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ABSTRACT 

The rapid development of automotive industry requires manufacturers to 

continuously reduce the development cost and time and to enhance the product 

quality. Thus, modern automotive design pays more attention to using CAE analysis 

based optimisation techniques to drive the entire design flow. This thesis focuses on 

the optimisation design to improve the automotive crashworthiness and fatigue 

performances, aiming to enhance the optimisation efficiency, accuracy, reliability, and 

robustness etc. The detailed contents are as follows: 

(1) To excavate the potential of crash energy absorbers, the concept of 

functionally graded structure was introduced and multiobjective designs were 

implemented to this novel type of structures. First, note that the severe deformation 

takes place in the tubal corners, multi-cell tubes with a lateral thickness gradient were 

proposed to better enhance the crashworthiness. The results of crashworthiness 

analyses and optimisation showed that these functionally graded multi-cell tubes are 

preferable to a uniform multi-cell tube. Then, functionally graded foam filled tubes 

with different gradient patterns were analyzed and optimized subject to lateral impact 

and the results demonstrated that these structures can still behave better than uniform 

foam filled structures under lateral loading, which will broaden the application scope 

of functionally graded structures. Finally, dual functionally graded structures, i.e. 

functionally graded foam filled tubes with functionally graded thickness walls, were 

proposed and different combinations of gradients were compared. The results 

indicated that placing more material to tubal corners and the maximum density to the 

outmost layer are beneficial to achieve the best performance. 

(2) To make full use of training data, multiple ensembles of surrogate models 

were proposed to maximize the fatigue life of a truck cab, while the panel thicknesses 



were taken as design variables and the structural mass the constraint. Meanwhile, 

particle swarm optimisation was integrated with sequential quadratic programming to 

avoid the premature convergence. The results illustrated that the hybrid particle 

swarm optimisation and ensembles of surrogates enable to attain a more competent 

solution for fatigue optimisation. 

(3) As the conventional surrogate based optimisation largely depends on the 

number of initial sample data, sequential surrogate modeling was proposed to 

practical applications in automotive industry. (a) To maximize the fatigue life of spot-

welded joints, an expected improvement based sequential surrogate modeling method 

was utilized. The results showed that by using this method the performance can be 

significantly improved with only a relatively small number of finite element analyses. 

(c) A multiojective sequential surrogate modeling method was proposed to address a 

multiobjective optimisation of a foam-filled double cylindrical structure. By adding 

the sequential points and updating the Kriging model adaptively, more accurate Pareto 

solutions are generated. 

(4) While various uncertainties are inevitably present in real-life optimisations, 

conventional deterministic optimisations could probably lead to the violation of 

constraints and the instability of performances. Therefore, nondeterministic 

optimisation methods were introduced to solve the automotive design problems. (a) A 

multiobjective reliability-based optimisation for design of a door was investigated. 

Based on analysis and design responses surface models, the structural mass was 

minimized and the vertical sag stiffness was maximized subjected to the probabilistic 

constraint. The results revealed that the Pareto frontier is divided into the sensitive 

region and insensitive region with respect to uncertainties, and the decision maker is 

recommended to select a solution from the insensitive region. Furthermore, the 



reduction of uncertainties can help improve the reliability but will increase the 

manufacturing cost, and the tradeoff between the reliability target and performance 

should be made. (b) A multiobjective uncertain optimisation of the foam-filled double 

cylindrical structure was conducted by considering randomness in the foam density 

and wall thicknesses. Multiobjective particle swarm optimisation and Monte Carlo 

simulation were integrated into the optimisation. The results proved that while the 

performances of the objectives are sacrificed slightly, the nondeterministic 

optimisation can enhance the robustness of the objectives and maintain the reliability 

of the constraint. (c) A multiobjective robust optimisation of the truck cab was 

performed by considering the uncertainty in material properties. The general version 

of dual response surface model, namely dual surrogate model, was proposed to 

approximate the means and standard deviations of the performances. Then, the 

multiobjective particle optimisation was used to generate the well-distributed Pareto 

frontier. Finally, a hybrid multi-criteria decision making model was proposed to select 

the best compromise solution considering both the fatigue performance and its 

robustness. 

During this PhD study, the following ideas are considered innovative: 

(1) Surrogate modeling and multiobjective optimisation were integrated to 

address the design problems of novel functionally graded structures, aiming to 

develop more advanced automotive energy absorbers. 

(2) The ensembles of surrogates and hybrid particle swarm optimisation were 

proposed for the design of a truck cab, which could make full use of training points 

and has a strong searching capacity. 

(3) Sequential surrogate modeling methods were introduced to several 

optimisation problems in the automotive industry so that the optimisations are less 



dependent on the number of initial training points and both the efficiency and 

accuracy are improved. 

(4) The surrogate based optimisation method was implemented to address 

various uncertainties in real life applications. Furthermore, a hybrid multi-criteria 

decision making model was proposed to make the best compromise between the 

performance and robustness. 
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Chapter 1 Introduction 

1.1 Background 

With the rapid development of automotive industry and the advances in mechanical 

manufacture in China, car makers require reducing development cycle of products, lowering 

development cost and meanwhile improving the product quality. Especially since China 

joined WTO in 2001, the automotive sector has been facing increasingly fierce competition 

and the requirement in the development cycle has been increasingly more critical to meet the 

market needs. To satisfy the customers’ pursuit of individuality, being an integral part of 

automobiles, bodies always have a shorter development cycle than engines and chassis. 

Therefore, development ability of bodies plays a rather crucial role to a car maker. 

Computer-aided engineering (CAE), widely applied in body design, has been revolutionizing 

the whole process of the vehicle development
[1]

. The modern vehicle design process has 

replaced the old-fashioned manual design process and focuses on the CAE-based optimisation 

technique for driving product design. 

Structural optimisation is to seek optimum design of the predefined objective subjected to a 

certain constraint. It is one of the most important research topics in structural design, 

integrating computational mechanics, mathematic programming, computer science and other 

engineering sciences. With regard to optimisation design of vehicle body structures, various 

performances have to be taken into account. This thesis mainly focuses on crashworthiness 

and fatigue durability, which are closely related to vehicle safety. 

1.2 Surrogate modelling in engineering optimisation 

In engineering optimisation, abovementioned direct coupling method may be inefficient 

(if not impossible) since iterative nonlinear FE analyses during optimisation usually require 



enormous computational costs and take the risk of premature FE failure prior to a proper 

convergence. As a result, an alternative approach is to use meta-models (or surrogate models) 

for formulating design criteria in advance of optimisation, which has proven an effective and 

sometimes unique approach.  

Surrogate models aim to establish the explicit relation between design variables and 

system response, where only a limited number of sampling points are required. To date, most 

commonly used surrogate models include Polynomial Response Surface (PRS) model, 

Kriging (KRG) model, artificial neural network (ANN), radial basis function (RBF) and 

support vector regression (SVR). In order to gain an insight into the selection of metamodels, 

substantial studies have been done (e.g., 
[2-10]

). For instance, Fang et al. 
[2]

 compared quadratic 

PRS and RBF for fitting nonlinear responses in a frontal collision, and found PRS was able to 

produce satisfactory approximation models for the energy absorption while RBF models 

performed better to approximate the maxiamum acceleration. Also, RBF models can yield 

more accurate optimisation results. Forsberg and Nilsson 
[4]

 compared linear PRS and Kriging 

with the same updating scheme of the region of interest. Kriging was found to be able to 

improve the sequential behavior of the optimisation algorithm in the beginning of the 

optimisation process. However, Kriging could be problematic if a constraint was violated 

after several iterations and linear PRS seemed more easily to find a feasible solution. We can 

come to a conclusion that the selection of metamodels is case dependent. In other words, no 

unique metamodel is able to produce the most accurate result for all cases.  

In general, it is always expensive computationally to obtain sampling data for developing 

surrogate models while the cost of surrogate modelling and running optimisation themselves 

can be negligible. Thus, to make full use of different surrogate models to exploit as much 

information as possible, concurrent use of multiple surrogate models might be sensible to 

obtain the most competent solution
[9]

. In order to take full advantages of different individual 



surrogates to extract as much information as possible with a relatively small number of 

sample points, some researchers have been paying attention to the use of an ensemble of 

surrogates for different problems. In this regard, Zerpa et al. 
[11]

 proposed the ensemble of 

surrogates to perform the optimisation of alkaline-surfactant-polymer flooding process, where 

a weighted average model provided the smallest difference between the surrogate estimations 

and corresponding simulation values compared to other individual surrogates. Goel et al. 
[12]

 

used an ensemble of surrogates to model the regions with high uncertainty for developing a 

robust approximation strategy. Acar and Rais-Rohani 
[13]

 proposed a new approach to 

selecting weight factors for an ensemble of surrogates, which treated the determination of 

weight factors as an optimisation problem thereby minimizing the prediction error metric. 

Acar 
[14]

 also adopted the pointwise cross-validation as a local error measure to construct an 

ensemble of surrogates. Pan and Zhu
[15]

 adopted the ensemble of surrogate models to optimise 

the upper structure for improving the roof strength. Zhou et al. 
[16]

 formulated an ensemble of 

surrogates with a more accurate control, in which the weight factors were updated using a 

recursive process until the ensemble achieved a desirable prediction accuracy. They also 

employed the ensemble of surrogates to build dual response surfaces for robust parametric 

design 
[17]

. 

When performing a surrogate-based optimisation, a basic assumption is that the 

surrogate model is sufficiently accurate and all we need to do is to find the optimum design 

using the established surrogate model 
[18]

. However, the surrogate model constructed using 

initial samples will probably not be accurate in the local region of the optimum. It is common 

to exploit this local region by sequentially positioning additional samples inside. These infill 

points are then used to update the surrogate model until the optimum converges to the final 

location properly, which seems to be attractive to more accurately locate a local optimum 

rather than the true global optimum 
[18]

. On the other hand, exploring design space is a 



strategy to increase the global accuracy of a surrogate model. It is straightforward to add 

sequential samples to the sparse regions of design space. If error estimates are available for 

the surrogate model, those points with large errors can be a candidate for increasing the 

accuracy of the surrogate. For example, the mean squared error of KRG model can be 

maximised to determine new sampling points in the framework of sequential optimisation 
[19, 

20]
.  

Considering both exploration and exploitation, Efficient Global Optimisation (EGO) 
[21]

 

has also been proposed to add new sampling points iteratively which contribute toward global 

optimisation. The EGO algorithm uses KRG models because they provide not only the 

surrogate prediction but also error estimates. Due to the advances of hardware resources, 

parallel computing has also been studied by some researchers 
[22, 23]

. Another extension of 

EGO is the multiobjective versions of EI, which have also been established recently (e.g., 
[24]

, 

[25]
, 

[26]
). As the dimension increases, the calculation of EI could be very complicated from the 

theoretical point of view. Yang et. al 
[27]

 proposed to select sequential sampling points from 

the previous Pareto solutions based on the maximum minimum distance criterion
[28]

, which 

does not require error information from the surrogate models. 

1.3 Structural optimisation with uncertainties 

4.2.3 Uncertainty classification in crashworthiness optimisation 

Most of the engineering problems involve uncertainties, such as 

(1) Manufacturing uncertainties. The uncertainties induced by manufacturing process 

account for the discrepancy between the nominal design and the real product. They may 

include parameters such as geometry (thickness, shape) and material properties (Young’s 

modulus, Poisson’s ratio, density, yield stress, tangent modulus, etc) 
[29-31]

. 

(2) Operational uncertainties. These are the uncertainties on the operational conditions 



upon crashing, which include occupant mass, impact speed, impact position, barrier’s 

geometries, etc. 
[30, 32, 33]

 

(3) Modeling uncertainties. These are related to mathematical and numerical modeling 

techniques. For example, numerical errors in FEA and uncertainties in surrogate modelling 
[34-

37]
 should be considered in optimisation. 

It must be pointed out that usually a deterministic optimisation tends to push a design 

toward one or more constraints until the constraints become active, thereby leaving no room 

for tolerances in modeling, uncertainties, and/or manufacturing imperfections. To overcome 

such significant limitations of deterministic optimisation, some researchers have employed 

reliability-based design optimisation (RBDO). In addition to the constraint reliability, the 

objective robustness is another critical issue of optimisation with uncertainties. That is to say, 

optimisation algorithms search for a “peak” solution, where even a subtle perturbation in 

design variables and/or parameters can result in substantial loss of performance, making an 

“optimum” less meaningful or even misleading. Although RBDO deals with an optimal 

design that meets reliability constraints, it does not directly control design sensitivity to 

uncertainties. The robust design optimisation (RDO) aims to tackle the critical issues 

associated with uncertainty, thereby ensuring performance and quality of design. 

Zhang and Liu
[38]

 proposed to use the second-moment method and reliability based 

design concept as an effective tool for designing vehicular components. Acar 和 Solanki
[37]

 

performed the RBDO of vehicle crashworthiness and analysed the effects of reducing various 

uncertainties on the performance of optimisation design. Song and Lee 
[39]

 also adopted 

RBDO for an automotive knuckle component under different conditions, where a constraint-

feasible moving least squares method was used for the meta-modelling of inequality 

constraint functions.  d'Ippolito et al. 
[40]

 applied RBDO of fatigue life to a vehicle knuckle 

considering the variability in the material parameters. Ju 和 Lee
[41]

 used Kriging modelling 



with an active constraint strategy to solve the difficulties in implementing the moment method 

into RBDO. Sinha 
[31]

 applied MORBDO to the vehicle crashworthiness design optimisation 

for side impact, considering both structural crashworthiness and occupant safety, with 

structural weight and front door velocity under side impact as objectives. Lin et al. 
[31]

 

developed a systematic approach for identifying the β-Pareto set for bi-objective optimisation 

problems under random uncertainties for a vehicle design problem. Daskilewicz et al. 
[42]

 

studied the effects of uncertainty in MOO in the conceptual design of aircraft by 

demonstrating the changes in the Pareto frontiers due to variability in disciplinary metrics and 

differences in the formulation of the probabilistic optimisation problem. Deb et al. 
[43]

 

combined the classical reliability optimisation techniques with evolutionary multi-objective 

optimisation (EMO) for better handling uncertainties of variables and parameters, in which 

vehicle design under side-impact problem was investigated. Boessio et al. 
[44]

 carried out a 

fatigue lifetime estimation of commercial vehicles due to loading randomness induced by 

rough pavement surfaces and performed the structural optimisation by considering the 

reliability index as a constraint. Grujicic et al. 
[45]

 performed RBDO of fatigue durability for 

ground vehicle suspension system components considering various uncertainties and revealed 

the importance of considering uncertainties of material properties. Youn et al. 
[29, 46]

 proposed 

a novel RBDO method and demonstrated it with side impact problems. 

Some researchers introduced the six sigma design concept in product quality engineering 

to vehicle crashworthiness optimisation.
[32, 33, 47, 48]

. Lönn et al. 
[49]

 proposed to an RDO 

method capable of dealing with a large number of design variables and successfully applied it 

to an aluminium profile subjected to axial crushing. Zhang et al. 
[34]

 proposed to concurrently 

consider parameter uncertainty and model uncertainty, which was proven effective by two 

mathematical examples and a vehicle crashworthiness problem. 



1.4 Optimisation of vehicle body structures 

1.4.1 Crashworthiness optimisation 

Vehicle crash brings about increasing concern from socioeconomic aspects. Each year 

vehicle crash leads to some 1.2 million deaths and many more injuries worldwide, becoming 

one of the biggest public health problems facing modern society. Taking USA, the most 

motorized country, as an example, the crash induced fatality has remained a high level, 

though certain reduction, over the past decade (Fig. 1), leading to the direct annual cost of 

US$277 billion, equivalent to nearly $900 per head or 1.9% of real Gross Domestic Product 

(GPD) of the country 
[50]

. With rapid motorization in many developing countries, the 

magnitude of this problem is likely to continue growing. As per the statistical data from the 

authority
[51]

, there was 58,539 deaths and 213,724 injuries in 198,394 road traffic accidents in 

2013 in China, leading to a direct economic loss of 1.039 billion RMB. 

 

Fig. 1.1 Fatalities caused by motor vehicle crashes 
[50, 51]

 



Real-world loading conditions of crashworthiness optimisation mainly include front crash, 

side crash and rollover in the literature. For example, Liao et al. 
[52]

 implemented stepwise 

regression models to optimise the crashworthiness performance under the full front and 40% 

offset front impacts, where the vehicle mass, acceleration, and intrusion were taken as 

objectives. Wang et al.
[53]

 used a probability-based least square SVR modelling technique to 

optimise the front substructure, where the impact force against the rigid wall was the objective 

while constraining the structural mass and energy absorption. Su et al. 
[54]

 approximated the 

static responses such as the stiffness and strength using PRS models and the impact responses 

such as intrusion were approximated using hybrid RBF models; based on a multi-island 

generic algorithm, the mass and stiffness were optimised simultaneously as the objectives 

while the stress and intrusion were taken as the constraints. Based on the non-dominated 

sorted genetic algorithm, Bojanowski and Kulak
[55]

 optimised the bus beam structures to 

enhance the rollover and side impact safety and lightweight requirement. To improve the 

rollover safety in accidents, Pan and Zhu
[15]

 utilised multiple surrogate models to optimise the 

crush strength of the roof structure. Gao et al. 
[56]

 optimised key components of a bus to 

reduce the acceleration of the centroid and the structural mass, based on the ECE R66 

regulation. 

 
Energy absorbers

 

Fig. 1.2 Energy absorbers in automobile/train structures 
[57]

 



In reality, front impact contributes 67% of all types of impact accidents and is the most 

frequent impact form 
[58]

. In this case, longitudinal rails are the most investigated components 

(Fig. 1.2), as they can absorb up to 50 percent of the kinetic energy of the vehicle upon the 

occurrence of a full frontal collision 
[59]

. For example, Soto 
[60]

 employed topology 

optimisation to design frontal longitudinal rails. Cho et al. 
[61]

 adopted homogenisation 

method to determine the locations of the triggers, in order to induce the axial folding mode 

and thus to maximise the energy absorption in a front impact. Zhang et al. 
[62]

 explored a 

lightweight design for the front rails based on the design of experiments and response surface 

models. In vehicular systems, bumpers are expected to protect the pedestrian and passengers 

when a frontal crash occurs. The bumper should have a relatively low stiffness for the purpose 

of protecting pedestrians. On the other hand, FMVSS requires a strong bumper system to 

avoid large intrusion to the passenger compartment. Shin et al. 
[63]

 optimised the vehicle 

bumper system for the mass and crashworthiness requirements. Belingardi et al. 
[64]

 optimized 

the cross-sectional shape, wall thickness and transverse curvature of the E-Glass pultruded 

bumper and they achieved comparable energy absorption with steel and E-Glass fabric 

bumpers but better progressive failure mode with reduced peak load. Gao et al. 
[65]

 proposed a 

two-stage design procedure for bumpers based on the hybrid cellular automaton and Kriging 

methods. In addition, though side impact only contributes 28% of the accidents, it brings out a 

higher death rate (34% of the causalities). In the side impact, side structures such as A and B 

pillars play an irreplaceable role in protecting the passengers and driver. For example, 

Hanssen et al. 
[66]

 optimized an A-pillar structure with metal foam insert and the result 

improved the energy absorption by 30% at the cost of an only 3% mass increase. Marklund 

and Nilsson 
[67]

 optimised a B-pillar structure and achieved a 25% mass decrease without 

sacrificing the safety requirement. Pan et al. 
[68]

 optimized a TWB based B-pillar structure to 



minimize the weight subject to the crashworthiness constraints of vehicular roof crush and 

side impact. 

With regard to the component level, researchers have been continuously devising novel 

crashworthy materials and structures, aiming at lay a solid foundation for their application in 

the automotive engineering. 

Alexander 
[69]

 pioneered research on the axial crushing for thin cylindrical shells and 

derived a closed-form analytical formula for calculating average crushing force. Then, 

experimental and theoretical studies by Wierzbicki and Abramowicz 
[70]

, Abramowicz and 

Jones 
[71, 72]

 and others carried on the studies on the axial crushing of tubes subjected to static 

and dynamic loads. More recently, thin-walled tubes with various sections have been 

investigated for crashworthiness, such as circular
[73-80]

, polygonal
[49, 81-89]

, conical/ tapered
[90-98]

 

and hat
[99-102]

, to seek for optimal designs. 

Generally, the number of angular elements (corners) in a tubal cross-section largely 

determines the energy absorption and crashing behaviours 
[70, 103]

. It is therefore expected to 

design thin-walled tubes with multiple cells and internal webs for achieving better energy-

absorbing characteristics. Crashworthiness optimisation was also introduced to the design of 

multi-cell configurations 
[20, 104-111]

.  

Foam-filled structures have aroused increasing interest in the automotive industry for 

their extraordinary lightweight and energy absorption capacity. The presence of the foam-

filler materials in thin-walled structures helps improve crashing stability and collapse modes, 

thereby increasing the overall crashworthiness 
[112-114]

. However, the crashworthiness 

performance was found to be highly dependent on the foam density and geometrical 

configurations 
[115-117]

. To address this issue, optimisation techniques were used to select best 

possible combination of tube geometry and foam density in both simple tubes (e.g., 
[118-124]

) 



and complex structures (e.g., 
[66, 125-127]

). Similarly, thin-walled structures filled with 

honeycomb core have also been investigated in the literature 
[128-130]

.  

Increasing attention has been paid to lightweight of the vehicle for a range of demanding 

environment associated issues, e.g. material usage and fuel consumption. To maximize the 

functionality of material, substantial efforts have been devoted to the applications of proper 

tailor-welded blanks (TWB) structures. Automobile engineers can “tailor” the location of 

stamping so that the desire of specific material properties and/or thickness allocation can be 

achieved in a more efficient way 
[131]

. Crashworthiness optimisation of TWB structures often 

aims to seek the best partition of different materials and thickness of each blank for both 

lightweighting and crash behaviours. The inner door panel 
[132, 133]

, B-pillar 
[68, 133]

 and frontal 

rail 
[134]

 are some typical examples for TWB structures adopted in vehicles.  

One option to achieve lightweight design is to replace heavy metallic materials with light 

composites. Although most composite materials display little plastic characteristics, properly 

designed composite materials could absorb more energy per unit mass than the conventional 

metals 
[64, 78, 130, 135-137]

. 

To tailor the crashworthiness performance, functionally-graded materials and structures, 

such as functionally graded foam-filled structures 
[10, 138-141]

 and structures with a functionally 

graded thickness 
[10, 142, 143]

, are more attracted increasing attention recently. The proposal of 

using such novel structures and materials provides the designer with more flexible solutions 

for crashworthiness, and meanwhile it gives the optimisation a new mission to design the best 

gradient. The relevant content will be discussed in more detail in Chapter 3. 

1.4.2 Fatigue optimisation 

During the usage of a car, the body are always subjected to a cyclic load due to the 

roughness of the road. The fatigue phenonminon is a strength issue caused by this cyclic load. 



Generally, there are two types of methods assessing the fatiue life of a structure, i.e. the 

experimental and theoretical methods
[58]

. The conventional experimental method directly 

measures the fatigue life in the real or similar situation situation. The theoretical method 

analyses the fatigue performance by an established model based on the material property and 

applied load information. 

The vehicle fatigue experments can be divided into three types, namely road test, proving 

gound test and in-door bench test. The in-door bench test is revelutionising the development 

of the fatigue performance while the out-door tests (the first two types) used to play an 

important role at the early time. In the 1970s, test system supliers MTS and Schenck 

developed their road simulator systems. Guan and Du et al. 
[144]

 developed the first road 

simulor of China based on the remote parameter control technique. The researchers in Tongji 

University significantly reduced the development cycle by conducting accelerated fatigue 

tests for vehicle components; they also investigated the quantitive correlation between the 

typical roads in China and test tracks in the proving ground of Shanghai Volkswagen and thus 

obtained the accurate fatigue prediction of a sedan car
[145-147]

. 

Finite element analysis based fatigue simulation started to be used in 1920. Compared to 

the experiment method, the simulation method can provide the detailed contour of the fatigue 

distribution. As such, the week part can be predicted at the design stage and thus aviod the 

unreasonable structural design. Therefore, the simulation method has become a powerful tool 

in the morden vehicle development, as it is able to reduce the number of physical prototypes. 

In this regard, Wannenburg et al. 
[148]

 presented a fatigue equivalent static load (FESL) 

method to assess the numerical durability of heavy vehicle structures. Koh 
[149]

 performed 

fatigue analysis of a vehicular steering link to prevent fatigue failure. He et al. 
[150]

 explored 

the failure causes in a damper spring of passenger car, in which the fatigue life prediction was 

carried out with the measured strain signals and local strain-life method. These works signify 



urgency of developing design procedure for improving durability and fatigue life of vehicles. 

Sun and Lu 
[151]

 analysed the fatigue life of a body by combining finite element analysis and 

the power spectrum density method. Gao et al. 
[152]

 analysed the critical parts and fatigue life 

for a fuel-cell bus based on the transient stress history. 

As the dynamic load is extremely difficult to handle during the optimisation process, 

most of the work in the automotive literature was focused on adopting one of the following 

optisation strategies
[153]

: 

(1) static response optimisation: this straregy uses a series of static laods
[154-156]

, which 

can reflet the extreme values of the loading history, to carry out the optimisation. Though 

static response optimisation has been well developed, applying this strategy to a dynamically 

loaded component could lead to overweight, unsafe and unreliable design. 

(2) frequency response optimisation: the principle of this strategy is to move away the 

natural frequncy of the dynamically loaded structure from the maximum frequency of the 

loads so as to prevent the resonance
[157-160]

. The optimality of the design obtained from this 

strategy cannot be guaranteed because the real information of the loading condition is not 

taken into account. 

(3) Quasi-static response optimisation: this strategy uses the fatigue life of the most 

critical location as a constraint in the optimisation process. The inexpensive quasi-static 

analysis was used for the sake of computational efficiency
[161, 162]

. Again, the quasi-static load 

cannot account for the history information of the real load. Furthermore, the constraint of the 

fatigue life on a specific location cannot guarantee the optimum design for the whole structure, 

since the most damaged locate could change during the optimisation process. 

More recently, fatigue optimisation has been widely used in control arms 
[45, 163-166]

, 

knuckles 
[39, 40]

, wheels 
[167, 168]

 and body structures 
[44, 169, 170]

. Zhu et al. 
[169]

 performed fatigue 

analysis of the body for a sports utility vehicle and performed topological optimisation of the 



spot weld location in the critical region by using the homogenization method to improve its 

durability. Boessio et al. 
[44]

 carried out a fatigue lifetime estimation of commercial vehicles 

due to loading randomness induced by rough pavement surfaces and performed the structural 

optimisation by considering the reliability index as a constraint. 

Note that the fatigue analysis depends on the history of the dynamic loading and it 

always needs an intensive simulation to extract a dynamic response. To address this issue, 

metamodel-based structural optimisation techniques have been playing an increasingly 

important role in vehicular design. In this regard, Hsu and Hsu 
[167]

 solved a weight reduction 

problem of aluminum disc wheels under constraints of fatigue life through a sequential neural 

network surrogate approximation. Lee and Jung 
[171]

 developed a KRG metamodel for 

optimizing a connecting rod subjected to a certain fatigue life. Ho et al. 
[172]

 developed a 

quadratic PRS model to improve a crankshaft rolling process for durability. Bayrakceken et 

al. 
[170]

 conducted a multiobjective optimisation for a passenger car’s body, where ANN was 

used to model the fatigue life. Kaya et al. 
[173]

 re-designed a failed vehicle component 

subjected to cyclic loading by combining topology optimisation with PRS based shape 

optimisation. Song et al. 
[165]

 adopted the PRS and KRG surrogate models to optimize a 

control arm by considering strength and durability performance. 

1.5 Research problems 

It can be concluded for the review of literature that structural optimisation in vehicle 

structure has been achieved fruitful research outcomes and played an essential role in 

accelerating the development and reducing the development cost. However, the following 

problems still exist: 

(1) To excavate the potential of crashworthiness, various novel structures have been 

proposed, among which funtionally graded structures are a representive. Then, is it possible 

to integrate functionally graded structures with other configurations? Can functionally graded 



structure apply to multiple loading scinarios to widen the application scope? Can the tube 

with a funtionally graded thickness be combined with functionally graded foam to achieve 

preferable crashworthiness performance? Finally, how to design the gradients for the 

functionally graded structures and materials? 

(2) There is no report available on the use of an ensemble of surrogate models in fatigue 

optimisation. Can the ensemble of surrogate models be used for fatigue optimisation and 

what is the effectiveness of using this tenique in fatigue optimisation? 

(3) What advantages does the EGO have in practical engineering problems and why 

does it have such advantages? How to implementate the sequential surrogate based 

optmisation for a multiobjective optimisation problem? 

(4) There is few studies on the microstructural uncertainty of the foam-filled structures. 

How does this uncertainty affect the results of crashworthiness optimisation? 

(5) For specific engineering design case, how to make a decision considering the 

unceratinty? 

1.6 Thesis structure 

Based on a couple of industrial projects, this thesis investigates the surrogate modelling 

method and its application in the vehicle body design, aiming to improve the effectiveness 

and efficiency of fatigue and crashworthiness optimisation and to enhance the accuracy, 

reliability and robustness of the optimisation design. Fig. 1.3 outlines the structure of the 

thesis and the contents are as follows: 

Chapter1 Introduction. This chapter first introduces the backgound and significance of 

this study. Then, the state of the art is systematically reviewed, including surrogate based 

engineering optmisation, structural optimisation under uncertainty, and optimisation of body 

structures. Last, the research problems to be addressed in this thesis are pointed out. 

Chapter 2 Theory of surrogate-based engineering optimisation. This chapter 



introduces the relevant theories  in surrogate-based optimisation, including design of 

experiments, surrogate modelling, and particle swarm optimisation algorithms, laying the 

theretical foundation for the later chapters. 

Chapter 3 crashworthiness optimisation for functionally graded structures based 

on surrogate modeling. A series of novel crashworthy structures is introduced to the design 

of energy absorbers from the bio-inspired perspective. The multiobjective particel swarm 

optimisation algorithm is used to conducted the crashworthiness optimisation for multi-cell 

tubes with a functionally graded thickness under the axial crushing, functionally graded 

foam-filled tubes under the bending and doubly graded structures, respectively. The purpose 

is to develop the advanced energy absorbers to push the vehicle safety to a new level. 

Chapter 4 Fatigue optimisation of a truck cab based on the ensemble of surrogates. 

This chapter proposed to use the ensmeble of surrogate models to optimise the fatigue life of 

a truck cab, in order to make full use of the information of training points and excavate the 

potential of multiple surrogate models. Meanwhile, this chapter proposes a hyrid particle 

swarm optimisation algorithm to address the optimisation problem by integrating the standard 

particle swarm optimisation algorithm with the sequential quadratic programming so that the 

premature issue of the standard particle optimisaiton can be avoided. 

Chapter 5 Sequential surrogate based optimisation and its application to body 

structures. To allieviate the depedence of optimisation results on the number of initial 

training points and to improve the efficiency and accuracy of the optimisation, sequential 

surrogate based optimisation is proposed to handle practical problems in the automotive 

engineering. The EI-based optimisation method was employed to enhance the fatigue 

performance of a spot weled joint; the multiobjective sequential optimisation is applied to a 

crashworthiness design of a foam-filled bitubal structure. 

Chapter 6 Uncertainty-based optimisation and its application to vehicle body 



structures. To account for the uncertainties in material properties and geometries, 

uncertainty-based optimisation is proposed to address three engineering problems. First, the 

analysis response surface and design response surface models are used to maximise the 

vetical sag stiffness and minimise the mass of a vehicle door subjected to the probabilistic 

constraint. The effects of reducing the uncertainty and improving the desired reliability level 

are analysed to guide the practical design. Second, a multiobjective optimisation under 

uncertainty is conducted based on the multiobjective particle swarm optimisation and Monte 

Carlo simulation. The study compares the optimisation results between the deterministic and 

non-deterministic optimisations and analyses the effects of the weight on the mean and 

standard deviation of the performances on the optimisation results. Third, considering the 

uncertainty in the material property, the multiobjective optimisation of a truck cab is 

investigated. The concept of the general dual surrogate models is introduced to approximate 

the mean and standard deviation of the fatigue life and then the multiobjective robust 

optimisation is conducted based on the established dual surrogate models and the 

multiobjective particle swarm optimisation algorithm. A hybrid decision making model is 

proposed to select the most appropriate solution from the Pareto front, which makes a best 

tradeoff between the fatigue performance and the robustness. 

Surrogate based optimisation

（Chapter 2）

Ensemble of surrogates

（Chapter 4）
Fatigue optimisation of a truck cab

Crashworthiness optimisation of 

functionally graded structures

（Chapter 3）

Sequential surrogate based optimisation

（Chapter 5）

Optimisation of a spot-welded joint

Optimisation of a foam-filled tube

Reliability-based optimisation 

of a vehicle door

Uncertainty-based optimisation 

of a foam-filled tube

Multi-criteria decision making based 

robust optimisation of a truck cab

Deterministic optimisation
Uncertainty-based optimisation

（Chapter 6）

Fig. 1.3 Structure of the thesis 
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Chapter 2 Theory of surrogate-based engineering Optimisation 

In engineering optimisation of complex systems, surrogate modelling has been 

widely used as a powerful tool. Surrogate models are established mathematical 

models between design variable inputs and response outputs based on a limited 

number of sample data. The mathematical models can replace the high-fidelity 

simulations during the optimisation iteration. Fig. 2.1 displays the optimisation 

procedure of using surrogate models and the details will be introduced in this chapter. 

 

Optimisation definition

Design of experiments

Surrogate modelling

Evaluate models

Acceptable?

Run optimisation algorithm

Objective

Constraint

Design variables





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



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RAAE
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




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MOPSO





Optimum design

Run simulations

Yes

No

 

Fig. 2.1 Procedure of surrogate based optimisation 

2.1 Definition of the optimisation problem 

The optimisation problem can be defined as: 
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 
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

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= x x x

x
     (2.1) 

where x is the vector of design variables and  if x , i=1,2,…,M is the objective 

function ，   0g x  is the constraint function. When M>1 ， Eq. (2.1) is a 

multiobjective optimisation problem; otherwise, it is a single objective optimisation 

problem。 

2.2 Design of experiments 

Based on probability theory and mathematical statistics, Design of Experiments (DoE) 

can guide to scientifically select sampling points in the design space so that these 

points can reflect the characteristics of the design space as much as possible.  

2.2.1 Full factorial design 

A full factorial design contains all possible combinations of all factors at all levels. It 

contains the most amount of information, providing the main effect of each factor and 

the interaction effect between the factors. Assume n factors with m1, m2, ..., mn levels 

(discrete values) respectively, and then m1× m2× ... × mn experiments are required to 

be conducted for the full factorial design. The major drawback of the full factorial 

design is that when the numbers of the factors and/or the levels are large, the number 

of the experiments can be prohibited for the practical implementation. For example, 

the full factorial design with 11 factors and 2 levels needs 2
11

=2048 experiments. 

2.2.2 Orthogonal array desgin 

Table 2.1 Orthogonal array 11

12 (2 )L  

Exp No. Factor 
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1 2 3 4 5 6 7 8 9 10 11 

1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 2 2 2 2 2 2 

3 1 1 2 2 2 1 1 1 2 2 2 

4 1 2 1 2 2 1 2 2 1 1 2 

5 1 2 2 1 2 2 1 2 1 2 1 

6 1 2 2 2 1 2 2 1 2 1 1 

7 2 1 2 2 1 1 2 2 1 2 1 

8 2 1 2 1 2 2 2 1 1 1 2 

9 2 1 1 2 2 2 1 2 2 1 1 

10 2 2 2 1 1 1 1 2 2 1 2 

11 2 2 1 2 1 2 1 1 1 2 2 

12 2 2 1 1 2 1 2 1 2 2 1 

 

Different from a full factorial design, orthogonal array design is a fractional factorial 

design. A fractional factorial experiment is a certain fractional subset of the full 

factorial set of experiments, carefully selected to maintain orthogonality 

(independence) among the various factors and certain interactions. It is this 

orthogonality that allows for independent estimation of factor and interaction effects 

from the entire set of experimental results.  

In the orthogonal array  n
AL m , L denotes the orthogonal array and A is the number 

of the rows (i.e. the number of the experiments), m is the number of the levels and n is 

the number of the factors. Table 2.1 is the  11
12 2L  orthogonal array. 

Orthogonal arrays are characterised by their orthogonality. In Table 2.1, if the levels 

(1, 2) are converted to (-1, 1), then the vectors of the 1
st
 and 2

nd
 factors x1= (-1，-1，-
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1，-1，-1，-1，1，1，1，1，1，1), x2= (-1，-1，-1，1，1，1，-1，-1，-1，1，

1，1), and thus we can obtain x1x2
T
=0. The orthogonality means: 1) the levels of a 

factor appear the same times in the orthogonal array, which makes the experimental 

results at different levels are comparable; 2) the ordered pairs formed by the rows 

restricted to any two columns are all the possible ordered pairs of the two-element set 

(full factorial design). 

The orthogonal array design with 11 factors and 2 levels only needs 12 experiments, 

far more than 2018 of the full factorial design. However, it will be still cost-

prohibitive for the cases of a large number of factors and levels. 

2.2.3 Optimal Latin Hypercube design 

Another class of experimental design which efficiently samples large design spaces is 

the Latin Hypercube design. The Latin Hypercube design is a space-filling design as 

shown in Fig. 2.2b. An advantage of using Latin Hypercubes over Orthogonal Arrays (Fig. 

2.1a) is that more points and more combinations can be studied for each factor. The Latin 

Hypercube technique allows the designer total freedom in selecting the number of designs to 

run as long as the number of experiments is larger than that of the factors.  With this 

technique, the design space for each factor is uniformly divided for all factors. These 

levels are then randomly combined to specify m points defining the design matrix 

(each level of a factor is studied only once). A drawback to the Latin Hypercubes is 

that, in general, they are not reproducible since they are generated with random 

combinations. In addition, as the number of points decreases the chances of missing 

some regions of the design space increases. 

 



32 

X2

X1

X2

X1

X2

X1

(a) (b) (c) 
 

Fig. 2.2 Comparison of DoEs：(a)Orthogonal array(b)Latin Hypercube(c)Optimal 

Latin Hypercube 

An optimal Latin Hypercube design is a modified Latin Hypercube, in which the 

combination of factor levels for each factor is optimized, rather than randomly 

combined. The goal of this optimisation process is to design a matrix in which the points are 

spread as evenly as possible within the design space defined by the lower and upper level of 

each factor. As shown in Fig. 2.2c, the optimal Latin Hypercube design can inherit the merit 

of the Latin Hypercube design and overcome its drawback of failing to capture some regions 

of the design space. The following three commonly used optimality criteria can be used to 

construct an optimal Latin Hypercube design:
 [174]

 

1) Maximin distance criterion, i.e., to maximise the minimum in-site distance as 

follows 

 
1 , ,

max min ,i j
i j n i j

d
  

 
  

x x

    
(2.2) 

 ,i jd x x is the distance between xi and xj 

 
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t
tm
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d d x x t
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 
       
  
x x

  

(2.3) 

2) Entropy criterion 
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min log R
    

(2.4) 

R is the correlation function of the experimental matrix: 

1

exp ,1 , ;1 2
m

t

i j k ik jk

k

x x i j n t


 
      

 
R

            

(2.5)

 

where k  is the correlation coefficient。 

3) Centered L2 discrepancy criterion) 

The Lp discrepancy is a measure of non-uniformity of a design. Among Lp 

discrepancy, L2 discrepancy is used most frequently since it can be expressed 

analytically and is much easier to compute.： 
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(2.6) 

 

2.3 Theory of Surrogate modelling 

As demonstrated in Fig. 2.3, for an optimisation problem with the design 

variables (inputs) x1 and x2 and the response (output) y, nine sampling points are 

generated first using the DoE technique in Section 2.2; then the response are extracted 

from simulations; finally, the surrogate model ŷ  is established to replace the real 

response y in the subsequent optimisation.  
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Fig. 2.3 Construction of surrogate models: (a) sampling points; (b) surrogate models 

2.3.1 Response surface method model 

The response surface method (RSM) was originally proposed to analyze the 

results of physical experiments and create empirically-based analytical models for the 

observed response values. The RSM postulates a model as 

 )()( xx fy

 

(2.7) 

where )(xy  is the unknown function of interest, )(xf  is a known basis function of 

design variable x , and   is the residual error which is assumed to be normally 

distributed with mean zero and variance 2 . The individual errors, i  
at each 

observation points, are also assumed to be independent and distributed consistently.  

In many cases, the polynomial basis functions are found rather effective, and the 

corresponding RSM is named as polynomial response surface (PRS) methods. For 

example, a quadratic PRS model can be expressed as 
[175]

,  

1
2

0

1 1 1 1

ˆ( )
n n n n
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i i i j i

y b b x b x b x x


    

      x

                                         

(2.8) 

where 0b , ib  and ijb are the unknown coefficients, ix  is the i-th design variable, and n 

is the total number of design variables. These unknown coefficients can be 
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determined through the least square regression by minimizing the squared sum of the 

deviations of predicted value )(ˆ xy  from the actual value )(xy . 

Note that the minimum number of FEA runs for a quadratic PRS model should 

be (n+1)×(n+2)/2 in order to obtain the unknown coefficients, which implies the 

number of design variables could be critical. To address this issue, stepwise 

regression 
[32, 33, 52, 176]

 can be implemented to screen the terms in PRS which have a 

relatively little contribution to the design criteria. 

2.3.2 Radial basis function model 

The radial basis function (RBF) model was developed for scattered multivariate 

data interpolation by using a series of basis functions that are symmetric and centered 

at each sampling point. Radial basis functions are typically formulated as 
[177]

:  

 

1 1

ˆ( ) ( ) ( ( , ))
snm

j j i i

j i

y c p r
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  x x x x                                                          

(2.9) 

where m is the number of the polynomial terms, cj is the coefficient for polynomial 

basis function )(xjp . i  is the weighed coefficient, ),( ir xx  is the Euclidean distance 

expressed in terms of ixx  . )(r  is the radial basis function, for which most 

commonly used include Gaussian, thin plate spline, multiquadric, inverse quadric 

function, etc, given in Table 2.2. 

Table 2.2 Commonly used radial basis functions 

 Basis function 

Thin-plate spline function ,  

Gaussian function  

)log()( 22 crrr  10  c

0,)(
2

  cer cr
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Multiquadric function ,  

Inverse quadric function ,  

 

To solve those undetermined parameters cj and i, the orthogonality conditions 

are used without loss of generality, 





sn

i

ijip
1

,0)(x
 

for mj ,,2,1                                                              

(2.10) 

Combining Eqs. (4) with (5) in a matrix form gives 

     
     
     

T

Φ P λ y
=

P 0 c 0                                                                              (2.11) 

in which matrices Φ  and P  are determined by the sampling point values of both the 

radial basis function and the polynomial basic function, respectively. 

2.3.3 Kriging (KRG) model 

The Kriging (KRG) model was originally developed for mining and geostatistical 

applications involving spatially and temporally correlated data. The Kriging model 

comprises a global model and a localized departure 
[178]

: 

( ) ( ) ( )y f Z x x x                                                           (2.12) 

where ( )y x  is the unknown function of interest, ( )f x  is the known approximation 

(usually polynomial) function, and ( )Z x  represents a stochastic parameter with mean 

zero, variance 2 , and nonzero covariance. The ( )f x  term is similar to a polynomial 

response surface, providing a global model of the design space, often taken as a 

constant  . ( )Z x  provides localized deviations. The covariance matrix of ( )Z x  is 

given as: 

22)( crr  10  c

22

1
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
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)],([)](),([ 2 jiji RZZCov xxRxx                                 (2.13) 

where R  is a correlation matrix defined by Gaussian correlation function ( , )i jR x x  

as follows: 

2

1

( , ) exp
dv

i j

n
i j

k k k

k

R 


 
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 
x x x x                                       (2.14) 

where dvn  is the number of design variables, k  is the unknown correlation parameter 

used to fit the model, and i

kx  and j

kx  are the kth components of sample points i
x  and 

j
x , respectively. From Eqs. (2.13) and (2.14), the correlation function approaches 1 

when i
x  and j

x  are very closed to each other while correlation function approaches 0 

when i
x  and j

x  are far away from each other. In addition, the larger the k  the 

smaller the correlation function (Fig. 2.4). 

 

 

Fig. 2.4 Correlation function 

Then, predicted estimates, ˆ( )y x , of the response ( )y x  at untried points are given 

by: 

   1ˆ ˆˆ( )
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where y  is the response vector and f  is a column vector that is filled with ones when 
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( )f x  is taken as a constant. ( )T
r x  is a correction vector that implies how close 

between sample points and untried points  

       1 2, , ,..., , s

T
nT R R R 

  
r x x,x x x x x                                   (2.16) 

̂  is the general least square estimator given as follows: 

-1 -1 -1ˆ T T  (f R f) f R y                                                       (2.17) 

The estimate of the variance of the sample data from the global model is 

   
2

1

ˆ

ˆ ˆ
T

sn


 


 y f R y f

                                           (2.18) 

For calculating k  in Eq. (2.14), the maximum likelihood estimates are used by 

solving the following maximization problem over the interval 0k  , 
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ˆln ln
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sn  
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R
                                                      (2.19) 

where both 2
̂  and R  are the functions of k . 

Kriging models can also predict the mean squared error at any point of the design 

space: 
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  (2.20) 

The reader can refer to 
[178]

 for more details about the Kriging moel techique. 

2.3.4 Error metrics for surrogate modelling 

As surrogate models are just the approximations of the real system response, 

their accuracies need to be validated before they can be used to replace the real 

response during the optimisation. Commonly-used error metrics are summarised in 

Table 2.3, where iy  denotes the exact function value for assessment point i, iy  is the 
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corresponding surrogate value. y  is the mean of iy , Nv is the number of the 

confirmation sampling points. Apparently, a larger value of R-square and a smaller 

value of the other metrics are preferred. 

Table 2.3 error metrics for surrogate modelling 

Metrics  Expression  
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2.4 Particle swarm optimisation algorithm 

2.4.1 Single-objective particle swarm optimisation algorithm 

Particle swarm optimisation (PSO) algorithm 
[179]

 is a relatively new heuristic 

approach inspired by the choreography of a bird flock. In the standard PSO, every 

particle is treated as a point in a d-dimensional design space which adjusts its “flying” 

according to its own and other particles’ flying experience. Meantime, each particle 

keeps track of its position in the solution space in terms of the fitness value achieved 
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by this particle so far, in which this fitness value is named as personal best (pBest). 

Another best fitness value that is tracked by PSO is the best value obtained by the 

whole swarm up to now, and it is called global best (gBest). The operation of PSO is 

by gradually changing the velocity of each particle toward its pBest and gBest 

positions at each time step. The update of velocity and position can be done as 
[180]

: 

1 1 2 2 g( 1) ( ) ( ( ) ( ) ( ( ) ( )))i i i i it t rc t t r c t t     v v p x p x
 (2.21) 

( 1)= ( ) ( 1)i i it t t  x x v
     (2.22) 

where ( 1)i t v  and ( 1)i t x
 
are the velocity and position of particle i at (t+1)th 

iterations respectively, ( )i tp
 
is the particle position of pBesti(t), g ( )tp  is the particle 

position of gBest(t), c1 and c2 are the acceleration factors, r1 and r2 are the uniformly 

distributed random numbers between 0 and 1. The algorithmatic procedure of PSO is 

as follows: 

(1). Initialise the PSO parameters, such as population size, acceleration factors, 

maximum generation; 

(2). Randomlise and  and calculate the fitness value ; set the interation 

number t=0 and , and find the optimum position . 

(3) Update the particle velocities using Eq. (2.21). 

(4) Update the particle positions according to Eq. (2.22) and calculate the fitness 

function value. If , then ; otherwise . 

(5) Check if the termination criteria are met: if so terminate the optimisation process, 

otherwise t= t+1 and return to Step (3). 

2.4.2 Multi-objective Particle Swarm Optimisatioin 

As an extended version of PSO, the multiobjective particle swarm optimisation 

(MOPSO) algorithm is characterized by fast convergence and well-distributed Pareto 

ix iv )( if x

ii xp  gp

)()( ii ff px  ii xp  ig xp 
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frontier compared with other multiobjective optimisation algorithms such as NSGA-II 

[52, 181, 182]
. Note that MOPSO has been employed successfully to solve a series of 

design problems, such as sheet metal forming and crashworthiness with foam filled 

structures 
[10, 183, 184]

 

The objective functions in a multiobjective optimisation problem are always 

conflicting and one can obtain a set of optmal solutions that cannot be further 

improved without sacrificing at least one of the objectives. These solutions are called 

non-dominated solutions or Pareto optimal solutions. Different from a single-

objective optimisation that seeks a single optimum subjected to the constraint function, 

the multiobjective optmisation aims to acquire the Pareto solution set. A standard 

multiobjective optimisation can be writtern as:  

      1 2min , ...,= ny f x f x f x
               

(2.64) 

   . . 0, 0i is t g x h x 
                 

(2.65) 

 if x ， i=1,2,…,n is the objective functions,   0ig x   denotes the inequality 

constraints and   0ih x   represents the equality constraints. The Pareto dominance 

means that
0

x  dominates 
1

x (
0 1
x x ) if and only if Eq. (2.23) is satisfied. 
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                 (2.23) 

All the Pareto solutions comprise the Pareto solution set: 

 0 1 0

S
P   x x x                 (2.24) 

The values of the Pareto solution set in the objective sapace comprise the Pareto front 

F
P : 

         1 2
, , ,

F m S
P f f f f P    x x x x x     (2.25) 
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The multiobjective particle swarm optimisation algorithm proposed by Coello et al. 

[181]
 is as follows: 

(1). Initialise the position of each particle POP[i]. 

(2). Initialise the velocity of each parcle VEL[i] = 0. 

(3). Evalute each of the particles in POP andstore the positions of the particles that 

represent non-dominated vectors in the repository REP. 

(4). Generate hypercubes of the search space explored so far, and locate the particles 

using hypercubes as a coordinate system where each particle’s coordinates are defined 

according to the values of its objective functions. 

(5). Initialize the memory of each particle PBEST[i] = POP[i]. 

(6). If the maximum number of the cycles has not been reached, continue to execute 

the following steps.  

(7). Update the velocity of each particle VEL[i]=W×VEL[i]+R1×(PBEST[i]-POP[i])+ 

R2× (REP[h]-POP[i]), where W is the inertial weight,R1 and R2 random numbers 

between 0 and 1 and REP[h] is a value taken from the repository. 

(8). Update the position of each particle POP[i]= POP[i]+ VEL[i]. 

(9). Maintain the particles within the search space in case they go beyond their 

boundaries. 

(10). Evaluate each of the particles in POP. 

(11). Upadate the contents of REP and the geographical representation of the particles. 

(12). Increment the loop counter. 

It can be seen that the main procedures of the multiobjective particle swarm 

optmisation algorithm include the update of the external repository, the selection of 

the global best and the update of the local bests, and the boundary treatment etc.
 [181] 
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2.5 Summary  

This chapter introduced the whole process of the surrogate based 

optimisation,which is widely used in engineering optimisation. First, commonly-used 

DoE techiniques were introduced and discussed. Second, polynomial response surface, 

radial basis function and Kriging models are introduced together with the error 

metrics for assessing the surrogate models. Last, the single- and multi-objective 

particle swarm optimisation algorithms were introduced.
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Chapter 3 Crashworthiness optimisation for functionally graded structures 

based on surrogate modeling 

3.1 Introduction to functionally graded structures  

Recently, functionally graded materials (FGMs), where microstructural details are 

spatially varied through a non-uniform pattern, are drawing increasing attention 

attributable to their tailored multifunctional behaviors. These advanced materials with 

engineered gradients of composition, structure or specific properties in the preferred 

direction/orientation are superior to homogeneous materials made of the same 

constituents and uniform geometry. For FGMs, the resultant mechanical properties such 

as Young’s modulus, Poisson’s ratio, shear modulus and material density can vary in 

preferred directions 
[185]

. In nature, FGM structures widely exist, from bamboos (Fig. 3.1a) 

[186]
 and cuttlebone consisting of horizontal lamellae separated by vertical pillars 

[187]
 (Fig. 

3.1b), to the spongy trabecular bone 
[188]

. In the biomimetic context, the gradient concept 

has been taken into account in a wide range of engineering applications, where optimal 

use of materials is essential, e.g. functionally graded piezoelectric materials 
[189]

, dental 

implants 
[190]

, heat exchanger 
[38]

, and novel concrete structures 
[191]

, etc. To further 

improve the crashworthiness of foam-filled thin-wall structures, graded foam material 

and tube wall thickness have shown certain benefits. In this respect, functionally graded 

foam (FGF) materials 
[10, 138-141]

, where foam density varies continuously in a predefined 

form, have been attempted to replace uniform foam fillers.  

Furthermore, to improve the utilization of wall materials functionally graded 

thickness (FGT) was proposed, in which the Tailored Rolling Blanks (TRB) technology 
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has been used to produce sheet metal for continuously changing wall thickness 
[192]

. In 

this regard, Sun et al. 
[143]

 first explored the crushing characteristics of FGT square tubes 

and found that FGT tube is superior to its uniform counterpart in overall crashing 

behaviors. More recently, Li et al. 
[193]

 compared the novel FGT tube with the 

conventional tapered tube for withstanding oblique impacting, and found that FGT tube is 

more beneficial within a given spatial constraint. These studies showed that the column 

with a graded wall thickness is more preferred than with a uniform thickness for its stable 

load-deformation responses and reduced risk of global buckling.  

The functionally graded structures provide us with a novel approach to 

crashworthiness design 
[194]

 and the gradient design widens the application of structural 

optimisation. This chapter will conduct optimisation design for various novel functionally 

graded structures and materials, aiming to develop more advanced energy absorption. 

 

Fig. 3.1 Examples of FGMs in nature and engineering (a) bamboo (b) cuttlebone and SEM image 

of the transverse cross section of cuttlebone. 

3.2 Crashworthiness and multiobjective optimisation of functionally graded multi-cell 

tubes 

Typically, severe deformation with combined bending and membrane deformation 

takes place near the corners of tubes 
[195]

. Thus, the number of corner elements on a 

tube’s cross-section largely influences the energy absorption and crashing behaviors 
[70, 

103]
. It is expected to devise some sophisticated multi-cells and internal webs for 
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achieving better energy-absorbing characteristics. In this regard, Kim 
[195]

 proposed a new 

cross-section configuration with four square cells at the tubal corners for enhancing 

energy absorbing capacity. Zhang et al. 
[196]

 and Zhang and Cheng 
[197]

 derived a closed-

form formula for the mean crushing force of multi-cell sections based upon tubal folding 

mechanism. Later, Alavi Nia and Parsapour 
[198]

 corrected Zhang’s formula for unequally 

sized multi-cell tubes. To maximize energy absorption and minimize peak force, Hou et 

al. 
[199]

 adopted response surface method (RSM) to optimize single, double, triple and 

quadruple cell sectional columns. Qi et al. 
[95]

 compared the crashing behaviors of singe-

cell straight, single-cell tapered, multi-cell straight and multi-cell tapered tubes, and they 

found the last one performs the best under oblique impact loading. Song and Guo 
[200]

 

compared the windowed and multi-cell square tubes under axial and oblique loading. 

Tang et al. 
[201]

 devised a multi-cell circular column and verified its superiority to the 

conventional square structure. Zhang and Zhang 
[202]

 studied the quasi-static axial 

crushing of multi-cell stub columns with different sectional configurations. Tran et al. 
[203]

 

developed theoretical solutions to mean horizontal force and mean bending moment for 

multi-cell square tubes under oblique impact loading. Bai et al. 
[204]

 conducted low speed 

compressive tests on hexagonal multi-cell structures and developed a new analytical 

model to predict the mean crushing strength. Liu et al. 
[205]

 investigated the 

crashworthiness of automotive front rails with various cross-sections and found the multi-

cell section with double vertical internal stiffeners can absorb more energy than other 

configurations. Hong et al. 
[206]

 revealed that multi-cell tubes with triangular lattices 

enable to have mean crushing forces 60-103% higher than single-cell tubes. The common 
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features of these abovementioned studies are to increase the number of cells or devise 

novel cellular configurations with uniform wall thickness for enhancing crashworthiness.  

The above-mentioned studies tried to increase the cell number or devise novel multi-

cell tubes, while the tube thickness was uniform. On the other hand, is it possible to 

design transverse gradients to place more material the corners for excavating the potential 

of multi-cell structures? With this idea in mind, this section will conduct crashworthiness 

analysis and multiobjective optimisation based on surrogate modelling. 

3.2.1 Numerical modelling 

3.2.1.1 Geometrical description 

The structure analysed herein is a five-cell tube with a functionally graded wall 

thickness (Fig. 3.2a). The length of this tube is H= 200 mm, and its cross-section 

dimension is L× L= 75 mm ×75 mm. Fig. 3.2b depicts the graded thickness configuration 

in the cross section. Due to geometrical symmetry, the cross section is defined in three 

characteristic regions in this study, i.e., exterior walls of corner-cells (Region I), the 

exterior wall of the middle connector of corner cells (Region II) and inner ribs (Region 

III). Thus, the total numbers of these characteristic regions in the FGT tube are eight, four 

and eight, respectively. Each region is self-symmetric and assumed to has its own 

thickness gradient by following Eq. (3.1): 

max max min

10( , ) ( )( ) 1,2,3
nii

i i i
i

x
t x n t t t i

l
    

                                   (3.1) 

where 
min

t  and 
max

t  are the minimum and maximum wall thicknesses, respectively. In 

this study, 
min

t =0.7 mm and 
max

t = 2.0 mm are adopted. xi and li are the distances shown 
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in Fig. 3.2b. ni denotes the corresponding gradient parameter that governs the thickness 

variation (1 ≤ ni ≤ 1). Thus, Fig. 4 shows thickness variation vs normalized distance with 

different values of ni. The thickness decreases as xi increases and the gradient function 

changes from convex to concave, while ni varies from negative to positive. 

   

(a) (b) 

Fig. 3.2 Configuration of FGT multi-cell tube: (a) 3D view; (b) 2D cross-sectional 

view 
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 Fig. 3.3 Finite element model of FGT multi-cell tube. 

 

Fig. 3.4 Tensile specimen and stress-strain curves of AA6063-T5. 

3.2.1.2 Finite element (FE) model 

To investigate the crashworthiness of multi-cell tubes, the FE models were created. 

The tube was loaded by a rigid mass block of 263 kg with an initial axial velocity of 10 

m/s. In order to initiate a stable and progressive crushing, indentation triggers were 
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introduced in the FE models 
[207, 208]

. Small indentations on the corner-cell regions and 

connecting walls (refer to Fig. 3.3) near its distal end were used as triggers, which 

facilitate the FE model to more easily develop progressive folding mode. The triggers are 

placed at a certain distance from the distal end of the tube, which is approximately the 

half wavelength of one fold, and the depth of triggers are set to 0.2mm 
[202]

.  

In this study, the numerical models were developed using explicit non-linear finite 

element code LS-DYNA. The Belytschko-Lin-Tsay reduced integration shell elements 

with five integration points through the thickness were employed to model the tubes. To 

model thickness variation more realistically, we attempted to assign different thicknesses 

to each of the four nodes of the shell elements in line with Eq. (3.1). Stiffness-based 

hourglass control was employed to avoid spurious zero energy deformation modes and 

reduced integration was used to avoid volumetric locking. “*RIGID WALL” was used to 

model the interaction between the impacting mass block and tube (Fig. 3.3). The interface 

between the tube and rigid support was modeled as an “automatic node to surface” 

contact. The “automatic single surface” contact was prescribed to the tube to avoid 

interpenetration during folding deformation. The static and dynamic frictional 

coefficients were taken as 0.2 and 0.3, respectively 
[209]

. 

The tube was modeled through a piecewise linear elastic-plastic behavior with strain 

hardening (material model 24 in LS-DYNA). The thin wall material was aluminum alloy 

AA6063-T5 with the density =2700 kg/m
3
, Poisson’s ratio =0.3, and Young’s modulus 

=70 GPa. The material model was considered insensitive to strain rate but defined as 

non-linear isotropic work hardening in the plastic region 
[10, 184]

. The obtained stress - 

strain curve through our in-house tensile tests is provided in Fig. 3.4. 
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In order to determine the size of elements, a convergence test was carried out to 

minimize the effect of mesh refinement on the accuracy of numerical analysis, thereby 

maintaining reasonable balance with computational cost. The shell element size of 2×2 

mm
2
 was found to be sufficient to simulate the multi-cell tubes, which were used 

throughout the present study. According to the above description, the 3D FE model of the 

multi-cell tube with functionally graded thickness is shown in Fig. 3.3. 

3.2.1.3 Validation of FE modeling 

As a newly introduced structure, the FE model of FGT multi-cell tube cannot be 

directly validated as the experimental data have not yet been reported adequately and 

there has been no physical specimen available for the experiment. Nevertheless, FGT 

multi-cell tube becomes a conventional multi-cell tube with uniform thickness wall when 

min
t  = 

max
t  in Eq. (3.1). It is thus possible to validate the modeling results in this special 

case. Fig. 3.5 shows the drop-hammer impacting testing. Figs. 3.6a and b display the 

deformation patterns of two specimens and Fig. 3.6c presents FEA results under the same 

impacting conditions. As shown in these pictures, these four corner-celled regions and the 

connecting walls of such a multi-cell tube undergo in-extensional deformation. As 

expected, the first fold starts from the dedicated triggers, and then followed by successive 

folds. Clearly, the simulated collapse modes are almost the same as those obtained by the 

experimental tests.  

 



52 

 

Fig. 3.5 Dynamic impacting experimental set-up. 

 

   

(a) 



53 

   

(b) 

 

(c) 

Fig. 3.6 Comparison of deformation modes between experimental and 

numerical results: (a) Dynamic axial impacting testing 1; (b) Dynamic axial 

impacting testing 2; (c) Numerical results 

Fig. 3.7 shows the correlation of the force-displacement response and energy 

absorption curves between the experiment and simulation. It is found the crashing force 

of FE prediction follows the same trend of the experiment data. Crashing force in FE 

simulation exhibits a lower value in the first peak but experiences slightly higher values 

of the rest of peaks during the subsequent folding. Such discrepancy may be due to the 

trigger placements in the FE model which actually weaken the initial stiffness of the tube 

and consequently decrease the first peak force in the simulation. In addition, the existence 

of imperfections in the physical specimen can also be other reason, which is however 
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very difficult to be considered properly in FE modeling. The energy curve from the FE 

simulation agrees fairly well with the experimental data of the first specimen but has a 

slightly higher discrepancy with that of the second specimen due to its instability of 

deformation as shown in Fig. 3.7b. Overall, the numerical modeling technique adopted 

here is considered sufficiently accurate and will be extended to the subsequent study. 

 

(a)  (b) 

Fig. 3.7 Comparison of experimental and numerical results. (a) Crushing force (b) 

Energy absorption 

3.2.2 Numerical analysis of crashworthiness 

3.2.2.1 Effect of thickness gradients  

To investigate the influence of thickness gradients on the crashworthiness 

performances, sampling points were generated uniformly over the 3D space of gradient 

parameters n1, n2 and n3 by using full factorial design with five levels for each of gradient 

parameters. Numerical analyses were then performed for all the sampling points and 3D 

response surfaces (RS) of crashworthiness indicators were plotted in Figs. 10-13. From 

Fig. 10, it can be observed that the Fmax increases monotonically with the increase of n1, 
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n2, and n3. This is mainly because that with increases in the gradient parameters the 

intermediate thicknesses (between tmin and tmax) in the corresponding region increases (as 

shown in Fig. 4), leading to strengthening the tube structure. As such, the values of EA 

and SEA become higher as a result of increases in gradient parameters (Figs. 11 and 12). 

Besides, it is generally advantageous to increase the gradient parameters for yielding a 

higher CFE as shown in Fig. 13. While increasing the gradient parameters seems an 

effective way to absorb more energy, it would result in an undesirable increase in Fmax. 

3.2.2.2 Comparison of FGT and UT multi-cell tubes 

To compare the crashworthiness of FGT multi-cell tubes and their counterparts with 

uniform thickness (UT), we also plot the response surfaces of UT structures in Figs. 10-

13. Each UT multi-cell tube is considered to have the same mass as the corresponding 

FGT tube by assigning the uniform thickness as follows, 

 
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 (3.2) 

From Fig. 3.9 when n3 = -1 (lowest), the FGT tubes have slightly larger values in 

Fmax than the UT tubes at the majority of the design domain. However, when n3 increases, 

the Fmax of FGT tubes becomes lower than that of UT tubes at a larger portion of the 

space. When n3 = 1, the FGT tubes have a lower Fmax over the whole design domain. 

Overall, no significant difference in Fmax is observed between the FGT and UT structures, 

and the FGT tubes become more advantageous over their counterparts when gradient 

parameters have a greater value. As for the SEA, the FGT tubes can always outperform 
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the UT tubes as displayed in Fig. 3.10. The largest improvement of using the FGT 

structures appears in the corners regions with n1 = n2= -1, which pushes the intermediate 

thicknesses (in-between tmin and tmax) toward tmin, thereby achieving the most efficient use 

of material. Nevertheless, the amount of energy absorption is the lowest in this region 

(a) (b)  

(c) (d)   
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(e)   

Fig. 3.9 3D response surfaces of Fmax. (a)n3=-1; (b)n3=-0.5; (c)n3=0; (d)n3=0.5; (e)n3=1. 

 (a) (b)   
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(c) (d)   

(e)   

Fig. 3.10 3D response surfaces of SEA. (a)n3=-1; (b)n3=-0.5; (c)n3=0; (d)n3=0.5; (e)n3=1. 

3.2.3 Multiobjective optimisation for FGT multi-cell tubes 

3.2.3.1 Definition of optimisation problem 

From the above parametric analysis, while it has been clear that the gradient 

parameters largely affect the crashworthiness of FGT multi-cell tubes, it remains 

unknown how to determine these gradients for achieving best possible performances, 

which is the main task of the rest of this study. As an energy absorber, the tube structure 
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is expected to absorb as much impact energy per unit mass as possible. Thus, SEA should 

be an objective function to be maximized. Furthermore, Fmax of the structure is another 

indicator to the safety of occupants, to be minimized. Therefore, we formulated the 

multiobjective optimisation problem in Eq. (3.3), aiming to seek for the optimum 

gradient configurations with these two design criteria. 

1 2 3

min    , -  

. .     1 , , 1

maxF SEA

s t n n n




  

                                                                 

(3.3) 

For comparison, we conducted the optimisation for the corresponding UT structures 

as well, in which the gradient parameters in the corresponding FGT tube are taken as the 

design variables indirectly (Figs. 10-13).   

3.2.3.2 Response surface models 

In practice, metamodeling starts with the sampling data at some training points. In 

this study, the sampling points presented in Section 3 were used to approximate the EA 

and Fmax. Ten additional points were generated randomly in the design space to examine 

the accuracies of different orders of RSMs. Table 3.1 summarizes the results of accuracy 

assessment. Clearly, the values of R
2
 are all close to 1 and the values of emax and eavg are 

within 8%. However, it was found that there is no single order of response surface model 

suitable for all the crashworthiness indicators and the RSM may not necessarily become 

more accurate when a higher order model is chosen. Thus, the orders of RSMs were 

selected with boldface highlighted in Table 3.1 for the subsequent optimisations, and 

their expressions are given in Eqs. (3.4)-(3.7), where superscripts G and U represent the 

FGT and UT multi-cell tubes, respectively. the SEA can be calculated by Eq.(3.8), where 

A and ρ are the total area of walls and the density of aluminum, respectively. 
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3 3 3

1 2 3
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4

3
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n n

n
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
 (3.4) 
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2 2 2

2 3 1 3 1 2 3

3 3 3

1 2 3
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n n n

    

    

  
 (3.5) 

 max 1 2 3 1 2 3 1 2

2 2 2

2 3 1 3 1 2 3

3 3 3

1 2 3

, ,  140.8515 33.6084 17.0421 33.6088 1.4080
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 (3.6) 
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2 2 2
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3 3 3
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    
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  
 (3.7) 

 G(U) G(U)

1 2 3 u, ,  / ( )SEA n n n EA t A   
     (3.8) 

Table 3.1 Modelling accuracy of response surface models 

    Order R
2
 emax eavg 

Gradient EA Linear 0.9734 5.80% 2.61% 

Quadratic 0.9844 6.81% 2.41% 

Cubic 0.9929 3.75% 1.55% 

Quartic 0.9917 3.97% 1.66% 

Fmax Linear 0.9859 6.23% 1.56% 

Quadratic 0.9845 6.55% 1.60% 

Cubic 0.9986 1.36% 0.49% 

Quartic 0.9987 1.29% 0.46% 

Uniform EA Linear 0.9914 10.38% 2.38% 

Quadratic 0.9904 11.70% 2.41% 
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Cubic 0.9995 1.43% 0.62% 

Quartic 0.9994 1.70% 0.63% 

Fmax Linear 0.9870 7.63% 1.69% 

Quadratic 0.9890 7.10% 1.56% 

Cubic 0.9992 0.82% 0.40% 

Quartic 0.9993 0.74% 0.37% 

3.2.3.3 Optimisation results 

Fig. 3.11 compares Pareto frontiers of the FGT and UT multi-cell tubes. The Pareto 

optimal frontiers provide designers with a wide spectrum of solutions over the design 

space for selection. Specifically, if the designers wish to pay more attention to SEA, the 

solutions at the top left corner should be selected. But if the designers would like to 

emphasize more on Fmax, the solutions at the bottom right corner should be considered. 

Most importantly, when optimized conventional UT tubes are replaced by the optimized 

FGT tubes, the Pareto frontier indicates considerably better performance in both Fmax and 

SEA. That is to say that the FGT multi-cell tubes enable to enhance SEA and lower Fmax 

concurrently.  

Fig. 3.12 depicts the distribution of Pareto optimum solutions of the FGT multi-cell 

tubes in the design space. To achieve a wide range of crashworthiness performances, 

each of the design variables (i.e., gradient parameters) spreads over their corresponding 

dimensions of the design space. Interestingly, all of the optimums are located around the 

diagonal line of n1 = n2, which indicates that similar values of gradient parameters in the 

outer walls are more likely to yield optimal performance. Moreover, the optimums also 

have values of n3 > n1 and n3 > n1, which indicates stronger internal ribs improve the 

performance of the FGT multi-cell tubes.  

In real-life applications, Fmax is often required to be controlled under a certain level 

for concerning occupant’s safety. In this study, if we constrain Fmax ≤150 kN for a 
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quantitative comparison between FGT and UT multi-cell structures, the optimal solutions 

can be simply selected from the intersection between Pareto frontiers and the horizontal 

line of Fmax =150 kN. Table 3.2 lists the two specific optimums, where the surrogate 

models were also checked against the FE analyses. It is seen that the RS model can 

predict the actual performance with fairly high accuracy. Furthermore, while these two 

designs develop the same first peak force (Fmax), the crashing force of the FGT multi-cell 

tube maintains at a higher level overall during the subsequent deformation seen in Fig. 

3.13, where the shaded area between these two curves is the additional energy absorbed 

by the FGT structure. As a result, the SEA of the FGT increases to 58.94 kJ/kg by 19.51%. 

Table 3.2 Optimal solutions (Fmax ≤ 150 kN). 

 UT FGT 

n1 0.0206 0.1105 

n2 0.0690 -0.0622 

n3 0.2152 0.2899 

Fmax (kN) 

  

Eq. (3.4)/ (3.6) 149.78 150.00 

FE 150.88 150.20 

Error -0.73% -0.13% 

SEA (kJ/ kg) 

  

Eq. (3.8) 45.41 54.69 

FE 45.75 56.67 

Error -0.73% -3.50% 
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Fig. 3.11 Pareto frontiers of FGT and UT multi-cell tubes.  
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Fig. 3.12 Distribution of Pareto solutions of FGT multi-cell tubes. 
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Fig. 3.13 Crushing force of optimal strucuture 

3.3 Crashworthiness and multiobjective optimisation of functionally graded foam-

filled tubes 

In vehicular systems, bumpers are expected to protect the driver and passengers 

when a frontal crash occurs. The collision energy is absorbed by the bumpers subjected to 

bending condition. Likewise, side door beams or B-pillars are required to provide enough 

load-carrying capacity in the event of side impact. Therefore, it is of significance to 

investigate the bending behavior of thin-walled structures under lateral impact. Recently, 

cellular materials, especially metallic foams have aroused increasing attention for 

extraordinary energy absorption capacity and lightweight potential in the automotive 

industry. The inclusion of lightweight foam-fillers into thin-walled sections has proven an 
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effective way to help increase the load-carry capacity and energy absorption. In this 

regard, several studies have been conducted on bending behavior of foam-filled thin-

walled structures. For example, Santosa and Wierzbicki 
[210]

 pointed out that filling 

aluminum honeycomb or foam core is preferable to thickening the column wall in order 

to enhance the energy-absorbing efficiency. Shahbeyk et al. 
[211]

 concluded that 

aluminum foam filling can significantly change the bending behavior in terms of energy 

absorption and deformation patterns. Zarei and Kröger 
[212]

 found that the filled column 

can absorb the same energy as the optimal empty column with a 28.1% lower weight. 

Guo and Yu 
[213]

 studied the dynamic response of foam-filled double cylindrical tubes 

under three-point bending experimentally and numerically.  

The above-mentioned studies are mainly restricted to uniform foam (UF) filled thin-

walled structures. To the authors’ best knowledge, however, previous studies on FGF-

filled thin-walled structures did not take into account the bending behavior under lateral 

impact, which is a significant crashworthiness performance for thin-walled structures. To 

date, some advanced technologies have been available to fabricate the functionally 

graded materials and structure for a devised gradient under laboratory conditions 
[214-217]

. 

It will promote the development of advanced energy absorbers to investigate the novel 

functionally graded foam-filled structures.  
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(a) 

 

(b) 

Fig. 3.14 Square column with graded foam-filler: (a) Schematic, and (b) Finite element 

model. 

x

L

Direction of grading
 

Fig. 3.15 Schematic showing grading patterns in the axial direction. 
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Fig. 3.16 Schematic showing grading patterns in the transverse direction. 

 

 

(a)    (b) 

Fig. 3.17 Variation of foam density vs normalized distance: (a) ascending gradient 

pattern, and (b) descending gradient pattern. 

3.3.1 Numerical modeling 

The structure analyzed herein is a functionally graded foam (FGF) filled thin-walled 

square column subjected to lateral impact loading (Fig. 3.14). The length of the column is 

550 mm, and the side length of the section is 55 mm. The foam-filled column lays on two 

cylindrical supports, and the span and diameters are 430 mm and 50 mm respectively. A 
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cylindrical punch with a diameter of 50 mm and a mass of 128 kg impacts onto the 

column at an initial velocity of v=4.4 m/s in the mid-span.  

3.3.1.1 Modeling of functionally graded foam 

In this study, both axial and transverse FGF materials are considered, where the foam 

is discretized to several layers and in each layer the density is uniform. Fig. 3.15 depicts 

the grading pattern for the axial FGF, whose density changes along the axis and has 

symmetry about the mid-span plane of the column. Figs. 3.16a and 3.16b display the 

grading patterns for the transverse FGF, where the foam density changes along the height 

direction of the column section and is symmetrical about the horizontal mid-plane, and 

along the two directions of the column section respectively. The density gradient is 

determined by the following power-law functions: 

min max min

max max min

( )( ) for an ascending pattern

( , )

( )( ) for a descending pattern
f

m

m

x

L
x m

x

L

  



  


     

 
      


   (3.9) 

where minρ  and maxρ  are the minimum and maximum densities, respectively. x and L 

represent the distances shown in Figs. 3.15 and 3.16. m denotes the gradient exponent 

parameter that governs the variation of foam density. Figs. 3.17a and 3.17b show the 

variation of foam density along the grading direction for ascending and descending 

pattern respectively. In our case of bending column to be explained in detail, the column 

has a large bending deformation at the contact area with the punch while other parts 

undergo a rigid body rotation. Since the strong interaction between the column wall and 

FGF has a positive influence on the energy absorption characteristics, the large stiffness 

of foam is expected at the large deformation area 
[218]

. That is to say, the outermost layer 
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should have the maximum density for transverse FGF and the middle layer for axial FGF 

in our specific case. Accordingly, the ascending pattern is selected for the axial FGF and 

the descending pattern for the two types of transverse FGF. 

In an ideal functionally graded continuous model, the foam should be divided into an 

infinite number of layers. In the FE framework, the minimum depth of layer would be 

equal to the size of each shell element, which would, however, lead to very costly 

computational time. Furthermore, increasing the number of layers could increase the risk 

of numerical instability in the model resulting from the use of smaller element sizes. The 

model selected to represent the material behavior of aluminum foam filler is Deshpande-

Fleck foam (Material Model 154) which has been implemented as a user subroutine in 

LS-DYNA. The model was proposed by Deshpande and Fleck 
[219]

, in which the yield 

criterion of foam material is defined as follows: 

                                      (3.10) 

where y is the yield stress and the equivalent stress  is given as: 

                           (3.11) 

where e is the von Mises effective stress and m the mean stress. Parameter  

controlling the shape of the yield surface is a function of the plastic Poisson’s ratio , 

given as: 

                                      (3.12) 

It is easily derived from Eq. (3.12) that  when . The strain hardening 

rule is implemented in this material model as: 
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                    (3.13) 

where  is equivalent strain, p, , ,  and  are the material parameters and can be 

related to the foam density as 

                   (3.14) 

where  is the foam density and  the density of the base material. C0, C1 and  are 

the constants as listed in Table 3.3.  

Table 3.3 Material parameters for aluminum foam 
[220, 221]

. 

 (MPa) (MPa)  (MPa) (MPa) 

(MPa) 0 0 0.22 0 0 

(MPa) 720 140 320 42 0.33e6 

 2.33 0.45 4.66 1.42 2.45 

3.3.1.2 Validation of the numerical model 

More details about the numerical modelling can be found in [10]
. To evaluate the 

validation of the simulation models, the empty column with the same dimension was first 

investigated under the same loading condition. Figs. 3.18 and 3.19 display the 

comparison of crash behavior between experiment 
[212]

 and simulation, in terms of impact 

force versus punch displacement curve and deformation pattern respectively. It can be 

seen that the force versus displacement curve of simulation is able to capture the true 

bending behavior, and the deformation pattern of simulation also agrees with that of the 
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experiment. Furthermore, the simulation model of the foam-filled column was also 

validated experimentally. From Eq. (3.9), it is obvious that the functionally graded foam 

(FGF) will become a uniform foam (UF) when the parameter m equals to 0. Thus, the 

validation of the developed finite element model of FGF filled column can be verified 

against the experimental data of the UF filled column. From Figs. 3.20 and 3.21, the 

simulation results agree fairly well with the corresponding experimental results 
[212]

. As a 

result, the FE models are considered accurate and effective for the subsequent parametric 

analysis and design optimisation. 

 

Fig. 3.18 Experimental 
[212]

 and numerical impact force curves for the empty column. 

    

(a)                                        (b) 

0 10 20 30 40 50 60
0

4

8

12

16

Im
p
a
c
t 

F
o
rc

e
 /

 k
N

Displacement / mm

 

 

Test

Simulation



73 

Fig. 3.19 (a) Experimental 
[212]

, and (b) numerical deformation patterns for the empty 

column.  

 

Fig. 3.20 Experimental 
[212]

 and numerical impact force curves for the foam-filled column. 

 

   

(a)                                        (b) 

Fig. 3.21 (a) Experimental 
[212]

, and (b) numerical deformation patterns for the foam-

filled column. 
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(a) 

 

(b) 

Fig. 3.22 Comparison of crashworthiness performance between UF and FGF filled 

columns: (a) EA, (b) SEA, (c) Fmax and (d) CFE. 

3.3.2.1 Effect of density grading 

In order to compare the energy absorption characteristics of UF and FGF filled 

columns, numerical simulations were implemented based on the finite element models of 

the FGF columns with different values of gradient exponent parameter m. In each case, 
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the other parameters were fixed: ρmin = 0.20 g/cm
3
, ρmax = 0.50 g/cm

3
, σy= 227 MPa and t 

= 2.0 mm (t denotes the wall thickness). Since the total mass of the FGF column was 

varied, the UF columns of the same weight as the corresponding FGF columns were 

selected for comparing the crashworthiness. The equivalent foam density of UF columns 

is calculated as follows, 

1
/GN

eqv i Gi
N 


      (3.15) 

where NG denotes the total number of layer of axial FGF, and ρi is the density of the ith 

layer.  

Figs. 3.22a and b depict the crashworthiness performance in terms of EA and SEA 

respectively. For all types of columns, the larger the mass is the more energy the column 

absorbs. Furthermore, the FGF filled columns, especially the axial FGF filled ones, can 

absorb more energy than the UF counterparts with the same mass. For the transverse FGF 

and UF filled columns, the SEA increases monotonically when the mass increases. On the 

other hand, for the axial FGF filled columns, the SEA increases up to a peak value and 

then decreases with the increase of mass. Most importantly, the improvement of the FGF 

filled columns over the corresponding UF filled columns in SEA can be achieved. 

Considering the grading direction, the axial FGF filled columns seem much more 

promising than the transverse FGF filled ones in terms of EA and SEA, which may be 

because that the axial grading can focus dense foam at the region of severe deformation 

(mid-span part of the column) more efficiently.  

Figs. 3.22c and d compare the Fmax and CFE of the UF and FGF filled columns, 

respectively. Generally, the axial FGF columns have the largest values of Fmax and CFE 

under the same mass while the UF columns have the lowest values. While FGF columns 
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can indeed produce larger SEA than UF counterparts, they would lead to larger Fmax , 

which is also an essential indicator for the safety of the occupants. 

Note that all the crashworthiness criteria of UF and FGF columns converge to the 

same value when the mass increases. This is because that all the columns turn out to be a 

UF column with the maximum foam density of 0.50 g/cm
3
 when their masses increase up 

to the maximum value 0.67 kg. 

To further explore the effect of the parameters of foam material and thin wall on the 

bending behavior of the FGF filled column, we will conduct parametric analysis below 

by taking the axial FGF column as an example.  

3.3.2.2 Effect of density range 
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(b) 

Fig. 3.23 Variation of crashworthiness performance due to density range: (a) SEA, (b) 

Fmax  

In order to explore the effect of foam density range (Δρ= ρmax- ρmin) on the 

crashworthiness of FGF filled columns, the value of ρmin was varied with 0.20, 0.25 and 

0.30 g/cm
3
 while the ρmax = 0.50 g/cm

3
, t =2.0 mm and σy =227 MPa. Figs. 3.23a- d 

display the EA, SEA, Fmax and CFE of axial FGF filled columns at different values of 

grading exponent parameter m. Note that the density range (Δρ) has a noticeable 

implication on crashworthiness performance. Specifically, large values of Δρ (small 

values of ρmin) help improve SEA, although it could have a negative effect on EA. Besides, 

large values of Δρ (small values of ρmin) could lead to small values of CFE while it is able 

to reduce the values of Fmax.  

It should be noted that the crashworthiness performance is closely related to the 
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0.0 0.2 0.4 0.6 0.8 1.0 3.0 5.0 7.0 9.0
20.5

21

21.5

22

22.5

23

m

F
m

a
x
/ 

(k
N

)

 

 


min

= 0.20 g/cm3


min

= 0.25 g/cm3


min

= 0.30 g/cm3



78 

the Fmax, CFE, and EA decrease monotonically with the increased m. On the other hand, 

the SEA first increases and then decreases with the increased m when the mass is taken 

into account.  

3.3.2.3 Effect of wall thickness 
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(b) 

Fig. 3.24 Variation of crashworthiness performance due to wall thickness(a) SEA, (b) 

Fmax 
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of the FGF filled columns. We varied the wall thickness with t= 0.6, 1.0, 1.5 and 2.0 mm 

while fixing other parameters (i.e., ρmax= 0.5 g/cm
3
, ρmin= 0.2 g/cm

3
, σy= 227 MPa), to 

quantify the effect on SEA and Fmax. Froom Fig. 3.24a, the SEA values with t= 1.5 mm 

are preferable, which are larger than those with a thicker wall (t= 2.0 mm) and thinner 

walls (t= 1.0 and 0.6 mm). From Fig. 3.24b, it is found effective to reduce the Fmax by 

thinning the wall directly.  

3.3.2.4 Effect of wall yielding stress 

 

(a) 

 

Fig. 3.25 Variation of crashworthiness performance due to wall thickness: (a) SEA, (b) 
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Fmax. 

The yielding stress was varied with σy = 146, 173, 200 and 227 MPa while ρmax= 0.5 

g/cm
3
, ρmin= 0.2 g/cm

3
, t= 2.0 mm. Fig. 3.25 depicts the change of crashworthiness 

criteria due to the variation of σy. When m≤ 4.0, the axial FGF filled columns with σy= 

200 MPa can obtain the largest SEA values. When 4< m< 7, the FGF columns σy= 

173MPa absorb the most energy in all the columns. When m≥ 7, the FGF columns with 

σy= 173 and 227 MPa have the equal SEA values. For Fmax, the columns with σy= 227 

MPa perform worst while the columns with σy= 146MPa behave best. Therefore, the 

columns with low σy are preferred in terms of the Fmax. However, this conflicts with the 

requirements of SEA by causing the smallest values of the SEA. 

To be brief, FGF filled columns perform better in SEA, while worse in Fmax than its 

UF counterparts. Besides, the parameters including grading exponent m, density range 

(Δρ), and wall thickness (t) and yielding stress (σy) could largely affect the 

crashworthiness of FGF filled columns.  

3.3.3 Multiobjective optimisation for functionally graded foam filled tubes 

3.3.3.1 Definition of optimisation problem 

While the effect of various parameters on crashworthiness behavior has been 

explored, it remains unknown how to design specific best designs for FGF filled thin-wall 

column. Furthermore, the Fmax fails to be reduced by using FGF filled columns although 

the SEA is able to be increased in the parametric study. Therefore, we formulate the 

multiobjective optimisation problems for UF and FGF filled columns in Eq. (3.16) and 

Eq. (3.17) respectively, aiming to simultaneously enhance the two design criteria. In FGF 

problem, the densities of foam can be varied by taking m as a design variable when ρmax= 
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0.5 g/cm
3
, ρmin= 0.2 g/cm

3
, while in UF problem the density itself is taken as a design 

variable. 

3 3

min    , -  

. .     0.6 mm 2.0 mm

         0.2 g/cm 0.5 g/cm

Pa 230 MPa

max

f

y

F SEA

s t t








   


   
   

       (3.16) 

min    , -  

. .     0.6 mm 2.0 mm

         0 10

Pa 230 MPa

max

y

F SEA

s t t

m






   


 
   

       (3.17) 

3.3.2.2 Results and discussion 

It is difficult to derive analytical objective functions mathematically for the SEA and 

Fmax that involve highly nonlinear contact-impact and large deformation mechanics. As 

an alternative, surrogate modeling techniques have proven effective and been widely 

implemented in crashworthiness design. The optimal Latin Hypercube sampling is 

implemented to generate training points. Then the Kriging surrogate models are 

established to approximate the functions of SEA and Fmax. 
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Fig. 3.26 Training points and checking points for the UF filled column. 

 

 

(a)                                      (b) 

Fig. 3.27 Training points and checking points for the FGF filled columns: (a) 0≤m≤1, and 

(b) 1≤m≤10. 
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Table 3.4 Accuracy Assessment of Kriging models. 

 

  R
2
 emax eavg 

UF column 

Fmax 0.9985  0.0271  0.0170  

SEA 0.9792  0.0476  0.0288  

FGF column 

(Axial) 

0≤m<1 

Fmax 0.9992  0.0298  0.0114  

SEA 0.9998  0.0086  0.0040  

1≤m≤10 

Fmax 0.9992  0.0189  0.0071  

SEA 0.9980  0.0252  0.0138  

FGF column 

(Transverse-Type A) 

0≤m<1 

Fmax 0.9996  0.0242  0.0087  

SEA 0.9520  0.0589  0.0267  

1≤m≤10 

Fmax 0.9890  0.0701  0.0394  

SEA 0.9866  0.0489  0.0209  

FGF column 

(Transverse-Type B) 

0≤m<1 

Fmax 0.9999  0.0077  0.0048  

SEA 0.9431  0.0604  0.0248  

1≤m≤10 

Fmax 0.9973  0.0266  0.0156  

SEA 0.9998  0.0046  0.0020  

 

Figs. 3.26, 3.27a and 3.27b display the training points and checking points over the 

design space for the UF column, FGF columns with 0≤m≤1 and FGF columns with 

1≤m≤10 respectively. Table 3.4 lists the results of accuracy assessment. It can be seen 

that the values of R
2
 are all close to 1 and the values of emax and eavg are within 8%, 

indicating the Kriging models can be considered accurate adequately to replace the high-

fidelity finite element analyses. 



84 

 

Fig. 3.28 Pareto frontiers of different generations for the UF filled column. 

 

Fig. 3.28 depicts the Pareto frontiers of different generations of the multiobjective 

optimisation for the UF column. Obviously, after 100 generations the Pareto frontier 
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comparison to the initial design. The optimums between A and B can simultaneously 

reduce the Fmax and increase the SEA. 

 

Fig. 3.29 Comparison of Pareto frontiers of UF filled column and FGF filled columns. 

To compare the results of UF and FGF columns, their Pareto frontiers are plotted in 
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the parametric study.  

Tables 3.5 list the four optimal solutions for each column, which are selected from 

the corresponding Pareto solutions subject to the constraint Fmax≤14kN. It can be seen 

that all the solutions have acceptable errors by comparing finite element analysis (FEA) 

results with Kriging values. The SEA values validated by FEA of the two types of 

transverse FGF filled columns are very close, indicating they have the equal effect on 

crashworthiness. Furthermore, optimisation on the axial FGF column produces the largest 

SEA value under the same level of Fmax.  

Table 3.5 Optimal solutions (under the constraint of Fmax ≤ 14 kN). 

 

UF Axial FGF 

Transverse FGF 

Type A Type B 

m (rho (kg/cm
3)

) 0.46 5.69 4.37 0.90  

t (mm) 1.44 1.52 1.24 1.37  

σy (Mpa) 166.55  199.34  225.70  219.33  

Fmax 

(kN) 

Kriging 13.99 13.84 13.86 14.00 

FEA 13.79 13.80 14.13 14.54 

Error 1.48% 0.32% -1.89% -3.75% 

SEA 

(J/ kg) 

Kriging 643.74 778.7 654.09 688.64 

FEA 613.80 777.23 673.52 683.08 

Error 4.88% 0.19% -2.88% 0.81% 
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3.4 Crashworthiness and multiobjective optimisation of functionally graded foam-

filled tubes with a functionally graded thickness  

This section tries to integrate two kinds of gradients, i.e. functionally graded foam and 

functionally graded thickness, to achieve more competent crashworthiness. 

3.4.1 Numerical modelling 

Mass block

FGF-FGT

Rigid support

v

a b c  

Fig. 3.30 Finite element model for (a) crashing analysis of FGF-FGT structure, (b) FGT 

tube and (c) FGF 

The structure analysed herein is an FGF-FGT structure subjected to axial impact 

loading (Fig. 3.30). The continuous FGF was discretized with a limited number of 

discrete layers, and within each layer, the foam density was regarded uniform. Fig. 1 

depicts the grading patterns for the FGF, and the foam density can be determined by the 

following power-law functions: 
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  (3.18) 

where 
min

  and 
max

  are the minimum and maximum densities, respectively. n1 denote 

the gradient parameters that govern the variation of foam density. x and Lf are the 

distances shown in Fig. 3.31. Figs. 3.31a and b show the variation of foam density for 

ascending and descending pattern, respectively. The square tube considered herein is 

fabricated with functionally graded thickness (FGT) sheet, where the thickness gradient 

was determined by the following power-law functions 
[143]

: 

2

min max min
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max max min

10

t
2

10

t

( )( ) ascending pattern

( , )

( )( ) descending pattern

n

n

x
t t t

L
t x m

x
t t t

L


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
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    
  

(3.19)

 

where 
min

t  and 
max

t  are the minimum and maximum thicknesses, respectively. In this 

study, 
min

t =0.6 mm and 
max

t = 1.5 mm are adopted. x and Lt are the distances shown in 

Fig. 3.31b. n2 denote the gradient parameters that govern the thickness variation. The 

length of the column is La=240 mm, and the section of the tube and foam filler are Lt×Lt 

= 80 mm×80 mm and Lf×Lf = 78 mm×78 mm, respectively. The bottom surface of the 

foam-filled column is attached to the rigid support, and a block with a mass of 600 kg 

impacts onto the top surface at an initial velocity of v=15 m/s. According to gradient 

combinations of FGF and FGT, four different configurations of FGF-FGT structures are 

considered in this study, as listed in Table 3.6. The related FE modelling and its 

experimental validation can be found in 
[222]

. 
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(a)        (b) 

Fig. 3.31 Schematic showing grading pattern: (a) foam; (b) wall thickness 

Table 3.6 Types of FGF-FGT structures. 

Type FGF pattern FGT pattern 

AF-AT ascending ascending 

AF-DT ascending descending 

DF-AT descending ascending 

DF-DT descending descending 

3.4.2 Crashworthiness analysis 

In this study, the optimial Latin Hypercube sampling approach was first used to 

generate 20 sample points for both functionally graded and uniform structures. Then, the 

finite element (FE) simulation results at these sample points were obtained to construct 

the PRS models for Fmax and SEA. To evaluate the accuracy of those metamodels with the 

different orders, 5 checking points were sampled randomly in the design space. Table 3.7 

lists the assessment results of the accuracy metrics and the orders of PRS models were 

selected with boldface highlight for the subsequent optimisations. 
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Table 3.7 Accuracy assessment of PRS models. 

 

Responses Order R
2
 RAAE RMAE 

AF-AT 

Fmax 

Linear 0.9174 0.2016 0.4895 

Quadratic 0.9043 0.2734 0.4691 

Cubic 0.9420 0.2062 0.3993 

Quartic 0.9176 0.2255 0.5165 

SEA 

Linear 0.7826 0.4242 0.7251 

Quadratic 0.8750 0.2613 0.6592 

Cubic 0.9270 0.2212 0.4723 

Quartic 0.9644 0.1586 0.3117 

AF-DT 

Fmax 

Linear 0.9974 0.0457 0.0740 

Quadratic 0.9987 0.0240 0.0628 

Cubic 0.9985 0.0340 0.0563 

Quartic 0.9965 0.0433 0.1007 

SEA 

Linear 0.9745 0.1367 0.2168 

Quadratic 0.9981 0.0358 0.0590 

Cubic 0.9979 0.0425 0.0617 

Quartic 0.9920 0.0655 0.1475 

DF-AT 

Fmax 

Linear 0.9220 0.2525 0.3645 

Quadratic 0.9991 0.0186 0.0578 

Cubic 0.9971 0.0458 0.0791 

Quartic 0.9979 0.0398 0.0718 

SEA 

Linear 0.9274 0.2638 0.3491 

Quadratic 0.9959 0.0529 0.0992 

Cubic 0.9927 0.0745 0.1185 
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Quartic 0.9801 0.1170 0.2046 

DF-DT 

Fmax 

Linear 0.9761 0.1279 0.2452 

Quadratic 0.9771 0.1297 0.2392 

Cubic 0.9888 0.0979 0.1429 

Quartic 0.9839 0.1261 0.1425 

SEA 

Linear 0.9216 0.2297 0.4468 

Quadratic 0.9565 0.1981 0.2899 

Cubic 0.9674 0.1786 0.2145 

Quartic 0.9581 0.1982 0.2699 

Uniform 

Fmax 

Linear 0.7724 0.4228 0.6910 

Quadratic 0.8945 0.2697 0.5004 

Cubic 0.8990 0.3149 0.3725 

Quartic 0.9407 0.2389 0.2898 

SEA 

Linear 0.9710 0.1355 0.2972 

Quadratic 0.9986 0.0314 0.0489 

Cubic 0.9991 0.0258 0.0494 

Quartic 0.9990 0.0271 0.0515 

 

By relating n1 and n2 to equivalent t and ρf, the response surfaces for the transverse 

FGF-FGT and uniform structures are plotted together in Figs. 3.32-3.35. From Figs. 3.32 

and 3.33, the FGF-FGT structures with AF (ascending foam gradient) - AT (ascending 

wall thickness gradient) as well as AF (ascending foam gradient) - DT (descending wall 

thickness gradient) configurations enhance the SEA clearly, but also increasing the Fmax 

marginally. From the perspective of energy absorption, the AF-AT, and AF-DT structures 
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seem to be the good choices though a higher crushing force could have a somewhat 

negative effect on occupant safety.  

On the other hand, the response surfaces for the DF (descending foam gradient) - AT 

and DF-DT structures are shown to intersect with the equivalent uniform structures and 

there is no noticeable difference observed in most of the design space. Besides, it can be 

seen that for all the four different configurations, the gradient of foam density (n1) is 

more critical to the tube’s crashing behaviors than the gradient of wall thickness (n2). 

That is to say that when n1 varies from -1 to 1 under the same value of n2, more changes 

in Fmax and SEA arise than the situation when n2 varies from -1 to 1 under the same value 

of n1.  

For different gradient configurations, the relationships of crashing behaviors to n1 

and n2 are different. For example, the Fmax of AF-AT increases with the decreased n1 and 

n2 (Fig. 3.34b), whilst that of DF-DT increases with the increased n1 and n2 (Fig. 3.35b). 

This is because, for the ascending patterns, the decrease in n1 and n2 represents the 

increase of foam density and wall thickness on average, whereas for the descending 

patterns the changing trend is opposite.  
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(a)        (b) 

Fig. 3.32 RS plots of AF-AT structures and uniform counterparts( ). (a)SEA, 

(b) Fmax.  

 

(a)      (b) 

Fig. 3.33 RS plots of AF-DT structures and uniform counterparts( ). (a)SEA, 

(b) Fmax.  

 

(a)      (b) 
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Fig. 3.34 RS plots of DF-AT structures and uniform counterparts ( ). (a)SEA, 

(b) Fmax.  

 

(a)      (b) 

Fig. 3.35 RS plots of DF-DT structures and uniform counterparts( ). (a)SEA, 

(b) Fmax.  

3.4.3. Multiobjective optimisation of doubly graded tubes 

3.4.3.1 Definition of optimisation problem 

In this study, the optimisation for FGF-FGT structure is formulated in terms of the 

gradient exponent parameters n1 and n2 as follows: 

max 1 2 1 2

1

2

min    { ( , ), - ( , )} 

. .     -1 1

         -1 1

F n n SEA n n

s t n

n




 
  

 

(3.20) 

For comparison, we also define the optimisation problem for uniform structures as:
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    (3.21) 

 

Fig. 3.36 Pareto frontiers for FGF-FGT and uniform structures. 
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(a) 

   

(b) 
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(e) 

Fig. 3.37 Deformation patterns of FGF-FGT and uniform structures. (a) Uniform; (b) AF-

AT; (c) AF-DT; (d) DF-AT; (e) DF-DT; 

3.4.3.2 Optimisation results  

Fig. 3.36 depicts the Pareto frontiers of multiobjective optimisations for the uniform 

and FGF-FGT structures with different gradient configurations. The Pareto frontiers of 

AF-AT and AF-DT structures locate on the lower-left of the uniform counterpart, 

indicating that these FGF-FGT structures are advantageous over the uniform structure. 

That is to say that the AF-AT and AF-DT structures are able to produce a lower Fmax 

under the same SEA or to achieve a higher SEA under the same Fmax. It can also be seen 

that thanks to the ascending transverse wall thickness, the Pareto frontier of AF-AT 

structures moves further towards the direction representing even better performance, 

compared to the AF-DT structures. Note that these two structures also make different 
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contributions to energy absorption, which might be because that it is more efficient to 

place tube material to the corners than the middle parts 
[223]

. On the contrary, DF-AT and 

DA-DT structures perform worse than the uniform structures as the majority of their 

Pareto solutions are in the upper-right region in relation to the uniform solutions in the 

objective space. If the Fmax is constrained no higher than 150 kN, the corresponding 

optimum for each structure can be easily selected from the Pareto solution set and the 

results are listed in Table 3.8. It can be observed that if the uniform structures are 

replaced by the AF-AT and AF-DT structures, the SEA values can be improved by 

14.62% (from 20.25 J/g to 23.021 J/g) and 6.27% ( to 21.52 J/g) respectively.  

Table 3.8 Optimal solutions 

 Uniform AF-AT AF-DT DF-AT DF-DT 

n1 (ρf (kg/cm3)) ρf = 

0.6976 

n1= 

0.0954 

n1= 

0.1163 

n1= 

0.6407 

n1= 

0.6670 

n2(t (mm)) t = 4.2623 n2= 

0.6108 

n2= -

0.7748 

n2= 

0.3472 

n2= -

0.9098 

Fmax 

(kN) 

 

PRS 147.70 148.33 146.94 148.40 147.25 

FEA 152.54 147.35 146.18 146.14 145.91 

Error -3.17% 0.67% 0.52% 1.54% 0.92% 

SEA 

(J/ g) 

 

PRS 20.55 24.06 21.65 18.81 18.68 

FEA 20.25 23.21 21.52 19.47 18.84 

Error 1.45% 3.69% 0.59% -3.42% -0.85% 
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Furthermore, the deformation modes of these five optimums are compared in Fig. 

3.37 (axial sectional view). Interestingly, the uniform, DF-AT, and DT-DT structures are 

found to crush at both the upper and lower parts in the beginning, leading to uneven sizes 

of lobes at the end of the deformations. Conversely, the AF-AT and AF-DT structures 

develop the progressive deformation with the even size of lobes from top to bottom 

progressively. As a result, these two structures can be made of full use to absorb more 

energy under the same value of Fmax. The reason for different deformation patterns 

probably lies in the interactive effect between the tube wall and the outmost foam layer. 

The ascending foam density (with the highest density in the outmost layer) seems to be 

preferred for helping produce a more stable deformation. In other words, the strong 

interaction between the wall and foam has a positive influence on stability and energy 

absorption characteristics 
[218]

. Overall, the transverse gradient plays an important role in 

enhancing crashworthiness performance, and the ascending patterns in both wall 

thickness and foam density are more competent than the other configurations. 

3.5 Summary 

To excavate the potential of crash energy absorbers, the concept of functionally 

graded structure was introduced and multiobjective designs were implemented to this 

novel type of structures. First, note that the severe deformation takes place in the tubal 

corners, multi-cell tubes with a lateral thickness gradient were proposed to better enhance 

the crashworthiness. The results of crashworthiness analyses and optimisation showed 

that these functionally graded multi-cell tubes are preferable to a uniform multi-cell tube. 

Then, functionally graded foam filled tubes with different gradient patterns were 

analyzed and optimized subject to lateral impact and the results demonstrated that these 
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structures can still behave better than uniform foam filled structures under lateral loading, 

which will broaden the application scope of functionally graded structures. Finally, dual 

functionally graded structures, i.e. functionally graded foam filled tubes with functionally 

graded thickness walls, were proposed and different combinations of gradients were 

compared. The results indicated that placing more material to tubal corners and the 

maximum density to the outmost layer are beneficial to achieve the best performance. 
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Chapter 4 Fatigue optimisation of a truck cab using ensembles of surrogates 

As one of the key factors in determining the performance, safety and durability, 

fatigue life has drawn significant attention in automotive engineering ranging from key 

components to entire vehicle. To improve the fatigue life, metamodel-based structural 

optimisation techniques have been playing an increasingly important role in vehicular 

design. In this regard, Lee and Jung 
[171]

 developed a Kriging (KRG) metamodel for 

optimizing a connecting rod subjected to a certain fatigue life. Ho et al. 
[172]

 developed a 

quadratic polynomial response surface (PRS) model to improve a crankshaft rolling 

process for durability. Bayrakceken et al. 
[170]

 conducted a multiobjective optimisation 

for a passenger car’s body, where the artificial neural network (ANN) was used to model 

the fatigue life. Kaya et al. 
[173]

 re-designed a failed vehicle component subjected to 

cyclic loading by combining topology optimisation with PRS based shape optimisation. 

Song et al. 
[165]

 adopted the PRS and KRG surrogate models to optimize a control arm by 

considering strength and durability performance. 

Note that these different surrogate models often provide rather a different modeling 

accuracy and design outcomes. It remains unclear which surrogate model is most suitable 

for any particular case; therefore, there are a number of comparative studies on different 

surrogate schemes in order to determine a most appropriate model 
[224-227]

. In general, 

obtaining sampling data for developing surrogate is always more expensive 

computationally. In order to take full advantages of different individual surrogates to 

extract as much information as possible with a relatively small number of sample points, 

an ensemble of surrogates has been paid attention and proven a more promising method 

for different problems
[11, 13, 16, 228]

. This study will extend it for modeling the fatigue life 
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of a truck cab so that the optimisation can be performed for a better durability 

performance.  

4.1 Theory of ensemble of surrogates 

For a specific problem, if all the individual surrogates constructed from sampling 

data through high-fidelity simulations happen to have the same accuracy, then a 

straightforward form of the ensemble would be a simple weighted average surrogate 

(SWS), i.e., the same weight factors will be allocated to the individual surrogate 

functions. However, this special case can hardly appear as some surrogates may have 

better accuracy than the others. Thus, different weights should be placed on different 

individual surrogates to improve overall accuracy. Using the weighting technique, the 

ensemble of different surrogates can be formulated as 
[229]

 : 

1

ˆ ˆ( ) ( ) ( )
M

Ens i i

i

y y


x x x       (4.1) 

where ˆ ( )Ensy x  denotes the predicted response by the ensemble of surrogates, M is the 

number of individual surrogates in the ensemble, ˆ ( )iy x  and ( )i x  are the predicted 

response and the corresponding weight factor of the ith surrogate, respectively. The 

weight factors in Eq. (4.1) are usually satisfied: 

1

( ) 1
M

i

i




 x        (4.2) 

Determination of proper weight factors associated with individual surrogates can be 

based upon global and/or local measures 
[12, 14]

. This paper will focus on the global 

measure, in which the weight factors are treated as a constant in the entire design space 
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(i.e. ( )i x =
i ). Commonly-used global error metric with a generalized mean square 

cross-validation error (GMSE) 
[13]

 is implemented as, 

2

1

1
ˆ( )

N
k k

Ens

k

GMSE y y
N 

 
      (4.3) 

where N is the number of sampling points, y
k
 is the true response at x

k
 and ˆ k

Ensy  is the 

corresponding predicted value from the ensemble of surrogates constructed by using all 

but the kth design point (i.e., leave-one-out cross-validation strategy).  

a) Goel et al. 
[12]

 proposed a heuristic weight scheme, namely the prediction-sum-of-

squares-based weighted average surrogate (PWS) as follows: 
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where iE  is the generalized mean square cross-validation error (GMSE) of the ith 

surrogate with 1   and 0  .   and   are used to control the importance of E  and 

iE . Goel et al. suggested 0.05   and 1  
[12]

. 

b) Viana et al. 
[230]

 proposed to select the weight factors following an approach to 

minimizing the mean square error as follows: 

-1

-1

1
, T

ij i jT
C e e

T
 

C 1
ω =

1 C 1
,      (4.5) 
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where 1  is the identity matrix, and the elements of the mean square error matrix C  can 

be calculated from. T is the number of training points and ie  is the prediction error 

estimator of the ith surrogate.  

c) Acar and Rais-Rohani 
[13]

 proposed an optimal weighted surrogate (OWS) by selecting 

the weight factors using optimisation: 

1

ˆmin [ ( )]

. . 1

Ens i

N

i

i

Err y

s t










 



       (4.6) 

where ()Err is the error metric that measures the accuracy of the ensemble ˆ
Ensy . 

The difference between the last two is that Acar and Rais-Rohani’s approach obtains 

the weights through an optimisation process, while Viana’s approach obtains the weights 

through an analysis expression 
[16]

. However, both approaches have exactly the same 

solution 
[16]

.  

4.2 Hybrid Particle Swarm Optimisation Algorithm 

When particles are exploring the search space, if some particle finds the current best 

position, the others will fly toward it. If the best position is a local optimum, particles 

may not explore over again in the search space. In consequence, the algorithm will be 

trapped into a local optimum, which is also called premature convergence. A higher 

dimensional function can be easier to appear this phenomenon. To overcome this 

drawback, a hybrid method that integrates the standard PSO procedure with a gradient 

search algorithm called SQP is implemented in this paper. In the beginning, PSO has 

more possibilities to explore a large space and therefore the agents are freer to move and 
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sit on different valleys. The best value of all the agents will be taken as the starting point 

for the SQP algorithm, in which it will be tuned. Thus, the possibility of obtaining a 

global minimum from more local optima increases. The search will continue until a 

termination criterion is satisfied. This new hybrid PSO method has proven more effective 

and efficient for solving the economic dispatch problem compared with other methods 

[231]
. In the hybrid PSO algorithm, PSO is the main optimizer and SQP serves as a tuner 

for refining the solution of PSO, as follows: 

Step 1: Initialize swarm population with random positions and velocities (set t=1) 

Step 2: If the maximum iterations or convergence criteria are not satisfied, then 

For i =1 to NOP (number of particles)  

Calculate fitness value; 

Update velocity and position (Eq. (2.21) and (2.22) respectively); 

Calculate pBesti(t); 

If pBesti(t) < pBesti(t1) then 

  Run SQP with ( )i tp
 
 as the initial point;  

  Replace pBesti(t) with the newly obtained optimum;  

Update gBest(t); 

Step 3: t=t+1 and return to Step 2 
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4.3 Fatigue simulation and its experimental validation 

4.3.1 Theories for fatigue simulation 

4.3.2.1 Local strain-life fatigue analysis 

The local strain-life fatigue analysis is based on the cyclic stress-strain curve of the 

material. This method has the following assumption: if a component made of the same 

material experiences the same strain history of the standard specimen at the most 

dangerous location, then it has the same fatigue life of the standard specimen. To acquire 

the fatigue life of the fatigue life, one should follow this procedure (as in Fig. 4.1): (1) 

identify the most dangerous location; (2) calculate the nominal stress history; (3) 

calculate the local strain spectrum; (4) determine the N   curve; (5) predict the fatigue 

life based on the cumulative damage rule (Miner’s rule). 

 

Load spectra

Stress analysis

Cyclic stress- 

strain curve

Stress history at 

critical locations

ε-N curve  

Strain spectrum

Geometry

Miner’s rule

Cumulative 

damage

Fatigue life
 

Fig. 4.1 Fatigue prediction of using the local strain-life method 

. The strain-life (ε-N) curve is expressed by the classical Coffin-Manson equation as 

follows: 

(2 ) (2 )
f b c

a ea pa f f fN N
E


   


       (4.7) 
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where 
'

f , b , 
'

f  and c  are fatigue strength, fatigue strength exponent, fatigue ductility 

coefficient and fatigue ductility exponent, respectively. The relation between the fatigue 

life and the elastic strain component ea
, plastic strain component pa

 and total strain a  

is displayed in Fig. 4.2. 

 

Fig. 4.2 Coffin-Manson equation  

To account for the mean stress effect, Eq. (4.8) can be used 

 
( )

(2 ) (2 )
f m b c

a f f fN N
E

 
 

 
   (4.8) 

where m  is the mean stress. 

4.3.2.2 cumulative damage model 

The so-called damage is the microstructural change of the material at the crack initiation 

stage and the crack formation and propagation at the later stage. When the stress is higher 

than the fatigue limit, the damage caused by one cycle is 1/ fN . nf cycles of the constant-

amplitude stress lead to the damage of the cycle ration /f fn N . The damage D of a 

variable-amplitude stress can be calculated as Eq. (4.9) 
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1

/
l

f i f i

i

D n N



 (4.9) 

where l  is the level number of the variable-amplitude stress, 
f in  is the cycle number at 

the ith level and 
f iN  is the corresponding fatigue life. 

When the cumulative damage reaches the critical value fD , i.e. 
1

/
l

f i f i fi
D n N D


  , 

the failure will occur. The Miner’s rule is based on the assumption: the component 

reaches its fatigue life when the energy absorbed reaches the maximum. If the maximum 

value is W and the energy absorbed in 
f in  cycles is Wi, then one can obtain the following 

relation: 

 
f ii

f

nW

W N


  (4.10) 

Thus, assuming that the component is loaded by m stress levels (δ1, δ2, ... δm), the 

fatigue life under these levels are Nf1, Nf2, ... Nfm and the cycle numbers are nf1, nf2, ... nfm 

respectively, if the damage  

1

/ 1
l

i if f

i

D n N


   (4.11) 

then the energy absorbed by the component reaches the maximum value and the failure 

occurs. Eq. (4.11) is the mathematical expression of the Miner’s rule. 

4.3.2 Simulation model  

Fig. 4.3 displays the finite element analysis (FEA) model of a truck cab using the 

commercial FEA code MSC.NASTRAN. The panels are modeled with CQUAD and 

CTRIA surface element, and their material property is assigned linear elastic material 
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model MAT1. The cab is subjected to a torsional cyclic load at the rear body mounts 

when the front body mounts are fixed. As shown in Fig. 4.3, the forces F1, F2 form the 

torsional moment, and its amplitude and frequency of two load cases are listed in Table 

4.1 according to our previous studies 
[98, 232]

.  

Table 4.1 Load specifications for fatigue assessment 

Case No. Cycles Amplitude Frequency 

1 0- 86,000 5 kN∙m 1 Hz 

2 86,000- 200,000 5 kN∙m 2 Hz 

F2F1
 

Fig. 4.3 Finite element model 

4.3.2 Experimental validation 

In order to validate the FE model, the modal and static stiffness experiments were 

conducted as shown in Figs. 4.4 and 4.5 prior to the fatigue test. The corresponding 

simulations were performed under the same conditions and the correlation results were 

list in Table 4.2. It can be noted that the simulation models had satisfactory accuracies by 

correlating to the physical experiments. 
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Fig. 4.4 Modal test  Fig. 4.5 Stiffness test 

The fatigue test was conducted on a four-post test bench and the test facility is the 

IST vehicle vibration test system (Fig. 4.6), including the hydraulic pump (Fig. 4.7), 

excitation cylinder, electro-hydraulic servo system (Fig. 4.8), 8800 control system (Fig. 

4.9), TWR (Time Waveform Replication) system and SCHENCK kraftaufnehmer bi-

diretional force transducer (±25kN) (Fig. 4.10).  

 

Fig. 4.6 vehicle vibration test system 
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Fig. 4.7 Hydraulic pump    Fig. 4.8 electro-hydraulic servo system 

  

Fig. 4.9 8800 control system    Fig. 4.10 Bi-directional force transducer 

 

Fig. 4.11 Truck cab in the fatigue test 
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The study subject is a truck cab together with front and rear mounts as shown in Fig. 

4.11. The cab was connected to the test bench at the four mounting points and all the 

degrees of freedom were fixed except for the rotation about the y axis at the front points 

and the rotation about the x axis at the rear points. 

In the fatigue experiment (Fig. 4.12b), we checked every 30 minutes for the first 

load case and every 10 minutes for the second load case if there were visible cracks on 

the surface of sheets. The fatigue life was the cumulative number of load cycles when the 

first crack was detected. Note that as a large engineering structure, the cab can probably 

continue to mostly or partially fulfill its function even after some small cracks appear. 

Nevertheless, it is difficult to quantify this ability. As a result, a visible crack might be a 

good choice to assess the fatigue life. From Fig. 4.42, the simulation and test have the 

same fatigue failure location, i.e., the upper region of the front left pillar. And it can be 

seen that the fatigue life is also comparable between the simulation and experimental test 

as summarized in Table 4.2. 

      

a)                              b) 

Fig. 4.12 Failure location: a) Simulation; b) Experiment 

Table 4.2 Comparison between the simulation and physical tests 

 Simulation Experiment 
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Torsional frequency 20.06 Hz 19.94 Hz 

Bending frequency 29.64 Hz 28.47 Hz 

Static stiffness 2689 KN∙m/rad 2476 KN∙m/rad 

fatigue life (log) 4.46 4.60 

4.4 Fatigue optimisation for a truck cab 

4.4.1 Definition of optimisation problem 

x1

x4
x3

x5

x8x10

x9

x7

x2

x11

x3

x4

x6

 

Fig. 4.13 Illustration of design variables 

In this study, we aimed to maximize the fatigue life of the cab without increasing 

the mass. Thus, the optimisation problem can be formulated mathematically as,  

 
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      (4.12) 

where F(x) and m(x) are the log of fatigue life and mass of the cab structure. Fig. 4.13 

presents 11 thickness design variables whose ranges are all from 0.6 mm to 2.0 mm in 

this study. The surrogate model is to construct an approximate function from a series of 
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sampling points, which are typically determined using design of experiment (DoE) 

methods. In this study, 100 sets of sampling data were generated using the Optimal Latin 

Hypercube sampling (OLHS) approach. Since the mass of the cab follows a linear 

relationship to the panel thicknesses, m(x) is thus fitted by a linear function of the 

thickness variables. In this study, the individual PRS, RBF and KGR surrogates were 

adopted in the ensembles for F(x). After constructing the surrogates, the next step was to 

search for an optimal solution. The standard and hybrid PSO algorithms were utilized to 

run the optimisation for investigating their searching capacities with different surrogate 

models. 

4.4.2 Results and Discussions 

For a comparative study, the abovementioned three individual surrogates (PRS, 

RBF and KRG) and three ensembles (SWS, PWS and OWS) were constructed and used 

to run the optimisation. To assess the modeling accuracy of these six different surrogate 

schemes, 10 new validation points are also generated using the OLHS approach here.  

The assessment results are compared in Table 4.3. Overall, the ensembles 

outperformed the individual surrogates in terms of these three metrics. The OWS model 

performed the best of all these six models, followed by PWS. KRG is the most accurate 

model of three individual models. Besides, the comparison showed that actually any of 

these surrogate models is sufficiently accurate for prediction of the fatigue life. 

Nevertheless, the following study will show why we need to examine the optimisation 

with these different surrogate models. 

Table 4.3 Accuracy assessment of surrogates 
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Surrogates Accuracy metrics 

R
2
 RMSE RMAE 

Individual PRS 0.9624  0.1345  0.4154  

RBF 0.9546  0.1480  0.4232  

KRG 0.9877  0.0768  0.2538  

Ensemble AWS 0.9845  0.0866  0.2525  

SWS 0.9883  0.0755  0.2307  

OWS 0.9903  0.0686  0.1944  

 

Tables 4.4 and 4.5 summarize the optimal solutions using the standard and hybrid 

PSO algorithms, respectively; and Tables 4.6 and 4.7 list their corresponding fatigue 

results from the surrogate prediction and direct durability simulation at each optimum. 

Interestingly, x6 was pushed to the upper limit in all optimisations, indicating that this 

thickness variable is of the most critical effect on the cab’s fatigue life. Compared to the 

baseline design (as in Table 4.2), all the obtained optima did improve the fatigue life 

markedly without increasing (actually even decreasing) the mass.  

Table 4.4 Optimal solutions using the standard PSO based on different surrogates 

Design Original Optimum 

variables PRS KRG RBF SWS PWS OWS 

x1 0.9 0.95  0.61  0.87  1.22  0.74  1.02  

x2 1.5 1.21  1.88  0.72  1.95  0.61  1.03  

x3 0.9 1.17  0.61  0.77  0.61  1.88  0.80  

x4 1.5 1.18  2.00  1.86  1.95  0.60  1.43  
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x5 1.0 0.93  0.60  0.64  0.65  0.60  0.64  

x6 1.5 2.00  1.99  1.94  1.98  1.98  1.98  

x7 1.5 1.33  0.60  1.96  0.66  1.84  1.97  

x8 1.7 1.23  0.61  1.90  0.64  2.00  1.40  

x9 0.9 1.15  0.61  0.68  0.62  0.66  0.87  

x10 1.2 1.17  0.60  1.35  0.66  1.04  1.37  

x11 1.5 1.30  0.64  1.83  0.62  1.94  1.77  

 

Table 4.5 Optimal solutions using hybrid PSO based on different surrogates 

Design Original Optimum 

variables PRS KRG RBF SWS PWS OWS 

x1 0.9 0.60  0.98  0.83  1.43  0.60  1.08  

x2 1.5 2.00  1.23  0.73  2.00  0.60  1.08  

x3 0.9 0.60  1.15  0.74  0.60  2.00  0.80  

x4 1.5 2.00  1.16  2.00  2.00  0.60  1.51  

x5 1 0.60  0.96  0.60  0.60  0.60  0.60  

x6 1.5 2.00  2.00  1.95  2.00  1.95  1.99  

x7 1.5 0.60  1.33  2.00  0.60  2.00  2.00  

x8 1.7 0.60  1.25  2.00  0.60  2.00  1.22  

x9 0.9 0.60  1.08  0.60  0.60  0.60  0.73  

x10 1.2 0.60  1.17  1.31  0.60  0.60  1.37  

x11 1.5 0.60  1.28  2.00  0.60  2.00  1.79  
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Table 4.6 Optimisation results using standard PSO based on different surrogates 

Surrogates Fatigue life (log) Mass (kg) 

Prediction Simulation Error 

Individual PRS 6.9161  5.0349 37.36% 474.84  

RBF 5.5056  4.8655 13.16% 425.38  

KRG 5.1674  5.1599 0.15% 474.54  

Ensemble SWS 5.3802  4.9860 7.90% 464.30  

PWS 5.2295  5.1870 0.82% 441.60  

OWS 5.1385  5.1059 0.64% 473.68  

 

Table 4.7 Optimisation results using hybrid PSO based on different surrogates 

Surrogates Fatigue life (log) Mass (kg) 

Prediction Simulation Error 

Individual PRS 7.0744  4.8831  44.88% 425.37  

RBF 5.5135  5.0371  9.46% 475.20  

KRG 5.1770  5.1806  -0.07% 475.20  

Ensemble SWS 5.4682  5.0199  8.93% 475.20  

PWS 5.3026  5.2163  1.65% 427.97  

OWS 5.1423  5.0834  1.16% 475.20  

 

From Table 4.6, of the individual surrogates, the KRG-based standard PSO provided 

the longest fatigue life and the highest modeling accuracy (the lowest error of 0.15%) at 

the optimal point. In contrast, the PRS-based standard PSO gave the highest modeling 
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error (37.36%) and attains a worse optimum (5.0349) though it succeeded to seek a 

better value of surrogate prediction (6.9161) than KRG. In general, the ensembles of 

surrogates had considerably better performance than the individual surrogates from both 

the prediction accuracy and optimum obtained. From Table 4.6, of the three ensembles, 

PWS yielded the best fatigue performance, which also outperformed the best individual 

surrogate (KRG in this study) with a fatigue life increase of 9297 (=10
5.1870

10
5.1599

) 

cycles.  

For the same surrogate, the hybrid PSO converged to an optimum better than the 

standard PSO (comparing Tables 4.6 with 4.7). It is noted that almost all optima 

validated by the direct fatigue simulation using the hybrid PSO outperformed those using 

the standard PSO. Overall, the hybrid PSO appeared preferable for the both individual 

surrogates and ensembles of surrogates in order to enhance the optimisation 

performance. 

Traditionally, the researchers prefer to select a so-called accurate surrogate model 

by assessing its error metrics prior to optimisation. However, our comparative study 

demonstrated that the method may not be ideal sometimes. If one relies only on the error 

metrics R
2
, RMAE and RMSE in this case (Table 4.3), the OWS model should be chosen 

to run optimisation. Unfortunately, the best OWS accuracy metrics failed to obtain the 

best optimum (Tables 7 and 8). On the contrary, the SWS model succeeded to obtain the 

most competent optimum, though it behaved worse than OWS in all the three accuracy 

metrics. Therefore, the most accurate model does not necessarily ensure the best 

optimisation. This is because the optimisation algorithms require assessing relative 

improvement (PSO) and/or gradient information (SQP), which will largely depend on the 
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mathematical nature of different surrogate functions. As a result, the resulted optima 

could be fairly different. Unlike the traditional methods, we suggest here using multiple 

ensembles of surrogates for seeking the optimum simultaneously and then select the best 

of all, because the computational cost of surrogate modeling and subsequent optimisation 

is negligible compared to full scale simulation analysis in engineering applications.  

The same experimental test was conducted on the optimised design, and the detalis 

of the fatigue cracks were summarised in Table 4.8 together with the results of the initial 

design.  

Table 4.8 Fatigue results of physical experiments before and after optimisation 

Case 

No. 

Before optimisation After optimisation  

Cumulative 

cycles 

Crack locations Cumulative 

cycles 

Crack locations 

1 40607 

51593 

60900 

Upper region of left front pillar 

Upper region of left front pillar 

Upper region of right front pillar 

 No detected damage 

2 100743 

113872 

189812 

Upper region of left front pillar 

Upper region of right front pillar 

Upper region of right front pillar 

104034 

118941 

Upper region of right front pillar 

Upper region of right front pillar 

 

4.5 Summary 

To make full use of training data, multiple ensembles of surrogate models were proposed 

to maximize the fatigue life of a truck cab, while the panel thicknesses were taken as 

design variables and the structural mass the constraint. Meanwhile, particle swarm 

optimisation was integrated with sequential quadratic programming to avoid the 

premature convergence. The results illustrated that the hybrid particle swarm optimisation 
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and ensembles of surrogates enable to attain a more competent solution for fatigue 

optimisation. 
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Chapter 5 Sequential surrogate based optimisation and its applications to 

body structures 

In engineering optmisation, the conventional one-step sampling method cannot 

nececsarily obtain a real optimum because the accuracy of the surrogate model can hardly 

be guranteed, though it is able to reduce the compuational cost. Enven if the ensemble of 

surrogate models in Chapter 4 is used, the optimum might not be validated by the 

simulation. Thus, the conventional method to construct models largely depends on the 

number of the initial sampling points: if the number is small, the established surrogate 

model may be not accurate enough; if the number is large, it may lead to a heavy 

compuational burden. However, before the surrogate is constructed, due to the lack of a 

priori knowledge, the proper number ofsampling points is difficult to decide. To achieve 

the independence of optimisation on the number of sampling points, it is necessary to 

adaptively add sequential points and update the surrogate model until the optimisation 

process is converged. The flowchart of sequential surrogate based optimisation is shown 

in Fig. 5.1. 

Define optimisation problem Run DoE Build surrogate models

Converged? Run optimisation algortihmObtain optimum design

Run simulations

Add sequential point

Yes

No

 

Fig. 5.1 Sequential surrogate based optimisation 
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5.1 Sequential surrogate based optimisation 

 

Fig. 5.2 Prediction of Kriging models 

5.1.1 Sequential surrogate modelling in single objective optimisation 

In practice, it is expected to only exploit local regions by sequentially positioning 

sample points in the neighborhood of the optimum. However, to explore design space 

may be necessary to increase the global accuracy of a metamodel by adding sequential 

samples to the sparse regions of the design space. 

As introduced in Chapter 2, the Kriging model allows predicting two important parts 

of response, (1) an approximation to the objective (  ŷ x  in Eq. (2.15)); and (2) an 

estimate of the mean squared error (MSE, i.e.  2ŝ x as in Eq. (2.20)) at the untried point. 

The former provides local information and the latter involves the uncertainty of the 

prediction value. A Statistical Lower Bound (SLB) function based on both of them can be 

formulated as 
[233]

: 
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 SLB
ˆ ˆ( )y y s   x x x                            (5.1) 

Thus, the training points in this study are generated in a sequential and adaptive 

manner by minimizing the merit function defined in Eq. (5.1). The weight factor ξ can be 

used to increase or decrease the influence of the error term. If ξ = 0, the new training 

points equal the optima of the prediction  ŷ x . If ξ = , the new training points are added 

in a space-filling manner. In general, when insufficient information is gathered to 

construct an accurate metamodel, heavier weight ξ should be prescribed. When the 

accuracy of the metamodel improves, more weight should be placed on the optimisation 

of the metamodel. Fig. 5.3 displays the SLB function, where fmin is the minimum value of 

the existing training points. The SLB function has multiple minima and the global one is 

always selected as the sequential point. 

 

Fig. 5.3 SLB function 

The Efficient Global Optimisation (EGO) approach was proposed by Schonlau 
[21]

. 
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This method starts by defining Improvement I: 

min minif

0 otherwise

f y y f
I

   
 


      (5.2) 

where fmin is the lowest objective function value obtained during previous iterations and y 

is a possible new outcome of a function evaluation. Clearly, if y< fmin, the situation has 

improved. Assuming a normal distribution, the Expected Improvement can be obtained: 

min

min( ) ( ) ( )
f

E I f y y dy


        (5.3) 

where ( )y  is the normal probability density function. Now y can be replaced by the 

Kriging prediction value  ŷ x  and Eq. (5.3) can be rewritten to: 

min min
min

ˆ ˆ( ) ( )
ˆ ˆ( ) ( ( )) ( )

ˆ ˆ( ) ( )

f y f y
E I f y s

s s


    
      

   

x x
x x

x x
  (5.4) 

where ( )   and ( )   denote the probability density and the cumulative distribution 

functions of the standard normal distribution. The first term in Eq. (5.4) is the difference 

between the current minimum and the predicted value multiplied by the probability that 

Y(x) is smaller than fmin, and is, therefore, large where ˆ( )y x  is likely smaller than fmin. 

The second term is the standard deviation of Y(x) multiplied by the probability that y(x) 

is equal to fmin. This term is large where there is the high uncertainty of the prediction 

(probably far away from the existing samples as the Kriging model goes exactly through 

them). Schonlau[38] proposed to maximize E(I) to yield the point promising the 

Maximum Expected Improvement (MEI). From Fig. 5.4, maximisation of the EI function 

can balance the local exploitation and global exploration. Compared with Eq. (5.1), Eq. 

(5.4) does not have to predefine the weight factor and can quantify the expected value of 

the improvement. 
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To summarize, sequential surrogate based single objective optimisation can be conducted 

by the following procedure: 

(1) Define the optimisation problem: design variables x
L
≤x≤x

U
, objective function y(x) 

and constraint function g(x)≤0; 

(2) Generate initial training points X={x1, x2, ..., xn} using the optimal Latin Hypercube 

design; 

(3) Run simulations to obtain the real responses Y={y1, y2, ..., yn} and G={g1,g2, ...,g n} at 

the training points; 

(4) Calculate the optimum of the existing training points, fmin= min(y1, y2, ..., yn)； 

(5) Employ Kriging modelling to approximate the response function  ŷ x  and its mean 

square error  2ŝ x  and the objective function  ĝ x ; 

(6) Establish the EI(x) defined in Eq. (5.4) and maximizing it to obtain the sequential 

sample point; 

(7) Check if the convergence criteria of the optimisation process are met: 

If not, then let n= n+1 and run the simulation to extract yn by taking the sequential 

point in Step 6 as xn; if so, conduct the optimisation based on  ŷ x  and  ĝ x  

and terminate the whole process. 
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Fig. 5.4 Schemetic of the maximum EI method 

5.1.2 Sequential surrogate modelling in multiobjective optimisation 

Yang et al. 
[27]

 proposed a framework of sequential surrogate modelling in 

multiobjective optimisation, namely Adaptive Approximation in Multiobjective 

Optimisation (AAMO). In this framework, a multiobjective optimisation algorithm is 

used for generating Pareto frontier. Out of the Pareto solutions, a few points are selected 

for reconstructing the metamodels according to maximum distance design criterion 
[28]

. 

That is to say that at each iteration the minimum distance from each Pareto solution to 

existing training points is calculated and then Nadd points having the remotest distances 

are chosen to add to the training point set for refitting the metamodels. Then, the Pareto 

optimality of Pareto solutions is checked with the updated Kriging models and the 

remaining verified solutions are inserted into the initial generation of a multiobjective 

optimisation algorithm for the next iteration. If the difference of the number of solutions 
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before and after being checked are slight (e.g., 5% of the number of total solutions), 

AAMO is regarded convergent adequately. In other words, a small difference represents 

the metamodels have already approximated the true functions sufficiently well around the 

Pareto solutions, and thus the Pareto frontier becomes fairly reliable. 

As Yang et al. 
[27]

 pointed out, however, AAMO may fail in finding out the 

respective optimum of two objectives (e.g. if m= 2 in Eqs. (1) and (2)) located at both 

ends of Pareto curve. It is because Pareto solutions to be compared with the optimum at 

the end are placed on only one side, while an optimum in the middle of Pareto curve has 

such Pareto solutions on both sides. The failure in finding out the extreme Pareto 

solutions leads to less chance to get additional sample points near the regions in the 

design space and to obtain a sufficient accuracy for metamodels in these regions. To 

address this limitation of AAMO, Yang et al. 
[27]

 proposed a combined AASO-AAMO 

method. This strategy is intended to enhance the accuracy of the metamodels at above-

mentioned extreme regions by conducting two AASOs for seeking the respective 

optimums, separately, which will be used herein. The flowchart of AAMO-AASO is 

shown in Fig. 5.5 and the detailed procedure is as follows: 

(1) Define the optimisation problem: design variables x
L
≤x≤x

U
, objective function y(x) 

and constraint function g(x)≤0; 

(2) Generate initial training points {x1, x2, ..., xn} using the optimal Latin Hypercube 

design; 

(3) Run simulations to obtain the real responses Y={y1, y2, ..., yn} and G={g1,g2, ...,g n}；

at the training points; 
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(4) Construct the surrogate models  ŷ x 和  ĝ x ; 

(5) Run m single objective optimisations to generate solutions Q={w1, w2,...,wm}; 

(6) Run multiobjective optimisation to generate Pareto solution set  0 1 2, ,..., NP z z z ； 

(7) Select Nadd points from P0 based according to maximum distance design criterion; 

(8) Let Xadd=    ' ' '

1 2 1 2, ,..., , ,...,Nadd mx x x w w w ，and run simulation to extract 

responses  
1 2

' ' ', ,..., Nadd my y y 和 
1 2

' ' 'g ,g ,...,gNadd m ； 

(9) Let  add X X X ,  add Y Y Y ,  add G G G ，and update  ŷ x  and  ĝ x ； 

(10) Check the Pareto optimality of P0 based on the updated  ŷ x  and  ĝ x , and add the 

verified points to the new Pareto solution set  ' ' '

1 2, ,...,new NnewP z z z ; 

(11) Check if the difference of the numbers of optimal solutions in P0和 Pnew is small 

enough: If so, the optimisation process converges and Pnew is the final Pareto solution set; 

otherwise, return to Step 5. 
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Fig. 5.5 AAMO-AASO procedure 

5.2 EI based sequential optimisation of spot-welded joints  

Automotive bodies as many other structures are composed of metal sheets joined by 

spot welds. There are about 4,000- 6,000 spot welds in a typical Body in White (BIW). 

Because spot weld joints provide localized connection and thus lead to high stress 

concentration in the joined plates, any improper design may result in excessively high 

stresses and premature failure 
[234]

. Among these failure modes, fatigue is the most failure 

mode. It is imperative for automotive engineers to understand fatigue behavior of spot-

welded joints under fluctuating loads. In this regard, numerical techniques have been 
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developed to carry out the predictive tasks such as design, analysis and evaluation. For 

example, Deng et al. 
[235]

 studied the mechanical behavior of spot welds under tensile-

shear and symmetric coach-peel loading conditions using finite element analysis (FEA). 

Pan and Sheppard 
[236]

 presented a strain-based approach which could predict the fatigue 

life of mixed-thickness spot welds well based on empirical fatigue life data and FEA. 

Mahadevan and Ni 
[237]

 developed a damage tolerance reliability analysis method for 

automotive spot-welded joints using a three-dimensional finite element (FE) model. 

Wang and Shang 
[238]

 carried out elasto-plastic FEA for a single spot tensile-shear spot 

weld and predicted the low-cycle fatigue life. Ertas et al. 
[239]

 took into account the 

material nonlinearity, local plastic deformations around the welds during loading and the 

residual stress and strain after unloading in FEA. Based on the predicted stress and strain 

states, fatigue lives were calculated and compared to experimental results. Tovo and 

Livieri 
[240]

 adopted an implicit gradient approach to investigate the fatigue strength of 

spot welds, where the material was assumed linear elastic and an effective stress for the 

fatigue life estimation was considered as a transformation of the maximum principal 

stress field.  

Zhang and Taylor 
[241]

 pointed out that the fatigue indictors could be a complex 

function of spot weld positions, even in the simple two-spot case. In addition, the fatigue 

indictors may be very sensitive to the design parameters such as the spot weld positions. 

For these reasons, the design optimisation of spot-welded structures could be very helpful 

and beneficial in engineering applications. In this regard, Zhang and Taylor 
[241]

 

introduced an umbrella model of spot welds and the radial stresses around a spot weld 

into the optimisation process of fatigue life. Chae et al. 
[242]

 proposed an optimal design 

http://www.sciencedirect.com/science/article/pii/S0142112301001578
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system for spot welding locations in shell structures, where an h-version of adaptive 

meshing scheme based on background mesh was implemented. Ertas and Sonmez 
[243]

 

integrated the design optimisation procedure with commercial software ANSYS to 

minimize the maximum Von Mises stress, where the Nelder-Mead simplex method was 

used to change the locations iteratively. Later, they also applied this procedure to find the 

optimal locations of spot welds and the optimal overlapping length of the joined plates to 

maximize fatigue life for a number of cases 
[234]

. 

These above-mentioned studies on optimisation of spot-welded joints are restricted 

to directly coupling numerical simulation with an optimisation algorithm, which is 

commonly regard as not an efficient way since traditional optimisation usually need to 

call for a lot of finite element analysis results. To address this issue, the technique of 

meta-models or surrogate models appears effective to replace costly simulations for 

optimisation. This section aims to further enhance the optimisation efficiency by 

combining surrogate modelling with the sequential sampling strategy. 

5.2.1 Finite element modeling 

The spot-welded structure studied herein was a tensile-shear joint of two plates, 

whose geometry is depicted in Fig. 5.6. The dimensions of the plates are 100×50×1.0 

mm, their overlapping length is 50 mm, and the diameters of the spot welds are 4 mm. 

For obtaining accurate results of stress and strain states developed in the structure, 

commercial FEA software ANSYS was utilized. A 3D ten-node tetrahedral solid element 

(SOLID 92) was used for the plates. This element has plasticity, stress stiffening, large 

deflection, and large strain capabilities. Each spot weld set consisted of a beam element 

and two node-to-surface MPC contact pairs. The nugget was modeled using a two-node 



133 

beam element (BEAM 188), which linked the spot weld surfaces. Each contact pair has 

only one contact element (CONTA175) which is defined by the associated spot weld 

node. The target element elements (TARGE170) were formed by a group of surface 

nodes lying within the search radius, which was set four times the spot weld radius. Six 

constraint equations were generated for each spot weld surface (i.e., each contact pair) by 

the software capacity to couple the motion of contact nodes to the motion of the target 

node in an average sense.  

In addition to the contact condition, non-linearity in material property and geometry 

deformation were also considered in this study. The basic material property was 

generated on the basis of the engineering stress vs. strain through: 

(1 )

ln(1 )

S e

e





 


 
       (5.5) 

where S and e are engineering stress and strain respectively, and σ and ε are the true stress 

and strain respectively. The engineering stress vs. strain curve for the basic plates was 

depicted in Fig. 5.7, and the elastic properties were set E= 207 GPa and ν= 0.25. Because 

the nugget develops low stress, its material model was selected as linearly elastic. As heat 

treatment does not cause an appreciable change in elastic modulus and Poisson’s ratio, 

their magnitudes were considered to remain about the same throughout the specimen 

despite melting during the formation of the nugget. 

The boundary condition of the FE model is shown in Fig. 5.8. All of six translational 

and rotational degrees of freedom were constrained at one end. The other end was 

subjected to uniformly distributed in-plane loads in the x- and y-direction (1000 N and 

250 N respectively), while the displacement was prevented in the z-direction. Due to high 

stress concentration, much smaller elements were used around the spot-weld nuggets in 
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comparison to those of the base metal as shown in Fig. 5.9.  

Figs. 5.10a and b show equivalent stress distribution (in terms of Mega Pascal) over 

the inner surfaces of the lower and upper sheets, respectively. High stresses develop at 

regions on the inner surfaces of the sheets close to the peripheries of the spot welds 

because load transfer in a spot-weld nugget mainly occurs through the material near the 

boundary of the nugget, whist the central region of the nugget bears relative low stresses. 

 

Fig. 5.6 Geometry of the TS specimen. 

 

Fig. 5.7 Engineering stress-strain curve. 
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Fig. 5.8 Boundary conditions. 

 

Fig. 5.9 Finite element model. 

2.087 29.239 56.392 83.544 110.696 137.849 165.001 192.153 219.306 246.458  

(a) 
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1.381 28.857 56.332 83.807 111.282 138.757 166.232 193.708 221.183 248.658 

(b) 

Fig. 5.10 Von Mises stress distrubition on inner surfaces of the initial design: (a) lower 

sheet; (b) upper sheet. 

5.2.2 Description of optimisation problem 

In this paper, we aim to maximize the fatigue life for a spot-welded structure. The 

absolute maximum principal strain theory of multi-axial fatigue failure proposed by 

Ellyin and Valaire 
[244]

 states that similar fatigue lives will be achieved when the 

maximum principal strains are the same. Pan and Sheppard 
[236]

 also drew the similar 

conclusion that the maximum principal strain is able to correlate well with fatigue life for 

a spot-welded joint. Hence, the maximum principal strain was used as the objective to 

characterize the fatigue behavior of spot welds in this study. 

The spot welds should be allocated properly to avoid interfering with each other and 

getting close to the plate boundaries. That is to say, the design should conform to the 

standards related to weld-to-weld spacing and weld-to-edge distance. According to 

American Welding Society, the distance between an edge and the center of a spot weld 

should be greater than one spot weld diameter. Besides, the distance between the centers 

of the spot welds should be greater than twice the spot-weld diameter as recommended by 
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the industry. As a result, the mathematical problem to be optimized regarding the spot 

weld locations can be formulated as: 

1

2 2
1 2 1 2

1 2

1 2

min

. . = ( ) ( ) 2
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s t D x x y y d

d x x d

d y y d
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
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    (5.6) 

where ε1 denotes the maximum principal strain, D represents the distance between the 

spot welds, d is the diameter of the spot weld (herein d=4), x1 and y1 are the center 

coordinates in the x- and y- direction for the first spot weld respectively, and x2 and y2 for 

the second spot weld respectively.  

5.2.3 Results and discussions 

Table 5.1 Initial DoE points and their FEA results. 

No. x1 y1 x2 y2 ε1 D 

1 54.00  14.77  88.46  19.08  0.00230  34.73  

2 55.08  42.77  74.46  32.00  0.05778  22.17  

3 56.15  16.92  72.31  21.23  0.02341  16.72  

4 57.23  32.00  58.31  27.69  -  4.44  

5 58.31  13.69  76.62  40.62  0.00951  32.57  

6 59.38  8.31  85.23  13.69  0.00170  26.40  

7 60.46  39.54  86.31  11.54  0.00518  38.11  

8 61.54  34.15  71.23  12.62  0.02314  23.61  

9 62.62  18.00  90.62  42.77  0.00768  37.38  

10 63.69  30.92  62.62  35.23  -  4.44  
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11 64.77  22.31  63.69  16.92  -  5.50  

12 65.85  12.62  57.23  41.69  0.01500  30.32  

13 66.92  7.23  73.38  37.38  0.00545  30.83  

14 68.00  44.92  68.00  44.92  - 0.00  

15 69.08  24.46  59.38  4.00  0.00459  22.64  

16 70.15  26.62  84.15  14.77  0.01945  18.34  

17 71.23  35.23  82.00  30.92  0.22667  11.60  

18 72.31  4.00  55.08  15.85  0.00468  20.91  

19 73.38  38.46  69.08  5.08  0.00683  33.66  

20 74.46  11.54  93.85  8.31  0.00180  19.66  

21 75.54  33.08  54.00  34.15  0.06039  21.57  

22 76.62  6.15  77.69  25.54  0.00513  19.42  

23 77.69  19.08  80.92  18.00  - 3.41  

24 78.77  27.69  66.92  22.31  0.05791  13.01  

25 79.85  10.46  92.77  26.62  0.00357  20.69  

26 80.92  36.31  94.92  7.23  0.00369  32.27  

27 82.00  46.00  79.85  38.46  -  7.84  

28 83.08  25.54  56.15  6.15  0.00340  33.18  

29 84.15  29.85  96.00  33.08  0.07518  12.28  

30 85.23  15.85  64.77  39.54  0.01403  31.30  

31 86.31  21.23  78.77  46.00  0.02269  25.89  

32 87.38  37.38  60.46  9.38  0.00353  38.84  

33 88.46  41.69  89.54  28.77  0.15530  12.97  
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34 89.54  5.08  87.38  10.46  -  5.80  

35 90.62  43.85  75.54  20.15  0.01949  28.09  

36 91.69  23.38  91.69  36.31  0.06770  12.93  

37 92.77  9.38  61.54  23.38  0.00249  34.22  

38 93.85  20.15  65.85  29.85  0.00567  29.63  

39 94.92  40.62  70.15  43.85  0.06428  24.98  

40 96.00  28.77  83.08  24.46  0.04458  13.62  

 

Table 5.2 Sequential DoE points and their FEA results. 

No. x1 y1 x2 y2 ε1 D 

1 96.00  45.52  71.27  14.21  0.00635  39.90  

2 96.00  43.85  70.59  15.04  0.00656  38.41  

3 67.67  4.35  84.99  46.00  0.00569  45.10  

4 85.15  46.00  73.62  12.74  0.00635  35.20  

5 59.24  27.39  93.75  6.94  0.00255  40.11  

6 63.90  28.14  91.20  7.98  0.00315  33.94  

7 96.00  4.00  67.02  32.88  0.00305  40.92  

8 96.00  6.49  66.05  31.64  0.00286  39.11  

9 82.35  4.00  91.88  19.27  0.00209  18.00  

10 96.00  22.72  54.00  27.39  0.00311  42.26  

11 96.00  19.21  60.29  27.56  0.00301  36.68  

12 76.27  5.40  96.00  37.39  0.00318  37.58  

13 85.93  4.00  71.79  27.90  0.00346  27.77  
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14 54.00  46.00  62.63  25.34  0.07214  22.39  

15 96.00  6.53  84.58  23.02  0.00249  20.06  

16 87.22  6.04  86.09  22.93  0.00256  16.93  

17 61.31  4.00  76.80  42.62  0.00410  41.62  

18 59.60  4.00  77.62  41.94  0.00406  42.00  

19 54.00  45.94  54.42  19.86  0.04015  26.09  

20 54.00  14.47  96.00  9.71  0.00165  42.27  

21 82.52  4.00  96.00  30.18  0.00289  29.45  

22 55.10  6.16  93.72  13.94  0.00166  39.39  

23 54.00  46.00  64.24  26.85  0.09402  21.71  

24 56.11  5.44  88.18  12.34  0.00164  32.80  

 

Fig. 5.11 Distribution of DoE points. 

Table 5.1 lists the initial DoE sample points generated using OLHS, and its size is 

chosen 10 times the number of the variables (i.e. 40). Fig. 5.11 displays the distribution 

of the sample points over the design space. From which, it is easily found that the initial 

DoE points are generated evenly. Therefore, these sample points can extract the overall 
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trend of the objective and lay a foundation for obtaining a global optimum in the 

subsequent optimisation process. 

From Table 5.1, 7 points violate the distance constraint and thus are not further 

submitted to the analyzer (ANSYS) for calculating stress and strain states. After 

generating the initial DoE points, the iterations of sequential sampling begin to work 

according to Fig.1, and the majority of the newly points are located on the boundary of 

the design space as shown in Fig. 5.11. This is because large prediction uncertainties 

existing in those areas, and adding sample points there can effectively enhance the 

expected improvement. Finally, after 12 iterations the process becomes converged. Table 

5.2 provides the iteration history of the sequential sampling, where the constraint is 

actually inactive during the whole iterations and the objective has a lower average value 

compared to that of the initial samples. 

Overall, the FEA is executed 57 times for yielding the global optimum in our 

proposed optimisation process. The resulting maximum principal strain is reduced 

significantly compared to the initial design (as listed in Table 5.3), which indicates the 

fatigue life can be improved considerably through optimisation. Besides, the optimal 

locations are fairly different from the initial, signifying the importance of optimisation. 

The first spot weld moves to one corner of the overlapping square area of sheets, and the 

second one also moves to the boundary of this area.  

To validate the effectiveness of our proposed method, the conventional optimisations 

directly coupling with FEA model were also done and the results are also list in Table 5.3, 

where the Nelder-Mead simplex method and sequential quadratic programming (SQP) 

were adapted for comparison. It is known that the selection of starting point can affect the 
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optimisation results when using the two algorithms. Because the objective is a complex 

function of spot weld positions, it is difficult to choose the starting point according to the 

engineering experience. Thus, the initial design is used as the starting point for both 

Nelder-Mead method and SQP. From Table 5.3, we can see both the two directly coupling 

methods converge to local minima near the initial design, although SQP calls fewer FEA 

than SKO. They might be able to find a global optimum by executing the algorithms 

many times starting from different initial points. However, it will definitely increase the 

computational time and cost significantly. On the other hand, our proposed method 

enables to find more optimal locations for spot welds in terms of the fatigue life with a 

relatively low computational burden. 

Table 5.3 Initial design, optimum obtained from SKO and comparison with other 

methods. 

 

Initial design SKO Simplex SQP 

x1 67.00  55.10  63.45 67.21 

y1 25.00  6.16  28.53 25.12 

x2 84.00  93.72  86.53 84.44 

y2 25.00  13.94  44.65 25.11 

ε1 0.0396 0.00165  0.0262 0.0251 

No. of FEA - 57 79 34 

5.3 AAMO-AASO based optimisation for foam-filled bitubal structures 

Here we construct accurate Kriging models using the combined AASO-AAMO 

method and conduct multiobjective optimisation for a foam-filled bitubal structure.  
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5.3.1 Finite element modeling  

The structure analyzed herein is a foam-filled thin-walled cylindrical tube subjected 

to an axial impact loading (Fig. 5.12). The bitubal arrangement, consisting of outer and 

inner walls with foam filler in between, is adopted in the tube. The length of the tube is 

250 mm, the diameters of outer and inner tubes are 50 mm and 25 mm respectively. The 

foam-filled tube impacts onto the rigid wall at an initial velocity of v=15 m/s. To generate 

sufficient kinetic energy similarly to vehicle crashing, an additional mass block of 400kg 

is attached to the top free end. 

 

Fig. 5.12 Bitubal tube with foam-filler: (a) Schematic (b) Finite element model. 

Table 5.4 Strain hardening data for AA6060-T4 
[114]

.  

Plastic strain (%) plastic stress (MPa) 

0.0 80 

2.4 115 

4.9 139 

7.4 150 

9.9 158 
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12.4 167 

14.9 171 

17.4 173 

 

The tube was modeled through a piecewise linear elastic-plastic behavior with strain 

hardening (material model 24 in LS-DYNA). The thin wall material is aluminum alloy 

AA6060-T4 with the following mechanical properties: density =2700 kg/m
3
, Poisson’s 

ratio =0.3, Young’s modulus =68.2 GPa, and initial yielding stress =80 MPa 
[114]

. To 

accurately define the hardening characteristic in the FE model, the pairs of the plastic 

strain and true stress were specified as in Table 5.4 
[114]

. As the aluminum is insensitive to 

the strain rate, the rate-dependent effect was neglected in the FE modeling. The other 

details about finite element modelling can be found in [245]
. 

 

Fig. 5.13 Kinetic, internal, total and hourglass energy of the foam-filled tube (t1= 0.8 mm, 

t2= 1.5mm, f = 0.42 g/cm
3
) 

After a convergence study, mesh sizes 2×2 mm
2
 and 2.5×2.5×2.5 mm

3
 are 

determined for the tubes and foam are, respectively. Fig. 5.13 plots the kinetic, internal, 
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total and hourglass energies during the crashing process of a foam-filled tube under 

dynamic loading. It is easily seen that the decrease in kinetic energy is almost equal to the 

increase in internal energy, and the total energy remains nearly unchanged. The hourglass 

energy is less than 1% of the system internal energy. Note that the amount of hourglass 

energy is also a good indicator to the estimation of mesh quality, which typically should 

be less than 5% of the internal energy of the system to overcome the hourglass problem 

[246]
. Therefore, the mesh size used here is considered adequate to capture the crashing 

details of the foam filled thin-walled tube.  

In addition to the above-mentioned energy evaluation, the FE modeling approach is 

further validated by comparing the FEA results with the experimental data in the 

literature. The compressive test results of foam-filled cylindrical double tubes were 

reported in 
[247]

. To use the same testing conditions given in the reference, the foam-filled 

structure is modelled as the length of 90 mm, sectional diameters of the outer and inner 

tubes are 38 mm and 22 mm, respectively; and the thicknesses are 1.6 mm and 1.4 mm 

respectively. The correlation results are summarized in Table 5.5. It is seen that all the 

simulation results agree well with the corresponding experimental results 
[247]

. From the 

comparisons, the numerical modelling technique adopted here is considered accurate and 

effective for the subsequent design optimisation. 

Table 5.5 Result comparisons between simulations and physical tests. 

 Simulation Experiment Difference 

Specific energy absorption 16.7 J/g 17.0 J/g -1.76% 

Deformation distance 53.6 mm  50.4 mm 6.35% 

app:ds:unchanged
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5.3.2 Definition of optimisation problem 

In this study, we aim to maximize SEA and simultaneously minimize Fmax while 

constraining Favg no lower than a predefined level. The outer wall thickness t1, inner wall 

thickness t2 and foam density ρf are taken as the design variables, which range from 0.6 to 

3.0 mm, from 0.6 to 3.0 mm and from 0.2 to 0.6 g/cm
3
, respectively.  

The MOO problem can be formulated mathematically as follows: 

 

1 2

3 3

min    - ,  

. .     85 kN 

         0.6 mm , 2.0 mm

         0.2g/cm 0.6g/cm

max
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f

SEA F

s t F

t t









 
  

     (5.7) 

Its corresponding two single optimisations used in AASO can be respectively 

defined as follows. 

(1) SEA maximization: 

1 2

3 3

min    -

. .     85 kN 

         0.6 mm , 2.0 mm

         0.2g/cm 0.6g/cm

avg

f
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s t F
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
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     (5.8) 

(2) Fmax minimization: 

1 2

3 3

min    

. .     85 kN 
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
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

 
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     (5.9) 
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5.3.3 Results and discussions 

  

Fig. 5.14 Training points. 

In this paper, the optimal Latin Hypercube sampling (OLHS) is implemented to 

generate initial sample data. Then, the combined AASO-AAMO is used to sequentially 

update the Kriging models until the deterministic Pareto frontier becomes stable.  

Table 5.6 Design matrix for initial sample points. 

No. t1 (mm) t2 (mm) ρ (g/cm
3
) Fmax (kN) SEA (J/g) Favg (kN) 

1 0.60 1.20 0.44 108.76 13.66 82.66 

2 0.63 1.00 0.58 236.01 19.70 151.61 

3 0.66 0.77 0.36 62.83 10.41 50.85 4 0.69 1.09 0.22 37.02 7.71 29.81 

5 0.71 1.83 0.53 196.42 17.64 140.29 

6 0.74 1.34 0.39 89.97 12.12 70.78 

7 0.77 0.74 0.20 31.55 6.59 22.99 

8 0.80 1.71 0.40 104.76 13.09 84.29 

9 0.83 0.94 0.48 138.24 14.64 97.77 
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No. t1 (mm) t2 (mm) ρ (g/cm
3
) Fmax (kN) SEA (J/g) Favg (kN) 

10 0.86 1.46 0.58 247.52 19.72 171.34 

11 0.89 1.14 0.34 70.21 10.48 56.38 

12 0.91 1.23 0.54 201.39 17.52 138.94 

13 0.94 0.60 0.23 39.52 7.29 28.83 

14 0.97 0.91 0.28 56.98 8.82 41.69 

15 1.00 1.77 0.47 157.82 14.86 113.11 

16 1.03 1.43 0.35 82.94 11.13 66.03 

17 1.06 1.51 0.52 192.40 16.46 133.55 

18 1.09 0.66 0.42 102.27 12.21 75.50 

19 1.11 1.69 0.24 66.13 9.69 50.04 

20 1.14 1.94 0.31 92.63 11.23 69.50 

21 1.17 1.63 0.59 274.51 19.61 187.67 

22 1.20 0.80 0.60 265.80 19.63 174.00 

23 1.23 1.26 0.27 68.29 9.29 48.73 

24 1.26 1.06 0.40 97.61 11.87 77.49 

25 1.29 0.89 0.22 56.85 8.06 36.67 

26 1.31 2.00 0.49 169.37 15.29 131.50 

27 1.34 0.63 0.45 126.77 13.20 91.78 

28 1.37 0.86 0.51 182.67 15.25 120.79 

29 1.40 1.74 0.36 106.97 11.94 83.38 

30 1.43 0.97 0.25 69.45 8.87 45.80 

31 1.46 1.29 0.31 87.70 10.32 62.60 
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No. t1 (mm) t2 (mm) ρ (g/cm
3
) Fmax (kN) SEA (J/g) Favg (kN) 

32 1.49 1.80 0.27 93.11 10.72 66.50 

33 1.51 1.60 0.37 109.51 12.06 86.15 

34 1.54 1.37 0.21 75.80 9.25 48.56 

35 1.57 1.49 0.56 232.06 17.52 168.69 

36 1.60 1.91 0.32 109.77 11.59 81.29 

37 1.63 0.71 0.26 73.28 9.01 48.21 

38 1.66 1.57 0.46 168.53 14.17 119.98 

39 1.69 1.03 0.45 141.00 13.24 103.42 

40 1.71 1.97 0.41 153.08 13.28 110.50 

41 1.74 1.31 0.54 240.25 16.37 153.77 

42 1.77 1.11 0.38 115.61 11.74 85.05 

43 1.80 0.69 0.57 252.51 17.19 160.46 

44 1.83 1.54 0.30 105.80 10.92 74.37 

45 1.86 1.66 0.50 200.30 15.35 145.57 

46 1.89 0.83 0.29 93.36 10.03 62.31 

47 1.91 1.89 0.33 124.08 11.90 90.79 

48 1.94 1.17 0.49 177.92 14.73 132.93 

49 1.97 1.40 0.43 141.41 13.20 111.53 

50 2.00 1.86 0.55 254.48 16.94 181.69 



150 

Table 5.7 Design matrix for sequential sample points 

Iteration t1 (mm) t2 (mm) ρ (g/cm
3
) Fmax (kN) SEA (J/g) Favg (kN) 

1 1 0.61 1.51 0.49 158.49 16.07 112.79 

2 0.60 1.48 0.52 168.61 17.19 125.95 

3 0.60 1.45 0.52 177.99 17.20 125.55 

4
a
 0.60 2.00 0.40 101.68 13.65 86.32 

5
b
 0.60 2.00 0.60 287.75 21.31 192.82 

2 1 0.61 1.19 0.52 177.19 17.20 122.49 

2 0.60 1.16 0.51 156.37 16.45 113.20 

3 0.60 1.20 0.51 166.17 16.61 115.56 

3 1 0.62 1.41 0.44 119.57 13.94 87.79 

2 0.61 1.36 0.46 127.13 14.71 95.67 

3 0.61 0.99 0.50 150.78 16.07 107.17 

4 1 0.64 1.75 0.60 275.59 21.21 188.00 

2 0.61 1.67 0.43 126.01 14.07 90.57 

3 0.60 1.63 0.43 121.52 13.96 88.40 

5 1 0.62 1.40 0.59 241.25 20.52 169.88 

2 0.60 1.45 0.59 256.93 20.67 171.88 

3 0.64 1.28 0.58 240.63 19.84 158.88 

6 1 0.60 0.76 0.60 252.42 22.82 179.80 

2 0.61 0.80 0.60 268.89 22.84 181.38 

3 0.60 0.85 0.60 246.42 20.83 162.14 

7 1 0.60 0.60 0.50 138.05 15.71 98.38 



151 

2 0.61 0.64 0.47 116.72 14.19 83.78 

3 0.60 0.63 0.49 130.33 15.18 93.17 

8 1 0.60 0.60 0.57 205.08 19.10 136.12 

2 0.60 0.70 0.55 179.30 17.98 124.71 

3 0.60 0.78 0.60 249.78 21.01 163.02 

9 1 0.60 0.80 0.50 146.00 16.05 104.36 

2 0.60 0.86 0.53 178.59 17.36 119.91 

3 0.61 1.06 0.45 110.73 13.96 85.15 

a, b: Sequential points by AASO 

 

a) before combined AASO-AAMO b) after combined AASO-AAMO 

Fig. 5.15 Contours of Kriging models for SEA. 

8

8

10

10

10

10

12
12

12

14
14

14

16 16
16

18 18 18

20 20 20

t
2
 (mm)


 (

g
/c

m
3
)

0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

8

8

10
10

10

10

12
12

12

14
14

14

16 16 16

18 18 18

20 20 20

t
2
 (mm)


 (

g
/c

m
3
)

0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6



152 

 

a) before combined AASO-AAMO b) after combined AASO-AAMO 

Fig. 5.16 Contours of Kriging models for Fmax. 

 

a) before combined AASO-AAMO b) after combined AASO-AAMO 

Fig. 5.17 Contours of Kriging models for Favg. 

In this study, the sample size of the initial training points is 50. After 9 iterations of 

combined AASO-AAMO the Pareto frontier is found stable adequately, i.e. the decrease 

in the number of Pareto solutions through the Pareto optimality checking is lower than 5 

(the total number of Pareto solutions is specified as 100) according to the convergence 

criteria of 5%. Fig. 5.14 exhibits the training points during the entire process including 50 

initial points and 29 sequential points, and Tables 5.6 and 5.7 list the details of these 
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sample data. It can be found that OLHS tends to provide space-filling and uniformly 

distributed training points in the interior of the design domain. To contrast, all the 29 

Pareto solutions generating during the iterations are located on the boundary of the design 

space representing the thinnest outer walls (i.e., t1 = 0.6 mm). This is probably attributed 

to that the thinnest outer wall is capable of achieving the weakest peak impact force and 

simultaneously the highest energy absorption efficiency.  

Figs. 5.15-5.17 depict the contours of the Kriging models before and after combined 

AASO-AAMO for SEA, Fmax and Favg respectively (when t1= 0.6 mm). For Fmax, the 

Kriging model changes significantly after iterations; whilst for SEA and Favg, the Kriging 

models are refined relatively slightly. Besides, SEA, Fmax and Favg are more sensitive with 

respect to foam density (ρf) than inner wall thickness (t2). More importantly, the two 

objectives SEA and Fmax have almost the same trend (i.e., a larger SEA means a larger 

Fmax), indicating the requirement of performing a multiobjective optimisation, where a 

larger SEA and smaller Fmax are the target design. 

Fig. 5.18 plots the comparison of the obtained Pareto frontiers before and after 

iterations (i.e., Iteration 0 and 9 respectively). After 9 iterations the Pareto frontier 

actually moves towards the origin in the objective space. This is because the updated 

accurate Kriging models yield true optimal solutions, which are even more competent 

than the results obtained from the initial Kriging models. Overall, by combined AASO-

AAMO, the Kriging models are refitted repeatedly to achieve high accuracies. 
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Fig. 5.18 Comparison of Pareto frontiers before and after combined AASO-AAMO. 

5.4 Summary 

As the conventional surrogate based optimisation largely depends on the number of 

initial sample data, sequential surrogate modeling was proposed to practical applications 

in automotive industry. (a) To maximize the fatigue life of spot-welded joints, an 

expected improvement based sequential surrogate modeling method was utilized. The 

results showed that by using this method the performance can be significantly improved 

with only a relatively small number of finite element analyses. (c) A multiojective 

sequential surrogate modeling method was proposed to address a multiobjective 

optimisation of a foam-filled double cylindrical structure. By adding the sequential points 

and updating the Kriging model adaptively, more accurate Pareto solutions are generated. 
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Chapter 6 Engineering optimisation under uncertainties 

Most (if not all) real-life engineering problems involve some degree of uncertainties 

in loading conditions, material properties, geometries, manufacturing tolerances and 

actual usage, etc. It must be pointed out that usually a deterministic optimisation tends to 

push a design toward one or more constraints until the constraints become active, thereby 

leaving no room for accommodating various uncertainties. Therefore, reliability-based 

optimisation, which aims to seek a reliable optimum by converting the deterministic 

constraints into probabilistic counterparts representing that probability of failure is 

restricted to a pre-specified level, has been widely applied to engineering problems. As 

shown in Fig. 6.1a, let xd represent the deterministic optimum and xre represent the 

reliable optimum in the design space (x1-x2 space), which is divided into infeasible and 

feasible regions by the constraints. Since the deterministic optimum xd is located on the 

boundary of the constraint, it may fall to the infeasible region when uncertainties present. 

On the other hand, the reliable optimum xre moves away to create a gap from the 

boundary of the constraint so that it can still be within the feasible region when 

uncertainties present. 

Moreover, traditional design likely leads to a large scatter of optimal performance to 

accommodate uncertainties, which may not only cause significant fluctuations from the 

desired performance, but also increase life-cycle costs, including inspection, repair and 

other maintenance expenses. Thus, the concept of robust design optimisation (RDO) is to 

reduce the scatter of the structural performance without eliminating the source of 

uncertain variability. This approach has drawn increasing attention for solving real-world 
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problems recently. As shown in Fig. 6.1b, let the x-axis represent the uncertain parameter, 

e.g. random design variable and other noise factors, and the vertical axis represents the 

value of an objective function f(x) to be minimized. Of these two optimal solutions x1 and 

x2 as pointed, x2 is considered more robust as a variation of ±Δx in the design variable 

and/or noise factor does not alter the objective function too much (fro<<fd). On the 

contrary, xd appears highly sensitive to the parametric perturbation and often cannot be 

recommended as a design in practice, even though it has a better nominal value than xro. 

It is noted that a robust-based optimisation places more emphasis on the stability of the 

objective, while a reliability-based optimisation pays more attention to the feasibility of 

the constraint. 

This chapter mainly introduces the uncertainty based optimisation methodologies 

and their applications in body structures. The results from different design cases will 

reveal the effect of the constraint reliability on the optimisation result, the effect of the 

objective robustness on the optimisation result and the decision-making method in the 

context of uncertainties. 

Infeasible region

Feasible region

Xd Determininstic optimum

  

Xre Reliable optimum
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Constraint II

x1

x2
Xre

Xd

 

(a) Reliability based optimisation (RBO) 
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(b) Robust design optimisation (RDO) 

Fig. 6.1 Illustrations of design optimisation with uncertainties (a) RBO and (b) RDO 

 

6.1 Methodology of uncertainty based optimisation 

6.1.1 Definition of uncertainty based optimisation 

6.1.1.1 Reliability-based optimisation (RBO) 

To create room for accommodating uncertainties, reliability-based optimisation 

(RBO) has been adopted in crashworthiness problems. A general RBO problem can be 

written as: 
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     (6.1) 

Rt denotes the reliability level and P() stands for the probability function. 
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6.1.1.2 Robust design optimisation (RDO) 

It is commonly accepted that a robust design was firstly presented by Japanese 

engineer Genichi Taguchi, who developed the Taguchi method to improve the quality of 

manufactured goods and makes the product performance less sensitive to variations of 

variables beyond the control of designers. A general RDO problem can be formulated 

mathematically as: 

 

   

min    ( ), ( )

. .     ( )

         

f f
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s t g 0
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where ( )f x  and ( )f x  are the mean and standard deviation of the objective, 

respectively. 

6.1.1.3 Reliability-based robust design optimisation (RBRDO) 

To enhance the design in both reliability and robustness, RBO and RDO can be 

combined and referred to as reliability-based robust design optimisation (RBRDO), 

which can be formulated as: 
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6.1.2 Uncertainty quantification 

6.1.2.1 Monte Carlo simulation  

The problems defined in Eqs. (22)-(25) involve a procedure to obtain the values of 

probabilistic objective and constraint. One of the robust yet simple approaches could be 

Monte Carlo simulation (MCS). Based on the theory of large numbers, the Monte Carlo 

simulation allows determining an estimate of the probability of success as follows, 

 
1

1
( 0 ( )

Q

i

P g I
Q 

   x x    (6.4) 

where Q is the total number of MCS and ( )I x  is an indicator function defined as 
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Note that in Eq. (6.4), Q independent sets of design variables are obtained from 

sampling techniques on the basis of the probability distribution for each random variable. 

Thus, MCS is also referred to as sampling-based method 
[248]

. MCS is also a conventional 

method of quantifying robustness, allowing determining the means and standard 

deviations of objectives in Eqs. (23)- (25).  
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(6.6) 

If the xi is independent, the laws of large numbers allow us to achieve any degree of 

accuracy by increasing Q. The error of estimating the nominal value is a random variable 

with standard deviation of 
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 f
err

Q




x

                                                        

(6.7) 

The error is, therefore, unrelated to the problem dimension (i.e., the number of 

design variables), which is very appealing for large-scale problems. And it is proportional 

to 1/
Q

, which means that the improvement of accuracy by one order will require 100 

times more samples. This expensive computation is prohibitive in the application for 

complex and highliy nonlinear problems. 

On the other hand, the minimum sampling size required for the desired reliability 

level Rt as suggested by Tu and Choi 
[249]

 is: 

1/ (1 )tQ R 
                                       

(6.8) 

The above equation indicates that for a 10% estimated probability of failure; about 

100 structural evaluations are required with some confidence on the first digit of failure 

prediction. To verify an event having a 1% failure probability; about a 1000 structural 

analyses are required, which usually would also be too expensive.  

To apply MCS to crashworthiness optimisation, the use of metamodels has been 

advocated by many researchers (e.g., 
[33, 37, 48, 245, 250-253]

). The metamodeling approach 

makes it possible to evaluate function values a very large number (millions) of times 

around each design point at a relatively low computational cost. 

6.1.2.2 Dual response surface methodology (DRSM) 

Following Vining et al.’s work 
[254]

, dual response surface models (DRSM) have 

been used in crashworthiness (e.g., 
[47, 49]

) in which two response surfaces are created, one 

for the mean and another for the variance or standard deviation of a response. Two types 
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of variables are considered in such a system: design (controllable) variables and noise 

(uncontrollable) variables. For constructing DRSM, the cross product array (Table 6.1) 

needs to be generated, where design variables are arranged in an inner array while 

random variables in an outer array. In each set of design variables, the simulation is 

repeated several times to capture the mean and standard deviation. Then, they are 

approximated as the functions with respect to the design variables using metamodeling 

techniques, which can be used in the optimisation.  

Table 6.1 Cross product array 

 Outer array (ramdom variables) 

z1 -1 -1 -1 -1 

z2 -1 -1 1 1 

Inner 

array 

(design 

variables) 

x1 x2 x3 z3 -1 1 -1 1 

-1 -1 -1  y11 y12 y13 y14 

-1 0 0  y11 y12 y13 y14 

-1 1 1  

…
 

…
 

…
 

…
 

0 -1 0  

…
 

…
 

…
 

…
 

0 0 1  

…
 

…
 

…
 

…
 

0 1 -1  

…
 

…
 

…
 

…
 

1 -1 1  y71 y72 y73 y74 

 

6.2 Reliability-based optimisation for a vehicle door 

As an indispensable assembly of an automotive body, the door serves as a key 
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supporting component for functional accessories and sound insulation in occupant 

compartment. Poor performances of a door will lead to lots of functional problems such 

as bad sealing, abnormal sounds and severe intrusion in crashing. Consequently, 

structural design and optimisation of a vehicle door have become one of the major 

concerns in the automotive industry. For example, Shin et al. 
[255]

 presented a design 

procedure by integrating topology, shape and size optimisation and design of experiments 

to develop door structure with better performances in terms of stiffness and natural 

frequency. Song and Park 
[256]

 exploited multi-disciplinary optimisation (MDO) to 

include various disciplinary analyses with a weight reduction of a door by using a tailored 

blank. Lee and Kang 
[257]

 combined the Kriging interpolation method with a simulated 

annealing algorithm to the design of a frontal door. Zhu et al. [132] presented an integrated 

approach using finite element analysis, an artificial neural network, and a genetic 

algorithm for the optimal design of an inner door panel. Cui et al. 
[258]

 adopted a multi-

material configuration in the lightweight design by combining a multiobjective genetic 

algorithm with an artificial neural network.  

These above-mentioned studies on structural optimisation for a vehicle door are 

restricted to deterministic optimisation, in which all design variables and parameters 

involved are regarded certain. Nevertheless, structural optimisation for a vehicle door 

considering the uncertainty has received limited attention in the literature. 

6.2.1 Finite element modeling  

As a critical and independent component assembled to the vehicle body, the door 

structure requires a high stiffness to carry out its functions. Similarly to the literature [5], 

the finite element analysis (FEA) models of a vehicle door, subjected to three load 
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conditions, were established as illustrated in Fig. 6.2. The finite element models are 

established to run using the commercial FEA code MSC.NASTRAN. The panels are 

modeled with CQUAD and CTRIA surface element. The panel materials are assigned 

steel, which is modeled with a linear elastic material model MAT1. For connection, 

PSOLID and CWELD elements are used to model the glue and weld spots, respectively. 

The entire FEA model has 89,043 elements and 546,912 degrees of freedom. For both 

upper and lower lateral stiffness, as shown in Fig. 6.2(a) and (b), the hinges are fully 

restrained except for roll rotation and the latch is fully restrained, and at the same time 

two y-directional forces (F1 = F2 = 200 N) are applied to the lower and upper location 

respectively. For vertical sag stiffness, as shown in Fig. 6.2(c), the hinges are fully 

restrained except for roll rotation and a vertical force (F3 = 750 N) is applied at the latch 

that is fixed in the lateral translation. The stiffness is evaluated in terms of the 

displacements at the loading point, using finite element method. In addition, load 

condition 4 is defined to perform modal analysis with the free-free boundary condition to 

calculate the door's first natural frequency.  

 

(a) lower lateral   (b) upper lateral  (c) vertical sag 

Fig. 6.2 Loading conditions for stiffness analyses of the vehicle door structure 
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Although computer aided engineering allows promoting the development of a 

vehicle door to a considerable extent, the numerical models still need to be verified 

before making use of them. In this regard, it is critical to validate the simulation results 

by using some physical tests prior to an effective design optimisation. In this study, the 

validation of FEA model was conducted by comparing the simulation results with the 

corresponding experimental results. Fig. 6.3 shows the setups of physical tests, whose 

four loading conditions are identical to the simulations. The correlation results are 

summarized in Table 6.2. It is found that all the results of the simulations agree very well 

with the corresponding experimental results. As a result, the FE models are considered 

accurate and effective for the subsequent design optimisation. 

     

(a) lower lateral                 (b) upper lateral 

     

(c) vertical sag                     (d) natural frequency 

Fig. 6.3 Experimental tests of the door stiffness 
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Table 6.2 Result comparison between simulations and physical tests 

 Simulation Experiment Difference 

mass  f1(x) 22.13 kg 22.20 kg -0.32% 

vertical sag  f2(x) 4.49 mm 4.53 mm -0.88% 

natural frequency g1(x) 40.45 Hz 40.71 Hz -0.64% 

upper lateral  g2(x) 2.86 mm 2.83 mm 1.06% 

lower lateral  g3(x) 1.67 mm 1.68 mm -0.60% 

6.2.2 Definition of optimisation problem 

6.2.2.1 Probabilistic sufficiency factor 

In this study, two sets of response surfaces are established, which are referred to the 

analysis response surface (ARS) and design response surface (DRS), respectively 
[259]

. 

ARS can replace the FE simulations of the door stiffness for optimisation. Despite the use 

of ARS, the evaluation of the probabilistic constraint is still computationally costly 

during the optimisation process. Thus, DRS is established to approximate the 

probabilistic constraint PSF which is obtained from MCS based on ARS at each DoE 

sampling point. The probability of success (  ( 0jP g  x as defined by Eq. (6.1)) is not a 

unique form of probabilistic constraints and can be transformed into other forms, such as 

reliability index and probabilistic sufficiency factor (PSF) 
[259, 260]

. It has proven that PSF 

has a higher accuracy for establishing design response surface (DRS). 

The constraints of any deterministic design optimisation can be typically expressed 

as, 

 

     

0

r t

g

g g g


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x

x x x
    (6.9) 
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where  rg x  and  tg x  represent the response and corresponding target (upper limit), 

respectively.  

In deterministic optimisation, the constraint can be reformulated as ( ) 1s x , where 

( )s x  denotes the safety factor defined as, 

 

 
( ) ( )

t

L

r

g
s s

g
 

x
x x

x
     (6.10) 

In this study, for the upper lateral stiffness of the vehicle door, the displacement at 

the loading point has an upper limit of 2.86 mm, if the corresponding value of a design is 

2.90 mm, then the safety factor is 0.986 (=2.86/2.90).  

For an optimisation problem with a lower limit, the safety factor can be defined as,  

 
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g
s s

g
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x
x x

x
    (6.11) 

In this study, the first natural frequency of the vehicle door has a lower limit of 40.45 

Hz, if the corresponding value of a design is 41.00 Hz, then the safety factor is 1.014 (= 

41.00/40.45). 

In RBDO, the corresponding constraint can be transformed into the probabilistic 

expression as: 

  t( 1P s R x    (6.12) 

Probabilistic sufficiency factor can be thus defined as the value of the safety factor 

that has a reliability level of R , and it is the solution to 

  t(P s PSF R x     (6.13) 

PSF can be easily calculated using MCS. The safety factors for the Q samplings are 

ranked in an ascending order and have such a sequence as  1 2 1, ,..., ,N m ms s s s s   . Then, 

the PSF can be obtained from Eq. (6.14).  
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kPSF s       (6.14) 

where (1 ) 1 (1 )Q R k Q R     .  

When the optimisation problem has multiple ( p ) constraints, the most critical safety 

constraint is calculated as PSF:  

,
1

min( )
p

k j
j

PSF s


      (6.15) 

Note that 1PSF   means that the reliability level is equal to or higher than the target 

and thus the design meets or exceeds the prescribed safety requirement. Therefore, it can 

replace the constraints in Eq. (6.1). 

6.2.2.2 Optimisation procedure 

Of all the stiffness indices, vertical sag stiffness can largely influence operation 

condition of door’s opening and closing, and thus, it is closely relevant to customers’ 

subjective perception towards the product quality. Therefore, the vertical sag stiffness is 

maximized and at the same time, the structural mass is minimized, while maintaining 

certain levels of other stiffness indices. The multiobjective optimisation problem for door 

structure is thus more specifically formulated as a standard form in terms of design 

variables, objectives, and constraints as follows: 
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     (6.16) 

The reliability-based optimisation problem can be defined by converting the 

deterministic constraints into 1PSF  :  
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     (6.17) 

In this study, thicknesses of six panels in Fig. 6.4 are selected as the designs 

variables. It is assumed that variations of these designs variables are normally distributed 

[261, 262]
 and their ranges and coefficients of variation (CoVs) are listed in Table 6.3. The 

whole procedure of the door design is summarized in Fig. 6.5. 

 

Fig. 6.4 Design variables 

Table 6.3 Variable information 

Design variables Upper bounds Lower bounds CoVs 

Inner panel (x1) 0.7 mm 1.5 mm 0.03 

Hinge reinforcement (x2) 0.7 mm 1.5 mm 0.03 

Inner reinforcement (x3) 0.7 mm 1.5 mm 0.03 

Outer reinforcement (x4) 0.7 mm 1.5 mm 0.03 

Side impact beam (x5) 0.7 mm 1.5 mm 0.03 

Outer panel (x6) 0.7 mm 1.5 mm 0.03 
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Fig. 6.5 Flowchart of the optimisation procedure for a vehicle door 

6.2.3 Results and discussion 

6.2.3.1 Results of MORBDO 

Since the mass of the door has a linear relationship of the panel thicknesses, the 

first-order polynomial response surface is employed to model it. For the stiffness indices, 

polynomial response surface models will be used by comparing the modeling accuracy. 

Regarding the sample size of training points, Kaufman et al. 
[263]

 found 1.5 times of the 

number of the model coefficients, which means 42 training points in this study, are 

needed to obtain reasonably accurate quadratic polynomial surface models for 5-variable 

problems. Thus, a total of 50 training points is generated using the OLHS technique to 

construct the ARS. Additional 10 validation points are used to assess the accuracy of the 
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metamodels constructed. The assessments of the accuracy are summarized in Table 6.4. It 

shows that no single response surface model is suitable for all of the stiffness indices. The 

quadratic response surface models are considered most suitable for the first natural 

frequency and vertical sag stiffness, whilst the cubic and quartic response surface models 

are chosen for lower and upper lateral stiffness, respectively. 

Table 6.4 Accuracy assessment for different polynomial response surfaces 

responses order R
2
 RAAE RMAE 

natural frequency 

Linear 0.9886  0.0893  0.2594  

Quadratic 0.9995  0.0163  0.0460  

Cubic 0.9995  0.0154  0.0536  

Quartic 0.9991  0.0238  0.0633  

vertical sag 

Linear 0.8746  0.2468  1.4272  

Quadratic 0.9821  0.0967  0.4976  

Cubic 0.9774  0.1209  0.4197  

Quartic 0.9596  0.1610  0.4670  

upper lateral 

Linear 0.9459  0.1868  0.7627  

Quadratic 0.9962  0.0475  0.2183  

Cubic 0.9990  0.0239  0.0998  

Quartic 0.9993  0.0236  0.0565  

lower lateral 

Linear 0.9663  0.1491  0.5527  

Quadratic 0.9980  0.0362  0.1326  

Cubic 0.9995  0.0176  0.0473  

Quartic 0.9995  0.0197  0.0484  
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PSF 

Linear 0.9981  0.0368  0.1032  

Quadratic 0.9985  0.0317  0.0821  

Cubic 0.9981  0.0353  0.1063  

Quartic 0.9981  0.0368  0.1032  

Using the MCS integrated with descriptive sampling technique, the value of PSF at 

each DoE sampling point can be attained. In this paper, the sample size of descriptive 

sampling is chosen a value of 1000, 5000 and 10000 respectively. It is found that the 

values of PSF for 5000 and 10000 descriptive samples are practically the same. 

Therefore, 10000 samples are regarded adequate for calculating PSF. Following the PSF 

sampling, the DRS of PSF is established and its accuracy assessment result is also shown 

in Table 6.4. Apparently, the quadratic response surface model behaves best so that it is 

applied to the subsequent optimisation. 

To compare MORBDO with the deterministic MOO, the corresponding Pareto 

frontiers are plotted in Fig. 6.6 together, where the reliability level for MORBDO is 95%. 

Similarly to the deterministic MOO, MORBDO presents a series of solutions over the 

Pareto space. However, as the uncertainties of the design variables are taken into account, 

the MORBDO Pareto frontier significantly differs from MOO’s. Interestingly, it is noted 

that of these 100 design points, the deterministic MOO provides only 45 reliable 

solutions, whose PSFs are greater than 1, while MORBDO yields 94 reliable solutions 

and the PSFs of the remaining 6 solutions are smaller than but very close to 1. Therefore, 

the conclusion can be drawn that although the objective performances are sacrificed (i.e., 

the mass is increased and/or vertical sag stiffness is weakened), the constraint reliability 

increases significantly through MORBDO. 
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MOO provides 45 reliable solutions as mentioned above. It is noted that this number 

of reliable solutions is near 50% of all solutions and such a 50-50 value is expected for a 

deterministic optimisation without considering safety/knockdown factor. This 

validates the accuracy of ARS to a certain extent. For MORBDO, the results have 6% of 

unreliable designs, which implies that there are small errors when using DRS to predict 

the probabilistic constraint. Overall, the RS models used here have satisfactory accuracy 

for the optimisations and thus no more sample points are needed to improve the RS 

models. 

 

Fig. 6.6 Comparison of MORBDO and deterministic MOO results 

Again from Fig. 6.6, the Pareto solution can be divided into two regions: sensitive 

region when mass < 22kg and insensitive region when mass > 22kg. In the insensitive 

region, the shapes of the two Pareto frontiers of deterministic MOO and MORBDO 

almost coincide. The majority of the above-mentioned 45 reliable solutions to the 

deterministic MOO are actually located in this insensitive region. In the sensitive region, 

however, due to consideration of uncertainties, the MORBDO Pareto frontier moves 

toward right within the feasible region, thus its Pareto becomes clearly worse than MOO. 
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In other words, the mass needs to be sacrificed in order to accommodate the randomness 

of design variables in MORBDO, in which those 55 unreliable MOO solutions are due to 

a more sensitive effect of the uncertainties on the objectives.  

Furthermore, it is noted that of these 100 Pareto optimal solutions to MORBDO, 70 

solutions, which are located in the sensitive region, have the lowest reliability in the 

lower lateral stiffness and lie on its constraint boundary. The remaining 30 solutions, 

which are located in the insensitive region, have the lowest reliability in the first natural 

frequency and they are away from the constraint boundary. Accordingly, we can draw 

some conclusions as follows. Firstly, each constraint tends to play an unequal role in 

MORBDO, the order of constraint criticality in this specific optimisation problem is 

lower lateral stiffness > natural frequency > upper lateral stiffness. Secondly, there is a 

definite linkage between the sensitivity of the regions and the constraint criticality. 

Specifically, in the region with a lower mass the constraints are critical that make this 

region relatively more sensitive. In contrast, in the region with a higher mass, all of the 

constraints do not actually take effect, the Pareto optimal frontier is dominated by the 

objectives so that this region becomes insensitive.  

Note that the above information of sensitive and insensitive regions can be very 

useful which will enable the decision-makers to choose a solution from a relatively 

insensitive region of the Pareto frontier whenever possible. 
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6.2.3.2 Effects of reducing the uncertainty and improving the desired reliability level 

 

Fig. 6.7 Result comparison of different uncertainty 

Fig. 6.7 plots the MORBDO Pareto frontiers with two values of CoVs= 0.01 and 

0.03, respectively. As CoVs decrease, the Pareto frontier approaches the deterministic 

MOO counterpart, which indicates that less sacrifice is needed to achieve a reliable 

solution. In other words, a better vertical sag stiffness performance can be achieved with 

the same mass if reduce the uncertainty, and vice versa. Nevertheless, as the uncertainty 

reduces, the manufacturing cost may increase dramatically due to quality control in 

practical applications. 
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Fig. 6.8 Result comparison of different reliability target 

Fig. 6.8 presents the comparison of the MORBDO Pareto frontiers with two target 

reliability levels of R = 0.95 and 0.99, respectively. As the reliability level increases, the 

Pareto frontier moves further inward the feasible region in the Pareto space. This means 

that the performances drop as a result of improvement of reliability. Practically, a 

compromise should be made between the objective performances and the desired 

reliability level. 

 

6.3 Reliability-based robust optimisation for a foam-filled tube 

 

Fig. 6.9 Microstructure of metal foam 
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Regarding the uncertainty existing in metal foams, Reyes et al. [221] pointed out that as a 

cellular material, the foam has unevenly distributed pores generated randomly, whose 

sizes are also varying (as shown in Fig. 1). This will definitely lead to the variation of 

foam density. Moradi 
[264]

 claimed that greater randomness of shape and size of voids 

could be inevitably introduced into metal foams during the manufacturing process 

compared to solid metal, resulting in more uncertainty of performance indicators. 

Randrianalisoa et al. 
[261]

 found that the presence of cell randomness could decrease the 

thermal conductivity of cellular materials. Besides the foam density, thickness and 

dimension of tubes always come with certain manufacturing errors. For these reasons, the 

nature of crashworthiness optimisation for foam filled thin-walled structures is indeed 

nondeterministic, which involves some degree of uncertainties. Unfortunately, there are 

very few studies available to deal with the uncertainties in the optimisation procedure for 

crashworthiness design of foam filled thin-walled structures to the author’s best 

knowledge. Based on Section 5.3, the maximum force and energy absorption are 

optimised with consideration of the uncertainty in the foam and tube wall. The weight 

factor is introduced to consider the tradeoff between the nominal performance and the 

standard deviation. 

6.3.1 Definition of the optimisation problem 

In Section 5.4, We constructed accurate Kriging models using combined AASO-

AAMO and generate Pareto solutions for deterministic design. Now, we are going to 

formulate the deterministic MOO to a MORDO by considering the uncertainties. For 

clarification, the whole MORDO procedure for the crashworthiness optimisation for 

foam-filled thin-wall structures is summarized in Fig. 6.10.  
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The robust objective functions in Eq.(6.3) can be re-written as a weighted sum of the 

mean and standard deviation (Table 6.5), where   denotes the weight for emphasizing 

either the mean or the standard deviation, 
*

fi  stands for the target for the ith objective 

mean. 

Table 6.5 Expression of the objective. 

Objective type Expression 

Minimization  ( ), ( ) ( ) (1 ) ( )i fi fi fi fiF       x x x x  

Maximization  ( ), ( ) ( ) (1 ) ( )i fi fi fi fiF        x x x x  

Target   *( ), ( ) ( ) (1 ) ( )i fi fi fi fi fiF          x x x x  

 

In general mechanical design, a normal distribution is widely assumed and often 

used in accounting for uncertainties of the design variables 
[261, 262]

. The coefficients of 

variation of each design variable for considering parameter uncertainties are 0.01 herein. 

When taking into account the uncertainties, the MORDO problem can be written as: 
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Obtain deterministic Pareto 
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Fig. 10 Flowchart of the proposed procedure 

6.3.2 Results and discussion 

When the uncertainties of the foam density and wall thicknesses are considered, the 

Pareto solutions move towards the right to the positions indicating a thicker inner wall 

(larger t2 values) in the feasible region (Favg ≥ 85kN) as plotted in Fig. 6.11. When more 

emphasis is placed on the means of the objectives, i.e., by taking a larger value of weight 

factor λ, the solutions move further and have larger values for t2. 

Fig. 6.12 shows that the MOSRDO Pareto frontier of the means of the performances 

(i.e. SEA and Fmax) moves further inward the feasible region in the objective space, 

compared to the deterministic counterpart. In order to accommodate the randomness of 

design variables in MOSRDO, the performances have to be sacrificed, i.e. SEA should be 

decreased and/or Fmax be increased compared to the deterministic optimisation. Moreover, 

the larger the value of λ, the further the Pareto frontier moves. This means that the 
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performances would drop as a result of improvement in robustness. Consequently, the 

robustness and performances should be compromised in practice, which was also 

revealed in the previous research 
[47]

. 

Figs. 6.13(a) and (b) exhibit the relationship between the mean and standard 

deviation for Fmax and SEA respectively. Interestingly, under the same nominal 

performance the variation of the optima can be much smaller when the uncertainties are 

imposed in the optimisation, and more weight on the standard deviations leads to more 

stable Pareto optima. Therefore, MOSRDO is capable of reducing the performance 

fluctuations of Pareto solutions with respect to the uncertainties. 

Fig. 6.14 presents the effect of the desired reliability level prescribed before 

optimisation on the MOSRDO results, where the weight factor is set as λ= 0.10. 

Surprisingly, the Pareto frontiers for the three values of reliability level (i.e., R = 0.90, 

0.95 and 0.99) almost coincide. To have an insightful understanding, let us look at Fig. 10 

again. It can be seen only a few MOSRDO Pareto solutions lie on the boundary of the 

constraint. As a result, the reliability constraint is inactive to the majority of the Pareto 

solutions. In other words, the MOSRDO Pareto solutions are insensitive to the change of 

reliability level in this specific design case. 
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Fig. 6.11 Pareto solutions of deterministic and robust optimisations (t1= 0.6 mm). 

 

Fig. 6.12 Pareto frontiers of the mean value of deterministic and robust optimisations. 
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Fig. 6.13 Standard deviation versus the mean of deterministic and robust optimisations: 

(a)Fmax, (b)SEA. 

 

Fig. 6.14 Pareto frontiers of mean value under different reliability levels. 
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smaller variations while the performances are just weakened slightly. For example, 

compared to the deterministic design, the robust design with λ =0.05 under Fmax≤ 120 kN 

can reduce the standard deviation by 42.82% for the SEA and 30.35% for the Fmax while 

reducing the mean of the SEA by only 2.23%. Besides, when more emphasis is placed on 

the standard deviations by reducing λ from 0.10 to 0.05, the standard deviation is 

decreased from 0.1214 to 0.0884 for the SEA and from 3.89 to 2.84 for the Fmax, 

representing more robust to the uncertainties in foam density and wall thicknesses. 

It is also found that at the optimal points, the errors of the means by the 

deterministic optimisation are generally higher than those of the robust designs. This is 

probably because the robust optimisations push the design to a flatter area so that the 

performances have less difference around the optimum when uncertainties present, while 

the deterministic optimisation obtains the design at a sharper area. Thus, it is easier for 

the robust optimisations to attain an accurate FEA mean value against the Kriging value 

by using only a limited number of simulations.  

Note that MOSRDO needs additional computational cost, as it requires a more 

accurate metamodel and extra uncertainty analyses during the optimisation. Nevertheless, 

the authors think that it is worth making extra efforts to achieve more practical designs. 

The adaptive metamodeling technique has already enhanced the efficiency largely, by 

iteratively fitting the functions of performance indicators with a limited number of 

sample data. Based on the established Kriging models, uncertainty analyses can be 

accomplished in a very limited time. Besides, in the long run, the rapid development of 

computational capacity could make it possible to run simulations of more complex 

problems in a fast way. 
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Table 6.6 Comparison between deterministic and robust MOO designs (Fmax≤ 120kN). 

Description Deterministic  

Robust  Robust 

(λ =0.10) (λ =0.05) 

Variables 

t1 (mm) 0.60 0.61 0.64 

t2 (mm) 1.11 1.75 2.00 

ρ (g/cm
3
) 0.46 0.43 0.42 

Objectives 

SEA 

(J/g) 

  

μ(SEA)  

Kriging 14.36 14.01 13.88 

FEA 14.32 14.14 14.00 

%error 0.27 -0.90 -0.88 

σ(SEA) 

Kriging 0.1766 0.1397 0.1247 

FEA 0.1546 0.1214 0.0884 

%error 14.20 15.08 41.03 

Fmax 

(kN) 

  

μ(Fmax) 

Kriging 119.42 119.30 120.16 

FEA 118.03 120.33 120.67 

%error 1.18 -0.85 -0.42 

σ(Fmax) 

Kriging 3.2061 2.6311 2.3565 

FEA 4.0773 3.8943 2.8432 

%error -21.37 -32.44 -17.12 

Constraints 

Favg 

(kN) 

  

μ(Favg) 

Kriging 89.12 91.13 92.31 

FEA 89.05 91.73 92.27 

%error 0.08 -0.65 0.04 

Reliability 100% 100% 100% 
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Table 6.7 Comparison between deterministic and robust MOO designs (Fmax≤ 160kN). 

Description Deterministic  

Robust  Robust 

(λ =0.10) (λ =0.05) 

Variables 

t1 (mm) 0.61 0.61 0.60 

t2 (mm) 0.60 1.50 2.00 

ρ (g/cm
3
) 0.52 0.50 0.48 

Objectives 

SEA 

(J/g) 

  

μ(SEA)  

Kriging 16.75 16.22 15.96 

FEA 16.52 16.19 15.92 

%error 1.41 0.22 0.24 

σ(SEA) 

Kriging 0.2454 0.1996 0.1722 

FEA 0.2211 0.1755 0.1423 

%error 10.96 13.74 20.98 

Fmax 

(kN) 

  

μ(Fmax) 

Kriging 158.65 159.27 159.52 

FEA 153.70 154.43 163.06 

%error 3.22 3.13 -2.17 

σ(Fmax) 

Kriging 4.5476 3.9923 3.5510 

FEA 5.0443 4.0361 3.8131 

%error -9.85 -1.08 -6.87 

Constraints 

Favg 

(kN) 

  

μ(Favg) 

Kriging 110.56 115.37 117.75 

FEA 107.27 113.98 115.55 

%error 3.07 1.22 1.90 

Reliability 100% 100% 100% 
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Table 6.8 Comparison between deterministic and robust MOO designs (Fmax≤ 200kN). 

Description Deterministic  

Robust  Robust 

(λ =0.10) (λ =0.05) 

Variables 

t1 (mm) 0.63 0.61 0.63 

t2 (mm) 0.74 1.31 2.00 

ρ (g/cm
3
) 0.55 0.54 0.52 

Objectives 

SEA 

(J/g) 

  

μ(SEA)  

Kriging 18.74 18.31 17.76 

FEA 18.37 18.38 17.68 

%error 2.01 -0.38 0.47 

σ(SEA) 

Kriging 0.2799 0.2497 0.2094 

FEA 0.2718 0.2135 0.2342 

%error 2.97 16.93 -10.60 

Fmax 

(kN) 

  

μ(Fmax) 

Kriging 199.86 199.44 199.74 

FEA 197.36 201.49 198.00 

%error 1.27 -1.02 0.88 

σ(Fmax) 

Kriging 5.5363 5.1842 4.6122 

FEA 9.4082 7.6381 5.1818 

%error -41.15 -32.13 -11.00 

Constraints 

Favg 

(kN) 

  

μ(Favg) 

Kriging 135.61 138.71 142.86 

FEA 131.32 138.72 140.25 

%error 3.27 -0.01 1.86 

Reliability 100% 100% 100% 
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Table 6.9 Comparison between deterministic and robust MOO designs (Fmax≤ 240kN). 

 

Description Deterministic  

Robust  Robust 

(λ =0.10) (λ =0.05) 

Variables 

t1 (mm) 0.60 0.60 0.61 

t2 (mm) 0.60 1.16 2.00 

ρ (g/cm
3
) 0.59 0.58 0.56 

Objectives 

SEA 

(J/g) 

 

μ(SEA)  

Kriging 20.78 20.47 19.60 

FEA 20.55 20.38 19.59 

%error 1.12 0.44 0.02 

σ(SEA) 

Kriging 0.3237 0.3000 0.2495 

FEA 0.3162 0.2692 0.2535 

%error 2.37 11.44 -1.56 

Fmax 

(kN) 

  

μ(Fmax) 

Kriging 236.64 240.94 239.49 

FEA 235.63 240.07 236.00 

%error 0.43 0.36 1.48 

σ(Fmax) 

Kriging 6.5595 6.3354 5.6688 

FEA 6.8376 6.6828 5.5559 

%error -4.07 -5.20 2.0306 

Constraints 

Favg 

(kN) 

  

μ(Favg) 

Kriging 156.25 162.36 167.02 

FEA 153.45 162.05 166.48 

%error 1.83 0.19 0.32 
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Reliability 100% 100% 100% 

 

6.4 Multi-criteria decision making based robust fatigue Optimisation for a Truck Cab  

It appears that the performance and robustness of the optimum tend to conflict with 

each other and often a tradeoff needs to be made appropriately in the design 
[265, 266]

. 

Herein we proposed a two-stage optimisation procedure to optimise the fatigue life of the 

truck cab. First, the dual surrogate models were established to approximate the mean and 

standard deviation of the fatigue life and then run the multiobjective particle swarn 

optimisation algorithm to generate the Pareto front. Then, a hybrid multi-criteria 

decision-making model was proposed to select the best compromised solution from the 

Pareto solutions. 

6.4.1 Multiobjective robust optimisation 

6.4.1.1 Definition of optimisation problem 

As mentioned above, the possible formulations of a robust design optimisation can 

be mathematically presented in Eqs. 6.19-6.22, where Fμ(x) and Fσ(x) are the mean value 

and standard deviation functions of fatigue life, and Fμ
*
 and Fσ

*
 are their ideal optimums. 

Design 1: 
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Design 3: 
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Design 4: 
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Fig. 6.15 Illustration of design variables 

Table 6.10 Variable ranges 

Fig. 6.15 and Table 6.10 present three thickness design variables and their 

dimensional ranges to be optimized in this study. With regard to uncertainties, Grujicic et 

al. 
[45]

 pointed out the importance of considering variations in material properties to 

predict the fatigue performance of vehicle components. Thus, we would like to restrict 

x1

x2

x3

Design variables 

Varying ranges 

Lower bounds Upper bounds 

x1 (mm) 0.7 2.0 

x2 (mm) 0.7 1.5 

x3 (mm) 0.7 1.0 
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our attention on uncertainties induced by the material properties in this RDO problem. 

Specifically, the ultimate tensile strength (σb), elastic modulus (E) and density (ρ), which 

can be affected by rolling process [14], are chosen as the noise factors to take into 

account the uncertainties. Their fluctuations are in the ranges of E = [200 GPa, 220 GPa], 

ρ = [7700 kg/m
3
, 7900 kg/m

3
], and σb = [300 MPa, 340 MPa], respectively, which are 

from the statistical data in the ASM Metals Handbook 
[267]

.  

The entire design procedure is described in the flowchart seen in Fig. 6.16. In the 

cross product array, the noise factors (i.e., material uncertainties) are arranged in outer 

array as in Table 6.11, which is sampled by orthogonal array, while the control factors 

(i.e., thickness design variables) are arranged in the inner array, which is generated by 

Optimal Latin Hypercube Sampling (OLHS). The results of cross product array are 

summarized in Table 6.12, where the first 30 designs are the training points and the last 

five are the assessment points. This study extends the conventional dual response surface 

model to the general dual surrogate model for fitting the mean and standard deviation of 

the fatigue life. Table 6.13 shows the error assessment of different dual surrogate models 

and it is found the dural Kriging models perform the best both in the global and local 

metrics. 
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Fig. 6.16 Flowchart of optimisation process 

Table 6.11 Outer array for the noise factors 

No. E (GPa) ρ (kg/m
3
) σb (MPa) 

1 200 7700 300 

2 200 7900 340 

3 220 7700 340 

4 220 7900 300 

5 210 7800 320 

Table 6.12 Results of cross product array 
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 No. x1 x2 x3 Fμ Fσ 

Training 

points 

1 1.69  0.76  0.95  4.12  0.0618  

2 1.96  1.31  0.82  4.75  0.0974  

3 1.91  1.11  0.97  4.74  0.0964  

4 1.60  1.22  0.91  4.53  0.0888  

5 1.10  0.98  0.83  4.11  0.0947  

6 0.97  0.73  0.88  3.72  0.0512  

7 1.87  1.17  0.73  4.63  0.0921  

8 0.74  1.25  0.80  3.42  0.0644  

9 1.37  1.14  0.79  4.31  0.0919  

10 1.82  0.81  0.77  4.31  0.0680  

11 1.15  1.33  0.87  4.12  0.0956  

12 0.92  1.09  0.72  3.78  0.0759  

13 1.33  1.36  0.99  4.23  0.0849  

14 1.46  1.00  1.00  4.38  0.0842  

15 1.06  1.20  0.96  4.04  0.0853  

16 0.79  0.87  0.78  3.46  0.0710  

17 1.73  1.03  0.86  4.56  0.0898  

18 0.70  1.06  0.90  3.32  0.0629  

19 1.19  0.78  0.74  3.99  0.0787  

20 1.42  1.50  0.84  4.35  0.0899  

21 0.88  0.92  0.98  3.78  0.0655  

22 1.51  0.70  0.81  3.94  0.0642  
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23 0.83  1.42  0.93  3.70  0.0734  

24 1.64  1.39  0.75  4.54  0.0935  

25 2.00  0.89  0.89  4.57  0.0736  

26 1.55  0.95  0.71  4.41  0.0919  

27 1.78  1.44  0.94  4.69  0.0952  

28 1.28  0.84  0.92  4.09  0.0744  

29 1.24  1.28  0.70  4.23  0.1006  

30 1.01  1.47  0.76  3.99  0.0589  

Assessment 

points 

31 2.00  1.30  1.00  4.85  0.1036  

32 1.35  0.70  0.93  3.85  0.0660  

33 1.03  1.50  0.85  4.02  0.0581  

34 1.68  1.10  0.70  4.50  0.0905  

35 0.70  0.90  0.78  3.24  0.0636  

 

Table 6.13 Accuracy assessment of different dual surrogate models 

DSM Response R
2
 RAAE RMAE 

DPRS Fμ(x) 0.9536 0.2006 0.2821 

Fσ(x) 0.7761 0.4212 0.6727 

DKRG Fμ(x) 0.9980 0.0374 0.0737 

Fσ(x) 0.9530 0.1775 0.3808 

DRBF Fμ(x) 0.9963 0.0586 0.0742 

Fσ(x) 0.6299 0.4276 1.2603 
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6.4.1.2 Optimisation results 

Table 6.14 Robust design results with single objective optimisation 

Description Design 

1 

Design 

2 

Design 3 

α= 0 α= 0.25 α= 0.50 α= 0.75 α= 1 

Design 

variables 

x1 0.97  1.80 0.96 0.96  0.96  2.00  2.00  

x2 0.73  1.21 0.70 0.70  0.70  0.86  1.50  

x3 1.00 1.00 1.00 1.00  1.00  1.00  1.00  

Fatigue 

life 

Fμ(x) 3.74 4.72 3.68 3.68  3.67  4.56  4.90  

Fσ(x) 0.050 0.083 0.0486 0.0486 0.0487 0.0703 0.100 

 

The results of single objective optimisation are summarized in Table 6.14, where 

objective weight α as in Eq. (6.21) is assigned five values evenly distributed in [0, 1] for 

Design 3. For Design 1 (Eq. (6.19)) and Design 2 (Eq. (6.20)), the design achieve the 

optimum by pushing the design onto the bound of each constraint (i.e., Fσ(x)= 0.050 and 

Fμ(x)= 4.72, respectively). Note that the constraints Fσ0 and Fμ0 in Eqs. (6.19) and (6.20) 

can actively affect the optimums. In practical application, it is, however, difficult to 

define a constraint prior to optimisation. 

For Design 3, when the weighting factor α= 0 or 1, the optimisation problems 

become to minimize the standard deviation or maximize the mean value of the fatigue 

life, respectively. That is to say that at these two cases, the optimisations solve for Fσ
*
 and 

Fμ
*
 in Eq. (6.21), respectively. Furthermore, when α increases from 0 to 1 evenly, the 

optimums obtained do not distribute evenly in the solution space. Specifically, the 

optimum almost remains unchanged when α changes from 0 to 0.50, whilst it changes 
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noticeably when α increases from 0.50 to 1. 

 

Fig. 17 Pareto frontier of fatigue mean and standard deviation 

Fig. 6.17 plots the Pareto frontier of MOPSO obtained from Design 4, together with 

the results of the single objective optimisations and the baseline design. Obviously, 

MOPSO generates a well-distributed Pareto frontier over the entire design space, and 

each point represents a non-dominated solution. It can be seen that the optimal values of 

Fμ(x) and Fσ(x) strongly conflict with each other, indicating that there is no any other 

point in the Pareto frontier that allows minimizing these two objectives concurrently 

without compromising one from another.  

It is noted that while Designs 1 and 2 yield only one single point in the Pareto 

frontier, indicating one special Pareto solution, Design 3 can produce a number of 

solutions by changing the value of the weighting factor α. Nevertheless, some solutions 

from Design 3 (e.g., the solutions from α= 0 to 0.50) may distribute in one small region 

rather than spread over the Pareto space uniformly. Moreover, as a type of weighted cost 

function, Design 3 is effective only if the Pareto frontier is convex when it is used to 
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generate a Pareto frontier 
[268]

. Obviously, Fig. 6.17 indicates that the convexity could be 

problematic in some region of the design space. Therefore, the adoption of MOPSO 

appears essential in this case. 

6.4.2 MCDM 

6.4.2.1 Decision model for MCDM 

Often a multiobjective optimisation needs to cope with some conflicting objectives, 

typically forming a Pareto frontier from MOPSO. In order to rank the solutions in Pareto 

frontier and choose the best possible compromise, TOPSIS induced by Hwang and Yoon 

[269]
 and grey relational analysis (GRA) introduced by Deng 

[270]
 are integrated into this 

paper. The process of this hybrid method to determine the best compromise solution is 

presented as follows: 

Step 1. Input S and w (i.e., S forms the Pareto frontier), where the component sij is the jth 

objective value at the ith alternative Pareto point, component wj is the weight of the jth 

objective, and weight vector w must satisfy 
2

1
1jj

w


 . In this study, the weights are 

determined using the entropy method [271]. 

Step 2. Normalize S to be S  according to Eq. (6.23). 

max

for 1,2,..., and 1,2.
max min

ij ij

j

ij

ij ij

j j

s s

s i j
s s




 



     
    (6.23) 

Step 3. Determine the ideal solution s+ and the negative ideal solution s- using Eqs. (12) 

and (13), respectively, 

1 2(max max ),
i

i
i

is s s

 
        (6.24) 
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1 2(min min ),
i

i
i

is s s

 
        (6.25) 

Step 4. Calculate the grey relation coefficient of each alternative to the ideal γ( , )j ijs s
 

and the negative ideal solution γ( , )j ijs s
 by taking s+ and s- as the referential sequence 

and each alternative to be the comparative sequence: 

min min max max
γ( , )

max max

j ij j ij
i j i j

j ij

j ij j ij
i j

s s s s
s s

s s s s
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   (6.27) 

where   is the distinguished coefficient (0≤ ≤1). In this study,  =0.5 [272]. 

Step 5. Determine the grade of the grey relation of each alternative to s+ and s- by using 

Eqs. (16) and (17) 

2

1
γ( , ) γ( , )i j j ijj

s s w s s 


       (6.28) 

2

1
γ( , ) γ( , )i j j ijj

s s w s s 


       (6.29) 

Step 6. Find the relative closeness Ci of the distance that an alternative is close to the 

ideal solution, which is defined in Eq. (6.30): 

γ( , )
=
γ( , )

i
i

i

s s
C

s s



         (6.30) 

Step 7. Rank the priority of alternatives in a descending order of Ci and choose the best 

possible compromise solution.  

It can be noted that the difference of the above integrated method from conventional 

TOPSIS lies in its introduction of the grey relation coefficient (i.e., γ( , )j ijs s
 and 
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γ( , )j ijs s
) of grey relation model to replace the general distance. Meanwhile, the 

conventional grey relation is revised in order to reflect the impact of decision-making 

theory. As a result, this method is considered to be able to acquire a satisfactory 

compromise solution for an MCDM problem [273]. 

6.4.2.2 MCDM result 

After acquiring the Pareto set from MOPSO, the decision maker often needs to 

determine a compromise solution for accomplishing the assignment. By using the 

TOPSIS based on GRA, we rank these 100 Pareto solutions and select the best 

compromise, which is listed in Table 6.15 together with the baseline design. It can also be 

seen that the simulation results agree well with the DSM results, and more importantly, 

the optimal solution (signified with star in Fig. 6.16) selected by integrating TOPSIS with 

GRA not only improves the performance and robustness of the fatigue life simultaneously 

compared with the baseline, but also provides a proper compromise between performance 

and robustness compared with other Pareto points. 

 

Table 6.15 Comparisons of the baseline and the best compromise designs 

Description Baseline 

Optimized (MCDM) 

DSM Simulation 

Design 

variables 

x1 1.5 mm 1.87 mm 

 

x2 1.5 mm 0.82 mm 

 

x3 1.5 mm 1.00 mm 

 

Fatigue life Fμ(x) 4.45 4.57 4.54 
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Fσ(x) 0.0755 0.0707 0.069 

 

Note that in real-life engineering, design problems could be more complex, where 

more design variables and uncertainty types might be involved. In this study, while only 

three design variables and their material uncertainties were considered, the proposed 

DCM based multiobjective optimisation method combined with TOPSIS-based GRA 

procedure can be potentially extended to such more complicated problems  

6.5 Summary 

While various uncertainties are inevitably present in real-life optimisations, 

conventional deterministic optimisations could probably lead to the violation of 

constraints and the instability of performances. Therefore, nondeterministic optimisation 

methods were introduced to solve the automotive design problems. (a) A multiobjective 

reliability-based optimisation for design of a door was investigated. Based on analysis 

and design responses surface models, the structural mass was minimized and the vertical 

sag stiffness was maximized subjected to the probabilistic constraint. The results revealed 

that the Pareto frontier is divided into sensitive region and insensitive region with respect 

to uncertainties, and the decision maker is recommended to select a solution from the 

insensitive region. Furthermore, the reduction of uncertainties can help improve the 

reliability but will increase the manufacturing cost, and the tradeoff between the 

reliability target and performance should be made. (b) A multiobjective uncertain 

optimisation of the foam-filled double cylindrical structure was conducted by considering 

randomness in the foam density and wall thicknesses. Multiobjective particle swarm 

optimisation and Monte Carlo simulation were integrated in the optimisation. The results 
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proved that while the performances of the objectives are sacrificed slightly, the 

nondeterministic optimisation can enhance the robustness of the objectives and maintain 

the reliability of the constraint. (c) A multiobjective robust optimisation of the truck cab 

was performed by considering the uncertainty in material properties. The general version 

of dual response surface model, namely dual surrogate model, was proposed to 

approximate the means and standard deviations of the performances. Then, the 

multiobjective particle optimisation was used to generate the well-distributed Pareto 

frontier. Finally, a hybrid multi-criteria decision making model was proposed to select a 

best compromise solution considering both the fatigue performance and its robustness. 
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Chapter 7 Conclusions and future work 

7.1 Conclusions 

The conclusions are as follows: 

(1) To excavate the potential of crash energy absorbers, the concept of functionally 

graded structure was introduced and multiobjective designs were implemented to this 

novel type of structures. First, note that the severe deformation takes place in the tubal 

corners, multi-cell tubes with a lateral thickness gradient were proposed to better enhance 

the crashworthiness. The results of crashworthiness analyses and optimisation showed 

that these functionally graded multi-cell tubes are preferable to a uniform multi-cell tube. 

Then, functionally graded foam filled tubes with different gradient patterns were 

analyzed and optimized subject to lateral impact and the results demonstrated that these 

structures can still behave better than uniform foam filled structures under lateral loading, 

which will broaden the application scope of functionally graded structures. Finally, dual 

functionally graded structures, i.e. functionally graded foam filled tubes with functionally 

graded thickness walls, were proposed and different combinations of gradients were 

compared. The results indicated that placing more material to tubal corners and the 

maximum density to the outmost layer are beneficial to achieve the best performance. 

(2) To make full use of training data, multiple ensembles of surrogate models were 

proposed to maximize the fatigue life of a truck cab, while the panel thicknesses were 

taken as design variables and the structural mass the constraint. Meanwhile, particle 

swarm optimisation was integrated with sequential quadratic programming to avoid the 

premature convergence. The results illustrated that the hybrid particle swarm optimisation 

and ensembles of surrogates enable to attain a more competent solution for fatigue 
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optimisation. 

(3) As the conventional surrogate based optimisation largely depends on the number 

of initial sample data, sequential surrogate modeling was proposed to practical 

applications in automotive industry. (a) To maximize the fatigue life of spot-welded 

joints, an expected improvement based sequential surrogate modeling method was 

utilized. The results showed that by using this method the performance can be 

significantly improved with only a relatively small number of finite element analyses. (c) 

A multiojective sequential surrogate modeling method was proposed to address a 

multiobjective optimisation of a foam-filled double cylindrical structure. By adding the 

sequential points and updating the Kriging model adaptively, more accurate Pareto 

solutions are generated. 

(4) While various uncertainties are inevitably present in real-life optimisations, 

conventional deterministic optimisations could probably lead to the violation of 

constraints and the instability of performances. Therefore, nondeterministic optimisation 

methods were introduced to solve the automotive design problems. (a) A multiobjective 

reliability-based optimisation for design of a door was investigated. Based on analysis 

and design responses surface models, the structural mass was minimized and the vertical 

sag stiffness was maximized subjected to the probabilistic constraint. The results revealed 

that the Pareto frontier is divided into sensitive region and insensitive region with respect 

to uncertainties, and the decision maker is recommended to select a solution from the 

insensitive region. Furthermore, the reduction of uncertainties can help improve the 

reliability but will increase the manufacturing cost, and the tradeoff between the 

reliability target and performance should be made. (b) A multiobjective uncertain 
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optimisation of the foam-filled double cylindrical structure was conducted by considering 

randomness in the foam density and wall thicknesses. Multiobjective particle swarm 

optimisation and Monte Carlo simulation were integrated in the optimisation. The results 

proved that while the performances of the objectives are sacrificed slightly, the 

nondeterministic optimisation can enhance the robustness of the objectives and maintain 

the reliability of the constraint. (c) A multiobjective robust optimisation of the truck cab 

was performed by considering the uncertainty in material properties. The general version 

of dual response surface model, namely dual surrogate model, was proposed to 

approximate the means and standard deviations of the performances. Then, the 

multiobjective particle optimisation was used to generate the well-distributed Pareto 

frontier. Finally, a hybrid multi-criteria decision making model was proposed to select a 

best compromise solution considering both the fatigue performance and its robustness. 

(5) Regarding the surrogate modelling, the conventional surrogate models, 

ensembles of surrogates, and sequential surrogate models were investigated. From the 

study, the conventional surrogate models are accurate enough for the small-scale 

crashworthiness optimisation problem and stiffness optimisation problem; the ensembles 

of surrogates are suitable for the large-scale problem (> 10 variables), to make full use of 

information from multiple surrogates and thus obtain a more competent optimum; the 

sequential surrogate models are suitable for the crashworthiness problems with uncertain 

factors, in order to adaptively increase the accuracy of surrogate modeling and guarantee 

the effective of the uncertainty-based optimisation. 

7.2 Novelties 

During this PhD study, the following ideas are considered innovative: 
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(1) Surrogate modeling and multiobjective optimisation were integrated to address 

the design problems of novel functionally graded structures, aiming to develop more 

advanced automotive energy absorbers. 

(2) The ensembles of surrogates and hybrid particle swarm optimisation were 

proposed for design of a truck cab, which could make full use of training points and has a 

strong searching capacity. 

(3) Sequential surrogate modeling methods were introduced to several optimisation 

problems in automotive industry so that the optimisations are less dependent on the 

number of initial training points and both the efficiency and accuracy are improved. 

(4) The surrogate based optimisation method was implemented to address various 

uncertainties in real life applications. Furthermore, a hybrid multi-criteria decision 

making model was proposed to make the best compromise between the performance and 

robustness. 

7.3 Future work 

Though substantial work has been done for the optimisation of body structures, a lot of 

work remains to be explored. (1). The energy absorber needs to be optimisation in the 

context of the whole vehicle system. That to to say, all the components should be 

integrated to work as a whole to achieve the best crashworthiness performance. (2). 

Regarding the multiobjective sequential optimisation, the multiobjective version of EI 

criterion should be further studied to make full use of the predicted uncertainty 

information. (3). Dual surrogate models should be further investigated to account for the 

uncertainty in both design variables and noise factors. 
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