∑

n Sn be matrices formed by the first n columns of R and S respectively.
Hence, the matrix H(0) and H† become
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H(0) = Rn

∑
n

STn (A.46)

and

H† = Sn

−1∑
n

RT
n (A.47)

where RT
nRn = In = STn Sn

Examining the singular value
∑

n of the Hankel matrix H(0) it is possible to
determine the order of the system.

Comparing (A.46) and (A.43) with k=0, we get
Ob = Rn

∑1/2
n and Ct =

∑1/2
n STn

From (A.43) , the first r columns of the observability matix Ob form the input matrix
B̂ whereas the first m rows of the controlability matix Ct form the output matrix Ĉ.

With k = 1 in (A.43), we get

H(1) = ObÂCt = Rn

∑1/2
n Â

∑1/2
n STn

One obvious solution for the state matrix Â becomes

Â =
∑−1/2

n RT
nH(1)Sn

∑−1/2
n

Let Oi be a null matrix of order i, Ii an identity matrix of order i and the matrices
ET
m and ET

r are defined as:

ET
m =

[
Im 0m . . . 0m

]
,ET

r =
[
Ir 0r . . . 0r

]
where m is the number of outputs and r is the number of inputs.

Finally, using Equations (A.42), (A.43), (A.44), (A.46) and (A.47), the basic for-
mulation of the minimum order realization for the ERA/OKID (OKID means Ob-
server/Kalman filter Identificationis) is:

Yk = ET
mRn

∑−1/2
n

[∑−1/2
n RT

nH(1)Sn
∑−1/2

n

]k−1∑−1/2
n STnEr

Recall that in (A.36) Y [k] = ĈÂ
k−1

B̂.
Hence, a minimal order realisation is as follows:
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Â =
∑−1/2

n RT
nH(1)Sn

∑−1/2
n

B̂ =
∑−1/2

n STnEr

Ĉ = ET
mRn

∑−1/2
n

D̂ = Y(0)

(A.48)

The continuous state matrix Ac and the input influence matrix Bc are obtained
from (A.34), and the physical parameters - matrices M, L and K are embedded in
the state matrix Ac.

A.4 Results and discussion

A.4.1 Parameters estimation from curve fitting approach

From the curve fitting, the values for si and C1j (j=1,. . . ,4) are found to be: C11 =

6.65, C12 = −4.37, C13 = 1.761, C14 = −4.093, s1 = −8.082, s2 = −13.77,s3 =

0.523, s1 = −2.428.

The result from the curve fitting is shown in Figure A.5.

A.4.2 Vehicle crash experimental data analysis

It is observed from Figure A.6, that the dynamic crash from the real vehicle crash
test is 53.17 cm and occurs at time tc= 0.078 ms, when the unfiltered data are used
in the analysis. The filtered data result in a dynamic crash of 51.11 cm at time tc=
74.5 ms as shown in Figure A.7.
The initial velociy for both filtered and unfiltered data is closer to 35 km/h (i.e.
34.99 km/h for the unfiltered data and 35.28 km/h for the filtered data).

A.4.3 Results from the model

Four different cases are considered in this section as a sample of results. Let m1 be
the mass of the chassis, m2 the mass of passenger compartment and mt = 873kg

the total mass of the vehicle.
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Figure A.5: Result from curve fitting

Case 1: (m1 < m2): m1 = 1
3
mt , m2 = 2

3
mt

From Figure A.8, the dynamic crash of m2 is 80 cm which is the displacement of
the passenger compartment. Therefore this model cannot represent the vehicle crash
scenarion. It is observed that, the time for dynamic crash is longer than that for the
real crash (i.e. 0.17 s instead of 0.078 s).The dynamic crash of m1 is 42.5 cm and
occurs after 0.17s.

Case 2: (m1 > m2): m1 = 2
3
mt , m2 = 1

3
mt

From Figure A.9, the dynamic crash of the passenger compartment m2 is 66.2 cm .
The time for dynamic crash increases futher up to 0.15 s. The dynamic crash of m1

is 45.5 cm and occurs after 0.13s.Therefore for this case, the model cannot represent
the vehicle crash scenario.

Case 3: (m1 < m2): m1 = 1
4
mt, m2 = 3

4
mt

From Figure A.10, the dynamic crash of the passenger compartment m2 is 69 cm
. The time for dynamic crash is 0.15s. The dynamic crash of m1 is 30.9 cm and
occurs after 0.14s. This also cannot represent the real vehicle crash test.
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Figure A.6: Unfiltered data plot from the real vehicle crash test

Case 4: (m1 > m2): m1 = 3
4
mt, m2 = 1

4
mt

From Figure A.11, the dynamic crash of the passenger compartment m2 is 49.8
cm and the time for dynamic crash is 0.11s. The dynamic crash of m1 is 35.5 cm
and occurs after 0.1s. Therefore, this case can represent the vehicle crash senarion
because the dynamic crash is much closer to that from the real vehicle crash and the
time is relatively small as compared to other cases.

A summary of main results is shown in Table A.1. The values for k2 and c2 are
the first and second entry of vector V2 in (A.18). The values for k2 and c2 depend
on the value of mass m2 taken into consideration. Values for k1 and c1 are obtained
from vector V1 in (A.21). The stiffness coefficients which result in a closer vehicle
crash reconstruction are found to be k1 = 74681N/m, k2 = 45821N/m and the
damping coefficients are: c1 = 18176Ns/m, c2 = 11196Ns/m when the mass of
the chassis is 3

4
the total mass of the vehicle (mt), where the dynamic crash of the

passenger compartment is equal to 49.8 cm and occurs after 0.11s ( see sub section
4.3 case 4, Figure A.11).
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Figure A.7: Filtered data plot from the real vehicle crash test

It is observed that the passenger compartment m2 is the one that reconstructs the
vehicle crash. When the mass of the chassis is greater than that of the passenger
compartment, the results from the model are closer to the expected values. For
example, when m1 =582 kg (i.e.3

4
of the total mass of the vehicle) and m2 =291 kg

(i.e. 1
4

of the mass of the vehicle), the dynamic crash of the passenger compartment
is 49.8 cm which is closer to 51.11 cm (the dynamic crash from the real vehicle
crash).

Remark2: It is noting that optimal values for stiffness and damping coefficients
are not fixed. They are dependent on the mass of passenger compartment taken into
consideration.

A.4.4 State-Space Realization of the system by ERA

Consider a 2nd order system (i.e n=2) for a single degree of freedom and N=100, the
number of samples to assemble the Hankel matrix. It is observed that the continuous
system matrices from the ERA are
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Figure A.8: Comparative analysis between Vehicle crash test and model results for m1 =
1
3mt

Table A.1: Parameters estimation

Parameters 

Case 1 Case 2 Case 3 Case4 

m1=1/3  mt m1=2/3  mt m1=1/4 mt m1=3/ 4 mt 

Dynamic  

crash[cm]=80 

Dynamic 

 crash[cm]= 66 

Dynamic  

crash[cm]=69 

Dynamic 

crash[cm]=49.8 

Time of 

 crash[s]=0.17 

Time of 

 crash[s]= 0.15 

Time of 

crash[s]=0.14 

Time of 

crash[s]=0.11 

k1 [N/m] 45929 

 

74681 

 

 

k2 [N/m] 40731 45821 

 

 

c1 [Ns/m] 13687 

 

18176 

 

 

c2 [Ns/m] 9952 11196 
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Figure A.9: Comparative analysis between Vehicle crash test and model results for m2 =
1
3mt

Ac =

[
95.5776 −545.1246

545.12 −131.6485

]
; Bc =

[
−1474.8

5798.1

]
;

C =
[
0.1639 0.5717

]
;D = 0.1964

From the state-Matrix Ac, the eigenvectors Ψ and eigenvalues Λ were found to
be

Ψ,Ψ∗ =

[
0.1474± 0.6916i

0.7071

]
;

and Λ = diag{−18.04± 533.15i}
The natural frequency and the damping ratio of a single degree of freedom are

533 rad/s and 0.0338 respectifely. The bode diagram for the system is shown in
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Figure A.10: Comparative analysis between Vehicle crash test and model results for m1 =
1
4mt

Figure A.12

Considering a 4th order system (i.e n=4) for a two degree of freedom and the
number of samples to assemble the Hankel matrix equal to N=60, it is observed that
the continuous state-space realization from the ERA are found to be:

Ac =


−22.5 −526.3 56.2 141.5

526.3 −243.8 631.5 279.9

56.2 −631.5 −171.2 −1363.2

−141.5 279.9 136.2 −445.9

 ; Bc =


−1990.8

5436.8

3302.4

−4233.2

 ;

C =
[
0.2149 0.5366 −0.3368 −0.3826

]
;D = 0.1964

with
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Figure A.11: Comparative analysis between Vehicle crash test and model results for m2 =
1
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Figure A.12: Bode diagram for n=2, N=100 and N=50

Ψ1,Ψ
∗
1 =


0.6864

0.2979∓ 0.5573i

−0.1126± 0.1269i

−0.0715± 0.3092i

 ; Ψ2,Ψ
∗
2 =


0.0537∓ 0.0828i

−0.1269∓ 0.3363i

0.7002

0.0587∓ 0.6061i

 ;
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Figure A.13: Pole-zero map for n=2, N=100

and Λ = diag{−274.9± 501.4i,−166.8± 1476.7i}

The natural frequecies and damping ratios are:
ωn1 = 3592.8 rad/s, ωn2 = 9337.4 rad/s, ζ1 = 0.481, ζ2 = 0.112

For higher sample size, (i.e. N=2501 with order n=4), the system matrices are:

Ac =


0.1 −615.1 −3.6 −4.9

615.1 −13.1 −24.9 −5.3

−3.6 24.9 −2.1 −577.0

−4.9 −5.3336 577.0 −0.9876

 ; Bc =


1280.1

−5366.1

1636.4

−946.8

 ;

C =
[
−0.144 −0.5322 −0.1656 −0.0897

]
;D = 0.1964

with
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Figure A.14: Pole-zero map for n=2, N=50

Ψ1,Ψ
∗
1 =


0.0053± 0.6800i

0.6840

−0.0869∓ 0.1733i

−0.1561± 0.0880i

 ; Ψ2,Ψ
∗
2 =


0.0878± 0.1732i

0.1572∓ 0.0850i

−0.0027± 0.6799i

0.6841

 ;

and Λ = diag{−4.39± 617i,−3.85± 575i} The natural frequecies and damp-
ing ratios are:
ωn1 = 617 rad/s, ωn2 = 575 rad/s, ζ1 = 0.00712, ζ2 = 0.006680.

Remark2: Based on the state-space realization obtained by ERA, we should be
able to transfer the state matrix Ac to the original obtained from equation (A.31).
Hence extract the mass, stiffness and damping matrices.
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Figure A.15: Responses of a Single Degree of Freedom model to exitation force

A.5 Conclusion and future work

In this paper, it is presented a method to estimate the parameters of a double spring-
mass-damper model of a vehicle frontal crash. It was observed that the model re-
sults were much closer to the experimental test results. The overall behavior of the
model matches the real vehicle’s crush.Two of the main parameters characterizing
the collision are the maximum dynamic crush - which describes the highest car’s
deformation and the time at which it occurs- tm. They are pertinent to the occupant
crashworthiness since they help to assess the maximum intrusion to the passenger’s
compartment.
It can be concluded from this study, that a double spring-mass-damper model can
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represent the real vehicle crash scenario when the mass m1 representing the chassis
of the vehicle is less than m2, the mass representing the passenger compartment.
In all cases, the front part of the vehicle undergoes smaller deformation than the
passenger compartment.The time at which the maximum chassis displacement oc-
curs is slightly shorter than the time for the passenger compartment because of its
additional compression by the rest of the car. In our future work: (1) more inves-
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Paper B: A state-space approach to mathematical modeling and parameter
identification of vehicle frontal crash

Abstract — In this paper a state-space estimation procedure that relies on
the time-domain analysis of input and output signals is used for mathematical
modeling of vehicle frontal crash. The model is a double-spring-mass-damper
system, whereby the front mass and real mass represent the chassis and the
passenger compartment respectively. It is observed that the dynamic crash of
the model is closer to the dynamic crash from experimental when the mass of
the chassis is greater than the mass of passenger compartment. The dynamic
crash depends on pole placement and the estimated parameters. It is noted
that when the poles of the model are closer to zero, the dynamic crash of the
model is far from the dynamic crash from experimental data. The stiffness and
damping coefficients play an important role in the dynamic crash.
Key–Words: Modeling, vehicle frontal crash, parameters identification, state-space

representation

B.1 Introduction

Car crash test is usually performed in order to ensure safe design standards in crash-
worthiness, the ability of a vehicle to be plastically deformed and yet maintains a
sufficient survival space for its occupants during crash scenario. Nowadays, due
to advanced research in computer simulation software, simulated crash tests can be
performed beforehand the full-scale crash test. Therefore, cost associated with real
crash test can be reduced. Vehicle crashworthiness can be evaluated in four distinct
modes: frontal, side, rear and rollover crashes. System identification concerns the
construction and validation of mathematical models of dynamical systems from ex-
perimental input/output data. In experiments the system reveals information about
itself in terms of input and output measurements. System identification is routinely
used in industry as a tool for plant modeling. There are available solutions for identi-
fication of mathematical models based on experimental test procedures. One of the
most convenient and accessible solution is to use the System Identification Tool-
box [1]. In addition to the general use, the System Identification Toolbox is also
commonly used for creating models of vibrating mechanical systems [2, 3]. The
System Identification Toolbox is largely based on the work of Ljunun (L. Ljung,
1999.) and implements common techniques used in system identification. There is
substantial literature on System Identification [4]. The toolbox aids the user to fit
both linear and nonlinear models to measured data sets known as black box mod-
eling ( [5]). The system identification problem is to determine the unknown sys-
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tem characteristics such as mass, stiffness, and damping parameters using system
responses. In the work of [6], an investigation of an adaptable crash energy man-
agement system to enhance vehicle crashworthiness was carried out. The author
performed a system identification algorithm for vehicle lumped parameter model in
crash analysis using a genetic algorithm procedure, an effective procedure for opti-
mizing errors between experimental data and calculated data obtained analytically.
Also a systematic investigation of vehicle frontal crash was conducted using the
lumped-parameter model by [7]. Pawlus et al, [8] proposed a mathematical model
to estimate the maximum occupant deceleration, which is one of the main tasks in
the area of crashworthiness study by a Kelvin model which contains a mass together
with spring and damper connected in parallel. An application of physical models
composed of springs, dampers, and masses joined together in various arrangements
for simulating a real car collision with a rigid pole was presented by [9].

Marzbanrad and Pahlavani [10], presented an overview of the kinematic and dy-
namic relationships of a vehicle in a collision, whereby the work was to identify the
parameters of the vehicle crash model using experimental dataset. set. Munyazik-
wiye et al. [11] estimated the physical parameters of a frontal car crash using the
eigensystem realization algorithm and curve-fitting approaches. Marzbanrad and
Pahlavani [12], investigated and analyzed a lumped parameter modeling in frontal
crash in five degrees of freedom, and the response of occupant during the impact
was investigated.

The types of available models are low order process models, transfer functions,
state-space models, linear models with static nonlinearities, nonlinear autoregres-
sive models, etc. The identification tasks are divided into separate parts. After
creating an identification and validation data set, the data is pre-processed. Iden-
tification is initialized by selecting and setting up the proper model type. Finally
the models can be validated using numerous techniques such as comparing model
response with measurement data, step response and a pole-zero plot.

The aim of the identification process is to identify the contents of matrices A,
B, C given the input and output data set. The Matlab System Identification toolbox
offers two estimation methods for state-space models:
• Subspace identification
• Iterative prediction-error minimization method.

The matrices: A ∈ IRn×n, is called the (dynamical) system matrix. It de-
scribes the dynamics of the system (as completely characterized by its eigenval-
ues). B ∈ IRn×m is the input matrix which represents the linear transformation by
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which the deterministic inputs influence the next state, C ∈ IRl×n is the output ma-
trix which describes how the internal state is transferred to the outside world in the
measurements yk. The term with the matrix D ∈ IRl×m is called the direct feed-
through term. In continuous time systems this term is most often 0.

In this paper the state-space of the model under study was obtained and the
physical parameters (stiffness and damping coefficients) were extracted from the
dynamical system matix A. The model was finally validated by the experimental
data. The results from the model are much closer to the real crash senario. The
results show that a vehicle with chassis heavier than the passanger compatment
experienes less dynamic crash. Therefore care should be taken by car designer
as far as the ratios (with respect to the total mass of the car) of the chassis and
passenger compartment are concerned.

The novelty of the approach used in this paper is that, it is less computational
time as compared to the previous approaches, like eigensysten realisation and curve
fitting techniques, in the literature and the simulation results are much closer to the
experimental results.

B.2 Vehicle crash experimental test

The real vehicle crash experiment was conducted on a typical mid-speed vehicle to
pole collision. Its elaboration was the initiative of Robbersmyr, 2004. A test ve-
hicle was subjected to impact with a vertical and rigid cylinder. The acceleration
field was 100 meters long and had two anchored parallel pipelines. The vehicle
was steered using those pipelines that were bolted to the concrete runaway. Setup
scheme is shown in Figure B.1. During the test, the acceleration was measured in
three directions (x - longitudinal, y - lateral, and z - vertical) together with the yaw
rate from the center of gravity of the car. Using normal speed and high - speed
video cameras, the behavior of the safety barrier and the test vehicle during the col-
lision was recorded. The initial velocity of the car was 35 km/h, and the mass of
the vehicle (together with the measuring equipment and dummy) was 873 kg. The
obstruction was constructed with two steel components - a pipe filled with concrete
and a baseplate mounted with bolts on a foundation. The car undergoing the defor-
mation is shown in Figure B.2. The accelerometer is located at the mass center of
gravity of the vehicle in the passenger compartment. Since we are interested in the
frontal crash, only the measured acceleration in the longitudinal direction is consid-
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Figure B.1: Vehicle crash Experimental setup , [13]

ered in this study. The acclereration data is imported and processed in MATLAB
for analysis. The deformation of the vehicle is obtained by integrating twice the
acceleration signal.
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Figure B.2: Vehicle undergoing deformation, [13]

B.3 Mathematical modeling

The experimental data were first imported in the Matlab Workspace and processed
for being suitable for identification of the model. The measured acceleration was
twice integrated to obtain the measured displacement signal. The processed data
were further imported into a system identification toolbox. A transfer function
model and a state-space canonical form were thereafter obtained.

Figure B.3 shows the measured input-output signals and simulated output re-
spectively.
The transfer function from the experimental data is as follows:

Te(s) =
−0.0139s+ 0.5942

s4 + 97s3 + 3810s2 + 87170s+ 35718
(B.1)

The estimated-state space model model of order 4 is as follows:
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Figure B.3: Measured and Estimated outputs

Ae =


−97 −3810 −87170 −35718

1 0 0 0

0 1 0 0

0 0 1 0

 ,Be =


1

0

0

0

 , (B.2)

Ce =
[
0 0 −0.0139 0.5942

]
,De =

[
0
]

(B.3)

Mathematical models describe the dynamic behavior of a system as a function
of time. During frontal crash, the vehicle is subjected to an impulsive force caused
by the obstacle. The model for vehicle crash simulates a rigid barrier impact of a
vehicle where m1 and m2 represent the frame rail (chassis) and passenger compart-
ment masses, respectively.
Parameters to be estimated are springs k1 and k2, dampers c1 and c2, as shown in
Figure B.4. When the vehicle impacts on a rigid barrier, the two masses will ex-
perience an impulsive force during collision. The method for solving the impact
responses of the two masses is adapted from te method used in the free vibration
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analysis of a two-degrees of freedom damped system ( [14]).

 

 

 

u(t) 

Figure B.4: A double spring-mass-damper model

The dynamic equations of the doble mass-spring-damper model are shown in
Equation(B.4).

m1ẍ1 + (c1 + c2)ẋ1 + (k1 + k2)x1 − c2ẋ2 − k2x2 = u

m2ẍ2 − c2ẋ1 + c2ẋ2 + k2x2 − k2x1 = 0 (B.4)

or

[
m1 0

0 m2

][
ẍ1

ẍ2

]
+

[
k1 + k2 −k2

−k2 k2

][
x1

x2

]
+

[
c1 + c2 −c2

−c2 c2

][
ẋ1

ẋ2

]
=

[
u

0

]
(B.5)

From (B.5) a transfer function between u(t) and x2(t) is derived and given in
(B.6).

Tmodel(s) =
Num(s)

Den(s)
(B.6)

with

Num(s) = c2s+ k2

Den(s) = m1m2s
4 − (m1c2 +m2(c1 + c2))s3

+ (m1k2 +m2(k1 + k2) + c1c2)s2 + (c1k2 + c2k1)s+ k1k2
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The state-space canonical form representation from this transfer function is:

Am =


−a3 −a2 −a1 −a0

1 0 0 0

0 1 0 0

0 0 1 0

 ,Bm =


1

0

0

0

 ,Cm =
[
b3 b2 b1 b0

]
, (B.7)

De =
[
0
]

with

a0 = −(k1k2)

m1m2

, a1 = −(c1k2 + c2k1)

m1m2

, a2 = −(m1k2 +m2(k1 + k2) + c1c2)

m1m2

,

a3 = −(m1c2 +m2(c1 + c2))

m1m2

.

b0 = − k2

m1m2

, b1 = − c2

m1m2

, b2 = 0, b3 = 0.

The physical parameters are embedded in the state matrix. Therefore by inspec-
tion, the identified parameters are obtained by comparing the two state matrices Ae
in (B.2) and Am in (B.7), which are summarized in the following:

m1c2 +m2c1 +m2c2 = m1m2 × 97 (B.8)

m1k2 +m2k1 +m2k2 = m1m2 × 3810

c1k2 + c2k1 = m1m2 × 87170

k1k2 = m1m2 × 35718

A summary of estimated parameters considering different cases is shown in
Table B.1. Only real values are considered.

B.4 Simulation Results

Four different cases were considered for simulation of vehicle frontal crash. The
solution of (B.8) is not unique. Four solutions for each parameter were found, two
real and two complex conjugate solutions. For the physical system, only real values
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have meaning. Therefore the complex solutions were neglected in the development
of the model. A summary of estimated real valued parameters is shown in Table
B.1

Table B.1: Parameters estimation

Cases Solution 

No 

Estimated Parameters 

k1 

[N/m] 

 

 

k2 

[N/m] 

c1 

[Ns/m] 

c2 

[Ns/m] 

Case1:m1=1/3 mt 

            m2=2/3mt 

1 3498.37 640808 22989 9440 

2 15324.66 6293.37 5247 961212.45 

Case2:m1=2/3 mt 

            m2=1/3 mt 

1 7720.9 440070 33306.4 13746.15 

2 11102.14 33162.72 458205 1320210 

Case3:m1=1/4 mt 

            m2=3/4 mt 

1 475.68 606207.28 20541.68 8419.68 

2 15406.26 6314.76 634.24 808276.38 

Case4:m1=3/4 mt 

            m2=1/4 mt 

1 6734.92 337670.38 36588.11 15115.54 

2 9147 3778.88 26939.66 1350681.54 

 

Case 1: (m1 < m2). One has that m1 = 1
3
mt and m2 = 2

3
mt

Solution of (B.8) is as follows:
c1 = {22987, 524756, 2524649∓ 2884882i, 298807∓ 2884882i}
k1 = {3498.37, 15324.66, 1992.02± 19232.54i, 16830.99± 19232.54i}
c2 = {9440.06, 961212.45, 67992.08∓ 747581.32i, 1094.86∓ 1203.81i}
k2 = {640808.30, 6293.37, 729.91± 8025.41i, 45328.05± 498387.54i}

Taking: c1 = 22987Ns/m; k1 = 3498.37N/m; c2 = 9770.06Ns/m; k2 =

640808.03N/m;

The state-space canonical form is:

Am =


−1281 −4597 −669 −13238

1 0 0 0

0 1 0 0

0 0 1 0

 ,Bm =


1

0

0

0

 ,

Cm =
[
0 0 0.0557 3.784

]
,Dm =

[
0
]

(B.9)

and
Poles={−63.7936± 22.7051i,−0.0329± 1.6987i};
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Zeros= {−67.8822}.
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 Comparison between experimental and model results
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Figure B.5: Comparative analysis between vehicle crash test and model results for
m1 = 1

3mt

From Figure B.5, the dynamic crash of m2 is 66.55 cm which is the displace-
ment of the passenger compartment. Therefore this model cannot represent the
vehicle crash scenarion. It is observed that, the time for dynamic crash is longer
than that for the real crash (i.e. 0.14 s instead of 0.078 s).The dynamic crash of
the chassis represented by m1 is more or less equal to that of the passenger com-
partment -a difference of 0.43 cm is observed and but the time of crash is larger
compared to that from the real crash and that from the passenger compartment (i.e.
0.17s). The model where the chassis is a third of the car cannot represent the crash
scenario.

Taking:
c1 = 5247.56Ns/m; k1 = 15324.66N/m; c2 = 961212.45Ns/m; k2 = 6293.37N/m;
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Am =


−49652 −2989196 −873128 −5686

1 0 0 0

0 1 0 0

0 0 1 0

 ,

Bm =


1

0

0

0

 ,Cm =
[
0 0 55.66 0.371

]
,Dm =

[
0
]

(B.10)

and
Poles={−4966.7,−3± 2.9i,−0}
Zeros={−0.0065}
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Figure B.6: Comparative analysis between vehicle crash test and model results for
m2 = 1

3mt

From Figure B.6 the value of dynamic crash of the passenger compartment as
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represented by mass m2 is very high and cannot be observed from the response
graph, i.e. tends to ∞, resulting in a criticaly stable system because of a pole at
zero. Therefore this model cannot represent the vehicle crash scenario because the
deformation of the car cannot tend to∞. The time of crash is not observed because
the velocity never cross zero as an indication of maximum time of crash. Therefore
the pysical parameters obtained for this model are not of much interest.

Case 2: (m1 > m2). One has that m1 = 2
3
mt and m2 = 1

3
mt

Solution of (B.8) is as follows:

c1 = {33306.41, 23162.72, 44523.48± 31912.62i, 11945.65∓ 31991.26i}
k1 = {7720.91, 11102.14, 3981.88∓ 106337.54i, 14841.16± 106337.54i}
c2 = {13746.16, 1320210.06, 437015.59± 1204203.36i, 483269∓ 13316.56i}
k2 = {440070.02, 4582.05, 1610.89∓ 4438.85i, 145671.86± 401401.12i}

Taking: c1 = 33306.4Ns/m; k1 = 7720.9N/m; c2 = 13746.16Ns/m; k2 =

440070.02N/m;

The state-space canonical form is:

Am =


−1279 −298196 −873128 −20063

1 0 0 0

0 1 0 0

0 0 1 0

 ,Bm =


1

0

0

0

 ,

Cm =
[
0 0 0.081 2.598

]
,Dm =

[
0
]

and
Poles={−63.8± 29.3i,−0.16± 2i}
Zeros= {−32}

From Figure B.7, the dynamic crash of the passenger compartment is 52.92 cm
and the time for dynamic crash decreases as compared to the previous case , that is,
from 0.14 s to 0.11 s. The dynamic crash of the chassis is 51.05 cm and occurs after
0.16s. Therefore for this case, the model can represent the vehicle crash scenario
because the dynamic crash is much closer to that obtained from the experimental
data.
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Figure B.7: Comparative analysis between vehicle crash test and model results for
m1 = 1

4mt

Taking:
c1 = 33162.72Ns/m;k1 = 11102.14N/m; c2 = 1320210Ns/m; k2 = 458205N/m;

Am =


−6861 −26081 −8731228 −88745

1 0 0 0

0 1 0 0

0 0 1 0

 ,Bm =


1

0

0

0

 ,

Cm =
[
0 0 7.79 2.71

]
,Dm =

[
0
]

(B.11)

and
Poles={−63.8± 29.3i,−0.16± 2i}
Zeros= {−32}

From B.8, the dynamic crash of the passenger compartment is 50.16 cm and the
time for dynamic crash increases as compared to the previous case , that is, from
0.14 s to 0.16 s. The dynamic crash of the chassis is 49.82 cm and occurs after
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Figure B.8: Comparative analysis between vehicle crash test and model results for
m2 = 1

4mt

0.16s.Therefore for this case, the model can represent the vehicle crash scenario
because the dynamic crash is much closer to that obtained from the experimental
data.

Case 3: (m1 < m2). One has that m1 = 1
4
mt and m2 = 3

4
mt

Solution of (B.8) is as follows:

c1 = {20541.68, 634.24, 20494.51∓ 6561.71i, 681.41∓ 26561.71i}
k1 = {475.68, 15406.26, 511.06± 19921.28i, 15370.88± 19921.28i}
c2 = {8419.68, 808276.38, 7329.54∓ 613913.15i, 132.33∓ 11083.75i}
k2 = {606207.29, 6314.76, 99.25± 8312.81i, 5497.15± 460434.86i}

Taking:
c1 = 20541.68Ns/m;k1 = 47.68N/m; c2 = 8419.68Ns/m; k2 = 606207.29N/m;

The state-space canonical form is:
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Am =


−145.5 −4916 −96.4 −2018.2

1 0 0 0

0 1 0 0

0 0 1 0

 ,Bm =


1

0

0

0

 ,

Cm =
[
0 0 0.059 4.24

]
,Dm =

[
0
]

(B.12)

and
Poles={−92.31,−53.23,−0.0037± 0.6408i.}
Zeros= {−71.99}
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Figure B.9: Comparative analysis between vehicle crash test and model results for
m2 = 1

4mt

From Figure B.9, the dynamic crash of m2 is 73.07 cm which is the displace-
ment of the passenger compartment. Therefore this model cannot represent the
vehicle crash scenario. It is observed that, the time for dynamic crash is longer than
that for the real crash (i.e. 0.17 s instead of 0.078 s).The dynamic crash of the chas-
sis represented by m1 is more or less equal to that of the passenger compartment -a
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difference of 0.62 cm is observed and the time of crash is same as that of passenger
compartment and larger as compared to that from the real crash (i.e 0.17s). The
model where the mass of chassis is a quarter of that of the car cannot represent the
crash senario.

Taking:
c1 = 634.24Ns/m;k1 = 15406.26N/m; c2 = 808276.38Ns/m; k2 = 6314.76N/m;

The state-space canonical form is:

Am =


−4940.5 −7515.7 −87193.8 −68082.6

1 0 0 0

0 1 0 0

0 0 1 0

 ,Bm =


1

0

0

0

 ,

Cm =
[
0 0 5.66 4.42

]
,Dm =

[
0
]

(B.13)

and
Poles={−4939.3,−0.4± 4.1i,−0.8.}
Zeros= {−0.7813}

The dynamic crah and time of crash represented in Figure B.10 are similar to
those in Figure B.7. The value of dynamic crash of the passenger compartment
as represented by mass m2 is very high and cannot be observed from the response
graph, i.e. tends to ∞. Therefore this model cannot represent the vehicle crash
scenario.

Case 4: (m1 > m2). One has that m1 = 3
4
mt and m2 = 1

4
mt

Solution of (B.8) is as follows:

c1 = {36588.11, 26939.66, 49693.65± 311586.52i, 138334.12± 31586.52i}
k1 = {6734.92, 9147.03, 3458.53∓ 7896.63i, 12423.41∓ 7896.63i}
c2 = {15115.55, 1350681.54, 558910.44± 1310635.28i, 5620.72∓ 13180.49i}
k2 = {337670.38, 3778.88, 1405.18∓ 3295.12i, 139727.61∓ 327658.82i}

Taking:
c1 = 36588.11Ns/m;k1 = 6734.92N/m; c2 = 15115.55Ns/m; k2 = 337670.38N/m;

The state-space canonical form is:
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Figure B.10: Comparative analysis between vehicle crash test and model results for
m2 = 1

4mt

Am =


−148.2 −5943.3 −2436.7 −15913.2

1 0 0 0

0 1 0 0

0 0 1 0

 ,Bm =


1

0

0

0

 ,

Cm =
[
0 0 0.11 2.36

]
,Dm =

[
0
]

(B.14)

and
Poles={−73.94± 20.55,−0.173± 1.6347i.}
Zeros= {−22.34}

From Figure B.11, the dynamic crash of the passenger compartment is 50.48 cm
and the time for dynamic crash decreases as compared to the previous case , that is,
from 0.14 s to 0.11 s. The dynamic crash of the chassis is 48.14 cm and occurs after
0.16s.Therefore for this case, the model can represent the vehicle crash scenario
because the dynamic crash is much closer to that obtained from the experimental
data.
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Figure B.11: Comparative analysis between vehicle crash test and model results for m2 =
1
4mt

Taking:
c1 = 26939.66Ns/m;k1 = 9147.03N/m; c2 = 1350681.54Ns/m; k2 = 3778.88N/m;

The state-space canonical form is:

Am =


−8292.5 −184674.6 −8817.3 −24.19

1 0 0 0

0 1 0 0

0 0 1 0

 ,Bm =


1

0

0

0

 ,

Cm =
[
0 0 9.45 0.026

]
,Dm =

[
0
]

(B.15)

and
Poles={-8261.9, -30.8, -0, -0. }
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Zeros= {-0.0028}
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Figure B.12: Comparative analysis between vehicle crash test and model results for
m2 = 1

4mt

From Figure B.12 the dynamic crash of the passenger compartmentm2 is 60.24cm
and the time for dynamic crash is 0.24s. The dynamic crash and time of crash of
chassis are same as those of the passenger compartment.This case cannot represent
the vehicle crash scenario because the dynamic crash is much diverging from the
real vehicle crash.

A summary of main results is shown in Table B.2. The parameter values depend
on the value of mass m2 taken into consideration.

The stiffness coefficients which result in a closer vehicle crash reconstruction
are found to be k1 = 74681N/m, k2 = 45821N/m and the damping coefficients
are: c1 = 18176Ns/m, c2 = 11196Ns/m in the case 4, where the dynamic crash of
the passenger compartment is equal to 49.8 cm and occurs after 0.11s (see Figures
B.8, B.9 and B.12).

When the mass of the chassis is greater than that of the passenger compartment,
the results from the model are closer to the expected values. For example:
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Table B.2: Dynamic crash and time of crash comparison

CmExp 

[cm] 

 

Tm-Exp 

[s] 

Solution No 1 masses Cm 

[cm] 

Tm 

[s] 

Solution No 2 

 

masses Cm 

[cm] 

Tm 

 [ s] 

50.63 0.075 

Case1:m1=1/3 mt 

            m2=2/3mt 

m2 66.55 0.14 Case1:m1=1/3 mt 

            m2=2/3mt 

m2 ∞ - 

m1 66.13 0.19 m1 ∞ - 

Case2:m1=2/3 mt 

            m2=1/3 mt 

m2 52.92 0.11 Case2:m1=2/3 mt 

            m2=1/3 mt 

m2 50.16 0.16 

m1 51.05 0.16 m1 49.82 0.15 

Case3:m1=1/4 mt 

            m2=3/4 mt 

m2 73.07 0.17 Case3:m1=1/4 mt 

            m2=3/4 mt 

m2 ∞ - 

m1 72.45 0.17 m1 ∞ - 

Case4:m1=3/4 mt 

            m2=1/4 mt 

m2 50.48 0.11 Case4:m1=3/4 mt 

            m2=1/4 mt 

m2 60.24 0.24 

m1 48.14 0.16 m1 60.24 0.24 

 

 

 

   

 

• When m1 =3
4
mt m2 =1

4
mt, the identified parameters are: k1= 6734.92 N/m ,

k2= 337670.38 N/m , c1= 36588.11 Ns/m and c2= 15115.54 Ns/m. The dynamic
crash of the chassis is 48.14 and the dynamic crash of the passenger compartment
is 50.48 cm which is closer to 50.68 cm (the dynamic crash from the real vehicle
crash).
•When m1 =2

3
mt and m2 =1

3
mt, the identified parameters are: k1= 11102.14 N/m ,

k2= 33162.72 N/m , c1= 4558205 Ns/m and c2= 1320410 Ns/m. The dynamic crash
of the chassis is 49.82 and the dynamic crash of the passenger compartment is 50.16
cm which is closer to 50.68 cm (the dynamic crash from the real vehicle crash).

Remark1: It is noting that optimal values for stiffness and damping coefficients
are not fixed as shown in Table B.1. They are dependent on the mass of passenger
compartment taken into consideration.

Remark2:

The effectiveness of obtained results showing the effect of mass of chassis and
passenger compartment are clearly shown from Figure B.5 to Figure B.12 and Table
B.2.

B.5 Conclusion

It is observed that the dynamic crush of the model is closer to the dynamic crush
from experimental when the mass of the chassis is greater than the mass of passen-
ger compartment. Figures B.8, B.9 and B.12 are the estimated models that recon-
struct the vehicle crash with small errors in terms of dynamic crush. But the time of
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crash in the three cases is still larger than the time of crash from the experimental
data. It is noticed that when the poles of the model are closer to zero, the dynamic
crush of the model is far from the dynamic crush from experimental data. The stiff-
ness and damping coefficients play an important role in the dynamic crush. The
smaller the stiffness and damping coefficients, the higher the dynamic crush.
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Paper C: Mathematical Model for Vehicle-Occupant Frontal Crash using
Genetic Algorithm

Abstract — In this paper, a mathematical model for vehicle - occupant
frontal crash is developed. The developed model is represented as a double-
spring-mass-damper system, whereby the front mass and the rear mass rep-
resent the vehicle chassis and the occupant, respectively. The springs and
dampers in the model are nonlinear piecewise functions of displacements and
velocities respectively. More specifically, a genetic algorithm (GA) approach is
proposed for estimating the parameters of vehicle front structure and restraint
system. Finally, it is shown that the obtained model can accurately reproduce
the real crash test data taken from the National Highway Traffic Safety and
Administration (NHTSA). The maximum dynamic crash of the vehicle model
is 0.05% less than that in the real crash test. The displacement of the occupant
is 0.09% larger than that from the crash test. Improvement of the model accu-
racy is also observed from the time at maximum displacement and the rebound
velocities for both the vehicle and occupant.

Keywords— Modeling; vehicle-occupant; frontal crash; parameters estimation;

genetic algorithm;

C.1 Introduction

Car accidents are one of the major causes of mortality in modern society. While it
is desirable to maintain the crashworthiness, car manufacturers perform crash tests
on a sample of vehicles for monitoring the effect of the occupant in different crash
scenarios. Car crash tests are usually performed to ensure safe design standards in
crashworthiness (the ability of a vehicle to be plastically deformed and yet maintains
a sufficient survival space for its occupants during the crash scenario). However, this
process requires a lot of time, sophisticated infrastructure and trained personnel to
conduct such a test and data analysis. Therefore, to reduce the cost associated with
the real crash test, it is worthy to adopt the simulation of a vehicle crash and validate
the model results with the actual crash test. Nowadays, due to advanced research in
simulation tools, simulated crash tests can be performed beforehand the full-scale
crash test. Therefore, the cost associated with the real crash test can be reduced.
Finite element method (FEM) models and lumped parameter models (LPM) are
typically used to model the vehicle crash phenomena. Vehicle crashworthiness can
be evaluated in four distinct modes: frontal, side, rear and rollover crashes. Several
types of research have been carried out in this field, which resulted in several novel
computational models of vehicle collisions in literature, and a brief review is given
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in this paper.

C.2 Literature survey and limitations of current tech-
niques

An application of physical models composed of springs, dampers and masses joined
in various arrangements for simulating a real car collision with a rigid pole was
presented in [1]. In [2], a 5-DOFs lumped parameter modeling for the frontal crash
was investigated to analyze the response of occupant during the impact. Ofochebe et
al. in [3] studied the performance of vehicle front structure using a 4-DOFs lumped
mass-spring model composed of body, engine, the cross-member and suspension
and the bumper masses.

In [4] and [5], an optimization procedure to assist multi-body vehicle model de-
velopment and validation was proposed. In the work of [6], the authors proposed an
approach to control the seat belt restraint system force during a frontal crash to re-
duce thoracic injury. Klausen et al. [7] used firefly optimization method to estimate
parameters of vehicle crash test based on single-mass. To reconstruct the crash
event, Tørdal et al. [8] extracted the motion of a bus in an oblique crash and the
kinematics of a Ford Fiesta in a pole crash from a high frame rate video. Tso-Liang
et al. in [9] examined the dynamic response of the human body in a crash event and
assessed the injuries sustained to the occupant’s head, chest and pelvic regions.To
reduce the occupant injury risks in vehicle frontal crashes, mathematical models that
optimize the vehicle deceleration have been developed in [10, 11]. Apart from the
commonly used approaches, recently intelligent approaches have been used in the
area of vehicle crash modeling. The most commonly used are Fuzzy logic in [12],
Neuro-fuzzy in [13], firefly algorithm in [7] and genetic algorithm. A genetic algo-
rithm has been used in [14] for calculating the optimized parameters of a 12-DOFs
model for two vehicle types in two different frontal crashes. In [15, 16], the author
used Genetic Algorithms to optimize the performance of PID, Fuzzy and Neuro-
fuzzy controllers on various systems. The main challenge in accident reconstruction
is the system identification described as the process of constructing mathematical
models of dynamical systems using measured input-output data. In the case of a ve-
hicle crash, system identification algorithm consists of retrieving the unknown pa-
rameters such as the spring stiffness and damping coefficient. A possible approach
is to identify these parameters directly from experimental data. From literature, Sys-
tem Identification Algorithms (SIA) have been developed for different applications.

128



C

Paper C: Mathematical Model for Vehicle-Occupant Frontal Crash using
Genetic Algorithm

Among others, we can state-space identification, eigensystem realization algorithm
and data-based regressive model approaches. Typical examples where these SIA
have been used can be found in [17–19].

In this paper, based on the previous research work [7], we develop a mathemat-
ical model for a double-spring-mass-damper system which reconstructs a vehicle-
occupant frontal crash scenario and estimates structural parameters of the vehicle’s
front structure and the restraint system. The structural parameters estimated are
spring and damping coefficients. To estimate the physical parameters of the model,
a genetic algorithm is proposed. It is observed that the predicted results fit the ex-
perimental data very well.

C.3 The newly proposed method

The main objective of this section is to represent a dynamic model to capture the
vehicle frontal crash phenomena. During the frontal crash, the vehicle is subjected
to an impulsive force caused by the obstacle. The model for vehicle crash simu-
lates a rigid barrier impact of the car, where m1 and m2, as shown in Figure C.1
represent the frame rail (chassis) and occupant masses, respectively. In this model,
the parameters to be estimated are spring stiffness constants kl, knl and k2, damp-
ing constants cl, cnl and c2. When the vehicle crashes into a rigid barrier, the two
masses will experience an impulsive force during the collision. The real crash phe-
nomenon is shown in Figure C.2 and it is observed that the value for the maximum
dynamic crash of the vehicle is 72.69 cm, the time of the crash is 0.0894 s and the
rebound velocity is −3.75 m/s. At the time of crash, the occupant experiences a
forward movement of 30.3 cm making a total displacement of 103 cm. The rebound
velocity of the occupant is −13.1 m/s.

In line of the model development to capture the values as mentioned earlier
during the crash scenario, the 2-DOF dynamical model proposed in [20] for the free
vibration analysis is adopted for solving the impact responses of the two masses.
Then, the genetic algorithm is used to estimate the 2-DOF model parameters.

C.3.1 Model 1: Combination of linear and nonlinear springs
and dampers

In model 1 the deforming spring and damping forces, developed at time of crash, are
nonlinear cubic functions in x and ẋ respectively. The spring stiffness and damper
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Figure C.1: A double spring-mass-damper model

constants are defined as follows:

k1 = kl + knl (C.1)

c1 = cl + cnl (C.2)

The dynamic equations of the double-mass-spring-damper model are shown in
the following:

Fstr = klx1 + knlx
3
1 + clẋ1 + cnlẋ

3
1 (C.3)

Frest = k2(x2 − x1) + c2(ẋ2 − ẋ1) (C.4)

ẍ1 = (Frest − Fstr)/m1 (C.5)

ẍ2 = (Frest)/m2 (C.6)

where Fstr and Frest are the deformation force of the vehicle frontal structure
and the restraint system respectively.
kl and knl, are linear and nonlinear springs cl and cnl, are linear and nonlinear
dampers of the front vehicle structure respectively. k2 and c2 are spring stiffness
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Figure C.3: The Model 2

and damper coefficients for the restraint system respectively.
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Figure C.4: Stiffness and damper characteristics of vehicle frontal structure

C.3.2 Model 2: Piecewise functions of springs and dampers

Figure C.3 represents the vehicle- occupant model with non-linear spring and dampers,
which crashes into a fixed barrier. Based on the nonlinear characteristics of veloc-
ity and displacement of the vehicle and forward movement of the occupant shown
in Figure C.2, the springs and dampers that simulate such characteristics must also
be nonlinear as predefined in Figure C.4. The dynamic equation of the model is
defined by:

Fstr = k1x1 + c1ẋ1 (C.7)

Frest, ẍ1 and ẍ2 are identical to Eqs.(4) - (6). The piecewise functions for stiffness
and dampers in the front structure of the vehicle and restrain system are defined as
follows:

ki(xi) =


ki1 + ki2−ki1

xi1
xi xi ≤ xi1

ki2 + ki3−ki2
Ci−xi1 (xi − xi1) xi1 ≤ xi ≤ Ci

(C.8)

ci(ẋi) =


ci1 − ci1−ci2

ẋi1
ẋi ẋi ≤ vi−th

ci2 − ci2−cv3
v0−ẋi1 (ẋi − vi−th) vi−th ≤ ẋi ≤ v0

(C.9)
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Figure C.5: Stiffness and damper characteristics of the restraint system

where the index i = 1, 2 stand for 1st and 2nd mass respectively. Ci is the dy-
namic crash of the vehicle or occupant. v0 is the initial impact velocity. vi−th is the
threshold velocity of i mass.

At the maximum crash, the spring stiffness is assumed to be high, but the damper
coefficient is small for maintaining the shape of displacements and velocities of
vehicle and occupant respectively. To get better results, the model in Figure C.4 can
be modified by introducing two break point on the predefined shapes of springs and
dampers as shown in Figure C.5 and defined in Eqs.(C.10) - (C.11).

ki(xi) =



ki1 + ki2−ki1
xi1

xi xi ≤ xi1

ki2 + ki3−ki2
xi2−xi1 (xi − xi1) xi1 ≤ xi ≤ xi2

ki3 + ki4−ki3
Ci−xi2 (xi − xi2) xi2 ≤ xi ≤ Ci

(C.10)
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ci(ẋi) =



ci1 − ci1−ci2
ẋi1

ẋi ẋi ≤ ẋi1

ci2 − ci2−ci3
ẋi2−ẋi1 (ẋi − ẋi1) ẋi1 ≤ ẋi ≤ ẋi2

ci3 − ci3−ci4
v0−ẋi2 (ẋi − ẋi2) ẋi2 ≤ ẋi ≤ v0

(C.11)

C.3.3 Optimization algorithm

The proposed algorithm seeks to find the minimum function between several vari-
ables as can be stated in a general form minf(p), where ‘p′ denotes the unknown
variables, which are the damping and stiffness constants in the model. The cost
function f(p) is the objective function which should be optimized. The cost func-
tion to be minimized is the norm of the absolute error between the displacement of
the simulated cash and the experimental crash data and is defined as

[Error] = sum(|Est − Exp|T × |Est − Exp) (C.12)

where Est and Exp are the model and experimental variables (displacements, veloc-
ity and acceleration) respectively. All parameters defined in Eqs.(C.8) -(C.11) are
embedded in Est .

The GA method is used here for optimization of the cost function. The GA-type
of search schemes is function-value comparison-based, with no derivative compu-
tation. It attempts to move points through a series of generations, each being com-
posed of a population which has a set number of individuals, where individuals
represent parameters to be estimated. The population size depends on the number
of parameters to be estimated for a given model. For example, the Model1 has six
individuals, Model 2 for a one break point piecewise function, in Figure (C.4), has
eighteen individuals and twenty-four individuals for a two break points piecewise
function, in Figure (C.5). Each individual is a point in the parameter space (in
our case, the displacement of experimental data). The schemes that are applied to
the evolution of generations have some analogy to the natural genetic evolution of
species, hence the term genetic.

G.A. is an adaptive heuristic search algorithm based on the evolutionary ideas of
nature selection and genetics. It represents an intelligent exploitation of a random
search used to solve optimization problems and consists of five operators: Initial-
ization, Selection, crossover, mutation and replacement. Initialization is used to
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Figure C.6: GA flowchart

seed initial population randomly while selection is used to select the fittest from the
population. Crossover is used to explore the search space. Mutation is used to re-
move the problem like genetic drift (some individuals may leave behind a few more
off-springs than other individuals), and replacement is used to progress generation
wise population [21]. Figure C.6 shows a general flowchart of a genetic algorithm.
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Figure C.7: Comparison between vehicle model and vehicle experimental data - Nonlinear
Model1

C.4 Results and discussion

Comparisons between the model results and the experimental data are shown in Fig-
ures C.7 - C.9, where the stapled lines and continuous lines represent the simulation
results and the experimental data respectively. The symbols s-Ex-Veh, v-Ex-Veh,
a-Ex-Veh, s-Ex-Occ, v-Ex-Occ, a-Ex-Occ, s-Mod-Veh, v-Mod-Veh, a-Mod-Veh,
s-Mod-Occ, v-Mod-Occ, a-Mod-Occ, on the legends stand for displacement (s),
velocity(v) and acceleration(a) of the vehicle(Veh) and occupant(Occ) respectively.
Ex and Mod stand for Experimental and Model, respectively.

It is noted from Figure C.7 that the maximum displacements of the vehicle and
occupant models are 9.2% and 9.5% less those from the experimental data respec-
tively. The time of the dynamic crush is far from the experimental data. The max-
imum crash of the vehicle is 0.089 s while that from the model is 0.098 s. This is
also observed on the occupant time at maximum displacement; that is 0.146 s in-
stead of 0.12 s from data. The rebound velocity of −2.3m/s for the vehicle model
is slightly less than that in the real crash (i.e. −3.75m/s), but the occupant rebound
velocity of −13.5m/s is almost closer to the real crash data (i.e.−13.1m/s). This
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Table C.1: Parameters estimation Model1

Parameter  Value  Unit  

kl 6.4270e+04 N/m 

knl 30.3830 N/m3 

cl 6.2029e+04 Ns/m 

cnl 246.2119 Ns3/m3 

k2 4.3159e+04 N/m 

c2 2.0797e+03 Ns/m 

 

Table C.2: Parameters estimation Model2- one break point piecewise function

Parameter  Value  Unit  Parameter  Value  Unit  

k11 6.3993e+04 N/m k21 6.2502e+03 N/m 

k12 3.5743e+04 N/m k22 3.8618e+04 N/m 

k13 6.3669e+04 N/m k23 7.5718e+04 N/m 

x11 0.3034 m x21 0.0529 m 

c11 8.3497e+04 Ns/m c21 3.1340e+03 Ns/m 

c12 3.2983e+03 Ns/m c22 3.0876e+03 Ns/m 

c13 1.9725e+05 Ns/m c23 3.1159 Ns/m 

v1-th 15.5035 m/s v2-th 0.1013 m/s 

 

shows that the model presented in Figure C.1, with combined linear and nonlinear
force elements cannot accurately reconstruct the vehicle occupant crash scenario.
The estimated parameters, linear and nonlinear springs and dampers: kl, knl, cl, cnl,
k2 and c2 , are shown in Table C.1.

An improvement is noted in Figure C.8 where the stiffness and dampers in the
model are piecewise functions with one break point shown in Figure C.4. The
maximum dynamic crush of the vehicle model is 0.3% less than that in the real crash
test. The displacement of the occupant is 0.4% larger than that from the crash test.
Improvement of the model accuracy is also observed from the time at maximum
displacement and the rebound velocities for both the vehicle and occupant. The
estimated parameters are shown in Table C.2.

From Figure C.9, the model accuracy is obtained by using force elements with
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Figure C.8: Comparison between vehicle model and vehicle experimental data - piecewise
function with 1 break point

Table C.3: A summary of kinematics results from the models

Model type Cm [cm] Tm [s] vreb [m/s] 

Model1:  Mixed  of linear and  nonlinear springs 

/ dampers 

Vehicle 65.93 0.0978 -2.26 

Occupant 93.22 0.09473 -13.58 

Model2:1 break point piecewise function Vehicle 72.48 0.1085 -1.15 

Occupant 103.4 0.08617 -13.1 

Model2: 2 break points piecewise functions Vehicle 72.65 0.093 -2.43 

Occupant 103.2 0.0863 -12.68 

 

two break point piecewise functions as shown in Figure C.5. The maximum dy-
namic crash of the vehicle model is 0.05% less than that in the real crash test. The
displacement of the occupant is 0.09% larger than that from the crash test. Improve-
ment of the model accuracy is also observed from the time at maximum displace-
ment and the rebound velocities for both the vehicle and occupant. A summary
of kinematics results from the models is tabulated in Table C.3 and the optimized
estimated parameters are shown in Table C.4. The deformation force and loading
characteristics of the vehicle front structure and restraint system are shown in Fig-
ure C.10. A maximum force of 1, 352, 000N is observed at the time of collision and
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Figure C.9: Comparison between vehicle model and vehicle experimental data - piecewise
function with 2 break points

Table C.4: Parameters estimation Model2- two break points piecewise function

Parameter  Value  Unit  Parameter  Value  Unit  

k11 7.6665e+04 N/m k21 6.8536e+03 N/m 

k12 7.9498e+04 N/m k22 2.5529e+04 N/m 

k13 9.6887e+03 N/m k23 9.9998e+04 N/m 

k14 9.9998e+04 N/m k24 7.2212e+04 N/m 

x11 0.5533 m x21 3.3735e-05 m 

x12 0.6711 m x22 0.7498 m 

c11 8.4895e+04 Ns/m c21 4.8212e+03 Ns/m 

c12 2.8460e+03 Ns/m c22 1.3677e+03 Ns/m 

c13 3.3299e+03 Ns/m c23 3.2491e+03 Ns/m 

c14 1.4046e+04 Ns/m c24 2.2323e+03 Ns/m 

𝑥 11 10.4951 m/s 𝑥 21 7.8176 m/s 

𝑥 12 14.6044 m/s 𝑥 22 15.6884 m/s 

 

decreases up to −36, 680N . The restraint system reaches the maximum force of
57, 590N at 0.054s. Spring and damper characteristics are shown in Figure C.11
and Figure C.12 respectively.
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Figure C.12: Damper coefficient characteristics

C.5 Conclusion and future work

In this paper, a mathematical-based method is presented to estimate the parameters
of a double-spring-mass-damper model of a vehicle-occupant frontal crash. It is
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observed that the model results in responses are closer to the experimental crash
test. Therefore, the overall behavior of the model matches the real vehicle’s crush
well. Two of the main parameters characterizing the collision are the maximum
dynamic crush - which describes the highest car’s deformation and the time at which
it occurs- tm. They are pertinent to the occupant crashworthiness since they help to
assess the maximum intrusion into the passenger’s compartment.

The model with combined linear and nonlinear force elements showed results
with a significant error. It is noted that the stepwise nonlinear springs and dampers
model 2, gives better results than the model 1. Introducing more break points on the
piecewise functions increases the accuracy of the model. The force due to structure
deformation decreases, and the loading due to the restraint system increases and
become maximum at the time of crash. These forces are almost zero after rebound
phase.
The authors will extend the work by including other parts of the vehicle such as an
engine in the model. Further investigations of the proposed approach to vehicle-to-
vehicle crash scenario is also under study.

Acknowledgment

Thanks to The Dynamic Research Group members, at the University of Agder, for
their constructive comments and criticisms. The inspiration for this paper is a result
of regular meetings of the group.

REFERENCES

[1] W. Pawlus, J. E. Nielsen, H. R. Karimi, and K. G. Robbersmyr. Application of
viscoelastic hybrid models to vehicle crash simulation. International Journal

of Crashworthiness, 55:369 – 378, 2011.

[2] J. Marzbanrad and M. Pahlavani. Calculation of vehicle-lumped model param-
eters considering occupant deceleration in frontal crash. International Journal

of Crashwothiness, 16(4):439 – 455., 2011.

[3] S. M. Ofochebe, C. G. Ozoegwu, and S. O. Enibe. Performance evaluation of
vehicle front structure in crash energy management using lumped mass spring
system. Advanced Modeling and Simulation in Engineering, 2(2):1–18, April
01 2015.

141



C

REFERENCES

[4] L. Sousa, P.Verssimo, and J. Ambrsio. Development of generic multibody
road vehicle models for crashworthiness. Multibody Syst Dyn, 19:133 – 158,
2008.

[5] M. Carvalho, J. Ambrsio, and P. Eberhard. Identification of validated multi-
body vehicle models for crash analysis using a hybrid optimization procedure.
Struct Multidisc Optim, 44:85 – 97, 2011.

[6] A.A. Alnaqi and A.S. Yigit. Dynamic analysis and control of automotive oc-
cupant restraint systems. Jordan Journal of Mechanical and Industrial Engi-

neering, 5(1):39 – 46, 2011.

[7] A. Klausen, S. S. Tørdal, H. R. Karimi, K. G. Robbersmyr, M. Jecmenica,
and O. Melteig. Firefly optimization and mathematical modeling of a vehicle
crash test based on single-mass. Journal of Applied Mathematics, pages 1 –
10, 2014.

[8] S. S. Tørdall, A. Klausen, H. R. Karimi, K. G. Robbersmyr, M. Jecmenica,
and O. Melteig. An application of image processing in vehicle crash mo-
tion detection from high frame rate video. international Journal of Innovative

Computing, Informationand Control, 11(5):1667 – 1680, 2015.

[9] T.L. Teng, F.A. Chang, Y.S. Liu, and C.P. Peng. Analysis of dynamic response
of vehicle occupant in frontal crash using multibody dynamics method. Math-

ematical and Computer Modelling, 48:1724 – 1736, 2008.

[10] K. Mizuno, T. Itakura, S. Hirabayashi, E. Tanaka, and D. Ito. Optimization of
vehicle deceleration to reduce occupant injury risks in frontal impact. Traffic

Injury Prevention, 15:48 – 55, 2014.

[11] D. Ito, Y. Yokoi, and K. Mizuno. Crash pulse optimization for occupant pro-
tection at various impact velocities. Traffic Injury Prevention, 16:260 – 267,
2015.

[12] L. Zhao, H. R. Karimi W. Pawlus, and K. G. Robbersmyr. Data-based mod-
eling of vehicle crash using adaptive neural-fuzzy inference system. IEEE /

ASME Transactions on mechatronics, 19(2):684 – 696, April 2014.

[13] W. Pawlus, H. R. Karimi, and K. G. Robbersmyr. A fuzzy logic approach
to modeling a vehicle crash test. Central European Journal of Engineering,
pages 1 – 13, 2012.

142



Paper C: Mathematical Model for Vehicle-Occupant Frontal Crash using
Genetic Algorithm

[14] M. Pahlavani and J. Marzbanrad. Crashworthiness study of a full vehicle-
lumped model using parameters optimization. International Journal of Crash-

worthiness, 20(6):573 – 591, 2015.

[15] D. Pelusi. Genetic-neuro-fuzzy controllers for second order control systems.
In 2011 UKSim 5th European Symposium on Computer Modeling and Simu-

lation, pages 12 – 17, 2011.

[16] D. Pelusi. Optimization of a fuzzy logic controller using genetic algorithms. In
2011 Third International Conference on Intelligent Human-Machine Systems

and Cybernetics, pages 143 – 146, 2011.

[17] B. B. Munyazikwiye, K. G. Robbersmyr, and H. R. Karimi. A state-space
approach to mathematical modeling and parameters identification of vehicle
frontal crash. Systems Science and Control Engineering, 2:351 – 361, 2014.

[18] B. B. Munyazikwiye, H. R. Karimi, and K. G. Robbersmyr. Mathematical
modeling and parameters estimation of car crash using eigensystem realiza-
tion algorithm and curve-fitting approaches. Mathematical Problems in Engi-

neering, pages 1 – 13, 2013.

[19] W. Pawlus, K.G. Robbersmyr, and H. R. Karimi. Mathematical modeling
and parameters estimation of a car crash using data-based regressive model
approach. Applied Mathematical Modelling, 35:5091 – 5107, 2011.

[20] M. Huang. Vehicle Crash Mechanics. CRC PRESS, Boca Raton London New
York Washington, 2002.

[21] R. Kumar, G. Gopal, and R. Kumar. Novel crossover operator for genetic
algorithm for permutation problems. International Journal of Soft Computing

and Engineering (IJSCE), 3(2):252–258, May 2013.

143





D

Paper D

Title: Optimization of Vehicle-to-Vehicle Frontal Crash Model based on
Measured Data using Genetic Algorithm

Authors: Bernard B. Munyazikwiye 1, Hamid Reza Karimi 2, and Kjell G.
Robbersmyr1

Affiliation: 1 Faculty of Engineering and Science, University of Agder, P.O.
Box 509, 4879 Grimstad, Norway
2 Department of Mechanical Engineering, Politecnico di Milano
20156 Milan, Italy

Article: IEEE Access , Special Section on Recent Advances on Modelling,
Optimization , and Signal.Processing Methods in Vehicle Dynam-
ics and Crash-Worthiness, March 2017,Vol.5, pp. 3131-–3138,
DOI: 10.1109/ACCESS.2017.2671357

Copyright ©: IEEE

Layout: The layout of the paper has been revised to have the same format
as the thesis

145



D



D

Paper D: Optimization of Vehicle -to-Vehicle Frontal crash model based on
Measured data using Genetic Algorithm

Abstract — In this paper, a mathematical model for vehicle-to-vehicle frontal
crash is developed. The experimental data are taken from the National High-
way Traffic Safety Administration (NHTSA). To model the crash scenario, the
two vehicles are represented by two masses moving in opposite directions. The
front structures of the vehicles are modeled by Kelvin elements, consisting of
springs and dampers in parallel, and estimated as piecewise linear functions of
displacements and velocities respectively. To estimate and optimize the model
parameters, a genetic algorithm (GA) approach is proposed. Finally, it is ob-
served that the developed model can accurately reproduce the real kinematic
results from the crash test.

Keywords— Modeling, vehicle-to-vehicle crash, parameters estimation, genetic

algorithm.

D.1 Introduction

Car accidents are one of the major causes of mortality in modern society. While
it is desirable to maintain the crash-worthiness, car manufacturers perform crash
tests on a sample of vehicles for monitoring the effect of the occupant in differ-
ent crash scenarios. Car crash tests are usually performed to ensure safe design
standards in crash-worthiness (the ability of a vehicle to be plastically deformed
and yet maintains a sufficient survival space for its occupants during the crash sce-
nario). However, this process is very time consuming and requires sophisticated
infrastructure and trained personnel to conduct such a test and data analysis. There-
fore, to reduce the cost associated with the real crash test, it is worthy to adopt the
simulation of a vehicle crash and validate the model results with the actual crash
test. Nowadays, due to advanced research in simulation tools, simulated crash tests
can be performed beforehand the full-scale crash test. Therefore, the cost associ-
ated with the real crash test can be reduced. Finite element method (FEM) models
and lumped parameter models (LPM) are typically used to model the vehicle crash
phenomena and hence can help the designer to better design the vehicle with less
number of crash tests. Vehicle crash-worthiness can be evaluated in four distinct
modes: frontal, side, rear and rollover crashes.

In the past few decades, much research has been carried out in the field of ve-
hicle crash-worthiness, which resulted in several novel computational models of
vehicle collisions in the literature, and a brief review is given in this paper. An ap-

147



D

D.1. Introduction

plication of physical models composed of springs, dampers and masses joined in
various arrangements for simulating a real car collision with a rigid pole, was pre-
sented in [1]. The same authors in [2], proposed a method of modeling for vehicle
crash systems based on viscous and elastic properties of the materials and explained
the differences in simulating vehicle-to-rigid barrier collision and vehicle–to-pole
collision. A method to reproduce car kinematics during a collision using a non-
linear autoregressive (NAR) model, where parameters are estimated by the use of
feed-forward neural network model, was proposed in [3]. In [4], a Five-Degrees of
Freedom (5-DOFs) lumped parameter model for the frontal crash was investigated
to analyze the response of occupant during the impact. Ofochebe et al. in [5], stud-
ied the performance of vehicle front structure using a 4-DOFs lumped mass-spring
model composed of body, engine, the cross-member, the suspension and the bumper
masses.

In [6] and [7], an optimization procedure to assist multi-body vehicle model de-
velopment and validation was proposed. In the work of [8], the authors proposed
an approach to control the seat belt restraint system force during a frontal crash to
reduce thoracic injury. Klausen et al. [9] used firefly optimization method to esti-
mate parameters of vehicle crash test based on a single-mass. Munyazikwiye et al.
in [10] and [11], used different approaches to model the vehicle frontal crash using
a double-spring-mass-damper model. In [12], a mathematical model for vehicle-
occupant frontal crash was studied using genetic algorithm. Tso-Liang et al. in [13],
examined the dynamic response of the human body in a crash event and assessed
the injuries sustained to the occupant’s head, chest and pelvic regions.

Apart from the commonly used approaches, recently intelligent approaches have
been used in the area of vehicle crash modeling. The most commonly used, are
Fuzzy logic in [14], Neuro-fuzzy in [15], genetic algorithm and firefly algorithm
in [9]. Vangi in [16] developed an approach to determine the impact severity indexes
of oblique impact with a non-zero restitution. While in [17], the authors developed
a fuzzy logic model for vehicle frontal crash to predict vehicle crash severity from
acceleration data. The kinetic energy and jerk inputs data were used to find the
crash severity index. Vangi and Begani [18], demonstrated the usefulness of the
triangle method for evaluating the kinetic energy loss of a vehicle during road traffic
accident, while in [19], the authors used a fuzzy approach to reconstruct the accident
history at time of crash and calculated the velocity of an impacting vehicle. A
genetic algorithm has been used in [20] for calculating the optimized parameters of
a 12-DOFs model for two vehicle types in two different frontal crashes.
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The main challenge in accident reconstruction is the system identification, de-
scribed as the process of constructing mathematical models of dynamical systems
using measured input-output data, where the input data is the acceleration measure-
ment and output data is the deformation of the vehicle. In [21], a novel wavelet-
based approach was introduced to reproduce acceleration pulse of a vehicle involved
in a crash event. In the case of a vehicle crash, system identification algorithm is
used to retrieve the unknown parameters such as the spring stiffness and damping
coefficient. A possible approach is to identify these parameters directly from ex-
perimental data. From the literature, System Identification Algorithms (SIA) have
been developed based on various methodologies, for instance, subspace identifica-
tion, genetic algorithm, eigensystem realization algorithm and data-based regressive
model approaches. After scanning through the literature, it is noted that the authors
could reconstruct the kinematics of the car crash, but less attention was taken on the
nonlinearity behavior of the deformed vehicles involved in crash scenarios. To the
best of our knowledge, the problem of reconstruction of a piecewise linear model
for a vehicle-to-vehicle frontal crash scenario based on the genetic algorithm has
not yet been completely considered in the literature and this forms our motivation
for the present study.

The main contribution of this paper is threefold: 1) A mathematical model is de-
veloped to reconstruct a vehicle-to-vehicle frontal crash scenario and to estimate the
nonlinear behaviors of the front parts of the vehicle undergoing crash deformation;
2) A genetic algorithm is proposed to estimate the parameters of the vehicle’s front
structures in terms of piecewise linear functions, which can assist car designers or
manufacturers to reduce the cost associated with the real physical crashes which are
generally costly and time consuming; 3) The accuracy of the predicted results are
verified using the available experimental data. It should be mentioned that accord-
ing to the methodology proposed in this paper, the dynamic crash can be predicted
and allows the designer to redesign the vehicle for vehicle crashworthiness.

D.2 Experimental set up

Two physical crash tests data sets for the Caravan crashing into the Neon and the
Chevrolet crashing into the Dodge are obtained from the NHTSA Database [22].
These tests were carried out on typical mid-speed vehicles colliding each other in
the frontal direction. The test set up consisting of vehicle-to-vehicle crash (Caravan
into Neon) is shown in Figure D.1. The data were obtained relative to the Federal
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Motor Vehicle Safety Standards (FMVSS) No. 208 - Occupant Crash Protection.
In the first test, the target vehicle (a 1996 Plymouth Neon) and the bullet vehicle (a
1997 Dodge Caravan) were instrumented with seven longitudinal axis accelerom-
eters, three lateral axis accelerometers, four vertical axis accelerometers, and their
specified impact velocity range was 55.5 km/h to 57.1 km/h.

The bullet vehicle’s centerline was aligned with the target vehicle’s centerline.
This test was a full frontal car-to-car moving test. The test weights and impact
speeds of the target and bullet vehicles were: 1378.0 kg and 55.9 km/h, and 2059.5
kg and 56.5 km/h respectively.

The same test set up was used on a Chevrolet car crashing into a Dodge car. The
test weights and impact speeds of the Chevrolet and Dodge cars were: 2109 kg and
50.3km/h, and 1997 kg and 50 km/h respectively.

In general during vehicle frontal crash, the vehicles are subjected to impulsive
forces. When a vehicle crashes into another vehicle, the heavier one is less de-
formed than the lighter one and at time of crash, both vehicles loose their kinetic
energy in a fraction of a second through front-end structural deformations. The
amount of deformation is equal to the stopping distance of the vehicle. Since the
stopping distance of a vehicle in the crash is normally short, a much higher force is
generated at the front interface. The vehicle stopping distance (or dynamic crash) in
vehicle-to-vehicle crash tests largely depends on crash pulses. The dynamic crash
can be determined by double integration of the vehicle crash pulse with known ini-
tial impact velocity. The decelerations for both, bullet and target vehicles are shown
in Figure D.2.

 
Figure D.1: Vehicles deformations after crash (Caravan left front-view, Neon right

front-view)
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Figure D.2: Test decelerations for bullet and target vehicles

D.3 Model development

The main objective of this section is to develop a dynamic model which can rep-
resent a vehicle-to-vehicle frontal crash scenario. The real crash test results are
shown in Figure D.2, and the model which can reproduce these results consists
of two masses moving in opposite directions, as shown in Figure D.3. In line of
the model development to capture the values as mentioned earlier during the crash
scenario, the dynamical model proposed in [23] for the free vibration analysis are
adopted for solving the impact responses. Then, the genetic algorithm is used to
estimate the model parameters.

D.3.1 Vehicle-to-Vehicle crash model

An impact between two masses can be represented schematically as in Figure D.3,
where each of the two masses has a contact with the Kelvin element, a set of spring
and damper in parallel. If the connection between the mass and the element is
a rigid contact, the element may undergo tension and compression. If not, due
to separation between the mass and element, the element can only be subjected
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to compression. To simplify the analysis, the two sets of Kelvin elements can be
combined into one resultant Kelvin element as shown in Figure D.4. The parametric
relationship between the two individual Kelvin elements and the resultant Kelvin
element can be obtained in the sequel. From the spring deformation relationship, the
total deformation of the combined spring k is equal to the sum of the deformations
of the two individual springs (an additive deflection relationship). The spring force
relationship can then be established as follows:

α = x1 + x2 (D.1)

Fk
k

=
Fk
k1

+
Fk
k2

(D.2)

where α and Fk are total deflection and force due to mass m1 and m2 respectively.
Similarly, by taking the time derivative of the deformation relationship, the defor-
mation rates are also found to be additive for the dampers. The damping relationship
is shown as follows.

α̇ = ẋ1 + ẋ2 (D.3)

Fc
c

=
Fc
c1

+
Fc
c2

(D.4)

The equivalent relationships for spring stiffness and damping coefficients are then
established as follows:

k =
k1k2

k1 + k2

c =
c1c2

c1 + c2

In a two-mass system, shown in Figure D.4, the mass M2 is impacted by M1 at an
initial relative speed (or closing speed) of v12 where v12 = v1+v2 = v0. If one of the
masses in the two-mass system is infinite, the system becomes a vehicle-to-barrier
(VTB) model.

The only mass moving in this system is referred to as the effective mass, Me.
The relative motion of the mass with respect to the fixed barrier is the same as the ab-
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Figure D.3: A vehicle-to-vehicle impact model - Two Kelvin elements in series [23]
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Figure D.4: A vehicle-to-vehicle impact model - A Kelvin model

solute motion of the mass with respect to a fixed reference frame. In a system where
there are multiple masses involved in an impact, the analysis can be simplified by
using the relative motion and effective mass approaches. The relative displacement
of the effective mass, Me, is α. The dynamic responses of the two-mass system and
one effective mass system are summarized as [23]:

ẍ1 = γ1α̈ ẍ2 = γ2α̈ (D.5)

where

α̈ = −v12ωesin(ωet) (D.6)
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ωe =

√
k

Me

(D.7)

γ1 =
M2

M1 +M2

(D.8)

γ2 =
M1

M1 +M2

(D.9)

Me =
M1M2

M1 +M2

(D.10)

where ωe is the natural frequency, γ1 and γ2 denote mass reduction factors and
Me is the effective mass. The dynamic equation of the effective mass system is
represented as follows:

Meα̈ = −cα̇− kα (D.11)

or
α̈ = (−cα̇− kα)/Me (D.12)

Substituting (D.1) and (D.3) into (D.12), we get:

α̈ = (−c(ẋ1 + ẋ2)− k(x1 + x2))/Me (D.13)

From the response obtained from the test, the displacement and velocity are non-
linear. Therefore the Kelvin element of the model should be estimated as nonlinear
parameters. In the first estimation the spring and the damping forces in the model
are nonlinear cubic function of x and ẋ, respectively. Therefore, the dynamic re-
sponses of the two-mass system in Equation (D.5) are:

ẍ1 = γ1(−c(ẋ1 + ẋ2)− cnl(ẋ1 + ẋ2)3 (D.14)

− k(x1 + x2)− knl(x1 + x2)3)/Me

ẍ2 = −γ2(−c(ẋ1 + ẋ2)− cnl(ẋ1 + ẋ2)3 (D.15)

− k(x1 + x2)− knl(x1 + x2)3)/Me

where cnl and knl are nonlinear components of the damping coefficient and the
spring stiffness in the model respectively.
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Figure D.5: Predefined stiffness and damping coefficient characteristics of the vehicle’s
front structure

D.3.2 Piecewise linear approximations for springs and dampers

The springs and damping coefficients in the model described in the previous sec-
tions, are defined by the piecewise functions in (D.16) - (D.17) and shown graphi-
cally in Figure D.5.

The predefined shape of the spring and damper characteristics in Figure D.5,
are chosen based on the shapes of the displacement and velocity responses from
the crash test. The maximum displacement occurs when the velocity of the target
vehicle reduces to zero, during the breaking phase, where the vehicle is overdamped
and undamped during low and high velocities respectively. This justifies a high
damping coefficient at the time of crash and a low value of damping coefficient at
the initial velocity. The stiffness is low during elastic deformation, but after crash,
the vehicle is plastically deformed, therefore the stiffness increases drastically to
maintain the deformation.
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k(xi) =



ki1 + ki2−ki1
xi1

xi xi ≤ xi1

ki2 + ki3−ki2
xi2−xi1 (xi − xi1) xi1 ≤ xi ≤ xi2

ki3 + ki4−ki3
Ci−xi2 (xi − xi2) xi2 ≤ xi ≤ Ci

(D.16)

c(ẋi) =



ci1 − ci1−ci2
ẋi1

ẋi ẋi ≤ ẋi1

ci2 − ci2−ci3
ẋi2−ẋi1 (ẋi − ẋi1) ẋi1 ≤ ẋi ≤ ẋi2

ci3 − ci3−ci4
v0−ẋi2 (ẋi − ẋi2) ẋi2 ≤ ẋi ≤ v0

(D.17)

Therefore, using the piecewise linear functions defined in Equations (D.16) and
(D.17), the dynamic responses in Equation (D.5) can be represented as follows:

ẍ1 = γ1(c(ẋ1 + ẋ2)− k(x1 + x2))/Me (D.18)

ẍ2 = −γ2(−c(ẋ1 + ẋ2)− k(x1 + x2))/Me (D.19)

D.3.3 Optimization Scheme of the Genetic Algorithm

Genetic Algorithm (GA) is an adaptive heuristic search based on the evolutionary
ideas of nature selection and genetics. It represents an intelligent exploitation of a
random search used to solve optimization problems. This Evolutionary Algorithm
holds a population of individuals (chromosomes), which evolve by means of se-
lection and other operators like crossover and mutation. Every individual in the
population gets an evaluation of its adaptation (fitness) to the environment. In the
terms of optimization this means that the function which is maximized or minimized
is evaluated for every individual. The selection chooses the best gene combinations
(individuals), which through crossover and mutation should drive to better solutions
in the next population. The Genetic Algorithm consists of seven steps [24], itemized
below.

1. Generate initial population: in most of the algorithms the first generation is
randomly generated, by selecting the genes of the chromosomes among the
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allowed alphabet for the gene. Because of the easier computational procedure,
it is accepted that all populations have the same number (N) of individuals.
In our problem N is 24, the number of parameters to be estimated.

2. Calculation of the values of the function that we want to minimize or maxi-
mize. In our work the cost function minimizes the error between the experi-
mental results and the model results.

3. Check for termination of the algorithm: as in the most optimization algo-
rithms, it is possible to stop the genetic optimization by:
- Value of the function: the value of the function of the best individual is
within defined range around a set value. It is not recommended to use this
criterion alone, because of the stochastic element in the search the procedure,
the optimization might not finish within sensible time;
- Maximal number of iterations: this is the most widely used stopping criteria.
We have set 109 iterations to get the optimum solution. It guarantees that the
algorithm will give some results within some time, whenever it has reached
the extremum or not;
- Stall generation: if within the initially set number of iterations (generations)
there is no improvement of the value of the fitness function of the best indi-
vidual, the algorithms stops.

4. Selection: this is used to select the fittest from the population among all indi-
viduals. This step is followed by crossover and mutation, which produce the
population offspring. At this stage the best n individuals are directly trans-
ferred to the next generation.

5. Crossover: this is used to explore the search space.

Here, the aim is to get offspring individuals that inherit the best possible com-
bination of the characteristics (genes) of their parents.

6. Mutation: is used to remove the problem like genetic drift (some individuals
may leave behind a few more off-springs than other individuals), and replace-
ment is used to progress to the next new generation.

7. New generation: the elite individuals chosen from the selection are combined
with those who passed the crossover and mutation, and form the next genera-
tion.
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The proposed algorithm seeks to find the minimum function between several vari-
ables as can be stated in a general form minf(p),

The cost function f(p) is the objective function which should be optimized.
The cost function to be minimized is the norm of the absolute error between the
displacement, velocity and acceleration of the simulated cash and the experimental
crash data and is defined as:

[Error] = sum(|Est− Exp|T × |Est− Exp|) (D.20)

where Est and Exp are the model and experimental variables (displacement,
velocity and acceleration) respectively.

The algorithm for solving the problem defined by Equations (D.14) and (D.15)
is shown in Figure D.6. An initial guess of parameters is chosen and substituted in
equations (16) and (17). Then the obtained stiffness and damping coefficients are
substituted into equations (14) and (15) which in turn are numerically solved using
time integration to get the simulated kinematic results i.e., accelerations, velocities
and displacements. These kinematic results are finally compared with the time his-
tory from the crash test. Then the cost function is evaluated. When the cost function
is minimum the solver terminates. Otherwise the GA is used to tune the parameters
to match the experimental results.

The GA method is used here for optimization of the cost function. The GA-type
of search schemes is function-value comparison-based, with no derivative compu-
tation. It attempts to move points through a series of generations, each being com-
posed of a population which has a set number (population size, 24 in this work)
of individuals or parameters. Each individual is a point in the parameter space (in
our case, the displacement and velocity of experimental data). The schemes that
are applied to the evolution of generations have some analogy to the natural genetic
evolution of species, hence the term genetic.
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Figure D.6: A flowchart for problem solving

D.4 Results and discussion

This section presents the simulation results for two crash tests. The fist crash sce-
nario is a Caravan car crashing into a Neon car, and the second is the Dodge car
crashing into a Chevrolet car. Finally, some concluding remarks in regards to im-
plementation of GA to the vehicle-to-vehicle model development are drawn.

The results of the model presented in (D.14) and (D.15) are shown in Figure D.7
which reconstructs the dynamic crush of a Caravan crashing into a Neon. The re-
sults show a trend similar to that obtained from the test. But the maximum dynamic
crash is less than that from the test. The result presented in Figure D.7 were obtained
using fmincon, an optimization function available in MATLAB, with interior point
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Figure D.7: Model vs Experimental results for vehicle-to-vehicle (Caravan-Neon) crash
using IPA

algorithm (IPA). A big difference between the bullet (Caravan) model response and
the test results is noted. The bullet model presents a re-bounces velocity which is
not observed on the test results.

To solve this problem, the genetic algorithm was used to optimize the parameters
defined by the piecewise functions presented in Figure D.5 and Equations (D.16)
and (D.17), where the stiffness and damping coefficients are a function of x and ẋ
respectively. The improved results are presented in Figure D.8. It is noted that the
model results are much closer to the experimental results from the crash test. The
maximum dynamic crash of 70.24 cm is observed on the target (Neon) from the test,
while the dynamic crash from the model is 69.92 cm. At the maximum dynamic
crash, the bullet vehicle keeps on moving in the same direction as before crash, but
the target vehicle re-bounces. The rebound velocities are -19.6 m/s and -18.3 m/s
from the test and the model respectively. This is observed by the velocity curves
of the two vehicles, where a negative velocity is noted for the target vehicle and a
positive velocity is noted for the bullet vehicle after the maximum dynamic crash.
The front structure of the target vehicle is plastically deformed, while the front
structure of the bullet vehicle experiences an elastic deformation. The accuracy of
the model is also observed on the time at the maximum dynamic crash, tm. The
time at the maximum dynamic crash, tm is 0.06568 s from the test and 0.06824 s
from the model respectively, as observed on the Neon’s kinematic results.

The labels s-Exp, v-Exp, a-Exp, s-Mod, v-Mod, a-Mod, in Figures D.7 and
D.8 stand for: experimental and model displacements, velocities and accelerations,
respectively.
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Figure D.8: Model vs Experimental results for vehicle-to-vehicle (Caravan-Neon) crash
using GA
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Figure D.9: Piecewise spring and damper coefficients of the Neon’s front structure
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Figure D.10: Piecewise spring and damper coefficients of the Caravan’s front structure

Table D.1: Estimated Parameters for the Caravan-to-Neon model

Parameter for 

Bulet vehicle 

Value  Unit  Parameter for 

Target vehicle 

Value  Unit  

k11 1.2843e+05 N/m k21 1.5030e+04 N/m 

k12 2.5142e+05 N/m k22 3.5161e+04 N/m 

k13 1.4932e+05 N/m k23 4.1930e+05 N/m 

k14 6.5159e+05 N/m k24 5.1878e+04 N/m 

x11 0.7168 m x21 0.7168 m 

x12 0.8316 m x22 1.5994 m 

c11 4.1688e+04 Ns/m c21 6.3884e+05 Ns/m 

c12 1.7727e+04 Ns/m c22 7.3768e+04 Ns/m 

c13 3.0696e+03 Ns/m c23 3.3250e+03 Ns/m 

c14 2.6614e+03 Ns/m c24 860.3030 Ns/m 

𝑥 11 10.6044 m/s 𝑥 21 1.9138 m/s 

𝑥 12 11.7252 m/s 𝑥 22 14.6957 m/s 

 

The stiffness coefficient (k) and damping coefficient (c) characteristics of the
target and bullet vehicle’s front structure are shown in Figure D.9 and Figure D.10,
respectively. From these Figures it is noted that the stiffness and damping coeffi-
cients are piecewise functions with high magnitude at the maximum dynamic crash,

162



D

Paper D: Optimization of Vehicle -to-Vehicle Frontal crash model based on
Measured data using Genetic Algorithm

t [s]
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

a[
g]

, v
[k

m
/h

], 
s 

[c
m

]

-100

-80

-60

-40

-20

0

20

40

60

s-Exp
v-Exp
a-Exp

s-Mod
v-Mod
a-Mod

(a) Dodge

t [s]
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

a[
g]

, v
[k

m
/h

], 
s 

[c
m

]

-100

-80

-60

-40

-20

0

20

40

60

80

s-Exp
v-Exp
a-Exp

s-Mod
v-Mod
a-Mod

(b) Chevrolet

Figure D.11: Model vs Experimental results for the Dodge-to-Chevrolet crash using GA

when the velocity of the target vehicle is reduced to zero. This justifies the forced
breaking of the target vehicle at the time of collision. A high damping coefficient
at the time of crash and a low value of damping coefficient at the initial velocity are
observed. It is also noted that the stiffness is low during elastic deformation, but
after crash, the vehicle is plastically deformed, therefore stiffness increases drasti-
cally to maintain deformation. A summary of estimated parameters for the Caravan
- Neon crash is shown in Table D.1.

To verify the model, the Chevrolet-Dodge crash test was used to demonstrate
the accuracy of the GA. The comparison between the model and the crash test re-
sults are shown in Figure D.11. It is observed from Figure D.11 that the maximum
dynamic crushes and their occurrence time , for both vehicles, are almost equal to
those observed from the physical crash tests. The maximum dynamic crashes and
the times of crash, for the Chevrolet and Dodge cars are: 62.20 cm and 0.055 s, and
49.63 cm and 0.048 s respectively.

A summary of estimated parameters for Dodge- Chevrolet crash is shown in
Table D.2. The stiffness and damping coefficients characteristics of the Dodge’s
and Chevrolet’s front structures are shown in Figures D.12 and D.13 respectively.
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Figure D.12: Piecewise spring and damper coefficients of the Dodge’s front structure
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Figure D.13: Piecewise spring and damper coefficients of the Chevrolet’s front structure
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Table D.2: Estimated Parameters for the Dodge-to-Chevrolet model

Parameters 

for  

Dodge   

Value  Unit  Parameters 

for 

Chevrolet    

Value  Unit  

k11 2.5726e+03 N/m k21 7.9266e+03 N/m 

k12 4.9029e+03 N/m k22 6.8819e+03 N/m 

k13 7.3699e+04 N/m k23 8.9521e+04 N/m 

k14 9.1342e+05 N/m k24 8.6448e+05 N/m 

x11 2.8633e-06 m x21 1.5314e-06 m 

x12 0.1048 m x22 0.4387 m 

c11 9.5321e+05 Ns/m c21 2.5087e+05 Ns/m 

c12 8.3382e+04 Ns/m c22 5.5703e+04 Ns/m 

c13 7.4707e+03 Ns/m c23 5.2663e+03 Ns/m 

c14 5.0879e-07 Ns/m c24 363.1498 Ns/m 

𝑥 11 9.7443 m/s 𝑥 21 5.1470 m/s 

𝑥 12 13.4024 m/s 𝑥 22 13.6221 m/s 

 

D.5 Conclusion and future work

In this paper, a mathematical-based method is presented to estimate the parameters
of a vehicle-to-vehicle frontal crash. It is observed that the model results in re-
sponses in vehicle crash model match with the experimental crash tests. Therefore,
the overall behavior of the models matches the real vehicle’s crash well. Hence
the implication of the proposed model is that it can help vehicle designer to better
design the vehicle with fewer physical crash tests. Two of the main parameters char-
acterizing the collision are the maximum dynamic crash (Cm), which describes the
highest car’s deformation, and the time ( tm) at which it occurs. They are pertinent
to the occupant crashworthiness since they help to assess the maximum intrusion
into the passenger’s compartment. The results show that we can obtain an optimum
solution with GA Toolbox Matlab than the fmincon optimization algorithm. It has
been demonstrated that the model and the GA parameter optimization procedure
used in this work can be successfully extended for different range of crash speeds.

The authors will extend the work by including other parts of the vehicle such
as an engine in the model. The authors also intend to investigate the application of
genetic algorithm for different crash scenarios such as oblique crash and side im-
pact. Further investigations will be carried out using Finite Element Model (FEM)
approach for validation of the results form Lumped Parameter model of vehicle-to-
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Paper E: Application of Genetic Algorithm on Parameter optimization of
three vehicle crash Scenarios

Abstract — This paper focuses on the development of mathematical mod-
els for vehicle frontal crashes. The models under consideration are threefold:
a vehicle into barrier, vehicle-occupant and vehicle to vehicle frontal crashes.
The first model is represented as a simple spring-mass-damper and the sec-
ond case consists of a double-spring-mass-damper system, whereby the front
mass and the rear mass represent the vehicle chassis and the occupant, respec-
tively. The third model consists of a collision of two vehicles represented by
two masses moving in opposite directions. The springs and dampers in the
models are nonlinear piecewise functions of displacements and velocities re-
spectively. More specifically, a genetic algorithm (GA) approach is proposed
for estimating the parameters of vehicles front structure and restraint system
for vehicle-occupant model. Finally, using the existing test-data, it is shown
that the obtained models can accurately reproduce the real crash test data.

Keywords— Modeling, vehicle-occupant, frontal crash, parameters estimation,
genetic algorithm.

E.1 Introduction

Vehicle crashes are one of the major causes of mortality in modern society. To
maintain the crash-worthiness, car manufacturers carry out crash tests on a sample
of vehicles for checking the effect of the occupant during crash scenarios. Crash-
worthiness is the ability of a vehicle to be plastically deformed and still maintains
a sufficient survival space for its occupants. However, this process very expen-
sive and time consuming. To minimize the cost associated with the physical crash
test, it is better to adopt the simulation of a vehicle crash and validate the model
results with the actual crash test. Due to advanced research in simulation tools dur-
ing the last decades, simulated crash tests can be performed prior to the full-scale
crash test. The common approaches are based on Finite element method (FEM)
or lumped parameter modeling (LPM). In the literature, much work has been con-
ducted in the field of vehicle crash-worthiness and resulted in several computational
models. A brief review is given in this paper. A car crashing into a rigid pole was
modeled by a suitable spring-mass-damper arrangement as presented in [1]. The
response of an occupant during a vehicle crash was investigated in [2] where the
author used a 5-DOF lumped parameter model (LPM), while in [3], using a 4-DOF
LPM the authors studied the performance of vehicle front structure. An optimiza-
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tion procedure to assist a multi-body vehicle model was proposed in [4] and [5]
and in [6] the author reduced the thoracic injury during a frontal crash by control-
ling the force on the seat belt restraint system. [7], through a firefly optimization
approach, estimated the model parameters of vehicle crash into barrier based on a
mass- spring-damper model . Diffent methods for modeling vehicle frontal crash
scenarios were developed by [8, 9]. In [10], the authors developed a mathematical
model for vehicle-Occupant and a vehicle-to-vehicle frontal crash using Genetic
Algorithm in [11]. [12], examined the dynamic response of the human body (the
head, chest and pelvic injuries of an occupant, respectively) in a crash event. The
problem of reconstruction of a piecewise linear model for vehicle crash scenario
based on the genetic algorithm has received less attention in the literature and this
forms our motivation for the present study.

In this paper, a genetic algorithm is used to estimate and optimize the parameters
of different models, namely: a vehicle-to-barrier, a vehicle-occupant and a vehicle-
to-vehicle frontal crash models respectively. The structural parameters estimated
are spring and damping coefficients. It is observed that the predicted results fit the
experimental data very well.

E.2 Experimental set-up

Three experimental crash texts were conducted. Data for vehicle into barrier were
taken from a calibration test done by Agder Research, Norway. The second and
third test data were taken from the National Highway Traffic Safety Administration
(NHTSA), open-source database [13]. The first test was carried out on a typical
mid-speed vehicle to pole collision. A test vehicle was subjected to an impact with
a vertical, rigid cylinder. During the test, the acceleration was measured in three
directions (x - longitudinal, y - lateral, and z - vertical) together with the yaw rate
from the center of gravity of the car. The initial velocity of the car was 35 km/h, and
the mass of the vehicle (together with the measuring equipment and driver) was 873
kg. Only the measured acceleration in the longitudinal direction was considered
in this study because we were interested in the frontal crash. In the second test, a
load cell barrier consisting of 36 load cells was impacted by a Volkswagen Scirocco
at a velocity of 56.5 km/h. A 50th percentile male Anthropomorphic Test Dummy
was placed in the car in the driver’s seating position. The target vehicle (a 1996
Plymouth Neon) and the bullet vehicle (a 1997 Dodge Caravan) were instrumented
with seven longitudinal axis accelerometers, three lateral axis accelerometers, four
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vertical axis accelerometers. The test weights and velocities of the target(Plymouth
Neon) and bullet(a Dodge Caravan) vehicles were 1378.0 kg, 55.9 km/h and 2059.5
kg, 56.5 km/h respectively.

E.3 Model development

The main objective of this section is to represent dynamic models to capture the
vehicle frontal crash phenomena. When the vehicle crashes into a rigid barrier, the
two masses will experience an impulsive force during the collision. The second
model consists of two masses as shown in Figure E.1, where mv and mo represent
the vehicle and the occupant masses, respectively. The third model consists of two
masses moving in opposite directions, as shown in Figure E.2. In line of the model
development to capture the values as mentioned earlier during the crash scenario,
the dynamical models proposed in [14] for the free vibration analysis are adopted
for solving the impact responses. Then, the genetic algorithm is used to estimate
the model parameters.

E.3.1 Model 1: Vehicle-to-rigid barrier crash model

Initially a real vehicle crash experiment was conducted on a typical mid-speed ve-
hicle to pole collision. In vehicle into barrier model, the deforming spring and
damping forces, developed at time of crash, are piecewise functions in x and ẋ re-
spectively. But for vehicle to barrier cash, the prefix i is dropped. The forces Fk
and Fc due to spring stiffness and damper constants are defined as follows ( [14]):

Fk = kx (E.1)

Fc = cẋ (E.2)

ẍ = (−Fk − Fc)/m (E.3)

where m, x and ẋ are mass, displacement and velocity of the vehicle, respectively.
k and c are spring stiffness and damping coefficients of the vehicle’s front structure,
respectively.
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Figure E.1: Vehicle - occupant model

E.3.2 Model 2: Vehicle-Occupant frontal crash model

Figure E.1 represents the vehicle-occupant model with non-linear spring and dampers
that crashes into a fixed barrier. Based on the nonlinear characteristics of velocity
and displacement of the vehicle and forward movement of the occupant the springs
and dampers that simulate such characteristics are modeled as piecewise linear func-
tions. The dynamic equations of the double-mass-spring-damper model are shown
in the following:

Fstr = k1x1 + c1ẋ1 (E.4)

Frest =


k2(x2 − x1) + c2(ẋ2 − ẋ1); x1 − x2 ≥ δ

0; elsewhere

(E.5)

where k1, k2, c1 and c2 are piecewise linear functions defined in Equations (E.25) -
(E.26).

ẍ1 = (Frest − Fstr)/mv (E.6)

ẍ2 = (Frest)/mo (E.7)

where Fstr and Frest are the deformation force of the vehicle frontal structure and
the restraint system respectively.
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k1 and c1, are nonlinear spring damper of the front vehicle structure respectively. k2

and c2 are spring stiffness and damper coefficients for the restraint system respec-
tively.

E.3.3 Model 3: Vehicle-to-Vehicle crash model

An impact between two masses can be represented schematically, as in Figure E.2.
Each of the two masses having a contact with the Kelvin element, a set of spring
and damper in parallel. If the connection between the mass and the element is
a rigid contact, the element may undergo tension and compression. If not, due
to separation between the mass and element, the element can only be subjected
to compression. To simplify the analysis, the two sets of Kelvin elements can be
combined into one resultant Kelvin element. The parametric relationship between
the two individual Kelvin elements and the resultant Kelvin element can be obtained
as in the following. The spring force (Fk) and damping force (Fc) relationships can
then be established as follows:

α = x1 + x2 (E.8)

Fk
k

=
Fk
k1

+
Fk
k2

(E.9)

α̇ = ẋ1 + ẋ2 (E.10)

Fc
c

=
Fc
c1

+
Fc
c2

(E.11)

k =
k1k2

k1 + k2

(E.12)

c =
c1c2

c1 + c2

(E.13)

In a two-mass system shown in Figure E.2, the mass M2 is impacted by M1 at an
initial relative speed (or closing speed) of v12 where v12 = v1+v2 = v0. If one of the
masses in the two-mass system is infinite, the system becomes a vehicle-to-barrier
(VTB) model. The only mass moving in this system is referred to as the effective
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Figure E.2: Vehicle to vehicle impact model - two Kelvin elements in series

mass, Me. The relative motion of the mass with respect to the fixed barrier is the
same as the absolute motion of the mass with respect to a fixed reference frame.
In a system where there are multiple masses involved in an impact, the analysis
can be simplified by using the relative motion and effective mass approaches. The
relative displacement of the effective mass, Me, is α. The dynamic responses of the
two-mass system and one effective mass system are summarized as follows:

ẍ1 = γ1α̈ ẍ2 = γ2α̈ (E.14)

where

α̈ = −v12ωesin(ωet) (E.15)

ωe =

√
k

Me

(E.16)

γ1 =
M2

M1 +M2

(E.17)

γ2 =
M1

M1 +M2

(E.18)

Me =
M1M2

M1 +M2

(E.19)
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where ωe is the natural frequency, γ1 and γ2 denote mass reduction factors and Me

is the effective mass. The dynamic motion of the effective mass system can be
expressed as:

Meα̈ = −cα̇− kα (E.20)

α̈ = (−cα̇− kα)/Me (E.21)

substituting (E.8) and (E.10) into (E.21), we get:

α̈ = (−c(ẋ1 + ẋ2)− k(x1 + x2))/Me (E.22)

Therefore, the dynamic responses of the two-mass system in Equation (E.14) can
be presented as follows:

ẍ1 = γ1(−c(ẋ1 + ẋ2)− k(x1 + x2))/Me (E.23)

ẍ2 = −γ2(−c(ẋ1 + ẋ2)− k(x1 + x2))/Me (E.24)

E.3.4 Piecewise linear approximations for springs and dampers

The springs and damping coefficients in the types of models in the previous sections,
are defined by the piecewise functions. The predefined spring and damper charac-
teristics are chosen based on the shapes of the displacement and velocity responses
from the crash test. The predefined spring and damper are defined by Equations
(E.25) and (E.26).

k(xi) =



ki1 + ki2−ki1
xi1

xi xi ≤ xi1

ki2 + ki3−ki2
xi2−xi1 (xi − xi1) xi1 ≤ xi ≤ xi2

ki3 + ki4−ki3
Ci−xi2 (xi − xi2) xi2 ≤ xi ≤ Ci

(E.25)
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c(ẋi) =



ci1 − ci1−ci2
ẋi1

ẋi ẋi ≤ ẋi1

ci2 − ci2−ci3
ẋi2−ẋi1 (ẋi − ẋi1) ẋi1 ≤ ẋi ≤ ẋi2

ci3 − ci3−ci4
v0−ẋi2 (ẋi − ẋi2) ẋi2 ≤ ẋi ≤ v0

(E.26)

where the index i = 1, 2 stand for 1st and 2nd mass respectively. Ci is the
dynamic crash of the vehicle or occupant. v0 is the initial impact velocity. The index
i designates the models with two masses such as vehicle-to-vehicle and vehicle-
occupant models respectively. The same piecewise functions, without the index i,
are used to model the vehicle into barrier crash. At the maximum crash, the spring
stiffness is assumed to be high, but the damper coefficient is small for maintaining
the shape of displacements and velocities respectively.

E.4 Optimization Scheme of the Genetic Algorithm

Genetic Algorithm (GA) is an adaptive heuristic search based on the evolutionary
ideas of nature selection and genetics. It represents an intelligent exploitation of a
random search used to solve optimization problems.This Evolutionary Algorithm
holds a population of individuals (chromosomes), which evolve by means of se-
lection and other operators like crossover and mutation. Given a clearly defined
problem to be solved and a bit string representation for candidate solutions, a sim-
ple GA works as follows in [15]:

1. Start with a randomly generated population of n l-bit chromosomes (candidate
solutions to a problem).

2. Calculate the cost function f(x) of each chromosome x in the population.

3. Repeat the following steps until n offspring have been created:

4. Replace the current population with the new population.

5. Go to Step 2

Each iteration of this process is called a generation. A GA is typically iterated for
anywhere from 50 to 500 or more generations. The proposed algorithm seeks to find
the minimum function between several variables as can be stated in a general form
minf(x), where ‘x′ denotes the unknown variables, which are the damping and
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stiffness constants in the model. The cost function f(x) is the objective function
which should be optimized. The cost function to be minimized is the norm of the
absolute error between the displacement of the simulated cash and the experimental
crash data and is defined as:

[Error] = sum(|Est− Exp|T × |Est− Exp|) (E.27)

where Est and Exp are the model and experimental variables (displacements, ve-
locity and acceleration) respectively. A Genetic Algorithm shown is developed to
solve the problems defined by Equations (E.3), (E.6), (E.7), (E.23) and (E.24).

E.5 Results and discussion

This sections is a summary of major findings observed on the three vehicle crash
models. Namely: vehicle into barrier, vehicle-occupant into barrier and vehicle-to-
vehicle models respectively. The label symbols s,v and s in Figure E.3 to Figure
E.5 stand for displacement, velocity and acceleration respectively. Exp and Mod
stand for Experimental and Model. Figure E.3 shows the comparison between the
model response and the experimental test results for a vehicle into a barrier crash.
It is noted that the dynamic crush from the model is exactly equal to that obtained
from the test. The maximum dynamic crash, the time of crash and the rebound
velocity for both, the model and test results are summarized in Table E.1. Using the

Table E.1: Estimated Parameters for vehicle into barrier model

Spring Value Damper Value
k1 3.9880e+03 N/m c1 8.7727e+04 Ns/m
k2 2.8403e+04 N/m c2 6.6938e+04 Ns/m
k3 0.44386e+01 N/m c3 3.0115e+04 Ns/m
k4 2.2337e+05 N/m c4 5.9893e+04 Ns/m

same algorithm as in vehicle into barrier, a comparison between the crash test from
vehicle-occupant crash and the model shown in Figure E.1 is shown in Figure E.4.
The results show that the model is very accurate.

From Figure E.4, the model accuracy is obtained by using force elements with
two break point piecewise functions. The maximum dynamic crash of the vehicle
model is 0.05% less than that in the real crash test. The displacement of the occupant
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Figure E.3: Model vs Experimental results for Vehicle into fixed pole frontal crash

is 0.09% larger than that from crash test. Improvement of the model accuracy is
also observed from the time at maximum displacement and the rebound velocities
for both the vehicle and occupant. The optimized estimated parameters are shown
in Table E.2. The main results for vehicle-to-vehicle crash modeling are presented
in Figs. E.5. It is noted that the model results are much closer to the experimental
results for crash test. The maximum dynamic crash of 70.24cm is observed on
the target from the test, while the dynamic crash from the model is 69.92 cm. At
maximum dynamic crash, the bullet vehicle keeps on moving in the same direction
as before crash but the target vehicle re-bounces. The rebounce velocities are -19.6
m/s and -18.3 m/s from the test and the model respectively. This is observed by the
velocity curves of the two vehicles, where a negative velocity is noted for the target
vehicle and a positive velocity is noted for the bullet vehicle after maximum crash.
The accuracy of the model is also observed on the time of maximum crash, tm. The
time of maximum crash, tm is 0.06568 s from the test and 0.06824 s from the model
respectively.

The deformation of the target vehicle is due to the compressive force at dynamic
crash. A summary of kinematics results from all models studied is tabulated in Table
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Figure E.4: Model vs Experimental results for vehicle-occupant frontal crash

Table E.2: Estimated Parameters for vehicle-Occupant model

Vehicle Value Occupant Value
k11 7.6665e+04 N/m k21 6.8536e+03 N/m
k12 7.9498e+04 N/m k21 2.5529e+04 N/m
k13 9.6887e+03 N/m k23 9.9998e+04 N/m
k14 9.9998e+04 N/m k24 7.2212e+04 N/m
c11 8.4895e+04 Ns/m c21 4.8212e+03 Ns/m
c12 2.8460e+03 Ns/m c22 1.3677e+03 Ns/m
c13 3.3299e+03 Ns/m c23 3.2491e+03 Ns/m
c14 1.4046e+04 Ns/m c24 2.2323e+03 Ns/m
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Figure E.5: Model vs Experimental results for vehicle-to-vehicle frontal crash (a) Bullet
(b) Target

Table E.3: Estimated Parameters for vehicle-to-vehicle model

Bullet Value Target Value
k11 1.2843e+05 N/m k21 1.5030e+04 N/m
k12 2.5142e+05 N/m k21 1.5030e+04 N/m
k13 1.4932e+05 N/m k23 4.1930e+05 N/m
k14 6.5159e+05 N/m k24 5.1878e+04 N/m
c11 4.1688e+04 Ns/m c21 6.3884e+05 Ns/m
c12 1.7727e+04 Ns/m c22 7.3768e+04 Ns/m
c13 3.0696e+03 Ns/m c23 3.3250e+03 Ns/m
c14 2.6614e+03 Ns/m c24 0.8603e+03 Ns/m
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E.4, where VTB, V-Occ and VTV stand for vehicle to Barrier, vehicle-Occupant and
Vehicle-to-Vehicle models respectively. T and M stand for Test and Model results,
respectively.

Table E.4: A summary of kinematics results from tests (T ) and the models (M)

VTB V-Occ VTV
Results Veh Occ Bulet Target

Cm[m]− T 0.5063 0.7269 1.03 0.9359 0.7024
Cm[m]−M 0.5061 0.7274 1.028 0.9613 0.6992
tm[s]− T 0.0749 0.0894 0.086 0.1984 0.065
tm[s]−M 0.0748 0.093 0.087 0.1981 0.068

Vreb[m/s]− T -3.3 -3.7 -13 0.9 -19.6
Vreb[m/s]−M -2.96 -2.4 -12.6 2.7 -18.3

E.6 Conclusion

In this paper, a mathematical-based method is presented to estimate the parameters
of three different vehicle crashes. It is observed that the developed mathematical
model results in responses in all vehicle crash models are closer to the experimental
crash tests. Therefore, the overall behavior of the models matches the real vehicle’s
crush well. Two of the main parameters characterizing the collision are the maxi-
mum dynamic crush - which describes the highest car’s deformation and the time at
which it occurs- tm. They are pertinent to the occupant crash-worthiness since they
help to assess the maximum intrusion into the passenger’s compartment.
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Abstract — Estimating the vehicle crashworthiness experimentally is expen-
sive and time-consuming. For these reasons, different modelling approaches
are utilised to predict the vehicle behaviour and reduce the need for full-scale
crash testing. The earlier numerical methods used for vehicle crashworthi-
ness analysis were based on the use of lumped parameters models (LPM), a
combination of masses and nonlinear springs interconnected in various con-
figurations. Nowadays, the explicit nonlinear finite element analysis (FEA) is
probably the most widely recognised modelling technique. Although informa-
tive, finite element models (FEM) of vehicle crash are expensive both in terms
of man-hours put into assembling the model and related computational costs.
A simpler analytical tool for preliminary analysis of vehicle crashworthiness
could greatly assist the modelling and save time. In this paper, the authors
investigate whether a simple piecewise LPM can serve as such a tool. The
model is first calibrated at an impact velocity of 56 km/h. After the calibra-
tion, the LPM is applied to a range of velocities (40, 48, 64 and 72 km/h) and the
crashworthiness parameters such as the acceleration severity index (ASI) and
the maximum dynamic crush are calculated. The predictions for crashworthi-
ness parameters from the LPM are then compared with the same predictions
from the FEA.

Keywords— piecewise lumped parameters; finite element analysis; dynamic
crush; acceleration severity index

F.1 Introduction

Car accidents are among the major causes of mortality in modern society. In the
automotive industry, safety is one of the main design considerations. When there
is a progressive collapse of the vehicle structure during a frontal crash, two basic
requirements should be fulfilled for preventing death or serious injury to the occu-
pants. The first requirement ensures that occupants do not sustain injuries caused
by high inertia forces. It dictates that the parameters that characterise the inertia
forces felt by the occupant are kept below the threshold values specified in the cor-
responding standards.

According to the European Standard EN1317-1 [1], a measure of potential in-
jury due to inertia forces during a crash event is the acceleration severity index
(ASI), which is calculated from the acceleration measurement at the centre of grav-
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ity of the car. The second requirement ensures that occupants are not clamped by
the car structure during the crash event. To fulfil this requirement the deformation
of the passenger compartment needs to be limited. The severity of car deformation
can be estimated by maximum dynamic crush, which is the maximum displacement
of the car front with respect to its centre of gravity [2].

Usually, full-scale crash tests (FSCT) are performed to ensure the safe range
of risk. Prior to the development of powerful computers, up until the early 1970s,
crash studies relied almost exclusively on experimental full-scale testing. However,
FSCT is expensive, time-consuming and requires sophisticated infrastructure and
highly qualified personnel. Therefore, numerical modelling and simulation are ac-
tively used to study and analyse car crashes. Simulation of vehicle crashworthiness
has been evolving over the past 45 years. The earlier numerical methods used for
vehicle crashworthiness were based on the use of the lumped masses and nonlinear
springs. The models built with these methods, known as lumped parameters mod-
els (LPM), used lumped masses to represent parts of the vehicle, such as engine
block and the passenger compartment, considered rigid during the analysis, and the
springs to represent the structural elements responsible for absorbing the kinetic
energy.

Various examples of the use of LPM to vehicle crash reconstruction and evalu-
ation of vehicle crashworthiness can be found in the literature. One of the earliest
and successful examples of the use of LPM is the model developed by Kamal in
1970s for simulation of vehicle frontal crash at velocities between 0 and 30 mph
(48 km/h) [3]. The model was a 3 degrees of freedom (DOF) system composed
of three masses and eight springs. In the past few decades, much research has
been carried out in the field of vehicle crashworthiness using LPM which resulted
in several novel computational models of vehicle collisions. In [4], Marzbanrand
expanded the Kamal model to a 5-DOF LPM for the frontal crash and analysed
the response of occupant during the impact. Meler et al. [5], performed a system
identification for a vehicle frontal crash using a multi-objective optimisation ap-
proach. The front end of the vehicle was modelled as a 3 DOF system composed
by the passenger compartment; the front wheels, cross-member, and suspension
system; and engine interconnected by springs. Kim et al. [6], developed simple
approaches for optimising vehicle structure crashworthiness using a single mass-
spring-damper system. Huang [7], developed several mathematical models for ve-
hicle crashworthiness using the LPM approach. Inspired by Huang ’s work, Pawlus
et al. [2, 8] presented results for vehicle crashworthiness assessment using a single
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mass-spring-damper system. In [9], the authors proposed an approach to control
the seat belt restraint system force during a frontal crash to reduce thoracic injury.
Klausen et al. [10,11] introduced a firefly optimisation method to estimate parame-
ters of vehicle crash test based on a single mass-spring-damper model. Ofochebe et
al. [12], studied the performance of a vehicle front structure using a 5-DOF lumped
mass-spring model composed of body, engine, the cross-member, the suspension,
and the bumper masses. Munyazikwiye et al. [13, 14], applied piecewise linear
lumped parameters models and a genetic algorithm (GA) to simulate a vehicle im-
pact (accommodating an occupant) into the barrier and a vehicle-to-vehicle frontal
crash, respectively. This GA was also used in [15] for calculating the optimised pa-
rameters of a 12-DOF model for two vehicle types in two different frontal crashes.

Lim [16, 17], using SISAME software, presented various research results based
on the extraction of lumped parameters from the experimental data to reconstruct
the vehicle crash kinematics. Also Mentzer et al. [18, 19], presented the essential
formulation of SISAME for extracting the LPM from crash test. Gabler et al. [20],
developed LPMs for vehicle into barrier and vehicle-to-vehicle crashes using the
SISAME code to extract the model parameters. Recently, Mazurkiewicz et al. [21]
used the LPM to improve the safety of children transported in motor vehicles sub-
jected to a side impact during a vehicle crash. Vangi et al. [22] proposed a step-by-
step procedure to collect data for a two vehicles accident reconstruction. In [23–26]
the authors proposed an optimisation procedure to assist multi-body vehicle model
development for vehicle crashworthiness. Tso-Liang et al. [24], examined the dy-
namic response of a human body in a crash event and assessed the injuries sustained
to the occupant’s head, chest and pelvic regions.

Even though LPMs have shown useful results in terms of crash reconstruction,
some of their limitations have been pointed out in literature. The major challenge
of the LPM for vehicle crash analysis is the dependency of LPM on the availability
of calibration data. That is, the spring characteristics of the system are determined
from existing data, either from a full-scale crash test or from a FE model [27, 28].
A previous work, on a similar study, concluded that LPMs are valid only for data
which are used for their creation and could not be simulated for different velocities
[2]. This left an open question which needed to be addressed.

The other commonly used approach for vehicle crash analysis is the Finite El-
ement Analysis (FEA). Among the various vehicle crash simulation techniques,
explicit FEA is probably the most frequently used and it has been used to calibrate
the LPM effectively. Deb and Srinivas in [29] calibrated an LPM for vehicle side
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impact based on data from a FEM. In [30], the authors developed an LPM of crash
energy absorbing structure for frontal crash. The stiffness characteristics of the
structure was obtained from the result of a FEM. Ofochebe et al. [31], developed an
absorbable energy monitoring scheme for testing the vehicle structural crashworthi-
ness by calibrating an LPM to an equivalent front-half FEM of a vehicle. Tanlak et
al. [32], calibrated an LPM from a FEA of a bumper beam subjected to high impact
velocity. However, finite element models have some limitations: They are relatively
complex and require a large amount of computational time.

Although out-shined by the more sophisticated finite element modelling tech-
niques, simple lumped parameters models are still used today, especially when it
comes to reconstruction of the crash event. The availability of a simpler numeri-
cal tool for estimation of basic vehicle crashworthiness parameters can assist the
designer and speed up the design process. LPM might serve as such a tool.

Although LPMs have been extensively used for reconstruction of crash scenario
at specific impact velocity, it is still worthy to explore more the use of LPM, for pre-
dicting the crash event at various impact velocities as complement to the existing
results e.g. in [11, 33, 34]. In this paper, the authors investigate whether it is possi-
ble to accurately estimate the basic crashworthiness parameters such as maximum
dynamic crush and ASI, using the earlier proposed LPM [13,14]. The piecewise lin-
ear LPM is calibrated to the acceleration signal from FSCT and from FEM. Then,
the model prediction capability is validated by comparing its predictions with those
from a FEA at different impact velocities.

F.2 Materials and Methods

A full-scale crash test of a Ford Taurus (2004 model) in Figure F.1 is chosen as a
baseline for the LPM and FEA used in this paper. The test weight and impact speed
of the vehicle were 1739 kg and 56 km/h, respectively. The acceleration signal
and the finite element analysis model inputs used in this study were obtained from
NHTSA open database [35, 36].

The processing of the acceleration signal, calculation of ASI and maximum
dynamic crush; and the FEA were done by the authors.

F.2.1 Experimental data and signal filtering

In this paper, the acceleration signal is first filtered using a Finite Impulse Response
(FIR) filter before performing a numerical integration to obtain the velocity and
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Figure F.1: Full-scale crash test of a Ford Taurus (2004 model) at 56 km/h [35].
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Figure F.2: Noisy and Filtered acceleration signals for full-scale frontal crash

displacement responses, respectively. Figure F.2 shows the noisy and filtered ac-
celeration signals for a vehicle crashing into a barrier. A cut-off frequency of 0.5
kHz with a sampling rate of 10 kHz is chosen while designing a suitable low pass
filter. A filter order of 30 and a Kaiser window are used for filtering the acceleration
signal.
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F.2.2 Piecewise linear lumped parameters model

The model consists of a Kelvin model shown in Figure F.3. The mathematical
expression of the model is a normal second order differential equation as shown in
the following

ẍ = (−Fk − Fc)/m (F.1)

where ẋ and x are the velocity and displacement of the centre of gravity of mass m
(the mass of the vehicle); and Fk , Fc are the built-up spring and damping forces
defined in the following equations

Fk = k(x) · x, (F.2a)

Fc = c(ẋ) · ẋ, (F.2b)

Equation (F.1) is solved using a numerical integration to get the model velocity and
displacement time-histories, respectively and are then expressed as

ẋ(i+ 1) = ẋ(i) + ẍ(i)∆t (F.3)

x(i+ 1) = x(i) + ẋ(i)∆t; (F.4)

with i = 1:(length(t)-1), t is the time vector and ∆t is a time step.

 

 

                m 

x 

x  

 xc   

 

)(xk  

Figure F.3: Lumped parameter model
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The spring stiffness and damping coefficients in the model, are defined as the
piecewise linear functions of x and ẋ, respectively. These functions are

k(x) =



k1 + k2−k1
x1

x 0 ≤ x ≤ x1

k2 + k3−k2
x2−x1 (x− x1) x1 ≤ x ≤ x2

k3 + k4−k3
Cm−x2 (x− x2) x2 ≤ x ≤ Cm

, (F.5a)

c(ẋ) =



c1 − c1−c2
ẋ1

ẋ 0 ≤ ẋ ≤ ẋ1

c2 − c2−c3
ẋ2−ẋ1 (ẋ− ẋ1) ẋ1 ≤ ẋ ≤ ẋ2

c3 − c3−c4
v0−ẋ2 (ẋ− ẋ2) ẋ2 ≤ ẋ ≤ v0

, (F.5b)

where the upper limits Cm and v0 are the maximum dynamic crush and ini-
tial velocity from the FSCT or FEM used for calibration of the LPM at v0 = 56
km/h. Equations (F.5a) - (F.5b) were used to calibrate the LPM. The intention was
to reconstruct the crash event by simplest LPM possible and the model with three
intervals was shown to be accurate enough during the earlier studies [13, 14]. The
prediction is performed by excluding the lower and upper limits in equation (F.5)
and subjecting the calibrated LPM to different impact velocities. Then, the piece-
wise linear functions are

k(x) =



k1 + k2−k1
x1

x x ≤ x1

k2 + k3−k2
x2−x1 (x− x1) x1 ≤ x ≤ x2

k3 + k4−k3
Cm−x2 (x− x2) x ≥ x2

, (F.6a)

c(ẋ) =



c1 − c1−c2
ẋ1

ẋ ẋ ≤ ẋ1

c2 − c2−c3
ẋ2−ẋ1 (ẋ− ẋ1) ẋ1 ≤ ẋ ≤ ẋ2

c3 − c3−c4
v0−ẋ2 (ẋ− ẋ2) ẋ ≥ ẋ2.

, (F.6b)
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F.2.3 LPM estimation and Calibration scheme using the GA

The procedure for solving the problem defined in equation (F.1) is shown in Figure
F.4. The genetic algorithm (GA) attempts to move points through a series of gen-
erations, each being composed of a population which has a set number (population
size, 200 in this work) and 12 parameters (four stiffness values, four damping co-
efficient values, two position values, x1 and x2, two intermediate velocities ẋ1 and
ẋ2).

The proposed algorithm seeks to find the minimum of an objective function as
can be stated in a general form minf(p), where p denotes the unknown variables in
the model. In this paper, the two objective functions to be minimised are the error
functions E1(p, t) and E2(p, t) between the acceleration time-history obtained from
the LPM and the calibration data. From the estimated acceleration, the displacement
and velocity time-histories are thereafter derived by numerical integration. The
objective functions are defined in equations (F.7a) and (F.7b).

E1(p, t) =
N∑
i=1

√[
aFSCT (ti)− aLPM(p, ti)

]T × aFSCT (ti)− aLPM(p, ti), (F.7a)

E2(p, t) =
N∑
i=1

√[
aFEA(ti)− aLPM(p, ti)

]T × aFEA(ti)− aLPM(p, ti), (F.7b)

where aFSCT , aLPM and aFEA are accelerations from the FSCT, LPM and FEA,
respectively and N is the number of data points. An initial guess of parameters is
chosen and substituted in the piecewise linear functions defined in equations (F.5a)
and (F.5b). The obtained spring stiffness and damping coefficients are substituted
into equations (F.2a) and (F.2b), which are respectively substituted in the dynamic
equation (F.1). Then, equation (F.1) is solved numerically to get the simulated kine-
matic results. Finally, these kinematic results are compared with the calibration
data. The objective functions in equations (F.7a) and (F.7b) are evaluated, and when
the stop criterion is met the solver terminates, otherwise the GA keeps on tuning the
model parameters until the LPM results match the calibration data (experimental or
FEA results).
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Figure F.4: Calibation procedure using genetic algorithm

F.2.4 Finite element analysis

As mentioned earlier, the input to finite element analysis was obtained from the
National Highway Traffic Safety and Administration (NHTSA) open database [36].

197



F

F.2. Materials and Methods

The following is a summary describing the studied FEM:

• Number of parts: 804

• Number of nodes: 922,007

• Number of beam elements: 10

• Number of shell elements: 838,926

• Number of solid elements: 134,468

The simulations were performed using the LS-DYNA software Version R8.10 (Re-
vision R8.105896). The impact velocities of 40, 48, 56, 64, and 72 km/h were
simulated. Acceleration signal was recorded at the centre of gravity (CG) of the
finite element model.

In the case when the finite element analysis uses the under-integrated shell and
solid elements, non-physical, zero-energy deformation modes such as hourglass
modes might occur. Some small amount of hourglass energy can be tolerated, but
this non-physical deformation mode needs to be kept under control. The ratio of the
hourglass energy to the internal energy should not exceed the recommended value.
In the presented analysis, this ratio was carefully controlled and kept below 10 %
of the peak internal energy, which is the recommended value according to [37, 38].
The ratio of hourglass energy to the highest internal energy was 0.078. The actual
computation time for a single crash simulation supported by the LS-DYNA was
between 1 and 2 days.

F.2.5 Acceleration Severity Index (ASI)

The ASI is intended to give a measure of the severity of inertia force experienced by
a person seated in the proximity of the CG of the vehicle during impact. The ASI
is derived from the acceleration time-histories measured at the CG of the impacting
vehicle and is computed as follows [39]:

ASI(ti) =

√(
ax
âx

)2

+

(
ay
ây

)2

+

(
az
âz

)2

(F.8)

where âx = 12g, ây = 9g, âz = 10g are limit values for the components of the
acceleration along the body axes x (longitudinal direction), y (lateral direction) and
z (vertical direction), respectively. These values are obtained from the human body
tolerance limits, interpreted as the values below which passenger risk is very small
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(light injury if any) and g = 9.81m/s2 is the acceleration due to gravity, while
ax, ay, az are the components of acceleration of a selected point at the CG of the
vehicle, averaged over a moving time interval δ = 0.050 seconds and the ASI is
the maximum value of ASI(t). The average acceleration components are defined in
equation (F.9).

ax =
1

δ

∫ t+δ

t

axdt

ay =
1

δ

∫ t+δ

t

aydt (F.9)

az =
1

δ

∫ t+δ

t

azdt

In case of a full frontal crash, the acceleration components in the lateral and vertical
directions are less significant as compared to the longitudinal acceleration. Hence,
in this work, the computation of ASI involves only the longitudinal component and
its associated 12g threshold acceleration. That is:

ASI =
|ax|
12g

(F.10)

In case of collision with a rigid barrier, all the impact energy is absorbed by the
vehicle structure. Thus, the European standard EN 1317-2:2010 [39] does not spec-
ify any standard values of ASI on impact with the rigid barriers. For reference, the
prescribed values of ASI for flexible barriers are:

• Class A: ASI ≤ 1

• Class B: 1.0 ≤ ASI ≤ 1.4

• Class C: 1.4 ≤ ASI ≤ 1.9

The impact Severity Class A indicates a greater level of safety for vehicle oc-
cupants than Class B and the same for class B compared to class C. The more the
ASI exceeds unity, the more the impact consequences for the passengers are dan-
gerous [40].

F.3 Results

The spring stiffness and damping coefficient characteristics of the vehicle’s front
structure, optimised through the GA, are shown in Table F.1. The crashworthiness
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parameters in terms of maximum dynamic crush (Cm), time of crush (tm) and ASI
for the range of velocities are summarized in Table F.2.

Table F.1: Estimated structural parameters of the vehicle frontal crash model calibrated at
56 km/h.

Parameters LPM Calibrated to FSCT LPM Calibrated to FEM

k1 7195 N/m 25,718 N/m
k2 7210 N/m 31,444 N/m
k3 25,386 N/m 45,476 N/m
k4 711,060 N/m 467,830 N/m
x1 0.0526 m 0.2448 m
x2 0.1023 m 0.2923 m
c1 59,444 Ns/m 80,827 Ns/m
c2 51,590 Ns/m 7775 Ns/m
c3 4997 Ns/m 38,812 Ns/m
c4 1382 Ns/m 5703 Ns/m
ẋ1 7.0585 m/s 4.7855 m/s
ẋ2 8.9272 m/s 8.2880 m/s

LPM: Lumped Parameters Model , FSCT: Full-Scale Crash Test, FEM: Finite Ele-
ment Model

Figure F.5 illustrates three out of five FEA simulations of a Ford-Taurus (2004
model) crashing into a fixed rigid wall at initial velocities of 40, 56, and 72 km/h,
respectively. The convergences of the objective functions are satisfied since their
fitness values are constant across a large number of generations as shown in Figure
F.6. The kinematic time-history (displacements, velocities, and accelerations) are
compared as shown in Figures F.7 and F.8. These Figures show the predictions
of the LPM for a range of velocities (40, 48, 56, 64, and 72 km/h, respectively).
Figure F.9, presents a summary of kinematics results of the LPM calibrated at 56
km/h against the FSCT and FEA, respectively.
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(a)

(b)

(c)

Figure F.5: Deformed vehicle frontal structure through FEA at impact velocities of (a) 40
km/h, (b) 56 km/h and (c) 72 km/h
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Figure F.6: Convergence of the objective function using GA (a) LPM calibrated to FSCT
(b) LPM calibrated to FEM.

Table F.2: Estimated crashworthiness parameters for FSCT, LPM and FEA .

Impact velocities

Approaches Parameters 40 km/h 48 km/h 56 km/hc 64 km/h 72 km/h

FSCT tm [s] - - 0.0723 - -
Cm [m] - - 0.7551 - -
ASI [-] - - 2.5 - -

LPM calibrated
to FSCT

tm [s] 0.0736 0.0740 0.0738 0.0741 0.0741

Cm [m] 0.5373 0.6429 0.7508 0.8588 0.9653
ASI [-] 1.7 2.1 2.6 2.7 3.1

FEA tm [s] 0.0755 0.0781 0.0801 0.0804 0.0800
Cm [m] 0.5077 0.6077 0.7180 0.8331 0.9408
ASI [-] 1.5 1.8 2.0 2.3 2.5

LPM calibrated
to FEA

tm [s] 0.0824 0.0825 0.0793 0.0822 0.0805

Cm [m] 0.5231 0.6258 0.7108 0.8360 0.9396
ASI [-] 1.4 1.6 2.0 2.3 2.5

cCalibration point, tm is the time at maximum dynamic crush, Cm is the maximum

dynamic crush and ASI is the acceleration severity index.
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Figure F.7: Displacement, velocity, and acceleration plot comparison in case of LPM cali-
brated to FSCT, (a), (c) and (e) impact velocities lower than the calibration point (56 km/h);
(b), (d) and (f) impact velocities higher than the calibration point.
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Figure F.8: Displacement, velocity, and acceleration plots comparison in case of LPM cali-
brated to FEA, (a), (c) and (e) impact velocities lower than the calibration point (56 km/h);
(b), (d) and (f) impact velocities higher than the calibration point.
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Figure F.9: A summary of kinematic time histories for (a) LPM calibrated to FSCT, (b)
LPM calibrated to FEM, (c) comparison between FEA and FSCT at 56 km/h.
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F.4 Discussion

During the real vehicle crash event, the front structure of the car is deformed plasti-
cally and the amount of deformation is measured by the maximum dynamic crush.
At maximum dynamic crush, the car stops when the velocity decreases up to zero
and then increases negatively when the car gets separated from the barrier. In this
study, the LPM simulates the crash event. This was achieved by first calibrating
the model with acceleration signal from FSCT and FEM for a portion of defor-
mation from the time of contact with the barrier up to time of maximum dynamic
crush. From Table F.1, it is observed that the estimated stiffness value increases
at the maximum dynamic crush while, at the same time, the damping coefficient
decreases. The kinematics results from the LPM match those from FSCT up to the
maximum dynamic crush. From Table F.1, it is shown that the maximum dynamic
crashes from the FSCT and LPM are 0.7551 m and 0.7508 m, respectively and oc-
cur after 0.0723 s for FSCT and 0.0738 s for LPM. From Figure F.7, a deviation is
observed just after the time of maximum dynamic crush.

In case of FEM, the frontal structure of the model absorbs enough kinetic en-
ergy. From Figure F.5, the hood and fender are bent and the bumper is deformed
plastically at the highest velocity (72 km/h). This is due to many elements that
buckle together when the front structure is completely compressed at the maximum
dynamic crush. When the LPM is calibrated to the FEM, a reasonable agreement
between the results from LPM and those from FEA is observed as shown in Figure
F.8. It is shown that the maximum error between the maximum dynamic crush Cm,
from the FEA and LPM is less than 3 cm for all impact velocities. This is evidenced
by the dynamic crushes with their respective time of occurrence. It is noted from
Table F.2 that the maximum dynamic crush and the ASI for LPM and FEM are sim-
ilar at a specific impact velocity. The results show that the ASI is high (greater than
1.9) when the impacting velocity of the vehicle is greater than 48 km/h.

The predictions show that a constant increment of 11 cm of the maximum dy-
namic crush is observed for a corresponding increment of 8 km/h for the impact
velocity when the LPM is calibrated to a FSCT. Likewise, an increment of 10 cm
is observed on the maximum dynamic crush when the LPM is calibrated to a FEM.
The high values of ASI reported in this work are due to the rigidity of the barrier.
The results show that the LPM agrees with the experimental data obtained from the
NHTSA, collected on a FORD TAURUS model crashing into a flat load cell barrier
at 56 km/h with Test No.5143, Curve No.122 [35] and the conventional FEA. The
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calibration time for the LPM is between 15 and 30 minutes and the simulation takes
less than 20 seconds, while the actual computational time for the FEA is between 1
and 2 days excluding the undefined time spent in developing the complex FEM of
a complete vehicle.

F.5 Conclusions and future work

It is obvious that simple LPM cannot replace the complex FE model with regard to
crash simulations, but it can assist to speed up the analysis. Due to the complexity of
the FEM, the analyst typically needs several iterations with adjustment of simulation
parameters before a successful simulation is produced. In this work three to five
iterations were necessary, each taking about half of the full simulation time before
the analysis termination. Hence to produce a single successful FE analysis of the
crash event required about a week of working time. To produce an N number of
successful FE simulations for a range of velocities would typically take less time
than N weeks since once a successful combination of parameters is found, it can be
used for most of the simulations and only minor adjustments are needed for different
velocities. In the current study, the FE analysis for the five different velocities was
produced within a month. Using a LPM allows to perform one FEA instead of five,
calibrate the LPM to FEM and obtain the estimate of the crash parameters for a
range of velocities. Hence combining LPM and FEM extracts preliminary results
of a month work within a week.

In future work, the integration of flexible barrier in LPM could be investigated.
Other evolutionary-based algorithms such as the Differential Evolution (DE), Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES), and Particle Swarm
Optimization (PSO) could be tried for further improvement on the current results
obtained using the GA. The extension of this work could be the consideration of
the predictive capabilities of the LPM for other crash scenarios such as an oblique
crash, side impact, and vehicle-to-vehicle crash, respectively. The expected chal-
lenges could be the representation of bending, of multi-dimensional/multi-axial de-
formations in other vehicle crash configurations. Other challenges expected when
analysing the oblique and side crash with LPM could be the complexity in extract-
ing of parameters in case of a multi-dimension model.
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