

AERONAUTICAL ENGINEERING

A SPECIAL BIBLIOGRAPHY
WITH INDEXES
Supplement 74

SEPTEMBER 1976

ACCESSION NUMBER RANGES

Accession numbers cited in this Supplement fall within the following ranges:

STAR (N-10000 Series) N76-24143--N76-26142

IAA (A-10000 Series) A 76-31928 - A 76-35227

This bibliography was prepared by the NASA Scientific and Technical Information Facility operated for the National Aeronautics and Space Administration by Informatics Information Systems Company.

AERONAUTICAL ENGINEERING

A Special Bibliography

Supplement 74

A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in August 1976 in

- Scientific and Technical Aerospace Reports (STAR)
- International Aerospace Abstracts (IAA)

INTRODUCTION

Under the terms of an interagency agreement with the Federal Aviation Administration this publication has been prepared by the National Aeronautics and Space Administration for the joint use of both agencies and the scientific and technical community concerned with the field of aeronautical engineering. The first issue of this bibliography was published in September 1970 and the first supplement in January 1971. Since that time, monthly supplements have been issued.

This supplement to Aeronautical Engineering—A Special Bibliography (NASA SP-7037) lists 295 reports, journal articles, and other documents originally announced in August 1976 in Scientific and Technical Aerospace Reports (STAR) or in International Aerospace Abstracts (IAA)

The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

Each entry in the bibliography consists of a standard bibliographic citation accompanied in most cases by an abstract. The listing of the entries is arranged in two major sections, IAA Entries and STAR Entries, in that order. The citations, and abstracts when available, are reproduced exactly as they appeared originally in IAA or STAR, including the original accession numbers from the respective announcement journals. This procedure, which saves time and money, accounts for the slight variation in citation appearances.

Three indexes—subject, personal author, and contract number—are included An annual cumulative index will be published.

AVAILABILITY OF CITED PUBLICATIONS

IAA ENTRIES (A76-10000 Series)

All publications abstracted in this Section are available from the Technical Information Service, American Institute of Aeronautics and Astronautics, Inc. (AIAA), as follows. Paper copies are available at \$5.00 per document up to a maximum of 20 pages. The charge for each additional page is 25 cents. Microfiche are available at the rate of \$1.50 per microfiche for documents identified by the # symbol following the accession number: A number of publications, because of their special characteristics, are available only for reference in the AIAA Technical Information Service Library Minimum airmail postage to foreign countries is \$1.00. Please refer to the accession number, e.g., (A76-10091), when requesting publications.

STAR ENTRIES (N76-10000 Series)

One or more sources from which a document announced in STAR is available to the public is ordinarily given on the last line of the citation. The most commonly indicated sources and their acronyms or abbreviations are listed below. If the publication is available from a source other than those listed, the publisher and his address will be displayed on the availability line or in combination with the corporate source line.

Avail NTIS Sold by the National Technical Information Service to U.S. customers at the price shown in the citation following the letters HC (hard, paper, or facsimile copy). Customers outside the U.S. should add \$2.50 per copy for handling and postage charges to the price shown. (Prices shown in earlier STAR volumes, 1962-1975, have been superseded but may be calculated from the number of pages shown in the citation. The price schedule by page count was published in STAR Numbers 2 and 3 of 1976, or it may be obtained from NTIS.)

Microfiche $^{(1)}$ is available at a standard price of \$2.25 (plus \$1.50 for non-U S customers) regardless of source or the quality of the fiche, for those accessions followed by a # symbol Accession numbers followed by a \pm sign are not available as microfiche because of size or reproducibility

Initially distributed microfiche under the NTIS SRIM (Selected Research in Microfiche) is available at greatly reduced unit prices. For this service and for information concerning subscription to NASA printed reports, consult the NTIS Subscription Unit

NOTE ON ORDERING DOCUMENTS When ordering NASA publications (those followed by the * symbol), use the N accession number NASA patent applications (only the specifications are offered) should be ordered by the US-Patent-Appl-SN number Non-NASA publications (no asterisk) should be ordered by the AD, PB, or other *report* number shown on the last line of the citation, not by the N accession number. It is also advisable to cite the title and other bibliographic identification.

Avail SOD (or GPO) Sold by the Superintendent of Documents, U.S. Government Printing Office, in hard copy. The current price and order number are given following the availability line. (NTIS will fill microfiche requests, at the standard \$2.25 price, for those documents identified by a # symbol.)

⁽¹⁾ A microfiche is a transparent sheet of film, 105 by 148 mm in size containing as many as 60 to 98 pages of information reduced to micro images (not to exceed 26.1 reduction)

- Avail NASA Public Document Rooms Documents so indicated may be examined at or purchased from the National Aeronautics and Space Administration, Public Documents Room (Room 126), 600 Independence Ave., S.W., Washington, D.C. 20546, or public document rooms located at each of the NASA research centers, the NASA Space Technology Laboratories, and the NASA Pasadena Office at the Jet Propulsion Laboratory
- Avail ERDA Depository Libraries Organizations in U.S. cities and abroad that maintain collections of Energy Research and Development Administration reports, usually in microfiche form, are listed in *Nuclear Science Abstracts*. Services available from the ERDA and its depositories are described in a booklet, *Science Information Available from the Energy Research and Development Administration* (TID-4550), which may be obtained without charge from the ERDA Technical Information Center.
- Avail Univ Microfilms Documents so indicated are dissertations selected from *Dissertation Abstracts* and sold by University Microfilms as xerographic copy (HC). All requests should cite the author and the Order Number as they appear in the citation.
- Avail USGS Originals of many reports from the US Geological Survey, which may contain color illustrations, or otherwise may not have the quality of illustrations preserved in the microfiche or facsimile reproduction, may be examined by the public at the libraries of the USGS field offices whose addresses are listed in this Introduction. The libraries may be queried concerning the availability of specific documents and the possible utilization of local copying services, such as color reproduction.
- Avail HMSO Publications of Her Majesty's Stationery Office are sold in the U.S. by Pendragon House, Inc. (PHI), Redwood City, California. The U.S. price (including a service and mailing charge) is given, or a conversion table may be obtained from PHI.
- Avail BLL (formerly NLL) British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England Photocopies available from this organization at the price shown (If none is given, inquiry should be addressed to the BLL)
- Avail ZLDI Sold by the Zentralstelle für Luftfahrtdokumentation und -Information, Munich, Federal Republic or Germany, at the price shown in deutschmarks (DM)
- Avail Issuing Activity, or Corporate Author, or no indication of availability. Inquiries as to the availability of these documents should be addressed to the organization shown in the citation as the corporate author of the document.
- Avail U.S. Patent Office Sold by Commissioner of Patents, U.S. Patent Office, at the standard price of 50 cents each, postage free
- Other availabilities If the publication is available from a source other than the above, the publisher and his address will be displayed entirely on the availability line or in combination with the corporate author line

GENERAL AVAILABILITY

All publications abstracted in this bibliography are available to the public through the sources as indicated in the STAR Entries and IAA Entries sections. It is suggested that the bibliography user contact his own library or other local libraries prior to ordering any publication inasmuch as many of the documents have been widely distributed by the issuing agencies, especially NASA. A listing of public collections of NASA documents is included on the inside back cover.

ADDRESSES OF ORGANIZATIONS

American Institute of Aeronautics and Astronautics
Technical Information Service
750 Third Ave
New York, N Y 10017

British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England

Commissioner of Patents U.S. Patent Office Washington, D.C. 20231

Energy Research and Development Administration Technical Information Center P O Box 62 Oak Ridge, Tennessee 37830

ESA - Space Documentation Service ESRIN . Via Galileo Galilei 00044 Frascati (Rome), Italy

Her Majesty's Stationery Office P O Box 569, S E 1 London, England

NASA Scientific and Technical Information Facility P O Box 8757 B W I Airport, Maryland 21240

National Aeronautics and Space
Administration
Scientific and Technical Information
Office (KSI)
Washington, D C 20546

National Technical Information Service Springfield, Virginia 22161 Pendragon House, Inc 899 Broadway Avenue Redwood City, California 94063

Superintendent of Documents U.S. Government Printing Office Washington, D.C. 20402

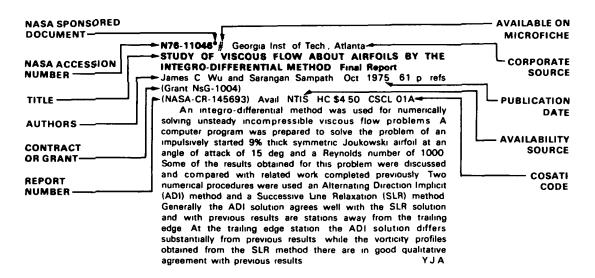
University Microfilms A Xerox Company 300 North Zeeb Road Ann Arbor, Michigan 48106

University Microfilms, Ltd Tylers Green London, England

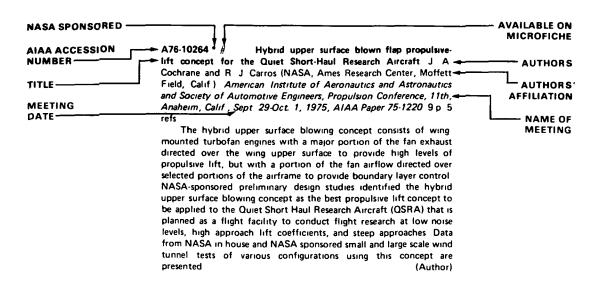
U.S. Geological Survey 1033 General Services Administration Bldg Washington, D.C. 20242

U S Geological Survey 601 E Cedar Avenue Flagstaff, Arizona 86002

U S Geological Survey 345 Middlefield Road Menlo Park, California 94025


U S Geological Survey Bldg 25, Denver Federal Center Denver, Colorado 80225

Zentralstelle fur Luftfahrtdokumentation und -Information 8 Munchen 86 Postfach 880 Federal Republic of Germany


TABLE OF CONTENTS

·	rage
IAA Entries	. 255
STAR Entries	271
Subject Index	A-1
Personal Author Index	B-1
Contract Number Index	

TYPICAL CITATION AND ABSTRACT FROM STAR

TYPICAL CITATION AND ABSTRACT FROM /AA

AERONAUTICAL ENGINEERING

A Special Bibliography (Suppl. 74)

SEPTEMBER 1976

IAA ENTRIES

A76-31953 Fracture in thin sections J A Alic (Wichita State University, Wichita, Kan) Society of Automotive Engineers, Business Aircraft Meeting, Wichita, Kan , Apr 6-9, 1976, Paper 760-452 23 p 54 refs Research supported by the Wichita State University Research Committee

The mechanics of fracture of thin sections of the type encountered in aircraft structures is currently less well understood than the fracture mechanics of thick sections. Specialized methods of thin section fracture analysis are reviewed and critically discussed, with particular reference to crack growth resistance curves (R-curves). The dangers of assuming linear elastic behavior in thin section problems of various type are noted. It is shown that a one-parameter fracture criterion is poorly suited for use in thin section problems. The need for improved procedures is indicated.

V P

A76-31954 * Progress report on propeller aircraft flyover noise research F B Metzger, B Magliozzi (United Aircraft Corp., Hamilton Standard Div., Windsor Locks, Conn.), and R J Pegg (NASA, Langley Research Center, Hampton, Va.) Society of Automotive Engineers, Business Aircraft Meeting, Wichita, Kan., Apr. 6-9, 1976, Paper 760-454 15 p. 11 refs

Initial results of a program to investigate the sources of noise in unshrouded propellers under forward flight conditions are reported Tests were conducted using a three blade full scale instrumented propeller mounted on a twin-engine aircraft. Measurements included (1) far field noise at fixed ground stations and at two aircraft wing tip locations, (2) blade surface pressures at seven locations on one of the propeller blades, (3) atmospheric turbulence encountered by the aircraft in flight, and (4) aircraft operating conditions. The results confirm that significantly lower levels of propeller noise are produced in forward flight than at static conditions. It is tentatively concluded that propeller noise generation in flight may be dominated by steady loading at blade passage frequency, but at higher frequencies unsteady loading due to interaction with natural atmospheric turbulence may be the dominant mechanism of noise generation. Under static conditions the total noise signature appears to be the result of interaction of the propeller with persistent turbulent eddies passing through the propeller disk

A76-31955 Noise level measurements on a quiet short haul turboprop transport F Cicci and A F Toplis (de Havilland Aircraft of Canada, Ltd., Downview, Ontario, Canada) Society of Automotive Engineers, Business Aircraft Meeting, Wichita, Kan., Apr. 6-9, 1976, Paper 760-455 10 p

The tests used to develop the propulsion system incorporated in the de Havilland Dash 7 STOL four engine turboprop aircraft are summarized. The selected propeller is four-bladed and has elliptical tips. NACA series 64A airfoils are used inboard, NACA series 16 airfoils are used at the tip. The experimental procedures used to obtain initial aircraft noise measurements are described. The aircraft has achieved the target noise level of 95 PNdB.

C. K. D.

A76-31956

Noise control - Blueprint for better community relations G Gilbert (Business and Commercial Aviation, White Plains, N.Y.) Society of Automotive Engineers, Business Aircraft Meeting, Wichita, Kan., Apr. 6-9, 1976, Paper 760-456. 8 p. 10 refs.

The extent to which business aircraft meet the noise limitations imposed by Federal Aviation Regulations (FAR) Part 36 is discussed At present, 80% of the 25 models of business jets in use in the US meet noise specifications, either by incorporation of advanced noise reduction features or by use of hush kits and/or operational techniques such as the low-drag approch and noise abatement climb profiles Of a random selection of propeller-driven aircraft including turboprops under 12,500 lbs maximum takeoff weight, 67% fell within noise limits that will apply in 1980 Attention is being directed toward reducing noise from the fan tips and engine inlet in designing fanjet engines for business aircraft. A new-generation business jet fan engine under development by Rolls Royce to meet 5000 6000 lb thrust requirements is expected to fall within FAR Part 36 noise limits with a margin of more than 10 EPNdB as the result of an advanced-technology core and a high bypass ratio C K D

A76-31957 * NASA general aviation research overview - 1976 R L Winblade and J A Westfall (NASA, Washington, D C) Society of Automotive Engineers, Business Aircraft Meeting, Wichita, Kan , Apr 6-9, 1976, Paper 760-458 77 p

Recent accomplishments in the field of general aviation are reviewed which resulted from NASA's steadily improving communication with the industry and user community, both on a formal level and through more direct involvement in the research activities Several NASA programs are examined whose aim is to provide new technologies across the board for improvements in safety, efficiency, and reduction of the impact of general aviation on the environment. The use of the results of some NASA programs in designing new aircraft is demonstrated. A list of technical reports generated by the NASA program is given in an appendix.

A76-31958 * NASA study of an automated Pilot Advisory System L C Parker (NASA, Wallops Flight Center, Wallops Island, Va) Society of Automotive Engineers, Business Aircraft Meeting, Wichita, Kan, Apr 6-9, 1976, Paper 760-460 8 p 7 refs

A Pilot Advisory System (PAS) concept for high-density uncontrolled airports is discussed where the general aviation pilots will be provided with automatic audio voice airport and air traffic advisories within two minute intervals and with mid-air collision warnings whenever such situations arise Free of manual inputs, the PAS includes the options of fixed-base operator runway select, automatic restart and self-test, and remote inquiry of system status and messages

A76-31960 A data acquisition system for in-flight airfoil evaluation G M Gregorek, M J Hoffmann, and S Weislogel (Ohio State University, Columbus, Ohio) Society of Automotive Engineers, Business Aircraft Meeting, Wichita, Kan, Apr 69, 1976, Paper 760-462 19 p

Details of the design and development of an airborne data acquisition system for in-flight evaluation of airfoils are presented. The system was designed to be flown aboard a single engine general aviation aircraft and to measure and record airfoil surface pressures, airfoil wake pressures, and aircraft angle of attack and airspeed

Included are descriptions of the instrumentation, calibration and data reduction techniques, illustrations of the raw data and comments on the operational experience gained during the flight evaluation of the GA(W)-2 airfoil (Author)

A76-31961 * Business jet approach noise abatement techniques - Flight test results T W Putnam and F W Burcham (NASA, Flight Research Center, Edwards, Calif) Society of Automotive Engineers, Business Aircraft Meeting, Wichita, Kan , Apr 6-9, 1976, Paper 760-463 16 p 5 refs

Operational techniques for reducing approach noise from business jet aircraft were evaluated in flight by measuring the noise generated by five such aircraft during modified approaches. Approaches with 4-deg glide slopes were approximately 4.0 EPNdB quieter than approaches with standard 3-deg glide slopes. Noise reductions for low-drag 3-deg approaches varied widely among the airplanes tested, the fleet-weighted reduction was 8.5 EPNdB Two-segment approaches resulted in noise reductions of 7.0 EPNdB to 8.5 EPNdB 3 nautical miles and 5 nautical miles from touchdown Pilot workload increased progressively for the 4-deg, low-drag 3-deg, and two-segment approach.

A76-31962 * The impact of interior cabin noise on passenger acceptance A N Rudrapatna and I D Jacobson (Virginia, University, Charlottesville, Va.) Society of Automotive Engineers, Business Aircraft Meeting, Wichita, Kan., Apr. 6-9, 1976, Paper 760-466. 10 p. 12 refs. Grant No. NsG-1180

Based on flight test data gathered in general aviation aircraft, a composite motion-noise passenger comfort model has been developed which enables the assessment of cabin interior noise impact on passenger acceptance Relationships between special subject responses and passenger responses are given, as well as the effect of comfort on passenger acceptance. The importance of comfort and noise on the overall passenger reaction is discussed.

(Author)

A76-31963 Design, development and flight test of the Cessna Citation thrust reverser A C Allen and R J Wickline (Rohr Industries, Inc., Chula Vista, Calif.) Society of Automotive Engineers, Business Aircraft Meeting, Wichita, Kan., Apr. 6-9, 1976, Paper 760-468 12 p

Design, development and testing thrust reversers for a business jet airplane are described from program conception through Federal Aviation Administration (FAA) Certification Mechanical design, reverser operation, failsafe features, actuation systems and aircraft integration are covered Model tests, developmental taxi tests, static ground tests and flight tests required for configuration development and FAA type certification are discussed (Author)

A76-31964 * New potentials for conventional aircraft when powered by hydrogen-enriched gasoline W A Menard, P I Moynihan, and J H Rupe (California Institute of Technology, Jet Propulsion Laboratory, Pasadena, Calif) Society of Automotive Engineers, Business Aircraft Meeting, Wichita, Kan, Apr. 6-9, 1976, Paper 760-469 15 p. 11 refs. Contract No. NAS7-100

Hydrogen enrichment for aircraft piston engines is under study in a new NASA program. The objective of the program is to determine the feasibility of inflight injection of hydrogen in general aviation aircraft engines to reduce fuel consumption and to lower emission levels. A catalytic hydrogen generator will be incorporated as part of the air induction system of a Lycoming turbocharged engine and will generate hydrogen by breaking down small amounts of the aviation gasoline used in the normal propulsion system. This hydrogen will then be mixed with gasoline and compressed air from the turbocharger before entering the engine combustion chamber. The special properties of the hydrogen-enriched gasoline allow the engine to operate at ultralean fuel/air ratios, resulting in higher efficiencies and hence less fuel consumption. This paper summarizes the results of a systems analysis study. Calculations assuming a Beech

Duke aircraft indicate that fuel savings on the order of 20% are possible. An estimate of the potential for the utilization of hydrogen enrichment to control exhaust emissions indicates that it may be possible to meet the 1979 Federal emission standards.

(Author)

A76-31965 A ducted propulsor demonstrator D G M Davis (Dowty Rotol, Ltd., Gloucester, England) Society of Automotive Engineers, Business Aircraft Meeting, Wichita, Kan., Apr. 6-9, 1976, Paper 760-470 8 p

A ducted propulsor unit based on a conventional 285 hp aircraft reciprocating engine has been designed and fabricated. The seven bladed propulsor bolts on to the standard engine driving flange in the same manner as a propeller. The propulsor is presently nonreversing but has a full feathering capability, adequate pitch range is available should reversing be required. The mounting of the engine and cowling are described. Testing of the completed unit was initiated in April 1976, to evaluate the cooling system, calibrate the powerplant thrust power rpm characteristics and powerplant noise characteristics, and determine performance characteristics at varying forward speeds. The unit is expected to have diameter, weight, and cost advantages over propellers producing equivalent noise levels and better take-off thrust than propellers.

A76-31966 Laminar flow rethink - Using composite structure H E Payne (Bellanca Aircraft Engineering, Inc., Scott Depot, W Va.) Society of Automotive Engineers, Business Aircraft Meeting, Wichita, Kan., Apr. 6-9, 1976, Paper 760-473. 12 p. 9 refs

The use of composite structure in the design of the Skyrocket II, a general aviation aircraft capable of operating in the laminar flow 'drag bucket' on a normal service, is discussed. The aircraft design utilizes a very stiff epoxy/fiberglass composite air-passage skin consisting of relatively few parts to eliminate air load stress ripples. A zero-lift drag coefficient in the area of 0.15 has been obtained by design engineering specifically for low drag, maximizing the extent of laminar flow by use of the stiff composite skin, and minimizing protuberances into the air passage.

A76-31967 Minimum time flight profile optimization for piston-engine-powered airplanes H C Smith (Pennsylvania State University, University Park, Pa) and D E Creeden Society of Automotive Engineers, Business Aircraft Meeting, Wichita, Kan, Apr 6-9, 1976, Paper 760-474 9 p 12 refs

A method is developed for determining the optimum cruising altitude to give minimum overall flight time for a given mission Variation in aircraft performance, atmospheric properties, and winds with altitude are taken into consideration. The solution is performed by digital computer with remote typewriter terminals for input and output. The input is data readily available from the aircraft flight handbook and standard weather service reports. Results show a significant saving in flight time by use of this method over that of cruising at an arbitrary altitude. This result is particularly true in the case of supercharged airplanes operating over stage lengths of about 100 statute miles. (Author)

A76-31968 * General aviation design synthesis utilizing interactive computer graphics T L Galloway (NASA, Ames Research Center, Moffett Fields, Calif) and M R Smith (Michigan, University, Ann Arbor, Mich) Society of Automotive Engineers, Business Aircraft Meeting, Wichita, Kan, Apr 6-9, 1976, Paper 760-476 8 p 5 refs

Interactive computer graphics is a fast growing area of computer application, due to such factors as substantial cost reductions in hardware, general availability of software, and expanded data communication networks. In addition to allowing faster and more meaningful input/output, computer graphics permits the use of data in graphic form to carry out parametric studies for configuration selection and for assessing the impact of advanced technologies on general aviation designs. The incorporation of interactive computer graphics into a NASA developed general aviation synthesis program is described, and the potential uses of the synthesis program in preliminary design are demonstrated.

A76-31969 • Airfoil section drag reduction at transonic speeds by numerical optimization R M Hicks, G N Vanderplaats (NASA, Ames Research Center, Moffett Field, Calif), E M Murman, and R R King Society of Automotive Engineers, Business Aircraft Meeting, Wichita, Kan, Apr 6-9, 1976, Paper 760-477 16 p 11 refs

A practical procedure for the design of low drag, transonic airfoils is demonstrated. The procedure uses an optimization program, based on a gradient algorithm coupled with an aerodynamic analysis program, that solves the full, non-linear potential equation for transonic flow. The procedure is useful for the design of retrofit modifications for drag reduction of existing aircraft as well as for the design of low drag profiles for new aircraft. Results are presented for the modification of four different airfoils to decrease the drag at a given transonic Mach number.

(Author)

A76-31970 Feasibility study of propeller design for general aviation by numerical optimization S Bernstein Society of Automotive Engineers, Business Aircraft Meeting, Wichita, Kan, Apr. 6-9, 1976, Paper 760-478 8 p. 9 refs

A practical method for propeller design using optimization techniques is presented. The propeller aerodynamics model incorporates blade element, momentum and vortex theories, and the optimization technique is based on a combination of the method of feasible directions and the conjugate gradient method. A realistic design problem is formulated to maximize the propeller performance in terms of the distribution of thickness, camber, pitch and solidity along the blade, subject to simple structural and power constraints. The application of this method for a general aviation propeller is illustrated by a computed example. The results presented are considered preliminary and are intended only to illustrate this technique. A discussion of the present aerodynamic model for the blade elements is included, and extensions to more elaborate aerodynamic models are considered. (Author)

A76-31971 A method for predicting the drag of airfoils H L Chevalier (Texas A & M University, College Station, Tex.) Society of Automotive Engineers, Business Aircraft Meeting, Wichita, Kan., Apr. 6-9, 1976, Paper 760-479

A new approach is proposed to introduce a change in the physical model of the vorticity on the surface of airfoils which will provide a technique for determining the drag of an infinite span wing throughout the angle of attack range. This approach could provide a method for developing and/or selecting airfoils with lower drag at higher angles of attack to obtain better aircraft maneuver and climb capabilities and can be used to extrapolate small scale wind tunnel tests results accurately to higher Reynolds numbers. In addition, further studies could provide insight into the development of boundary layer control techniques for reducing wing drag. (Author)

A76-31972 Lightning protection of aircraft fuel caps J Shaw (Shaw Aero Devices, Inc., East Hampton, N.Y.) Society of Automotive Engineers, Business Aircraft Meeting, Wichita, Kan., Apr. 6-9, 1976, Paper 760-486 8 p. 8 refs

An inspection of current practices in aircraft industries reveals that in many cases the lightning safety problem is considered to be solved by installing a lightning proof aircraft filler cap, whereas the installation of a lightning proof adapter (receptacle that the cap fits into) is disregarded. The rules which should be followed to insure lightning safe installation are outlined, and it is pointed out that the use of a lightning safety cap without the adapter may lead to expensive redesign or retrofit of the aircraft in its production stage.

A76-31973 High altitude applications of the Gates Learjet R D Neal (Gates Learjet Corp., Denver, Colo.) Society of Automotive Engineers, Business Aircraft Meeting, Wichita, Kan., Apr. 6-9, 1976, Paper 760-491 11 p. 8 refs

Two existing applications at altitudes of 50,000 feet of the Gates Learjet are described. In one application, the airplane was

equipped (for space exploration purposes) with a 12 inch diameter infrared telescope. The second application is the installation of single- and dual-camera pods for use in aerial mapping missions. The single camera pod configuration could be converted to the original configuration, whereas the dual camera pod configuration was a permanent modification (due to the necessity of structural changes in the basic fuselage pressure vessel). The development of a high altitude research vehicle (HARV) from the original Learjet configuration is described which resulted in an airplane that should be capable of providing smooth flight at 60,000 feet.

A76-31974 GA/W/-2 Airfoil Flight Test Evaluation S Weislogel, G M Gregorek, and M J Hoffmann (Ohio State University, Columbus, Ohio) Society of Automotive Engineers, Business Aircraft Meeting, Wichita, Kan , Apr 6-9, 1976, Paper 760-492 12 p 5 refs

A brief description of the GA/W/-2 Airfoil Flight Test Evaluation Program is presented Employing an economical approach to airfoil flight testing, the GA{W}-2 airfoil was 'gloved' on the existing wing structure of a Beech Model C23 'Sundowner' Program objectives, experimental approach, research aircraft modification and instrumentation, data acquisition and processing, flight operations, and preliminary flight test results are described (Author)

A76-31975 Realistic evaluation of landing gear shimmy stabilization by test and analysis R J Black (Bendix Corp., Energy Controls Div., South Bend, Ind.) Society of Automotive Engineers, Business Aircraft Meeting, Wichita, Kan., Apr. 6-9, 1976, Paper 760-496 17 p 23 refs Contract No F33657-70-C-0800

An experimental and analytical program for prediction of airplane landing gear shimmy stability is outlined. The method makes use of laboratory shimmy tests on a flywheel which simulates the runway and a landing gear mounting structure which simulates the fuselage. Differences between the laboratory tests and airplane tests are detailed. Because of the latter differences, the prediction of airplane results is carried out by an experimentally verified analysis rather than a direct application of the laboratory test results. The analytical model is outlined including the tire mechanics. Samples of correlation between analytical results and experimental results (laboratory and airplane) are given.

A76-31976 Preliminary flight-test results of an advanced technology light twin-engine airplane /ATLIT/ B J Holmes, D L Kohlman (Kansas, University, Lawrence, Kan), and H L Crane (NASA, Langley Research Center, Hampton, Va) Society of Automotive Engineers, Business Aircraft Meeting, Wichita, Kan, Apr 6-9, 1976, Paper 760-497 10 p 9 refs

The present status and flight-test results are presented for the ATLIT airplane. The ATLIT is a Piper PA-34 Seneca I modified by the installation of new wings incorporating the GA(W)-1 (Whitcomb) airfoil, reduced wing area, roll-control spoilers, and full-span Fowler flaps. Flight-test results on stall and spoiler roll characteristics show good agreement with wind-tunnel data. Maximum power-off lift coefficients are greater than 3.0 with flaps deflected 37 deg. With flaps down, spoiler deflections can produce roll helix angles in excess of 0.11 rad. Flight testing is planned to document climb and cruise performance, and supercritical propeller performance and noise characteristics. The airplane is scheduled for testing in the NASA-Langley Research Center Full-Scale Tunnel. (Author)

A76-32149 # Mechanical function and engine performance for the Army UH-1 H helicopter in the AIDAPS program. L Plog and D Gann (U S Army, Aviation Systems Command, St Louis, Mo) In Symposium on Nondestructive Evaluation, 10th, San Antonio, Tex , April 23-25, 1975, Proceedings
San Antonio, Tex , Southwest Research Institute, 1975, p 303-309

An automatic inspection, diagnostic, and prognostic system (AIDAPS) which will automatically detect mechanical malfunctions and warn of impending failures is under development for the Army fleet of helicopters. The Phase I design and testing of AIDAPS

systems for use with the UH-1H helicopter is discussed. The diagnostic parameters serving as input for the automatic evaluation of the major systems and subystems are outlined. Two alternative systems are under consideration. Both incorporate identical data acquisition units and flight line data analyzers. One system includes a computer memory unit capable of real time inspection and diagnosis and inflight warning of systems failures, in the alternative system the computer memory unit is replaced by a digital data recorder. Data acquisition hardware has been installed and successfully tested in four aircraft.

A76-32165 # Fracture analyses involving materials of aircraft construction (Bruchanalysen an Werkstoffen des Flugzeugbaus)

M Bohmer and G Ziegler (Deutsche Forschungs- und Versuchs anstalt fur Luft- und Raumfahrt, Institut fur Werkstoff-Forschung, Porz-Wahn, West Germany) Deutscher Verband fur Materialprufung, Sitzung des Arbeitskreises Rastermikroskopie, 7th, Wurzburg, West Germany, Apr 2, 1975, Paper 12 p in German

The conduction of investigations involving aircraft components after aircraft accidents is considered. Such investigations are undertaken to determine the cause of the accident. With the aid of an example, it is illustrated that in such an investigation certain difficulties have to be overcome in order to separate the actual cause of fracture from secondary effects appearing as a result of the accident. Attention is also given to the effect of the crack propagation rate on the appearance of the fractured metal in the case of fatigue stresses and the effect of the microstructure on the appearance of the fracture in the event of forced rupture.

A76-32167 Fluid-dynamic lift Practical information on aerodynamic and hydrodynamic lift S F Hoerner and H V Borst (Wayne, Henry V Borst and Associates, Wayne, Pa) Research supported by the U S Navy, Contracts No N00014-73-C-0354, No N00014-67-C-0357 Brick Town, N J , Hoerner Fluid Dynamics, 1975 505 p 2276 refs \$28

The book represents an extensive compendium of basic engi neering data on the aerodynamic and hydrodynamic characteristics of the chief types of lifting surfaces used in aircraft and marine craft The topics covered include the mechanism of circulation in foil sections, the lift of straight wings, maximum lift and stalling, lift characteristics of plain, split, and slotted trailing edge flaps, performance of wings with flaps including power-assisted wing flaps, influence of leading-edge flaps on lift, boundary layer control near the leading edge, the influence of compressibility at subsonic speeds, the characteristics of lifting hydrofoils and hydrofoil boats, the characteristics of airplane control surfaces, roll control of airplanes, longitudinal stability characteristics of airplanes, lift of propulsion systems, directional characteristics of airplanes, lift and stalling of swept wings, characteristics of delta wings, lift characteristics of streamline bodies and blunt bodies, and lift of airplane configurations. The mathematics is kept to a minimum, and the text aims at explaining clearly the physical principles in an integrated and complete manner PTH

A76-32198 An alternative to the helicopter D Videan Shell Aviation News, no 434, 1976, p 22-25

The sidewall hovercraft is considered as an alternative to the helicopter in transporting personnel from a shore base to an offshore structure at a distance of 50 nautical miles or less. The work capacity and cost of an HM2 hovercraft are compared with those of current helicopter types. Average hourly cost assuming a per annum norm of 1,000 hours of use is less than half of the most economical helicopter considered, the Bell 212.

C K D

A76-32199 Energy management - An operational outline T G Foxworth (Pan American World Airways, Inc., New York, N Y) Shell Aviation News, no. 434, 1976, p. 26, 27

An application of the Sperry Digital Avionics System in the NASA flight research Convair 990 is described. The advanced autopilot/flight director system is based on a Sperry 1819A digital

computer The computer is referenced to a landing point and recomputes the trajectory three times per second, taking into account potential energy (height), kinetic energy (speed), aircraft configuration, wind, and other factors. A throttles closed to-touchdown landing technique has been demonstrated which results in a 60% fuel saving and a 40% time saving over a conventional approach. A similar system will be used to guide the Space Shuttle in its no-fuel final approach.

A76-32200 * Energy management - The delayed flap approach J S Bull (NASA, Ames Research Center, Moffett Field, Calif) Shell Aviation News, no 434, 1976, p 28, 29

Flight test evaluation of a Delayed Flap approach procedure intended to provide reductions in noise and fuel consumption is underway using the NASA CV-990 test aircraft. Approach is initiated at a high airspeed (240 kt) and in a drag configuration that allows for low thrust. The aircraft is flown along the conventional ILS glide slope. A Fast/Slow message display signals the pilot when to extend approach flaps, landing gear, and land flaps. Implementation of the procedure in commercial service may require the addition of a DME navigation and collocated with the ILS glide slope transmitter. The Delayed Flap approach saves 250 ib of fuel over the Reduced Flap approach, with a 95 EPNdB noise contour only 43% as large. C.K.D.

A76-32230

Pilot error and other accident enabling factors
R B Stone (Air Line Pilots Association, Washington, D.C.) In
Human factors in our expanding technology, Proceedings of the
Nineteenth Annual Meeting, Dallas, Tex, October 14-16, 1975
Santa Monica, Calif, Human Factors Society,
1975, p. 92-94

In view of the pattern of ascribing airline accidents predominantly to pilot error, the Airline Pilot Association has asked that engineering professionals provide a new more objective assessment of the human operator in the complex man-machine environment Optimization of the decision maker's task has been poorly formed, pressures within the system degrade the level of safety Specific and general weaknesses of the airline cockpit environment are discussed, along with such issues as institutional vs command decision, positive training vs negative operation, expected vs accepted behavior, and carelessness vs boredom

A76-32231 'Controlled flight into terrain /CFIT/' accidents - System-induced errors E L Wiener (Miami, University, Coral Gables, Fla) In Human factors in our expanding technology, Proceedings of the Nineteenth Annual Meeting, Dallas, Tex , October 14-16, 1975 Santa Monica, Calif , Human Factors Society, 1975, p 95-101 11 refs

A review of the major recent accidents in U.S. commercial aviation leads to the conclusions that CFIT accidents are the result of system-induced errors and that these errors will continue to be generated by the unwieldy system of vehicles, traffic control, and terminals that have emerged as a result of component wise design Since rebuilding the system from the very foundations will never be possible, it must be improved the same way it was created, by patchwork. The need for help from human factors specialists in this patchwork is indicated.

A76-32232 Video tape presentation of passenger safety information D A Johnson (Douglas Aircraft Co, Long Beach, Calif), D I Blom (Tennessee, University, Martin, Tenn), and H B Altman (Interaction Co, Anaheim, Calif) In Human factors in our expanding technology, Proceedings of the Nineteenth Annual Meeting, Dallas, Tex, October 14-16, 1975 Santa Monica, Calif, Human Factors Society, 1975, p. 102-107, 8 refs

On the assumption that passenger safety can be increased by providing the passengers with information they need to know, nonverbal video tape information was presented to potential aircraft passengers (subjects) on what they should do, what they should not do, and the reason why Each of seven groups consisting of 10 men and 10 women from rural and urban areas saw information on 11 content areas (luggage storage, seat belt use, etc.) but in different

combinations of 'Do', 'Don't', and 'Why' For each content area, one group that did not receive information was treated as a control group Significant improvements in knowledge of appropriate safetyrelated behaviors resulted from the experiment. Do and Don't information combined was found to be more beneficial than either Do or Don't information alone

A76-32337 On the response of an aircraft to random gust M Kobayakawa (Kyoto University, Kyoto, Japan) In International Symposium on Space Technology and Science, 11th, Tokyo, Japan, June 30-July 4, 1975, Proceedings AGNE Publishing, Inc., 1975, p. 253-258

A general theory of the random gust response of an aircraft is developed on the basis of a modified panel method. The aircraft is divided into panels only for the gust force terms, while other force terms in the equations of motion are expressed by total derivatives The equations of motion are linearized and divided into two parts, i.e., longitudinal equations and lateral equations. The external forces are expressed by the sum of convolution integrals. The method allows the investigation of the effect of interference on the interactive response among different parts (wing, tail and fuselage) of the aircraft

A76-32396 Model matching method for flight control and stimulation H Ohta (Nagoya University, Nagoya, Japan) In International Symposium on Space Technology and Science, 11th, Tokyo, Japan, June 30-July 4, 1975, Proceedings Tokyo, AGNE Publishing, Inc., 1975, p. 691 696 9

The paper describes Curran's model matching algorithm for the design of stability augmentation systems. The model matching problem is to find a controller to apply to the plant so that the resulting compensated plant behaves, in an input-output sense, the same as the model. The algorithm is applied to desirable longitudinal handling quality designs and both pitch attitude and normal acceleration control laws are derived analytically. These control laws allow one to determine the effects of large changes of flight configurations on control gains. A numerical example involving a STOL aircraft is used to illustrate the efficiency of the method BJ

Supersonic flow past a slender delta wing An experimental investigation covering the incidence range from -5 to 50 deg I C Richards (Cranfield Institute of Technology, Cranfield, Beds, England) Aeronautical Quarterly, vol 27, May 1976, p 143-153 15 refs Research sponsored by the Ministry of Defence (Procurement Executive)

The flow past a delta wing of 70 deg sweep was studied at M = 2 45 by using surface pressure tubes, schlieren photography, vapor screening, and surface oil flow visualization, and the results were compared with characteristics predicted by thin-shock-layer theory The compression-surface pressure distributions were in very good agreement with half modified thin-shock-layer theory, even at low incidences where certain assumptions of the theory cannot be justified The thin-shock layer theory correctly predicts the trend of the shock-wave angle data but underestimates the magnitude of the shock angle by some 3 degrees. The correlation between leading-edge separation and the movement of attachment lines on the compression surface was not proven. The techniques employed all suggest that leading-edge separation occurs at very low incidences

A76-32545 The far field of high frequency convected singularities in sheared flows, with an application to jet-noise prediction. T F Balsa (GE Power Generation and Propulsion Laboratory, Schenectady, N Y) Journal of Fluid Mechanics, vol 74, Mar 23, 1976, p 193-208 25 refs Research supported by the U.S. Department of Transportation

Expressions are derived for the pressure fields of various high-frequency convected singularities immersed in a unidirectional sheared flow. These expressions include the simultaneous effects of fluid and source convection and refraction, they are combined to predict the far-field directivity of cold round jets. It is found that the agreement between experiment and the present theory is quite good at a source Strouhal number of unity, but that this agreement deteriorates as the source frequency is increased. The theoretical results show the explicit form of the 'refraction integral' and that convective amplification for the pressure of a quadrupole is increased by a certain factor over the classical results. Thus, acoustic/meanflow interaction not only implies refraction but also additional convective amplification due to fluid motion

Calculation of compressible turbulent boundary layers on straight-tapered swept wings P Bradshaw, K Unsworth (Imperial College of Science and Technology, London, England), and G A Mizner AIAA Journal, vol 14, Mar 1976, p 399, 400 15 refs Ministry of Defence Contract No AT/2037/0133

The paper describes the extension of an infinite-wing program to the case of a straight-tapered wing for calculating compressible flow with or without heat transfer. The heat transfer version of the boundary-layer calculation method of Bradshaw and Ferriss (1972) is programmed in Fortran language for straight-tapered wings. The tapered-wing version appears to be competitive with integral methods needing several spanwise stations. The program contains a large number of options for input, output, and physical effects, selected individually by choosing nonzero values of integer control parameters so that default operation is obtained with two essential control parameters and a row of blanks. Advantages of the program are discussed

A76-32596 Flow around wings with inclined lateral jets E Carafoli and M Neamtu (Institutul de Mecanica a Fluidelor si Constructii Aerospatiale, Bucharest, Rumania) Mechanics Research Communications, vol 3, no 3, 1976, p 163 168

The aerodynamic theory of the lateral jet sheet states that the sheet, which provides a significant lift augmentation, issuing spanwise from the extremities of the wing, behaves like a fluid wing which is deformed by the pressure differences acting between the upper and lower surface. In certain cases, the jet sheet has a definite geometrical shape and a negligible downstream deviation on a large portion of the slot vicinity and can be decomposed into elementary jets which preserve their slot outlet momentum magnitude and modify only their direction under the pressure differences. This paper calculates the spanwise flow distribution of a 15 aspect ratio rectangular wing with lateral jet, the wing inclined under a certain angle to the horizontal. It is shown that a small but supplementary lift augmenta. tion is obtained due to the effect of inclining the wing

Initial flight test phase of the Dassault-Breguet/Dornier Alpha-Jet D Thomas (Dornier GmbH, Friedrichshafen, West Germany) (Society of Experimental Test Pilots, Annual Symposium, 7th, Munich, West Germany, Apr 24-26, 1975) Society of Experimental Test Pilots, Technical Review, vol. 13, no. 1, 1976, p 5-13

The paper reviews planning and progress of the initial flight test phase of the Alpha-Jet Flight tests were planned for four test aircraft (1) aircraft one was used to open the basic flight envelope and, then, to evaluate handling characteristics, (2) aircraft two was first used for performances testing, now used for weapon trials, (3) aircraft three corresponds to the German ground attack version and is now used for weapon structural and systems testing, and (4) aircraft four corresponds to the French trainer version and is used for systems testing. Onboard data are recorded on tape, photo paper and crash recorders and every flight is monitored from the ground using quick-look indications, a 75 parameter printer and real time plotting Various flight test results are discussed including those involving evolution of the wing camber, aileron effectiveness in the transonic region and elevator control characteristics

Advanced fighter control techniques W H Brinks (McDonnell Aircraft Co , St Louis, Mo) (Society of Experimental Test Pilots, Annual Symposium, 7th, Munich, West Germany, Apr 24-26, 1975) Society of Experimental Test Pilots, Technical Review, vol. 13, no. 1, 1976, p. 14-22

A thirty flight investigation of the Control Configured Vehicle (CCV) design concept was conducted by McDonnell Aircraft Company (MCAIR) between June and August 1974 The test-bed aircraft was a Fly-By-Wire F-4, modified with two shoulder mounted, fully-powered canard surfaces and wing leading edge slats. The thirty flight program consisted of performance and handling qualities investigations from near one hundred knots calibrated airspeed at 5000 feet to approximately 1.8 Mach at 35,000 feet. Longitudinal static margins varied from a positive 3% to a negative 7.5% Mean Aerodynamic Chord (MAC) with constant control system gains. The trim lift effect of the canard installation improved approach speeds by approximately seven knots and improved subsonic load factor available at constant angle of attack by approximately 25% Short period disturbance resulted in dead beat damping in all axes for all configurations and static margins in the test envelope Smooth aircraft response and lack of uncommanded motion at these conditions further indicated that CCV technology has significant operational potential

A76-32628 B-1 flight test progress report E Sturmthal (USAF, Washington, D.C.) Society of Experimental Test Pilots, Technical Review, vol. 13, no. 1, 1976, p. 23 26

The paper reviews progress in phase one (that prior to production decision) of the B-1 flight test program. The plan for early flight test and envelope expansion was of a strongly operational nature conditioned by the requirement to demonstrate the B-1's ability to satisfactorily perform its intended mission. The emphasis was put on the high-speed, low-altitude flight regime. Flight simulation aspects using the TIFS (total inflight simulator) are considered. Initial taxi tests - three runs scheduled to complete with a top speed of 50 knots - are described. The review goes up to flight test five with following tests concentrating on envelope expansion aimed at clearing the aircraft for initial operation at 85M at 500 ft.

A76-32629 Unusual pitch and structural mode testing of the B-1 T D Benefield (Rockwell International Corp , El Segundo, Calif) Society of Experimental Test Pilots, Technical Review, vol 13, no 1, 1976, p 27-29

Two fairly simple additions to the B-1 flight control and structural mode control systems have allowed an early determination of pitch response to simulated automatic control flight control system commands and bending vibration modes and damping. A pitch exciter was added to the pitch stability and control augmentation system to provide a means of obtaining aircraft response data to the simulated flight control system commands and an adjustable amplitude and frequency sine wave excitation system was added to the structural mode control system (whose objective is to reduce bending vibrations in the vertical and lateral axes).

A76-32630 Special problems in the flight testing of sailplanes G Waibel (Society of Experimental Test Pilots, Annual Symposium, 7th, Munich, West Germany, Apr 24-26, 1975) Society of Experimental Test Pilots, Technical Review, vol 13, no 1, 1976, p 30-36 6 refs

The special features of flight-testing sailplanes are enumerated (1) there is no engine onboard which makes one dependent on towing aircraft, (2) there is little space for test equipment, (3) there is often no weight allowance for test equipment, (4) money for expensive flights is scarce, and (5) there is often poor flying weather in testing, the cycle of take-off, flight and landing will be repeated several times at a moderate speed (75-150 km/h) and in all configurations Stability measurements will be made right at the start. It is urgent to determine controllable side and tail wind components during take-off and landing. Aerodynamic stability aspects are discussed with particular emphasis on the flutter of plastic sailplanes.

B. J.

A76-32631 Engine and jet induced effects of a lift plus lift-cruise V/STOL aircraft L Obermeier (Vereinigte Flugtechnische Werke-Fokker GmbH, Bremen, West Germany) (Society of Experi-

mental Test Pilots, Annual Symposium, 7th, Munich, West Germany, Apr 24-26, 1975) Society of Experimental Test Pilots, Technical Review, vol. 13, no. 1, 1976, p. 37-47

The paper considers the secondary forces generated by a propulsion system and their effect on aircraft stability, control and performance, with particular reference to experience with the VAK 191 B V/STOL aircraft. Hot gas recirculation is examined with attention focussed on the typical decay pattern of single exhaust jet impact with flow separating from the ground. Ground effect is considered, investigating its effect on liftoff and constant throttle landing. Jet induced downwash is discussed as is drag during outboard transition. Three engine-induced effects on stability and control are discussed, intake momentum drag, rolling moment due to sideslip and rolling moment due to lift engine gyroscopic coupling.

ВJ

A76-32632 The Boeing Compass Cope Program R L McPherson (Boeing Co., Seattle, Wash.) (Society of Experimental Test Pilots, Mini-Symposium, San Diego, Calif., Apr. 4-6, 1975.) Society of Experimental Test Pilots, Technical Review, vol. 13, no. 1, 1976, p. 48-55

The Boeing Compass Cope Program is an RPV system where the pilot remotely flies the vehicle from the command module using standard aircraft instruments and controls. A modified AN/TPW-2 microwave command and guidance system provides air vehicle position tracking and data transmit and receive functions when the command module pilot is controlling the vehicle. A Loss of Carrier Program will automatically take over control of the vehicle if the command and control link is interrupted for more than 1.5 seconds on the ground or 5.0 seconds during flight. The flight testing and operation of two RPVs - XOM 93A and YQM-94A - are discussed

ΒJ

A76-32633 The development testing of a short-haul airframe/powerplant combination, the VFW 614/M45H L Nielsen (Vereinigte Flugtechnische Werke-Fokker GmbH, Bremen, West Germany) and J Lewis (Rolls-Royce /1971/, Ltd., Derby, England) (Society of Experimental Test Pilots, Annual Symposium, 7th, Munich, West Germany, Apr 24-26, 1975) Society of Experimental Test Pilots, Technical Review, vol. 13, no. 1, 1976, p. 56-60

The paper describes development flight testing of the short haul VFW 614, with particular emphasis on the performance of the M45H turbofan engine. A general description of the aircraft is given, including dimensions, controls, flight system, auxiliary systems and cockpit. In the first flight test the elevator alleron and rudder were operated via spring tabs, which caused a complicated mathematical model and made it impossible to calculate the flutter freedom for the whole envelope of the aircraft in the time available. In the process of envelope extension, the following changes had to be made. (1) hydraulic boosted elevators, (2) elevator operated by geared tabs, and (3) changes of mass balance on rudder and ailerons. The design philosophy of the M45H engine was to minimize fuel consumption and noise and to ensure a long service life coupled with a modular construction which would enable units to be replaced very quickly

A76-32634 Hawker Siddeley Hawk T Mk 1 two-seat ground attack/trainer aircraft D M S Simpson (Hawker-Siddeley Aviation, Ltd., Dunsfold, England) (Society of Experimental Test Pilots, Annual Symposium, 7th, Munich, West Germany, Apr 24-26, 1975.) Society of Experimental Test Pilots, Technical Review, vol. 13, no. 1, 1976, p. 61-69

The paper details the flight progress of the Hawker Siddeley Hawk, describes the aircraft, its main systems and the Adour engine The Hawk T Mk 1 is a low wing monoplane of conventional layout powered by a single Rolls-Royce Turbomeca Adour Mk 151 turbofan engine. The various components and systems of the aircraft fuselage, wing, equipment, cockpits, ejector seats, flight controls, hydraulic systems, electrical system, fuel system and engine - are described. Particular attention is paid to the flight data recording system and the flutter test instrumentation. The three phases of the

flight test program are considered (1) initial flight testing with handling and qualitative assessment up to 400 kts IAS and 0.8 IMN combination, (2) qualitative handling shake-down following installation of comprehensive instrumentation system, and (3) flutter clearance to limiting IAS and Mach number coincidental with handling assessment throughout flight envelope and optimization of wing configuration for low and high speed handling at all altitudes.

A76-32649 Civil transport technology up to 2000 - NASA believes fuel consumption is the major consideration J P Geddes Interavia, vol. 31, May 1976, p. 419-421

The recommendations of a NASA task force formed to establish goals in a comprehensive program for developing fuel conservation technology for the civil air transport industry are compared with typical industry views of the developments that are feasible in the near future. A 9-year research program for an advanced turboprop. engine cruising at Mach 0.8 at 9,500 m has been suggested, together with improved engine components for existing engines such as the JT8D, JT9D, and CF6, including mechanical mixers to mix the core and duct stream before discharge through a common nozzle. clearance control to improve compressor and turbine efficiency, and improved blade shapes. Four possible aerodynamic approaches to fuel consumption were selected for future study drag clean up, improved aerodynamic design, laminar flow control, and the use of small vertical endiplates on wing-tips to augment thrust. Work in these areas would be divided between an Energy Efficient Transport program and a separate Laminar Flow Control program. A greatly accelerated effort in the development of composite structures is urged The total cost of the proposed programs is \$670 million, a fuel savings of 79% over a fleet incorporating current advanced technology is predicted for a fleet resulting from the suggested program in the year 2005

A76-32650 The design and development of a military combat aircraft. II - Sizing the aircraft B R A Burns (British Aircraft Corp., Ltd., Preston, Lancs, England) *Interavia*, vol. 31, May 1976, p. 448-450

The sizing of a military combat aircraft to meet mission requirements and minimize takeoff weight is discussed. The effects of design requirements and configuration features on the airframe, powerplant, and fuel weight fractions are considered. Attention is given to the tradeoff between fuel economy and the thrust/weight ratio in engine design and the advantages and disadvantages of external fuel carriage. The importance of achieving aerodynamic and structural efficiency and preventing weight and drag growth as the design progresses is stressed.

A76-32651 Design of an advanced composites alleron for commercial aircraft A M James and R L Vaughn (Lockheed-California Co , Burbank, Calif.) Composites, vol 7, Apr 1976, p 73.80

A detail design of a composite aileron suitable for long-term service on transport aircraft has been developed. The design incorporates honeycomb sandwich covers with three interior ribs, two closure ribs, and a front and rear spar. The design combines graphite/epoxy, Kevlar 49/epoxy and hybrids of graphite and Kevlar 49. A weight saving of 28% is predicted with a cost saving of 20% based on a production run of 200 aircraft. The integrity of the design has been checked by analysis and from the results of static tests on two structural components.

A76-32655 The use of carbon fibre-reinforced plastics in the construction of wings for testing in wind tunnels D I T P Llewelyn-Davies (Royal Aircraft Establishment, Bedford, England) Composites, vol 7, Apr 1976, p 100-106

The methods developed for the manufacture of wings from cold setting carbon fiber-reinforced plastics (cfrp) are described. On one particular aerodynamic design, wings were made from steel, glass reinforced plastics (grp) and cfrp and the relative behavior of these wings under load was obtained. In addition it has been shown that it

is possible to produce moulded wings in cfrp to high dimensional accuracy (Author)

A76-32849 * # Aeroelastic stability of trimmed helicopter blades in forward flight P Friedmann and J Shamie (California, University, Los Angeles, Calif) European Rotorcraft and Powered Lift Aircraft Forum, 1st, University of Southampton, Southampton, England, Sept 22-24, 1975, Paper 30 p 14 refs Army-supported research, Grant No NGR-05-007-414

Equations for moderately large amplitude coupled flap lag motion of a torsionally rigid hingeless elastic helicopter blade in forward flight are derived. Quasi-steady aerodynamic loads are considered and the effects of reversed flow are included. By using Galerkin's method the spatial dependence of the problem is eliminated and the equations are linearized about a time dependent equilibrium position determined from the trimmed equilibrium position of the rotor in forward flight. In the first trim procedure the rotor is maintained at a fixed value of thrust coefficient with forward flight and horizontal and vertical force equilibrium is satisfied in addition to maintaining zero pitch and roll moments. The second trim procedure maintains only zero pitch and roll moment simulating conditions under which a rotor would be tested in the wind tunnel (Author).

A76-32869 # Random vibrations of a cylindrical shell due to an excitation with uniformly varying frequency E Czogala (Slask, Politechnika, Gliwice, Poland) Académie Polonaise des Sciences, Bulletin, Série des Sciences Techniques, vol. 24, no. 2, 1976, p. 71 (105)-78 (112) 6 refs

An analysis was performed on the forced vibrations of elastic closed cylindrical shells of finite length loaded axisymmetrically by unsteady homogeneous random fields which may be due to the action of the pressure of a far acoustic field with uniformly time varying frequency. A combined Taylor series and asymptotic series approach was used to obtain variances of unsteady responses of shell displacements and it was found that maxima of displacement variances occur within certain time intervals.

A76-33022 # The dynamics of aircraft spin (Dinamika shtopora samoleta) M G Kotik Moscow, Izdatel'stvo Mashinostroenie, 1976 328 p 76 refs In Russian

The conditions and characteristics of spin initiation in an aircraft are examined. The moments and forces acting on an aircraft in spin and the classification of spin regimes are discussed. The characteristics and methods of investigation of spin in contemporary aircraft are described. Analytical methods of calculating the trajectory parameters of an aircraft in spin are presented together with a comparison of the results of theoretical modeling with flight tests. The mechanics of motion of an aircraft at high angles of attack and piloting techniques for spin recovery are outlined.

A76-33100 System complexity - Its conception and measurement in the design of engineering systems D Sahal (Portland State University, Portland, Ore) *IEEE Transactions on Systems, Man, and Cybernetics*, vol SMC-6, June 1976, p 440-445 34 refs

This paper presents a theory of system complexity and its illustrative application to changes in the aircraft designs. The proposed framework permits not only the measurement but also the segregation of complexity into various components those pertaining to organized, unorganized, short-term and long-term aspects of any given system's behavior. The formulation permits grouping of variables on a priori grounds, thereby alleviating the problem posed by a large number of variables in systems analysis. The formulation is capable of circumventing the problem of nonstationarity in the application of the tools of information theory. The long-run redundancy of the phenomena underlying the changes in aircraft designs is estimated in the range of 48 to 60%. The corresponding estimate in the state of short-run is in the range of 72 to 98%. The latter is concluded to be solely due to the 'unorganized' aspects of the evolutionary process.

A76-33116 # Experimental determination of improved aerodynamic characteristics utilizing biplane wing configurations E C Olson (Cessna Aircraft Co , Wichita, Kan) and B P Selberg (Missouri, University, Rolla, Mo) *Journal of Aircraft*, vol 13, Apr 1976, p 256-261 11 refs

Improving the aerodynamic characteristics of an aircraft with respect to a higher lift coefficient C sub L, a lower drag coefficient C sub D, and a higher lift over drag L/D, as a function of angle of attack will make it more efficient, thus conserving energy and/or improving performance. Investigations were carried out to determine if the aerodynamic characteristics of biplane wings systems could be made more efficient for low subsonic speeds than those of a monoplane of comparable area and similar aspect ratio. A variable position three-dimensional biplane wing system and a fuselage that could be fitted with a monoplane wing or the variable position biplane wing system were tested in a subsonic wind tunnel at a Reynolds number of 8 7 x 10 to the 5/ft Lift, drag, and pitching moment characteristics of each configuration were investigated to determine the effect of changing the position of the biplane wings relative to each other and how the characteristics compared with those of the monoplane. All the biplane wings tested were shown to have a significant decrease in lift coefficient over a wide range of angles of attack and a significant increase in lift to drag ratio for a large range of lift conditions with respect to the monoplane

(Author)

A76-33117 * # Joint aircraft loading/structure response statistics of time to service crack initiation J-N Yang (Virginia Polytechnic Institute and State University, Blacksburg, Va) and W J Trapp (USAF, Metals and Ceramics Div, Wright-Patterson AFB, Ohio) Journal of Aircraft, vol 13, Apr 1976, p 270-278 22 refs Grant No NsG-1099

A reliability analysis for predicting the statistical distribution of time to fatigue crack initiation for aircraft structures in service is presented. The present analysis utilizes the statistical data of the specimen fatigue tests, the full-scale structure tests, and the statistical dispersion of aircraft service loads. The statistical distribution of the time to fatigue crack initiation of the full-scale structure under laboratory loading spectrum is assumed to be Weibull. The service loads for gust turbulences are modeled as Poisson processes for transport-type aircraft, while the maneuver loads are modeled as compound Poisson processes for fighter and training aircraft. It is found that the statistical distribution of time to fatigue crack initiation for aircraft structures in service is not Weibull and that the prediction on the basis of the Weibull distribution is unconservative, in particular in the early service time.

(Author)

A76-33120 # 'Spilled' leading-edge vortex effects on dynamic stall characteristics L E Ericsson and J P Reding (Lockheed Missiles and Space Co, Inc., Sunnyvale, Calif.) Journal of Aircraft, vol. 13, Apr. 1976, p. 313-315, 16 refs

An analysis of the experimentally observed large effects of the 'spilled' leading-edge vortex on the dynamic stall characteristics of an airfoil describing large-amplitude oscillations around the quarter chord axis has shown that simple engineering analysis developed by Ericsson and Reding (1972, 1976) can be extended to include the 'spilled' vortex effects. The initial transient phase during which the separation point overshoots its quasi-steady position can be described by including the moving separation point effect and the subsequent transient phase during which the 'spilled' vortex travels from the leading edge to the trailing edge can be described by application of the concept of equivalence between the time-dependent two-dimensional 'spilled' leading edge vortex and the stationary three-dimensional leading edge vortex on sharp-edged slender delta usings

A76-33121 * # Inlets for high angles of attack B A Miller (NASA, Lewis Research Center, Cleveland, Ohio) Journal of Aircraft, vol 13, Apr 1976, p 319, 320 6 refs

Different inlet designs for high angle of attack STOL and VTOL applications were tested in a subsonic wind tunnel. Three removable

entry lips having contraction ratios of 1.30, 1.34 and 1.38 were tested with a single diffuser. The internal contour of each entry lip was an ellipse with a major to minor axis of 2.0. Each lip and diffuser assembly was tested to determine its tolerance to angle of attack, first with a conventional centerbody and then with an extended centerbody. Results indicate that a large improvement in separation angle (determined as a function of lip contraction ratio and inlet flow) was obtained for the extended centerbody for all contraction ratios. Improved inlet tolerance to angle of attack was obtained by reducing the adverse pressure gradient downstream of the throat

A76-33305 Singular perturbation methods for variational problems in aircraft flight A J Calise (Dynamics Research Corp., Wilmington, Mass.) IEEE Transactions on Automatic Control., vol. AC-21, June 1976, p. 345-353 15 refs. Contract. No F08635-72-C-0191

The solution of variational problems by singular perturbation methods is discussed. In addition to the benefits of order reduction, these methods also can serve as practical devices for treating the singularities arising in problems where the control appears linearly and/or in state-constrained control problems. Furthermore, approximate feedback solutions can be derived for problem formulations that currently result in a nonlinear two-point boundary value problem. To illustrate an application, a feedback solution for aircraft, three-dimensional minimum time turns is derived and discussed. Numerical results are presented for an F-106 and an F-4E aircraft. (Author)

A76-33361 The structure of jets from notched nozzles S S Pannu and N H Johannesen (Manchester, Victoria University, Manchester, England) Journal of Fluid Mechanics, vol 74, Apr 6, 1976. p 515-528

Notched nozzles such as those proposed for the Olympus 593 engine of the Concorde are obtained by cutting wedge-shaped notches in the originally conical nozzles. This paper presents results of a comprehensive study, using schlieren photography and pitottube pressure traverses, of the fluid mechanics of jets from a wide range of notched nozzles. It is shown that schlieren photographs give no clue to the most important feature of the flow mechanism, which is the persistence of the trailing vortices shed from the swept edges of the notches. A mathematical model is proposed to explain this phenomenon. The model replaces the transverse flow in any cross section by an incompressible two-dimensional potential flow due to four vortices of equal strength placed symmetrically with respect to the axis of the jet. The development of the jet with distance is represented by the time variation of the shape of the jet contour in the two-dimensional flow R.I

A76-33365 A note on transonic flow past a thin airfoil oscillating in a wind tunnel S D Savkar (General Electric Co., Schenectady, N Y) *Journal of Sound and Vibration*, vol. 46, May 22, 1976, p. 195 207 16 refs

The problem of a thin airfoil oscillating in a transonic flow duct is examined. Asymptotic solutions valid at high frequency are derived which suggest that the degree of interference from the tunnel walls is weaker than would be thought at first. More detailed calculations are then used to deduce the flutter characteristics of such airfoils. It is predicted that the airfoil will suffer a torsional mode instability for a range of parameters. (Author)

A76-33516 # Investigation of the stressed state of panels subjected to wide-band acoustic loads (Issledovanie naprizhennosti panelei pri shirokopolosnom akusticheskom nagruzhenii) L E Matokhniuk and lu M Golovanev Kosmicheskie Issledovaniia na Ukraine, no 6, 1975, p 46 50 In Russian

Acoustic emission (with a noise intensity of 170 to 180 db) constitutes roughly 1% of jet engine power. The influence of noise-induced resonance vibrations at frequencies ranging from 40 Hz to 10 kHz on the strength of aircraft panels was studied, using a single-rotor pneumatic siren to generate the noise. The stress-strain states of panels, measured in strong acoustic fields were analyzed,

showing that the size of the panel cells has little influence on the stresses generated by vibrations. Stresses can be reduced by 10 to 40% by placing insulating spacers between the sheet material and the underlying strengthening element. Damping coatings proved to reduce the stresses by factors of 4 to 5.

A76-33660 The technological case for a supersonic cruise aircraft E Ulsamer Air Force Magazine, vol 59, June 1976, p 34-39

Major results of feasibility studies for military supersonic cruise vehicles and advanced commercial supersonic transports (SSTs), carried out by NASA with the participation of major producers of airframes and propulsion systems as part of the SCAR (Advanced Supersonic Technology/Supersonic Cruise Aircraft Research) program, are presented. It is probable that fuel consumption in advanced designs could be reduced almost to the level of subsonic aircraft by use of aerodynamically efficient wing-body blending and advanced wing planforms such as the arrow wing Several means of improving low-speed lift, including the use of blown flaps and engines placed over the wing, appear promising. Powerplant programs supporting SCAR include the Pratt & Whitney MCE-112B and VSCE-502B and the G E Double bypass VCE (DBE) variable cycle engines, which rely on variable fans and burners and incorporate inverter valve systems for airflow control. Noise control in these research designs is accomplished by the dual-stream airflow concept Improved inlet stabilization techniques are under investigation Advanced composite materials technology and titanium fabrication techniques promise significant potential for weight reduction CKD

A76-33719 # Unsteady hypersonic flow over delta wings with detached shock waves W H Hui and H T Hemdan (Waterloo, University, Waterloo, Ontario, Canada) AIAA Journal, vol. 14, Apr. 1976, p. 505-511 14 refs. Research supported by the National Research Council of Canada

The problem of pitching oscillating slender delta wings with detached shock waves in hypersonic flow is studied using Messiter's thin shock-layer theory. The amplitude of oscillation is assumed small and a perturbation method is employed. Closed-form simple formulas are obtained for the unsteady pressure field and for the aerodynamic derivatives of the delta wings which are valid for general frequencies. It is found that within the thin shock-layer approximation, the slender delta wings with detached shock waves pitching in hypersonic stream are always stable dynamically. An accurate perturbation solution to Meissiter's functional differential equation, which is required in calculating the steady and unsteady flowfields, is also obtained.

A76-33725 # Airfoil response to an incompressible skewed gust of small spanwise wave-number R K Amiet (United Technologies Research Center, East Hartford, Conn.) AIAA Journal, vol. 14, Apr. 1976, p. 541, 542. 8 refs.

An approximate solution for the response function of an infinite-span airfoil in a three-dimensional gust convecting with freestream incompressible flow is derived from results on parallel compressible gusts and similitude studies. The gust wavefronts are assumed skewed relative to the airfoil leading edge. The solution is limited to small spanwise wave number. The approximate results are compared to numerical values and found satisfactorily close. This technique, supplementing the solution found for large wave numbers, makes it possible to cover the entire wave number range of interest.

A76-33745 # Hydrodynamic visualization study of various procedures for controlling separated flows (Etude par visualisations hydrodynamiques, de divers procedes de contrôle d'écoulements decolles) H Werle and M Gallon (ONERA, Châtillon-sous-Bagneux, Hauts-de Seine, France) La Recherche Aerospatiale, Mar Apr 1976, p 75-94 34 refs in French

The paper presents qualitative results, including a large number

of photographs of visualized flows, of some experiments conducted in a hydraulic test tunnel on the low-velocity flow past some simple airfoils employing various high-lift devices. The tests investigated means of avoiding or eliminating flow separation, procedures employing jet flaps for elongating the models, and schemes for organizing turbulent separations in order to generate extra lift. Some of the schemes studied included control of the boundary layer on a deflected flap by rotating the hinge, control by tangential blowing on the deflected flap (for a conventional airfoil and for a delta wing), flow past wings with lift augmented by a trailing-edge jet, flow past a semicircular wing and past a slender body with profiled nose lift augmented by jet flaps, and flow past various types of vortex generators attached to the wall or leading edge of the various profiles.

A76-33771 The assessment of noise, with particular reference to aircraft D W Robinson (Aeronautical Research Council, National Physical Laboratory, Teddington, Middx, England) Aeronautical Journal, vol 80, Apr 1976, p 147-160 46 refs

Steps leading from the physical assessment of noise to a subjective assessment of its impact on the human population in a given area are discussed in detail. The use of common measuring techniques and their utility as models of the human auditory system are considered Technical data (oscillograms and results of spectrum analysis) are processed to obtain subjective results. An on-going subjective measure representing the perceived strength of the sound in terms of loudness or noisiness can be obtained from the spectrum data by means of several different algorithms. A subjective characterization of a sound 'event' is then derived from the time history of the subjective measure. Individual events are assembled to provide an index of noise exposure over a period of time, and a summation of the noise exposure index over a given area is carried out to assess the global impact of noise on a population. Progress toward standardization of units, scales, and indices for assessing aircraft noise is discussed CKD'

A76-33772 Hawker Siddeley Hawk T Mk 1 two-seat ground attack/trainer aircraft D M S Simpson (Hawker Siddeley Aviation, Ltd., Kingston-on Thames, Surrey, England) Aeronautical Journal, vol. 80, Apr. 1976, p. 162-171

The major design characteristics of the Hawker-Siddeley Hawk T Mk 1 fighter trainer aircraft are described, and its flight test program is discussed in detail. The aircraft is a low wing monoplane of conventional layout powered by a single Rolls-Royce Turbomeca Adour Mk 151 turbofan engine. Six production aircraft have been used in the flight test program. Piezoelectric accelerometers with some signal conditioning circuiting built into the transducer base placed at the wingtips, tailplane tips, and fin tip were used to collect flutter test data. The conditioned signals passed to a digital encoding unit where they were time multiplexed, digitized, and formatted for recording on magnetic tape. The aircraft proved faster than predicted, and was eventually flutter cleared up to an estimated 1.1 True Mach number in a 30 deg dive from 40,000 ft. The aircraft stability was excellent, with exceptionally high spin resistance C.K.D.

A76-33778 On the parabolic method and the method of local linearization in transonic flow (Zur parabolischen Methode und zur lokalen Linearisierung bei schallnahen Stromungen) J T Heynatz (Gesellschaft fur angewandte Mathematik und Mechanik, Wissenschaftliche Jahrestagung, Gottingen, West Germany, Apr 1-5, 1975.) Acta Mechanica, vol 24, no 3-4, 1976, p 239-252 5 refs In German

The parabolic method and the method of local linearization are employed to discuss various solutions for the transonic supersonic and the transonic subsonic flow around profiles. In general, several methods for local linearization exist, the one using the first potential derivatives being the most favorable in all cases. In the case of supersonic flow this means a deviation from the usually preferred form of the transonic expansion fan. In the case of subsonic flow a satisfactory description of the upstream action of the profile results.

As examples, the rhombic profile, the Guderley profile and the parabolic arc profile are treated. The mathematical relations are supported by plausibility hints, and the possibility of improving the approximations by iteration is discussed. (Author)

A76-33795 * # A review of some tilt-rotor aeroelastic research at NASA-Langley R G Kvaternik (NASA, Langley Research Center, Aeroelasticity Branch, Hampton, Va) Journal of Aircraft, vol 13, May 1976, p 357-363 10 refs

An overview of an experimental and analytical research program conducted within the Aeroelasticity Branch of the NASA Langley Research Center for studying the aeroelastic and dynamic characteristics of tilt rotor VTOL aircraft is presented. Selected results from several joint NASA/contractor investigations of scaled models in the Langley transonic dynamics tunnel are shown and discussed with a view toward delineating various aspects of dynamic behavior peculiar to proprotor aircraft. Included are such items as proprotor/pylon stability, whirl flutter, gust response, and blade flapping. Theoretical predictions, based on analyses developed at Langley, are shown to be in agreement with the measured stability and response behavior.

(Author)

A76-33852 # Characteristics of turbulent wakes behind rotating rotor blades (Kharakteristiki turbulentnykh sledov za vrashchaiushchimisia lopastiami vintov) R Raj and J L Lumley Akademiia Nauk SSSR, Izvestiia, Mekhanika Zhidkosti i Gaza, Mar Apr 1976, p 51-59 8 refs In Russian

The characteristics of the decay of turbulence in axisymmetric wakes behind rotors are analyzed A flow model based on the discontinuity equations, the equations of averaged motion, and the Reynolds stress equations is proposed, and approximate solutions are obtained which define the radial and axial velocity profiles and their behavior in time. Some interesting conclusions concerning the influence of rotation on the characteristics of the deformation and decay of turbulence in rotor wakes are deduced from the analysis.

VI

A76-33854 # Law of cross sections for the three-dimensional boundary layer on a thin-section wing in hypersonic flow (Zakon poperechnykh sechenii dlia trekhmernogo pogranichnogo sloia na tonkom kryle v giperzvukovom potoke) G N Dudin and V la Neiland Akademiia Nauk SSSR, Izvestiia, Mekhanika Zhidkosti i Gaza, Mar -Apr 1976, p 75 84 6 refs In Russian

The hypersonic flow of a viscous gas past a delta wing is analyzed A characteristic feature of such flows is the low density of the gas in the boundary layer. It is shown that low density in the boundary layer can lead to the generation of high secondary-flow velocities in the direction of the wing span. For low-aspect-ratio wings, this phenomenon makes it possible to expand the solution in series of a small parameter, and to reduce the three-dimensional equations to two-dimensional ones. In any approximation, the equations depend on two variables, while a third variable (the longitudinal variable) appears as a parameter. The zeroth approximation may be treated as the formulation of a law of plane cross sections for the three-dimensional boundary layer.

V.P.

A76-33869 # Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow (Vizual'noe izluchenie prostranstvennoi kartiny techenia około treugol'nogo kryla v dozvukovom potoke) V M Bozhkov, A S Mozol'kov, and V I Shalaev Akademiia Nauk SSSR, Izvestiia, Mekhanika Zhidkosti i Gaza, Mar-Apr 1976, p 190-194 6 refs In Russian

Three visualization techniques were used in a wind tunnel study of the flow past delta-wing models of symmetrical profile with a rounded leading edge over a range of free-stream velocities from 1 to 90 m/sec. The techniques included local heating, high-speed photography, and tuft-grid surveys. The physical characteristics of the formation of the flow leading to separation and formation of vorticity are studied, and the dynamics of the flow at three wing chords is illustrated by sequences of photographs.

A76-33945 The design and development of a military combat aircraft III - Longitudinal stability and control B R A Burns (British Aircraft Corp., Ltd., Military Aircraft Div., Preston, Lancs, England) *Interavia*, vol. 31, June 1976, p. 553-556

Major considerations in designing a military combat aircraft for optimum handling qualities in terms of longitudinal stability and control are discussed. The reasons and palliatives for the common stability minimum at high subsonic speeds in low-altitude flight are considered. The relationship between stick forces and maneuver margin is described. The sizing and placement of the tailplane is examined in detail. Control approaches, including artificial stability, maneuver boost, maneuver demand, and autostabilization, are discussed.

A76-33946 Sukhoi's swing-wing Su-17/20 Fitter C G Panyalev *Interavia*, vol 31, June 1976, p 557, 558

The design and performance characteristics of the Sukhoi Su-17/20 Fitter C combat aircraft are discussed The aircraft is a swing wing modification of the swept-wing Fitter A design introduced in 1959 Placement of the pivot point at half-span permits an aspect ratio change of only 30 to 49, indicating that swing wing outer panels were incorporated primarily to improve landing and take off performance. The addition of leading-edge slats has significantly reduced landing speed over that of the Fitter A. The Lyulka AL 7-F1 engine of the earlier aircraft has been replaced by a Lyulka AL-21-F3 turbojet powerplant rated at 25,000 lb thrust. The Fitter C can function in battlefield interdiction, close air support, and air combat, and carries a built in armament of two 30 mm Nudelmann-Richter NR-30 cannons External loads include 100, 250, 500, or 1000 kg bombs, pod-housed unguided rockets, and guided missiles CKD

A76-34132 Aircraft crashworthiness, Proceedings of the Symposium, University of Cincinnati, Cincinnati, Ohio, October 6-8, 1975 Edited by K Saczalski (US Navy, Office of Naval Research, Arlington, Va), G T Singley, III (US Army, Air Mobility Research and Development Laboratory, Fort Eustis, Va), W D Pilkey (Virginia, University, Charlottesville, Va), and R L Huston (Cincinnati, University, Cincinnati, Ohio) Charlottesville, University Press of Virginia, 1975 710 p \$15

The papers deal with the need for crashworthy aircraft, significant developments in crashworthiness research, and the state of the art in aircraft crashworthiness design, testing, analysis, and development. Topics include a review of crashworthiness and biodynamic problems related to aircraft, techniques for investigating aircraft accidents, the validity of crashworthiness design concepts in general aviation, and the design of a crashworthy military helicopter Other papers consider regional biodynamic response to impact acceleration, general-aviation emergency water ditchings, crash injuries to the neck and spine, head-injury tolerance levels, mathematical modeling of head injuries, chest-injury simulations, the design and testing of restraint systems, and simulations of vehiclestructure crash response. Attention is also given to three-dimensional crash victim simulations, the development of technology for the design of crashworthy light aircraft, scale modeling in crash analysis, commercial airline crashworthiness, the stabilization of a ditched helicopter by inflatable airbags, and the development of crashworthy fuels and fuel systems

FGM

A76-34133 An overview of aircraft crashworthiness research and development N Perrone (U.S. Navy, Office of Naval Research, Arlington, Va.) In Aircraft crashworthiness, Proceedings of the Symposium, Cincinnati, Ohio, October 6-8, 1975

Charlottesville, University Press of Virginia, 1975, p

3-12 12 refs

Research into crashworthiness and biodynamics problems related to aircraft is reviewed. The origin of crash-injury research is outlined, and it is argued that the essence of the crashworthiness problem in potentially survivable aircraft accidents is to define what the design should be so that the highest probability of occupant

survival with minimal injury will exist without significant weight penalty. Occupant simultation techniques and human tolerance limitations are discussed, the use of protective systems in aircraft is noted, and the state of the art of occupant simulation models, human impact-tolerance determination, and determinations of aircraft structural response to severe impact is summarized. Fiscal trends in vehicle-crashworthiness and biomechanics research are described.

A76-34134 General investigation of accidents R R McMeekin (U.S. Armed Forces Institute of Pathology, Washington, D.C.) In Aircraft crashworthiness, Proceedings of the Symposium, Cincinnati, Ohio, October 6.8, 1975 Charlottes ville, University Press of Virginia, 1975, p. 13.28.52 refs

Techniques for investigation of aircraft accidents are described The multidisciplinary team approach to accident investigation is outlined, and the crashworthiness areas of the investigation generally covered by human factors are considered, with emphasis on injury patterns and injury tolerance. The four phases of an investigation are discussed, accurate evaluation of observations at the crash scene is stressed, and the documentation of injury patterns is examined Effects of preexisting injuries on interpretations of injury patterns and the sequence of events in a crash are considered. Ways are suggested for determining whether crash victims died from impact injuries or postcrash burns or drowning Information that can be extracted from correct diagnosis of head, extremity, vertebral, and internal injuries is summarized. Factors determining injury tolerance are identified, and design recommendations are made for reducing or even eliminating fatalities in crashes at speeds of less than 200 knots F G M

A76-34135 Crashworthiness observations in general aviation accident investigations - A statistical overview G J Walhout (National Transportation Safety Board, Washington, D C) In Aircraft crashworthiness, Proceedings of the Symposium, Cincinnati, Ohio, October 6-8, 1975 Charlottesville, University Press of Virginia, 1975, p. 29-41 13 refs

The validity of crashworthiness design concepts in general aviation is examined by analyzing U S general-aviation accident data for the period from 1964 to 1973. Percentages of fatal and serious injuries experienced in aerial-application and general-aviation accidents are calculated and compared. Similar comparisons are made for 'old generation' and 'new generation' aircraft of both types, and the effects of shoulder harnesses on injury rates is evaluated. It is shown that 'new generation' aerial-application aircraft have the lowest percentage of fatal injuries due to their better crashworthiness design. It is concluded that the combination of an 'island of safety' for the aircraft occupant, in the form of a crushproof structure, and adequately designed restraint appears to be the major factor in aircraft accident survivability.

A76-34136 General aviation crashworthiness G L - Thompson and J C Clark (Beech Aircraft Corp , Wichita, Kan) In Aircraft crashworthiness, Proceedings of the Symposium, Cincinnati, Ohio, October 6-8, 1975 Charlottesville, University Press of Virginia, 1975, p. 43-50

The current status of general-aviation crashworthiness is considered by examining the state of the art of design, analysis, computer modeling, testing, and materials Crashworthiness criteria are defined in terms of structural design and cabin environment, with specific reference to cabin integrity, seating and restraint, fuel systems, static and dynamic computer simulations, and cabin safety Prospective improvements noted include high-G seating, breakaway instrument panels, widening of the survivable envelope, and crash-activated fire-suppression systems. It is concluded that if all testing and design techniques are realized to their full potential, a design goal of a 25-G crashworthy aircraft may not be unreasonable. F.G.M.

A76-34137 Crashworthiness design features for advanced utility helicopters B L Carnell (United Technologies Corp., Sikorsky Aircraft Div., Stratford, Conn.) In Aircraft crash worthiness, Proceedings of the Symposium, Cincinnati, Ohio, October 6-8, 1975 Charlottesville, University Press of Virginia, 1975, p. 51-63

The YUH-60A advanced utility helicopter was designed on the basis of statistics of US Army utility helicopter accidents which occurred in the 1960s and has 40 specific design features to enhance its crash survivability by overcoming the 40 hazards found to be present in those accidents. The major crashworthiness features include a cabin superstructure that retains the engines and transmission at high-load factors, energy-absorbing landing gear, selfsealing fuel tanks and lines, an inertial crash switch that activates the fire extinguishing system, load-limiting seats, extra emergency exits on both sides, and a tail wheel that protects the tail rotor in high flare landings. The composite crash of an earlier type helicopter is described to illustrate the hazards found and the ways in which the present improvements overcome them. A cost effectiveness study for a fleet of 1000 YUH-60A helicopters operating an average of 900 hr per aircraft per year yields a very conservative estimate that in 10 yr of operation, 80 serious injuries will be prevented, 200 lives will be saved, and total cost savings of \$78 million will be realized FGM

A76-34138 Crashworthiness of the Boeing Vertol UTTAS R L Bainbridge, M J Reilly, and J E Gonsalves (Boeing Vertol Co , Philadelphia, Pa) In Aircraft crashworthiness, Proceedings of the Symposium, Cincinnati, Ohio, October 6-8, 1975

Charlottesville, University Press of Virginia, 1975, p 65-80

The paper presents an approach to integrating the crashworthiness requirements of the Utility Tactical Transport Aircraft System (UTTAS) helicopter during the development phase while producing a minimum effect on weight and cost. Problems which contribute to the hazardous nature of the crash environment in helicopters similar to UTTAS are discussed in terms of occupant injury causal factors and helicopter kinematics during a crash sequence. The crashworthiness design approach is based on the observation that the airframe structure is a good energy absorber and retains a protective shell under adverse crash conditions, this approach involves the specific tailoring of airframe structure coupled with crashworthy systems to meet the design objectives of minimum weight and cost Crashworthiness features described include the landing gear, seats, and postcrash fire-avoidance system. Crash load factors and airframe-structure energy absorbing characteristics are analyzed

A76-34140 Crashworthiness in emergency ditching of general aviation aircraft R G Snyder (Michigan, University, Ann Arbor, Mich) and H L Gibbons (Salt Lake City Health Department, Salt Lake City, Utah) In Aircraft crashworthiness, Proceedings of the Symposium, Cincinnati, Ohio, October 6-8, 1975

Charlottesville, University Press of Virginia, 1975, p 121-139 56 refs

Data on 306 general aviation emergency water ditching which occurred between 1964 and mid-1974 are analyzed to determine crashworthiness performance and occupant injury causation. An historical review of aircraft ditching is presented, the analytical methods are outlined, and several specific ditching incidents are described. The primary conclusions are that (1) ditching is a relatively safe emergency procedure with a high probability of occupant survival even under adverse conditions, (2) at least 50% of the fatalities were caused by drowning or exposure after a successful ditching and subsequent egress, (3) over 95% of the investigated ditchings were successfully conducted without impact or egress fatality, (4) fixed-gear aircraft are less successfully ditched than retractable-gear configurations, (5) occupants of high-wing multi-engine aircraft have a significantly lower chance of surviving a ditching than those of other configurations, (6) drowning, not

impact, is the major cause of fatalities in ditchings, and (7) emergency ditching in water appears to be a better alternative than forced landing off-airport under most circumstances

F G M

A76-34154 Development of design criteria for crashworthy armored aircrew seats S P Desjardins (Ultrasystems, Inc., Phoenix, Ariz) and G T Singley, III (U S Army, Air Mobility Research and Development Laboratory, Fort Eustis, Va) In Aircraft crashworthiness, Proceedings of the Symposium, Cincinnati, Ohio, October 6-8, 1975 Charlottesville, University Press of Virginia, 1975, p. 399-446 25 refs

A76-34156

Techniques for predicting vehicle structure crash impact response K J Saczalski (U S Navy, Office of Naval Research, Arlington, Va) and W D Pilkey (Virginia, University, Charlottesville, Va) In Aircraft crashworthiness, Proceedings of the Symposium, Cincinnati, Ohio, October 6-8, 1975

Charlottesville, University Press of Virginia, 1975, p 467 484 71 refs

Several critical problem areas are identified which inhibit the accurate, efficient, and economical simulation and prediction of vehicle-structure crash response. It is noted that while numerical/ analytical approaches offer the potential for conducting economical and efficient crash analysis and design synthesis in the early design stage, two critical areas inhibit accurate predictive capabilities (1) identification and understanding of structural collapse modes and failure mechanisms and (2) selection of appropriate material constitutive relations Difficulties associated with various inelastic constitutive relations employed in structural analyses are discussed, and past attempts at identifying collapse modes and mechanisms are reviewed. Present directions of research aimed at improving structural crash-response predictive capabilities and understanding as sociated collapse mechanisms are described, including scale model destructive testing, numerical prediction of likely failure modes, and the use of optimization and sensitivity-analysis techniques

A76-34157 * Simulation of aircraft crash and its validation E Alfaro Bou, R J Hayduk, R G Thomson, and V L Vaughan, Jr (NASA, Langley Research Center, Hampton, Va) In Aircraft crashworthiness, Proceedings of the Symposium, Cincinnati, Ohio, October 6-8, 1975 Charlottesville, University Press of Virginia, 1975, p 485-497 6 refs

A joint FAA/NASA program is discussed which is aimed at developing a reliable technology for the design of crashworthy light aircraft. This program encompasses the development of analytical methods, the definition of a survivable crash envelope, and the design of improved seat and restraint systems. A facility for full scale crash-simulation testing is described along with the test method and results of five full-scale crash tests of twin engine light aircraft. The major goals of the analytical portion of the program are outlined, including the development and validation of the analytical technique using simplified structural specimens that approximate aircraft components, as well as the mathematical modeling of the complete airframe and its subsequent dynamic analysis by substructuring and matrix reduction techniques.

A76-34158 Modeling and analysis techniques for vehicle crash simulation K C Park (Lockheed Structural Mechanics Laboratory, Palo Alto, Calif) In Aircraft crashworthiness, Proceedings of the Symposium, Cincinnati, Ohio, October 6-8, 1975. Charlottesville, University Press of Virginia, 1975, p 499 515 31 refs Research supported by the Lockheed Independent Research Program, Contract No N00014-74-C-0355

The prediction technique of collapse, which utilizes pseudostatistical information on the energy concentration pattern within a system, is proposed as an aid in finite-element modeling of vehicle structures with the minimum permissible degrees of freedom. With this technique, the total vehicle structure is categorized into linear elastic elements, nonlinear elastic or elastic-plastic elements, and failure elements. A general coupling technique for eliminating excessive degrees of freedom is introduced, and a method for identifying probable nonlinear regions of the vehicle structure under impact conditions is outlined along with specific reduction procedures for the excessive degrees of freedom. The accuracy of the proposed approach is evaluated, sources of possible errors are identified, and some features of implementing the approach are discussed in terms of its potential. Recent developments in improved time-integration methods and strategies are summarized.

A76-34159

Nonlinear finite element techniques for aircraft crash analysis H Armen, Jr, A Pifko, and H Levine (Grumman Aerospace Corp, Bethpage, NY) In Aircraft crashworthiness, Proceedings of the Symposium, Cincinnati, Ohio, October 6-8, 1975

Press of Virginia, 1975, p 517-548 76 refs

The paper describes the development and validation of advanced analytical techniques for the airframe design technology area of the joint FAA/NASA aviation crashworthiness program. Four separate aspects of the analytical program are discussed mathematical simulation, inelastic material behavior, strain-rate effects, and the treatment of dynamic time dependency. The finite-element simulation model is outlined, and procedures are proposed which attempt to develop rate dependent stress-strain laws heuristically. A direct time-integration scheme for integrating the equations of motion is considered together with its application to nonlinear incremental equations of motion. Some results are presented for a combined experimental/analytical program designed to verify the accuracy of the numerical techniques and to single out possible deficiencies in the analysis.

A76-34163 Crashworthiness and postcrash hazards from the airline flight attendant's point of view D R Mott (Association of Flight Attendants, Washington, D C) In Aircraft crashworthiness, Proceedings of the Symposium, Cincinnati, Ohio, October 6-8, 1975 Charlottesville, University Press of Virginia, 1975, p 625-647 13 refs

Several recent commercial airline accidents are reviewed to demonstrate that most of the fatalities in these crashes occurred because the occupants were not able to evacuate the aircraft Emphasis is placed on crewmember survivability, passenger reactions to the crash environment, passenger inattentiveness to pre-takeoff briefings, passenger information pamphlets, and smoke and fire hazards associated with egress from crashed aircraft Specific postcrash hazards that contributed to fatalities in eight commercial airline crashes are identified, and it is noted that the basic survival difficulties stemmed primarily from the lack of structural integrity of such components as galley inserts, bulkheads, and overhead panels located within aircraft cabins. A total of 24 recommended improvements are listed which have not been applied or initiated by commercial carriers and which would have improved survivability during and after impact FGM

A76-34164 Helicopter stabilization system R Sherman and R C DeHart (Southwest Research Institute, San Antonio, Tex) In Aircraft crashworthiness, Proceedings of the Symposium, Cincinnati, Ohio, October 6-8, 1975 Charlottesville, University Press of Virginia, 1975, p 649-667 Contract No N00014-70-C-0265

A test program is discussed which was undertaken to determine the feasibility of using inflatable airbags to stabilize a helicopter that has landed in water. For the tests, a dynamic model patterned after a 33,500-lb gross weight helicopter was constructed and drop tested. The calculations leading to the design of the model are outlined, and the test results are presented in photographs. Application of airbag stabilization to the actual aircraft is examined. It is concluded that the investigated helicopter or similar aircraft can be stabilized for considerable angles of roll by means of an inflatable airbag system.

FGM

A76-34165 Crashworthy fuel systems S H Robertson and T J Adamczyk (Robertson Research, Inc., Tempe, Ariz.) In Aircraft crashworthiness, Proceedings of the Symposium, Cincinnati, Ohio, October 6-8, 1975 Charlottesville, University Press of Virginia, 1975, p. 669-682, 22 refs

The state of the art in the development of crashworthy fuel systems is reviewed. The postcrash fire environment is described, early developments in the design of crashworthy fuel systems are discussed, and crashworthiness programs pursued by the U.S. Army are outlined. The standard fuel system used in the Army's UH-1D/H helicopter is compared with a crashworthy system, and accident data for aircraft with standard and crashworthy systems are contrasted. Design features of a crash-resistant fuel system are described, including the tear-resistant fuel tanks, self-sealing breakaway valves, frangible connections, and high-strength flexible hoses. It is noted that the knowledge gained in this research can be readily applied to the civilian aircraft industry.

A76-34166 Research and development of modified fuels for reduction of the postcrash fire hazard Jr. G. Horeff (FAA, Systems Research and Development Service, Washington, D.C.) In Aircraft crashworthiness, Proceedings of the Symposium, Cincinnati, Ohio, October 6-8, 1975 Charlottesville, University Press of Virginia, 1975, p. 683-694, 17 refs

The paper discusses the status of research being conducted to prevent fuel mist formation by means of fuel modification so that a coarse spray is created which will inhibit ignition and flame propagation, thereby decreasing the probability and severity of fire following a survivable accident Results are presented for a survey of impact-survivable accidents where modified fuel might have reduced the postcrash fire hazard. Tests of emulsified and gelled fuels are described along with evaluations of four candidate antimisting fuels. Demonstrations of the antimisting performance of modified fuel following a survivable crash are reported which were conducted in three actual full-scale crash tests of surplus military aircraft. Tests of modified fuel are also noted. The outlook for antimisting fuels is evaluated.

A76-34233 Toward more effective testing, Proceedings of the Sixth Annual Symposium, St. Louis, Mo., August 13-16, 1975 Symposium sponsored by the Society of Flight Test Engineers Lancaster, Calif., Society of Flight Test Engineers, 1975, 470 p.

Reports presented at the Sixth Annual Symposium of the Society of Flight Test Engineers are presented. Some of the topics covered include reliability and maintainability testing, joint development testing of the B-1, F-16 flight tests, helicopter displays, air cushion landing systems, RPV antiship missile simulators, manned air combat simulators, ground proximity warning system, climatic laboratory, stall/post-stall testing, catapult launches, spin recovery parachute deployment, runway certification, multi-DME and flight testing, photoanalysis, integrated data systems, and the Swedish Viggen SAAB fighter flight tests

RDV

A76-34234 Joint contractor - Air Force flight test programs C A Adolph (USAF, Flight Test Center, Edwards AFB, Calif) and R Abrams (Rockwell International Corp , Los Angeles, Calif) In Toward more effective testing, Proceedings of the Sixth Annual Symposium, St Louis, Mo , August 13-16, 1975

Lancaster, Calif, Society of Flight Test Engineers, 1975, p 1-10

A tendency of independent sequential test programs conducted by the contractor and by USAF test agencies to be fused into concurrent joint test programs is noted, and the conduct of the B 1 development test and evaluation program is reviewed as an illustrative example. Timing problems, handling of test data processing and test results, progress reports on test programs, and pretest planning and briefing are discussed. The combined joint concurrent test

program is discussed from the standpoints of engineering management, the role of the government test agency, the perspective of the contractor test agency, and the integration of the developmental and evaluation efforts. The basic objectives of joint concurrent programs are enhanced visibility, direction, and evaluation during early stages of test programs, and minimized duplication of effort.

R D V

A76-34235 The U S A F /Rockwell B-1 flight test program progress report - Relationship of test objectives to operational requirements R Abrams (Rockwell International Corp , Los Angeles, Calif) In Toward more effective testing, Proceedings of the Sixth Annual Symposium, St Louis, Mo , August 13-16, 1975 Lancaster, Calif , Society of Flight Test Engineers, 1975, p 11-27

A progress report on the four years of development and seven years of intensive studies of the B-1 project, culminating in the first fly-off (Dec 23, 1974), is presented. The three phases of the B-1 development test and evaluation (DT&E) flight test program are outlined. The unique fly-before-buy character of the DT&E program is stressed. Landmarks in the test program from roll-out (October 1974) to first maximum gross weight takeoff (May 1975) are listed and charted. Objectives of the phases of the flight test program (expanding the low-altitude high-speed flight envelope, capability of subsonic and supersonic operation, with conventional or nuclear payloads) are outlined, with emphasis on success-oriented and mission-oriented tests. The flight test program is moving ahead on schedule, and testing of 0.85 M and 500 ft is expected as scheduled in the near future.

A76-34236 The F-16 flight test program K G Timpson (General Dynamics Corp., Fort Worth, Tex.) In Toward more effective testing, Proceedings of the Sixth Annual Symposium, St Louis, Mo., August 13-16, 1975 Lancaster, Calif., Society of Flight Test Engineers, 1975, p. 29-43

Progress to date on the F-16 flight test program and a discussion of the planned program for the period ahead are presented. The discussion covers instrumentation, operations, management, analysis and planning, and coordination of the test and management agencies. Statistics on the YF-16 prototype flight tests, details on test planning and on the flight test program organization, data processing arrangements, the full scale development test program details, information on instrumentation and real-time monitoring of test processes and data, and progress in integrated planning are presented. A bar graph for the F-16 flight test schedule is included.

A76-34237 Reliability and maintainability testing of prototype aircraft R E Stubbs (USAF, Flight Test Center, Edwards AFB, Calif) In Toward more effective testing, Proceedings of the Sixth Annual Symposium, St Louis, Mo, August 13-16, 1975

Lancaster, Calif, Society of Flight Test Engineers, 1975, p 45-63 12 refs

Prototyping is a technique currently being used by the Department of Defense to verify operational suitability of a system concept and to reduce the potential risk in pursuing that system. Reliability and maintainability (R&M) testing of prototype aircraft has been discounted by some elements of the development community as a premature endeavor. Recent experiences with R&M testing of prototype aircraft show that if actual procurement of operational aircraft is to be pursued, then an R&M evaluation can make a very significant contribution to life cycle cost reduction. This report documents the techniques and results of reliability and maintainability testing of prototype aircraft at the Air Force Flight Test Center (AFFTC). It is concluded that reliability and maintainability must be an integral part of prototype testing to realize the full benefit of the prototype concept.

A76-34238 Status of the Air Cushion Landing System flight test program G C Hite (USAF, Wright-Patterson AFB, Ohio) In Toward more effective testing, Proceedings of the Sixth Annual Symposium, St Louis, Mo , August 13-16, 1975

Lancaster, Calif, Society of Flight Test Engineers, 1975, p. 65-87

The Air Cushion Landing System (ACLS) employs a toroidal trunk which replaces the conventional wheeled landing gear. The trunk is continually inflated with an onboard air source during taxi, takeoff and landing. This air flows through distributed nozzles on the bottom side of the trunk providing lubrication between the trunk and the ground. A majority of the air coming from the nozzles flows into the trunk center cavity. A cushion pressure, higher than atmospheric, is thus established which, acting over the cushion area, supports the aircraft. The system permits operation over varied surfaces and obstacles. The objective of the present flight test program is to demonstrate the ACLS application on a medium STOL transport aircraft. This paper includes a discussion of the construction, installation and operation of the Air Cushion Landing System, the test objectives and initial flight test results.

A76-34239

Antiship cruise missile threat simulation utilizing a RPV R J Gerrity and G Gevaert (Lear Siegler, Inc., Santa Monica, Calif.) In Toward more effective testing, Proceedings of the Sixth Annual Symposium, St Louis, Mo., August 13-16, 1975.

Lancaster, Calif., Society of Flight Test Engineers, 1975, p. 89-107

A digital/analog hybrid real time simulator system for simulating a cruise missile threat to ship targets in an open sea environment, in order to test antiship missile defense systems, is described, with testing equipment and test sequences. A TACAN guidance augmentation system (TGAS) is developed and flight-tested on a drone aircraft for RPV simulation of the attacking missile. The missile flight is executed with a surface or air launch beyond the horizon, and tracking of a programmed altitude/heading profile until a TACAN signal is intercepted. Two basic RPV profiles are specified for the drone a straight-in descent profile and a steep descent profile (the pre-descent portions of the profiles are identical). Automatic backup mode switching and redundant abort functions add to mission success and safety. Flight control hardware and simulator system hardware are described and illustrated.

A76-34240 Simulation - A flight test complement H
Passmore (McDonnell Aircraft Co, Laboratory and Flight Div, St
Louis, Mo) In Toward more effective testing, Proceedings of the
Sixth Annual Symposium, St Louis, Mo, August 13-16, 1975
Lancaster, Calif, Society of Flight Test Engineers, 1975, p. 109-133

In the development of the F-15 the simulator played an important role A major aspect of this role is as an adjunct to the flight test program. This paper gives a general description of a manned air combat simulator and its operation. The purpose, approach and general results of three preflight training programs are described. These include a pre-first flight program, a program conducted prior to the start of the structural loads flight test program, and a program conducted prior to the stall approach and high angle-of attack flight tests. Two special operations that utilized the flight simulator are the technique development simulation that preceded the Streak Eagle program, and a special data reduction scheme which permits playback of tracking radar and onboard data from flight tests. (Author)

A76-34241 Effect on pilot performance with refined helicopter displays F J Winter, Jr (USAF, Flight Dynamics Laboratory, Wright Patterson AFB, Ohio) In Toward more effective testing, Proceedings of the Sixth Annual Symposium, St Louis, Mo, August 13-16, 1975 Lancaster, Calif, Society of Flight Test Engineers, 1975, p. 135-157

A flight research effort has been established to evaluate recent developments of rotary wing instrument flight capability. These

developments center around vehicle controllability through advanced displays and stability augmentation systems. The configuration to be first evaluated was designed from the results documented by actual pilot performance during typical rotary wing IFR maneuvers. Several subject pilots flew designed profiles to establish in what areas improvements were required. Each pilot's performance was then computerized to create the mean and standard deviation values of pilot ability to perform prescribed tasks. The analysis of the data gathered determined in what areas pilot performance could most likely be improved through refined helicopter displays. (Author)

A76-34242 Ground proximity warning system testing J R Combley (Boeing Commercial Airplane Co., Seattle, Wash.) In Toward more effective testing, Proceedings of the Sixth Annual Symposium, St. Louis, Mo., August 13-16, 1975

Lancaster, Calif, Society of Flight Test Engineers, 1975, p. 159-178

The development and testing of a ground proximity warning system (GPWS) meeting FAA requirements for handling of large turbine-powered aircraft are reviewed. Development testing, certification tests, ground tests, flight tests, and system tolerances are covered. System hardware and instrumentation are described. Four modes trigger GPWS responses. (1) excessive sink rate close to terrain, (2) excessive closure rate close to terrain, (3) negative climb after takeoff, and (4) descending into terrain with gear up. A glide slope deviation mode, developed subsequently, has been incorporated into the FAA requirements. Visible and audible alarm annuncations are included in the system.

R. D. V.

A76-34243

The T&E simulator - A comparison with flight test results J M Rebel (U.S. Navy, Naval Air Test Center, Patuxent River, Md.) In Toward more effective testing, Proceedings of the Sixth Annual Symposium, St. Louis, Mo., August 13-16, 1975.

Lancaster, Calif., Society of Flight Test Engineers, 1975, p. 181-187

A recent trend has developed in the normal cycle of aircraft testing in that research and development (R&D) type simulators have been utilized for the test and evaluation (T&E) portion of testing. If successful, these T&E simulators could supplant a significant portion of the flight tests that are required for an aircraft development cycle. Specifically, during development of the F-14A airplane automatic carrier landing system, a T&E simulator was used in such a manner Comparison of the F-14A flight test data with results of the simulation has shown that the simulator was a valid model of the F-14A and the automatic landing system and successfully reduced the flight test effort normally required at a savings of time and money. (Author)

A76-34244 Environmental tests of the F-15 in the Air Force Climatic Laboratory J A Ford (USAF, Flight Test Center, Edwards AFB, Calif) In Toward more effective testing, Proceedings of the Sixth Annual Symposium, St Louis, Mo , August 13-16, 1975 Lancaster, Calif , Society of Flight Test Engineers, 1975, p. 189-205

A highly instrumented F-15 aircraft was evaluated under controlled environmental conditions. Test objectives were to identify aircraft and peculiar ground support equipment problems likely to occur in arctic and tropic regions of deployment. Testing consisted of operating engines and most subsystems of ambient temperatures from -65 to 85 F. The climatic laboratory provided time-shared use of computer facility to supplement the F-15 on-board instrumentation system. Cold start-up and subsystem operating characteristics were defined, and special procedures were developed for conducting safe and productive test flights in the natural arctic environment.

(Author)

A76-34245 High angle of attack flight tests of the F-15 D N Walker (McDonnell Aircraft Co , St Louis, Mo) In Toward more effective testing, Proceedings of the Sixth Annual Symposium, St Louis, Mo , August 13-16, 1975 Lancaster, Calif , Society of Flight Test Engineers, 1975, p 227-245

The evolution of operational tests from a flight test program designed to explore and document high-angle-of-attack flight characteristics of the F-15 is discussed, with detailed descriptions of the design and development of the spin recovery parachute system, pilot restraint system, and emergency hydraulic and electrical power systems. Test program variables and priority of investigation are explained. Stall characteristics, post-stall movements, stall maneuvers, and responses to aggravated and sustained flight control inputs are described. The cockpit instrumentation configuration is illustrated and test sequences are indicated.

A76-34246 YF-17 stall/post-stall testing O A Levi (Northrop Corp , Aircraft Div , Hawthorne, Calif) In Toward more effective testing, Proceedings of the Sixth Annual Symposium, St Louis, Mo , August 13-16, 1975 Lancaster, Calif , Society of Flight Test Engineers, 1975, p 247-266 5 refs

The prototype YF 17 flight test program included a stall/post-stall element whose broad objectives were expansion of the flight envelope as a prerequisite to air combat maneuvering (ACM) tests and evaluation of YF 17 departure resistance Schedule constraints dictated an accelerated one month program which conceivably could have resulted in imposition of arbitrary restrictions. This paper presents a description of preliminary laboratory tests, design and qualification of emergency systems, and the high angle of attack flight test program. A description of each test maneuver and results of the various tests are included. After having demonstrated resistance to departure, a series of operational type maneuvers was performed. These maneuvers are described and the resulting aircraft response is presented for comparison with the engineering test maneuvers.

(Author)

A76-34247 Stall/post-stall/spin avoidance tests of the YA-10 aircraft M O Schlegel and T A Martin (USAF, Flight Test Center, Edwards AFB, Ohio) In Toward more effective testing, Proceedings of the Sixth Annual Symposium, St. Louis, Mo., August 13 16, 1975

Lancaster, Calif., Society of Flight Test Engineers, 1975, p. 267-286

Stall/post-stall/spin avoidance flight tests were performed with a specially modified YA 10 prototype aircraft. The objectives of these tests were the verification of angle-of-attack limits and evaluation of out-of-control characteristics and recovery procedures. The tests were conducted in various phases of severity of control misapplications, as defined by MIL-S-83691. Approximately 150 departures with 60 spins were obtained during a total of over 600 stalls. All departures/spins required severely aggravated control misapplications of at least two seconds. A simple recovery procedure is described that is effective for all out-of control situations at any airspeed, aircraft configurations, or store loading.

A76-34249 Determination of minimum catapult launch speeds G E Clarke and A A Smith (U S Navy, Naval Air Test Center, Patuxent River, Md) In Toward more effective testing, Proceedings of the Sixth Annual Symposium, St Louis, Mo , August 13-16, 1975

Lancaster, Calif , Society of Flight Test Engineers, 1975, p. 305-318.

Navy carrier based aircraft are catapult launched to maximize combat effectiveness. To retain tactical flexibility of the aircraft carrier, the minimum aircraft launch speeds must be determined by flight testing. Factors which establish minimum launch airspeeds include minimum longitudinal acceleration of 0.04 G, maximum vertical sink off the bow of 20 feet, 8 knots excess airspeed above the lockpoint, and minimum speed for acceptable flying qualities Test programs explore headwind and crosswind conditions on the bow catapults and verify the acceptability of bow minimums on the waist catapults. The unique conditions of catapult launching have introduced several innovations to aircraft operation and design Included in these innovations are the tilt wing, oleo strut extensions, stored energy struts, nose-tail wheel ground gear, stick-straps, and full flap launches. Despite the sophistication of computer simulations, shipboard launch tests are still the basis for establishing catapult launch minimums and fleet launch bulletins (Author)

A76-34313 On the conception and measurement of tradeoff in engineering systems - A case study of the aircraft design process D Sahal (Portland State University, Portland, Ore) Technological Forecasting and Social Change, vol. 8, no. 4, 1976, p. 371-384, 18 refs

One of the most common forms of systems analysis is analysis of trade-off. Studies have been made of longitudinal trade-off, i.e., process of trade-off over time. An understanding of the process of trade off would seem to be a prerequisite to development of a theory of the evolution of complex systems. In the present study, an attempt is made in this direction. An illustrative case of aircraft design process is studied. The Pareto distribution is proposed as a relevant asymptotic model of the process of trade-off. The constantparameter (fixed-coefficient) assumption in the existing models of the evolution of complex systems is indicated to be a convenience that is not justified by the evidence. The thesis is advanced that in many cases forseeing a breakthrough in systems design and engineering is possible by means of analysis of residuals in a 'properly specified' dimensional analytic framework. More generally, it is suggested that evolution of complex systems is best understood in a dimensional analytic framework. Implications of the results for the actual systems design, R & D project assessment, and establishing engineering standards are noted

A76-34314 On the conception and measurement of technology - A case study of the aircraft design process D Sahal (Portland State University, Portland, Ore) *Technological Forecasting and Social Change*, vol. 8, no. 4, 1976, p. 385-399. 28 refs

This study is aimed at the development of a theory of the measurement of technology. The existing approaches to the measure ment of technological change, including the economic theory of quality change, are concluded to be inappropriate A statistical version of dimensional analytic theory is presented as an alternative approach and is applied to the illustrative case of aircraft A dimensional analytic framework is proposed as an alternative to the neoclassical economic conception of the production function A theory is proposed and substantiated, stating that once the basic configuration is established, the evolution of technological systems proceeds in small steps. The role of fundamental knowledge in the process of design appears to be relatively small, and fundamental shifts in individual production functions are far less frequent than is commonly believed. It is shown that a dimensional analytic approach transforms the characteristics of different systems to a 'common domain' that also makes comprehensive measurement of intertechnology change a possibility

A76-34481 Determination of aerodynamic forces for aeroelastic analysis of lifting surfaces (Determinazione delle forze aerodinamiche per l'analisi aero-elastica delle superfici portanti) P Mantegazza (Milano, Politecnico, Milan, Italy) (Associazione Italiana di Aeronautica e Astronautica, Congresso Nazionale, 3rd, Turin, Italy, Sept 30-Oct 3, 1975) L'Aerotecnica - Missili e Spazio, vol 55, Feb -Apr 1976, p 45-52 17 refs In Italian

A computer program is developed for determining nonstationary aerodynamic forces in aeroelastic analysis of subsonic aircraft. The program is based on the doublet lattice method, backed up by practical experience and applicable to a variety of configurations. The procedure described for solving the integral equation of a lifting surface oscillating harmonically in a subsonic stream yields accept able results. Improvements are made in the computational efficiency of the doublet lattice method for this application.

A76-34484 On the aerodynamic design of airfoil cascades A new exact method based on conformal mapping (Sul progetto aerodinamico di profili alari in schiera - Un nuovo metodo esatto basato sulla trasformazione conforme) L Polito and G Buresti (Pisa, Universita, Pisa, Italy) (Associazione Italiana di Aeronautica e Astronautica, Congresso Nazionele, 3rd, Turin, Italy, Sept. 30-Oct. 3, 1975.) L'Aerotecnica - Missili e Spazio, vol. 55, Feb-Apr. 1976, p. 68-74. 10 refs. In Italian.

An exact method for solving the inverse problem in airfoil cascade design, based on conformal mapping techniques, is pre-

sented A major difficulty is that not all the functions dealing with velocity variation are compatible with the mathematical conditions of the problem. The velocity distribution on the contour is solved for incompressible flow by assigning it directly as a function of the surface coordinate on the airfoil contour. Modifications of the initial data are introduced in order to achieve consistency with the mathematical conditions required, and some improvements are made in computational simplicity. A recommended computational sequence is given.

A76-34486 Structural optimization in aeroelastic conditions P Santini, L Balis Crema, and I Peroni (Roma, Universita, Rome, Italy) (Associazione Italiana di Aeronautica e Astronautica, Congresso Nazionale, 3rd, Turin, Italy, Sept. 30 Oct. 3, 1975) L'Aerotecnica - Missili e Spazio, vol. 55, Feb.-Apr. 1976, p. 83.93.9

Minimum mass design for panel elements subject to a constraint on the lowest critical aerodynamic flutter parameter is studied. An upper and a lower bound are imposed on panel structural thickness. A variational approach to panel structural optimization with these constraints is developed for the aeroelastic problem. The Pontriagin minimum principle is applied to the situation with an additional constraint confining the control variable (structural thickness) within a specified range. Newton-Raphson computations are indicated. A 'shooting' technique in which the whole set of equations, adjoint system included, is integrated and the initial conditions are adjusted is applied to the supersonic flutter optimization problem.

A76-34552 * A complete second-order theory for the unsteady flow about an airfoil due to a periodic gust M E Goldstein (NASA, Lewis Research Center, Cleveland, Ohio) and H Atassi (Notre Dame, University, Notre Dame, Ind.) Journal of Fluid Mechanics, vol 74, Apr. 22, 1976, p. 741-765. 15 refs

A uniformly valid second-order theory is developed for calculating the unsteady incompressible flow that occurs when an airfoil is subjected to a convected sinusoidal gust. Explicit formulas for the airfoil response functions (i.e., fluctuating lift) are given. The theory accounts for the effect of the distortion of the gust by the steady-state potential flow around the airfoil, and this effect is found to have an important influence on the response functions. A number of results relevant to the general theory of the scattering of vorticity waves by solid objects are also presented. (Author)

A76-34661 Flying without doing harm (Voler sans nuire)
P Varloud (Direction de la Navigation Aerienne, Paris, France)
France Transports - Aviation Civile, Spring 1976, p 54-57 In
French

Noise abatement techniques in approach and takeoff in populated urban areas were studied, and tentative solutions are suggested for the Paris region. A classification is made of types of urban areas subject to airport environment noise. Placement of noise barriers and changing of approach paths are considered. Close attention is given to a dual-slope landing approach experiment, in which the high-altitude approach leg (3000 ft) is retained for a longer time, followed by a steep drop (6 deg) to 1000 ft, then a gentler glide (3 deg) to ground level. This variant is found appreciably less noisy than a steady approach glide of 3 deg from 3000 ft to ground level over the same approach path length.

A76-34693 # On mathematical simulation of separated flow past a wing and breakup of a vortex sheet in an ideal fluid (O matematicheskom modelirovanii v ideal'no zhidkosti otryvnogo obtekaniia kryla i razrusheniia vikhrevoi peleny) V A Aparinov, S M Belotserkovskii, M I Nisht, and O N Sokolova Akademiia Nauk SSSR, Doklady, vol 227, Apr 1, 1976, p 820-823 5 refs In

Modified methods in nonlinear stationary airfoil theory describing stable vortex cores and rollup of vortex sheets are applied to the study of the entire pattern of flow around thin delta wings in the case of either stable vortex sheets (moderate angles of attack) or

vortex sheets in the process of breaking up (high angles of attack) Successive approximations are applied to each fixed attack angle. A delta wing of unit aspect ratio is used as concrete illustration. This approach, based on an inviscid fluid model, aids simulating of basic features of separated flow around very slender airfoils with a bow vortex sheet forming and breaking up at high angles of attack. Secondary separations of flow on the sharp leading edge (in the boundary layer) and displacement of flow detachment lines may occur.

A76-34926 # Lift and drag characteristics of a supercavitating cambered hydrofoil with a jet flap beneath a free surface T Take (Shiga Prefectural Junior College, Hikone, Shiga, Japan) and T Kida (Osaka Prefecture, University, Sakai, Japan) JSME, Bulletin, vol 19, Apr 1976, p 377-383 13 refs

The linearized problem of a supercavitating cambered hydrofoil with a jet flap, which is operated near a free surface, is solved by using the conformal mapping technique. Analyses and discussions on the lift and drag coefficients, the cavity configuration and the jet sheet configuration are carried out. It is shown that (1) there occurs a lift reduction with decrease in submerged depth, (2) the cavity considerably moves up on the hydrofoil due to the jet flap, so the hydrofoil thickness can be improved, (3) the drag can be decreased by taking into account the shape of a cambered hydrofoil. (Author)

A76-35222 # Jet fuel handling and safety L Gardner (National Research Council, Fuels and Lubricants Laboratory, Ottawa, Canada) Canada, National Research Council, Division of Mechanical Engineering and National Aeronautical Establishment, Quarterly Bulletin, no 1, 1976, p. 23-29, 31-35 13 refs

Basic considerations in the safe handling of jet fuels, including fire safety and maintenance of product cleanliness, are discussed. A comparison of flammability characteristics shows that wide-cut fuel is more flammable than aviation kerosene over most ambient temperature conditions, however, the flammability limits apply only to conditions when the vapor/air mixture is at equilibrium with liquid fuel. Due to the fact that nonequilibrated mixtures can pass through flammable zones and to the unpredictability of dynamic effects, it is recommended that the same safety standards be applied in the handling of both fuel types. Hazards associated with electrostatic charging during aircraft refuelling can be reduced by use of a static dissipator additive. Removal of water and solid contaminants from aircraft fuels is imperative to eliminate hazards presented by bacteria, yeast, and fungi.

STAR ENTRIES

N76-24144*# Lockheed-Georgia Co Marietta

STUDY OF THE APPLICATION OF ADVANCED TECHNOL-OGIES TO LAMINAR FLOW CONTROL SYSTEMS FOR SUBSONIC TRANSPORTS VOLUME 1 SUMMARY Final Report

R F Sturgeon J A Bennett, F R Etchberger, R S Ferrill and L E Meade May 1976 63 p refs

(Contract NAS1-13694)

(NASA-CR-144975 LG76ER0076-Vol-1) Avail NTIS

HC \$4 50 CSCL 01A

A study was conducted to evaluate the technical and economic feasibility of applying laminar flow control to the wings and empennage of long-range subsonic transport aircraft compatible with initial operation in 1985. For a design mission range of 10 186 km (5500 n mi) advanced technology laminar-flow-control (LFC) and turbulent-flow (TF) aircraft were developed for both 200 and 400-passenger payloads and compared on the basis of production costs direct operating costs and fuel efficiency Parametric analyses were conducted to establish the optimum geometry for LFC and TF aircraft, advanced LFC system concepts and arrangements were evaluated and configuration variations maximizing the effectiveness of LFC were developed. For the final LFC aircraft analyses were conducted to define maintenance costs and procedures manufacturing costs and procedures and operational considerations peculiar to LFC aircraft. Compared to the corresponding advanced technology TF transports the 200and 400-passenger LFC aircraft realized reductions in fuel consumption up to 28 2% reductions in direct operating costs up to 8 4% and improvements in fuel efficiency in ssm/lb of fuel up to 39 4% Compared to current commercial transports at the design range the LFC study aircraft demonstrate improvements in fuel efficiency up to 131% Research and technology requirements requisite to the development of LFC transport aircraft were identified

N76-24145*# Lockheed-Georgia Co Marietta
STUDY OF THE APPLICATION OF ADVANCED TECHNOLOGIES TO LAMINAR-FLOW CONTROL SYSTEMS FOR
SUBSONIC TRANSPORTS VOLUME 2 ANALYSES Final
Report

R F Sturgeon J A Bennett F R Etchberger R S Ferrill and L E Meade May 1976 471 p refs

(Contract NAS1-13694)

(NASA-CR-144949 LG76ER0076-Vol-2) Avail NTIS

HC \$12 00 CSCL 01A

For abstract see N76-24144

N76-24146# Advisory Group for Aerospace Research and Development, Paris (France)

UNSTEADY AERODYNAMICS

Mar 1976 91 p refs Presented at the Fluid Dyn Panel Round Table Discussion on Unsteady Aerodyn Goettingen, West Germany, May 1975

(AGARD-R-645) Avail NTIS HC \$5.00

Five papers are presented covering such topics as calculation methods in unsteady aerodynamics recent research results in flutter suppression transonic flow unsteady rotor blade aerodynamics wind tunnel test techniques and recent research efforts in aeroelasticity and unsteady aerodynamics at the U.S. Air Force Flight Dynamics Laboratory. These papers gave a succinct review.

of the present state of aeroelasticity-oriented unsteady aerodynamics

N76-24147 Messerschmitt-Boelkow-Blohm G m b H Munich (West Germany)

UNSTEADY AERODYNAMIC PREDICTION METHODS APPLIED IN AEROELASTICITY

B Laschka In AGARD Unsteady Aerodyn Mar 1976 31 p refs

A brief survey is given on the basic prediction methods in unsteady aerodynamics needed in aeroelasticity. After an introductory outline of some of the most important aeroelastic phenomena some representative concepts applied to calculate unsteady aerodynamic forces in subsonic and supersonic flow are described. Then attention is drawn to areas which are not yet covered adequately by the presently existing theories. These aeas comprise effects of gap geometry between fixed wing and control surfaces of mean incidence about which a wing or control surface is oscillating of wing thickness of Reynolds number etc. Furthermore some not yet published results related to interfering multiple lifting configurations are presented. These results include thrust calculations on oscillating tandem wings in incompressible flow wing induced unsteady tail loads and some downwash evaluations behind wings in supersonic flow.

Author

N76-24148 National Aerospace Lab Amsterdam (Netherlands) SOME REMARKS ON UNSTEADY TRANSONIC FLOW H Tijdeman /n AGARD Unsteady Aerodyn Mar 1976 11 p

A general discussion of unsteady transonic aerodynamics is presented. A simple example of an airfoil having an oscillating trailing edge flap was chosen for the discussion. Results are presented from wind tunnel tests performed on the airfoil to illustrate the interactions of steady flow fields on unsteady flow fields. Topics discussed include (1) various calculation methods used to compute unsteady transonic flow (finite difference theory), and (2) boundary layer interactions, and shock wave interactions causing aerodynamic loading. It is shown at high subsonic and transonic speeds that unsteady airloads are influenced considerably by steady and unsteady flow fields and shock wave interactions.

JRT

N76-24149 Office National d'Etudes et de Recherches Aerospatiales Paris (France)

UNSTEADY AERODYNAMICS OF HELICOPTER BLADES
Rolland Dat In AGARD Unsteady Aerodyn Mar 1976 6 p
refs In FRENCH ENGLISH summary

A method that predicts the unsteady periodic aerodynamic forces on helicopter blades in forward flight is described. The blade sections are assimilated to airfoils the lift at high angle attack is given by a mathematical model and the three-dimensional interferences between blades and between separate sections of the same blades are given by the linearized lifting surface theory. The comparison between theoretical and experimental results is satisfactory. The range of applications of the method used to synthetize the three-dimensional theory and the experiments in two-dimensional flow is not restricted to helicopters.

N76-24150 Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Goettingen (West Germany) Inst fuer Aeroelastik

WIND TUNNEL TEST TECHNIQUES FOR THE MEASURE-MENT OF UNSTEADY AIRLOADS ON OSCILLATING LIFTING SYSTEMS AND FULL-SPAN MODELS

H Foersching In AGARD Unsteady Aerodyn Mar 1976 24 p refs

The main features of wind tunnel test techniques in current use for the measurement of dynamic stability derivatives flutter coefficients and unsteady aerodynamic pressure distributions are described. The presentations are illuminated by some typical test results.

Author

N76-24151 Air Force Flight Dynamics Lab Wright-Patterson AFB Ohio Vehicle Dynamics Div

BRIEF OVERVIEW OF SOME AIR FORCE FLIGHT DYNAM-ICS LABORATORY RESEARCH EFFORTS IN AEROELASTIC-ITY AND AERO-ACOUSTICS

Walter J Mykytow In AGARD Unsteady Aerodyn Mar 1976 13 p refs

The feasibility of extending active feedback control technology to flutter suppression in wings and external stores is discussed Flight tests of a B-52 full scale model are described. A computer program for flutter optimization is discussed. The use of composite materials in flutter suppression is examined

N76-24152*# Grumman Aerospace Corp Bethpage, N Y DEVELOPMENT OF A COMPUTER CODE FOR CALCULA-TING THE STEADY SUPER/HYPERSONIC INVISCID FLOW AROUND REAL CONFIGURATIONS VOLUME 2 CODE **DESCRIPTION** Final Report

Frank Marconi and Larry Yaeger Washington NASA 1976 153 p ref

(Contract NAS1-11525)

(NASA-CR-2676) Avail NTIS HC \$675 CSCL 01A

A numerical procedure was developed to compute the inviscid super/hypersonic flow field about complex vehicle geometries accurately and efficiently. A second-order accurate finite difference scheme is used to integrate the three-dimensional Euler equations in regions of continuous flow, while all shock waves are computed as discontinuities via the Rankine-Hugoniot jump conditions Conformal mappings are used to develop a computational grid. The effects of blunt nose entropy layers are computed in detail. Real gas effects for equilibrium air are included using curve fits of Mollier charts Typical calculated results for shuttle orbiter, hypersonic transport, and supersonic aircraft configurations are included to demonstrate the usefulness of this tool. Author

N76-24153*# National Aeronautics and Space Administration Lewis Research Center Cleveland Ohio

AERODYNAMIC PERFORMANCE OF 0 4066-SCALE MODEL TO JT8D REFAN STAGE

Royce D Moore, George Kovich and Edward R Tysl Washington

Mar 1976 157 p refs (NASA-TM-X-3356 E-8040) Avail NTIS HC \$6.75 CSCL

The aerodynamic performance of a scale model of the split flow JT8D rafan stage is presented over a range of flows at speeds from 40 to 100 percent design. The bypass stage peak efficiency of 0800 occurred at a total weight flow of 3582 kilograms per second and a pressure ratio of 1 697. The stall margin was 15 percent based on pressure ratio and weight flow at stall and peak efficiency conditions. The data indicated that the hub region of the core stators was choked at design speed over the entire flow range tested Author

N76-24154# Princeton Univ NJ Dept of Aerospace and Mechanical Sciences

CALCULATION OF AERODYNAMIC DERIVATIVES IN UNSTEADY TWO-DIMENSIONAL TRANSONIC FLOW USING DOWELL'S LINEARIZATION METHOD

Paul H Park Sep 1975 77 p refs Backup document for AIAA Synoptic, Unsteady Two-Dimensional Transonic Flow Using Dowell's Method" scheduled for publication in AIAA Journal in Oct 1976

(AMS-1238-T) Avail NTIS HC \$5 00

The Dowell's linearization method was applied to the calculation of pressure derivatives with lift and moment derivatives in unsteady two-dimensional sonic flow for a parabolic arc airfoil in heave and pitch. The equations for the unsteady derivatives are developed following the manner of the steady derivatives as done by Dowell A computer program was written to carry out the integrations contained in the equations. Solutions are presented for various reduced frequencies and, where possible, are compared with other theories and experimental data. Author

Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt Goettingen (West Germany) Stroemungsmechanik

A FINITE DIFFERENCE METHOD FOR THE CALCULATION OF THREE-DIMENSIONAL BOUNDARY LAYERS ON SWEPT WINGS

Gert R Schneider In its Boundary Laver Effects 1975 p 144-168

A numerical method to calculate the three-dimensional incompressible turbulent boundary layer on swept wings for different angles of yaw and different pressure distributions is presented. The governing turbulent boundary layer equations are integrated using an implicit finite difference procedure with variable step sizes in conjunction with the mixing length hypothesis for the distribution of the turbulent shear stress. For the mixing length the formulas of Michel et al are used with a correction function for which the local value of shear stress is used instead of the wall value as originally recommended by Van Driest for his damping factor. The two nonlinear turbulent momentum equations are linearized each in one direction. The following linear equations are solved one after another in an iterative procedure for which the starting values are extrapolated from the last two stations. The number of iterations is controlled by the velocity values normal to the wall. As starting profile for the whole numerical procedure a two-dimensional turbulent boundary layer profile with zero pressure gradient is used

Author (ESA)

N76-24170# Technische Univ Berlin (West Germany) fuer Luft- und Raumfahrt

CALCULATION METHOD FOR SEPARATED FLOW OF SLENDER ARROW WINGS [EIN BERECHNUNGSVERFAH-REN ZUR ABGELOESTEN STROEMUNG AM SCHLANKEN **PFEILFLUEGEL**

Klaus Huenecke 1975 68 p refs in GERMAN (ILR-5-1975, ISBN-3-7983-0541-2) Avail NTIS HC \$4 50

A method for calculating the flow around a lifting wing of small to moderate span which accounts for leading edge separation was developed. The isolated vortex flow is described by the Navier-Stokes equations in quasicylindrical approximation, whereas the vortices on the lifting wing are calculated using a two-dimensional panel method. Experimental knowledge of vortex distribution on similar wings was used for the calculation. Good agreement is obtained between calculated and observed vortex distribution **FSA**

N76-24173# Royal Aircraft Establishment Farnborough (England)

WIND TUNNEL MEASUREMENTS AT M=16 OF THE AERODYNAMIC EFFECTS OF A ROOT GAP ON A CONTROL SURFACE OF SQUARE PLANFORM MOUNTED ON A BODY

K G Winter May 1975 34 p refs

(RAE-TM-AERO-1641 BR48386) Avail NTIS HC \$4 00

Increasing the root gap from 04 to 99 % span reduces the normal force for small angles of incidence of the body and zero control surface deflection by between 5 and 10 % but has little effect for zero angle of incidence and small control deflection The center of pressure moves forward by about 0.5 % chord and outboard by about 5 % span with increase of the gap for small angles of either the body or the control surface though the spanwise change for zero control deflection differs for the two lengths of body tested Author (ESA)

Messerschmitt-Boelkow-Blohm G m b H N76-24175# brunn (West Germany) Unternehmensbereich Flugzeuge FURTHER DEVELOPMENT OF THE PANEL METHOD NONLINEAR PANEL METHOD CONSIDERING PART 1 DISCRETE SEPARATED VORTEX SHEETS ON SWEPT SLENDER WING SHAPES

W Sonnleitner and W Kraus 21 Dec 1973 148 p refs In GERMAN, ENGLISH summary (Contract T-0250-12510-11059)

(MBB-UFE-1070-0) Avail NTIS HC \$6 00

A comprehensive literature search was conducted in order to find those publications which are best suited for the calculation of wings with a small aspect ratio and a complex planform. The complex planform results from the application of strakes sawteeth flaps and slats on the aircraft. A nonlinear panel method was developed which doesn't know any limitation as far as planform wing-shaping and fuselage considerations are concerned. Vortex models according to Bollay Gersten, and Belotserkovsky were tested.

N76-24176# Messerschmitt-Boelkow-Blohm G m b H , Ottobrunn (West Germany) Unternehmensbereich Flugzeuge APPLICATION OF THE MBB PANEL METHOD TO CALCULA-

TION OF WING-BODY CONFIGURATIONS WITH EXTERNAL STORE LOADS [ANWENDUNG DES MBB-PANEL-VERFAHRENS ZUR BERECHNUNG VON FLUEGEL-RUMPF-KONFIGURATIONEN MIT AUSSENLASTEN]

R Designdes and A Eberle 6 Mar 1974 98 p refs in GERMAN

(MBB-UFE-1073-0) Avail NTIS HC \$5 00

The method was used to calculate the aerodynamic characteristics of body-wing configurations with external store. It is shown that the method produces results comparable to measurements for pressure distributions, sectional loads, jointing plane coefficients and total aerodynamic coefficients. Special problems such as suspension of the external store and circulative components of the store are discussed.

N76-24177# Bristol Univ (England) Dept of Civil Engineering

ON THE VORTEX-INDUCED LOADING ON LONG BLUFF CYLINDERS Ph D Thesis

Roger Hollins Wilkinson Mar 1974 233 p refs

Avail NTIS HC \$8 00

A rigid bluff cylindrical body in a flow with its axis perpendicular to the approach direction will experience periodic forces superimposed on the steady lift and drag These forces are associated with vortices shed from the body with their axes approximately parallel to that of the cylinder. However, the vortices are not truly parallel with the shedding cylinder the shedding process being of varying phase along the span. An experimental study is made of the three-dimensionality of the shedding process and its effect upon the total dynamic loading on the cylinder. It has been shown by previous workers that, if the shedding cylinder undergoes cross flow oscillation at a frequency similar to that of the vortex shedding from the stationary cylinder the vortex shedding process is modified. The interaction between the flow field and structural movement is studied by measurement of the mean and dynamic pressure distributions on a long square cylinder whilst stationary and during forced vibration. The dynamic pressure field is studied by measurement of the root mean square of the surface pressure distributions, together with measurement of the normalized cross-correlation field to enable the total dynamic loads on the cylinder to be ascertained Author (ESA)

N76-24178# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt Oberpfaffenhofen (West Germany) Inst fuer Aerodynamik

FLOW INVESTIGATION ON WINGS WITH KINKED LEAD-ING EDGES AND SWEPT OUTER WINGS AT MODERATE SUBSONIC SPEED

W Schroeder Jun 1974 60 p refs In GERMAN ENGLISH summary

(DLR-IB-151-74/11) Avail NTIS HC \$4 50

Wind tunnel measurements at Reynolds numbers of Re = 0.4 x 1 million and 1 million were performed on two wings which consist of a highly swept (65 deg inner portion - strake), and a moderately swept (30 deg) or highly swept (65 deg) outer portion. The experiments comprised of three component force measurements, oil flow visualization of surface streamlines, flow visualization by means of smoke and total pressure measurements in the flow field. Additionally, the flow around the wings was observed with dye in a water tunnel at Reynolds.

numbers Re = 2 000 and 10,000 The investigations revealed that for small angles of incidence the wings exhibit linear characteristics corresponding to their aspect ratios. At higher angles of incidence the aerodynamic behavior is governed by well defined flow separation on the inner and outer wing portions. The wing with moderately swept outer portion behaves as a double-delta wing with two pairs of concentrated vortices over its inner and outer portions. In the case of the wing with highly swept outer portion, the concentrated vortices originating from the strakes maintain their straight direction along the outer wing portion. The behavior of this wing is similar to that of a plain delta wing.

N76-24180# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt Brunswick (West Germany) Abteilung Theoretische Aerodynamik

AIRFOIL DESIGN FOR A PRESCRIBED VELOCITY DISTRIBUTION IN TRANSONIC FLOW BY AN INTEGRAL METHOD

H Hansen Aug 1975 27 p refs Presented at the Symp Transsocicum II Goettingen, West Ger 8-13 Sep 1975 (DLR)5 151-75/8) Avail NTIS HC \$4.00

A method is presented to calculate an airfoil contour for a prescribed subsonic free stream Mach number and a contour pressure distribution based on the K. Oswatitsch integral method A reduced potential equation was derived for small perturbations in transonic flow which is also valid for flows in stagnation regions without restrictions concerning the magnitude of perturbations. An integral method is developed for the solution This means that an integration has to be carried out for the design problem, which is performed partly analytically and partly numerically. The integral relation reduces the design problem in nonlinear compressible flow to a corresponding one in linear incompressible flow which is solved by well-proven methods The method is applied to calculate airfoil contours for prescribed subcritical pressure distributions without and with lift as well as for nonlifting pressure distributions without and with weak shocks The results show acceptable agreement with those of inverse methods and exact solutions

N76-24181# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt Brunswick (West Germany) Abteilung Entwurfsaerodynamik

CALCULATION OF BUFFET ONSET FOR SUPERCRITICAL AIRFOILS

G Redeker Aug 1975 20 p refs Presented at the IUTAM Symp Transsonicum II Goettingen, West Ger 8-13 Sep 1975 (DLR-IB-151-75/12) Avail NTIS HC \$3 50

The method of Thomas for calculating buffet onset was improved in such a way that supercritical airfoils as well as high angles of attack and high lift coefficients can be treated Calculated examples of buffet-onset boundaries for supercritical airfoils show a benefit in lift coefficient and Mach number compared with those of conventional airfoils Measured buffet onset for the Korn airfoil No 1 is well predicted by the calculation method.

N76-24182# European Space Agency, Paris (France) THEORETICAL ANALYSIS AND PREDICTION METHODS FOR A THREE-DIMENSIONAL TURBULENT BOUNDARY LAYER

Jean Cousteix Jan 1976 189 p refs Transl into ENGLISH of Anal Theorique et Moyens de Prevision de la Couche Limite Turbulente Tridimensionelle ONERA Paris Report ONERA-P-157, 1974

(ESA-TT-238 ONERA-P-157) Avail NTIS HC \$7 50

A theoretical analysis of the behavior of a three-dimensional turbulent boundary layer is established by means of similarity solutions, using an improved mixing-length model Various comparisons show that these solutions provide a family of velocity profiles particularly for the transverse flow velocity which correctly represent the physical behavior. The hypotheses which form the essential basis for an integral method of calculation can be defined. Such a method is derived for the general case of an arbitrary coordinate-system and for a compressible flow on an adiabatic wall up to Mach numbers of about 4.0. This method is applied

to some experimental cases, the results produced are compared with those from a method which solves the local equations applied to the special case of infinite swept wings Author (ESA)

N76-24184# European Space Agency, Paris (France) INVESTIGATION OF THE MUTUAL INTERFERENCE OF WING/ENGINE COMBINATIONS

Manfred Wittmann et al Dec 1975 173 p refs Transl into ENGLISH of Untersuch der gegenseitigen Beeinflussung von Fluegel-Triebwerk-Kombinationen Tech Hochschule Aachen Report DLR-FB-74-32 22 Apr 1974 Original German report available from DFVLR Porz West Ger DM 60 20

(ESA-TT-217 DLR-FB-74-32) Avail NTIS HC \$6.75

The mutual interference between wing and engine nacelle is significant since aircraft engines are often arranged either above or below the wing For theoretical calculations the wing is represented by a flat plate and the engine nacelle by a cylinder composed of source and vortex singularities. The normal velocity components induced on the wing by the nacelle are simulated by additional singularities on the wing in order to obtain a first approximation of the modified pressure distribution. Experimental results are represented for nine wing/nacelle combinations and three angles of attack. Three different intake blockages are also considered For several cases the theoretical and experimental results are compared Author (ESA)

N76-24189# Air Force Inst of Tech Wright-Patterson AFB. Ohio School of Engineering

AERODYNAMIC FÖRCES ÖN A BLUNT STORE RELEASED FROM A SWEPT WING M S Thesis
Robert A Grow 19 Dec 1975 103 p refs

(AD-A019330, GAE/MD/75D-6) Avail NTIS CSCL 01/1

The analysis of the forces on a body released from an aircraft is separated into two categories. The analysis of the flow around a wing and the analysis of a body in a non-uniform flow field The flow around a wing was determined using a vortex lattice on a flat plate wing with constant sweep angles. The body was modelled by an ellipsoid of revolution forebody and a paraboloid of revolution afterbody. The axial flow velocities were determined by using slender body theory for axial flow except in the region of the blunt nose and tail. The cross flow velocities, and the axial flow velocities near the nose and tail were determined by computing the flow around spheres tangent to the body at every control point. Drag was simulated for potential theory by artificially accelerating the flow on the leeward side of the spheres

N76-24190# Naval Intelligence Support Center, Washington D.C. Translation Div

APPROXIMATE METHOD OF CALCULATING THE INTER-ACTION OF FINITE-SPAN AIRFOILS IN UNSTEADY MOTION ABOVE A SOLID SURFACE

V K Treshkov 26 Nov 1975 9 p refs Transl into ENGLISH from Tr Leningrad Korablestroitelnyi Inst (Leningrad) v 80 1972 p 87-92

(AD-A019222 NISC-Trans-3718) Avail NTIS CSCL 01/1

The interaction of the wing and tail assembly in unsteady motion is examined. An approximate method developed to determine the aerodynamic characteristics of the system is presented JMS

N76-24208*# Calspan Corp Buffalo NY
EVALUATION OF XV-15 TILT ROTOR AIRCRAFT FOR
FLYING QUALITIES RESEARCH APPLICATION Final Report, Jun - Dec 1975

Robert C Radford Arno E Schelhorn Ralph J Stracuse Robert D Till and Richard Wasserman Apr 1976 132 p refs Sponsored in part by USAAMRDL (Contract NAS2-8855)

(NASA-CR-137828 AK-5752-F-1) Avail NTIS HC \$6 00 CSCL 01C

The results of a design review study and evaluation of the XV-15 Tilt Rotor Research Aircraft for flying qualities research application are presented. The objectives of the program were

to determine the capability of the XV-15 aircraft and the V/STOLAND system as a safe inflight facility to provide meaningful research data on flying qualities, flight control systems and information display systems

N76-24209# Deutsche Gesellschaft fuer Luft- und Raumfahrt, Cologne (West Germany)

CONTRIBUTIONS TO HELICOPTER TECHNOLOGY

DFVLR 21 Nov 1975 185 p refs In GERMAN ENGLISH summary Proc of the Meeting of the DGLR Sci Comm 2A2 on Rotary Wing Aircraft Stuttgart 18 Oct 1974 (DLR-MITT-75-24) Avail NTIS HC \$7.50 DFVLR Cologne

DM 66 40

Developments in helicopter technology are discussed Topics covered are problems of transonic flow in rotor aerodynamics possibilities and problems of noise reduction, special problems with the identification of flight dynamic parameters of helicopters application of ground vibration test methods to the solution of aeroelastic problems of V/STQL-rotary wing aircraft, configuration and flight mechanics of a ship-based unmanned rotor platform and studies for a twin-rotor helicopter configuration with utilization of the aerodynamic potential of the advancing rotor blade

N76-24210 Messerschmitt-Boelkow-Blohm G m b H Ottobrunn (West Germany)

TRANSONIC PROBLEMS IN ROTOR AERODYNAMICS TRANSSONIKPROBLEME DER ROTORAERODYNAMIK

S Wagner In DGLR Contrib to Helicopter Technol 21 Nov 1975 p 11-52 refs In GERMAN

The rotor-blade supersonic regions and position of the compression shocks were determined for transonic flow over the circular rotor disk and over the advancing blade using a blade element theory. The resulting aerodynamic problems and the technology for resolving these are discussed. The following proposals are made for improving the present knowledge gap in this field investigation of feasibility of supercritical rotor profiles, construction of appropriate throughflow models in 3-D computation methods for more exact evaluation of local flow conditions. especially for transonic flow further development of the 3-D relaxation method for calculation of transonic aerodynamics of the rotor blade and pressure distribution measurements of rotors for better understanding of the physics especially at transonic flow **FSA**

N76-24211 Messerschmitt-Boelkow-Blohm G m b H Ottobrunn (West Germany)

POSSIBILITIES AND PROBLEMS OF HELICOPTER NOISE REDUCTION MOEGLICHKEITEN UND PROBLEME DER LAERMMINDERUNG AM HUBSCHRAUBER]

V Langenbucher and E Laudien In its Contrib to Helicopter 21 Nov 1975 p 53-100 refs in GERMAN Technol

The generation mechanisms of helicopter noise radiation are discussed and possibilities for reduction of the essential mechanical and aerodynamic noise sources are surveyed. External rotor noise can be reduced by a different layout of both rotors leading to a weight and performance penalty. Also aerodynamic improvements of rotors are possible. Mechanical noise sources are mainly responsible for internal noise Cabin noise can be reduced by reduction of the sound emission of individual noise sources structural measures, and the use of sound absorbing material in cabin linings

N76-24212 Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt Goettingen (West Germany)

STATIC VIBRATION TESTS FOR RESOLVING AEROELAS-TIC PROBLEMS OF V/STOL ROTARY WING AIRCRAFT ANWENDUNG DER STANDSCHWINGUNGSTECHNIK BEI DER LOESUNG AEROELASTISCHER PROBLEME VON V/STOL-DREHFLUEGELFLUGZEUGEN)

F Kiessling In DGLR Contrib to Helicopter Technol 21 Nov 1975 p 105-130 refs In GERMAN

Proposals are made for static vibration testing methods of V/STOL rotary wing aircraft A static vibration test was used to determine self vibration forms of a weakly damped elastic structure with the associated modal characteristics. The principles of this test are detailed accentuating a phase resonance method For V/STOL rotary wing aircraft the rotation of the elastic rotors provokes additional effects such as gyroscopic coupling and variations of the blade stiffness by centrifugal forces. These should be considered in often very complicated analytical models Proposals are based on these concepts. Correction terms are given for the effects of the rotating parts, which can be calculated from test results of nonrotating rotors

N76-24213 Dornier-System G m b H Friedrichshafen (West Germany)

CONCEPTION AND FLIGHT MECHANICS OF A SHIP-SUPPORTED UNMANNED ROTOR PLATFORM [BEIT-RAEGE ZUR KONZEPTION UND FLUGMECHANIK EINER SCHIFFSGESTUETZTEN UNBEMANNTEN ROTORPLATT-FORM!

G Engel In DGLR Contrib to Helicopter Technol 21 Nov 1975 p 131-144 in GERMAN

The conception of an unmanned rotor platform attached to a ship by means of a 300 m tetherline (umbilical connection), for reconnaissance and navigation, is discussed. A captive rotor platform can carry not only sea radar but also other sensors and sensor combinations, such as data communication relay equipment. The platform is compared to other air support, such as helicopters, the possibility of long flight durations is emphasized Flight mechanics of the platform are described

N76-24214 Vereinigte Flugtechnische Werke-Fokker G m b H Bremen (West Germany)

ADVANCED SIDE-BY-SIDE CONCEPT

In DGLR Contrib to Helicopter Technol 21 Nov 1975 p 145-184 In GERMAN

The design of a helicopter with a side-by-side rotor configuration using the aerodynamic potential of the advancing rotor blade is discussed. The object of such configurations is to increase helicopter maximum velocity and maneuverability using established technologies. The concept is analyzed from the points of view of rotor aerodynamics forces and moments, stability controllability, geometry and weight. The advantages of the design as compared to conventional helicopters are enumerated A proposal is made for an experiment using a modified Bell Jet-Ranger

N76-24215# Messerschmitt-Boelkow-Blohm G m b H Ottobrunn (West Germany) Unternehmensbereich Flugzeuge WEIGHT PREDICTION METHODS - GRUGEW PROGRAM Dietrich Klein 21 Dec 1973 161 p refs in GERMAN, **ENGLISH** summary

(MBB-UFE-1072-0) Avail NTIS HC \$6.75

A computer program for the calculation of group weights for structure, propulsion and equipment was developed for the purpose of weight prediction. The take-off weight is compiled from the addition of weight for payloads hydraulic fluid and fuel to the above group weights. The equations included in the existing program may be used for weight prediction in the preliminary design phase of an aircraft project. The compiled group weight is printed out in accordance with MIL-STD 254/451 mod Group Weight Statement Author (ESA)

N76-24216# European Space Agency Paris (France) GROUND SIMULATION OF FLUTTER ON AIRCRAFT WITH HIGH-ASPECT-RATIO WINGS

Perumai Rajagopal Feb 1976 54 p refs Transl into ENGLISH of Simulation au Sol du Flottement pour les Avions de Grand Allongement ONERA, Paris Report ONERA-NT-222 1974 (ESA-TT-263, ONERA-NT-222) Avail NTIS HC \$4 50

A method is proposed for the simulation of the unsteady

aerodynamic forces which act upon an aircraft in flight by means of an electromechanical apparatus. The principle is as follows the aircraft being on the ground an electronic circuit is used to calculate the aerodynamic forces from the accelerations measured on the structure and to transmit the results of the calculations to exciters. The analog computer linking the forces to the exciters includes a potentiometer on which the speed parameter may be set The evolution in the damping phenomena may readily be monitored on a cathode screen. The advantage of this method is that it is not necessary to measure either the generalized aircraft parameters or its deformations. Also implicit allowance is made for the nonlinearities of the structure, since the test takes place on the structure itself. A test on a model is described and compared with a classical flutter calculation. The results are very encouraging Author (ESA)

N76-24218# Dayton Univ Ohio Research Inst DEVELOPMENT OF FLIGHT-BY-FLIGHT FATIGUE TEST **DATA FROM STATISTICAL DISTRIBUTIONS OF AIRCRAFT** STRESS DATA, VOLUME 1 Final Report

George J Roth AFFDL May 1975 138 p refs (Contract F33615-73-C-3007 HF136703) (AD-A016406, AFFDL-TR-75-16-Vol-1) Avail

Avail NTIS CSCL 20/11

Axially loaded specimens of 7075-T651 aluminum with a hole were fatigue tested using loading histories derived from strain gage data recorded on operational aircraft. For the baseline data the magnitude and order in which the loads occurred during a flight were preserved. The flight contained data from taxi takeoff, flight and landing strain histories. The data were processed by several counting techniques to obtain statistical distributions of the cyclic and mean stress amplitudes as well as the number of stress cycles per flight for both the ground operations and the inflight operations. These distributions were then used to generate a series of flight-by-flight test sequences. Three different counting techniques were used to determine the statistical distribution of the cyclic stress for each of two aircraft types The report presents the results in terms of the number of flights to failure for 9 sequences of B-58 data and 6 sequences for the F-106 data A total of 91 specimens were tested The report concludes that simulated testing sequences can yield the same fatigue life as the original strain gage data recorded on operational aircraft

N76-24219# Dayton Univ , Ohio Research Inst DEVELOPMENT OF FLIGHT-BY-FLIGHT FATIGUE TEST DATA FROM STATISTICAL DISTRIBUTIONS OF AIRCRAFT STRESS DATA VOLUME 2 DOCUMENTATION OF THE B-58 AND F-106 FATIGUE SPECTRA SIMULATION PROGRAM Final Report, Oct 1972 - Jan 1974 Michael C Hill AFFDL May 1975 405 p

(Contract F33615-73-C-3007)

(AD-A016407 AFFDL-TR-75-16-Vol-2) Avail NTIS CSCL 20/11

This report documents the computer programs and subroutines written in support of the effort presented in Volume I. The report describes and documents two aircraft simulation programs used to process flight loads data derived from B-58 and F-106 aircraft flying operational missions A simulation merge program is also included which combines the output tapes from the aircraft simulation programs and generates an output tape compatible with the hybrid computer. The program listings and sample problems for the simulation programs are presented in the GRA Appendices

N76-24222# Naval Air Development Center Warminster Pa Air Vehicle Technology Dept

NAVY JET TRAINER (VTX) CONCEPTUAL DESIGN STUD-IES

W E Becker 10 Dec 1975 76 p refs

(AD-A018779 NADC-75198-30) Avail NTIS CSCL 01/3

The VTX aircraft is intended to fill the future trainer role for basic and advanced flight training of Navy undergraduate jet pilots. The vehicle design studies include definition of a baseline VTX configuration and examination of take-off gross weight sensitivity to six performance/design parameters (sustained

maneuvering load factor service ceiling avionics payload structural limit load factor, maximum speed and range) Vehicle design synthesis and performance estimation are accomplished with the aid of HIPERAC a tactical aircraft design tool developed by NAVAIRDEVCEN The VTX vehicle design serves principally as a tool for examining the design implications of preliminary requirements proposed for Navy jet trainer aircraft. Initially, three driving performance requirements (sustained maneuverability take-off distance and landing distance) and a fuel-critical mission (Low Level Operational Navigation) are identified then a vehicle configuration is developed to satisfy these constraints. The take-off gross weight of this vehicle is 12 235 lbs and it is powered by two turbofan engines of 3 475 lbs rated thrust apiece Maximum Mach number is 0.84 at 30,000 ft. altitude. maximum sustained normal acceleration at 18 000 ft is 4g s service ceiling is 52 700 ft and maximum range is 1 573 n mi Takeoff gross weight is particularly sensitive to increases in sustained load factor maximum speed and service ceiling but much less sensitive to reductions in these parameters because reduced weight design solutions are bounded by the take-off distance constraint

Author (GRA)

N76-24223# Naval Air Development Center Warminster Pa Air Vehicle Technology Dept

CATAPULT LAUNCH FATIGUE INVESTIGATION OF THE MODEL E-18/C-1 AIRPLANE Final Report

H D Lystad 19 Nov 1975 51 p

(AD-A019519 NADC-75310-30) Avail NTIS CSCL 01/3

A laboratory fatigue investigation was performed on an E-1B fuselage with a reinforced catapult keel to determine if it could sustain the loads associated with 3 000 catapult launches. The bulkhead at fuselage station 135 failed after 8 420 test cycles of the catapult start of run condition. Using a test scatter factor of 2 this is equivalent to 4 210 service catapult launches. The holdback structure failed after 8,188 test cycles of the catapult release condition. Again using a test scatter factor of 2 this is equivalent to 4,094 service catapult releases. GRA

N76-24225# IIT Research Inst Chicago III
RELIABILITY ASSESSMENT OF MODIFIED FIELDED
AIRCRAFT USING THE BAYESIAN TECHNIQUE Final
Report, Feb. Nov. 1975

Vernon D Allen and N Thomompoulos 15 Nov 1975 71 p (Contract DAAJ01-75-C-0307)

(AD-A018890 USAAVSCOM-TR-75-50) Avail NTIS CSCL 01/3

This manual provides a detailed description of the methodology and computer code developed for the U.S. Army Aviation Systems Command (AVSCOM) which estimates reliability and mean-time-between-failure (MTBF) of an aircraft system using Bayesian methods. The computer code calculates MTBF cost and reliability for each item of the aircraft system based on the historical data alone and by Bayes theory which combines the historical data with the test data.

N76-24227# Rockwell International Corp Columbus Ohio Columbus Div

T-28 SERVICE LIFE EVALUATION Quarterly Report
J G Hutcheson and J J Gruff 18 Aug 1975 61 p
Revised

(Contracts N000156-73-C-0152 N062269-74-C-0718) (AD-A018907 NR73H-35 QR-8) Avail NTIS CSCL 01/3

In this report a meeting at NARF-Pensacola on the NIFTS program is briefly reviewed wind lug crack propagation test results are re-evaluated to determine maximum periods between NDI inspections and procedures for evaluation of T-28B/C service lives are revised per previous discussions with NADC personnel In addition the report presents a statistical summary of T-28B/C landing data and an evaluation of recent USAF full scale fatigue tests on a T-28D-5 airplane in terms of Navy T-28 operations

N76-24228# New Mexico Inst of Mining and Technology Socorro

MODIFICATION OF DRONE SAILPLANE INTO A SPECIAL PURPOSE TEST VEHICLE FOR ATMOSPHERIC RESEARCH Final Report, 1 Jan 1974 - 30 Jun 1975

C B Moore and J W Bullock 4 Nov 1975 52 p (Contract N00014-67-A-0267-0009 NR Proj 211-194 RR0330301)

(AD-A019436) Avail NTIS CSCL 01/3

A powered sailplane drone excess to a US Air Force program, has been converted into a special purpose piloted test vehicle for atmospheric research. The converted aircraft was used in support of the Apollo-Soyuz space flight in July 1975 and in Navy-sponsored thunderstorm research.

N76-24229# Lockheed-California Co Burbank
THE DEVELOPMENT OF AN ADVANCED ANTI-ICING/
DEICING CAPABILITY FOR US ARMY HELICOPTERS
VOLUME 1 DESIGN CRITERIA AND TECHNOLOGY
CONSIDERATIONS Final Report, 30 Jun 1973 - 30 Jun.
1975

J B Werner Nov 1975 255 p refs (Contract DAAJ02-73-C-0107 DA Proj 1F2-62209-AH-76) (AD-A019044 LR-27180-Vol-1 USAAMRDL-TR-75-341) Avail NTIS CSCL 01/3

The work which has been accomplished under this program is reported in two volumes. Volume 1 discusses (1) icing seventy level analysis and recommended design criteria (2) adverse weather protection technology (3) a trade-off comparison of different types of ice protection systems for various categories of helicopters and (4) a technology development program for an advanced electrothermal deicing system. Volume 2, Ice Protection System Application to the UH-1H Helicopter describes the application of the recommended electrothermal deicing system to a UH-1H test aircraft. It provides a detailed description of the modifications to the basic aircraft (including the flight test-instrumentation) and the results of the ground and flight test program for that aircraft conducted in the winter of 1975-75.

N76-24230# Lockheed-California Co Burbank
THE DEVELOPMENT OF AN ADVANCED ANTI-ICING/
DEICING CAPABILITY FOR US ARMY HELICOPTERS
VOLUME 2 ICE PROTECTION SYSTEM APPLICATION TO
THE UH-1H HELICOPTER Final Report, 30 Jun 1973 30 Jun 1975

J B Werner Nov 1975 222 p (Contract DAAJ02-73-C-0107 DA Proj 1F2-62209-AH-76) (AD-A019049, LR-27180-Vol-2, USAAMRDL-TR-75-34B) Avail NTIS CSCL 01/3

For abstract see N76-24229

N76-24233# Tennessee Univ Space Inst Tullahoma INVESTIGATION OF FEASIBLE NOZZLE CONFIGURATIONS FOR NOISE REDUCTION IN TURBOFAN AND TURBOJET AIRCRAFT VOLUME 1 SUMMARY AND SELECTED MULTINOZZLE CONFIGURATIONS Final Report, Jun 1972 - Jul 1975

B H Goethert, J R Maus, W A Dunnill et al Jul 1975 336 p references

(Contract DOT-FA72WA-3053)

(AD-A019645/1 FAA-RD-75-163-Vol-1) Avail NTIS HC \$9 25 CSCL 178

Techniques were developed for reducing the noise generated by high velocity jet streams exhausting from a wide variety of nozzle configurations. In addition to exploring techniques for noise suppression and/or redirection emphasis was placed on investigating the physical mechanisms at work in the generation, suppression and redirection of aerodynamic noise. An overall summary of the work, a description of the facilities used, and a description of the results obtained on linear arrays of circular nozzles and dual nozzles with shrouds are given.

N76-24234# Tennessee Univ Space Inst Tullahoma INVESTIGATION OF FEASIBLE NOZZLE CONFIGURATIONS FOR NOISE REDUCTION IN TURBOFAN AND TURBOJET AIRCRAFT VOLUME 2 SLOT NOZZLE CONFIGURATIONS Final Report, Jun 1972 - Jul 1975

B H Goethert J R Maus, W A Dunnill et al Jul 1975 342 p refs

(Contract DOT-FA72WA-3053)

FAA-RD-75-163-Vol-2) (AD-A019646/9 NTIS HC \$4 50 CSCL 17B

Results obtained for two dimensional rectangular slot nozzles without and with straight attached flaps are presented For vol 1 see N76-24233 Author

N76-24236*# General Electric Co Evendale, Ohio Advanced Engineering and Technology Programs Dept

SINGLE STAGE, LOW NOISE, ADVANCED TECHNOLOGY FAN VOLUME 1 AERODYNAMIC DESIGN

T J Sullivan, J L Younghans, and D R Little Mar 1976 145 p refs

(Contract NAS3-16813)

(NASA-CR-134801, R76AEG257-Vol-1) NTIS Avail HC \$6 00 CSCL 21E

The aerodynamic design for a half-scale fan vehicle which would have application on an advanced transport aircraft is described. The single stage advanced technology fan was designed to a pressure ratio of 1.8 at a tip speed of 503 m/sec 11 650 ft/sec) The fan and booster components are designed in a scale model flow size convenient for testing with existing facility and vehicle hardware. The design corrected flow per unit annulus area at the fan face is 215 kg/sec sq m (440 lb m/sec sq ft) with a hub-tip ratio of 0 38 at the leading edge of the fan rotor. This results in an inlet corrected airflow of 1179 kg/sec (259 9 lb m/sec) for the selected rotor tip diameter if 90 37 cm (35 58 in) The variable geometry inlet is designed utilizing a combination of high throat Mach number and acoustic treatment in the inlet diffuser for noise suppression (hybrid inlet) A variable fan exhaust nozzle was assumed in conjunction with the variable inlet throat area to limit the required area change of the inlet throat at approach and hence limit the overall diffusion and inlet length. The fan exit duct design was primarily influenced by acoustic requirements, including length of suppressor wall treatment, length, thickness and position on a duct splitter for additional suppressor treatment and duct surface Mach numbers Author

N76-24237*# General Electric Co Evendale, Ohio Advanced Engineering and Technology Programs Dept

SINGLE STAGE, LOW NOISE, ADVANCED TECHNOLOGY FAN VOLUME 2 STRUCTURAL DESIGN

J L Schoener, G R Black and R H Roth Mar 1976 50 p refs

(Contract NAS3-16813)

(NASA-CR-134802. R76AEG258-Vol-2) Avail NTIS HC \$4 00 CSCL 21E

The structural design for a half-scale fan vehicle which would have application on an advanced transport aircraft, is described The single stage advanced technology fan was designed to a pressure ratio of 1 8 at a tip speed of 503 m/sec (1 650 ft/sec) This mechanical design report describes the fan rotor design and the design of various structures of the vehicle eg stators, casings, splitters seals, adapters, etc Author

N76-24238*# General Electric Co Evendale, Ohio Advanced Engineering and Technology Programs Dept

SINGLE STAGE, LOW NOISE ADVANCED TECHNOLOGY FAN VOLUME 3 ACOUSTIC DESIGN

S B Kazın and R B Mishler Mar 1976 56 p refs

(Contract NAS3-16813)

(NASA-CR-134803, R76AEG259-Vol-3) HC \$4 50 CSCL 21E NTIS

The acoustic design for a half-scale fan vehicle which would have application on an advanced transport aircraft is described The single stage advanced technology fan was designed to a pressure ratio of 1 8 at a tip speed of 503 m/sec (1,650 ft/sec) The two basic approaches taken in the acoustic design were (1) minimization of noise at the source and $(\bar{2})$ suppression of the generated noise in the inlet and bypass exhaust duct Suppression of the generated noise is accomplished in the inlet through use of the hybrid concept (wall acoustic treatment plus

airflow acceleration suppression) and in the exhaust duct with extensive acoustic treatment including a splitter. The goal of the design was attainment of twenty effective perceived noise decibels (20 EPNdB) below current Federal Air Regulation noise standards for a full-scale fan at the takeoff cutback and approach conditions Predicted unsuppressed and suppressed fore and aft maximum perceived noise levels indicate that the cutback condition is the most critical with respect to the goal which is probably unattainable for that condition. This is also true for aft radiated noise in the approach condition

N76-24239# Boeing Co., Wichita Kans

FAA JT3D QUIET NACELLE RETROFIT FEASIBILITY VOLUME 2, ADDENDUM A MODEL AND PROGRAM FULL SCALE PLUG NOZZLE TESTS Final Report, Jul 1974 - Mar 1975

J E Mayer, L~L Linscheid and H F Veldman Apr 1975 220 p refs

(Contract DOT-FA71WA-2628)

(AD-A023037/5 FAA-RD-73-131-Vol-2-Add-A D3-9042-6) Avail NTIS HC \$7 75 CSCL 20/1

Previous tests of plug nozzles resulted in conflicting evidence of acoustic suppression. Model scale plug nozzles provided significant jet noise suppression limited or no noise suppression was observed during tests of full scale plug nozzles. The tests reported in this addendum were performed to identify the reason for noncorrelation between model and full scale acoustic results Four one-sixth scale primary exhaust steam plug nozzle configurations were tested to determine acoustic performance. A one-sixth scale conical nozzle was tested to provide an acoustic baseline The model scale revised Phase 2 plug provided acoustic suppression. The model scale revised Phase 2 plug with a long conical afterbody provided additional suppression. The revised Phase 2 plug and the plug with long conical afterbody were tested full scale on a 707/JT3D quiet nacelle. Only slight suppression was observed with the revised Phase 2 plug no additional suppression was observed with the long conical afterbody configuration. Analyses were performed to identify the reason for noncorrelation between model and full scale acoustic results. It was found that the acoustic performance of the model scale plug nozzle was essentially independent of the fan stream. whereas full scale acoustic levels with fan flow were consistently higher than without fan flow. A geometric comparison of model and full scale revealed that the primary exhaust stream of the model simulated full scale. The fan stream of the model included an idealization which did not exactly replicate the full scale fan duct It is believed that the geometric configuration of the full scale fan duct provided an additional noise source which was not present in the scale model and that this additional noise effectively masked the suppression provided by the full scale plug nozzle Author

N76-24240*# General Dynamics/Fort Worth Tex INLET SPILLAGE DRAG TESTS AND NUMERICAL FLOW-FIELD ANALYSIS AT SUBSONIC AND TRANSONIC SPEEDS OF A 1/8-SCALE, TWO-DIMENSIONAL, EXTERNAL-COMPRESSION, VARIABLE-GEOMETRY, SUPERSONIC INLET CONFIGURATION

J E Hawkins, F P Kirkland, and R L Turner Washington NASA Apr 1976 107 p refs (Contract NAS2-7210)

(NASA-CR-2680) Avail NTIS HC \$5 50 CSCL 21E

Accurate spillage drag and pressure data are presented for a realistic supersonic inlet configuration. Results are compared with predictions from a finite-differencing, inviscid analysis computer procedure. The analytical technique shows good promise for the evaluation of inlet drag but necessary refinements were identified. A detailed description of the analytical procedure is contained in the Appendix Author

N76-24242*# National Aeronautics and Space Administration Lewis Research Center Cleveland Ohio

SMALL, LOW-COST, EXPENDABLE TURBOJET ENGINE 1 DESIGN, FABRICATION, AND PRELIMINARY TESTING Robert P Dengler and Lawrence E Macioce Washington May 1976 51 p refs

(NASA-TM-X-3392, E-8590) Avail NTIS HC \$4 50 CSCL

A small experimental axial-flow turbojet engine in the 2 669-Newton (600-lbf) thrust class was designed fabricated, and tested to demonstrate the feasibility of several low-cost concepts Design simplicity was stressed in order to reduce the number of components and machining operations. Four engines were built and tested for a total of 157 hours. Engine testing was conducted at both sea-level static and simulated flight conditions for engine speeds as high as 38 000 rpm and turbine-inlet temperatures as high as 1 255 K (1 800 F). Author

N76-24243# European Space Agency Paris (France) ENGINE NOISE

Feb 1976 276 p refs Transl into ENGLISH of Triebwerkslaerm DGLR Cologne Report DLR-Mitt-74-21 1974 294 p Proc of DGLR Tech Comm for Airbreathing Propulsion Systems Symp Brunswick, 20-21 Feb 1974 Original German report available from ZLDI Munich DM 57-75

(ESA-TT-244 DLR-Mitt-74-21) Avail NTIS HC \$9 25

Several aspects of aircraft noise are considered. They include jet noise human reactions to aircraft noise in general, noise regulations, turbofan engine noise compressor noise wing and tail screening effects on engine noise and propeller aircraft noise.

N76-24244 European Space Agency Paris (France) OPTIMISED ENGINES FOR QSTOL APPLICATIONS

Joachim Kurzke *In its* Engine Noise (ESA-TT-244) Feb 1976 p 9-34 refs Transl into ENGLISH from Triebwerkslaerm DGLR Cologne Report DLR-Mitt-74-21 1974 p 9-34

The requirements of QSTOL propulsion are discussed A typical example of a quiet two-shaft bypass engine with variable nozzle in the bypass duct was selected The calculation of fan and jet noise is discussed A performance calculation of the take-off and flight condition as well as assumptions for the determination of the engine size and the component efficiency are briefly described. The selected engine is optimized taking eight free

N76-24247 European Space Agency Paris (France) AIRCRAFT NOISE LIMITS

Friedrich Karl Franzmeyer *In its* Engine Noise (ESA-TT-244) Feb 1976 p 54-68 refs Transi into ENGLISH from Triebwerkslaerm' DGLR Cologne Report DLR-Mitt-74-21 1974 p 49-65

The effect of noise limit regulations upon the technical design of civil aircraft is discussed. The noise limits were laid down as a function of weight because it was considered that a higher flying weight requires higher powered engines generating a higher noise level.

N76-24248 European Space Agency Paris (France) ON THE CALCULATION OF FAN NOISE

Klaus Heinig *In its* Engine Noise (ESA-TT-244) Feb 1976 p 70-92 refs Transl into ENGLISH from Triebwerkslaerm' DGLR Cologne Report DLR-Mitt-74-21 1974 p 67-87

For high bypass ratio aircraft turbines the noise generated by the unsteady aerodynamic forces and the propagation of the noise inside and outside the fan can be calculated by means of the heterogeneous wave equation. When determining the noise from engine fans whose cross section dimensions are greater than the wave length of the generated noise, the effect of the fan duct on the noise generation can be neglected. Contrary to the calculation of the sound generation of the aerodynamic forces the calculation of unsteady aerodynamic forces is still in its infancy. In spite of the factors neglected in the determination of the unsteady aerodynamic forces the measured and calculated fan noise levels agree well even at this stage.

N76-24249 European Space Agency Paris (France) SOME TECHNICAL PROBLEMS OF QUIET AIRCRAFT TECHNOLOGY

Wolfgang Dittrich In its Engine Noise (ESA-TT-244) Feb 1976 p 94-121 refs Transl into ENGLISH from Triebwerkslaerm DGLR, Cologne Report DLR-Mitt-74-21 1974 p 89-117

Three problems peculiar to quiet aircraft technology were studied A vertical take-off procedure which could lead to extremely low noise reverberation on the ground is presented. The relationships for the vortex noise from fans with subsonic air intake velocities were derived. Bypass fans with subsonic tip speeds were studied so that the vortex contribution investigated gains in importance. The application of atmospheric ion engines as quiet aero-engines is discussed.

N76-24250 European Space Agency, Paris (France) ON THE REDUCTION OF COMPRESSOR NOISE BY MEANS OF HELICAL DETUNERS

Dieter Lohmann In its Engine Noise (ESA-TT-244) Feb 1976 p 123-137 Transl into ENGLISH from 'Triebwerkslaerm DGLR Cologne Report DLR-Mitt-74-21, 1974 p 119-132

Tests were carried out on engine intake detuners whose configuration takes particular account of the qualitative properties of the compressor noise field. The helical detuners generate a vortex flow in the intake duct which exerts a favorable effect on acoustic cutoff. The solution of the wave equation yields damping and displacement of the natural frequencies as a function of the geometry of the detuners which it was possible to verify by means of noise field measurements in model ducts. Other acoustic measurements in ducts with a flow passing through them show that the level of the noise field also decreases as a result of the flow.

Author (ESA)

N76-24251 European Space Agency Paris (France) POSSIBILITIES OF NOISE REDUCTION FOR FAN ENGINES BY MEANS OF CONTROLS

Heinrich Dissen In its Engine Noise (ESA-TT-244) Feb 1976 p 138-148 refs Transl into ENGLISH from 'Triebwerkslaerm DGLR Cologne Report DLR-Mitt-74-21, 1974 p 133-144

A significant reduction of fan noise or jet noise can be achieved by varying the area of the primary and secondary propelling nozzles with constant engine thrust. For the engine with low bypass ratio the fan noise reduction was calculated as being 4 dB max and the jet noise reduction as approximately 5 dB max. As the bypass ratio increases the fan noise reduction decreases while the jet noise reduction increases. It is not possible to reduce both noise components simultaneously by means of coupling the controls. The variation of the primary propelling nozzle has a significant effect on the generation noise as the bypass ratio increases, variation of the secondary propelling nozzle becomes less effective in reducing noise.

Author (ESA)

N76-24252 European Space Agency, Paris (France) AIRCRAFT NOISE REDUCTION BY MEANS OF ACOUSTIC SCREENING AND ENGINE CONTROLS

Bernt-Hagen Gruenewald In its Engine Noise (ESA-TT-244) Feb 1976 p 149-178 refs Transl into ENGLISH from Triebwerkslaerm , DGLR Cologne Report DLR-Mitt-74-21 1974 p 145-172

With the arrangement of an engine above the wing it is possible to achieve sound screening for specific angles of radiation in relation to the ground. A calculation method for the determination of the ground noise level is described taking into account the screening effect of the wing Calculations using the VFW 614 as an example show that the screening effect of the wing produces a reduction of the flyover noise level during the landing phase of approximately 3 EPNdB at a flyover altitude of approximately 240 m. For fan engines having the same take-off and landing thrust (= 54 % of take-off thrust) but a different bypass ratio of 3 6 or 10, the effect on the radiation of the noise was mathematically investigated for a variation of the primary propelling nozzle area the secondary propelling nozzle area the fan blade angle of incidence and for water injection In each case only one of the four parameters was varied and the resulting thrust variation was rendered ineffective by appropriate movements of the throttle lever Author (ESA)

N76-24253 European Space Agency Paris (France) SYSTEMATIC INVESTIGATIONS IN THE FIELD OF ACOUSTIC SCREENING

Hans-Heinrich Hoelscher In its Engine Noise (ESA-TT-244) Feb 1976 p 179-205 refs Transl into ENGLISH from Triebwerkslaerm DGLR Cologne Report DLR-Mitt-74-21 1974 p 173-199

A series of tests was carried out on the screening effects of wings and tail surfaces on aircraft engine noise. The object was to test the applicability of prediction methods from optics on a surface having only one diffraction edge, which would conform as far as possible to the optimized condition. The effect of an edge radius such as applies to aerodynamic surfaces and that of a sound absorbent coating on the noise screen on the source side, was also investigated, the applicability of results to real surfaces with two and three diffraction edges was established. Measurements were carried out at different distances from the surfaces on nonabsorbing and absorbent surfaces with one two and three straight diffraction edges and one radiused edge.

N76-24254 European Space Agency Paris (France)
INVESTIGATION INTO THE NOISE PROPAGATION BY
PROPELLER AIRCRAFT IN GENERAL AVIATION
Eicke Schmidt In its Engine Noise (ESA-TT-244) Feb 1976
p 207-249 refs Transl into ENGLISH from Triebwerkslaern.
DGLR Cologne Report DLR-Mitt-74-21, 1974 p 201-241

A brief survey is given of the sources of noise in propeller-driven aircraft their engines and propellers together with the various mechanisms of noise generation. The results obtained in carrying out noise certification tests are reported. This showed that 11 % of the aircraft on which tests were requested did not satisfy the requirements. The values obtained during noise measurements on propeller-driven aircraft are shown as functions of several parameters, i.e. of blade tip Mach number and blade loading. The use of narrow band analyzers provides a means of estimating the engine and propeller noise components on specific aircraft and the spectral changes in the noise during flyover and at the time of the peak noise during the flyover.

N76-24255 European Space Agency Paris (France) QUIETER PROPELLERS FOR GENERAL AVIATION PRESENT POSITION FUTURE EXPECTATIONS Reinhard Hoffmann G Muehlbauer et al In its Engine Noise

Reinhard Hoffmann G Muehlbauer et al *In its* Engine Noise (ESA-TT-244) Feb 1976 p 251-265 refs Transl into ENGLISH from Triebwerkslaerm DGLR Cologne Report DLR-Mitt-74-21, 1974 p 243-258

The reduction of propeller noise of small executive and business aircraft up to 5.7 t is dealt with Blade tips are the main noise source due to their circumferential speed. Noise reduction measures include shortening of the propeller to its repair minimum and careful radiusing and profiling of the tip. The design of a variable pitch propeller with wooden blades combined with glass fiber plastics and metal is described. Future developments indicate large and low speed propellers necessitating engines with gearboxes.

N76-24256 European Space Agency Paris (France)
NOISE PHENOMENA WITH HELICOPTER ROTORS AND
POSSIBILITIES OF NOISE REDUCTION

Volker Langenbucher In its Engine Noise (ESA-TT-244) Feb 1976 p 266-292 refs Transl into ENGLISH from Triebwerkslaerm DGLR Cologne Report DLR-Mitt-74-21 1974 p 259-274

Possibilities of reducing helicopter rotor noise are discussed Rotational noise is mainly determined by area loading while rotor noise is determined by blade loading. The effects of area loading and circumferential speed blade loading and aerodynamic shape of the blade on noise generation were investigated and requirements were developed for the rotor configuration Experimental investigations of noise reduction of tail rotors are reported.

N76-24257# Scientific Translation Service, Ann Arbor Mich EFFECT OF BLADE ASPECT RATIO ON THE PROPERTIES OF AN AXIAL COMPRESSOR STAGE

A D Gegin [1975] 28 p refs Transl into ENGLISH from Prom Aerod (USSR) v 29 1973 p 35-55 (K-Trans-77) Avail NTIS HC \$4.50

An experimental and theoretical study of the performance of axial compressors with rotor blades having different aspect ratios shows an appreciable increase of the pressure coefficient and a decrease of stage efficiency when the aspect ratios of 1 13 or 0 55 are reached at relative hub diameters of 0 6 and 0 803 respectively in axial compressor stage designs. The efficiency of blade rings with different blade aspect ratios was estimated. The structure of pressure losses in low aspect ratio blade rings was analyzed and the losses were calculated. A method is proposed for calculation of pressure losses. Design recommendations are given for the enhancement of axial compressor efficiency.

N76-24258# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt Oberpfaffenhofen (West Germany) Zentralabteilung Luftfahrttechnik

CHARACTERISTIC JET ENGINE PARAMETERS FOR PROJECT COMPARISONS [CHARAKTERISTISCHE STRAHLTRIEBWERKSPARAMETER FUER PROJEKTVERGLEICHE]

A Licklederer Dec 1974 36 p in GERMAN (DLR-IB-555-74/13) Avail NTIS HC \$4 00

Characteristic parameters for 98 jet engines are depicted in graphs and listed in tables. The main parameters considered are thrust weight, specific fuel consumption air mass flow rate, compression pressure, ratio, diameter, and length.

N76-24259# United Technologies Corp Windsor Locks, Conn MULTIPLE FAULT GAS PATH ANALYSIS APPLIED TO A TWIN SPOOL, MIXED FLOW, VARIABLE GEOMETRY, TURBOFAN ENGINE Final Report

Joseph M Kos Oct 1975 108 p (Contract N00140-75-C-0449)

(AD-A019183 HSER-6794) Avail NTIS CSCL 21/5

This report presents the results of a study made to develop a multiple fault diagnostic system for a complex twin spool, mixed flow variable geometry turbofan engine using Hamilton Standard's Gas Path Analysis Technique Engine data from a detailed nonlinear simulation of a paper engine was used. A simple control mode is also presented. Using a weighted least squared estimation procedure a number of possible diagnostic routines are developed taking into account sensor and control uncertainties. A figure of merit is defined and used to isolate the acceptable diagnostic systems.

N76-24260# General Electric Co Cincinnati Ohio Aircraft Engine Group

DEVELOPMENT OF EMISSIONS MEASUREMENT TECHNIQUES FOR AFTERBURNING TURBINE ENGINES Final Technical Report, 1 Apr 1973 - 31 Mar 1975

T F Lyon W C Colley M J Kenworthy and D W Bahr Oct 1975 348 p refs

(Contract F33615-73-C-2047 AF Proj 1900)

(AD-A019094 R75AEG457 AFAPL-TR-75-52) Avail NTIS CSCL 21/2

Detailed emissions measurements were made throughout the plumes of J85-5 and J79-15 engines at military power and three afterburning power levels Calculations of integrated pollutant flow rates at various axial stations showed that hydrocarbons are most reactive in the plume with significant decreases observed at all afterburning power levels. Carbon monoxide can either increase or decrease with axial distance in the plume, depending on the power level and the hydrocarbon contents. No significant change in total oxides of nitrogen was observed at any power level. A computerized analytical plume model was developed and verified which considers the simultaneous mixing and chemical reaction processes that can occur in the plumes of afterburning engines. The model enables calculating local concentrations of the various exhaust gases at any axial or

radial location from initial values measured at the exhaust plane A procedure for afterburning engine emissions measurements

N76-24261# ARO Inc Arnold Air Force Station Tenn CHRONOLOGY AND ANALYSIS OF THE DEVELOPMENT
OF ALTITUDE PERFORMANCE AND MECHANICAL CHARACTERISTICS OF A TURBOFAN ENGINE AT THE ARNOLD ENGINEERING DEVELOPMENT CENTER Final Report, 15 Aug 1973 - 31 Mar 1975

Jack T Tate and T J Gillard AEDC Dec 1975 30 p refs (ARO Proi B434 08A)

(AD-A018691 ARO-ETF-TR-75-70 AEDC-TR-75-119) Avail NTIS CSCL 21/5

The chronology and analysis of the altitude development cycle of a typical current state-of-the-art turbine engine at the Engine Test Facility of the Arnold Engineering Development Center is reviewed to provide visibility and guidelines to improve the ETF/AEDC support capability to turbine engine test programs A critical review of the program is reported with respect to three salient areas (1) a comparison of the original test schedule with the achieved schedule (2) a chronology of the engine builds tested (3) and a resume of the test planning/coordination activities of the program

N76-24262# Pratt and Whitney Aircraft East Hartford Conn APPLIED HIGH TEMPERATURE TECHNOLOGY PROGRAM, VOLUME 1 Final Technical Report, 1 Jun 1971 - 31 Jan 1975

Charles W Hayes and J J Jackson Oct 1975 269 p refs (Contract F33657-71-C-0789 AF Proj 668A) (AD-A018637, PWA-5232-Vol-1 AFAPL-TR-75-44-Vol-1) Avail NTIS CSCL 21/5

The initial effort consisted of the development of aircooled columbium and thoria dispersed (TD) cobalt vanes for installation in an advanced development engine. The redirected effort, covered in the report continued this development by further characterizing the poor fatigue behavior of the coated SU-31 columbium alloy and substituting a directionally solidified eutectic alloy for the TD cobalt material The gamma/gamma +delta D S eutectic alloy was chosen for this program A technology base for design of gamma/gamma +delta DS eutectic hardware is presented This includes casting coating joining, hole drilling and material property evaluation. Material laboratory tests are described and data presented Applications to aircooled turbine hardware is discussed

N76-24263# Pratt and Whitney Aircraft East Hartford, Conn APPLIED HIGH TEMPERATURE TECHNOLOGY PROGRAM VOLUME 2 EVALUATION OF COATED COLUMBIAN ALLOYS FOR ADVANCED TURBINE AIRFOILS Final Technical Report, 1 Jun 1971 - 31 Jan 1975

Charles W Hayes and J J Jackson Cct 1975 171 p (Contract F33657-71-C-0789, AF Proj. 668A) (AD-A018638 PWA-5232-Vol-2 AFAPL-TR-75-44-Vol-2) Avail NTIS CSCL 21/5

This report covers the columbium alloy evaluation objective of these evaluations was to determine the applicability of coated columbium alloys for advanced gas turbine vanes The alloy SU-31 (Cb-17W-35 Hf-01C) was selected for evaluation following screening of wrought and cast alloys using the criteria of creep resistance at 2400F and fabricability. Hi Temp Co R512E (Si-20Cr-20Fe) silicide coating was selected for this program Mechanical and physical properties were determined and oxidation resistance was evaluated. Cast and wrought SU-31 vanes were fabricated and tested under simulated engine conditions. Based on the results of these evaluations it was concluded that relatively poor cyclic oxidation and thermal fatigue properties are likely to prevent extended use of R512E coated SU-31

N76-24265*# National Aeronautics and Space Administration Langley Research Center Langley Station, Va A TECHNIQUE USING A NONLINEAR HELICOPTER MODEL FOR DETERMINING TRIMS AND DERIVATIVES

Aaron J Ostroff David R Downing, and William J Rood (Vought Corp Hampton Va) Washington May 1976 96 p refs (NASA-TN-D-8159 L-10555) Avail NTIS HC \$5 00 CSCL

A technique is described for determining the trims and quasi-static derivatives of a flight vehicle for use in a linear perturbation model both the coupled and uncoupled forms of the linear perturbation model are included. Since this technique requires a nonlinear vehicle model detailed equations with constants and nonlinear functions for the CH-47B tandem rotor helicopter are presented Tables of trims and derivatives are included for airspeeds between -40 and 160 knots and rates of descent between + or - 10,16 m/sec (+ or - 200 ft/min) As a verification, the calculated and referenced values of comparable trims derivatives and linear model poles are shown to have acceptable agreement

N76-24266*# National Aeronautics and Space Administration Langley Research Center Langley Station Va

SIMULATOR STUDY OF THE EFFECTIVENESS OF AN AUTOMATIC CONTROL SYSTEM DESIGNED TO IMPROVE THE HIGH-ANGLE-OF-ATTACK CHARACTERISTICS OF A FIGHTER AIRPLANE

William P Gilbert Luat T Nguyen and Roger W VanGunst Washington May 1976 156 p refs (NASA-TN-D-8176 L-10545) Avail NTIS HC \$6.75 CSCL

A piloted, fixed-base simulation was conducted to study the effectiveness of some automatic control system features designed to improve the stability and control characteristics of fighter airplanes at high angles of attack. These features include an angle-of-attack limiter a normal-acceleration limiter an aileronrudder interconnect and a stability-axis yaw damper. The study was based on a current lightweight fighter prototype. The aerodynamic data used in the simulation were measured on a 0.15-scale model at low Reynolds number and low subsonic Mach number. The simulation was conducted on the Langley differential maneuvering simulator and the evaluation involved representative combat maneuvering. Results of the investigation show the fully augmented airplane to be quite stable and maneuverable throughout the operational angle-of-attack range The angle-of-attack/normal-acceleration limiting feature of the pitch control system is found to be a necessity to avoid angle-of-attack excursions at high angles of attack. The aileronrudder interconnect system is shown to be very effective in making the airplane departure resistant while the stability-axis yaw damper provided improved high-angle-of-attack roll performance with a minimum of sideslip excursions

N76-24277# Army Aviation Engineering Flight Activity, Edwards AFB Calif

PERFORMANCE AND HANDLING QUALITIES HELICOPTER EQUIPPED WITH THREE HOT METAL/PLUME INFRARED SUPPRESSORS Final Report, 2 Sep - 14 Nov

Albert L Winn and Robert L Stewart Apr 1975 60 p refs (AD-A019482, USAAEFA-75-01) Avail NTIS CSCL 01/2

The performance and handling qualities of the AH-1G helicopter were quantitatively and qualitatively evaluated with a standard exhaust duct and with Garrett Lycoming, and Bell infrared suppressors installed. Twenty-one flights were flown for a total of 20 7 productive flight hours. The effectiveness of the suppressors themselves in reducing infrared radiation was not a part of this test GRA

N76-24278# Air Force Inst of Tech Wright-Patterson AFB, School of Engineering RECOVERY TECHNIQUES FOR AIRCRAFT IN SPINNING FLIGHT MS Thesis

William A Flanagan Dec 1975 132 p refs (AD-A019323, GAE/MC/75-3) Avail NTIS CSCL 01/2

This study represents an attempt to use numerical solutions of the equations of motion to discover the most effective control surface deflections for use in a delta-winged fighter for recovery from a fully developed spin. The recovery methods were tested upon stable spins since the stable flat spin is generally the most dangerous spin GRA

N76-24279# Air Force Flight Dynamics Lab , Wright-Patterson AFB Ohio

APPLICATION OF DESIGNS TO IMPROVE AIRCRAFT FLIGHT CONTROL SURVIVABILITY

Frederick R Taylor and John Schonowski 5 Sep 1975 44 p refs Presented at the Am Defense Preparedness Assoc Symp on Vulnerability and Survivability San Diego, Calif 21-23 Oct 1975 Prepared in cooperation with Navy (AD-A018733) Avail NTIS CSCL 01/3

This paper is presented in two parts. It summarizes the operational flight control survivability experience during the past decade and describes designs that have been implemented or developed to reduce the vulnerability of tactical aircraft flight control systems. Presented are the results of analyses and evaluations of combat experience data wherein flight controls contributed disproportionately to approximately twenty-five (25) percent of aircraft losses while comprising only five (5) percent of total aircraft presented area. The culprit components concepts and mechanizations have been identified and suggested designs are presented to minimize aircraft flight control system vulnerability Finally, the impacts that these designs can or have had on new weapon system developments are shown. Also indicated is the extent, if any survivability enhancement is incorporated into newly acquired or developmental aircraft such as the A-10 F-14 F-15 F-16, F-18 and AAH Author (GRA)

N76-24365*# Boeing Commercial Airplane Co., Seattle Wash DEVELOPMENT OF LIGHTWEIGHT FIRE RETARDANT, LOW-SMOKE, HIGH-STRENGTH, THERMALLY STABLE AIRCRAFT FLOOR PANELING Final Report

D B Arnold J V Burnside and J V Hajari Apr 1976 74 p (Contract NAS9-14753)

(NASA-CR-147750) Avail NTIS HC \$4 50 CSCL 11D

Fire resistance mechanical property tests were conducted on sandwich configurations composed of resin-fiberglass laminates bonded with adhesives to Nomex honeycomb core. The test results were compared to proposed and current requirements for aircraft floor panel applications to demonstrate that the fire safety of the airplane could be improved without sacrificing mechanical performance of the aircraft floor panels Author

Messerschmitt-Boelkow-Blohm G m b H Otto-N76-24368# brunn (West Germany) Unternehmensbereich Flugzeuge GLASS FIBER REINFORCED PLASTICS FOR SMALL AIRCRAFT STRUCTURES ACTIVITIES OVER THE YEARS 1956 TO 1971 IN THE LIGHT AIRCRAFT DIVISION Albert Mylius 5 Dec 1973 29 p In GERMAN ENGLISH

summary (MBB-UFE-1067-O) Avail NTIS HC \$4 00

Examples are given of the application of glass fiber reinforced plastics to structural and nonstructural members of light aircraft developed by MBB

N76-24370# Air Force Flight Dynamics Lab Wright-Patterson AFB Ohio

STATIC AND FATIGUE TESTS OF F-111B BORON WING TIP

Murray N England Jun 1975 43 p (AF Proi 698CW)

(AD-A018751 AFFDL-TR-75-27) Avail NTIS CSCL 11/4

This report describes the structural integrity tests of the F-111B boron-epoxy wing tip A single test specimen was subjected to static load tests static load plus internal pressure in the fuel cell tests a fatigue test simulating four service lifetimes and residual strength tests. Results are discussed. GRA

N76-24411# Royal Netherlands Aircraft Factories Fokker Schiphol-Oost Manufacturing Research and Product Development Dept

METAL-TO-METAL ADHESIVE BONDED AIRCRAFT STRUCTURES

Jannes Koetsier Jun 1975 16 p (FOK-K-81) Avail NTIS HC \$3 50

A survey of the Fokker F27 Friendship and F28 Fellowship structures was made and their structural approach discussed Adhesive bonding of the fuselages empennages and wings of the two aircrafts are detailed service experience is mentioned

Materials (phenolic vinylic adhesive Redux 775 was mostly used) and processes are discussed and production and quality control are outlined

N76-24435# National Aviation Facilities Experimental Center, Atlantic City NJ

AIRCRAFT COMMUNICATIONS INTERFERENCE TESTS Final Report, Apr - May 1975

Jack Bernstein Mar 1976 19 p ref

(AD-A022954/2 FAA-NA-75-56) Avail NTIS HC \$3 50 CSCL 17/2

Tests were conducted to determine aircraft VHF antenna isolation and VHF receiver response. The tests show that isolation depends on the physical positioning of the antennas on the airframe and that existing isolation can realistically cause interference or quieting between transceivers even though they are operating at different frequencies up to 4 MHz apart. It was also found that transceiver design affects the rejection of undesired received signals. It was recommended that maximum isolation be maintained between aircraft antennas receiver design be optimized for rejection of undesired signals and cockpit communications discipline be used

N76-24455# Army Electronics Command Fort Monmouth NJ Communications/ADP Lab

ROTOR EFFECTS ON L-BAND SIGNALS RECEIVED BY HELICOPTER ANTENNAS PART 3 MEASUREMENTS OF THE AMPLITUDE AND PHASE DISTORTIONS OF CW SIGNALS Final Experimental Report, CY 1973

C M DeSantis and F Schwering Dec 1975 37 p refs (DA Proj 1T1-61102-B-31A)

(AD-A019506 ECOM-4383-Pt-3) Avail NTIS CSCL 17/7

An experimental study of rotor-blade-induced distortions of L-band signals has been carried out to verify the results of a previous theoretical investigation. These signals were received by helicopter antennas mounted on the cabin roof below the rotor To verify the theoretical findings the effects of such distortions on horizontally and vertically polarized incident signals were measured for several directions of incidence. The results of both the theory and experiments are in excellent agreement

N76-24459# Naval Air Development Center Warminster Pa **ROLL PLANE COMPUTER PROGRAM**

Oct 1975 143 p

(AD-A019000 NADC-75251-20A DOD/DF-75/003A) Avail NTIS CSCL 09/5

The Roll Plane program can be used to predict an antenna radiation pattern for a fuselage mounted antenna. The aircraft's fuselage wings and horizontal stabilizers can be modeled in the program The program will compute information necessary for antenna pattern plots. If the plots are desired a magnetic tape drive is necessary to run the program. The generated tapes from the program can be used on a California Computer Products Inc CALCOMP pen plotter Model 763 to produce the desired antenna patterns GRA

N76-24483# Naval Electronics Lab Center, San Diego Calif EIGHT-TERMINAL, BIDIRECTIONAL, FIBER OPTIC TRUNK DATA BUS Final Report, Jul 1974 - Jun 1975 Daniel E Altman 15 Nov 1975 45 p refs

(RF54545002)

(AD-A019429, NELC/TR-1969) Avail NTIS CSCL 09/1

Extension of a previously demonstrated fiber optic data transmission system to eight terminals and bidirectional operation is demonstrated to be within the state of the art. At a 5MB/s data rate a worst-case SNR of 5 dB was demonstrated Improved optical couplers comprising a dual internal mirror mixing block mounted in a low-loss, all-metal holder and integral electronics are described GRA N76-24598# Battelle Columbus Labs Ohio

INTERFERENCE-FIT-FASTENER INVESTIGATION Final

Report, 26 Mar 1973 - 30 Jun 1974
Stephen C Ford, B N Leis, D A Utah, W Griffith, S G
Sampath and P N Mincer Sep 1975 84 p refs
(Contract F33615-73-C-3121, AF Proj 1467)

(AD-A018804 AFFDL-TR-75-93) Avail NTIS CSCL 13/5

The report presents analytical and experimental techniques for defining the stress-strain and deformation states around holes filled with tapered shank interference fit fasteners. A prescription for fatigue-life analysis and prediction is developed wherein the above noted data are used Stresses and plastic strains around fastener holes are determined analytically for two- and threedimensional elastic and elastic-plastic cases using AXISOL and MARC computer codes

These results are evaluated based on data obtained from the dislocation etching technique speckle photography experiments and electrical resistance strain gages A fatigue analysis technique is developed based on (1) a mechanics analysis to estimate local stress and strain and (2) a calculation of fatigue damage. This analysis provides a good estimate of life to crack initiation. Fastener installation variables are studied and critical ones selected. Constant amplitude and spectrum loading fatigue tests are reported and the data used to verify fatique life predictions

N76-25017# Naval Postgraduate School Monterey, Calif AN APPROACH TO THE ESTIMATION OF LIFE CYCLE COSTS OF A FIBER-OPTIC APPLICATION IN MILITARY AIRCRAFT MS Thesis

John Michael McGrath and Kenneth Ralph Michna Sep 1975 163 p refs

(AD-A019379) Avail NTIS CSCL 20/6

As significant technological advances in fiber optics and optical data transmission methods are being made it is necessary to develop appropriate methods for estimating life cycle costs for alternative coaxial/twisted pair wire and optical fiber avionics Measures of effectiveness are suggested for each alternative system. An approach, which structures the technological and demand uncertainties of fiber optics is developed through scenarios as a means of relating cost and effectiveness. It is suggested that Delphi and experience curve techniques be used in conjunction with ordered scenarios as a technological forecasting technique for estimation of life cycle costs of fiber optics. In addition, a review of the historical and technological background of fiber optics and their application to the Naval Electronics Laboratory Center (NELC) A-7 Airborne Light Optical Fiber Technology (ALOFT) Program is included

N76-25143*# National Aeronautics and Space Administration Ames Research Center Moffett Field Calif

WIND TUNNEL INVESTIGATION OF NACELLE-AIRFRAME INTERFERENCE AT MACH NUMBERS OF 09 TO 1 4-FORCE DATA

Daniel P Bencze Feb 1976 283 p réfs (NASA-TM-X-62489 A-4982) Avail NTIS HC \$9.25 CSCL

Detailed interference force and pressure data were obtained on a representative wing-body-nacelle combination at Mach numbers of 0.9 to 1.4. The model consisted of a delta wing-body aerodynamic force model with four independently supported nacelles located beneath the wing-body combination. The model was mounted on a six-component force balance, and the left-hand wing was pressure-instrumented Each of the two right-hand nacelles was mounted on a six-component force balance housed in the thickness of the nacelle while each of the left-hand nacelles was pressure-instrumented. The primary variables examined included Mach number angle of attack nacelle position and nacelle mass-flow ratio. Four different configurations were tested to identify various interference forces and pressures on each component these included tests of the isolated nacelle the isolated wing-body combination, the four nacelles as a unit, and the total wing-body-nacelle combination. Nacelle axial location relative to both the wing body combination and to each other was the most important variable in determining the net interference among the components

N76-25144*# National Aeronautics and Space Administration Ames Research Center Moffett Field Calif

WIND TUNNEL INVESTIGATION OF NACELLE-AIRFRAME INTERFERENCE AT MACH NUMBERS OF 09 TO 14-PRESSURE DATA, VOLUME 2

Daniel P Bencze Feb 1976 423 p refs 2 Vol. (NASA-TM-X-73088 A-4982) Avail NTIS HC \$1100 CSCL

Detailed interference force and pressure data were obtained on a representative wing-body nacelle combination at Mach numbers of 0.9 to 1.4. The model consisted of a delta wing-body aerodynamic force model with four independently supported nacelles located beneath the wing-body combination. The primary variables examined included Mach number langle of attack nacelle position and nacelle mass flow ratio Four different configurations were tested to identify various interference forces and pressures on each component these included tests of the isolated nacelle the isolated wing-body combination the four nacelles as a unit and the total wing-body-nacelle combination. Nacelle axial location relative to both the wing-body combination and to each other was the most important variable in determining the net interference among the components. The overall interference effects were found to be essentially constant over the operating angle-of-attack range of the configuration and nearly independent of nacelle mass flow ratio

N76-25145 Texas Univ Arlington THE RELATIONSHIPS BETWEEN A WING AND ITS INITIAL TRAILING VORTICES Ph D Thesis

Corliss Wyatt Adams 1975 175 p

Avail Univ Microfilms Order No 76-11197

Velocity and pressure measurements were made of several trailing vortices in the near field of the wing utilizing a fivehole pressure probe. Vortex variations involved different rectangular wing sizes and shapes downstream distances free stream velocities and angles of attack. The experimental results generally substantiated that the overall circulation about a trailing vortex is equal to the mid-wing bound circulation. A 25 per cent axial velocity excess was measured in the core of one vortex (Vortex 13) with the wing set at 12 degrees angle of attack The data for one vortex (Vortex 13A) were selected to use as a guide and check for theoretical development

N76-25146*# Boeing Commercial Airplane Co Seattle Wash A PRELIMINARY DESIGN STUDY OF A LAMINAR FLOW CONTROL WING OF COMPOSITE MATERIALS FOR LONG RANGE TRANSPORT AIRCRAFT Final Report, Apr 1975 -Mar 1976

G R Swinford Apr 1976 125 p refs (Contract NAS1-13872)

(NASA-CR-144950 D6-42967) Avail NTIS HC \$5 50 CSCL

The results of an aircraft wing design study are reported The selected study airplane configuration is defined. The suction surface ducting and compressor systems are described Techniques of manufacturing suction surfaces are identified and discussed. A wing box of graphite/epoxy composite is defined Leading and trailing edge structures of composite construction are described Control surfaces engine installation and landing gear are illustrated and discussed. The preliminary wing design is appraised from the standpoint of manufacturing weight operations and durability. It is concluded that a practical laminar flow control (LFC) wing of composite material can be built and that such a wing will be lighter than an equivalent metal wing As a result, a program of suction surface evaluation and other studies of configuration aerodynamics structural design and manufacturing and suction systems are recommended

N76-25148*# Texas Univ Austin Engineering and Mechanics Dept of Aerospace

AN EXPERIMENTAL INVESTIGATION OF SUPERSONIC FLOW PAST A WEDGE-CYLINDER CONFIGURATION

Daniel W Barnette Apr 1976 63 p refs

(Contract NAS9-13707)

(NASA-CR-147741 AER-76002) Avail NTIS HC \$4 50 CSCL 01A

An experimental investigation of supersonic flow past double-wedge configurations was conducted. Over the range of geometries tested it was found that while theoretical solutions both for a Type V pattern and for a Type VI pattern could be generated for a particular flow condition (as defined by the geometry and the free-stream conditions) the weaker Type VI pattern was observed experimentally. More rigorous flow-field solutions were developed for the flow along the wing leading-edge Solutions were developed for the three-dimensional flow in the plane of symmetry of a swept cylinder (which represented the wing leading-edge) which was mounted on a wedge (which generated the bow shock wave) A numerical code was developed using integral techniques to calculate the flow in the shock layer upstream of the interaction region (i.e. near the wing root) Heat transfer rates were calculated for various free stream conditions. The present investigation was undertaken to examine the effects of crossflow on the resultant flow-field and to verify the flow model used in theoretical calculations

N76-25151# Northrop Corp Hawthorne Calif CALCULATION OF THREE-DIMENSIONAL SUPERSONIC FLOW FIELDS ABOUT AIRCRAFT FUSELAGES AND WINGS AT GENERAL ANGLE OF ATTACK

Chong-Wei Chu Mar 1973 34 p refs

(AD-A018715 NOR-72-182) Avail NTIS CSCL 20/4

A new algorithm for the three-dimensional method of characteristics is applied to the calculation of steady inviscid supersonic flow about aircraft fuselages and wings at general angle of attack After a brief discussion of the new method computed results of flow over an elliptic cone and a blunt circular cone at angles of attack are presented and compared with available experimental data Good agreement is observed Application to fuselage flow field calculation then follows Calculated examples of flow about typical fuselages under different flight conditions are presented discussed and compared with available experimental data with good agreement. Finally, the computed pressure distribution on a thin wing an elliptic cone of 20 1 axis ratio is presented and discussed. The present method can be used to obtain flow field information for aircraft design or to provide inviscid solutions for boundary layer analysis Author (GRA)

N76-25152# Naval Postgraduate School Monterey Calif THE DRAG AND LIFT CHARACTERISTICS OF A CYLINDER PLACED NEAR A PLACE SURFACE MS Thesis Selahattin Goktun Dec 1975 115 p refs (AD-A019286) Avail NTIS CSCL 20/4

Surface pressure drag and lift coefficients have been experimentally determined for a right circular cylinder located near a plane surface and placed in cross flow of air Parametric studies were carried out for Reynolds number varying from 90 000 to 250 000 three plate lengths and a variety of cylinder to plate spacings. The variation of the drag coefficient as a function of gap size was found to exhibit an interesting and unexpected trend. The drag was a minimum when the cylinder was resting on the plate and was a maximum at a gap size of approximately one cylinder radius. Flow visualization studies together with detailed measurements of the vortex shedding frequency in the cylinder wake indicate that the plate interferes with the formation of the vortex street in the cylinder wake when it is located within a cylinder radius of the cylinder. This interference disturbs the cylinder base pressure which in turn influences that magnitude of the drag coefficient Author (GRA)

N76-25154# Committee on Commerce (U S Senate) EMERGENCY LOCATOR TRANSMITTERS

Washington GPO 1975 13 p Hearing on S 910 before Subcomm on Aviation of Comm on Commerce 94th Congr 1st Sess 18 Sep 1975

(GPO-60-520) Avail Subcomm on Aviation

Temporary operation of certain civil aircraft without operable emergency locator transmitter is considered. Testimony portrays the delay experienced by aircraft owners when this homing device is being repaired or replaced and the hardship encountered by the required grounding of the aircraft

N76-25156*# Old Dominion Univ. Research Foundation, Norfolk

WIND TUNNEL DESIGN STUDIES AND TECHNICAL EVALUATION OF ADVANCED CARGO AIRCRAFT CON-**CEPTS** Final Report

D M Rao May 1976 36 p refs (Grant NsG-1135)

(NASA-CR-148149 TR-76-T11) Avail NTIS HC \$4 00 CSCL 01C

In support of aerodynamic studies relating to the design and performance prediction of the National Transonic Facility the following main tasks were accomplished (1) estimation of aerodynamic losses of the tunnel circuits (2) refinement of the high-speed diffuser loss prediction method utilizing experimental data generated for the purpose, (3) model studies of flow in the second-turn and measurements of the fan inlet distortion and overall pressure loss (4) development of a shortened fan nacelle configuration of improved aerodynamic performance, and (5) evolution through model studies of an efficient rapid-diffuser system as the key to a circuit-modification proposal to reduce volume and minimize liquid-nitrogen consumption at the same time saving on the shell cost

N76-25157*# Boeing Commercial Airplane Co., Seattle Wash TECHNICAL AND ECONOMIC ASSESSMENT OF SPAN-DISTRIBUTED LOADING CARGO AIRCRAFT CONCEPTS Final Report

David H Whitlow and P C Whitner Jun 1976 218 p refs (Contract NAS1-13963)

(NASA-CR-144963 D6-75776) Avail NTIS HC \$7.75 CSCL 01C

A preliminary design study of the performance and economics resulting from the application of the distributed load concept to large freighter aircraft was made. The study was limited to configurations having the payload entirely contained in unswept wings of constant chord with conventional tail surfaces supported from the wing by twin booms. A parametric study based on current technology showed that increases in chord had a similar effect on the economics as increases in span Increases in both span and chord or airplane size had the largest and most favorable effect. At 600,000 lbs payload a configuration was selected and refined to incorporate advanced technology that could be in production by 1990 and compared with a reference conventional airplane having similar technology

N76-25158# Naval 'Air Development Center, Warminster Pa Air Vehicle Technology Dept

EXPLOSION PROOFING H-53 RANGE EXTENSION TANK Final Report

Albert E Simkins 11 Nov 1975 28 p

(AD-A018353 NADC-75236-30) Avail NTIS CSCL 13/4

A kit composed of polyurethane reticulated foam MIL-B-83054 which provides protection against internal explosions from unknown sources that have occurred in the H-53 range extension fuel tanks was devised and tested. Results of tests indicate that the kit arrests an explosion or fire initiated within the tank A loss of 87% of the usable fuel and a gain of 795 pounds are attributed to installation of the foam Author (GRA)

N76-25159# Boeing Commercial Airplane Co., Seattle Wash APPLICATION OF ADVANCED AERODYNAMIC CONCEPTS TO LARGE SUBSONIC TRANSPORT AIRPLANES Final Technical Report, Oct 1974 - Sep 1975

Robert M Kulfan and Weston M Howard 17 Nov 1975 117 p refs

(Contract F33615-75-C-3013, AF Proj. 1476)

(AD-A019956 D6-75748 AFFDL-TR-75-112) Avail NTIS CSCL 01/1

A preliminary design study has been made to identify the performance advantages obtained when advanced aerodynamic technology aircraft are used to perform subsonic military air missions requiring long range (10 000 nmi) or high endurance (24 hr) with heavy payloads (250 000 lb and 400 000 lb respectively) The study consisted of two phases the first included evaluating the performance benefits by individually

applying various advanced aerodynamic concepts and recommending areas where additional research and development work are necessary. The second phase included configuring integrated advanced technology aircraft that incorporated the most promising compatible aerodynamic concepts. Comparisons were made with conventional aerodynamic technology configurations designed for similar missions.

N76-25160# Army Aviation Engineering Flight Activity Edwards AFR Calif

ARMY PRELIMINARY EVALUATION YAH-IQ HELICOPTER WITH A FLAT-PLATE CANOPY Final Report

James R Arnold Aug 1975 41 p refs (PRON Proj 21-5-R0124-01-21-EC)

(AD-A020111 USAAEFA-75-18) Avail NTIS CSCL 01/1

The United States Army Aviation Engineering Flight Activity conducted a limited evaluation of the level flight performance and handling qualities of a YAH-1Q helicopter with a flat-plate canopy from 17 through 19 June 1975 at the Bell Helicopter Company flight test facility at Arlington Texas During the test program eleven flights for a total of 4.4 productive hours were flown. A loss in maximum airspeed for level flight was determined when compared to the AH-1G (Bell Helicopter Company data indicate 5 to 7 knots) The primary effect of the flat-plate canopy on handling qualities was a noticeable decrease in directional stability. The one deficiency determined during the evaluation was the internal reflection from external light sources on the flat-plate canopy during night flight. Five shortcomings were noted during the evaluation. Further testing should be conducted to determine the effect of the decreased directional stability on the accuracy of rocket fire

N76-25161# Army Aviation Engineering Flight Activity Edwards AFB Calif

ENGINEERING EVALUATION JOH-58A HELICOPTER WITH AN AUTOMATIC RELIGHT SYSTEM Final Report, 12 Feb - 11 Apr 1975

Tom P Benson Carl F Mittag and Robert M Buckanin Jun 1975 85 p refs

(PRON Proj EJ-4-H0044-00-EJ-EJ)

(AD-A019407 USAAEFA-74-22) Avail NTIS CSCL 01/3

The United States Army Aviation Engineering Flight Activity conducted a limited in-flight evaluation of an automatic engine relight system installed in an OH-58A helicopter at Edwards Air Force Base California from 12 February through 11 April 1975. During the program 33 test flights were flown for a total of 13.5 productive flight hours. Results of the evaluation showed that established limitations may be exceeded if the automatic relight system functions at certain points within the current operating envelope. Required additional limitations to the current operating envelope with the automatic relight system activated include in-ground-effect hover below 10 feet and specific combinations of airspeeds and engine power settings. Two deficiencies and one shortcoming were noted during the evaluation.

N76-25166*# Kanner (Leo) Associates Redwood City Calif RESEARCH ON AIRCRAFT NOISE TEST METHODS

G Casandjian Washington NASA Jun 1976 20 p Translinto ENGLISH from La Rech sur le bruit des avions - Methodes et Moyens d'essais Assoc Aeronaut et Astronaut de France Congres intern astronaut 12th France (Paris) 29-30 Nov 1975 18 p

(Contract NASw-2790)

(NASA-TT-F-17090) Avail NTIS HC \$3 50 CSCL 20A

Methods and facilities for measuring the basic types of aircraft noise-caerodynamic engine and duct noise-caer described. Various techniques for reducing noise are considered with emphasis on the development of absorber materials and jet noise silencers. Methods for making fixed point engine noise measurements are examined as well as noise tests on turbine rotors. Tables listing the test facility type of test noise performance and sponsoring organization are presented.

N76-25168*# Lockheed-California Co Burbank
SONIC ENVIRONMENT OF AIRCRAFT STRUCTURE

SONIC ENVIRONMENT OF AIRCRAFT STRUCTURE IMMERSED IN A SUPERSONIC JET FLOW STREAM Report Jun 1975 - Feb 1976

Wiley A Guinn Frank J Balena and Jaak Soovere Jun 1976 129 p $\,$ refs

(Contract NAS1-13978)

(NASA-CR-144996 LR-27338) Avail NTIS HC \$6.00 CSCL 20A

Test methods for determining the sonic environment of aircraft structure that is immersed in the flow stream of a high velocity jet or that is subjected to the noise field surrounding the jet were investigated. Sonic environment test data measured on a SCAT 15-F model in the flow field of Mach 15 and 25 jets were processed. Narrow band lateral cross correlation and noise contour plots are presented. Data acquisition and reduction methods are depicted. A computer program for scaling the model data is given that accounts for model size jet velocity transducer size and jet density. Comparisons of scaled model data and full size aircraft data are made for the L-1011. S-3A and a V/STOL lower surface blowing concept. Sonic environment predictions are made for an engine-over-the-wing SST configuration.

N76-25171 Rolls-Royce Ltd Derby (England) Engine Div INFLUENCE OF UNSTEADY FLOW PHENOMENA ON THE DESIGN AND OPERATION OF AERO ENGINES

R Hetherington and R R Moritz In AGARD Unsteady Phenomena in Turbomachinery Apr 1976 18 p refs

Unsteady phenomena are examined in some detail with a view to both understanding and improving the operation of turbomachines in aero engines and improving design procedures by being more explicit concerning some of the time dependent flow phenomena that exist. The following possibilities are discussed. (1) improving the design point efficiency of a compressor through an understanding of internal unsteady flow effects and (2) selection of compressor configurations with minimum stall response to non axisymmetric and unsteady intake flow.

N76-25188 Cincinnati Univ Ohio TRANSMISSION OF CIRCUMFERENTIAL INLET DISTORTION THROUGH A ROTOR

W R Wells W Tabakoff and C J Savell (GE Co Cincinnati Ohio) In AGARD Unsteady Phenomena in Turbomachinery Apr 1976 10 p refs

Analytical methods of predicting the propagation of stationary circumferential distortion patterns through a rotor are presented. The analysis considers the effects of finite blade chord length and Mach number on the transmission by a semi-actuator disc theory. In addition a more basic theory using the method of distributed singularities with thin airfoils is discussed to account for the effect of finite solidity on the distortion transmission. This thin airfoil theory is limited to the case of no steady loading on the rotor. The results of the analytical analysis is compared with existing experimental results.

N76-25189 Pratt and Whitney Aircraft East Hartford Conn MULTIPLE SEGMENT PARALLEL COMPRESSOR MODEL FOR CIRCUMFERENTIAL FLOW DISTORTION

Robert S Mazzawy *In* AGARD Unsteady Phenomena in Turbomachinery Apr 1976 14 p refs

A compressible nonlinear model for prediction of the flow field of a circumferentially distorted compressor has been developed by using multiple parallel segments and by accounting for deviations from undistorted compressor performance. The model is applicable to large amplitude inlet circumferential distortions of total pressure and/or temperature as well as circumferential variations of exit static pressure with the restriction that the circumferential extent of the distortion is large relative to circumferential blade spacing. The distorted compressor stability criterion is based upon the limit of static pressure rise capability for a single distorted flow segment. This model requires the undistorted performance characteristics for each blade row.

however, a modified version based upon the overall compressor performance gives an accurate approximation when detailed blade row characteristics are not available

Author

N76-25190 Motoren- und Turbinen-Union Muenchen G m b H (West Germany)

THE EFFECT OF TURBULENT MIXING ON THE DECAY OF SINUSOIDAL INLET DISTORTIONS IN AXIAL FLOW COMPRESSORS

H Mokelko In AGARD Unsteady Phenomena in Turbomachinery Apr. 1976 30 p. refs

A small perturbation actuator disc theory is presented for the prediction of the decay of sinusoidal flow distortions in high hub tip ratio axial compressors with steady circumferential inlet maldistribution. The theory accounts for the turbulent mixing of the flow upstream and within the compressor Decay rates and circumferential phase shifts of first second fourth and eighth order cosine wave pressure and velocity perturbations are calculated for equal amplitudes and phases of the four total pressure disturbances upstream of the compressor. The results are compared with interstage traverse data obtained from a 4-stage axial flow compressor A comparison between corresponding analytical results obtained from the same theory neglecting viscosity and the experimental data is also performed. It is found that turbulent mixing has little influence on the development of the first order disturbance but that the influence grows rapidly as the order of the disturbance increases Author

N76-25191 National Research Council of Canada Ottawa (Ontario) Mechanical Engineering Div

THE RESPONSE OF A LIFTING FAN TO CROSSFLOW-INDUCED SPATIAL FLOW DISTORTIONS

Uwe W Schaub In AGARD Unsteady Phenomena in Turbomachinery Apr 1976 14 p refs

During transition maneuvers from fan supported to wing supported flight VTOL lifting fans routinely encounter extremely large spatial crossflow distortions. The variation in fan performance and the character of the flow distortions responsible for this variation were explored experimentally and on the basis of a simple analytical model of a lifting fan. The inflow and exit plane distortions in this model were generated by potential flow models and the fan through flow was calculated on the basis of an arbitrary number of discrete circumferential fan segments. The lifting fan performance was predicted and compared with experiments over a wide range of transition conditions and it is shown that while the crossflow causes large circumferential nonuniformities, the overall performance becomes seriously degraded only at large crossflows and large fan speeds. Author

N76-25192* National Aeronautics and Space Administration Ames Research Center Moffett Field Calif SOME CURRENT RESEARCH IN UNSTEADY AERODYNAM-ICS A REPORT FROM THE FLUID DYNAMICS PANEL

W J McCroskey In AGARD Unsteady Phenomena in Turbomachinery Apr 1976 13 p refs

The highlights of a recent discussion by representatives of the fluid dynamics and structures and materials panels are reported with emphasis on the fundamental aspects of unsteady fluid mechanics. Topics include linearized potential flow theory transonic flow calculations unsteady boundary layers, dynamic stall transonic buffet and techniques for measuring unsteady pressures.

Author

N76-25193* National Aeronautics and Space Administration Ames Research Center Moffett Field Calif SOME ASPECTS ON UNSTEADY FLOW PAST AIRFOILS

SOME ASPECTS ON UNSTEADY FLOW PAST AIRFOILS AND CASCADES

B Satyanarayana (Cambridge Univ England) In AGARD Unsteady Phenomena in Turbomachinery Apr 1976 11 p refs

The unsteady boundary layer due to a gust propagating past an isolated airfoil and on airfoils in cascade was measured with

a hot wire anemometer in a low speed gust tunnel. Coherent signals were obtained by a phase lock averaging technique that was implemented in an on-line analysis using a PDP 12 computer. Changes in a boundary layer shape factor noise level, and pressure gradient were correlated over a complete gust cycle. It is concluded that the character of the boundary layer changes from laminar to turbulent and back to laminar during the course of a gust cycle at certain chordwise positions. These measurements help explain certain anomalies that were observed during a previous study of the pressure fluctuations due to gust loadings on airfolis and cascades.

N76-25194 Air Force Aero Propulsion Lab Wright-Patterson AFB Ohio

A CASCADE IN UNSTEADY FLOW

Francis R Ostdiek In AGARD Unsteady Phenomena in Turbomachinery Apr 1976 13 p refs

A low speed atmospheric inlet cascade wind tunnel was constructed to obtain a flow which has a sinusoidal variation in flow direction. A stationary five blade cascade was held in a 7 62 x 25 4 cm test section. The wind tunnel inlet, which included guide vanes was forced to oscillate by a motor driven crank about an axis transverse to the cascade. The vanes guided the flow along the instantaneous axis of the inlet and thus achieved a variable flow direction at any prescribed frequency in the 0 to 16 Hz range while the flow magnitude was nearly constant Each surface of the center airfoil contained ten static pressure ports. The pressure fluctuations over most of both surfaces were near sinusoidal and the cyclic average showed little dependence on frequency or velocity. The pressure fluctuations decreased in amplitude along the chord on the pressure surface and changed phase on the suction surface near mid-chord The pressures on both surfaces were adjusted by slow moving waves and showed only a small change in phase angle with increased frequency. The unsteady pressure profiles are in excellent agreement with theory near the leading edge

N76-25195 General Motors Corp Indianapolis Ind Detroit Diesel Allison Div

THE UNSTEADY AERODYNAMIC RESPONSE OF AN AIRFOIL CASCADE TO A TIME-VARIANT SUPERSONIC INLET FLOW FIELD

Sanford Fleeter Allen S Novick and Ronald E Riffel In AGARD Unsteady Phenomena in Turbomachinery Apr 1976 14 p refs

(Contract F44620-74-C-0065)

The time dependent aerodynamic cascade phenomena related to the unsteady pressure disturbance and varying incidence in the cascade entrance flow field were investigated over a cascade inlet Mach number range of 153 to 163 with cascade static pressure ratios of 115 to 147. The range of the reduced frequency varied from approximately 003 to 012. The dynamic data obtained is presented in the form of the amplitude of the unsteady pressure and its phase as referenced to the sidewall transducer immediately downstream of the oscillating wedge. This data demonstrated the effect of the reduced frequency cascade static pressure ratio and the cascade inlet Mach number on the time variant pressure as measured on the sidewall in the cascade entrance flow field and on the pressure and suction surfaces of one of the cascaded advanced design transonic aurfails.

N76-25197 Naval Surface Weapons Center Dahlgren Va
ON THE ANALYSIS OF SUPERSONIC FLOW PAST
OSCILLATING CASCADES

W R Chadwick J K Bell and M F Platzer (Naval Postgraduate School) In AGARD Unsteady Phenomena in Turbomachinery Apr 1976 13 p refs

Supersonic flow past oscillating finite cascades with subsonic leading edge locus is analyzed by solving the nonlinear transonic small perturbation equation. Using the properly approximated Rankine-Hugoniot equations for the oscillating head shocks and continuing by the method of characteristics the entrance flow field into the cascade is computed and the influence of blade thickness on the aerodynamic pressure distributions is determined

For the single oscillating wedge the solution is in good agreement with Carrier's exact solution and it is found that single blades exhibit a pronounced effect of blade thickness throughout the lower frequency range which appears to be alleviated by cascading For zero blade thickness the linearized characteristics theory is recovered. Sample calculations with this theory for complete cascade configurations are in excellent agreement with recent results indicating the possibility of supersonic torsional cascade flutter over a wide range of parameters.

N76-25198 Stevens Inst of Tech Hoboken NJ Dept of Mechanical Engineering

PRELIMINARY RESULTS FOR SINGLE AIRFOIL RESPONSE TO LARGE NONPOTENTIAL FLOW DISTURBANCES

P V K Perumal and F Sisto In AGARD Unsteady Phenomena in Turbomachinery Apr 1976 17 p refs

(Contract N00014-67-A-0202-0016 NR Proj 094-393)

The unsteady response of a flat plate airfoil to large nonpotential flow disturbances in the form of a translating rectangular grid of eddy array is evaluated. A suitable stream function to represent the translating nonpotential vortex array is chosen The problem is solved in two stages namely auxiliary solution and time marching solution. By auxiliary solution is meant the solution of the problem which completely neglects the presence of the wake vortex sheet and treats time as a parameter, this results in a steady flow type of analysis. The time marching part of the analysis increments time by equal steps starting from zero time makes use of the auxiliary solution keeps track of the shedding and growth of the wake vortex sheet evaluates the unsteady response and continues along with time axis up to any specified maximum time limit. Preliminary numerical results from a computer program are presented Author

N76-25199* National Aeronautics and Space Administration Lewis Research Center, Cleveland Ohio

THE PASSAGE OF A DISTORTED VELOCITY FIELD THROUGH A CASCADE OF AIRFOILS

John J Adamczyk In AGARD Unsteady Phenomena in Turbomachinery Apr 1976 11 p refs

An analysis has been developed to predict the unsteady force and moment generated by the passage of a timewise periodic total pressure distortion through an arbitrary cascade of airfoils The mathematical formulation of this analysis is based on the assumption that the magnitudes of the timewise fluctuations of the variables which describe the flow field are small compared to their time average values. This assumption permits the development of a linear unsteady perturbation analysis about a steady flow field. In addition to this linearization assumption the fluid medium is assumed to be incompressible and inviscid. The mathematical development begins by decomposing the velocity field surrounding an infinite cascade of airfoils into its irrotational and rotational components. The rotational component is associated with an upstream unsteady total pressure distortion and is defined in terms of the vorticity field associated with the distortion pattern The irrotational component is further decomposed into a steady and unsteady part. A combined analytical and numerical procedure has been developed to solve the field equations which govern the rotational and irrotational velocity fields. Results of this analysis show a strong influence of mean loading on the unsteady force generated by the passage of a one dimensional gust through a cascade of compressor blades Author

N76-25200 Texas A&M Univ College Station Dept of Aerospace Engineering

UNSTEADY AIRLOADS ON A CASCADE OF STAGGERED BLADES IN SUBSONIC FLOW

B M Rao and W P Jones In AGARD Unsteady Phenomena in Turbomachinery Apr 1976 10 p refs

The Jones-Moore numerical lifting surface technique is applied to predict the airloads and moments on an airfoil of a staggered cascade of rotor blades in subsonic flow. Circumferential distortion due to inlet flow conditions is expressed as an interblade phase

lag and both cases of oscillating airfoils and oscillatory inflow are considered. Results are obtained for several values of frequency, stagger angle, blade spacing, and interblade phase lag.

Author

N76-25201 Virginia Polytechnic Inst and State Univ , Blacksburg Dept of Mechanical Engineering

AN ON-ROTOR INVESTIGATION OF ROTATING STALL IN AN AXIAL-FLOW COMPRESSOR

M R Sexton, W F OBrien, Jr, and H L Moses In AGARD Unsteady Phenomena in Turbomachinery Apr 1976 10 p refs

(Contract N00014-67-A-0226-0005 NR Proj 098-038)

Rotating stall is an unsteady phenomenon in axial flow compressors involving rapid pressure changes and lift variations on the rotating blades of the compressor. Measurements of the surface pressures on the rotor blade provide information to study the variation of lift of the rotating blade, and to improve the general understanding of rotating stall. Such on-rotor measurements require special pressure transducers, mounting techniques and data transmission systems. A multichannel radio telemetry system was used in this investigation to transmit simultaneous pressure measurements from up to six transducers mounted on a rotating blade. Measurements were made on both the pressure and suction sides of the blade, at different span locations. Results include rotor blade surface pressure measurements for compressor flow rates up to and including stall. Pressure variations during the dynamic stall event were used to determine the lift time variations on the blade Author

N76-25202 Cambridge Univ (England) S R C Turbomachinery Lab

DETAILED FLOW MEASUREMENTS DURING DEEP STALL IN AXIAL FLOW COMPRESSORS

Detailed measurements have been obtained for the flow in a stalled three stage compressor of high hub tip ratio which is operating deep in the rotating stall regime. Using high frequency transducers and a conditional sampling procedure made it possible to obtain information on the detailed structure of the stall cells and to prepare an overall picture of the flow field in the compressor. The results of the measurements show some new features which are at variance with conventional ideas about stall cells. Author

N76-25203 Von Karman Inst for Fluid Dynamics, Rhode-Saint-Genese (Belgium)

THE PREDICTION OF THE BEHAVIOUR OF AXIAL COMPRESSORS NEAR SURGE

N Orner D Adler, and J Isenberg In AGARD Unsteady Phenomena in Turbomachinery Apr 1976 16 p refs

A new approach to the understanding of the problem of unsteady behavior of axial compressors near surge is developed. This approach is based on the stability analysis of the equations of motion. It takes into account the three dimensional character of the flow in an axial compressor. A numerical solution procedure is described and its flow charts are given. Results of calculation are compared with experiments for two cases. The importance of some of the parameters influencing the phenomenon is Author.

N76-25204# Naval Air Test Center Patuxent River, Md NAVY EVALUATION F-11A IN-FLIGHT THRUST CONTROL SYSTEM Final Report, 5 Nov 1973 - 1 Jul 1975 W R Simpson, M W Covey D F Palmer, and M D Hewett

15 Dec 1975 109 p refs

(AD-A019954, NATC-SA-75R-75) Avail NTIS CSCL 01/3 A Navy evaluation to determine the potential advantages and disadvantages of in-flight thrust control (IFTC) on a tactical airplane was conducted using a modified F-11A airplane as a testbed. The conceptual development program also utilized a second unmodified F-11A for baseline data and pilot familiarization training. Flying qualities, performance engine effects, durability and utility of IFTC to mission tasks such as air combat maneuvering (ACM), air-to-ground weapons delivery approach

and waveoff landing roll-out and infrared signature suppression were evaluated during the 6-month program. The prototype IFTC in the configuration evaluated increased the tactical capabilities of the F-11A airplane despite the limited capability of the testbed indicating potential increases in tactical capabilities of future fighter/attack airplanes which incorporate thrust control capability.

N76-25207# Air Force Inst of Tech Wright-Patterson AFB, Ohio School of Engineering

APPROXIMATE CHANGES IN AIRCRAFT STABILITY DERIVATIVES CAUSED BY BATTLE DAMAGE M.S. Thosas

Michael G Chapman Dec 1975 93 p refs (AD-A019843, GE/EE/75-19) Avail NTIS CSCL 01/3

Approximations of stability derivative changes, due to battle damage were made for the FDL-23 Remotely Piloted Vehicle This vehicle is being simulated by the Aerospace Medical Research Laboratory at Wright-Patterson Air Force Base and uses decoupled linearized perturbation equations. The location of the damage was determined by projectile trajectory characteristics. combined with range and target altitude information, and probability theory. Changes in lift and the coefficient of lift were calculated using the geometry associated with an elliptical lift pattern distribution and the location of the damage. Changes in drag and the coefficient of drag were calculated using a flat plate approximation for the damaged surface area. The changes in the slopes of the nondimensional stability derivative curves were determined by analyzing the cause of each and ther calculating how battle damage would change the slope of each curve

N76-25209# Air Force Inst of Tech , Wright-Patterson AFB Ohio School of Engineering

AN INVESTIGATION OF RPV CONTROL CRITERIA VIA THE OPTIMAL REGULATOR PERFORMANCE INDEX M S Thesis

Stephen R Barnes Dec 1975 121 p (AF Proj 7233)

(49-A019846, GE/EE/75D-12) Avail NTIS CSCL 01/4

Remotely Piloted Vehicles (RPV's) have control requirements which differ, sometimes significantly, from the requirements for manned aircraft due to the fact that the pilot is not in the aircraft. This thesis discusses various manned-aircraft handling qualities specifications such as MIL-F-8785B and the C criterion and examines their applicability to the RPV control problem The desired performance is analyzed from the points of view of mission requirements and the needs of the operator to control the vehicle. The linear optimal regulator is then proposed as a means to minimize state errors and control magnitudes in the closed-loop response. A quadratic performance index is used to investigate the effect on controller design of varying the relative importance placed on the various parameter errors. The longitudinal mode of a typical existing RPV is used for the analysis and the resulting relationships between the performance index weighting factors and the resulting controller configurations are presented RPV flying qualities specifications and control console design are discussed and related to these relationships

N76-25211*# Massachusetts Inst of Tech, Cambridge
THE STOCHASTIC CONTROL OF THE F-8C AIRCRAFT
USING THE MULTIPLE MODEL ADAPTIVE CONTROL
(MMAC) METHOD

M Athans, K P Dunn E S Greene W H Lee N R Sandel Jr et al Aug 1975 12 p refs Presented at IEEE Conf on Decision and Control 1975, Houston Tex Dec 1975 (Grants NGL-22-009-124 AF-AF0SR-2273-72)

(NASA-CR-148100, AD-A019556 AFOSR-75-1600TR. ESL-P-622) Avail NTIS HC \$3 50 CSCL 01/2

The purpose of this paper is to summarize results obtained for the adaptive control of the F-8C aircraft using the so-called Multiple Model Adaptive Control method. The discussion includes the selection of the performance criteria for both the lateral and

the longitudinal dynamics the design of the Kalman filters for

different flight conditions, the identification aspects of the design using hypothesis testing ideas, and the performance of the closed loop adaptive system GRA

N76-25228 National Aeronautical Establishment, Ottawa (Ontario)

INFLUENCE FUNCTION METHOD IN WIND TUNNEL WALL INTERFERENCE PROBLEMS

M Mokry In AGARD Wind Tunnel Design and Testing Tech Mar 1976 10 p refs (

A new general method is described for computation of wind tunnel wall interference effects in subsonic linearized flows. The influence function, introduced as a fundamental solution satisfying the prescribed wind tunnel boundary conditions plays the central role in the present analysis. The method is applied to subsonic flow past an airfoil between perforated walls and compared with measurements from the 15 in x 60 in test section of a 5 ft blowdown wind tunnel. Further examples concern a multi-component airfoil finite cascades of blades and the vortex sheet rollup behind a wing in a wind tunnel.

N76-25232 Royal Aircraft Establishment Farnborough (England) Aerodynamics Dept

THE COMPUTATION OF TRANSONIC FLOWS PAST AEROFOILS IN SOLID, POROUS OR SLOTTED WIND TUNNELS

A method is described for computing two dimensional inviscid flows at transonic speeds in wind tunnels in which the transonic small perturbation equation is solved. Because of the use of coordinate transformations which transform the infinite physical plane into a finite computing one far field boundary conditions are relatively easy to obtain and apply. The effect of tunnel walls on the flow has been modelled by using the usual homogeneous wall boundary condition. Comparisons are made with some experimental results and the free air and tunnel versions are used to assess the ability of linear subsonic theory to predict tunnel interference corrections when the flow is transonic.

Author

N76-25233 National Aerospace Lab Amsterdam (Netherlands) TWO-DIMENSIONAL TUNNEL WALL INTERFERENCE FOR MULTI-ELEMENT AEROFOILS IN INCOMPRESSIBLE FLOW

O DeVries and G J L Schipholt In AGARD Wind Tunnel Design and Testing Tech Mar 1976 7 p refs

A singularity method has been applied to calculate two dimensional tunnel wall corrections for multi-element aerofoils. The calculations show that the well known corrections due to Glauert can be applied for a single aerofoil except the pitching moment correction above 15 deg angle of attack but that the Glauert approach fails in the case of trailing edge flap deflections. The results of the calculations agree with the strong non linear results found by De Jager and Van de Vooren for a hinged flat plate at zero incidence.

N76-25234 British Columbia Univ Vancouver Dept of Mechanical Engineering

A LOW-CORRECTION WALL CONFIGURATION FOR AIRFOIL TESTING

C D Williams and G V Parkinson In AGARD Wind Tunnel Design and Testing Tech Mar 1976 7 p refs

The reduction of wind tunnel wall corrections in airfoil testing by a transversely slotted wall opposite the suction side of the test airfoil and by a solid wall opposite the pressure side is considered. The solid elements of the slotted wall are symmetrical airfoils at zero incidence. This geometry permits the flow to assume closely the streamline pattern for unconfined flow without degrading the flow quality through shear layer mixing near the test airfoil. The theory uses the potential flow surface source/element method with Kutta conditions satisfied on the test airfoil and the wall slats. In experiments using a range of sizes of

airfoils of three different profiles good agreement with the predictions of the theory has been obtained it appears that uncorrected lift coefficients and pressure distributions, accurate to within one percent can be obtained for a wide range of airfoil shapes sizes and lift coefficients using a slotted wall of open area ratio between 60 and 70 percent.

N76-25238 Boeing Commercial Airplane Co Seattle, Wash NACELLE-AIRFRAME INTEGRATION MODEL TESTING FOR NACELLE SIMULATION AND MEASUREMENT ACCURACY

R Decher W B Gillette and D C Tegeler In AGARD Wind Tunnel Design and Testing Tech Mar 1976 14 p refs

Techniques necessary to achieve high accuracy in simulation and in force data for better subsonic airplane nacelle airframe integration are discussed. The selection of the appropriate nacelle simulation is covered together with experimental data obtained with flow blown, and turbopowered nacelle models operated at wind tunnel flow conditions. The thrust calculation and the simulator calibration procedure are described. To guide test instrumentation and test procedures an error analysis is reported which shows that predicted error levels of under 1% of model airplane drag can be achieved in the wind tunnel. Data from an isolated and an installed test with flow blown, and turbopowered simulator models of a high bypass engine nacelle on a four engined subsonic transport are shown to verify the validity of the test procedures.

N76-25239 British Aircraft Corp Warton (England) Military Aircraft Div

AIR DRIVEN EJECTOR UNITS FOR ENGINE SIMULATION IN WIND TUNNEL MODELS

R Whitaker A W Matthews P G Knott, R Angel and D J Stewart In AGARD Wind Tunnel Design and Testing Tech Mar 1976 15 p refs

The air driven ejector as a means of providing engine flow simulation is discussed. The characteristics of the ejector and its ability to simulate a wide range of engine types and flight conditions are outlined. It is shown that one dimensional theory with empirical loss factors now permits accurate performance predictions to be made. Recent experimental work has extended the scope of the empirical knowledge, demonstrated the merits of supersonic primary nozzle ejectors and improved the state of the art of ejector design. In low speed tunnel testing it has been demonstrated that for a high bypass ratio engine simulator good exit velocity profiles can be obtained and the installed performance well predicted under varying external conditions Also correct exhaust and intake momentum coefficients can be achieved at acceptable tunnel speeds even when using relatively Author low drive pressures

N76-25248 General Dynamics Corp San Diego Calif Convair Div

MODEL SYSTEMS AND THEIR IMPLICATIONS IN THE OPERATION OF PRESSURIZED WIND TUNNELS

Stanley A Griffin In AGARD Wind Tunnel Design and Testing Tech Mar 1976 13 p refs

The feasibility of designing multi-piece flow through models for high Reynolds number transonic wind tunnels is considered Six component high capacity balances are investigated and a comparison is made of model aeroelastic characteristics in a pressurized tunnel in reference to the aeroelastic nature of the flight vehicle. Methods of matching model/airplane deformation are shown, together with a system for measuring model deformation in a wind tunnel. Selected configurations are reviewed. with respect to model loads distortions, and stress and a summary of recommended fabrication materials is presented. Cost comparisons are made between models for testing in proposed high Reynolds number transonic wind tunnels and present day transonic wind tunnels. The study concludes that models and strain gaged balances capable of running in these facilities can be designed and fabricated at a reasonable cost with present techniques. The study also indicates that options are available to produce close similarity of the model/airplane wing deformation over a broad range of operating conditions Author

N76-25249 Dornier-Werke G m b H Friedrichshafen (West Germany)

DESIGN AND CONSTRUCTION OF THE ALPHA JET FLUTTER MODEL

Peter Esch and Theo Windeck In AGARD Wind Tunnel Design and Testing Tech Mar 1976 9 p refs

In order to prove flutter safety for the Alpha jet, a flutter model (scale 1 8) was designed and constructed for experimental investigations in the transonic wind tunnel. For each component of the aircraft an adequate structural solution had to be found in order to fulfill the correct stiffness distribution. The construction was carried out using advanced techniques, e.g. electron beam welding chemical milling and bonding. The static vibration tests of the complete model were in good agreement with the corresponding test results of the original aircraft. Ahead of the main tests preliminary tests with the wing and tail isolated were performed in a blowdown wind tunnel. For the tests with the complete model a rigid wire suspension was used. In the course of one year several configurations with and without external stores were investigated. The experimental results agreed reasonably with the theoretical calculations.

N76-25250* Virginia Univ , Charlottesville Dept of Engineering Science and Systems

MAGNETIC SUSPENSION TECHNIQUES FOR LARGE SCALE AERODYNAMIC TESTING

Ricardo N Zapata In AGARD Wind Tunnel Design and Testing Tech Mar 1976 14 p refs

(Grant NsG-1010)

The potential utility of magnetic suspension techniques is discussed in the context of current efforts towards realistic aerodynamic simulation in wind tunnels. Design parameters are defined and problems of constructing large size facilities identified A three stage strategy towards realizing a truly large scale magnetic suspension and balance with full research capability is outlined Stage one consisting of building and testing a prototype superconductor coil system to establish the feasibility of the concept has been completed successfully and its principal results are briefly described. This proven feasibility of using superconductors for magnetic suspensions together with the successful demonstration of the cryogenic wind tunnel concept appear to have opened the way to clean tunnel high-Re aerodynamic testing Results of a comparative analysis of scaling of several coil technologies for a specific magnetic suspension configuration, from the prototype size to a size compatible with the projected high Reynolds number cryogenic wind tunnel facility, are discussed in some detail

N76-25251 Von Karman Inst for Fluid Dynamics Rhode-Saint-Genese (Belgium)

INTERFERENCE PROBLEMS IN V/STOL TESTING AT LOW SPEEDS

Mario Carbonaro In AGARD Wind Tunnel Design and Testing Tech Mar 1976 21 p refs

When testing V/STOL models at low speeds several problems arise, in connection with the sharp downward deflection of the wake originating from the highly loaded lifting systems. It is the purpose of this paper to define the various problems and to summarize and compare the obtained results. First, the inclined wake may impinge on the wind tunnel floor and cause a breakdown in the wind tunnel flow uniformity. The testing limitations associated with the occurrence of such phenomenon are discussed for the different cases of a rotor a jet flap wing, or a single or multiple lifting jet configuration. Wind tunnel boundary corrections account for the real behavior of the wake and an upper limit of their validity has to be assessed. The various existing theories of wall corrections which take into account the deflection and eventually the curvature of the wake are summarized in the various cases of closed open or ventilated test sections, and comparisons with existing experimental data are made. The limits proposed in the literature for the validity of wall corrections are discussed Author

N76-25252 Westland Helicopters Ltd Yeovil (England) Aerodynamics Research Dept

THE REMOVAL OF WIND TUNNEL PANELS TO PREVENT FLOW BREAKDOWN AT LOW SPEEDS

R E Hansford In AGARD Wind Tunnel Design and Testing Tech Mar 1976 8 p refs

A model rotor was tested at low speed in a wind tunnel to study the problem of flow breakdown. This condition arises from the wake impingement on tunnel floor and wall panels to induce a recirculatory flow upstream. The phenomenon was first reproduced in the closed tunnel for various disc loadings and limiting operating conditions were established. Panels were then selectively removed and it was subsequently shown that it was possible to obtain a representative tunnel flow free from recirculatory interference at lower advance ratios compared to closed tunnel operation. By careful venting of a working section it is concluded that a substantial increase in maximum allowable downwash angle can be obtained.

N76-25253 Hawker Siddeley Aviation Ltd Hatfield (England) Wind Tunnel Dept

VSTOL WIND TUNNEL MODEL TESTING AN EXPERIMENTAL ASSESSMENT OF FLOW BREAKDOWN USING A MULTIPLE FAN MODEL

M J Cull In AGARD Wind Tunnel Design and Testing Tech Mar 1976 8 p refs

Tests have been made with a multifan VSTOL model in two different sized closed test section wind tunnels to investigate the problem of tunnel flow breakdown. The boundary condition of incipient stagnation where the high energy jet exhaust first penetrates the tunnel wall boundary layer has been identified for a range of model conditions. Correlation of results in both tunnels and with other work is good and the technique of establishing a flow breakdown boundary by investigating the behavior of the floor vortex formed by the interaction of the model jet efflux and the tunnel mainstream flow has been used successfully for a multifan configuration. In addition model forces and moments are recorded in an attempt to estimate minimum testing conditions and to indicate the magnitude of wall constraint effect. Direct comparisons are made of longitudinal forces and moments using results from both wind tunnels and a sample of results are presented Author

N76-25254 Aircraft Research Association Ltd Bedford (England) FURTHER EVIDENCE AND THOUGHTS ON SCALE EFFECTS AT HIGH SUBSONIC SPEEDS

A B Haines In AGARD Wind Tunnel Design and Testing Tech Mar 1976 12 p refs

Recent evidence from tests at high subsonic speeds in existing tunnel facilities are reviewed to illustrate the difficulties in extrapolating the data to full scale. The uncertainties can be considerable even for wings currently being developed, the report stresses that these uncertainties affect not only the flow separation characteristics but also the drag in conditions where the flow is attached. None of the evidence detracts from the arguments which lead to the conclusion that there is a need in Europe for a new large pressurized transonic tunnel, but comments are also made as to whether the new theoretical tools flight tests, further experimental research in existing facilities and modified experimental techniques could be partly used to offset the lack of such a facility in the next decade.

N76-25256 National Aerospace Lab Amsterdam (Netherlands) THE CHARACTER OF FLOW UNSTEADINESS AND ITS INFLUENCE ON STEADY STATE TRANSONIC WIND TUNNEL MEASUREMENTS

R Ross and P B Rohne In AGARD Wind Tunnel Design and Testing Tech Mar 1976 7 p refs

Flow unsteadiness in wind tunnels has been separated into three modes free stream turbulence convected by the flow sound wave type disturbances travelling with the speed of sound with respect to the flow and temperature spottiness convected with the flow it was found, using the hot wire technique and

microphones that sound wave type disturbances are the most important type of unsteadiness in some transonic tunnels. Tests carried out on a supercritical airfoil with noise levels of 0.35% and 0.6% did not change trailing edge and shock induced separation. The additional noise caused transition to occur more forward by about 4% of the chord.

N76-25259 Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Brunswick (West Germany)

SYSTEMATICAL INVESTIGATIONS OF THE INFLUENCE OF WIND TUNNEL TURBULENCE ON THE RESULTS OF MODEL FORCE-MEASUREMENTS

H Otto In AGARD Wind Tunnel Design and Testing Tech Mar 1976 9 p refs

The influence of wind tunnel turbulence especially on the maximum lift of aircraft models, has been studied by systematical investigations in five low speed wind tunnels. In each wind tunnel the free stream turbulence was altered by two different grids which could be fixed at the nozzle exit. The test program included hot wire and sphere measurements to determine the free stream turbulence as well as force measurements on wind body models with different flap deflection angles. The results show that the maximum lift coefficient is not simply a function of the effective Reynolds number but depends also on the scale of the turbulence grid. This correlation is approximated by a simple formula.

Author

N76-25267 Office National d'Etudes et de Recherches Aerospatiales, Paris (France)

COMPARATIVE TWO AND THREE DIMENSIONAL TRAN-SONIC TESTING IN VARIOUS TUNNELS

Xavier Vaucheret and Maurice Bazin In AGARD Flight/Ground Testing Fac Correlation Apr 1976 14 p refs in FRENCH ENGLISH summary

Testing conditions at transonic speeds and the validity of the data obtained in various wind tunnels were studied. In two dimensional flow two models of NACA 0012 and supercritical profiles were tested in ONERA S3 Modane and NAE 15x60 in tunnels for Reynolds number 4 to 40 million from Mach 03 to 0.9 Three homothetical profiles of NACA 0012 were also tested Wind tunnel wall interferences were studied and recommendations on relative dimensions of models to test sections were made In three dimensional flow, four homothetical models of a typical transport aircraft were tested in twelve transonic tunnels used for tests in various countries. The data were compared in a broad range of Reynolds number (0.3 to 7 million) between Mach number 0.7 and 0.96 Discrepancies can be reduced with corrections due to the free tunnel and wall interference. The effect of tripping the transition by grits was also analyzed, and comparisons were made with an axisymmetric body near Mach 1 Author

N76-25268 Aeronautical Research Inst of Sweden, Bromma COMMENT ON RESULTS OBTAINED WITH THREE ONERA AIRPLANE CALIBRATION MODELS IN FFA TRANSONIC WIND TUNNELS

S E Gudmundson and S-E Nyberg In AGARD Flight/Ground Testing Fac Correlation Apr 1976 7 p refs

Some test results are presented from three-component measurements for three of the ONERA Airplane Calibration Models (designated M1 M2, M3) The tests were performed in the FFA transonic wind tunnels HT S4 and TVM 500 in the Mach number range 0.7 to 0.96 and at Reynolds numbers based on the mean chord of the wing, in the range 0.2 to 1.0 million Comparisons are made for small angles of attack with results obtained with a small model (M1) in a large wind tunnel (ONERA S2MA in Modane). The agreement between the different tunnels is fairly good when the Reynolds number is the same. The Reynolds number effects are relatively large especially on the pitching moment in the lower Reynolds number range, which might mask some wind tunnel interference effects.

N76-25270 ARO Inc Arnold Air Force Station Tenn SPECIAL WIND TUNNEL TEST TECHNIQUES USED AT AFDC

T W Binion, Jr In AGARD Flight/Ground Testing Fac Correlation Apr 1976 13 p refs

(Contract F40600-75-C-0001)

In recent years requirements have developed to investigate (1) captive loadings and trajectories of external stores, (2) maneuver and departure characteristics of aircraft and (3) static stability characteristics of missiles at angles of attack up to 180 deg Test techniques in use and being developed to satisfy these requirements are discussed

Author

N76-25275 Messerschmitt-Boelkow-Blohm G m b H Munich (West Germany)

DYNAMIC SIMULATION IN WIND TUNNELS, PART 1
H Hoenlinger and O Sensburg In AGARD Flight/Ground Testing
Fac Correlation Apr 1976 27 p refs

Dynamic simulation techniques and wind tunnels used to investigate flutter characteristics and flutter suppression techniques are described. Two cases where active flutter suppression was successfully applied are demonstrated. One case deals with the flutter of a wing with a store and the other with an ampennage flutter case.

N76-25278 Royal Aircraft Establishment, Farnborough (England) Aerodynamics Dept

SOME AEROELASTIC DISTORTION EFFECTS ON AIR-CRAFT AND WIND TUNNEL MODELS

G F Moss and D Pierce In AGARD Flight/Ground Testing Fac Correlation Apr 1976 11 p refs

Aspects of the aeroelastic distortion of wings in flight and in the tunnel are discussed. The effects of such distortion could be of prime importance when correlating flight and wind tunnel data particularly when supercritical flows are present which tend to be comparatively sensitive to small geometric changes. It is suggested that as transonic facilities operating at higher stagnation pressures come into more general use as a means of achieving higher Reynolds numbers better means of making allowances for the aeroelastic distortion of wind tunnel models will be necessary. In flight the full benefits of advanced-wing technology will probably be achieved if similar improvements can be made to the techniques used by the aircraft designer. In the long term methods need to be found to control and use aeroelastic distortion to enhance aerodynamic performance in flight Reference is made experimental and theoretical data obtained with respect to these problems

N76-25279 United Technologies Research Center East Hartford Conn

DEVELOPMENT OF THE UNITED TECHNOLOGIES RE-SEARCH CENTER ACOUSTIC RESEARCH TUNNEL AND ASSOCIATED TEST TECHNIQUES

William M Foley and Robert W Paterson In AGARD Flight/ Ground Testing Fac Correlation Apr 1976 10 p refs

Design and development of an acoustic research tunnel is described. Its operating experience is discussed relative to the design of new acoustic test facilities. Experimental noise research programs conducted in the tunnel are described with attention given to the correlation of model studies with full-scale engine and helicopter rotor noise.

N76-25280 Societe Nationale d'Etude et de Construction de Moteurs d'Aviation Villaroche (France)

CURRENT RESEARCH ON THE SIMULATION OF FLIGHT EFFECTS ON THE NOISE RADIATION OF AIRCRAFT ENGINES

Jean-Michael Fitremann and Mariano Perulli (Office Natl d'Etudes et de Recherches Aerospatiales Paris) In AGARD Flight/Ground Testing Fac Correlation Apr 1976 3 p In FRENCH, ENGLISH summary

Design problems related to the development of an anechoic wind tunnel in France were described Typical results were

presented, dealing with fundamental research on refraction scattering and diffusion studies with the following goals (1) to define an accurate method of transposing noise measurements made in an anechoic wind tunnel to real flight conditions, and (2) to understand the possibilities of full scale silencers from model tests analysis

Author

N76-25281 Royal Aircraft Establishment, Farnborough (England) Aerodynamics Dept

PROBLEMS OF NOISE TESTING IN GROUND-BASED FACILITIES WITH FORWARD-SPEED SIMULATION

John Williams In AGARD Flight/Ground Testing Fac Correlation

Apr 1976 14 p refs

An overview of the design and operational problems associated with ground-based facilities for performing noise experiments with forward-speed simulation was presented Various facilities were described it was concluded that it is unlikely that one type of facility will be able to cater effectively for the whole range of simulated flight aero-acoustic measurements needed in aircraft noise R and D studies, towards the evolution of quieter military and civil aircraft without operational or economic penalties Modified wind-tunnel type facilities are seen as providing the best approach for noise-model research work. The role of aircraft flight experiments was described, with the application of carefully controlled flight experiments using research-oriented modifications of small aircraft. The functions of large low-speed tunnels in noise testing was described, in relation to the development and exploitation of small acoustic tunnels. Author

N76-25282 Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Brunswick (West Germany)
STATUS OF METHODS FOR AIRCRAFT STATE AND

PARAMETER IDENTIFICATION

P. G. Hamel /n AGARD Flight/Ground Testing Fac. Correlation

P G Hamel In AGARD Flight/Ground Testing Fac Correlation Apr 1976 16 p refs

The report of a meeting on aircraft system identification for flight test engineers and pilots, handling qualities and simulation experts, and aircraft and control system designers was presented It was shown that in recent years several identification procedures have evolved for obtaining aircraft parameters from inflight measurements. These approaches have been shown to have good success for conventional (winged) aircraft and have become practical to apply. The parameter identification problem becomes a much more complicated task for large and slender body aircraft where the elastic deformations at high dynamic pressure can no longer be neglected For helicopters simplifying assumptions are also, in general, considerably more difficult due to the strong coupling of the rigid body degrees-of-freedom, because of the different flexible motions introduced by the rotor blades and because of the shortness of the test period which can be recorded due to the inherent instability of these vehicles Author

N76-25283* National Aeronautics and Space Administration Ames Research Center Moffett Field Calif PERSISTENCE AND DECAY OF WAKE VORTICITY Leonard Roberts /n AGARD Flight/Ground Testing Fac Correlation Apr 1976 10 p

CSCL 01A

Some recent research relating to the nature of the lift-induced vortex wakes behind large aircraft was reviewed and the scahing laws that permit a comparison of results from ground facilities with those from flight test were provided. The maximum rotational velocities in the wake are shown to depend on a span loading shape parameter and on a characteristic length of persistence behind the aircraft. The effects of Reynolds number are also shown.

N76-25284 Reyal Aircraft Establishment, Bedford (England) FLIGHT MEASUREMENTS OF HELICOPTER ROTOR AEROFOIL CHARACTERISTICS AND SOME COMPARISONS WITH TWO-DIMENSIONAL WIND TUNNEL RESULTS

P Brotherhood In AGARD Flight/Ground Testing Fac Correlation Apr 1976 15 p refs

The performance of airfoil sections designed specifically for

helicopter rotor blades was investigated. These effect a better compromise of performance characteristics in the widely varying conditions of incidence and Mach number in which they operate. A technique of section comparison using appropriate airful fairings or gloves' each on opposing blades of a helicopter rotor, has been developed. In this way the helicopter is used as a test vehicle with the rotor providing the necessary environment for the airful tests. Results obtained in flight are compared with those from wind tunnel tests. The adverse effects of leading-edge roughness, simulating erosion have also been investigated.

Author

N76-25285 Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Brunswick (West Germany)

SOME INFORMAL COMMENTS ABOUT THE RESEARCH AIRCRAFT IN THE DFVLR

Hans-L Meyer In AGARD Flight/Ground Testing Fac Correlation Apr 1976 3 p

An informal comment about the research aircraft of the DFVLR and some flight test systems was presented. The objective is to present an overview about the flight research activities at the DFVLR. The flight research activities of the DFVLR are concentrated at the Oberpfaffenhofen and Braunschweig research centers. Oberpfaffenhofen conducts activities in the field of electronics and physics of the atmosphere while Braunschweig is mainly concerned with flight mechanics and guidance and control Presently, 12 aircraft are assigned at Oberpfaffenhofen and 6 at Braunschweig with which the divisions fly annually about 2 000 and 1 000 flight hours respectively. These research aircraft can be classified into the following groups. Jet Canberra HFB 320 T-33, 2-prop. 2 Do 28 D-1, 1 Queen Air. 1-prop. 5 Do 27, 2 P. 149D, 1 C. 207. 1 C. 182. 3 powered gliders. Suiters.

N76-25286* National Aeronautics and Space Administration Langley Research Center, Langley Station Va

ROTOR SYSTEMS RESEARCH AIRCRAFT (RSRA)

Gregory W Condon and Robert Letchworth In AGARD Flight/Ground Testing Fac Correlation Apr 1976 20 p ref

CSCL 01C

A description of the Rotor Systems Research Aircraft (RSRA) was presented with particular emphasis on the unique systems that provide the potential for good flight/ground test facility correlation. These flight research vehicles are designed specifically with the capabilities necessary for the effective and efficient in-flight test and verification of promising new rotor concepts and supporting technology developments. The research mission and unique features of the RSRA will provide the capability to measure and separate the flight loads of the airframe and rotor thereby allowing direct flight/ground test facility correlation of rotors as well as correlation with analytical models.

N76-25287* National Aeronautics and Space Administration Flight Research Center, Edwards Calif

A NEW EXPERIMENTAL FLIGHT RESEARCH TECHNIQUE THE REMOTELY PILOTED AIRPLANE

Garrison P Layton In AGARD Flight/Ground Testing Fac Correlation Apr 1976 7 p refs 16-09)

CSCL 01C

The results obtained so far with a remotely piloted research vehicle (RPRV) using a 3/8 scale model of an F-15 airplane to determine the usefulness of the RPRV testing technique in high risk flight testing including spin testing were presented. The program showed that the RPRV technique including the use of a digital control system is a practical method for obtaining flight research data. The spin stability and control data obtained with the 3/8-scale model also showed that predictions based on wind-tunnel tests were generally reasonable.

Author

N76-25288 Institut de Mecanique des Fluides de Lille (France) FLIGHT SIMULATION USING FREE-FLIGHT LABORATORY SCALE MODELS (SIMULATION DE VOL PAR MAQUETTES DE VOL LIBRE EN LABORATOIRES) Jean Gobeltz In AGARD Flight/Ground Testing Fac Correlation
Apr 1976 16 p refs In FRENCH ENGLISH summary

Two operating procedures related to the laboratory testing of free-flight models are defined the direct similarity' testing where tests have to predict directly the results of the flight tests of the full scale aircraft and the indirect similarity testing where tests are used first for analysis of the phenomena, secondly for its modelling which is later applied to the aircraft itself Dynamic stall and spin results are given as examples of direct similarity' testing. Use of indirect similarity is shown to be a broader and more scientifically fertile testing procedure Examples quoted are relative to the longitudinal dynamic behavior and vertical atmospheric gust response of aircrafts. It is shown how for phenomena modelling both stationary aerodynamic characteristics and aerodynamic derivatives data of the model are extracted of purposely designed flights. These data are then used for computation Piloting methods of the models are given Other types of tests relative to landing or cross-wind landing ditching transversal gusts and active controls are also mentioned. Author

N76-25289 Royal Netherlands Aircraft Factories Fokker, Schiphol-Oost

EXPERIENCE IN PREDICTING SUBSONIC AIRCRAFT CHARACTERISTICS FROM WIND TUNNEL ANALYSIS

J H D Blom In AGARD Flight/Ground Testing Fac Correlation Apr 1976 15 p

Some examples of experience gained in the field of subsonic aircraft characteristics using illustrative material from aircraft development experience in the Netherlands were presented. The accuracy in predicting aircraft characteristics from wind tunnel analysis not only depends on the quality of the wind tunnel facilities used but also to a large extent on the experience of the aircraft designer in converting wind tunnel information into the appropriate conclusion for the full-scale aircraft. Direct companison of wind tunnel data with flight test results is useful in the interest of providing further insight into the interpretation and nature of the corrections to be applied to wind tunnel test data.

N76-25290 British Aircraft Corp Weybridge (England)
Commercial Aircraft Div

COMMENTS ON WIND TUNNEL/FLIGHT COMPARISONS AT HIGH ANGLES OF ATTACK BASED ON BAC ONE-ELEVEN AND VC10 EXPERIENCE

M W Salisbury In AGARD Flight/Ground Testing Fac Correlation Apr 1976 4 p

The flight test and wind tunnel measurements made at high incidence on the BAC 111 have been used to find the effects of Reynolds number and Mach number on the maximum value of the lift coefficient. It is shown that the effect of Mach number changes in the range 0.18 to 0.27 are of the same order as the effect of the Reynolds number change between wind tunnel and flight. The flight/tunnel comparison on the VC10 is used to show the importance of representing the geometry of the slat and wing profile in great detail in order to achieve a satisfactory correlation. Examples are also given of the type of modification which has to be made to wind tunnel data in order to achieve agreement between flight and simulator handling characteristics at the stall and of the use of a simple end plate model to investigate the effect on drag of detail configuration changes.

Author

N76-25291 Bell Helicopter Co Fort Worth Tex THE ART AND SCIENCE OF ROTARY WING DATA CORRELATION

Jan M Drees In AGARD Flight/Ground Testing Fac Correlation Apr 1976 11 p refs

An overview of the correlation of helicopter rotor performance and loads data from various tests and analyses was presented information is included from free-flight full-scale tests in a 40 x 80 wind tunnel one-fifth scale tests in a Transonic Dynamic Tunnel and small-scale tests of a rotor in air These test data are compared with each other where appropriate and with calculated results Typical examples illustrate the state of the

art for correlation and indicate anomalies encountered. It is concluded that a procedure using theoretical analyses to aid in interpretation and evaluation of test results is essential to developing a science of correlation.

N76-25292* National Aeronautics and Space Administration Ames Research Center Moffett Field Calif COMPARISON OF MODEL AND FLIGHT TEST DATA FOR AN AUGMENTOR-WING STOL RESEARCH AIRCRAFT

W L Cook and D C Whittley (De Havilland Aircraft Co Ltd Downsview Ont) In AGARD Flight/Ground Testing Fac Correlation Apr 1976 12 p refs

CSCL 01C

The major areas of confidence derived from wind tunnel tests performed on the Augmentor-Wing jet-STOL research aircraft were delineated and it was shown that for the most part tunnel results compare favorably with flight experience. Since the model differs in some respects from the actual aircraft, precise correlation between tunnel and flight tests results were not expected in some areas the model tests were known to be non-representative so that a degree of uncertainty remained these areas of greater uncertainty are identified and again discussed in the light of subsequent flight tests.

N76-25293* National Aeronautics and Space Administration Ames Research Center Moffett Field Calif CORRELATION OF LOW SPEED WIND TUNNEL AND FLIGHT TEST DATA FOR V/STOL AIRCRAFT Woodrow L Cook and David H Hickey In AGARD Flight/Ground Testing Fac Correlation Apr 1976 10 p refs CSCL 01C

The availability of wind tunnel test data for correlation purposes of the same V/STOL aircraft tested in flight is very limited. This is due in a large part to size limitations of wind tunnels and the number of wind tunnels available for testing of full-scale aircraft. Wind tunnel tests are described for two research aircraft - the XV-5B fan-in-wing aircraft and the YOV-10 RCF (rotating cylinder flap) aircraft - in the NASA Ames 40- by 80-foot wind tunnel The tests were conducted specifically to provide for correlation between wind tunnel and in-flight aerodynamics and noise test data. Correlation between aerodynamic and noise data are presented and testing techniques that are related to the accuracy of the data, or that might affect the correlations are discussed. The correlation of noise measurements made with a J-85 engine mounted on a F-106 aircraft during low altitude flyovers with the same J-85 engine mounted on a model and tested in the Ames 40- by 80-foot wind tunnel are also reported

N76-25294 Royal Aircraft Establishment Bedford (England)
A BRIEF FLIGHT-TUNNEL COMPARISON FOR THE
HUNTING H 126 JET FLAP AIRCRAFT

D N Foster In AGARD Flight/Ground Testing Fac Correlation Apr 1976 7 p refs

Flight measurements of the variation of lift with angle of incidence for an aircraft with an internal-flow jet flap were compared with results deduced from wind-tunnel tests of the aircraft itself and of a one-seventh scale model of the aircraft. The correlation is shown to be unsatisfactory for large flap deflection and high values of the jet momentum. The effects of the wind-tunnel wall corrections and of some uncertainties in the position error correction, were investigated in order to suggest areas where further work could lead to improvements in the flight-tunnel correlation.

N76-25295 Avions Marcel Dassault-Breguet Aviation, Saint-Cloud (France)

COMPARISON OF AERODYNAMIC COEFFICIENTS OBTAINED FROM THEORETICAL CALCULATIONS, WIND TUNNEL TESTS, AND FLIGHT TESTS DATA REDUCTION FOR THE ALPHA JET AIRCRAFT [COMPARAISON DES COEFFICIENTS AERODYNAMIQUES ISSUS DES CALCULS THEORIQUES, ESSAIS EN SOUFFLERIE ET DEPOUILLE-MENTS D'ESSAIS EN VOL EFFECTUES SUR L'ALPHA JET]

Remi Guiot and Horst Wunnenberg In AGARD Flight/Ground Testing Fac Correlation Apr 1976 15 p refs In FRENCH

The techniques used to obtain the aerodynamic coefficients for the Alpha jet aircraft by theoretical calculations results from wind tunnel tests, and reduction from flight tests data were described. Comparison of these various results was made and showed in general a good correlation between them.

Transl by YJA

N76-25296 Royal Aircraft Establishment Bedford (England) FLIGHT MEASUREMENTS OF THE LONGITUDINAL AERODYNAMIC CHARACTERISTICS OF A VECTORED THRUST AIRCRAFT (HS-P1127) THROUGHOUT THE TRANSITION

C J Thorpe and A A Woodfield In AGARD Flight/Ground Testing Fac Correlation Apr 1976 21 p refs

At low speeds the aerodynamic force and moment coefficients on a vectored thrust jet V/STOL aircraft are primarily functions of the three variables - incidence angle thrust deflection angle and the ratio of free stream to jet momentum per unit area (effective velocity ratio). To obtain an indication of the influence of each variable and obtain data requiring a minimum of correlation for comparison with model results quasi-static non-equilibrium flight test techniques were developed. The principles underlying aerodynamic lift, drag and pitching moment measurements on jet V/STOL aircraft are examined. Test and analysis procedures used for flight tests on the P1127 prototype at the RAE are described Examples of results from the flight tests are used to illustrate the various test techniques.

N76-25297 Hawker Siddeley Aviation Ltd Kingston upon Thames (England)

COMMENTS ON SOME WIND TUNNEL AND FLIGHT EXPERIENCE OF THE POST-BUFFET BEHAVIOUR OF THE HARRIER AIRCRAFT

S F Stapleton and B V Pegram In AGARD Flight/Ground Testing Fac Correlation Apr 1976 11 p

The design background of the Harrier wing is briefly reviewed indicating the philosophy of design for controlled buffet penetration to achieve high usable lift. Some wind tunnel techniques for evaluation of high incidence behavior are described and problems of interpretation are discussed. Some results of flight trials concerned with establishing high incidence/Mach number limits of operation are discussed and comments are made on the difficulties of prediction of flight behavior from wind tunnel data on the basis of correlations on the Harrier

Author

N76-25298 Air Force Flight Dynamics Lab Wright-Patterson AFR Ohio

EFFECTS OF BUFFETING AND OTHER TRANSONIC PHENOMENA

William E Lamar In AGARD Flight/Ground Testing Fac Correlation Apr 1976 32 p refs

Buffeting and other transonic phenomena are viewed in the context of highly maneuvering fighter aircraft. The fighter combat problem is first discussed from the viewpoint of the pilot with emphasis on the effects of buffeting and stability and control problems which occur during highly maneuvering flight. The current state of knowledge and available data relating to the tolerance and performance of the pilot m this flight regime is then reviewed to sum up the assessment of buffeting effects on piloting capabilities. Basic transonic flow separation phenomena structural dynamics, and relevant aspects of flight control are viewed from the standpoint of the technologists to provide understanding of the basic effects. Various aspects of buffeting are reviewed to aircraft design and development, and means of improving aircraft design to reduce buffeting and flight control problems. The

situation regarding correlation of ground wind tunnel and flight tests is reviewed and the need of improvements in such correlations is noted. Gaps in capabilities and needs for research and development are given emphasis.

N76-25299 Saab-Scania Linkoping (Sweden) Aero-Space Div

SWEDISH EXPERIENCE ON CORRELATIONS OF FLIGHT RESULTS WITH GROUND TEST PREDICTIONS

Svein Teige Gunnar Straeng and Karl-Erik Staeke /n AGARD Flight/Ground Testing Fac Correlation Apr 1976 10 p ref

Some of the wind tunnel data and flight test data obtained during the development work on the SAAB 37 Viggen aircraft are compared. Three different areas of testing were selected (1) spin tests (2) inlet tests and (3) measurements of aerodynamic derivatives. The main spinning and recovery characteristics of the aircraft are in good agreement with those predicted from wind tunnel tests one exception being that the inverted spin mode has not been found in flight tests. Generally, the agreement between uncorrected inlet scale model tests and full scale is fair, but with a tendency of model flow measurements to be a conservative prediction of the aircraft performance. By correcting the model data for Reynolds number effects and probe sizing influence an almost perfect correlation was achieved. The aerodynamic derivatives measured in flight tests are in good agreement with data predicted from wind tunnel tests and calculations. No important Reynolds number effects have been found Author

N76-25300 Hawker Siddeley Aviation Ltd Brough (England) FLIGHT/TUNNEL COMPARISON OF THE INSTALLED DRAG OF WING MOUNTED STORES

A J Grundy In AGARD Flight/Ground Testing Fac Correlation Apr 1976 16 p refs

Installed drags for a range of stores mounted on the outboard wing pylon (mid semi-span) of a Hawker Siddeley Buccaneer S Mk 2 were measured in full scale flight and on a 1/12th scale wind tunnel full-model. This initial comparison covers several types of stores including a simple tank a rocket pod and twin side-by-side carriage of iron bombs up to 0.86 Mach number. The flight results were obtained using quasi-steady flight test techniques excess thrust was derived from triple-axis accelerometer measurements and thrust from an altitude test facility engine final nozzle calibration using jet pipe pressure. The comparison of incremental drag shows that agreement is satisfactory. Clean stores show good agreement but dirty stores generally have lower drag in flight. Data on changes in lift and pitching moment are also presented.

N76-25301 British Aircraft Corp Preston (England) Aerodynamics Dept

COMMENTS ON MATHEMATICAL MODELLING OF EXTERNAL STORE RELEASE TRAJECTORIES INCLUDING COMPARISON WITH FLIGHT DATA

G A Cox and K Carr In AGARD Flight/Ground Testing Fac Correlation Apr 1976 19 p

The ability to reproduce wind tunnel and flight store jettison trajectories using a mathematical modelling technique is demonstrated A correlation is shown between flight trajectories and predictions using mathematical models incorporating data from (1) matching of wind tunnel jettisons with corrections to full scale conditions (2) wind tunnel measurements of installed store loads and store free-air aerocypnamic forces and moments. The potential of the mathematical modelling technique to minimize wind tunnel and flight store jettison programs is demonstrated.

Author

N76-25302 Aeritalia, Turin (Italy) Wind-Tunnel Dept COMMENTS ON WIND TUNNEL/FLIGHT CORRELATIONS FOR EXTERNAL STORES JETTISON TESTS ON THE F 104 S AND G 91 Y AIRCRAFT

S AND G 91 Y AIRCRAFT
A Garrone, G Bucciantini, and E Barbantini In AGARD
Flight/Ground Testing Fac Correlation Apr 1976 11 p ref

Comparisons are shown of wind-tunnel/flight jettison test results for significant stores on the aircraft F 104 S and G 91 Y Relevant techniques of jettison tests are illustrated Moreover a computer program is examined for the theoretical estimation of the jettisoned stores trajectories in support of wind-tunnel and/or flight tests

Author

N76-25303 Aerospatiale Usines de Toulouse (France)
ANALYSIS OF THE COMPARISON BETWEEN FLIGHT
TESTS RESULTS AND WIND TUNNEL TESTS PREDICTIONS
FOR SUBSONIC AND SUPERSONIC TRANSPORT AIRCRAFT [ANALYSE CRITIQUE DES COMPARAISONS DES
RESULTATS DE VOL AUX PREVISIONS DE SOUFF-LERIE
POUR DES AVIONS DE TRANSPORT SUBSONIQUE ET
SUPERSONIQUE]

C Pelagatti, J C Pilon, and J Bardaud In AGARD Flight/Ground Testing Fac Correlation Apr 1976 23 p refs In FRENCH

The problems of comparing results obtained from wind tunnels with those derived from actual flight tests were discussed It was pointed out that corrections must be made to relate these results directly, due to aeroelastic effects and the effect of Reynold's number differences. For instance, high aerodynamic loads may alter significantly the general aerodynamic shape of aircraft as compared to that of the corresponding scale models corrections must then be made to the coefficients measured with wind tunnels, making predictions more difficult. In addition certain problems arise in the measurement of aerodynamic coefficients over the transonic regime. Using results obtained with the Airbus and Concorde aircraft an attempt was made to point out the accuracy that may be expected from aerodynamic coefficients derived from wind tunnel measurements and the parameters that effect that accuracy Transl by YJA

N76-25322*# Chrysler Corp New Orleans La Data Management Services

RESULTS OF AN AERODYNAMIC INVESTIGATION OF A SPACE SHUTTLE ORBITER/747 CARRIER FLIGHT TEST CONFIGURATION TO DETERMINE SEPARATION CHARACTERISTICS UTILIZING 00125-SCALE MODELS (48-0/AX1318I-1) IN THE LTV 4 x 4 FOOT HIGH SPEED WIND TUNNEL (CA26), VOLUME 1 Aerothermodynamic Data Report

R L Gillins (Rockwell International Downey Calif) Apr 1976 742 p refs 5 Vol

(Contract NAS9-13247)

(NASA-CR-144612, DMS-DR-2273-Vol-1) Avail NTIS HC \$1875 CSCL 22B

Results of tests conducted on a 0 0125-scale model of the Space Shuttle Orbiter and a 0 0125-scale model of the 747 CAM configuration in a 4 x 4-foot High Speed Wind Tunnel were presented Force and moment data were obtained for each vehicle separately at a Mach number of 0.6 and for each vehicle in proximity to the other at Mach numbers of 0.3 0.5, 0.6 and 0.7 The proximity effects of each vehicle on the other at separation distances (from the mated configuration) ranging from 1.5 feet to 7.5 feet were presented, 747 Carrier angles of attack from 0 deg to 6 deg and angles of sideslip of 0 deg and -5 deg were tested Model variables included orbiter elevon, aileron and body flap deflections, orbiter tailcone on and off, and 747 stabilizer and rudder deflections

N76-25323*# Chrysler Corp New Orleans, La Data Management Services

RESULTS OF AN AERODYNAMIC INVESTIGATION OF A SPACE SHUTTLE ORBITER/747 CARRIER FLIGHT TEST CONFIGURATION TO DETERMINE SEPARATION CHARACTERISTICS UTILIZING 00125-SCALE MODELS (48-0/AX1318I-1) IN THE LTV 4 x 4 FOOT HIGH SPEED WIND TUNNEL (CA26), VOLUME 2 Aerothermodynamic Data Report

R L Gillins (Rockwell International Downey Calif) Apr 1976 750 p refs 5 Vol

(Contract NAS9-13247)

(NASA-CR-144613, DMS-DR-2273-Vol-2) Avail NTIS HC \$1875 CSCL 22B

For abstract see N76-25322

N76-25324*# Chrysler Corp , New Orleans La Data Management Services

RESULTS OF AN AERODYNAMIC INVESTIGATION OF A SPACE SHUTTLE ORBITER/747 CARRIER FLIGHT TEST CONFIGURATION TO DETERMINE SEPARATION CHARACTERISTICS UTILIZING 00125-SCALE MODELS (48-0/AX1318I-1) IN THE LTV 4 x 4-FOOT HIGH SPEED WIND TUNNEL (CA26), VOLUME 3 Aerothermodynamic Data Report

R L Gillins (Rockwell International, Downey Calif) Apr 1976 752 p refs 5 Vol

(Contract NAS9-13247)

(NASA-CR-144614, DMS-DR-2273-Vol-3) Avail NTIS HC \$1875 CSCL 22B

For abstract, see N76-25322

N76-25325*# Chrysler Corp New Orleans, La Data Management Services

RESULTS OF AN AERODYNAMIC INVESTIGATION OF A SPACE SHUTTLE ORBITER/747 CARRIER FLIGHT TEST CONFIGURATION TO DETERMINE SEPARATION CHARACTERISTICS UTILIZING 00125-SCALE MODELS (48-0/AX1318I-1) IN THE LTV 4 x 4 FOOT HIGH SPEED WIND TUNNEL (CA26), VOLUME 4 Aerothermodynamic Data Report

R L Gillins (Rockwell International, Downey, Calif) Apr 1976 798 p refs 5 Vol

(Contract NAS9-13247)

(NASA-CR-144615, DMS-DR-2273-Vol-4) Avail NTIS HC \$1875 CSCL 22B

For abstract, see N76-25322

N76-25326*# Chrysler Corp New Orleans, La Data Management Services

RESULTS OF AN AERODYNAMIC INVESTIGATION OF A SPACE SHUTTLE ORBITER/747 CARRIER FLIGHT TEST CONFIGURATION TO DETERMINE SEPARATION CHARACTERISTICS UTILIZING 00125-SCALE MODELS (48-0/AX13181-1) IN THE LTV 4 x 4 FOOT HIGH SPEED WIND TUNNEL (CA26), VOLUME 5 Aerothermodynamic Data Report

R L Gillins (Rockwell International Downey Calif) Apr 1976 758 p refs 5 Vol

(Contract NAS9-13247)

(NASA-CR-144616 DMS-DR-2273-Vol-5) Avail NTIS HC \$1875 CSCL 22B

For abstract see N76-25322

N76-25331*# Lockheed Missiles and Space Co Sunnyvale Calif

UNSTEADY AERODYNAMIC FLOW FIELD ANALYSIS OF THE SPACE SHUTTLE CONFIGURATION PART 4 747/ORBITER AEROELASTIC STABILITY

J Peter Reding and Lars E Ericsson Mar 1976 53 p refs (Contract NAS8-30652)

(NASA-CR-144335 LMSC-D057194-Pt-4) Avail NTIS HC \$4 50 CSCL 22B

A quasi-steady analysis of the aeroelastic stability of the lateral (antisymmetric) modes of the 747/orbiter vehicle was accomplished. The interference effect of the orbiter wake on the 747 tail furnishes an aerodynamic undamping contribution to the elastic modes. Likewise the upstream influence of the 747 tail and aft fuselage on the orbiter beaver-tail rail fairing also is undamping. Fortunately these undamping effects cannot overpower the large damping contribution of the 747 tail and the modes are damped for the configurations analyzed. However significant interference effects of the orbiter on the 747 tail have been observed in the pitch plane. The high response of the 747 vertical tail in the orbiter wave was also considered. Wind tunnel data points to flapping of the OMS pod wakes as the source of the wake resonance phenomenon.

N76-25333*# Chrysler Corp New Orleans La Space Div RESULTS OF AN EXPERIMENTAL INVESTIGATION TO DETERMINE SEPARATION CHARACTERISTICS FOR THE ORBITER/747 USING A 00125-SCALE MODEL (48-0 AX13181-1 747) IN THE AMES RESEARCH CENTER 14-FOOT WIND TUNNEL (CA23B), VOLUME 1

V Esparza (Rockwell Intern Downey Calif) Apr 1976 630 p refs

(Contract NAS9-13247)

(NASA-CR-144603 DMS-DR-2275-Vol-1) Avail NTIS HC \$16.25 CSCL 22B

Separation data were obtained at a Mach number of 0.6 and three incidence angles of 4 deg 6 deg and 9 deg. The orbiter angle of attack was varied from 0 to 14 degrees. Longitudinal lateral and normal separation increments were obtained for fixed 747 angles of attack of 0 deg 2 deg, and 4 deg while varying orbiter angle of attack. Control surface settings on the 747 carrier included rudder deflections of 0 deg and 10 deg and horizontal stabilizer deflections of -1 deg and +5 deg. Photographs of tested configurations are shown.

N76-25334*# Chrysler Corp New Orleans La Space Div RESULTS OF AN EXPERIMENTAL INVESTIGATION TO DETERMINE SEPARATION CHARACTERISTICS FOR THE ORBITER/747 USING A 00125-SCALE MODEL (48-0 AX1318I-1 747) IN THE AMES RESEARCH CENTER 14-FOOT WIND TUNNEL (CA23B)

V Esparza (Rockwell Intern Corp Downey, Calif) Apr 1976 741 p refs

(Contract NAS9-13247)

(NASA-CR-144604 DMS-DR-2275-Vol-2) Avail NTIS HC \$1875 CSCL 22B

Aerodynamic separation data obtained from a wind tunnel test of an 0.0125-scale SSV Orbiter model of a VC70-000002 Configuration and a 0.0125-scale 747 model was presented Separation data was obtained at a Mach number of 0.6 and three incidence angles of 4.6 and 8 degrees. The orbiter angle of attack was varied from 0 to 14 degrees. Longitudinal lateral and normal separation increments were obtained for fixed 747 angles of attack of 0.2 and 4 degrees while varying the orbiter angle of attack. Control surface settings on the 747 carrier included rudder deflections of 0 and 10 degrees and horizontal stabilizer deflections of -1 and +5 degrees.

N76-25354*# National Aeronautics and Space Administration Ames Research Center Moffett Field Calif

A COMPOSITE SYSTEM APPROACH TO AIRCRAFT CABIN FIRE SAFETY

Demetrius A Kourtides John A Parker William J Gilwee Jr Narcinda R Lerner Carlos J Hilado (San Francisco Univ.) Lisa A LaBossiere (San Francisco Univ.) and Ming-ta S Hsu (San Jose State Univ.) Apr. 1976 46 p. refs

(NASA-TM-X-73126 A-6555) Avail NTIS HC \$4 00 CSCL 11D

The thermochemical and flammability characteristics of two polymeric composites currently in use and seven others being considered for use as aircraft interior panels are described. The properties studied included (1) limiting oxygen index of the composite constituents (2) fire containment capability of the composite (3) smoke evolution from the composite (4) thermogravimetric analysis (5) composition of the volatile products of thermal degradation and (6) relative toxicity of the volatile products of pyrolysis. The performance of high temperature laminating resins such as bismaleimides is compared with the performance of phenolics and epoxies. The relationship of increased fire safety with the use of polymers with high anaerobic char yield is shown. Processing parameters of one of the baremaleimide composites are detailed.

N76-25375*# Martin Marietta Corp Orlando Fla HYDROGEN EMBRITTLEMENT OF STRUCTURAL ALLOYS A TECHNOLOGY SURVEY

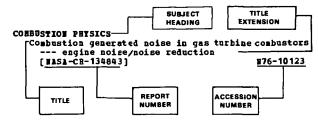
James L Carpenter Jr and William F Stuhrke Jun 1976

(Contract NAS3-19530)

(NASA-CR-134962 OR-14178) Avail NTIS HC \$6.00 CSCL

Technical abstracts for about 90 significant documents relating to hydrogen embrittlement of structural metals and alloys are reviewed Particular note was taken of documents regarding hydrogen effects in rocket propulsion, aircraft propulsion and hydrogen energy systems, including storage and transfer Author systems

Norair Div N76-25389# Northrop Corp Hawthorne Calif FATIGUE PROPERTIES OF KO1 CAST ALUMINUM D C Atmur 31 Jul 1969 27 p (AD-A018714 NOR-69-107) Avail NTIS CSCL 11/6


Fatigue specimens of KO1 aluminum T-6 heat treat condition KO1 aluminum T-7 heat treat condition and 357 aluminum were fatigue load cycled to failure at two stress ratios, R = 20 and R = 10 All specimens were notched for a stress concentration of 3.0 The KO1 aluminum T-6 heat treat condition material has the best fatigue properties of the materials tested. The majority of T-6 specimens sustained 10 to the 7th power cycles at 7,000 pounds per square inch maximum stress for R = 20 and 3 000 pounds per square inch maximum stress for R = -1.0Author (GRA)

SUBJECT INDEX

AERONAUTICAL ENGINEERING / A Special Bibliography (Suppl 74)

SEPTEMBER 1976

Typical Subject Index Listing

The title is used to provide a description of the subject matter. When the title is insufficiently descriptive of the document content a title extension is added, separated from the title by three hyphens. The NASA or AlAA accession number is included in each entry to assist the user in locating the abstract in the abstract section of this supplement. If applicable, a report number is also included as an aid in identifying the document.

A	
A-10 AIRCRAFT	
Stall/post-stall/spin avoidance tests of the	e YA-10
	A76-34247
ABSTRACTS	_
Hydrogen embrittlement of structural alloys	. A
technology survey [NASA-CR-134962]	ม76-25375
ACCIDENT INVESTIGATION	N/0-253/5
General investigation of accidents	
octeral investigation of accidents	A76-34134
ACCIDENT PREVENTION	A70 34134
NASA study of an automated Pilot Advisory S	vsten
[SAE PAPER 760-460]	A76-31958
General aviation crashworthiness	
	A76-34136
ACOUSTIC ATTENUATION	
Alreraft noise reduction by means of acoust	ic
screening and engine controls	
	N76-24252
Systematic investigations in the field of a	
screening of aircraft engine noise by	wings
and tall surfaces	
	N76-24253
Sonic environment of aircraft structure imm	ersed
in a supersonic jet flow stream	
[NASA-CR-144996]	N76-25168
ACOUSTIC MEASUREMENTS	
Progress report on propeller aircraft flyow	er
noise research [SAB PAPER 760-454]	-76 3405#
	A76-31954
ACOUSTIC SIMULATION Current research on the simulation of flight	
effects on the noise radiation of aircraft	t onginos
effects on the noise fadiation of afficial	N76-25280
Problems of noise testing in ground-based	110 23200
facilities with forward-speed simulation	
rucition attm totalin sheed pinnington	N76-25281
ACOUSTICS	B/O LJLOT
Single stage, low noise, advanced technolog	v fan.
Volume 1: Aerodynamic design	·
[NASA-CR-134801]	N76-24236
Single stage, low noise advanced technology	
Volume 3: Acoustic design	
[NASA-CR-134803]	N76-24238
Development of the United Technologies Rese	arch
Center acoustic research tunnel and assoc	ated
test techniques	

the Multiple Model Adaptive Control (MMAC) method [MASA-CR-148100] #76-25211 ADBESIVE BONDING
Metal-to-metal adhesive bonded aircraft structures [FOK-K-81]
ABRIAL BECONNAISSANCE B76-24411 Eigh altitude applications of the Gates Learjet
[SAE PAPER 760-491] A76-319
ABRODYMANIC CHARACTERISTICS
Peasibility study of propeller design for general
aviation by numerical optimization
[SAE PAPER 760-478] A76-319 A76-31973 Pluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift --- Book A76-32167 Experimental determination of improved aerodynamic characteristics utilizing biplane wing configurations A76-33116 'Spilled' leading-edge vortex effects on dynamic stall characteristics A76-33120 Aerodynamic performance of 0.4066-scale model to JT8D refan stage
[NASA-TH-X-3356] N76-24
Approximate method of calculating the interaction N76-24153 of finite-span airfoils in unsteady motion above a solid surface [AD-A019222] N76-24
Single stage, low noise, advanced technology fan.
Volume 1: Aerodynamic design
[NASA-CR-134801] N76-24 Application of advanced aerodynamic concepts to large subsonic transport airplanes [AD-A019956] Flight measurements of the longitudinal aerodynamic characteristics of a vectored thrust aircraft (HS-P1127) throughout the transition --- (V/STOL alrcraft) N76-25296 Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AXI318I-1) in the LTV 4 x 4 foot high speed wind tunnel (CA26), volume 1 [NASA-CR-144612] Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4 foot high speed wind tunnel (CA26), volume 2 [NASA-CR-144613] N76-253.
Results of an aerodynamic investigation of a space N76-25323 shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4-foot high speed wind tunnel (CA26), volume 3 [NASA-CR-144614] N7 N76-25324 Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4 foot high speed wind tunnel (CA26), volume 4 [NASA-CR-144615] N76-25325

The stochastic control of the F-8C aircraft using

ADAPTIVE CONTROL

SUBJECT INDEX

Results of an aerodynamic investigation of a space	
	On the vortex-induced loading on long bluff
shuttle orbiter/747 carrier flight test	cylinders
configuration to determine separation	H76-2417
characteristics utilizing 0.0125-scale models	The unsteady aerodynamic response of an airfoil
(48-0/AX1318I-1) in the LTV 4 x 4 foot high	cascade to a time-variant supersonic inlet flow
speed wind tunnel (CA26), volume 5	field
[NASA-CR-144616] N76-25326	N76-2519
Unsteady aerodynamic flow field analysis of the	Unsteady airloads on a cascade of staggered blades
space shuttle configuration. Part 4:	in subsonic flow
747/orbiter aeroelastic stability	N76-2520
[NASA-CR-144335] N76-25331	ABRODYNAMIC NOISE
AERODYHAMIC COEFFICIENTS	Noise level measurements on a quiet short haul
Calculation of aerodynamic derivatives in unsteady	turboprop transport de Havilland Dash 7 STOL
two-dimensional transonic flow using Dowell's	propulsion
linearization method	[SAE PAPER 760-455] A76-3195
[AMS-1238-T] N76-24154 The drag and lift characteristics of a cylinder	Possibilities and problems of helicopter noise
placed near a place surface	reduction N76-2421
[AD-A019286] N76-25152	On the calculation of fan noise high bypass
Systematical investigations of the influence of	ratio aircraft turbines
wind tunnel turbulence on the results of model	N76-2424
force-measurements	ABRODYNAMIC STABILITY
N76-25259	Aeroelastic stability of trimmed helicopter blades
Comparison of aerodynamic coefficients obtained	in forward flight
from theoretical calculations, wind tunnel	A76-3284
tests, and flight tests data reduction for the	Approximate changes in aircraft stability
Alpha Jet alrcraft	derivatives caused by battle damage
N76-25295	[AD-A019843] N76-2520
AERODYNAMIC COMPIGURATIONS	ABRODYNAMIC STALLING
Calculation of compressible turbulent boundary	YF-17 stall/post-stall testing
layers on straight-tapered swept wings	A76-3424
A76-32587	Stall/post-stall/spin avoidance tests of the YA-10
On the aerodynamic design of airfoil cascades - A	aircraft
new exact method based on conformal mapping	A76-3424
A76-34484	ABRODYNAMICS
Navy jet trainer (VTX) conceptual design studies	Unsteady aerodynamics for example, in
[AD-A018779] N76-24222 AERODYNANIC DRAG	helicopters [AGARD-R-645] N76-2414
A method for predicting the drag of airfoils	[AGARD-R-645] N76-24140 Unsteady aerodynamic prediction methods applied in
[SAE PAPER 760-479] A76-31971	aeroelasticity
Lift and drag characteristics of a supercavitating	N76-2414
cambered hydrofoil with a jet flap beneath a	Some remarks on unsteady transonic flow
free surface	unsteady aerodynamics
A76+34926	N76-2414
Flight/tunnel comparison of the installed drag of	Unsteady aerodynamics of helicopter blades
wing mounted stores on the Buccaneer aircraft	N76-2414
N76-25300 ARRODYNAMIC PORCES	AEROBLASTICITY Aeroelastic stability of trimmed helicopter blades
Determination of aerodynamic forces for	in forward flight
aeroelastic analysis of lifting surfaces	A76-3284
A76-34481	A review of some tilt-rotor aeroelastic research
Aerodynamic forces on a blunt store released from	at NASA-Langley
a swept wing	A76-3379
[AD-A019330] N76-24189	Determination of aerodynamic forces for
Some current research in unsteady aerodynamics: A	aeroelastic analysis of lifting surfaces
report from the Fluid Dynamics Panel	A76-3448
N76-25192 Systematical investigations of the influence of	Structural optimization in aeroelastic conditions
	376 3440
	A76-34480
wind tunnel turbulence on the results of model	Brief overview of some Air Force Flight Dynamics
wind tunnel turbulence on the results of model force-measurements	Brief overview of some Air Porce Flight Dynamics Laboratory research efforts in aeroelasticity
wind tunnel turbulence on the results of model force-measurements N76-25259	Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of
wind tunnel turbulence on the results of model force-measurements N76-25259 AERODYNAMIC INTERFERENCE	Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of feedback control of flutter using scale models
wind tunnel turbulence on the results of model force-measurements N76-25259 ABRODYNAMIC INTERFERENCE Investigation of the mutual interference of	Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of feedback control of flutter using scale models of a B-52 aircraft
wind tunnel turbulence on the results of model force-measurements N76-25259 AERODYNAMIC INTERFERENCE	Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of feedback control of flutter using scale models
wind tunnel turbulence on the results of model force-measurements N76-25259 ABRODYNAMIC INTERFERENCE Investigation of the mutual interference of wing/engine combinations	Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of feedback control of flutter using scale models of a B-52 aircraft
wind tunnel turbulence on the results of model force-measurements N76-25259 ABRODYNAMIC INTERFERENCE Investigation of the mutual interference of wing/engine combinations [ESA-TT-217] Wind tunnel investigation of Nacelle-Airframe interference at Mach numbers of 0.9 to	Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of feedback control of flutter using scale models of a B-52 aircraft N76-2415
wind tunnel turbulence on the results of model force-measurements N76-25259 ABRODYNAMIC INTERPERENCE Investigation of the mutual interference of wing/engine combinations [ESA-TT-217] Wind tunnel investigation of Nacelle-Airframe interference at Mach numbers of 0.9 to 1.4-pressure data, volume 2	Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of feedback control of flutter using scale models of a B-52 aircraft N76-2415 Model systems and their implications in the operation of pressurized wind tunnels N76-2524 Some aeroelastic distortion effects on aircraft
wind tunnel turbulence on the results of model force-measurements N76-25259 AERODYNAMIC INTERPERENCE Investigation of the mutual interference of wing/engine combinations [ESA-TT-217] Wind tunnel investigation of Nacelle-Airframe interference at Mach numbers of 0.9 to 1.4-pressure data, volume 2 [NASA-TM-X-73088] N76-25144	Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of feedback control of flutter using scale models of a B-52 aircraft N76-2415 Model systems and their implications in the operation of pressurized wind tunnels N76-25244 Some aeroelastic distortion effects on aircraft and wind tunnel models
wind tunnel turbulence on the results of model force-measurements N76-25259 ABRODYNAMIC INTERFERENCE Investigation of the mutual interference of wing/engine combinations [ESA-TT-217] Wind tunnel investigation of Nacelle-Airframe interference at Mach numbers of 0.9 to 1.4-pressure data, volume 2 [NASA-TM-X-73088] Influence function method in wind tunnel wall	Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of feedback control of flutter using scale models of a B-52 aircraft N76-2415 Model systems and their implications in the operation of pressurized wind tunnels N76-2524 Some aeroelastic distortion effects on aircraft and wind tunnel models N76-2527
wind tunnel turbulence on the results of model force-measurements N76-25259 ABRODYNAMIC INTERPERENCE Investigation of the mutual interference of wing/engine combinations [BSA-TT-217] Wind tunnel investigation of Nacelle-Airframe interference at Hach numbers of 0.9 to 1.4-pressure data, volume 2 [NASA-TM-X-73088] Influence function method in wind tunnel wall interference problems	Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of feedback control of flutter using scale models of a B-52 aircraft N76-2415 Model systems and their implications in the operation of pressurized wind tunnels N76-2524 Some aeroelastic distortion effects on aircraft and wind tunnel models N76-2527 Unsteady aerodynamic flow field analysis of the
wind tunnel turbulence on the results of model force-measurements N76-25259 AERODYNAMIC INTERPREBECE Investigation of the mutual interference of wing/engine combinations [ESA-TT-217] Wind tunnel investigation of Nacelle-Airframe interference at Mach numbers of 0.9 to 1.4-pressure data, volume 2 [NASA-TM-X-73088] Influence function method in wind tunnel wall interference problems N76-25228	Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of feedback control of flutter using scale models of a B-52 aircraft N76-2415 Model systems and their implications in the operation of pressurized wind tunnels N76-2524 Some aeroelastic distortion effects on aircraft and wind tunnel models N76-2527 Unsteady aerodynamic flow field analysis of the space shuttle configuration. Part 4:
wind tunnel turbulence on the results of model force-measurements N76-25259 ABRODYNAMIC INTERPREBECE Investigation of the mutual interference of wing/engine combinations [ESA-TT-217] Wind tunnel investigation of Nacelle-Airframe interference at Mach numbers of 0.9 to 1.4-pressure data, volume 2 [NASA-TM-X-73088] Influence function method in wind tunnel wall interference problems N76-25228 Two-dimensional tunnel wall interference for	Brief overview of some Air Porce Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of feedback control of flutter using scale models of a B-52 aircraft N76-2415 Model systems and their implications in the operation of pressurized wind tunnels N76-2524 Some aeroelastic distortion effects on aircraft and wind tunnel models N76-2527 Unsteady aerodynamic flow field analysis of the space shuttle configuration. Part 4: 747/orbiter aeroelastic stability
wind tunnel turbulence on the results of model force-measurements N76-25259 ABRODYNAMIC INTERPERENCE Investigation of the mutual interference of wing/engine combinations [BSA-TT-217] Wind tunnel investigation of Nacelle-Airframe interference at Mach numbers of 0.9 to 1.4-pressure data, volume 2 [NASA-TM-X-73088] Influence function method in wind tunnel wall interference problems N76-25228 Two-dimensional tunnel wall interference for multi-element aerofoils in incompressible flow	Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of feedback control of flutter using scale models of a B-52 aircraft N76-2415 Model systems and their implications in the operation of pressurized wind tunnels N76-2524 Some aeroelastic distortion effects on aircraft and wind tunnel models N76-2527 Unsteady aerodynamic flow field analysis of the space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [NASA-CR-144335] N76-2533
wind tunnel turbulence on the results of model force-measurements N76-25259 ABRODYNAMIC INTERPERENCE Investigation of the mutual interference of wing/engine combinations [ESA-TT-217] Wind tunnel investigation of Nacelle-Airframe interference at Mach numbers of 0.9 to 1.4-pressure data, volume 2 [NASA-TM-X-73088] Influence function method in wind tunnel wall interference problems N76-25228 Two-dimensional tunnel wall interference for multi-element aerofoils in incompressible flow N76-25233	Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of feedback control of flutter using scale models of a B-52 aircraft N76-2415 Model systems and their implications in the operation of pressurized wind tunnels N76-2524 Some aeroelastic distortion effects on aircraft and wind tunnel models N76-2527 Unsteady aerodynamic flow field analysis of the space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [NASA-CR-144335] N76-2533
wind tunnel turbulence on the results of model force-measurements N76-25259 ABRODYNAMIC INTERPERENCE Investigation of the mutual interference of wing/engine combinations [BSA-TT-217] Wind tunnel investigation of Nacelle-Airframe interference at Mach numbers of 0.9 to 1.4-pressure data, volume 2 [NASA-TM-X-73088] Influence function method in wind tunnel wall interference problems N76-25228 Two-dimensional tunnel wall interference for multi-element aerofoils in incompressible flow	Brief overview of some Air Porce Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of feedback control of flutter using scale models of a B-52 aircraft N76-2415 Model systems and their implications in the operation of pressurized wind tunnels N76-2524 Some aeroelastic distortion effects on aircraft and wind tunnel models N76-2527 Unsteady aerodynamic flow field analysis of the space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [NASA-CR-144335] AFTERBURNING Development of emissions measurement techniques
wind tunnel turbulence on the results of model force-measurements N76-25259 ABRODYNAMIC INTERPREBECE Investigation of the mutual interference of wing/engine combinations [ESA-TT-217] N76-24184 Wind tunnel investigation of Nacelle-Airframe interference at Mach numbers of 0.9 to 1.4-pressure data, volume 2 [NASA-TM-X-73088] N76-25144 Influence function method in wind tunnel wall interference problems N76-25228 Two-dimensional tunnel wall interference for multi-element aerofoils in incompressible flow N76-25233 ABRODYNAMIC LOADS	Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of feedback control of flutter using scale models of a B-52 aircraft N76-2415 Model systems and their implications in the operation of pressurized wind tunnels N76-2524 Some aeroelastic distortion effects on aircraft and wind tunnel models N76-2527 Unsteady aerodynamic flow field analysis of the space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [NASA-CR-144335] N76-2533
wind tunnel turbulence on the results of model force-measurements N76-25259 ABRODYNAMIC INTERPREBECE Investigation of the mutual interference of wing/engine combinations [ESA-TT-217] N76-24184 Wind tunnel investigation of Nacelle-Airframe interference at Mach numbers of 0.9 to 1.4-pressure data, volume 2 [NASA-TM-X-73088] N76-25144 Influence function method in wind tunnel wall interference problems N76-25228 Two-dimensional tunnel wall interference for multi-element aerofoils in incompressible flow N76-25233 ABRODYNAMIC LOADS Joint aircraft loading/structure response statistics of time to service crack initiation A76-33117	Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of feedback control of flutter using scale models of a B-52 aircraft N76-2415 Model systems and their implications in the operation of pressurized wind tunnels N76-2524 Some aeroelastic distortion effects on aircraft and wind tunnel models N76-2527 Unsteady aerodynamic flow field analysis of the space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [NASA-CR-144335] N76-2533 AFTERBURNING Development of emissions measurement techniques for afterburning turbine engines
wind tunnel turbulence on the results of model force-measurements N76-25259 ABRODYNAMIC INTERPERENCE Investigation of the mutual interference of wing/engine combinations [BSA-TT-217] Wind tunnel investigation of Nacelle-Airframe interference at Mach numbers of 0.9 to 1.4-pressure data, volume 2 [NASA-TM-X-73088] Influence function method in wind tunnel wall interference problems N76-25144 Two-dimensional tunnel wall interference for multi-element aerofoils in incompressible flow N76-25233 ABRODYNAMIC LOADS Joint aircraft loading/structure response statistics of time to service crack initiation A76-33117 Wind tunnel test techniques for the measurement of	Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of feedback control of flutter using scale models of a B-52 aircraft N76-2415 Model systems and their implications in the operation of pressurized wind tunnels N76-2524 Some aeroelastic distortion effects on aircraft and wind tunnel models N76-2527 Unsteady aerodynamic flow field analysis of the space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [NASA-CR-144335] N76-2533 AFTERBURNING Development of emissions measurement techniques for afterburning turbine engines [AD-A019094]
wind tunnel turbulence on the results of model force-measurements N76-25259 ABRODYNAMIC INTERPERENCE Investigation of the mutual interference of wing/engine combinations [ESA-TT-217] Wind tunnel investigation of Nacelle-Airframe interference at Mach numbers of 0.9 to 1.4-pressure data, volume 2 [NASA-TM-X-73088] Influence function method in wind tunnel wall interference problems N76-25144 Two-dimensional tunnel wall interference for multi-element aerofoils in incompressible flow N76-2523 ABRODYNAMIC LOADS Joint aircraft loading/structure response statistics of time to service crack initiation A76-33117 Wind tunnel test techniques for the measurement of unsteady airloads on oscillating lifting systems	Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of feedback control of flutter using scale models of a B-52 aircraft N76-2415 Model systems and their implications in the operation of pressurized wind tunnels N76-2524 Some aeroelastic distortion effects on aircraft and wind tunnel models N76-2527 Unsteady aerodynamic flow field analysis of the space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [NASA-CR-144335] N76-2533 AFTERBURNING Development of emissions measurement techniques for afterburning turbine engines [AD-A019094] N76-24260 AILBRONS Design of an advanced composites aileron for commercial aircraft
wind tunnel turbulence on the results of model force-measurements N76-25259 ABRODYNAMIC INTERPRENCE Investigation of the mutual interference of wing/engine combinations [ESA-TT-217] N76-24184 Wind tunnel investigation of Nacelle-Airframe interference at Mach numbers of 0.9 to 1.4-pressure data, volume 2 [NASA-TM-X-73088] N76-25144 Influence function method in wind tunnel wall interference problems N76-2528 Two-dimensional tunnel wall interference for multi-element aerofoils in incompressible flow N76-25233 ABRODYNAMIC LOADS Joint aircraft loading/structure response statistics of time to service crack initiation A76-33117 Wind tunnel test techniques for the measurement of unsteady airloads on oscillating lifting systems and full-span models	Brief overview of some Air Porce Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of feedback control of flutter using scale models of a B-52 aircraft N76-2415 Model systems and their implications in the operation of pressurized wind tunnels N76-2524 Some aeroelastic distortion effects on aircraft and wind tunnel models N76-2527 Unsteady aerodynamic flow field analysis of the space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [NASA-CR-144335] N76-2533 AFTERBURNING Development of emissions measurement techniques for afterburning turbine engines [AD-A019094] N76-24260 AILERONS Design of an advanced composites alleron for commercial aircraft
wind tunnel turbulence on the results of model force-measurements N76-25259 ABRODYNAMIC INTERPERENCE Investigation of the mutual interference of wing/engine combinations [BSA-TT-217] Wind tunnel investigation of Nacelle-Airframe interference at Mach numbers of 0.9 to 1.4-pressure data, volume 2 [NASA-TM-X-73088] Influence function method in wind tunnel wall interference problems N76-25144 Two-dimensional tunnel wall interference for multi-element aerofolls in incompressible flow N76-25233 ABRODYNAMIC LOADS Joint aircraft loading/structure response statistics of time to service crack initiation Wind tunnel test techniques for the measurement of unsteady airloads on oscillating lifting systems and full-span models	Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of feedback control of flutter using scale models of a B-52 aircraft N76-2415 Model systems and their implications in the operation of pressurized wind tunnels N76-2524 Some aeroelastic distortion effects on aircraft and wind tunnel models N76-2527 Unsteady aerodynamic flow field analysis of the space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [NASA-CR-144335] N76-2533 AFTERBURNING Development of emissions measurement techniques for afterburning turbine engines [AD-A019094] N76-24264 AILERONS Design of an advanced composites alleron for commercial aircraft A76-3265 AIR BAG RESTRAINT DEVICES
wind tunnel turbulence on the results of model force-measurements N76-25259 ABRODYNAMIC INTERPREBECE Investigation of the mutual interference of wing/engine combinations [ESA-TT-217] Wind tunnel investigation of Nacelle-Airframe interference at Mach numbers of 0.9 to 1.4-pressure data, volume 2 [NASA-TM-X-73088] Influence function method in wind tunnel wall interference problems N76-25144 Two-dimensional tunnel wall interference for multi-element aerofoils in incompressible flow N76-25233 ABRODYNAMIC LOADS Joint aircraft loading/structure response statistics of time to service crack initiation A76-33117 Wind tunnel test techniques for the measurement of unsteady airloads on oscillating lifting systems and full-span models N76-24150 Application of the MBB panel method to calculation	Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of feedback control of flutter using scale models of a B-52 aircraft N76-2415 Model systems and their implications in the operation of pressurized wind tunnels N76-2524 Some aeroelastic distortion effects on aircraft and wind tunnel models N76-2527 Unsteady aerodynamic flow field analysis of the space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [NASA-CR-144335] N76-2533 AFTERBURNING Development of emissions measurement techniques for afterburning turbine engines [AD-A019094] N76-24260 AILBROWS Design of an advanced composites aileron for commercial aircraft A76-3265 AIR BAG RESTRAINT DEVICES Helicopter stabilization system
wind tunnel turbulence on the results of model force-measurements N76-25259 ABRODYNAMIC INTERPRENCE Investigation of the mutual interference of wing/engine combinations [ESA-TT-217] N76-24184 Wind tunnel investigation of Nacelle-Airframe interference at Mach numbers of 0.9 to 1.4-pressure data, volume 2 [NASA-TM-X-73088] N76-25144 Influence function method in wind tunnel wall interference problems N76-2528 Two-dimensional tunnel wall interference for multi-element aerofoils in incompressible flow N76-25233 ABRODYNAMIC LOADS Joint aircraft loading/structure response statistics of time to service crack initiation A76-33117 Wind tunnel test techniques for the measurement of unsteady airloads on oscillating lifting systems and full-span models N76-24150 Application of the MBB panel method to calculation of wing-body configurations with external store	Brief overview of some Air Porce Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of feedback control of flutter using scale models of a B-52 aircraft N76-2415 Model systems and their implications in the operation of pressurized wind tunnels N76-2524 Some aeroelastic distortion effects on aircraft and wind tunnel models N76-2527 Unsteady aerodynamic flow field analysis of the space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [NASA-CR-144335] N76-2533 AFTERBURNING Development of emissions measurement techniques for afterburning turbine engines [AD-A019094] N76-24260 AILBROMS Design of an advanced composites alleron for commercial aircraft A76-3265 AIR BAG RESTRAINT DEVICES Helicopter stabilization system
wind tunnel turbulence on the results of model force-measurements N76-25259 ABRODYNAMIC INTERPERENCE Investigation of the mutual interference of wing/engine combinations [BSA-TT-217] Wind tunnel investigation of Nacelle-Airframe interference at Mach numbers of 0.9 to 1.4-pressure data, volume 2 [NASA-TH-X-73088] Influence function method in wind tunnel wall interference problems N76-25144 Two-dimensional tunnel wall interference for multi-element aerofoils in incompressible flow N76-25233 ABRODYNAMIC LOADS Joint aircraft loading/structure response statistics of time to service crack initiation A76-33117 Wind tunnel test techniques for the measurement of unsteady airloads on oscillating lifting systems and full-span models N76-24150 Application of the MBB panel method to calculation of wing-body configurations with external store loads	Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of feedback control of flutter using scale models of a B-52 aircraft N76-2415 Model systems and their implications in the operation of pressurized wind tunnels N76-2524 Some aeroelastic distortion effects on aircraft and wind tunnel models N76-2527 Unsteady aerodynamic flow field analysis of the space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [NASA-CR-144335] N76-2533 AFTERBURNING Development of emissions measurement techniques for afterburning turbine engines [AD-A019094] N76-24260 AILERONS Design of an advanced composites alleron for commercial aircraft A76-3265 AIR BAG RESTRAINT DEVICES Helicopter stabilization system A76-34160 AIR SABPLING
wind tunnel turbulence on the results of model force-measurements N76-25259 ABRODYNAMIC INTERPRENCE Investigation of the mutual interference of wing/engine combinations [ESA-TT-217] N76-24184 Wind tunnel investigation of Nacelle-Airframe interference at Mach numbers of 0.9 to 1.4-pressure data, volume 2 [NASA-TM-X-73088] N76-25144 Influence function method in wind tunnel wall interference problems N76-2528 Two-dimensional tunnel wall interference for multi-element aerofoils in incompressible flow N76-25233 ABRODYNAMIC LOADS Joint aircraft loading/structure response statistics of time to service crack initiation A76-33117 Wind tunnel test techniques for the measurement of unsteady airloads on oscillating lifting systems and full-span models N76-24150 Application of the MBB panel method to calculation of wing-body configurations with external store	Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of feedback control of flutter using scale models of a B-52 aircraft N76-2415 Model systems and their implications in the operation of pressurized wind tunnels N76-2524: Some aeroelastic distortion effects on aircraft and wind tunnel models N76-2527: Unsteady aerodynamic flow field analysis of the space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [NASA-CR-144335] N76-2533 AFTERBURNING Development of emissions measurement techniques for afterburning turbine engines [AD-A019094] N76-24266 AILBROWS Design of an advanced composites alleron for commercial aircraft A76-3265 Helicopter stabilization system

SUBJECT INDEX AIRCRAFT ENGINES

AIR TRAPPIC CONTROL	Singular perturbation methods for variational
'Controlled flight into terrain /CFIT/' accidents - System-induced errors	problems in aircraft flight A76-33305
A76-32231	AIRCRAFT DESIGN
AIRCHAFT ACCIDENT INVESTIGATION Practure analyses involving materials of aircraft	Practure in thin sections of aircraft structures [SAE PAPER 760-452] A76-31953
construction for machine elements	NASA general aviation research overview - 1976
A76-32165 Alrcraft crashworthiness: Proceedings of the	[SAE PAPER 760-458] A76-31957 Design, development and flight test of the Cessna
Symposium, University of Cincinnati, Cincinnati,	Citation thrust reverser
Ohio, October 6-8, 1975	[SAE PAPER 760-468] A76-31963
A76-34132 An overview of aircraft crashworthiness research	Laminar flow rethink - Using composite structure in Bellanca Skyrocket II design
and development	[SAE PAPER 760-473] A76-31966
A76-34133 General investigation of accidents	General aviation design synthesis utilizing interactive computer graphics
A76-34134	[SAE PAPER 760-476] A76-31968
Crashworthiness observations in general aviation accident investigations - A statistical overview	Airfoil section drag reduction at transonic speeds by numerical optimization
A76-34135	[SAE PAPER 760-477] A76-31969
Crashworthiness design features for advanced	Lightning protection of aircraft fuel caps
utility helicopters A76-34137	[SAE PAPER 760-486] A76-31972 High altitude applications of the Gates Learjet
Crashworthiness in emergency ditching of general	[SAE PAPER 760-491] A76-31973
aviation aircraft A76-34140	GA/W/-2 Airfoil Flight Test Evaluation [SAE PAPER 760-492] A76-31974
Crashworthiness and postcrash hazards from the	Initial flight test phase of the
airline flight attendant's point of view	Dassault-Breguet/Dornier Alpha-Jet
A76-34163 AIRCRAPT ACCIDENTS	A76-32626 Hawker Siddeley Hawk T Mk 1 two-seat ground
Pilot error and other accident enabling factors	attack/trainer aircraft
A76-32230 'Controlled flight into terrain /CFIT/' accidents	A76+32634 The design and development of a military combat
- System-induced errors	aircraft. II - Sizing the aircraft
A76-32231 Simulation of aircraft crash and its validation	A76-32650 System complexity - Its conception and measurement
A76-34 157	in the design of engineering systems
Modeling and analysis techniques for wehicle crash simulation	A76-33100 Airfoil response to an incompressible skewed gust
A76-34158	of small spanwise wave-number
Nonlinear finite element techniques for aircraft	A76-33725
crash analysis A76-34159	Hawker Siddeley Hawk T Mk 1 two-seat ground attack/trainer aircraft
Research and development of modified fuels for	A76-33772
reduction of the postcrash fire hazard	The design and development of a military combat aircraft. III - Longitudinal stability and control
AIRCRAFT ANTRNNAS	A76-33945
Rotor effects on L-band signals received by helicopter antennas. Part 3: Measurements of	Sukhon's swing-wing Su-17/20 Fitter C A76-33946
the amplitude and phase distortions of CW signals	Aircraft crashworthiness; Proceedings of the
(signal distortion during radio reception) [AD-A019506] N76-24455	Symposium, University of Cincinnati, Cincinnati, Ohio, October 6-8, 1975
Roll plane computer program	A76-34132
[AD-A019000] N76-24459 AIRCRAFT CARRIERS	General aviation crashworthiness A76-34136
Determination of minimum catapult launch speeds	Development of design criteria for crashworthy
for maximum combat effectiveness of carrier aircraft	armored aircrew seats
176-34249	A76-34154 Simulation of aircraft crash and its validation
Catapult launch fatigue investigation of the model	A76-34157
E-1B/C-1 airplane [AD-A019519] N76-24223	Nonlinear finite element techniques for aircraft crash analysis
AIRCRAFT COMMUNICATION	A76-34159
NASA study of an automated Pilot Advisory System [SAE PAPER 760-460] A76-31958	On the conception and measurement of trade-off in engineering systems - A case study of the
Aircraft communications interference tests	aircraft design process
[AD-A022954/2] N76-24435 AIRCRAFT COMPARTMENTS	A76-34313
The impact of interior cabin noise on passenger	On the conception and measurement of technology - A case study of the aircraft design process
acceptance	A76-34314
[SAE PAPER 760-466] A76-31962 A composite system approach to aircraft cabin fire	Weight prediction methods - GRUGEW program [MBB-UFB-1072-0] N76-24215
safety	Single stage, low noise, advanced technology fan.
[WASA-TH-I-73126] N76-25354 AIRCRAFT COMPIGURATIONS	Volume 2: Structural design [NASA-CR-134802] H76-24237
Experimental determination of improved aerodynamic	A preliminary design study of a laminar flow
characteristics utilizing biplane wing configurations	control wing of composite materials for long range transport aircraft
A76-33116	[MASA-CR-144950] N76-25146
Investigation of the mutual interference of wing/engine combinations	Technical and economic assessment of
[BSA-TT-217] N76-24184	span-distributed loading cargo aircraft concepts [BASA-CR-144963] B76-25157
AIRCRAFT CONTROL	AIRCRAFT ENGINES
Advanced fighter control techniques A76-32627	A ducted propulsor demonstrator [SAE PAPER 760-470] A76-31965
Engine and jet induced effects of a lift plus	The development testing of a short-haul
lift-cruse V/STOL aircraft A76-32631	airframe/powerplant combination, the VPW 614/H45H A76-32633
a/U-3403 (A76-32033

AIRCRAPT EQUIPMENT SUBJECT INDEX

Investigation of the mutual interference of	Magnetic engagement tooks aver for large coals
wing/engine combinations	Magnetic suspension techniques for large scale aerodynamic testing
[BSA-TT-217] N76-24184	N76-25250
On the calculation of fan noise high bypass ratio aircraft turbines	VSTOL wind tunnel model testing: An experimental
#76-24248	assessment of flow breakdown using a multiple fan model
Some technical problems of quiet aircraft technology	N76-25253
#76-24249	AIRCRAFT HOISE
Engineering evaluation JOH-58A helicopter with an automatic relight system	Progress report on propeller aircraft flyover noise research
[AD-A019407] H76-25161	[SAE PAPER 760-454] A76-31954
Influence of unsteady flow phenomena on the design	The impact of interior cabin noise on passenger
and operation of aero engines N76-25171	acceptance [SAE PAPER 760-466] A76-31962
Air driven ejector units for engine simulation in	[SAE PAPER 760-466] Energy management - The delayed flap approach
wind tunnel models	A76-32200
N76-25239	The assessment of noise, with particular reference to aircraft
Current research on the simulation of flight effects on the noise radiation of aircraft engines	A76-33771
ห76-25280	Flying without doing harm aircraft approach
AIRCRAFT EQUIPMENT	and takeoff noise abatement techniques
Environmental tests of the F-15 in the Air Force Climatic Laboratory	A76-34661 Possibilities and problems of helicopter noise
A76-34244	reduction
Emergency locator transmitters	N76-24211
[GPO-60-520] N76-25154 AIRCRAFT FUELS	Engine noise conference proceedings
New potentials for conventional aircraft when	[ESA-TT-244] N76-24243 Alreraft noise limits regulations in Germany
powered by hydrogen-enriched gasoline	relating to design measures
[SAE PAPER 760-469] A76-31964	N76-24247
AIRCRAFT GUIDANCE Toward more effective testing; Proceedings of the	Aircraft noise reduction by means of acoustic screening and engine controls
Sixth Annual Symposium, St. Louis, Ho., August	N76-24252
13-16, 1975	Systematic investigations in the field of acoustic
A76-34233 Antiship cruise missile threat simulation	screening of aircraft engine noise by wings and tail surfaces
utilizing a RPV	N76-24253
A76-34239	Investigation into the noise propagation by
AIRCRAFT HAZARDS	propeller aircraft in general aviation N76-24254
Ground proximity warning system testing A76-34242	House phenomena with helicopter rotors and
A composite system approach to aircraft cabin fire	possibilities of noise reduction
safety	N76-24256
[NASA-TM-X-73126] N76-25354 AIRCRAFT INDUSTRY	Research on aircraft noise: Test methods [NASA-TT-F-17090] N76-25166
Glass fiber reinforced plastics for small aircraft	Sonic environment of aircraft structure immersed
structures. Activities over the years 1956 to	in a supersonic jet flow stream
1971 in the Light Aircraft Division [MBB-UFE-1067-0] N76-24368	[NASA-CR-144996] N76-25168 AIRCRAFT PARTS
AIRCRAFT LANDING	Lightning protection of aircraft fuel caps
Status of the Air Cushion Landing System flight	[SAE PAPER 760-486] A76-31972
test program A76-34238	<pre>Fracture analyses involving materials of aircraft construction for machine elements</pre>
Plying without doing harm aircraft approach	A76-32165
and takeoff noise abatement techniques	AIRCRAFT PERFORMANCE
A76-34661 AIRCRAFT LAUNCHING DEVICES	Preliminary flight-test results of an advanced
Determination of minimum catapult launch speeds	technology light twin-engine airplane /ATLIT/ [SAE PAPER 760-497] A76-31976
for maximum combat effectiveness of carrier	Initial flight test phase of the
aircraft	Dassault-Breguet/Dornier Alpha-Jet
A76-34249 AIRCRAFT MAINTENANCE	A76-32626 Advanced fighter control techniques
Mechanical function and engine performance for the	A76-32627
Army UH-1 H helicopter in the AIDAPS program	B-1 flight test progress report
Automatic Inspection, Diagnostic and Prognostic Systems	A76-32628 Engine and jet induced effects of a lift plus
A76-32149	lift-cruise V/STOL aircraft
Reliability and maintainability testing of	A76-32631
prototype aircraft A76-34237	An investigation of RPV control criteria via the optimal regulator performance index
AIRCRAFT HAREUVERS	[AD-A019846] N76-25209
The dynamics of aircraft spin Russian book	Experience in predicting subsonic aircraft
A76-33022	characteristics from wind tunnel analysis
YF-17 stall/post-stall testing A76-34246	AIRCRAFT PILOTS N76-25289
AIRCRAFT HODELS	NASA study of an automated Pilot Advisory System
Realistic evaluation of landing gear shimmy	[SAE PAPER 760-460] A76-31958
stabilization by test and analysis 476-31975	AIRCRAFT PRODUCTION Characteristic jet engine parameters for project
Nacelle-airframe integration model testing for	comparisons
nacelle simulation and measurement accuracy	[DLR-IB-555-74/13] N76-24258
#76-25238 Model systems and their implications in the	AIRCRAFT RELIABILITY Aircraft crashworthiness; Proceedings of the
operation of pressurized wind tunnels	Symposium, University of Cincinnati, Cincinnati,
N76-25248	Ohio, October 6-8, 1975
Design and construction of the alpha jet flutter model	A76-34132 An overview of aircraft crashworthiness research
N76-25249	and development
	A76-34133

SUBJECT INDEX AIRPRANE MATERIALS

General investigation of accidents Crashworthiness observations in general	A76-34134 aviation	AIRCRAFT SURVIVABILITY Aircraft crashworthiness; Proceedings of Symposium, University of Cincinnati, C	
accident investigations - A statistica		Ohio, October 6-8, 1975	A76-34132
General aviation crashworthiness	A76-34136	Crashworthiness of the Boeing Vertol UTT	
Crashworthiness design features for adva utility helicopters		Simulation of aircraft crash and its wal	
Crashworthiness of the Boeing Vertol UTI		Crashworthiness and postcrash hazards fra airline flight attendant's point of vi-	ev
Crashworthiness in emergency ditching of aviation aircraft	A76-34138 general	Crashworthy fuel systems	A76-34163
Development of design criteria for crash	A76-34140 worthy	Application of designs to improve aircfa: control survivability	ft flight
armored aircrew seats Modeling and analysis techniques for web	A76-34154	[AD-A018733] AIRCRAFT WAKES The relationships between a wing and its	#76-24279
simulation	A76-34158	trailing vortices	B76-25145
Nonlinear finite element techniques for crash analysis		AIRFOIL PROFILES Airfoil section drag reduction at transo	
	A76-34159	by numerical optimization	
Toward more effective testing; Proceeding		[SAR PAPER 760-477]	A76-31969
Sixth Annual Symposium, St. Louis, Mo. 13-16, 1975		A method for predicting the drag of airfo [SAE PAPER 760-479]	oils 176-31971
Reliability and maintainability testing	A76-34233 of	GA/W/-2 Airfoil Flight Test Evaluation [SAE PAPER 760-492]	A76-31974
prototype aircraft	176-34237	On the aerodynamic design of airfoil case new exact method based on conformal ma	
Reliability assessment of modified field	ea	A complete second-order theory for the up	
aircraft using the Bayesian technique [AD-A018890] T-28 service life evaluation	N76-24225	flow about an airfoil due to a periodic	
[AD-A018907]	N76-24227	Calculation of buffet onset for supercri	
IRCRAFT SAFETY	010 01201	airfoils	
Video tape presentation of passenger saf	et v	[DLR-IB-151-75/12]	N76-24181
information	,	AIRFOILS	2
20224424	A76-32232	A data acquisition system for in-flight	airfoil
Development of lightweight fire retardam		evaluation	4111011
low-smoke, high-strength, thermally st		[SAE PAPER 760-462]	A76-31960
aircraft floor paneling	.ubie	'Spilled' leading-edge vortex effects on	
[NASA-CR-147750]	N76-24365	stall characteristics	-1
IRCRAFT SPECIFICATIONS	270 24303	Stull Characteristics	A76-33120
Status of methods for aircraft state and	Darameter	Airfoil response to an incompressible ske	_
identification	Parameter	of small spanwise wave-number	caca gabe
14010111040101	N76-25282	or sadir spantise wave adabet	A76-33725
IRCRAPT STABILITY		Hydrodynamic visualization study of varia	
Realistic evaluation of landing gear shi stabilization by test and analysis	.may	procedures for controlling separated f	
[SAE PAPER 760-496]	A76-31975	Airfoil design for a prescribed velocity	
On the response of an aircraft to random		distribution in transonic flow by an in	
Engine and jet induced effects of a lift		[DLR-IB-151-75/8]	N76-24180
lift-cruise V/STOL aircraft	Prus	Some aspects on unsteady flow past airfo	
a	176-32631	cascades	N76-25193
Unsteady hypersonic flow over delta wing detached shock waves		Preliminary results for single airfoil re	
detdelled Block Waves	A76-33719	large nonpotential flow disturbances -	
Helicopter stabilization system	A76-34164	considering turbocompressor inlet flow	
Effect on pilot performance with refined		The passage of a distorted velocity field	
helicopter displays		a cascade of airfoils	-
	A76-34241		₩76-25199
IRCRAFT STRUCTURES		The computation of transonic flows past	aerofoils
Fracture in thin sections of aircraft	t structures	in solid, porous or slotted wind tunne	
[SAE PAPER 760-452]	A76-31953	· •	N76-25232
Joint aircraft loading/structure respons statistics of time to service crack in	itiation	Two-dimensional tunnel wall interference multi-element aerofoils in incompression	ble flow
	A76-33117		N76-25233
Development of lightweight fire retardan low-smoke, high-strength, thermally st		A low-correction wall configuration for testing	
aircraft floor paneling	#76_0hace	Mho shanashan of 63	N76-25234
[NASA-CR-147750]	N76-24365	The character of flow unsteadiness and i	
Metal-to-metal adhesive bonded aircraft		influence on steady state transonic will	na tanger
[FOK-K-81] Interference-fit-fastener investigation	N76-24411	measurements	N76-25256
fatigue life of fasteners used in airc	raft	Plight mascurages of haligantas	
structures	rart	Flight measurements of helicopter rotor characteristics and some comparisons w	
[AD-A018804]	N76-24598	two-dimensional wind tunnel results	- CH
Calculation of three-dimensional superso		CAO-dimensioner aind fainel fesalts	N76-25284
fields about aircraft fuselages and wi		AIRPRAME MATERIALS	#10-23204
general angle of attack	myo at	Design of an advanced composites aileron	for
[AD-A018715]	N76-25151	commercial aircraft	TOL
Sonic environment of aircraft structure		COMMETCICITY GIFCIGIE	A76-32651
in a supersonic jet flow stream		The use of carbon fibre-reinforced plast	
[NASA-CR-144996]	N76-25168	construction of wings for testing in w	ind tunnels
			A76-32655

AIRPRAHES SUBJECT INDEX

Nonlinear finite element techniques for ai	rcraft	Hawker Siddeley Hawk T Mk 1 two-seat groun	ā
crash analysis	A76-34159	attack/trainer aircraft	A76-33772
AIRPRAMES	2.0 34133	ATTERUATION	270 33772
Development of flight-by-flight fatigue te from statistical distributions of aircra		Persistence and decay of wake vorticity	N76-25283
stress data, volume 1 [AD-A016406]	N76-24218	AUGHRETATION Comparison of model and flight test data f	or an
Development of flight-by-flight fatigue te from statistical distributions of aircra		augmentor-wing STOL research aircraft	N76-25292
stress data. Volume 2: Documentation		AUTOMATIC CONTROL	
B-58 and F-106 fatigue spectra simulatio [AD-A016407] Wind tunnel investigation of Nacelle-Airfr	N76-24219	Simulator study of the effectiveness of an automatic control system designed to imphigh-angle-of-attack characteristics of	rowe the
interference at Mach numbers of 0.9 to 1.4-pressure data, volume 2	N76-25144	fighter airplane [NASA-TH-D-8176]	N76-24266
[NASA-TH-X-73088] AIRSPEED	870-23144	AUTOMATIC PLIGHT CONTROL Unusual pitch and structural mode testing	
Problems of noise testing in ground-based facilities with forward-speed simulation		AUTOMATIC LANDING CONTROL	A76-32629
ALPHA JET AIRCRAFT	N76-25281	The T&B simulator - A comparison with flig results F-14A aircraft application	
Initial flight test phase of the		AUTORANCE DAY ONG	A76-34243
Dassault-Breguet/Dornier Alpha-Jet Comparison of aerodynamic coefficients obt	A76-32626 ained	AUTOMATIC PILOTS Energy management - An operational outline digital flight guidance/control spinoffs	
from theoretical calculations, wind tunn tests, and flight tests data reduction f		Space Shuttle	A76-32199
Alpha Jet aircraft	~BC 05005	AVIONICS	
ALUMINUM ALLOYS Investigation of the stressed state of pan	N76-25295	Energy management - An operational outline digital flight guidance/control spinoffs Space Shuttle	
subjected to wide-band acoustic loads resonant wibration of aircraft structure	-	Space Surrette	A76-32199
	å76-33516	В	
ANGLE OF ATTACK Inlets for\high angles of attack		B-1 AIRCRAFT	
High angle of attack flight tests of the P	≜76-33121 -15	B-1 flight test progress report	A76-32628
YF-17 stall/post-stall testing	A76-34245	Unusual pitch and structural mode testing	
Stall/post-stall/spin avoidance tests of t	A76-34246 he YA-10	Joint contractor - Air Porce flight test p	
aircraft	A76-34247	The U.S.A.F./Rockwell B-1 flight test prog progress report - Relationship of test	
Simulator study of the effectiveness of an automatic control system designed to imp		objectives to operational requirements	A76-34235
high-angle-of-attack characteristics of		B-52 AIRCRAFT	
fighter airplane [NASA-TN-D-8176]	N76-24266	Brief overview of some Air Porce Plight Dy Laboratory research efforts in aeroelast	city
Comments on wind tunnel/flight comparisons angles of attack based on BAC one-eleven		and aero-acoustics feasibility analy feedback control of flutter using scale	
VC10 experience	N76-25290	of a B-52 alrcraft	N76-24151
ANTARCTIC REGIONS Environmental tests of the P-15 in the Air	Porce	B-58 AIRCRAFT Development of flight-by-flight fatigue te	
Climatic Laboratory	A76-34244	from statistical distributions of aircra	ft
ANTENNA RADIATION PATTERNS	A70-34244	B-58 and F-106 fatigue spectra simulation	n program
Roll plane computer program [AD-A019000]	N76-24459	[AD-A016407] BAC 111 AIRCRAFT	N76-24219
Antiblissile DEFRUSE Antiship craise missile threat simulation		Comments on wind tunnel/flight comparisons angles of attack based on BAC one-eleven	
utilizing a RPV	A76-34239	VC10 experience	N76-25290
APPROACH CONTROL		BAYES THEOREM	
Energy management - The delayed flap appro APPROACH INDICATORS	ach A76-32200	Reliability assessment of modified fielded aircraft using the Bayesian technique	N76-24225
Ground proximity warning system testing	176-34242	[AD-A018890] BENDING VIBRATION	
ARROW WINGS Calculation method for separated flow of s		Unusual pitch and structural mode testing BIBLIOGRAPHIES	A76-32629
arrow wings accounting for leading e separation		NASA general aviation research overview - [SAE PAPER 760-458]	1976 A76-31957
[ILR-5-1975] ASPECT RATIO	N76-24170	BIODYNAMICS Aircraft crashworthiness; Proceedings of t	he
Effect of blade aspect ratio on the proper an axial compressor stage	ties of	Symposium, University of Cincinnati, Cin Ohio, October 6-8, 1975	
[K-TRANS-77] ATLIT PROJECT	N76-24257	An overview of aircraft crashworthiness re	176-34132 search
Preliminary flight-test results of an adva technology light twin-engine airplane /A		and development	A76-34133
[SAE PAPER 760-497] ATTACK AIECRAPT	A76-31976	BIPLANES Experimental determination of improved aer	odvnamic
Hawker Siddeley Hawk T Mk 1 two-seat groun	đ.	characteristics utilizing biplane wing	1
attack/trainer aircraft	A76-32634	configurations	A76-33116

SUBJECT INDEX CIRCULAR CYLINDERS

Influence function method in wind tunnel wall	Some aspects on unsteady flow past airfoils and
interference problems	cascades
R76-25228	N76-25193
BLOFF BODIES	BUCCAHEER AIRCRAFT
On the vortex-induced loading on long bluff	Plight/tunnel comparison of the installed drag of
cylinders	wing mounted stores on the Buccaneer aircraft
BODY-WING COMPIGURATIONS N76-24177	BUPPRTIEG 876-25300
Experimental determination of improved aerodynamic	Calculation of buffet onset for supercritical
characteristics utilizing biplane wing	airfoils
configurations	[DLR-IB-151-75/12] N76-24181
A76-33116	Comments on some wind tunnel and flight experience
Application of the MBB panel method to calculation	of the post-buffet behaviour of the Harrier
of wing-body configurations with external store	alrcraft
loads [MBB-UPE-1073-0]	N76-25297 Effects of buffeting and other transonic phenomena
BOEING AIRCRAPT	for fighter aircraft
The Boeing Compass Cope Program RPV system	N76-25298
A76+32632	BUS CONDUCTORS
BORING 747 AIRCRAFT	Eight-terminal, bidirectional, fiber optic trunk
Results of an aerodynamic investigation of a space	data bus
shuttle orbiter/747 carrier flight test configuration to determine separation	[AD-A019429] N76-24483
characteristics utilizing 0.0125-scale models	r
(48-0/AX1318I-1) in the LTV 4 x 4 foot high	U
speed wind tunnel (CA26), volume 1	C-1A AIRCRAFT
[NASA-CR-144612] N76-25322	Catapult launch fatigue investigation of the model
Results of an aerodynamic investigation of a space	E-1B/C-1 airplane
shuttle orbiter/747 carrier flight test configuration to determine separation	[AD-A019519] N76-24223 CANOPIES
characteristics utilizing 0.0125-scale models	Army preliminary evaluation YAH-IQ helicopter with
(48-0/AX1318I-1) in the LTV 4 x 4 foot high	a flat-plate canopy
speed wind tunnel (CA26), volume 2	[AD-A020111] N76-25160
[NASA-CR-144613] N76-25323	CARBON FIBER REINFORCED PLASTICS
Results of an aerodynamic investigation of a space	The use of carbon fibre-reinforced plastics in the
shuttle orbiter/747 carrier flight test configuration to determine separation	construction of wings for testing in wind tunnels A76-32655
characteristics utilizing 0.0125-scale models	CARGO AIRCRAFT
(48-0/AX1318I-1) in the LTV 4 x 4-foot high	Wind tunnel design studies and technical
speed wind tunnel (CA26), volume 3	evaluation of advanced cargo aircraft concepts
[NASA-CR-144614] N76-25324	[NASA-CR-148149] N76-25156
Results of an aerodynamic investigation of a space	Technical and economic assessment of
shuttle orbiter/747 carrier flight test	span-distributed loading cargo aircraft concepts
configuration to determine separation characteristics utilizing 0.0125-scale models	[NASA-CR-144963] N76-25157 CASCADE FLOW
(48-0/AX1318I-1) in the LTV 4 x 4 foot high	Some aspects on unsteady flow past airfoils and
speed wind tunnel (CA26), volume 4	cascades
[NASA-CR-144615] N76-25325	N76-25193
Results of an aerodynamic investigation of a space	A cascade in unsteady flow
shuttle orbiter/747 carrier flight test	N76-25194
configuration to determine separation characteristics utilizing 0.0125-scale models	The unsteady aerodynamic response of an airfoil cascade to a time-variant supersonic inlet flow
(48-0/AX1318I-1) in the LTV 4 x 4 foot high	field
speed wind tunnel (CA26), volume 5	N76-25195
[NASA-CR-144616] N76-25326	On the analysis of supersonic flow past
Unsteady aerodynamic flow field analysis of the	oscillating cascades
space shuttle configuration. Part 4:	N76-25197
747/orbiter aeroelastic stability [NASA-CR-144335] N76-25331	The passage of a distorted velocity field through a cascade of airfoils
[NASA-CR-144335] N76-25331 Results of an experimental investigation to	N76-25199
determine separation characteristics for the	Unsteady airloads on a cascade of staggered blades
Orbiter/747 using a 0.0125-scale model (48-0	in subsonic flow
AX1318I-1 747) in the Ames Research center	N76-25200
14-foot wind tunnel (CA23B), volume 1	CASCADE WIND TURNELS
[NASA-CR-144603] R76-25333	A cascade in unsteady flow N76-25194
Results of an experimental investigation to determine separation characteristics for the	CATAPULTS N/0-25194
Orbiter/747 using a 0.0125-scale model (48-0	Determination of minimum catapult launch speeds
AX1318I-1 747) in the Ames Research Center	for maximum combat effectiveness of carrier
14-foot wind tunnel (CA23B)	aircraft
[NASA-CR-144604] N76-25334	A76-34249
BORON REINFORCED HATERIALS	Catapult launch fatigue investigation of the model
Static and fatigue tests of F-111B boron wing tip [AD-A018751] N76-24370	E-1B/C-1 airplane [AD-A019519] 876-24223
BOUNDARY LAYER PLOW	CESSEA AIRCRAFT
VSTOL wind tunnel model testing: An experimental	Design, development and flight test of the Cessna
assessment of flow breakdown using a multiple	Citation thrust reverser
fan model	[SAE PAPER 760-468] A76-31963
N76-25253 BOUNDARY LAYER SEPARATION	CH-47 HELICOPTER
'Spilled' leading-edge vortex effects on dynamic	A technique using a nonlinear helicopter model for determining trims and derivatives
stall characteristics	[NASA-TN-D-8159] N76-24265
A76-33120	CIRCULAR CYLINDERS
Visual study of the three-dimensional flow pattern	The drag and lift characteristics of a cylinder
at a delta wing in subsonic flow	placed near a place surface
A76-33869	[AD-A019286] N76-25152

CIVIL AVIATION SUBJECT INDEX

CIVIL AVIATION		Airfoil section drag reduction at transonic speeds
The technological case for a supersonic cr	ulse	by numerical optimization
aircraft	176-33660	[SAE PAPER 760-477] A76-31969
COMMAND AND CONTROL	A76-33660	Navy jet trainer (VTX) conceptual design studies [AD-A018779] N76-24222
The Boeing Compass Cope Program RPV sy	stem	COMPUTERIZED SIMULATION
, <u></u>	A76-32632	Modeling and analysis techniques for vehicle crash
COMMAND GUIDANCE		simulation
The Boeing Compass Cope Program RPV sy	stem	A76-34158
	A76-32632	Antiship cruise missile threat simulation
COMPARISON		utilizing a RPV
Plight measurements of helicopter rotor ae		A76-34239
characteristics and some comparisons wit	p	CONCORDE AIRCRAFT
two-dimensional wind tunnel results	N76-25284	Analysis of the comparison between flight tests results and wind tunnel tests predictions for
Comments on wind tunnel/flight comparisons		subsonic and supersonic transport aircraft
angles of attack based on BAC one-eleven		N76-25303
VC10 experience	unu u	COMPRENCES
•	N76-25290	Aircraft crashworthiness; Proceedings of the
Comparison of model and flight test data f	or an	Symposium, University of Cincinnati, Cincinnati,
augmentor-wing STOL research aircraft		Ohio, October 6-8, 1975
	N76-25292	A76-34132
Comparison of aerodynamic coefficients obt		Toward more effective testing; Proceedings of the
from theoretical calculations, wind tunn		Sixth Annual Symposium, St. Louis, Mo., August
tests, and flight tests data reduction f Alpha Jet aircraft	or the	13-16, 1975 A76-34233
wibus nec girctard	N76-25295	Contributions to helicopter technology
Analysis of the comparison between flight		conference proceedings
results and wind tunnel tests prediction	s for	[DLR-MITT-75-24] N76-24209
subsonic and supersonic transport aircra		Engine noise conference proceedings
	N76-25303	[ESA-TT-244] N76-24243
COMPLEX SYSTEMS		COMFORMAL MAPPING
System complexity - Its conception and mea	surement	On the aerodynamic design of airfoil cascades - A
in the design of engineering systems	176 22400	new exact method based on conformal mapping
COMPONENT RELIABILITY	A76-33100	A76-34484
Crashworthiness and postcrash hazards from	the	CONGRESSIONAL REPORTS Emergency locator transmitters
airline flight attendant's point of view		[GPO-60-520] N76-25154
	A76-34163	COMICAL HOZZLES
COMPOSITE MATERIALS		The structure of jets from notched nozzles
A preliminary design study of a laminar fl	OW	A76-33361
control wing of composite materials for		CONTRACT MANAGEMENT
range transport aircraft		Joint contractor - Air Force flight test programs
[NASA-CR-144950]	N76-25146	A76-34234
A composite system approach to aircraft can safety	DID LILE	CONTROL COMPIGURED VEHICLES
[NASA-TH-X-73126]	N76-25354	Advanced fighter control techniques A76-32627
COMPOSITE STRUCTURES	N/O 23334	CONTROL STABILITY
Laminar flow rethink - Using composite str	ucture	Model matching method for flight control and
in Bellanca Skyrocket II design		stimulation for longitudinal control and
[SAE PAPER 760-473]	A76-31966	stability augmentation systems
COMPRESSIBLE BOUNDARY LAYER		A76-32396
	•	
Calculation of compressible turbulent bound	dary	CONTROL SURPACES
layers on straight-tapered swept wings	•	Fluid-dynamic lift: Practical information on
layers on straight-tapered swept wings	dary &76-32587	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book
layers on straight-tapered swept wings COMPRESSOR BLADES	•	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167
layers on straight-tapered swept wings	•	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book
layers on straight-tapered swept wings COMPRESSOR BLADES On the analysis of supersonic flow past	•	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at H=1.6 of the
layers on straight-tapered swept wings COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS	A76-32587	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at M=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAE-TM-AERO-1641] N76-24173
layers on straight-tapered swept wings COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper	A76-32587	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at H=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAE-TH-AERO-1641] A preliminary design study of a laminar flow
layers on straight-tapered swept wings COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper an arial compressor stage	N76-25197	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at M=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAE-TM-AERO-1641] A preliminary design study of a laminar flow control wing of composite materials for long
layers on straight-tapered swept wings COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper an axial compressor stage [K-TRANS-77]	A76-32587	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at M=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAE-TM-AERO-1641] A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft
layers on straight-tapered swept wings COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper an arial compressor stage [K-TRANS-77] COMPUTATION	N76-25197 ties of	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book Note
layers on straight-tapered swept wings COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper an arial compressor stage [K-TRANS-77] COMPUTATION Comparison of aerodynamic coefficients obt	N76-25197 ties of N76-24257 ained	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at M=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAE-TM-AERO-1641] N76-24173 A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft [NASA-CR-144950] N76-25146 CONVECTIVE FLOW
layers on straight-tapered swept wings COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper an arial compressor stage [K-TRANS-77] COMPUTATION Comparison of aerodynamic coefficients obt from theoretical calculations, wind tunn	A76-32587 M76-25197 tles of M76-24257 ained	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at M=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAE-TM-AERO-1641] A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft [NASA-CR-144950] COMVECTIVE FLOW The far field of high frequency convected
layers on straight-tapered swept wings COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper an arial compressor stage [K-TRANS-77] COMPUTATION Comparison of aerodynamic coefficients obt	A76-32587 M76-25197 tles of M76-24257 ained	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at M=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAE-TM-AERO-1641] N76-24173 A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft [NASA-CR-144950] N76-25146 CONVECTIVE FLOW
layers on straight-tapered swept wings COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper an axial compressor stage [K-TRANS-77] COMPUTATION Comparison of aerodynamic coefficients obt from theoretical calculations, wind tunn tests, and flight tests data reduction f	A76-32587 M76-25197 tles of M76-24257 ained	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book Note: A76-32167 Wind tunnel measurements at H=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAE-TH-AERO-1641] N76-24173 A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft [NASA-CR-144950] N76-25146 CONVECTIVE FLOW The far field of high frequency convected singularities in sheared flows, with an
layers on straight-tapered swept wings COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper an axial compressor stage [K-TRANS-77] COMPUTATION Comparison of aerodynamic coefficients obt from theoretical calculations, wind tunn tests, and flight tests data reduction falpha Jet aircraft	N76-25197 ties of N76-24257 ained el or the	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at M=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAE-TH-AERO-1641] N76-24173 A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft [NASA-CR-144950] N76-25146 COMVECTIVE FLOW The far field of high frequency convected singularities in sheared flows, with an application to jet-noise prediction A76-32545
layers on straight-tapered swept wings COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper an axial compressor stage [K-TRANS-77] COMPUTATION Comparison of aerodynamic coefficients obt from theoretical calculations, wind tunn tests, and flight tests data reduction falpha Jet aircraft COMPUTER GRAPHICS General aviation design synthesis utilizin	N76-25197 ties of N76-24257 ained el or the	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at M=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAE-TM-AERO-1641] N76-24173 A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft [NASA-CR-144950] N76-25146 CONVECTIVE FLOW The far field of high frequency convected singularities in sheared flows, with an application to jet-noise prediction A76-32545 COST ANALYSIS An alternative to the helicopter sidewall
layers on straight-tapered swept wings COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper an arial compressor stage [K-TRANS-77] COMPUTATION Comparison of aerodynamic coefficients obt from theoretical calculations, wind tunn tests, and flight tests data reduction falpha Jet aircraft COMPUTER GRAPHICS General aviation design synthesis utilizin interactive computer graphics	N76-25197 ties of N76-24257 ained el or the N76-25295	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at M=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAE-TM-AERO-1641] A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft [NASA-CR-144950] The far field of high frequency convected singularities in sheared flows, with an application to jet-noise prediction A76-32545 COST ANALYSIS An alternative to the helicopter sidewall hovercraft for shore base-offshore personnel
layers on straight-tapered swept wings COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper an axial compressor stage [K-TRANS-77] COMPUTATION Comparison of aerodynamic coefficients obt from theoretical calculations, wind tunn tests, and flight tests data reduction f Alpha Jet aircraft COMPUTER GRAPHICS General aviation design synthesis utilizin interactive computer graphics [SAE PAPER 760-476]	N76-25197 ties of N76-24257 ained el or the	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at M=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAE-TM-AERO-1641] A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft [NASA-CR-144950] COMVECTIVE FLOW The far field of high frequency convected singularities in sheared flows, with an application to jet-noise prediction A76-32545 COST ANALYSIS An alternative to the helicopter sidewall hovercraft for shore base-offshore personnel transfers
layers on straight-tapered swept wings COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper an axial compressor stage [K-TRANS-77] COMPUTATION Comparison of aerodynamic coefficients obt from theoretical calculations, wind tunn tests, and flight tests data reduction falpha Jet aircraft COMPUTER GRAPHICS General aviation design synthesis utilizin interactive computer graphics [SAE PAPER 760-476] COMPUTER PROGRAMS	N76-25197 ties of N76-24257 ained el or the N76-25295	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at M=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAZ-M-AERO-1641] N76-24173 A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft [NASA-CR-144950] N76-25146 CONVECTIVE FLOW The far field of high frequency convected singularities in sheared flows, with an application to jet-noise prediction A76-32545 COST AHALISIS An alternative to the helicopter sidewall hovercraft for shore base-offshore personnel transfers
layers on straight-tapered swept wings COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper an axial compressor stage [K-TRANS-77] COMPUTATION Comparison of aerodynamic coefficients obt from theoretical calculations, wind tunn tests, and flight tests data reduction falpha Jet aircraft COMPUTER GRAPHICS General aviation design synthesis utilizin interactive computer graphics [SAE PAPER 760-476] COMPUTER PROGRAMS Determination of aerodynamic forces for	N76-25197 ties of N76-24257 ained el or the N76-25295 g A76-31968	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at M=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAE-TM-AERO-1641] A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft [NASA-CR-144950] The far field of high frequency convected singularities in sheared flows, with an application to jet-noise prediction A76-32545 COST ANALYSIS An alternative to the helicopter sidewall hovercraft for shore base-offshore personnel transfers A76-32198 An approach to the estimation of life cycle costs
layers on straight-tapered swept wings COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper an axial compressor stage [K-TRANS-77] COMPUTATION Comparison of aerodynamic coefficients obt from theoretical calculations, wind tunn tests, and flight tests data reduction falpha Jet aircraft COMPUTER GRAPHICS General aviation design synthesis utilizin interactive computer graphics [SAE PAPER 760-476] COMPUTER PROGRAMS	N76-25197 ties of N76-24257 ained el or the N76-25295 g A76-31968	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at M=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAE-TM-AERO-1641] N76-24173 A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft [NASA-CR-144950] N76-25146 CONVECTIVE FLOW The far field of high frequency convected singularities in sheared flows, with an application to jet-noise prediction A76-32545 COST ANALYSIS An alternative to the helicopter sidewall hovercraft for shore base-offshore personnel transfers A76-32198 An approach to the estimation of life cycle costs of a fiber-optic application in military aircraft prediction analysis techniques
layers on straight-tapered swept wings COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper an arial compressor stage [K-TRANS-77] COMPUTATION COMPUTATION Comparison of aerodynamic coefficients obt from theoretical calculations, wind tunn tests, and flight tests data reduction falpha Jet aircraft COMPUTER GRAPHICS General aviation design synthesis utilizin interactive computer graphics [SAE PAPER 760-476] COMPUTER PROGRAMS Determination of aerodynamic forces for aeroelastic analysis of lifting surfaces Development of a computer code for calcula	N76-32587 N76-25197 ties of N76-24257 ained el or the N76-25295 g A76-31968	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at M=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAE-TM-AERO-1641] A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft [NASA-CR-144950] The far field of high frequency convected singularities in sheared flows, with an application to jet-noise prediction A76-32545 COST ANALYSIS An alternative to the helicopter sidewall hovercraft for shore base-offshore personnel transfers A76-32198 An approach to the estimation of life cycle costs of a fiber-optic application in military aircraft prediction analysis techniques [AD-A019379] N76-25017
layers on straight-tapered swept wings COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper an axial compressor stage [K-TRANS-77] COMPUTATION Comparison of aerodynamic coefficients obt from theoretical calculations, wind tunn tests, and flight tests data reduction f alpha Jet aircraft COMPUTER GRAPHICS General aviation design synthesis utilizin interactive computer graphics [SAE PAPER 760-476] COMPUTER PROGRAMS Determination of aerodynamic forces for aeroelastic analysis of lifting surfaces Development of a computer code for calcula steady super/bypersonic inviscid flow ar	N76-25197 ties of N76-24257 ained el or the N76-25295 g A76-31968 A76-31968 A76-34481 ting the ound	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at M=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAE-TM-AERO-1641] N76-24173 A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft [NASA-CR-144950] N76-25146 CONVECTIVE FLOW The far field of high frequency convected singularities in sheared flows, with an application to jet-noise prediction A76-32545 COST ANALYSIS An alternative to the helicopter sidewall hovercraft for shore base-offshore personnel transfers A76-32198 An approach to the estimation of life cycle costs of a fiber-optic application in military aircraft e prediction analysis techniques [AD-A019379] CRACK INITIATION
layers on straight-tapered swept wings COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper an axial compressor stage [K-TRANS-77] COMPUTATION Comparison of aerodynamic coefficients obt from theoretical calculations, wind tunn tests, and flight tests data reduction falpha Jet aircraft COMPUTER GRAPHICS General aviation design synthesis utilizin interactive computer graphics [SAE PAPER 760-476] COMPUTER PROGRAMS Determination of aerodynamic forces for aeroelastic analysis of lifting surfaces Development of a computer code for calcula steady super/hypersonic inviscid flow ar real configurations. Volume 2: Code de	N76-32587 N76-25197 ties of N76-24257 ained el or the N76-25295 g A76-31968 A76-34481 ting the ound scription	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at M=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAE-TM-AERO-1641] N76-24173 A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft [NASA-CR-144950] N76-25146 CONVECTIVE FLOW The far field of high frequency convected singularities in sheared flows, with an application to jet-noise prediction A76-32545 COST ANALYSIS An alternative to the helicopter sidewall hovercraft for shore base-offshore personnel transfers A76-32198 An approach to the estimation of life cycle costs of a fiber-optic application in military aircraft e prediction analysis techniques [AD-A019379] N76-25017 CRACK INITIATION Joint aircraft loading/structure response
layers on straight-tapered swept wings COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper an arial compressor stage [K-TRANS-77] COMPUTATION COMPUTATION Comparison of aerodynamic coefficients obt from theoretical calculations, wind tunn tests, and flight tests data reduction falpha Jet aircraft COMPUTER GRAPHICS General aviation design synthesis utilizin interactive computer graphics [SAE PAPER 760-476] COMPUTER PROGRAMS Determination of aerodynamic forces for aeroelastic analysis of lifting surfaces Development of a computer code for calcula steady super/hypersonic inviscid flow ar real configurations. Volume 2: Code de [NASA-CR-2676]	N76-32587 N76-25197 ties of N76-24257 ained el or the N76-25295 g A76-31968 A76-34481 ting the ound scription N76-24152	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at M=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAE-TM-AERO-1641] H76-24173 A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft [NASA-CR-144950] H76-25146 CONVECTIVE FLOW The far field of high frequency convected singularities in sheared flows, with an application to jet-noise prediction A76-32545 COST ANALYSIS An alternative to the helicopter sidewall hovercraft for shore base-offshore personnel transfers A76-32198 An approach to the estimation of life cycle costs of a fiber-optic application in military aircraft prediction analysis techniques [AD-A019379] CRACK INITIATION Joint aircraft loading/structure response statistics of time to service crack initiation
layers on straight-tapered swept wings COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper an arial compressor stage [K-TRANS-77] COMPUTATION Comparison of aerodynamic coefficients obt from theoretical calculations, wind tunn tests, and flight tests data reduction f alpha Jet aircraft COMPUTER GRAPHICS General aviation design synthesis utilizin interactive computer graphics [SAE PAPER 760-476] COMPUTER PROGRAMS Determination of aerodynamic forces for aeroelastic analysis of lifting surfaces Development of a computer code for calcula steady super/hypersonic inviscid flow ar real configurations. Volume 2: Code de [NASA-CR-2676] Weight prediction methods - GRUGEW program	N76-25197 ties of N76-24257 ained el or the N76-25295 g A76-31968 A76-34481 ting the ound scription N76-24152	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at M=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAE-TM-AERO-1641] N76-24173 A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft [NASA-CR-144950] N76-25146 CONVECTIVE FLOW The far field of high frequency convected singularities in sheared flows, with an application to jet-noise prediction A76-32545 COST ANALYSIS An alternative to the helicopter sidewall hovercraft for shore base-offshore personnel transfers A76-32198 An approach to the estimation of life cycle costs of a fiber-optic application in military aircraft e prediction analysis techniques [AD-A019379] CRACK INITIATION Joint aircraft loading/structure response statistics of time to service crack initiation A76-33117
COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper an axial compressor stage [K-TRANS-77] COMPUTATION Comparison of aerodynamic coefficients obt from theoretical calculations, wind tunn tests, and flight tests data reduction falpha Jet aircraft COMPUTER GRAPHICS General aviation design synthesis utilizin interactive computer graphics [SAE PAPER 760-476] COMPUTER PROGRAMS Determination of aerodynamic forces for aeroelastic analysis of lifting surfaces Development of a computer code for calcula steady super/hypersonic inviscid flow ar real configurations. Volume 2: Code de [NASA-CR-2676] Weight prediction methods - GRUGEW program [NBB-UFE-1072-0]	N76-32587 N76-25197 ties of N76-24257 ained el or the N76-25295 g A76-31968 A76-34481 ting the ound scription N76-24152	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at M=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAE-TM-AERO-1641] N76-24173 A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft [NASA-CR-144950] N76-25146 CONVECTIVE FLOW The far field of high frequency convected singularities in sheared flows, with an application to jet-noise prediction A76-32545 COST ANALYSIS An alternative to the helicopter sidewall hovercraft for shore base-offshore personnel transfers A76-32198 An approach to the estimation of life cycle costs of a fiber-optic application in military aircraft e prediction analysis techniques [AD-A019379] N76-25017 CRACK INITIATION Joint aircraft loading/structure response statistics of time to service crack initiation A76-33117 CRASH INJURIES
COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper an axial compressor stage [K-TRANS-77] COMPUTATION COMPATISON of aerodynamic coefficients obt from theoretical calculations, wind tunn tests, and flight tests data reduction falpha Jet aircraft COMPUTER GRAPHICS General aviation design synthesis utilizin interactive computer graphics [SAE PAPER 760-476] COMPUTER PROGRAMS Determination of aerodynamic forces for aeroelastic analysis of lifting surfaces Development of a computer code for calcula steady super/hypersonic inviscid flow ar real configurations. Volume 2: Code de [NASA-CR-2676] Weight prediction methods - GRUGEW program [NBB-UPE-1072-0] Roll plane computer program	N76-32587 N76-25197 ties of N76-24257 ained el or the N76-25295 g A76-31968 A76-34481 ting the ound scription N76-24152	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at M=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAE-TM-AERO-1641]
COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper an axial compressor stage [K-TRANS-77] COMPUTATION Comparison of aerodynamic coefficients obt from theoretical calculations, wind tunn tests, and flight tests data reduction falpha Jet aircraft COMPUTER GRAPHICS General aviation design synthesis utilizin interactive computer graphics [SAE PAPER 760-476] COMPUTER PROGRAMS Determination of aerodynamic forces for aeroelastic analysis of lifting surfaces Development of a computer code for calcula steady super/hypersonic inviscid flow ar real configurations. Volume 2: Code de [NASA-CR-2676] Weight prediction methods - GRUGEW program [NBB-UFE-1072-0]	N76-25197 ties of N76-24257 ained el or the N76-25295 g A76-31968 A76-34481 ting the ound scription N76-24152	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at M=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAE-TM-AERO-1641] N76-24173 A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft [NASA-CR-144950] N76-25146 CONVECTIVE PLOW The far field of high frequency convected singularities in sheared flows, with an application to jet-noise prediction A76-32545 COST ANALYSIS An alternative to the helicopter sidewall hovercraft for shore base-offshore personnel transfers A76-32198 An approach to the estimation of life cycle costs of a fiber-optic application in military aircraft e prediction analysis techniques [AD-A019379] CRACK INITIATION Joint aircraft loading/structure response statistics of time to service crack initiation A76-33117 CRASH INJURIES Aircraft crashworthiness; Proceedings of the Symposium, University of Cincinnati, Cincinnati,
layers on straight-tapered swept wings COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper an arial compressor stage [K-TRANS-77] COMPUTATION Comparison of aerodynamic coefficients obt from theoretical calculations, wind tunn tests, and flight tests data reduction falpha Jet aircraft COMPUTER GRAPHICS General aviation design synthesis utilizin interactive computer graphics [SAE PAPER 760-476] COMPUTER PROGRAMS Determination of aerodynamic forces for aeroelastic analysis of lifting surfaces Development of a computer code for calcula steady super/hypersonic inviscid flow ar real configurations. Volume 2: Code de [NASA-CR-2676] Weight prediction methods - GRUGEW program [MBB-UFE-1072-0] Roll plane computer program [AD-A019000]	N76-32587 N76-25197 ties of N76-24257 ained el or the N76-25295 g A76-31968 A76-34481 ting the ound scription N76-24152 N76-24459	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at M=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAE-TM-AERO-1641]
COMPRESSOR BLADES On the analysis of supersonic flow past oscillating cascades COMPRESSORS Effect of blade aspect ratio on the proper an axial compressor stage [K-TRANS-77] COMPUTATION COMPATISON of aerodynamic coefficients obt from theoretical calculations, wind tunn tests, and flight tests data reduction falpha Jet aircraft COMPUTER GRAPHICS General aviation design synthesis utilizin interactive computer graphics [SAE PAPER 760-476] COMPUTER PROGRAMS Determination of aerodynamic forces for aeroelastic analysis of lifting surfaces Development of a computer code for calcula steady super/hypersonic inviscid flow ar real configurations. Volume 2: Code de [NASA-CR-2676] Weight prediction methods - GRUGEW program [NBB-UFE-1072-0] Roll plane computer program [AD-A019000] COMPUTERIZED DESIGE	N76-32587 N76-25197 ties of N76-24257 ained el or the N76-25295 g A76-31968 A76-34481 ting the ound scription N76-24152 N76-24459	Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Wind tunnel measurements at M=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body [RAE-TM-AERO-1641] N76-24173 A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft [NASA-CR-144950] N76-25146 CONVECTIVE FLOW The far field of high frequency convected singularities in sheared flows, with an application to jet-noise prediction A76-32545 COST ANALYSIS An alternative to the helicopter sidewall hovercraft for shore base-offshore personnel transfers A76-32198 An approach to the estimation of life cycle costs of a fiber-optic application in military aircraft prediction analysis techniques [AD-A019379] N76-25017 CRACK INITIATION Joint aircraft loading/structure response statistics of time to service crack initiation A76-33117 CRASH INJURIES Aircraft crashworthiness; Proceedings of the Symposium, University of Cincinnati, Cincinnati, Ohio, October 6-8, 1975

SUBJECT INDEX DYNAMIC STEUCTURAL AMALYSIS

An overview of aircraft crashworthiness re	esearch	DELTA WINGS	
and development	A76-34133	Supersonic flow past a slender delta wing experimental investigation covering the	- An
General investigation of accidents		incidence range from -5 to 50 deg	
Constructions shorematicas in several as	A76-34134	Total de le constitut flor agent delle suices	A76-32543
Crashworthiness observations in general av accident investigations - A statistical		Unsteady hypersonic flow over delta wings detached shock waves	ATER
Constructions design fortunes for almost	A76-34135	W-33	A76-33719
Crashworthiness design features for advance utility helicopters	cea	Hydrodynamic visualization study of variou procedures for controlling separated flo	
	A76-34137		A76-3374
Crashworthiness of the Boeing Vertol UTTAS	5 A76-34138	Visual study of the three-dimensional flow at a delta wing in subsonic flow	pattern
Crashworthiness in emergency ditching of			A76-33869
aviation aircraft	A76-34140	Recovery techniques for aircraft in spinni control surface deflections	ng flight
CRASH LANDING		[AD-A019323]	N76-24278
Simulation of aircraft crash and its valid	lation A76-34157	Wind tunnel investigation of Nacelle-Airfr	ame
CROSS PLOW	B/0-3413/	<pre>interference at Hach numbers of 0.9 to 1.4-pressure data, volume 2</pre>	
The drag and lift characteristics of a cyl	linder	[HASA-TH-X-73088]	B76-2514
<pre>placed near a place surface [AD-A019286]</pre>	N76-25152	DESIGN AMALYSIS System complexity - Its conception and mea	surement
The response of a lifting fan to crossflow	-induced	in the design of engineering systems	
spatial flow distortions	n76-25191	DIFFERENTIAL CALCULUS	A76-33100
CRUISING PLIGHT		Approximate changes in aircraft stability	
Engine and jet induced effects of a lift p lift-cruise V/STOL aircraft	plus	derivatives caused by battle damage [AD-A019843]	N76-2520
1110 014100 1, 5101 1111111	A76-32631	DIGITAL HAVIGATION	2.0 2520
On the vortex-induced loading on long bluf	F. F	Energy management - An operational outline digital flight guidance/control spinoffs	
cylinders	- -	Space Shuttle	ILOR
to annual dependency of apparage	N76-24177	DISPLAY DEVICES	A76-32199
An experimental investigation of supersons past a wedge-cylinder configuration	C 110#	Effect on pilot performance with refined	
[NASA-CR-147741]	N76-25148	helicopter displays	126 2020
CYLINDRICAL SHELLS Random vibrations of a cylindrical shell d	lue to an	DITCHING (LANDING)	A76-34241
excitation with uniformly varying freque	ency	Crashworthiness in emergency ditching of g	eneral
	A76-32869	aviation aircraft	A76-34140
D		DRAG	
DATA ACQUISITION		Inlet spillage drag tests and numerical fl analysis at subsonic and transonic speed	
A data acquisition system for in-flight an	rfoil	1/8-scale, two-dimensional,	
evaluation [SAE PAPER 760-462]	A76-31960	external-compression, variable-geometry, supersonic inlet configuration	
DATA CORRELATION		[NASA-CR-2680]	N76-24240
The art and science of rotary wing data co	N76-25291	DRAG REDUCTION Alrfoll section drag reduction at transoni	c speeds
Correlation of low speed wind tunnel and f		by numerical optimization	_
test data for V/STOL aircraft	N76-25293	[SAE PAPER 760-477] A method for predicting the drag of airfoi	A76-31969
Comparison of aerodynamic coefficients obt	ained	[SAE PAPER 760-479]	A76-31971
from theoretical calculations, wind tunn tests, and flight tests data reduction f		DRONE AIRCRAFT Modification of drone sailplane into a spe	cial
Alpha Jet alrcraft		purpose test vehicle for atmospheric res	earch
Swedish experience on correlations of flig	N76-25295	[AD-A019436] DUCTED PARS	N76-24228
results with ground test predictions		A ducted propulsor demonstrator	
SAAB 37 aircraft	N76-25299	[SAE PAPER 760-470] DUCTED FLOW	A76-31965
Comments on wind tunnel/flight correlation	s for	A note on transonic flow past a thin airfo	11
, external stores jettison tests on the P and G 91 Y aircraft	104 S	oscillating in a wind tunnel	A76-33365
and 9 91 1 directait	N76-25302	DINAMIC MODELS	
Joint contractor - Air Force flight test p	rogra ne	Development of design criteria for crashwo armored aircrew seats	rthy
·	A76-34234	granted directed sears	A76-34154
DATA TRANSMISSION Eight-terminal, bidirectional, fiber optic	. +rnnk	Helicopter stabilization system	A76-34164
data bus		DYBANIC RESPONSE	270 34104
[AD-A019429]	N76-24483	Techniques for predicting vehicle structur	e crash
modeling and analysis techniques for vehice	le crash	1mpact response	A76-34156
simulation	176-30 150	The response of a lifting fan to crossflow	-induced
DEICING .	A76-34158	spatial flow distortions	N76-2519
The development of an advanced anti-icing/		DINAMIC STRUCTURAL ANALYSIS	
capability for US Army helicopters. Vol Design criteria and technology considera		Joint aircraft loading/structure response statistics of time to service crack init	1ation
[AD-A019044]	N76-24229		A76-33117
The development of an advanced anti-icing/ capability for US Army helicopters. Vol		Techniques for predicting vehicle structur impact response	e crash
Ice protection system application to the		• •	A76-34156
helicopter [AD-A019049]	N76-24230		

		BENTAL TESTS	
F		lems of noise testing in ground-based	
BJECTORS	rae	cilities with forward-speed simulation	5201
Air driven ejector units for engine simulation	TOPODEN	N AIRBUS	320 I
wind tunnel models		ysis of the comparison between flight tests	
		sults and wind tunnel tests predictions for	
BLASTIC SHELLS		bsonic and supersonic transport aircraft	
Random vibrations of a cylindrical shell due t		N76-25	5303
excitation with uniformly varying frequency	BUTBCTIC		
		ied high temperature technology program,	
ELECTRICAL PROPERTIES		lume 1 niobium alloys for turbine blades	0262
Lightning protection of aircraft fuel caps [SAE PAPER 760-486] A76	5-31972 EXHAUST	D-A018637] N76-24	4202
BLECTRONAGESTIC INTERPREENCE		potentials for conventional aircraft when	
Aircraft communications interference tests		vered by hydrogen-enriched gasoline	
[AD-A022954/2] N76		AE PAPER 760-469] A76-31	1964
EMBRGBECY LIFE SUSTAINING SYSTEMS		BUTATION	
Crashworthiness and postcrash hazards from the		experimental flight research technique: The	he
airline flight attendant's point of view		notely piloted airplane	- 207
	5-34163 BXPLOSI (N76-25	281
YP-17 stall/post-stall testing		osion proofing H-53 range extension tank	
ENERGY CONSERVATION		D-A018353] N76-25	5158
Civil transport technology up to 2000 - NASA		L STORE SEPARATION	
believes fuel consumption is the major		lynamic forces on a blunt store released from	2
consideration		swept wing	
		D-A019330] H76-24	1189
ENGINE CONTROL	EXTERNAL		
Aircraft noise reduction by means of acoustic screening and engine controls		ication of the MBB panel method to calculation wing-body configurations with external store	
		wing-body configuracions with external store	3
ENGINE DESIGN		3B-UPE-1073-0] N76-24	176
A ducted propulsor demonstrator		ial wind tunnel test techniques used at AEDC	
[SAE PAPER 760-470] A76	5-31965	ห76-25	
Single stage, low noise, advanced technology f		it/tunnel comparison of the installed drag of	
Volume 14 Aerodynamic design		ng mounted stores on the Buccaneer aircra	
	5-24236	N76-25	300
Single stage, low noise advanced technology fa Volume 3: Acoustic design		ents on mathematical modelling of external ore release trajectories including comparison	,
		th flight data (prediction analysis	•
Optimised engines for QSTOL applications		chniques for jettisoning of external stores)	
	5-24244	N76-25	301
Influence of unsteady flow phenomena on the de		ents on wind tunnel/flight correlations for	
and operation of aero engines	ext	ernal stores jettison tests on the F 104 S	
and operation of aero engines	ext	ternal stores jettison tests on the F 104 S	- 200
and operation of aero engines N76 ENGINE INLETS	ext	ernal stores jettison tests on the F 104 S	302
and operation of aero engines N76 ENGINE INLETS Inlets for high angles of attack	ext -25171 and	ternal stores jettison tests on the F 104 S	302
and operation of aero engines N76 ENGINE INLETS Inlets for high angles of attack A76	ext -25171 and	ternal stores jettison tests on the F 104 S	302
and operation of aero engines N76 ENGINE INLETS Inlets for high angles of attack	ext -25171 and	ernal stores jettison tests on the F 104 S i G 91 Y aircraft N76-25	302
and operation of aero engines R76 ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76	ext -25171 and -33121 of F-4 AIRC -24250 Applo	rernal stores jettison tests on the F 104 S 1 G 91 Y arrcraft N76-25 F CRAFT Location of designs to improve aircraft flight	
and operation of aero engines R76 ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS	ext -25171 and -33121 of F-4 AIRC -24250 Appli	rernal stores jettison tests on the F 104 S i G 91 Y arrcraft N76-25 F CRAFT Location of designs to improve aircraft flight iterol survivability	:
and operation of aero engines R76 ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners R76 ENGINE MONITORING INSTRUMENTS Rechanical function and engine performance for	ext -25171 and -33121 of P-4 AIRC -24250 Appla cor the [AI	FRAFT (cation of designs to improve aircraft flight introl survivability) -A018733] N76-24	:
and operation of aero engines R76 ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H belicopter in the AIDAPS program	ext -25171 and -33121 of F-4 AIRC -24250 Appli cor the [AIRC	FRAFT Location of designs to improve aircraft flight itrol survivability	: 1279
and operation of aero engines R76 ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos	ext -25171 and -33121 of F-4 AIRC -24250 Appli cor the [AI] F-8 AIRC ttlc Thes	FRAFT Location of designs to improve aircraft flight itrol survivability -A018733] RAFT Location of the F-8C aircraft using	: 1279 3
and operation of aero engines R76 ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems	ext -25171 and -33121 of F-4 AIRC -24250 Appli cor the [AI F-8 AIRC stic Thes the	F. CRAFT Cation of designs to improve aircraft flight throl survivability 0-A018733] 0-A018733] 0-A0187336 0-BAFT	: +279 Jod
and operation of aero engines R76 ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems	ext -25171 and -33121 of F-4 AIRC -24250 Appli cor the [AI F-8 AIRC stic Thes the	FRAFT CCALION of designs to improve aircraft flight itrol survivability D-A018733] RAFT STOCKET CRAFT CCALION of designs to improve aircraft flight itrol survivability D-A018733] N76-24 STAFT STOCKASTIC control of the F-8C aircraft using the Hultiple Model Adaptive Control (MMAC) methols A-CR-148100] N76-25	: +279 Jod
and operation of aero engines R76 ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems N76 ENGINE MOISE Engine noise conference proceedings	ext -25171 and -33121 of F-4 AIRC -24250 Appli cor the [AI	F. CRAFT Cation of designs to improve aircraft flight tirol survivability D-A018733] RAFT Stochastic control of the F-8C aircraft using the survivability Hultiple Model Adaptive Control (MMAC) methors ESA-CR-148100] ROCRAFT RES Simulator - A comparison with flight test	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
and operation of aero engines R76 ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H belicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems A76 ENGINE NOISE Engine noise conference proceedings [ESA-TT-244] N76	ext -25171 and -33121 of F-4 AIRC -24250 Appli cor the [AI	FRAFT Cation of designs to improve aircraft flight itrol survivability 1-A018733] 16 Hultiple Hodel Adaptive Control (MHAC) methods are the first survivability 1-A018733 176-24 184-25 184-25 185-26-148100] 186-25 186-	; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
and operation of aero engines ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems A76 ENGINE MOISE Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications	ext -25171 and -33121 of F-4 AIRC -24250 Appli cor the [AI] F-8 AIRC ttlc The s ttlc the -32149 [N] F-14 AIR The 1	FRAFT Location of designs to improve aircraft flight itrol survivability -A018733] STAFT Stochastic control of the F-8C aircraft using a Hultiple Model Adaptive Control (MMAC) meth MSA-CE-148100] N76-25 SCRAFT SEE SIEULATOR A COMPARISON with flight test sults F-14A aircraft application A76-34	; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
and operation of aero engines ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems ENGINE MOISE Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications N76	ext -25171 and -33121 of -33121 of -24250 Applo cor the [AI F-8 AIR stic The s -32149 [N] F-14 AIR fhe 1 The 1	F. CRAFT Cation of designs to improve aircraft flight tirol survivability 0-A018733] 0-BORFT 0-BOR	; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
and operation of aero engines ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H belicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems ENGINE MOISE Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications N76 Some technical problems of quiet aircraft tech	ext -25171 and -33121 of	FCRAFT CALIDO OF DESCRIPTION OF THE PROPERTY O	279 30d 5211 243
and operation of aero engines ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems A76 ENGINE MOISE Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications N76 Some technical problems of quiet aircraft tech	ext -25171 and -33121 of -24250 Appli cor the [AI] F-8 AIRC the: the: The s ttlc The s	FRAFT CRAFT STOCHAST STOCHAST CRAFT STOCHAST CRAFT STOCHAST CRAFT STOCHAST CRAFT STOCHAST CRAFT CRAFT CRAFT CRAFT CRAFT CRAFT AND CRAFT AND CRAFT CR	279 30d 5211 243
and operation of aero engines ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems N76 ENGINE MOISE Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications N76 Some technical problems of quiet aircraft tech N76 Possibilities of noise reduction for fan engin	ext i-25171 and i-33121 of i-33121 of i-24250 Appli cor the [Ai F-8 AIRC i-12149 [N] F-14 AIIC The size the i-32149 [N] F-14 AIIC The size the i-32149 F-15 AII i-24244 F-15 AII i-24249 ites Envir	FCRAFT CALIDO OF DESCRIPTION OF THE PROPERTY O	279 30d 5211 243
and operation of aero engines ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems A76 ENGINE MOISE Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications N76 Some technical problems of quiet aircraft tech N76 Possibilities of noise reduction for fan engin by means of controls	ext -25171 and -33121 of -33121 of -24250 Appli cor the [AIR F-8 AIR tilc The s -32149 [Ni F-14 AII The 1 24244 F-15 AII inology	FRAFT CRAFT STOCCHAST CRAFT STOCCHAST CRAFT STOCCHAST CRAFT STOCCHAST CRAFT STOCCHAST CRAFT CRAFT CRAFT RES SIMULATOR - A COMPARISON WITH flight test sults P-14A aircraft application CRAFT COMPART	279 300d 5211 5211
and operation of aero engines ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems N76 ENGINE MOISE Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications N76 Some technical problems of quiet aircraft tech N76 Possibilities of noise reduction for fan engin by means of controls N76 Current research on the simulation of flight	ext -25171 and -33121 of -33121 of -24250 Appla cor the [AI	F. CRAFT Cation of designs to improve aircraft flight tirol survivability PAO18733] PAFT Stochastic control of the F-8C aircraft using the Multiple Model Adaptive Control (MMAC) methods. SCRAFT SEE simulator - A comparison with flight test sults F-14A aircraft application ACCAPT Lation - A flight test complement commental tests of the F-15 in the Air Force imatic Laboratory A76-34 angle of attack flight tests of the F-15	24279 300d 52111 24243
and operation of aero engines ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems ENGINE MOISE Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications N76 Some technical problems of quiet aircraft tech N76 Possibilities of noise reduction for fan engin by means of controls N76 Current research on the simulation of flight effects on the noise radiation of aircraft e	ext i-25171 and i-33121 of	F: CRAFT Cation of designs to improve aircraft flight itrol survivability P-A018733] N76-24 Stochastic control of the F-8C aircraft using the Hultiple Hodel Adaptive Control (MHAC) meth is A-CR-148100] ROBAFT REE simulator - A comparison with flight test sults F-14A aircraft application A76-34 RCRAFT Lation - A flight test complement Commental tests of the F-15 in the Air Force imatic Laboratory A76-34 angle of attack flight tests of the F-15 A76-34	24279 300d 52111 24243
and operation of aero engines ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems A76 ENGINE MOISE Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications N76 Some technical problems of quiet aircraft technology Possibilities of noise reduction for fan engin by means of controls N76 Current research on the simulation of flight effects on the noise radiation of aircraft e	ext i-25171 and i-33121 of i-24250 Appli cor the [AI] i F-8 AIRC itlc The s itlc The s i4 AIR F-14 AIR F-14 AIR The 1 i F-8 AIRC [N] F-14 AIR The 2 i-24244 F-15 AII inology Sinus i-24249 ies Cl: i-24251 High ingines i-25280 F-16 AIR	FRAFT Interest of the F-8C aircraft using a Hultiple Hodel Adaptive Control (MHAC) method aircraft application SCRAFT SULTANT SCRAFT STOCK AS INTEREST OF THE F-8C AIRCRAFT SULTANT SERIFT SERIFT SERIFT SERIFT SERIFT SERIFT SERIFT SERIFT A76-34 CCRAFT Lation - A flight test complement A76-34 COMMENTAL ARCRAFT Lation - A flight test complement A76-34 A76-34 A76-34 A76-34 A76-34 A76-34 A76-34 A76-34	24279 300d 52111 24243
and operation of aero engines ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE HONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems ENGINE MOISE Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications N76 Some technical problems of quiet aircraft tech N76 Possibilities of noise reduction for fan engin by means of controls N76 Current research on the simulation of flight effects on the noise radiation of aircraft e	ext i-25171 and i-33121 of i-24250 Appli cor the [AI] i F-8 AIRC itlc The s itlc The s i4 AIR F-14 AIR F-14 AIR The 1 i F-8 AIRC [N] F-14 AIR The 2 i-24244 F-15 AII inology Sinus i-24249 ies Cl: i-24251 High ingines i-25280 F-16 AIR	F. RAFT CRAFT COMMON A COMMON WITH flight test COMMON A COMMON WITH COMMON A COMMON	24279 300d 35211 24243 4244
and operation of aero engines ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems ENGINE MOISE Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications N76 Some technical problems of quiet aircraft tech N76 Possibilities of noise reduction for fan engin by means of controls N76 Current research on the simulation of flight effects on the noise radiation of aircraft effects on the noise radiation of aircraft effects on the noise radiation of aircraft when	ext i-25171 and i-33121 of i-24250 Appli cor the [AI] i F-8 AIRC itlc The s itlc The s i4 AIR F-14 AIR F-14 AIR The 1 i F-8 AIRC [N] F-14 AIR The 2 i-24244 F-15 AII inology Sinus i-24249 ies Cl: i-24251 High ingines i-25280 F-16 AIR	F. TRAFT Location of designs to improve aircraft flight aircraft survivability -A018733] N76-24 TRAFT Stochastic control of the P-8C aircraft using a Multiple Model Adaptive Control (MMAC) meth SA-CR-148100] N76-25 RCAFT TSE simulator - A comparison with flight test sults P-14A aircraft application ACRAFT Lation - A flight test complement aronmental tests of the P-15 in the Air Force simulation than the second and the process of the P-15 and the process and the pro	24279 300d 35211 24243 4244
and operation of aero engines ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems A76 ENGINE MOISE Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications N76 Some technical problems of quiet aircraft tech N76 Possibilities of noise reduction for fan engin by means of controls Current research on the simulation of flight effects on the noise radiation of aircraft effects TESTS New potentials for conventional aircraft when powered by hydrogen-enriched gasoline	ext i-25171 and i-33121 of i-33121 of i-24250 Appli cor ithe [AI] i F-8 AIRC ithe Indicate In	F. TRAFT Location of designs to improve aircraft flight aircraft survivability -A018733] N76-24 TRAFT Stochastic control of the P-8C aircraft using a Multiple Model Adaptive Control (MMAC) meth SA-CR-148100] N76-25 RCAFT TSE simulator - A comparison with flight test sults P-14A aircraft application ACRAFT Lation - A flight test complement aronmental tests of the P-15 in the Air Force simulation than the second and the process of the P-15 and the process and the pro	24279 300d 35211 24243 4244
and operation of aero engines ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems A76 ENGINE MOISE Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications N76 Some technical problems of quiet aircraft tech N76 Possibilities of noise reduction for fan engin by means of controls Current research on the simulation of flight effects on the noise radiation of aircraft effects TESTS New potentials for conventional aircraft when powered by hydrogen-enriched gasoline	ext -25171 and -33121 of -33121 of -24250 Appli cor the [AI] F-8 AIRC The stic The stic -32149 F-14 AIR The 15 -24244 F-15 AIR cor climate and cor cor side and cor side and cor	F. TRAFT Location of designs to improve aircraft flight aircraft survivability -A018733] N76-24 TRAFT Stochastic control of the P-8C aircraft using a Multiple Model Adaptive Control (MMAC) meth N76-25 RCAFT SES inulator - A comparison with flight test sults P-14A aircraft application ACRAFT Lation - A flight test complement roomental tests of the P-15 in the Air Force sumatic Laboratory Angle of attack flight tests of the P-15 ACRAFT ACRA	24279 300d 52111 24243 4244 4244 4245
and operation of aero engines ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems A76 ENGINE MOISE Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications N76 Some technical problems of quiet aircraft tech N76 Possibilities of noise reduction for fan engin by means of controls Current research on the simulation of flight effects on the noise radiation of aircraft effects on the noise radiation of aircraft tech powered by hydrogen-enriched gasoline [SAE PAPER 760-469] The development testing of a short-haul airframe/powerplant combination, the VFW 614	ext i-25171 and i-33121 of i-33121 of i-4 AIR i-24250 Appli cor ithe [AI] i F-8 AIR i	FRAFT Interest of the F-8C aircraft using a Hultiple Hodel Adaptive Control (MHAC) method aircraft application RCRAFT Stochastic control of the F-8C aircraft using a Hultiple Hodel Adaptive Control (MHAC) method aircraft using a Hultiple Hodel Adaptive Control (MHAC) method aircraft using a Hultiple Hodel Adaptive Control (MHAC) method aircraft application RCRAFT RE simulator - A comparison with flight test soults P-14A aircraft application RCRAFT Lation - A flight test complement A76-34 RCRAFT Lation - A flight test complement A76-34 RCRAFT R-16 flight test program RCRAFT R-16 flight test program RCRAFT R-16 flight test program RCRAFT R-17 stall/post-stall testing RCRAFT	14279 15211 15211 11243 14240 14244 14245 14236
and operation of aero engines ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE HONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems ENGINE MOISE Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications N76 Some technical problems of quiet aircraft tech N76 Possibilities of noise reduction for fan engin by means of controls N76 Current research on the simulation of flight effects on the noise radiation of aircraft effects on the noise radiation of aircraft effects on the noise radiation of aircraft when powered by hydrogen-enriched gasoline [SAE PAPER 760-469] The development testing of a short-haul aircrame/powerplant combination, the VFW 614	ext i-25171 and i-33121 of f-4 AIRC i-24250 Appli cor the [AI The Stic The	F. CRAFT Cation of designs to improve aircraft flight it of survivability PAO18733] CRAFT Cation of designs to improve aircraft flight it of survivability PAO18733] CRAFT CRAFT CRAFT CRESING Adaptive Control (MMAC) methors are also and a control of the F-8C aircraft using a Hultiple Model Adaptive Control (MMAC) methors are also and a control of the F-8C aircraft using a Hultiple Model Adaptive Control (MMAC) methors are also and a control of the F-8C aircraft using a M76-25 are also and a control of the F-8C aircraft using a M76-34 aircraft application A76-34 CRAFT Commental tests of the F-15 in the Air Force and a commental tests of the F-15 in the Air Force and a commental tests of the F-15 and	24244 4245 4246 4246
and operation of aero engines ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems A76 ENGINE MOISE Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications N76 Some technical problems of quiet aircraft tech N76 Possibilities of noise reduction for fan engin by means of controls Current research on the simulation of flight effects on the noise radiation of aircraft when powered by hydrogen-enriched gasoline [SAE PAPER 760-469] The development testing of a short-haul airframe/powerplant combination, the VFW 614	ext -25171 and -33121 of -24250 Applo cor the [AI] F-8 AIRC The stic The stic The Si -32149 F-14 AIR The Di -24244 F-15 AII inology Sinul -24249 Es Envir -24251 High es Envir -24251 F-16 AIR The I -25280 F-16 AIR The I -31964 F-27 AII -31964 F-27 AII -31964 F-27 AII -32633 F-25283 F-26	F. TRAFT Location of designs to improve aircraft flight aircraft survivability PAO 18733] STAFT STOCK ASSESSED ASSESS	24244 4245 4246 4246
and operation of aero engines ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems A76 ENGINE MOISE Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications N76 Some technical problems of quiet aircraft technical problems of quiet aircraft technical problems of controls Current research on the simulation of flight effects on the noise reduction for fan engine by means of controls N76 ENGINE TESTS New potentials for conventional aircraft when powered by hydrogen-enriched gasoline [SAE PAPER 760-469] The development testing of a short-haul airframe/powerplant combination, the VFW 614 A76 ENVIRONMENT SIMULATORS Environmental tests of the F-15 in the Air Por	ext -25171 and -33121 of -33121 of -24250	FRAFT CRAFT CRAFT CRAFT CRAFT CRAFT CRAFT CRAFT CRAFT STOCK ASSTREE STORM ASSTREET CRAFT STOCK ASSTREET CRAFT COMMENTAL COMPANISON WITH flight test complement A76-34 CRAFT COMMENTAL COMPANISON A76-34 CRAFT CRAFT CRAFT COMMENTAL CASTREET CRAFT CR	24244 4245 4244 4245 4244 4245 4244 4245 4244
and operation of aero engines ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems A76 ENGINE MOISE Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications N76 Some technical problems of quiet aircraft tech N76 Possibilities of noise reduction for fan engin by means of controls N76 Current research on the simulation of flight effects on the noise radiation of aircraft when powered by hydrogen-enriched gasoline [SAE PAPER 760-469] The development testing of a short-haul airframe/powerplant combination, the VFW 614 ENVIRONMENT SIBULATORS Environmental tests of the F-15 in the Air For Climatic Laboratory	extin	FRAFT Cation of designs to improve aircraft flight iteration survivability 0-A018733] 0-A018734 0-A	24244 4245 4244 4244 4244 4244 4244 424
and operation of aero engines ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems A76 ENGINE MOISE Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications N76 Some technical problems of quiet aircraft tech N76 Possibilities of noise reduction for fan engin by means of controls N76 Current research on the simulation of flight effects on the noise radiation of aircraft when powered by hydrogen-enriched gasoline [SAE PAPER 760-469] The development testing of a short-haul airframe/powerplant combination, the VFW 614 ENVIRONMENT SIBULATORS Environmental tests of the F-15 in the Air For Climatic Laboratory	extin	FRAFT Location of designs to improve aircraft flight aircraft structure substitution of designs to improve aircraft flight aircraft survivability -A018733] N76-24 ERAFT Stochastic control of the P-8C aircraft using a Multiple Model Adaptive Control (MMAC) meth SSA-CR-148100] N76-25 RCRAFT SES imulator - A comparison with flight test sults P-14A aircraft application ACRAFT Lation - A flight test complement Conmental tests of the P-15 in the Air Force imatic Laboratory Angle of attack flight tests of the P-15 ACRAFT RCRAFT RC	24244 4245 4244 4244 4244 4244 4244 424
and operation of aero engines ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems A76 ENGINE MOISE Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications N76 Some technical problems of quiet aircraft tech N76 Possibilities of noise reduction for fan engin by means of controls N76 Current research on the simulation of flight effects on the noise radiation of aircraft effects on the noise radiation of aircraft effects on the noise radiation of aircraft when powered by hydrogen-enriched gasoline [SAE PAPER 760-469] The development testing of a short-haul airframe/powerplant combination, the VFW 614 BNVIROHMENT SIMULATORS Environmental tests of the F-15 in the Air Por Climatic Laboratory A76 ENVIRONMENTAL LABORATORIES Flight simulation using free-flight laboratory	ext i-25171 and i-33121 of f-4 AIRC i-24250 Appli cor the [AI	FRAFT Cation of designs to improve aircraft flight it of survivability PAO18733] PRAFT Cation of designs to improve aircraft flight it old survivability PAO18733] PRAFT Cation of designs to improve aircraft flight it old survivability PAO18733] PRAFT CRAFT CRAFT CRESSIMULATION PROCESSION CREAFT CRESSIMULATION PROCESSION CREAFT COMMENTAL TEST OF THE AIRCRAFT CRESSION CREAFT CRESSION CREAFT CRESSION CRESCO CRESSION CR	24244 4245 4244 4244 4244 4244 4244 424
and operation of aero engines ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems A76 ENGINE MOISE Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications N76 Some technical problems of quiet aircraft tech N76 Possibilities of noise reduction for fan engin by means of controls Current research on the simulation of flight effects on the noise radiation of aircraft effects on the noise radiation of aircraft effects on the noise radiation of aircraft engine powered by hydrogen-enriched gasoline [SAE PAPER 760-469] The development testing of a short-haul airframe/powerplant combination, the VFW 614 ENVIRONMENT SIBULATORS Environmental tests of the F-15 in the Air For Climatic Laboratory A76 ENVIRONMENTAL LABORATORIES Flight simulation using free-flight laboratory scale models	ext i=25171 and i=33121 of i=33121 of i=24250 Appli cor the [AI] i=	FRAFT Location of designs to improve aircraft flight aircraft structure substitution of designs to improve aircraft flight aircraft survivability -A018733] N76-24 ERAFT Stochastic control of the P-8C aircraft using a Multiple Model Adaptive Control (MMAC) methods are substituted in the substitute of the P-8C aircraft using a Multiple Model Adaptive Control (MMAC) methods are substituted in the substitute of the P-8C aircraft using a Miltiple Model Adaptive Control (MMAC) methods are substituted in the substitute of the P-8C aircraft using a M76-24 ECRAFT Lation - A comparison with flight test substitute of the P-15 in the Air Force amount of the P-15 in the Air Force and a M76-34 ECRAFT Reference of the P-15 in the Air Force and angle of attack flight tests of the P-15 ECRAFT Reference of the P-15 in the Air Force and angle of attack flight tests of the P-15 ECRAFT Reference of the P-15 in the Air Force and angle of attack flight tests of the P-15 ECRAFT Reference of the P-15 in the Air Force and angle of attack flight tests of the P-15 ECRAFT Reference of the P-15 in the Air Force and adhesive bonded aircraft structure are substituted and and and are substituted and are substit	24244 4245 4244 4244 4244 4244 4244 424
and operation of aero engines ENGINE INLETS Inlets for high angles of attack On the reduction of compressor noise by means helical detuners N76 ENGINE MONITORING INSTRUMENTS Mechanical function and engine performance for Army UH-1 H helicopter in the AIDAPS program Automatic Inspection, Diagnostic and Prognos Systems A76 ENGINE MOISE Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications N76 Some technical problems of quiet aircraft tech N76 Possibilities of noise reduction for fan engin by means of controls Current research on the simulation of flight effects on the noise radiation of aircraft effects on the noise radiation of aircraft effects on the noise radiation of aircraft engine powered by hydrogen-enriched gasoline [SAE PAPER 760-469] The development testing of a short-haul airframe/powerplant combination, the VFW 614 ENVIRONMENT SIBULATORS Environmental tests of the F-15 in the Air For Climatic Laboratory A76 ENVIRONMENTAL LABORATORIES Flight simulation using free-flight laboratory scale models	ext i=25171 and i=33121 of i=33121 of i=24250 Appli cor the [AI] i=	FRAFT Cation of designs to improve aircraft flight it of survivability PAO18733] PRAFT Cation of designs to improve aircraft flight it old survivability PAO18733] PRAFT Cation of designs to improve aircraft flight it old survivability PAO18733] PRAFT CRAFT CRAFT CRESSIMULATION PROCESSION CREAFT CRESSIMULATION PROCESSION CREAFT COMMENTAL TEST OF THE AIRCRAFT CRESSION CREAFT CRESSION CREAFT CRESSION CRESCO CRESSION CR	24444245 42446 4246 4246 4246 4246 4246

SUBJECT INDEX FLIGHT SIMULATION

F-105 AIRCRAFT Application of designs to improve aircraft	flight	<pre>Effects of buffeting and other transonic phenomena for fighter aircraft</pre>
control survivability	H76-24279	#76-25298
[AD-A018733] P-106 AIRCRAFT Development of flight-by-flight fatigue tes		A finite difference method for the calculation of
from statistical distributions of aircraft	Et	three-dimensional boundary layers on swept wings 876-24166
stress data. Volume 2: Documentation of	of the	PINITE ELEMENT METHOD
B-58 and F-106 fatigue spectra simulation [AD-A016407]	n program H76-24219	Modeling and analysis techniques for webicle crash simulation
PAILURE MODES Techniques for predicting vehicle structure	crash	Nonlinear finite element techniques for aircraft
1mpact response	A76-34156	crash analysis A76-34159
PAR PIELDS		PIRE PREVENTION
The far field of high frequency convected singularities in sheared flows, with an		Crashworthy fuel systems A76-34165
application to jet-noise prediction	A76-32545	Research and development of modified fuels for reduction of the postcrash fire hazard
PASTENERS		A76-34166
Interference-fit-fastener investigation fatigue life of fasteners used in aircraf		Jet fuel handling and safety A76-35222
structures [AD-A018804]	N76-24598	Development of lightweight fire retardant, low-smoke, high-strength, thermally stable
FATIGUE LIFE	1170 24330	aircraft floor paneling
Interference-fit-fastener investigation		[NASA-CR-147750] N76-24365
fatigue life of fasteners used in aircraf structures	r t	A composite system approach to aircraft cabin fire safety
[AD-A018804]	N76-24598	[NASA-TM-X-73126] N76-25354
PATIGUE TESTS Development of flight-by-flight fatigue tes	et data	FLAT SURFACES The drag and lift characteristics of a cylinder
from statistical distributions of aircraft		placed near a place surface
stress data, volume 1		[AD-A019286] N76-25152
[AD-A016406] Development of flight-by-flight fatigue tes	N76-24218 st data	FLIGHT ALTITUDE Minimum time flight profile optimization for
from statistical distributions of aircrai	Et	piston-engine-powered airplanes
stress data. Volume 2: Documentation of B-58 and F-106 fatigue spectra simulation		[SAE PAPER 760-474] A76-31967
[AD-A016407]	N76-24219	PLIGHT CHARACTERISTICS Progress report on propeller aircraft flyover
Catapult launch fatigue investigation of the	ne model	noise research
E-1B/C-1 airplane [AD-A019519]	N76-24223	[SAE PAPER 760-454] A76-31954 Special problems in the flight testing of sailplanes
Static and fatigue tests of F-111B boron wi	ing tip	A76-32630
[AD-A018751] PRASIBILITY AMALYSIS	N76-24370	The dynamics of aircraft spin Russian book A76-33022
Feasibility study of propeller design for	general	The design and development of a military combat
aviation by numerical optimization	_	aircraft. III - Longitudinal stability and control
[SAE PAPER 760-478] Brief overview of some Air Porce Flight Dyn	A76-31970 namıcs	A76-33945 Byaluation of XV-15 tilt rotor aircraft for flying
Laboratory research efforts in aeroelasti	lcity	qualities research application
and aero-acoustics feasibility analys feedback control of flutter using scale a		[NASA-CR-137828] N76-24208 An investigation of RPV control criteria via the
of a B-52 aircraft		optimal regulator performance index
Model systems and their implications in the	N76-24151	[AD-A019846] N76-25209 Current research on the simulation of flight
operation of pressurized wind tunnels	=	effects on the noise radiation of aircraft engines
	N76-25248	N76-25280
PEEDBACK CONTROL Brief overview of some Air Porce Flight Dyn	namics	FLIGHT CONTROL Model matching method for flight control and
Laboratory research efforts in aeroelast:	lC1ty	stimulation for longitudinal control and
and aero-acoustics feasibility analys feedback control of flutter using scale a		stability augmentation systems A76-32396
of a B-52 aircraft		Singular perturbation methods for variational
FIBER OPTICS	N76-24151	problems in aircraft flight A76-33305
Eight-terminal, bidirectional, fiber optic	trank	Application of designs to improve aircraft flight
data bus	N76-24483	control survivability
[AD-A019429] An approach to the estimation of life cycle		[AD-A018733] N76-24279 An investigation of RPV control criteria via the
of a fiber-optic application in military		optimal regulator performance index
prediction analysis techniques [AD-A019379]	N76-25017	[AD-A019846] H76-25209 PLIGHT LOAD RECORDERS
PIGHTER AIRCRAFT	#/O 2501/	Instrumentation of two VAK 191 B aircraft with
Advanced fighter control techniques	A76-32627	flight load measuring systems
The design and development of a military co		PLIGHT MECHANICS
aircraft. III - Longitudinal stability ar	nd control	Conception and flight mechanics of a
Sukhon's swing-wing Su-17/20 Fitter C	A76-33945	ship-supported unmanned rotor platform B76-24213
Simulator study of the effectiveness of an	A76-33946	FLIGHT SIMULATION
automatic control system designed to impr	ove the	Hodel matching method for flight control and stimulation for longitudinal control and
high-angle-of-attack Characteristics of a	ı	stability augmentation systems
fighter airplane [NASA-TN-D-8176]	H76-24266	A76-32396 Simulation of aircraft crash and its Validation
Navy evaluation P-11A in-flight thrust cont		A76-34157
system [AD-A019954]	H76-25204	Ground simulation of flutter on aircraft with high-aspect-ratio wings
Ç		[ESA-TT-263] H76-24216

FLIGHT SIMULATORS SUBJECT INDEX

Flight simulation using free-flight laboratory scale models N76-25288	A new experimental flight research technique: The remotely piloted airplane N76-25287
PLIGHT SIMULATORS	Comments on wind tunnel/flight comparisons at high
Simulation - A flight test complement A76-34240	angles of attack based on BAC one-eleven and
The T&E simulator - A comparison with flight test	VC10 experience
results F-14A aircraft application A76-34243	Comparison of model and flight test data for an
FLIGHT TESTS	augmentor-wing STOL research aircraft N76-25292
A data acquisition system for in-flight airfoil	Correlation of low speed wind tunnel and flight
evaluation	test data for V/STOL alrcraft
[SAE PAPER 760-462] A76-31960	N76-25293
Business jet approach noise abatement techniques - Flight test results	A brief flight-tunnel comparison for the Hunting H 126 jet flap aircraft
[SAE PAPER 760-463] A76-31961	N76-25294
Design, development and flight test of the Cessna	Comparison of aerodynamic coefficients obtained
Citation thrust reverser [SAE PAPER 760-468] A76-31963	from theoretical calculations, wind tunnel
GA/W/-2 Airfoil Flight Test Evaluation	tests, and flight tests data reduction for the Alpha Jet aircraft
[SAE PAPER 760-492] A76-31974	N76-25295
Preliminary flight-test results of an advanced	Flight measurements of the longitudinal
technology light twin-engine airplane /ATLIT/ [SAE PAPER 760-497] A76-31976	aerodynamic characteristics of a vectored thrust aircraft (HS-P1127) throughout the transition
Energy management - The delayed flap approach	(V/STOL aircraft)
A76-32200	N76-25296
Initial flight test phase of the	Comments on some wind tunnel and flight experience
Dassault-Breguet/Dornier Alpha-Jet A76-32626	of the post-buffet behaviour of the Harrier aircraft
Advanced fighter control techniques	ท76-25297
A76-32627	Swedish experience on correlations of flight
B-1 flight test progress report	results with ground test predictions for the SAAB 37 aircraft
Unusual pitch and structural mode testing of the B-1	N76-25299
A76-32629	Flight/tunnel comparison of the installed drag of
Special problems in the flight testing of sailplanes	wing mounted stores on the Buccaneer aircraft N76-25300
The Boeing Compass Cope Program RPV system	Comments on mathematical modelling of external
A76-32632	store release trajectories including comparison
The development testing of a short-haul	with flight data (prediction analysis
airframe/powerplant combination, the VFW 614/M45H A76-32633	techniques for jettisoning of external stores) #76-25301
Hawker Siddeley Hawk T Mk 1 two-seat ground	Comments on wind tunnel/flight correlations for
attack/trainer aircraft	external stores jettison tests on the P 104 S
A76-32634 Toward more effective testing; Proceedings of the	and G 91 Y aircraft N76-25302
Sixth Annual Symposium, St. Louis, Mo., August	Analysis of the comparison between flight tests
13-16, 1975	results and wind tunnel tests predictions for
A76-34233 Joint contractor - Air Force flight test programs	subsonic and supersonic transport aircraft N76-25303
A76-34234	Results of an aerodynamic investigation of a space
The U.S.A.F./Rockwell B-1 flight test program	shuttle orbiter/747 carrier flight test
progress report - Relationship of test objectives to operational requirements	configuration to determine separation characteristics utilizing 0.0125-scale models
A76-34235	(48-0/AX1318I-1) in the LTV 4 x 4 foot high
The F-16 flight test program	speed wind tunnel (CA26), volume 1
A76-34236 Reliability and maintainability testing of	[NASA-CR-144612] N76-25322 Results of an aerodynamic investigation of a space
prototype aircraft	shuttle orbiter/747 carrier flight test
A76-34237	configuration to determine separation
Status of the Air Cushion Landing System flight test program	characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4 foot high
A76-34238	speed wind tunnel (CA26), volume 2
Simulation - A flight test complement	[NASA-CR-144613] N76-25323
A76-34240 The T&E simulator - A comparison with flight test	Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test
results F-14A aircraft application	configuration to determine separation
A76-34243	characteristics utilizing 0.0125-scale models
Environmental tests of the F-15 in the Air Force	(48-0/AX1318I-1) in the LTV 4 x 4-foot high
Climatic Laboratory A76-34244	speed wind tunnel (CA26), volume 3 [NASA-CR-144614] N76-25324
High angle of attack flight tests of the F-15	Results of an aerodynamic investigation of a space
A76-34245	shuttle orbiter/747 carrier flight test
YF-17 stall/post-stall testing A76-34246	configuration to determine separation characteristics utilizing 0.0125-scale models
Stall/post-stall/spin avoidance tests of the YA-10	(48-0/AX1318I-1) in the LTV 4 x 4 foot high
aircraft	speed wind tunnel (CA26), volume 4
A76-34247 Determination of minimum catapult launch speeds	[NASA-CR-144615] N76-25325 Results of an aerodynamic investigation of a space
for maximum combat effectiveness of carrier	shuttle orbiter/747 carrier flight test
aircraft	configuration to determine separation
A76-34249 Navy evaluation F-11A in-flight thrust control	characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4 foot high
system	speed wind tunnel (CA26), volume 5
[AD-A019954] #76-25204	[NASA-CR-144616] N76-25326
<pre>Plight measurements of helicopter rotor aerofoil characteristics and some comparisons with</pre>	FLIGHT TIME Ninnmum time flight profile optimization for
two-dimensional wind tunnel results	piston-engine-powered airplanes
N76-25284	[SAE PAPER 760-474] A76-31967

SUBJECT INDEX FUSELAGES

PLOORS	FLOTTER
Development of lightweight fire retardant,	Brief overview of some Air Porce Plight Dynamics
low-smoke, high-strength, thermally stable aircraft floor paneling	Laboratory research efforts in aeroelasticity and aero-acoustics feasibility analysis of
[NASA-CR-147750] B76-24365	feedback control of flutter using scale models
PLOW DEFLECTION	of a B-52 aircraft
Recovery techniques for aircraft in spinning flight	B76-24151
control surface deflections [AD-A019323] #76-24278	Dynamic simulation in wind tunnels, part 1 876-25275
PLOW DISTORTION	FLUTTER AVALUSIS
Transmission of circumferential inlet distortion	A note on transonic flow past a thin airfoil
through a rotor	oscillating in a wind tunnel
#76-25188 Hultiple segment parallel compressor model for	A76-33365 Ground simulation of flutter on aircraft with
circumferential flow distortion	high-aspect-ratio wings
#76-25189	[BSA-TT-263] B76-24216
The effect of turbulent mixing on the decay of	Preliminary results for single airfoil response to
sinusoidal inlet distortions in axial flow compressors	large nonpotential flow disturbances considering turbocompressor inlet flow
#76-25190	876-25198
The response of a lifting fan to crossflow-induced	PLYING PLATFORMS
spatial flow distortions	Conception and flight mechanics of a
B76-25191	ship-supported unmanned rotor platform #76-24213
Unsteady airloads on a cascade of staggered blades in subsonic flow	PORKER AIRCRAFT
N76-25200	Instrumentation of two VAK 191 B aircraft with
PLOW DISTRIBUTION	flight load measuring systems
Flow around wings with inclined lateral jets	B76-25589
A76-32596 The structure of jets from notched nozzles	FORCED VIBRATION Random vibrations of a cylindrical shell due to an
A76-33361	excitation with uniformly varying frequency
Calculation of three-dimensional supersonic flow	A76-32869
fields about aircraft fuselages and wings at	PRACTURE BECHANICS
general angle of attack [AD-A018715] N76-25151	Practure in thin sections of aircraft structures [SAE PAPER 760-452] A76-31953
Air driven ejector units for engine simulation in	Practure analyses involving materials of aircraft
wind tunnel models	construction for machine elements
76-25239	A76-32165
Unsteady aerodynamic flow field analysis of the	Static and fatigue tests of P-111B boron wing tip [AD-A018751] N76-24370
space shuttle configuration. Part 4: 747/orbiter aeroelastic stability	[AD-A018751] H76-24370 PREE PLIGHT
[NASA-CR-144335] N76-25331	Plight simulation using free-flight laboratory
PLOW MEASUREMENT	scale models
Flow investigation on wings with kinked leading	FREE FLIGHT TEST APPARATUS
edges and swept outer wings at moderate subsonic speed	Flight simulation using free-flight laboratory
[DLR-IB-151-74/11] N76-24178	scale models
Detailed flow measurements during deep stall in	. 176-25288
axial flow compressors N76-25202	FURL CONSUMPTION New potentials for conventional aircraft when
PLOW STABILITY	powered by hydrogen-enriched gasoline
The removal of wind tunnel panels to prevent flow	[SAE PAPER 760-469] A76-31964
breakdown at low speeds	Energy management - The delayed flap approach
F76-25252	A76-32200
VSTOL wind tunnel model testing: An experimental assessment of flow breakdown using a multiple	Civil transport technology up to 2000 - MASA believes fuel consumption is the major
fan model	consideration
N76-25253	A76-32649
PLOW THEORY	Study of the application of advanced technologies
A method for predicting the drag of airfoils [SAE PAPER 760-479] A76-31971	to laminar flow control systems for subsonic transports. Volume 1: Summary
Flow around wings with inclined lateral jets	[NASA-CR-144975] 876-24144
A76-32596	Study of the application of advanced technologies
A complete second-order theory for the unsteady	to laminar-flow control systems for subsonic
flow about an airfoil due to a periodic gust	transports. Volume 2: Analyses [NASA-CR-1449491 N76-24145
PLOW VELOCITY	[NASA-CR-144949] N76-24145 FUEL SPRAYS
Hydrodynamic visualization study of various	Research and development of modified fuels for
procedures for controlling separated flows	reduction of the postcrash fire hazard
PLOW VISUALIZATION	A76-34166 PORL SYSTRMS
Hydrodynamic visualization study of various	Crashworthy fuel systems
procedures for controlling separated flows	A76-34165
A76-33745	Research and development of modified fuels for
Visual study of the three-dimensional flow pattern	reduction of the postcrash fire hazard
at a delta wing in subsonic flow A76-33869	FUEL TANKS
PLUID DYNAMICS	Lightning protection of aircraft fuel caps
Pluid-dynamic lift: Practical information on	[SAE PAPER 760-486] A76-31972
aerodynamic and hydrodynamic lift Book	Explosion proofing H-53 range extension tank
PLUID MECHANICS	[AD-A018353] N76-25158 PUSBLAGES
Some current research in unsteady aerodynamics: A	Catapult launch fatigue investigation of the model
report from the Fluid Dynamics Panel	E-1B/C-1 airplane
N76-25192	[AD-A019519] #76-24223
	Calculation of three-dimensional supersonic flow
	fields about aircraft fuselages and wings at general angle of attack
	[AD-A018715] N76-25151

G-91 AIRCRAFT SUBJECT INDEX

G		GUST LOADS On the response of an aircraft to random gust	
G-91 AIRCRAFT		A76-3. Airfoil response to an incompressible skewed gus	
Comments on wind tunnel/flight correlations external stores jettison tests on the F		of small spanwise wave-number A76-3	
and G 91 Y aircraft	N76-25302	GUSTS A complete second-order theory for the unsteady	
GASOLIER	870 25502	flow about an airfoil due to a periodic gust	
New potentials for conventional aircraft w	hen	A76-3	4552
powered by hydrogen-enriched gasoline [SAE PAPER 760-469]	A76-31964	41	
GREBRAL AVIATION AIRCRAPT		Н	
Noise control - Blueprint for better commun		H-53 HELICOPTER	
relations for corporate jet aircraft [SAE PAPER 760-456] NASA general aviation research overview	∆76-31956	Explosion proofing H-53 range extension tank [AD-A018353] H76-2: H-126 AIRCRAFT	5158
[SAE PAPER 760-458]	A76-31957	A brief flight-tunnel comparison for the Hunting	Ħ
A data acquisition system for in-flight aim evaluation	rfoll	126 jet flap aircraft B76-2	5200
[SAB PAPER 760-462]	A76-31960	HARRIER AIRCRAFT	J234
Business jet approach noise abatement tech Plight test results		Comments on some wind tunnel and flight experient of the post-buffet behaviour of the Harrier	ce
[SAE PAPER 760-463]	A76-31961	aircraft	E 203
The impact of interior cabin noise on passe acceptance	enger	HAWKER SIDDELEY AIRCRAFT	3297
[SAE PAPER 760-466]	A76-31962	Hawker Siddeley Hawk T Mk 1 two-seat ground	
General aviation design synthesis utilizing	g	attack/trainer aircraft	2621
interactive computer graphics [SAE PAPER 760-476]	A76-31968	A76-33 Hawker Siddeley Hawk T Mk 1 two-seat ground	2034
Peasibility study of propeller design for		attack/trainer aircraft	
aviation by numerical optimization	A76-31970	A76-3. HRLICAL INDUCERS	3772
[SAB PAPER 760-478] GA/W/-2 Airfoil Plight Test Evaluation	A/0-319/0	On the reduction of compressor noise by means of	
[SAE PAPER 760-492]	A76-31974	helical detuners	
Crashworthiness observations in general avaccident investigations - A statistical of		HELICOPTER CONTROL	4250
accident buvestigations - A statistical	A76-34135	Helicopter stabilization system	
General aviation crashworthiness	176 20426	A76-3	416,
Crashworthiness in emergency ditching of go	A76-34136 eneral	Effect on pilot performance with refined helicopter displays A76-3:	u 24 4
aviation aircraft	A76-34140	HELICOPTER DESIGN	7271
Investigation into the noise propagation by	7	Crashworthiness design features for advanced	
propeller aircraft in general aviation	N76-24254	utility helicopters	4137
Quieter propellers for general aviation: Pr		Crashworthiness of the Boeing Vertol UTTAS	
position. Puture expectations	W76 2025	A76-3	4138
GERNANY	N76-24255	Crashworthy fuel systems	4165
Some informal comments about the research	aircraft	Effect on pilot performance with refined	
in the DPVLR	N76-25285	helicopter displays	4241
GLASS FIBER REINFORCED PLASTICS	870 25205	Contributions to helicopter technology	
Laminar flow rethink - Using composite stre	icture	conference proceedings fplR-MITT-75-241 N76-2	11 200
in Bellanca Skyrocket II design [SAE PAPER 760-473]	A76-31966	[DLR-MITT-75-24] N76-2: Advanced side-by-side concept helicopter rote	
Glass fiber reinforced plastics for small a		configurations	
structures. Activities over the years 19	56 to	HELICOPTER TAIL ROTORS	4214
1971 in the Light Aircraft Division [MBB-UFE-1067-0]	N76-24368	Noise phenomena with helicopter rotors and	
GLIDERS		possibilities of noise reduction	
Special problems in the flight testing of	sailplanes A76-32630	HELICOPTERS N76-2	4256
GOVERNMENT/INDUSTRY RELATIONS	170 32030	Aeroelastic stability of trimmed helicopter blad-	es
Joint contractor - Air Force flight test p	rograms A76-34234	in forward flight	2840
GROUND EFFECT	A/0-34234	Unsteady aerodynamics for example, in	2043
Status of the Air Cushion Landing System f	light	helicopters	
test program	A76-34238	[AGARD-R-645] N76-2 Unsteady aerodynamics of helicopter blades	4146
GROUND EFFECT MACHINES	270 34230	N76-2	4149
An alternative to the helicopter sidewa		Possibilities and problems of helicopter noise reduction	
hovercraft for shore base-offshore person transfers	nner	1educt104 876-2	4211
	A76-32198	Performance and handling qualities: AH-1G	
GROUND TESTS Problems of noise testing in ground-based		helicopter equipped with three hot metal/plume infrared suppressors	
facilities with forward-speed simulation		[AD-A019482] N76-2	
·	N76-25281	Army preliminary evaluation YAH-IQ helicopter wi	th
Swedish experience on correlations of flight results with ground test predictions		a flat-plate canopy [AD-A020111] N76-2.	5160
SAAB 37 aircraft		Engineering evaluation JOH-58A helicopter with a	
CDOURN-1TD-CDOURN COMMERCES	N76-25299	automatic relight system [AD-A019407] N76-2	5161
GROUND-AIR-GROUND COMMUNICATIONS NASA study of an automated Pilot Advisory :	System	[AD-A019407] N76-2. HIGH ALTITUDE TESTS	2101
[SAE PAPER 760-460]	A76-31958	High altitude applications of the Gates Learjet [SAE PAPER 760-491] A76-3	1973

SUBJECT INDEX INLET PLOW

HIGH SPEED	HYPERSORIC PLOW
Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test	Unsteady hypersonic flow over delta wings with detached shock waves
configuration to determine separation	A76-33719 Law of cross sections for the three-dimensional
characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4 foot high speed wind tunnel (CAZ6), volume 1	boundary layer on a thin-section wing in hypersonic flow
[NASA-CR-144612] N76-25322	A76-33854
Results of an aerodynamic investigation of a space	Development of a computer code for calculating the
shuttle orbiter/747 carrier flight test	steady super/hypersonic invisced flow around
configuration to determine separation	real configurations. Volume 2: Code description [NASA-CR-2676] N76-24152
characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4 foot high	[NASA-CR-2676] N76-24152
speed wind tunnel (CA26), volume 2	1
[NASA-CR-144613] N76-25323	
Results of an aerodynamic investigation of a space	ICE PREVESTION
shuttle orbiter/747 carrier flight test	The development of an advanced anti-icing/deicing
configuration to determine separation characteristics utilizing 0.0125-scale models	capability for US Army helicopters. Volume 1: Design criteria and technology considerations
(48-0/AX1318I-1) in the LTV 4 x 4-foot high	[AD-A019044] N76-24229
speed wind tunnel (CA26), volume 3	The development of an advanced anti-icing/deicing
[NASA-CR-144614] N76-25324	capability for US Army helicopters. Volume 2:
Results of an aerodynamic investigation of a space	Ice protection system application to the UH-1H
shuttle orbiter/747 carrier flight test configuration to determine separation	helicopter [AD-A019049] N76-24230
characteristics utilizing 0.0125-scale models	IDBAL PLUIDS
(48-0/AX1318I-1) in the LTV 4 x 4 foot high	On mathematical simulation of separated flow past
speed wind tunnel (CA26), volume 4	a wing and breakup of a vortex sheet in an ideal
[NASA-CR-144615] N76-25325	fluid A76-34693
Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test	IDENTIFYING A/0-34093
configuration to determine separation	Status of methods for aircraft state and parameter
characteristics utilizing 0.0125-scale models	identification
(48-0/AX1318I-1) in the LTV 4 x 4 foot high	N76-25282
speed wind tunnel (CA26), volume 5	IMPACT DAMAGE
[NASA-CR-144616] N76-25326 HIGH STRENGTH ALLOYS	Approximate changes in aircraft stability derivatives caused by battle damage
Hydrogen embrittlement of structural alloys. A	[AD-A019843] N76-25207
technology survey	IMPACT LOADS
[NASA-CR-134962] N76-25375	Techniques for predicting vehicle structure crash
HIGH TEMPERATURE RESEARCH Applied high temperature technology program,	<pre>impact response A76-34156</pre>
volume 1 niobium alloys for turbine blades	INCIDENCE
[AD-A018637] N76-24262	Wind tunnel measurements at M=1.6 of the
Applied high temperature technology program.	aerodynamic effects of a root gap on a control
Volume 2: Evaluation of coated columbian alloys for advanced turbine airfoils	surface of square planform mounted on a body [RAE-TM-AERO-1641] N76-24173
[AD-A018638] N76-24263	[RAE-TH-AERO-1641] N76-24173 INCOMPRESSIBLE PLOW
HOMING DEVICES	Airfoil response to an incompressible skewed gust
Emergency locator transmitters	of small spanwise wave-number
[GPO-60-520] N76-25154 HONEYCOMB STRUCTURES	A76-33725
Design of an advanced composites alleron for	A complete second-order theory for the unsteady flow about an airfoil due to a periodic gust
commercial aircraft	A76-34552
A76-32651	INDEPENDENT VARIABLES
HUMAN PACTORS ENGINEERING 'Controlled flight into terrain /CFIT/' accidents	Status of methods for aircraft state and parameter identification
- System-induced errors	N76-25282
A76-32231	INPINITE SPAN WINGS
General investigation of accidents	A method for predicting the drag of airfoils
A76-34134	[SAE PAPER 760-479] A76-31971
Development of design criteria for crashworthy armored aircrew seats	IHPLATABLE STRUCTURES Helicopter stabilization system
A76-34154	A76-34164
HUMAN REACTIONS	INFORMATION THEORY
The impact of interior cabin noise on passenger	System complexity - Its conception and measurement
acceptance [SAE PAPER 760-466] A76-31962	in the design of engineering systems
[SAE PAPER 760-466] A76-31962 HYDRAULIC TRST TUBBELS	IMPRARED ASTRONOMY
Hydrodynamic visualization study of various	High altitude applications of the Gates Learjet
procedures for controlling separated flows	[SAE PAPER 760-491] A76-31973
HYDROPOILS	INFRARED RADIATION
Fluid-dynamic lift: Practical information on	Performance and handling qualities: AH-1G helicopter equipped with three hot metal/plume
aerodynamic and hydrodynamic lift Book	infrared suppressors
A76-32167	[AD-A019482] N76-24277
Lift and drag characteristics of a supercavitating	INLET FLOW
cambered hydrofoil with a jet flap beneath a free surface	Inlets for high angles of attack
176e Surface A76-34926	A76-33121 Inlet spillage drag tests and numerical flow-field
HY DROGEN	analysis at subsonic and transonic speeds of a
New potentials for conventional aircraft when	1/8-scale, two-dimensional,
powered by hydrogen-enriched gasoline [SAE PAPER 760-469] A76-31964	external-compression, variable-geometry,
EYDROGEN BEBRITTLEMENT	supersonic inlet configuration [BASA-CR-2680] N76-24240
Hydrogen embrittlement of structural alloys. A	Transmission of circumferential inlet distortion
technology survey	through a rotor
[NASA-CR-134962] N76-25375	N76-25188

INLET NOZZLES SUBJECT INDEX

multiple segment parallel compressor model	for	JET EXHAUST
circumferential flow distortion	w7/ 05400	Development of emissions measurement techniques
The unsteady aerodynamic response of an ai	N76-25189	for afterburning turbine engines [AD-A019094] N76-24260
cascade to a time-variant supersonic inli		JET FLAPS
field		Lift and drag characteristics of a supercavitating
	N76-25195	cambered hydrofoil with a jet flap beneath a
INLET NOZZLES	613	free surface A76-34926
Inlet spillage drag tests and numerical fluoranalysis at subsonic and transonic speed:		JET PLOW
1/8-scale, two-dimensional,	5 UL W	The structure of jets from notched nozzles
external-compression, variable-geometry,		A76-33361
supersonic inlet configuration		JET THRUST
[NASA-CR-2680] INSTRUMENT PLIGHT RULES	N76-24240	Engine and jet induced effects of a lift plus
Effect on pilot performance with refined		lift-cruise V/STOL aircraft A76-32631
helicopter displays		JETTISONING
	A76-34241	Comments on mathematical modelling of external
INTEGRAL CALCULUS		store release trajectories including comparison
Airfoil design for a prescribed velocity distribution in transonic flow by an int	egra 1	<pre>with flight data (prediction analysis techniques for jettisoning of external stores)</pre>
method	cylar	h76-25301
[DLR-IB-151-75/8]	N76-24180	Comments on wind tunnel/flight correlations for
INTERPERENCE DRAG		external stores jettison tests on the F 104 S
Wind tunnel investigation of Nacelle-Airfrainterference at Mach numbers of 0.9 to 1		and G 91 Y aircraft N76-25302
data	.4-101Ce	870-23302
[NASA-TM-X-62489]	N76-25143]
Interference problems in V/STOL testing at	low	L
speeds	N76-25251	LAMINAR PLOW
INVESTIGATION	N76-25251	Lamınar flow rethink - Using composite structure in Bellanca Skyrocket II design
Results of an experimental investigation to	0	[SAE PAPER 760-473] A76-31966
determine separation characteristics for	the	Study of the application of advanced technologies
Orbiter/747 using a 0.0125-scale model (to laminar flow control systems for subsonic
AX1318I-1 747) in the Ames Research Cent 14-foot wind tunnel (CA23B)	er	transports. Volume 1: Summary [HASA-CR-144975] H76-24144
[NASA-CR-144604]	N76-25334	Study of the application of advanced technologies
INVISCID PLOW		to laminar-flow control systems for subsonic
The computation of transonic flows past ae		transports. Volume 2: Analyses
in solid, porous or slotted wind tunnels		[NASA-CR-144949] N76-24145
	N76-25232	LANDING GRAR Realistic evaluation of landing gear shimmy
1		stabilization by test and analysis
3		[SAR PAPER 760-496] A76-31975
JET AIRCRAFT		[SAR PAPER 760-496] A76-31975 Status of the Air Cushion Landing System flight
JBT AIRCRAFT Ground proximity warning system testing	176-34242	[SAE PAPER 760-496] A76-31975 Status of the Air Cushion Landing System flight test program
Ground proximity warning system testing	A76-34242 tudles	[SAE PAPER 760-496] A76-31975 Status of the Air Cushion Landing System flight test program A76-34238
		[SAE PAPER 760-496] A76-31975 Status of the Air Cushion Landing System flight test program
Ground proximity warning system testing Navy jet trainer (VTX) conceptual design s [AD-A018779] Investigation of feasible nozzle configura	tudies N76-24222 tions	[SAE PAPER 760-496] A76-31975 Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis
Ground proximity warning system testing Navy jet trainer (VTX) conceptual design so [AD-A018779] Investigation of feasible nozzle configuration noise reduction in turbofan and turbo	tudies N76-24222 tions ojet	[SAE PAPER 760-496] A76-31975 Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] A76-31975
Ground proximity warning system testing Navy jet trainer (VTX) conceptual design so [AD-A018779] Investigation of feasible nozzle configuration noise reduction in turbofan and turboarreaft. Volume 1: Summary and select	tudies N76-24222 tions ojet	[SAE PAPER 760-496] A76-31975 Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] A76-31975 LAW (JURISPRUDERCE)
Ground proximity warning system testing Navy jet trainer (VTX) conceptual design so [AD-A018779] Investigation of feasible nozzle configuration noise reduction in turbofan and turbo	tudies N76-24222 tions ojet	[SAE PAPER 760-496] A76-31975 Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] A76-31975
Ground proximity warning system testing Navy jet trainer (VTX) conceptual design so [AD-A018779] Investigation of feasible nozzle configuration noise reduction in turbofan and turbourcaircraft. Volume 1: Summary and selection in the selection of the selectio	tudies N76-24222 tions ojet ed N76-24233 tions	[SAE PAPER 760-496] A76-31975 Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] A76-31975 LAW (JURISPRUDERCE) Aircraft noise limits regulations in Germany relating to design measures N76-24247
Ground proximity warning system testing Navy jet trainer (VTX) conceptual design of [AD-A018779] Investigation of feasible nozzle configuration for noise reduction in turbofan and turboaircraft. Volume 1: Summary and selection in turboard of [AD-A019645/1] Investigation of feasible nozzle configuration for noise reduction in turbofan and turboaircraft.	tudies N76-24222 tions ojet ed N76-24233 tions ojet	[SAE PAPER 760-496] A76-31975 Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] A76-31975 LAW (JURISPRUBERCE) Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES
Ground proximity warning system testing Navy jet trainer (VTX) conceptual design of [AD-A018779] Investigation of feasible nozzle configuration noise reduction in turbofan and turbuarroraft. Volume 1: Summary and selection multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configuration noise reduction in turbofan and turbuarroraft. Volume 2: Slot nozzle configurationals.	tudles N76-24222 tions ojet ed N76-24233 tions ojet urations	[SAE PAPER 760-496] A76-31975 Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] A76-31975 LAW (JURISPRUDENCE) Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES 'Spilled' leading-edge vortex effects on dynamic
Ground proximity warning system testing Navy jet trainer (VTX) conceptual design of [AD-A018779] Investigation of feasible nozzle configuration for noise reduction in turbofan and turboaircraft. Volume 1: Summary and selection in turboard of [AD-A019645/1] Investigation of feasible nozzle configuration for noise reduction in turbofan and turboaircraft.	tudles N76-24222 tions ojet ed N76-24233 tions ojet urations N76-24234	[SAE PAPER 760-496] A76-31975 Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] A76-31975 LAW (JURISPRUBERCE) Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES
Ground proximity warning system testing Navy jet trainer (VTX) conceptual design st [AD-A018779] Investigation of feasible nozzle configuration of for noise reduction in turbofan and turbearcraft. Volume 1: Summary and selectemultinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configuration of roise reduction in turbofan and turbearcraft. Volume 2: Slot nozzle configuration of feasible reduction in turbofan and turbearcraft. Volume 2: Slot nozzle configuration of the summary of t	tudles N76-24222 ttions ojet ed N76-24233 tions ojet urations N76-24234 ng flight	[SAE PAPER 760-496] A76-31975 Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] A76-31975 LAW (JURISPRUBENCE) Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES 'Spilled' leading-edge vortex effects on dynamic stall characteristics A76-33120 Calculation method for separated flow of slender
Wavy jet trainer (VTX) conceptual design so [AD-A018779] Investigation of feasible nozzle configuration for noise reduction in turbofan and turbiant aircraft. Volume 1: Summary and selection in turbiant aircraft of the selection in turbiant aircraft of feasible nozzle configurations [AD-A019645/1] Investigation of feasible nozzle configuration noise reduction in turbian and turbiaircraft. Volume 2: Slot nozzle configuration for noise reduction in turbiant aircraft of the selection of feasible nozzle configuration and turbiaircraft of the selection of feasible nozzle configuration of feasible nozzle nozzle configuration of feasible nozzle configuration of feasible nozzle nozzle nozzle nozzle nozzle nozzle nozzle noz	tudles N76-24222 tions ojet ed N76-24233 tions ojet urations N76-24234	[SAE PAPER 760-496] Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES 'Spilled' leading-edge vortex effects on dynamic stall characteristics A76-33120 Calculation method for separated flow of slender arrow wings accounting for leading edge
Wavy jet trainer (VTX) conceptual design so [AD-A018779] Investigation of feasible nozzle configuration for noise reduction in turbofan and turbofan aircraft. Volume 1: Summary and selection in turbofan and selection [AD-A019645/1] Investigation of feasible nozzle configurations [AD-A019645/1] Investigation of feasible nozzle configurations reduction in turbofan and turbofan aircraft. Volume 2: Slot nozzle configurations [AD-A019646/9] Recovery techniques for aircraft in spinning aircraft surface deflections [AD-A019323] JET_AIRCRAFT NOISE	tudles N76-24222 tions ojet ed N76-24233 tions ojet urations N76-24234 ng flight N76-24278	[SAE PAPER 760-496] Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] A76-31975 LAW (JURISPRUBRECE) Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES 'Spilled' leading-edge vortex effects on dynamic stall characteristics A76-33120 Calculation method for separated flow of slender arrow wings accounting for leading edge separation
Ground proximity warning system testing Navy jet trainer (VTX) conceptual design st [AD-A018779] Investigation of feasible nozzle configuration of feasible nozzle configurations arcraft. Volume 1: Summary and selecter multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configuration for noise reduction in turbofan and turbeaircraft. Volume 2: Slot nozzle configurations [AD-A019646/9] Recovery techniques for aircraft in spinning and the control surface deflections [AD-A019323] JET AIRCHAFT NOISE Noise control - Blueprint for better communications and the control surface deflections for successions and successions are successive to the communication of the control of the communication of the communication of the control of the communication of the control of the communication of the control of the communication of the communication of the communication of the communication of the control of the communication of the communication of the control of the communication of the control of the communication of the communication of the control of the communication of the control of the contro	tudles N76-24222 ttions ojet ed N76-24233 tions ojet urations N76-24234 ng flight N76-24278	[SAE PAPER 760-496] Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] A76-31975 LAW (JURISPRUDENCE) Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES 'Spilled' leading-edge vortex effects on dynamic stall characteristics A76-33120 Calculation method for separated flow of slender arrow wings accounting for leading edge separation [ILR-5-1975] N76-24170
Navy jet trainer (VTX) conceptual design so [AD-A018779] Investigation of feasible nozzle configuration for noise reduction in turbofan and turboarcaft. Volume 1: Summary and selection multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configurations reduction in turbofan and turboarcaft. Volume 2: Slot nozzle configurations reduction in turbofan and turboarcaft. Volume 2: Slot nozzle configurations reduction in turbofan and turboarcaft. Volume 2: Slot nozzle configuration for noise reduction aircraft in spinning [AD-A019646/9] Recovery techniques for aircraft in spinning [AD-A019323] JET AIRCRAFT NOISE Noise control - Blueprint for better communications for corporate jet aircraft [SAE PAPER 760-456]	tudles N76-24222 ttoons ojet ed N76-24233 tions ojet urations N76-24234 ng flight N76-24278 nity A76-31956	[SAE PAPER 760-496] Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] A76-31975 LAW (JURISPENDEMEE) Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES 'Spilled' leading-edge vortex effects on dynamic stall characteristics A76-33120 Calculation method for separated flow of slender arrow wings accounting for leading edge separation [ILE-5-1975] F76-24170 Plow investigation on wings with kinked leading edges and swept outer wings at moderate subsonic
Navy jet trainer (VTX) conceptual design so [AD-A018779] Investigation of feasible nozzle configuration for noise reduction in turbofan and turbuarcraft. Volume 1: Summary and selecter multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configuration for noise reduction in turbofan and turbuaircraft. Volume 2: Slot nozzle configurationations [AD-A019646/9] Recovery techniques for aircraft in spinning [AD-A019323] JET AIRCRAFT NOISE Noise control - Blueprint for better communications for corporate jet aircraft [SAE PAPER 760-456] Business jet approach noise abatement technical suppression of the statement technical suppression in the stateme	tudles N76-24222 ttoons ojet ed N76-24233 tions ojet urations N76-24234 ng flight N76-24278 nity A76-31956	[SAE PAPER 760-496] Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES 'Spilled' leading-edge vortex effects on dynamic stall characteristics A76-33120 Calculation method for separated flow of slender arrow wings accounting for leading edge separation [ILR-5-1975] Flow investigation on wings with kinked leading edges and swept outer wings at moderate subsonic speed
Navy jet trainer (VTX) conceptual design so [AD-A018779] Investigation of feasible nozzle configuration for noise reduction in turbofan and turbuarraft. Volume 1: Summary and selecter multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configuration noise reduction in turbofan and turbuaircraft. Volume 2: Slot nozzle configurations [AD-A019646/9] Recovery techniques for aircraft in spinning [AD-A019323] JET AIRCRAFT NOISE Noise control - Blueprint for better communications for corporate jet aircraft [SAE PAPER 760-456] Business jet approach noise abatement technylight test results	tudles N76-24222 tions ojet ed N76-24233 tions ojet urations N76-24234 ng flight N76-24278 nity A76-31956 niques -	[SAE PAPER 760-496] Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES 'Spilled' leading-edge vortex effects on dynamic stall characteristics A76-33120 Calculation method for separated flow of slender arrow wings accounting for leading edge separation [ILE-5-1975] Plow investigation on wings with kinked leading edges and swept outer wings at moderate subsonic speed [DLR-IB-151-74/11] N76-24178
Navy jet trainer (VTX) conceptual design so [AD-A018779] Investigation of feasible nozzle configuration for noise reduction in turbofan and turboarreaft. Volume 1: Summary and selection in turbofan and turboarreaft. Volume 1: Summary and selection in turboarreaft. Volume 1: Summary and selection in turboarreaft. Volume 2: Slot nozzle configurations [AD-A019645/1] Investigation of feasible nozzle configuration noise reduction in turbofan and turboarreaft. Volume 2: Slot nozzle configuration in turbofan in turboarreaft. Volume 2: Slot nozzle configuration in turbofan and turboarreaft. Volume 2: Slot nozzle configuration in turbofan and turboarreaft. Volume 2: Slot nozzle configuration in turbofan and turboarreaft. Volume 2: Slot nozzle configuration in turbofan and turboarreaft. Volume 2: Slot nozzle configuration in turbofan and turboarreaft. Volume 2: Slot nozzle configuration in turbofan and turboarreaft. Volume 2: Slot nozzle configuration in turbofan and turboarreaft. Volume 2: Slot nozzle configuration in turbofan and turboarreaft. Volume 2: Slot nozzle configuration in turbofan and turboarreaft. Volume 2: Slot nozzle configuration in turbofan and turboarreaft. Volume 2: Slot nozzle configuration in turbofan and turboarreaft. Volume 2: Slot nozzle configuration in turbofan and turboarreaft. Volume 2: Slot nozzle configuration in turbofan and turboarreaft. Volume 2: Slot nozzle configuration in turbofan and turboarreaft. Volume 2: Slot nozzle configuration in turbofan and turboarreaft. Volume 2: Slot nozzle configuration in turbofan and turboarreaft. Volume 2: Slot nozzle configuration in turbofan and turboarreaft. Volume 2: Slot nozzle configuration in turbofan and turboarreaft. Volume 2: Slot nozzle configuration in turbofan and turboarreaft. Volume 2: Slot nozzle configuration in turbofan and turboarreaft. Volume 2: Slot nozzle configuration in turbofan and turboarreaft. Volume 2: Slot nozzle configuration in turbofan and turboarreaft. Volume 2: Slot nozzle configuration in turbofan and turboarreaft. Vo	tudles N76-24222 ttoons ojet ed N76-24233 tions ojet urations N76-24234 ng flight N76-24278 nity A76-31956	[SAE PAPER 760-496] Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] A76-31975 LAW (JURISPENDEMCE) Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES 'Spilled' leading-edge vortex effects on dynamic stall characteristics A76-33120 Calculation method for separated flow of slender arrow wings accounting for leading edge separation [ILE-5-1975] Flow investigation on wings with kinked leading edges and swept outer wings at moderate subsonic speed [DLE-IB-151-74/11] On the analysis of supersonic flow past
Navy jet trainer (VTX) conceptual design so [AD-A018779] Investigation of feasible nozzle configuration for noise reduction in turbofan and turbuarraft. Volume 1: Summary and selecter multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configuration noise reduction in turbofan and turbuaircraft. Volume 2: Slot nozzle configurations [AD-A019646/9] Recovery techniques for aircraft in spinning [AD-A019323] JET AIRCRAFT NOISE Noise control - Blueprint for better communications for corporate jet aircraft [SAE PAPER 760-456] Business jet approach noise abatement technylight test results	tudles N76-24222 tions ojet ed N76-24233 tions ojet urations N76-24234 ng flight N76-24278 nity A76-31956 niques -	[SAE PAPER 760-496] Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES 'Spilled' leading-edge vortex effects on dynamic stall characteristics A76-33120 Calculation method for separated flow of slender arrow wings accounting for leading edge separation [ILE-5-1975] Plow investigation on wings with kinked leading edges and swept outer wings at moderate subsonic speed [DLR-IB-151-74/11] N76-24178
Navy jet trainer (VTX) conceptual design si [AD-A018779] Investigation of feasible nozzle configuration for noise reduction in turbofan and turbuarcraft. Volume 1: Summary and selectemultinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configuration noise reduction in turbofan and turbuaircraft. Volume 2: Slot nozzle configuration of feasible nozzle configuration of feasible nozzle configuration on the selection of the s	tudles N76-24222 ttons ojet ed N76-24233 tions ojet urations N76-24234 ng flight N76-24278 nity A76-31956 niques - A76-31961	[SAE PAPER 760-496] Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] A76-31975 LAW (JURISPENDEMCE) Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES 'Spilled' leading-edge vortex effects on dynamic stall characteristics A76-33120 Calculation method for separated flow of slender arrow wings accounting for leading edge separation [ILE-5-1975] F76-24170 Plow investigation on wings with kinked leading edges and swept outer wings at moderate subsonic speed [DLE-IB-151-74/11] On the analysis of supersonic flow past oscillating cascades N76-25197 LEAR JET AIRCRAFT
Navy jet trainer (VTX) conceptual design standard in the control of feasible nozzle configuration of feasible nozzle configurations reduction in turbofan and turbulance aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configuration noise reduction in turbofan and turbular for noise reduction for aircraft in spinning [AD-A019646/9] Recovery techniques for aircraft in spinning [AD-A019323] JET AIRCRAFT NOISE Noise control - Blueprint for better communications for corporate jet aircraft [SAE PAPER 760-456] Business jet approach noise abatement techniques for aircraft in spinning [AD-A019323] The far field of high frequency convected singularities in sheared flows, with an application to jet-noise prediction	tudles N76-24222 ttoons ojet ed N76-24233 tions ojet urations N76-24234 ng flight N76-24278 nity A76-31956 niques - A76-31961	[SAE PAPER 760-496] Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] LAW (JURISPRUDENCE) Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES 'Spilled' leading-edge vortex effects on dynamic stall characteristics A76-33120 Calculation method for separated flow of slender arrow wings accounting for leading edge separation [ILE-5-1975] Flow investigation on wings with kinked leading edges and swept outer wings at moderate subsonic speed [DLR-IB-151-74/11] On the analysis of supersonic flow past oscillating cascades N76-25197 LEAR JET AIRCRAFT High altitude applications of the Gates Learjet
Navy jet trainer (VTX) conceptual design so [AD-A018779] Investigation of feasible nozzle configurations reduction in turbofan and turbialization are reduction in turbofan and selection in turbofan and turbializations [AD-A019645/1] Investigation of feasible nozzle configurations reduction in turbofan and turbialization are reduction in turbofan and turbialization for noise reduction in turbofan and turbialization are reduction in turbofan and turbialization are reduction for aircraft in spinning [AD-A019646/9] Recovery techniques for aircraft in spinning [AD-A019323] JET AIRCRAFT NOISE Noise control - Blueprint for better communications for corporate jet aircraft [SAE PAPER 760-456] Business jet approach noise abatement technique test results [SAE PAPER 760-463] The far field of high frequency convected singularities in sheared flows, with an application to jet-noise prediction	tudles N76-24222 tions ojet ed N76-24233 tions ojet urations N76-24234 ng flight N76-24278 nity A76-31956 niques - A76-31961	[SAE PAPER 760-496] Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES 'Spilled' leading-edge vortex effects on dynamic stall characteristics A76-33120 Calculation method for separated flow of slender arrow wings accounting for leading edge separation [ILE-5-1975] Flow investigation on wings with kinked leading edges and swept outer wings at moderate subsonic speed [DLR-IB-151-74/11] On the analysis of supersonic flow past oscillating cascades N76-25197 LEAR JET AIRCRAFT High altitude applications of the Gates Learjet [SAE PAPER 760-491] A76-31973
Navy jet trainer (VTX) conceptual design standard in the control of feasible nozzle configuration of feasible nozzle configurations reduction in turbofan and turbulance aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configuration noise reduction in turbofan and turbular for noise reduction for aircraft in spinning [AD-A019646/9] Recovery techniques for aircraft in spinning [AD-A019323] JET AIRCRAFT NOISE Noise control - Blueprint for better communications for corporate jet aircraft [SAE PAPER 760-456] Business jet approach noise abatement techniques for aircraft in spinning [AD-A019323] The far field of high frequency convected singularities in sheared flows, with an application to jet-noise prediction	tudles N76-24222 ttons ojet ed N76-24233 ttons ojet urations N76-24234 ng flight N76-24278 nity A76-31956 niques - A76-31961	[SAE PAPER 760-496] Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] LAW (JURISPRUDENCE) Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES 'Spilled' leading-edge vortex effects on dynamic stall characteristics A76-33120 Calculation method for separated flow of slender arrow wings accounting for leading edge separation [ILE-5-1975] Flow investigation on wings with kinked leading edges and swept outer wings at moderate subsonic speed [DLR-IB-151-74/11] On the analysis of supersonic flow past oscillating cascades N76-25197 LEAR JET AIRCRAFT High altitude applications of the Gates Learjet
Navy jet trainer (VTX) conceptual design so [AD-A018779] Investigation of feasible nozzle configuration for noise reduction in turbofan and turbialinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configuration for noise reduction in turbofan and turbialircraft. Volume 1: Summary and selection in turbofan and turbialircraft. Volume 2: Slot nozzle configurations [AD-A019646/9] Recovery techniques for aircraft in spinning [AD-A019646/9] Recovery techniques for aircraft in spinning [AD-A019323] JET AIRCRAFT NOISE Noise control - Blueprint for better communications for corporate jet aircraft [SAE PAPER 760-456] Business jet approach noise abatement techniques for aircraft for high frequency convected singularities in sheared flows, with an application to jet-noise prediction Investigation of the stressed state of panisubjected to wide-band acoustic loads resonant vibration of aircraft structures	tudles N76-24222 tions ojet ed N76-24233 tions ojet urations N76-24234 ng flight N76-24278 nity A76-31956 niques - A76-31961 A76-32545 els s A76-33516	[SAE PAPER 760-496] Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES 'Spilled' leading-edge vortex effects on dynamic stall characteristics A76-33120 Calculation method for separated flow of slender arrow wings accounting for leading edge separation [ILE-5-1975] Flow investigation on wings with kinked leading edges and swept outer wings at moderate subsonic speed [DLR-IB-151-74/11] On the analysis of supersonic flow past oscillating cascades N76-25197 LEAR JET AIRCRAFT High altitude applications of the Gates Learjet [SAE PAPER 760-491] A76-31973 LIFE (DURABILITY) An approach to the estimation of life cycle costs of a fiber-optic application in military aircraft
Navy jet trainer (VTX) conceptual design so [AD-A018779] Investigation of feasible nozzle configuration for noise reduction in turbofan and turbialization arcraft. Volume 1: Summary and selection in turbofan and turbialization of feasible nozzle configurations [AD-A019645/1] Investigation of feasible nozzle configuration noise reduction in turbofan and turbialization of surface deflections [AD-A019646/9] Recovery techniques for aircraft in spinnition-control surface deflections [AD-A019323] JET AIRCRAFT NOISE Noise control - Blueprint for better communications for corporate jet aircraft [SAE PAPER 760-456] Business jet approach noise abatement techniques for aircraft test results [SAE PAPER 760-463] The far field of high frequency convected singularities in sheared flows, with an application to jet-noise prediction Investigation of the stressed state of pamers subjected to wide-band acoustic loads resonant vibration of aircraft structures.	tudles N76-24222 ttions ojet ed N76-24233 ttions ojet urations N76-24234 ng flight N76-24278 nity A76-31956 niques - A76-31961 A76-32545 els s A76-33516	[SAE PAPER 760-496] Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] A76-31975 LAW (JURISPEUDENCE) Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES 'Spilled' leading-edge vortex effects on dynamic stall characteristics A76-33120 Calculation method for separated flow of slender arrow wings accounting for leading edge separation [ILR-5-1975] Flow investigation on wings with kinked leading edges and swept outer wings at moderate subsonic speed [DLR-IB-151-74/11] On the analysis of supersonic flow past oscillating cascades N76-24178 LEAR JET AIECRAPT High altitude applications of the Gates Learjet [SAE PAPER 760-491] LIFE (DURABILITY) An approach to the estimation of life cycle costs of a fiber-optic application in military aircraft prediction analysis techniques
Navy jet trainer (VTX) conceptual design so [AD-A018779] Investigation of feasible nozzle configuration for noise reduction in turbofan and turbualization and turbualizations [AD-A019645/1] Investigation of feasible nozzle configurations [AD-A019645/1] Investigation of feasible nozzle configuration noise reduction in turbofan and turbualization for noise reduction in turbofan and turbualization of the state of the second of the s	tudles N76-24222 ttions ojet ed N76-24233 ttions ojet urations N76-24234 ng flight N76-24278 nity A76-31956 niques - A76-31961 A76-32545 els s A76-33516	[SAE PAPER 760-496] Status of the Air Cushion Landing System flight test program A76-34238 LAMDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] A76-31975 LAW (JURISPRUDENCE) Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES 'Spilled' leading-edge vortex effects on dynamic stall characteristics A76-33120 Calculation method for separated flow of slender arrow wings accounting for leading edge separation [ILE-5-1975] Flow investigation on wings with kinked leading edges and swept outer wings at moderate subsonic speed [DLR-IB-151-74/11] On the analysis of supersonic flow past oscillating cascades N76-25197 LEAR JET AIECRAPT High altitude applications of the Gates Learjet [SAE PAPER 760-491] LTPE (DURABILITY) An approach to the estimation of life cycle costs of a fiber-optic application in military aircraft prediction analysis techniques [AD-A019379] N76-25017
Navy jet trainer (VTX) conceptual design so [AD-A018779] Investigation of feasible nozzle configurations reduction in turbofan and turbialinozzle configurations [AD-A018645/1] Investigation of feasible nozzle configurations [AD-A019645/1] Investigation of feasible nozzle configuration noise reduction in turbofan and turbialircraft. Volume 2: Slot nozzle configurations [AD-A019646/9] Recovery techniques for aircraft in spinning [AD-A019646/9] Recovery techniques for aircraft in spinning [AD-A019323] JET AIRCRAFT NOISE Noise control - Blueprint for better communications for corporate jet aircraft [SAE PAPER 760-456] Business jet approach noise abatement techniques test results [SAE PAPER 760-463] The far field of high frequency convected singularities in sheared flows, with an application to jet-noise prediction Investigation of the stressed state of panisubjected to wide-band acoustic loads resonant vibration of aircraft structures FAA JT3D quiet nacelle retrofit feasibility program. Volume 2, addendum A: Model aircraft by the part of the panisus of the part of the panisus of the panisus of the panisus of the stressed state of panisus of the panisus of the stressed state of panisus of the panisus of	tudles N76-24222 ttions ojet ed N76-24233 ttions ojet urations N76-24234 ng flight N76-24278 nity A76-31956 niques - A76-31961 A76-32545 els s A76-33516	[SAE PAPER 760-496] Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] A76-31975 LAW (JURISPRUDERCE) Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES 'Spilled' leading-edge vortex effects on dynamic stall characteristics A76-33120 Calculation method for separated flow of slender arrow wings accounting for leading edge separation [ILE-5-1975] Flow investigation on wings with kinked leading edges and swept outer wings at moderate subsonic speed [DLR-IB-151-74/11] On the analysis of supersonic flow past oscillating cascades N76-25197 LEAR JET AIRCRAFT High altitude applications of the Gates Learjet [SAE PAPER 760-491] A76-31973 LIFE (DURABILITY) An approach to the estimation of life cycle costs of a fiber-optic application in military aircraft prediction analysis techniques [AD-A019379] N76-25017
Navy jet trainer (VTX) conceptual design si [AD-A018779] Investigation of feasible nozzle configuration for noise reduction in turbofan and turbialization and turbialization of feasible nozzle configurations [AD-A019645/1] Investigation of feasible nozzle configuration interpolation for noise reduction in turbofan and turbialization of feasible nozzle configuration of seasible nozzle configuration of seasible nozzle configuration incomparies. Volume 2: Slot nozzle configuration of the seasible nozzle configuration of the surface deflections [AD-A019646/9] Recovery techniques for aircraft in spinning alternation of the surface deflections [AD-A019323] JET AIRCRAFT NOISE Noise control - Blueprint for better communications for corporate jet aircraft [SAE PAPER 760-456] Business jet approach noise abatement techniques jet approach noise abatement techniques for a subject of the stressed state of pamerication of aircraft structures. PAA JT3D quiet nacelle retrofit feasibility program. Volume 2, addendum A: Hodel and scale plug nozzle tests [AD-A023037/5] JET EMBINE PUELS	tudles N76-24222 ttoons ojet ed N76-24233 tions ojet urations N76-24234 ng flight N76-24278 nity A76-31956 niques - A76-31961 A76-32545 els s A76-33516 y nd full	[SAE PAPER 760-496] Status of the Air Cushion Landing System flight test program A76-34238 LAMDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] A76-31975 LAW (JURISPRUDENCE) Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES 'Spilled' leading-edge vortex effects on dynamic stall characteristics A76-33120 Calculation method for separated flow of slender arrow wings accounting for leading edge separation [ILE-5-1975] Flow investigation on wings with kinked leading edges and swept outer wings at moderate subsonic speed [DLR-IB-151-74/11] On the analysis of supersonic flow past oscillating cascades N76-24178 LEAR JET AIECRAPT High altitude applications of the Gates Learjet [SAE PAPER 760-491] LIFE (DURABILITY) An approach to the estimation of life cycle costs of a fiber-optic application in military aircraft prediction analysis techniques [AD-A019379] LIFT Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book
Navy jet trainer (VTX) conceptual design so [AD-A018779] Investigation of feasible nozzle configuration rouse reduction in turbofan and turbialization and turbialization of feasible nozzle configurations [AD-A019645/1] Investigation of feasible nozzle configurations reduction in turbofan and turbialization of rouse reduction in turbofan and turbialization of seasible nozzle configurations (AD-A019646/9) Recovery techniques for aircraft in spinnition-control surface deflections [AD-A019323] JET AIRCRAFT HOISE Whoise control - Blueprint for better communications for corporate jet aircraft [SAE PAPER 760-456] Business jet approach noise abatement techniques for aircraft techniques for aircraft structures [SAE PAPER 760-463] The far field of high frequency convected singularities in sheared flows, with an application to jet-noise prediction Investigation of the stressed state of pansubjected to wide-band acoustic loads resonant vibration of aircraft structures FAA JT3D quiet nacelle retrofit feasibility program. Volume 2, addendum A: Model air scale plug nozzle tests [AD-A023037/5]	tudles N76-24222 ttoons ojet ed N76-24233 tions ojet urations N76-24234 ng flight N76-24278 nity A76-31956 niques - A76-31961 A76-32545 els s A76-33516 y nd full H76-24239	[SAE PAPER 760-496] Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] A76-31975 LAW (JURISPRUDERCE) Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES 'Spilled' leading-edge vortex effects on dynamic stall characteristics A76-33120 Calculation method for separated flow of slender arrow wings accounting for leading edge separation [ILE-5-1975] Flow investigation on wings with kinked leading edges and swept outer wings at moderate subsonic speed [DLR-IB-151-74/11] On the analysis of supersonic flow past oscillating cascades N76-25197 LEAR JET AIRCRAFT High altitude applications of the Gates Learjet [SAE PAPER 760-491] A76-31973 LIFE (DURABILITY) An approach to the estimation of life cycle costs of a fiber-optic application in military aircraft prediction analysis techniques [AD-A019379] N76-25017 LIFT Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167
Navy jet trainer (VTX) conceptual design so [AD-A018779] Investigation of feasible nozzle configuration rouse reduction in turbofan and turbialization and turbializations [AD-A019645/1] Investigation of feasible nozzle configurations [AD-A019645/1] Investigation of feasible nozzle configuration rouse reduction in turbofan and turbialization rouse reduction in turbofan and turbialization for noise reduction in turbofan and turbialization rouse reduction in turbofan and turbialization rouse reduction surface deflections [AD-A019646/9] Recovery techniques for aircraft in spinnition control surface deflections [AD-A019323] JET AIRCRAFT NOISE Noise control - Blueprint for better communications for corporate jet aircraft [SAE PAPER 760-456] Business jet approach noise abatement techniques jet approach noise abatement techniques for a field of high frequency convected singularities in sheared flows, with an application to jet-noise prediction Investigation of the stressed state of panisubjected to wide-band acoustic loads resonant vibration of aircraft structures FAA JT3D quiet nacelle retrofit feasibility program. Volume 2, addendum A: Model air scale plug nozzle tests [AD-A023037/5] JET EMGINE PURIS Jet fuel handling and safety	tudles N76-24222 ttoons ojet ed N76-24233 tions ojet urations N76-24234 ng flight N76-24278 nity A76-31956 niques - A76-31961 A76-32545 els s A76-33516 y nd full	[SAE PAPER 760-496] Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] A76-31975 LAW (JURISPEUDENCE) Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES 'Spilled' leading-edge vortex effects on dynamic stall characteristics A76-33120 Calculation method for separated flow of slender arrow wings accounting for leading edge separation [ILR-5-1975] Flow investigation on wings with kinked leading edges and swept outer wings at moderate subsonic speed [DLR-IB-151-74/11] On the analysis of supersonic flow past oscillating cascades N76-24178 LEAR JET AIRCRAFT High altitude applications of the Gates Learjet [SAE PAPER 760-491] LIFE (DURABILITY) An approach to the estimation of life cycle costs of a fiber-optic application in military aircraft prediction analysis techniques [AD-A019379] N76-25017 LIFT Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Lift and drag characteristics of a supercavitating
Navy jet trainer (VTX) conceptual design si [AD-A018779] Investigation of feasible nozzle configuration for noise reduction in turbofan and turbialinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configuration in turbofan and turbialinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configuration in turbofan and turbializate. Volume 2: Slot nozzle configuration in turbofan and turbializate. Volume 2: Slot nozzle configuration in turbofan and turbializate. Volume 2: Slot nozzle configuration in turbofan and turbializate. Volume 2: Slot nozzle configuration in turbofan and turbializate. AD-A019646/9] Recovery techniques for aircraft in spinning [AD-A019323] JET AIRCRAFT NOISE Noise control - Blueprint for better communications for corporate jet aircraft [SAE PAPER 760-456] Business jet approach noise abatement techniques jet approach noise jet approach noise jet approach noise jet approach noise jet ap	tudles N76-24222 ttions ojet ed W76-24233 tions ojet urations N76-24234 ng flight N76-24278 nity A76-31956 niques - A76-31961 A76-32545 els s A76-33516 y nd full E76-24239 A76-35222	[SAE PAPER 760-496] Status of the Air Cushion Landing System flight test program A76-34238 LANDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] A76-31975 LAW (JURISPRUDERCE) Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES 'Spilled' leading-edge vortex effects on dynamic stall characteristics A76-33120 Calculation method for separated flow of slender arrow wings accounting for leading edge separation [ILE-5-1975] Flow investigation on wings with kinked leading edges and swept outer wings at moderate subsonic speed [DLR-IB-151-74/11] On the analysis of supersonic flow past oscillating cascades N76-25197 LEAR JET AIRCRAFT High altitude applications of the Gates Learjet [SAE PAPER 760-491] A76-31973 LIFE (DURABILITY) An approach to the estimation of life cycle costs of a fiber-optic application in military aircraft prediction analysis techniques [AD-A019379] N76-25017 LIFT Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167
Navy jet trainer (VTX) conceptual design so [AD-A018779] Investigation of feasible nozzle configuration rouse reduction in turbofan and turbialization and turbializations [AD-A019645/1] Investigation of feasible nozzle configurations [AD-A019645/1] Investigation of feasible nozzle configuration rouse reduction in turbofan and turbialization rouse reduction in turbofan and turbialization for noise reduction in turbofan and turbialization rouse reduction in turbofan and turbialization rouse reduction surface deflections [AD-A019646/9] Recovery techniques for aircraft in spinnition control surface deflections [AD-A019323] JET AIRCRAFT NOISE Noise control - Blueprint for better communications for corporate jet aircraft [SAE PAPER 760-456] Business jet approach noise abatement techniques jet approach noise abatement techniques for a field of high frequency convected singularities in sheared flows, with an application to jet-noise prediction Investigation of the stressed state of panisubjected to wide-band acoustic loads resonant vibration of aircraft structures FAA JT3D quiet nacelle retrofit feasibility program. Volume 2, addendum A: Model air scale plug nozzle tests [AD-A023037/5] JET EMGINE PURIS Jet fuel handling and safety	tudles N76-24222 ttions ojet ed W76-24233 tions ojet urations N76-24234 ng flight N76-24278 nity A76-31956 niques - A76-31961 A76-32545 els s A76-33516 y nd full E76-24239 A76-35222	[SAE PAPER 760-496] Status of the Air Cushion Landing System flight test program A76-34238 LAMDING SIMULATION Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] A76-31975 LAW (JURISPRUBENCE) Aircraft noise limits regulations in Germany relating to design measures N76-24247 LEADING EDGES 'Spilled' leading-edge vortex effects on dynamic stall characteristics A76-33120 Calculation method for separated flow of slender arrow wings accounting for leading edge separation [ILR-5-1975] Flow investigation on wings with kinked leading edges and swept outer wings at moderate subsonic speed [DLR-IB-151-74/11] On the analysis of supersonic flow past oscillating cascades N76-25197 LEAR JET AIRCRAFT High altitude applications of the Gates Learjet [SAE PAPER 760-491] A76-31973 LIFE (DURABILITY) An approach to the estimation of life cycle costs of a fiber-optic application in military aircraft prediction analysis techniques [AD-A019379] LIFT Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Book A76-32167 Lift and drag characteristics of a supercavitating cambered hydrofoil with a jet flap beneath a

SUBJECT INDEX BACELLES

LIPT PARS	Comments on mathematical modelling of external
The response of a lifting fan to crossflow-induced spatial flow distortions	store release trajectories including comparison with flight data (prediction analysis
B76~25191	techniques for jettisoning of external stores)
LIFTING BODIES Pluid-dynamic lift: Practical information on	HEASURING INSTRUMENTS
aerodynamic and hydrodynamic lift Book A76-32167	Instrumentation of two VAK 191 B aircraft with flight load measuring systems
Flow around wings with inclined lateral jets A76-32596	N76-25589
Determination of aerodynamic forces for aeroelastic analysis of lifting surfaces	Investigation of the stressed state of panels subjected to wide-band acoustic loads
A76-34481 LIGHT AIRCRAFT	resonant vibration of aircraft structures 176-33516
Laminar flow rethink - Using composite structure in Bellanca Skyrocket II design	HETAL-HETAL BOWDING Hetal-to-metal adhesive bonded aircraft structures
[SAE PAPER 760-473] Minimum time flight profile optimization for	[POK-K-81] #76-24411 HETALS
piston-engine-powered airplanes [SAE PAPER 760-474] A76-31967	Hydrogen embrittlement of structural alloys. A technology survey
Preliminary flight-test results of an advanced technology light twin-engine airplane /ATLIT/	[HASA-CR-134962] B76-25375 BETHODOLOGY
[SAE PAPER 760-497] A76-31976 Simulation of aircraft crash and its validation	Status of methods for aircraft state and parameter identification
A76-34157	W76-25282
Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to	The art and science of rotary wing data correlation #76-25291
1971 in the Light Aircraft Division [HBB-UFE-1067-0] H76-24368	MICROSTRUCTURE Practure analyses involving materials of aircraft
LIGHTHING Lightning protection of aircraft fuel caps	construction for machine elements A76-32165
[SAE PAPER 760-486] A76-31972	MILITARY AIRCRAPT The design and development of a military combat
On the parabolic method and the method of local linearization in transonic flow	aircraft. II - Sizing the aircraft A76-32650
A76-33778	The technological case for a supersonic cruise
Calculation of aerodynamic derivatives in unsteady two-dimensional transonic flow using Dowell's	alrcraft A76-33660
linearization method	Reliability assessment of modified fielded
[AMS-1238-T] H76-24154 LONG TERM EFFECTS	aircraft using the Bayesian technique [AD-A018890] #76-24225
On the conception and measurement of trade-off in	An approach to the estimation of life cycle costs
engineering systems - A case study of the aircraft design process	of a fiber-optic application in military aircraft prediction analysis techniques
A76-34313 Persistence and decay of wake vorticity N76-25283	[AD-A019379] H76-25017 MILITARY HELICOPTERS Hechanical function and engine performance for the
LONGITUDINAL CONTROL	Army UH-1 H helicopter in the AIDAPS program
Model matching method for flight control and stimulation for longitudinal control and	Automatic Inspection, Diagnostic and Prognostic Systems
stability augmentation systems A76-32396	A76-32149 The development of an advanced anti-icing/deicing
The design and development of a military combat aircraft. III - Longitudinal stability and control	capability for US Army helicopters. Volume 1: Design criteria and technology considerations
A76-33945 LOW SPEED WIND TUNNELS	[AD-A019044] N76-24229 NISSILE SIMULATORS
Interference problems in V/STOL testing at low speeds	Antiship cruise missile threat simulation utilizing a RPV
N76-25251	A76-34239
The removal of wind tunnel panels to prevent flow	MODELS
breakdown at low speeds N76-25252 Correlation of low speed wind tunnel and flight	Wind tunnel test techniques for the measurement of unsteady airloads on oscillating lifting systems and full-span models
test data for V/STOL aircraft N76-25293	HOLTIPHASE PLOW
	Multiple fault gas path analysis applied to a twin spool, mixed flow, variable geometry, turbofan
MAGNETIC SUSPENSION	engine
Magnetic suspension techniques for large scale aerodynamic testing	[AD-A019183] H76-24259
NAM MACHINE SYSTEMS	HACRILES
General aviation design synthesis utilizing interactive computer graphics	Investigation of the mutual interference of wing/engine combinations
[SAE PAPER 760-476] A76-31968	[ESA-TT-217] N76-24184
Pilot error and other accident enabling factors	FAA JT3D quiet nacelle retrofit feasibility program. Volume 2, addendum A: Model and full
MATERIALS HANDLING Jet fuel handling and safety	scale plug nozzle tests [AD-A023037/5] #76-24239
A76-35222	Wind tunnel investigation of Nacelle-Airframe interference at Mach numbers of 0.9 to 1.4-force
On mathematical simulation of separated flow past	data
a wing and breakup of a vortex sheet in an ideal fluid	[NASA-TM-X-62489] B76-25143 Wind tunnel investigation of Macelle-Airframe
A76-34693	interference at Mach numbers of 0.9 to
A technique using a nonlinear helicopter model for determining trims and derivatives	1.4-pressure data, volume 2 [NASA-TH-I-73088] N76-25144
[NASA-TN-D-8159] N76-24265	

HASA PROGRAMS SUBJECT INDEX

Macelle-airframe integration model testing		Quieter propellers for general aviation: Pro	esent
nacelle simulation and measurement accur		position. Puture expectations	
WASA PROGRAMS	n76-25238		N76-24255
WASA General aviation research overview -	1076	Noise phenomena with helicopter rotors and possibilities of noise reduction	
[SAB PAPER 760-458]	A76-31957		N76-24256
WIOBIUM ALLOYS	210 31337	Research on aircraft noise: Test methods	810 24230
Applied high temperature technology progra	in,		N76-25166
volume 1 niobium alloys for turbine		HOISE TOLERANCE	
[AD-A018637]	N76-24262	The impact of interior cabin noise on passes	nger
Applied high temperature technology progra	u.	acceptance	_
Volume 2: Evaluation of coated columbia	n alloys		A76-31962
for advanced turbine airfoils		The assessment of noise, with particular re-	ference
[AD-A018638]	N76-24263	to aircraft	
HOISE INTENSITY			A76-33771
Aircraft noise limits regulations in G relating to design measures	ermany	NONLINEAR SYSTEMS	
relating to design measures	N76-24247	Purther development of the panel method. Parelinean panel method considering discontinuous	
MOISE MEASUREMENT	M/0-2424/	Nonlinear panel method considering discresseparated vortex sheets on swept slender to	
Noise level measurements on a quiet short	hanl	shapes	
turboprop transport de Havilland Das			N76-24175
propulsion		HOZZLE DESIGN	
[SAE PAPER 760-455]	A76-31955	Investigation of feasible nozzle configuration	ions
The assessment of noise, with particular r	eference	for noise reduction in turbofan and turbo	
to alrcraft		aircraft. Volume 1: Summary and selected	à
	A76-33771	multinozzle configurations	
Systematic investigations in the field of			N76-24233
screening of aircraft engine noise b	y wings	Investigation of feasible nozzle configurat:	
and tail surfaces	W76 0/1050	for noise reduction in turbofan and turbo	
Research on aircraft noise: Test methods	N76-24253	aircraft. Volume 2: Slot nozzle configur	
[NASA-TT-F-17090]	N76-25166	[AD-A019646/9] HOZZLE PLOW	N76-24234
HOISE POLLUTION	#70-23100 /	The structure of jets from notched nozzles	
The assessment of noise, with particular r			A76-33361
to alreraft		HUMBRICAL ABALYSIS	
	A76-33771	The computation of transonic flows past aero	ofoils
HOISE PROPAGATION		in solid, porous or slotted wind tunnels	
Investigation into the noise propagation b	y	1	176-25232
propeller aircraft in general aviation		NUMBRICAL CONTROL	
	N76-24254	Energy management - An operational outline -	
NOISE REDUCTION		digital flight guidance/control spinoffs i	from
Noise control - Blueprint for better commu		Space Shuttle	A76-32199
relations for corporate jet aircraft [SAE PAPER 760-456]			8/0-32199
	176-21056		
	176-31956	•	
Business jet approach noise abatement tech		0	
Business jet approach noise abatement tech Flight test results	niques -	_	
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463]	niques - A76-31961	OPTIMAL CONTROL Singular perturbation methods for variations	al
Business jet approach noise abatement tech Flight test results	niques - A76-31961	OPTIMAL CONTROL	al
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying Without doing harm aircraft app	niques - A76-31961 ach A76-32200	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight	al A76-333 05
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro	niques - A76-31961 ach A76-32200 roach	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION	176-33305
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying Without doing harm aircraft app and takeoff noise abatement techniques	niques - A76-31961 ach A76-32200 roach A76-34661	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic	176-33305
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying Without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n	niques - A76-31961 ach A76-32200 roach A76-34661	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization	A76- 33305 speeds
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying Without doing harm aircraft app and takeoff noise abatement techniques	niques - A76-31961 ach A76-32200 roach A76-34661 oise	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477]	A76-33305 speeds A76-31969
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Beergy management - The delayed flap appro Plying Without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction	niques - A76-31961 ach A76-32200 roach A76-34661 oise N76-24211	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Feasibility study of propeller design for general statements.	A76-33305 speeds A76-31969
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying Without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura	niques - A76-31961 ach A76-32200 roach A76-34661 oise N76-24211 tions	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peasibility study of propeller design for general aviation by numerical optimization	A76-33305 speeds A76-31969 eneral
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb	niques - A76-31961 ach A76-32200 roach A76-34661 oise N76-24211 tions o jet	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAB PAPER 760-477] Feasibility study of propeller design for gas aviation by numerical optimization [SAE PAPER 760-478]	A76-33305 speeds A76-31969
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying Without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura	niques - A76-31961 ach A76-32200 roach A76-34661 oise N76-24211 tions o jet	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peasibility study of propeller design for general aviation by numerical optimization	A76-33305 speeds A76-31969 eneral A76-31970
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1]	niques - A76-31961 ach A76-32200 roach A76-34661 oise N76-24211 tions ojet ed N76-24233	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Feasibility study of propeller design for generated aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING FLOW Characteristics of turbulent wakes behind record blades	A76-33305 speeds A76-31969 eneral A76-31970 otating
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Plying without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configura	niques - A76-31961 ach A76-32200 roach A76-34661 olse M76-24211 tions ojet ed #76-24233 tions	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Feasibility study of propeller design for generated aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING FLOW Characteristics of turbulent wakes behind record blades	A76-33305 speeds A76-31969 eneral A76-31970
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying Without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configura for noise reduction in turbofan and turb	niques - A76-31961 ach A76-32200 roach A76-34661 oise N76-24211 tions ojet ed N76-24233 tions ojet	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peasibility study of propeller design for go aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING PLOW Characteristics of turbulent wakes behind recorded to the state of the s	A76-33305 speeds A76-31969 eneral A76-31970 otating
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configura	niques - A76-31961 ach A76-32200 roach A76-34661 oise N76-24211 tions ojet ed N76-24233 tions ojet urations	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peasibility study of propeller design for go aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING PLOW Characteristics of turbulent wakes behind recorded to the state of the s	A76-33305 speeds A76-31969 eneral A76-31970 otating
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying Without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle config	niques - A76-31961 ach A76-32200 roach A76-34661 olse N76-24211 tions ojet ed M76-24233 tions ojet urations N76-24234	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Feasibility study of propeller design for generated aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING FLOW Characteristics of turbulent wakes behind recorded to the state of the state o	A76-33305 speeds A76-31969 eneral A76-31970 otating
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying Without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle config [AD-A019646/9] FAA JT3D quiet nacelle retrofit feasibilit	niques - A76-31961 ach A76-32200 roach A76-34661 olse M76-24211 tions ojet ed M76-24233 tions ojet urations N76-24234 y	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peasibility study of propeller design for go aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING FLOW Characteristics of turbulent wakes behind reprotor blades	a76-33305 speeds a76-31969 eneral a76-31970 otating a76-33852
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying Without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configurations.	niques - A76-31961 ach A76-32200 roach A76-34661 olse M76-24211 tions ojet ed M76-24233 tions ojet urations N76-24234 y	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peassibility study of propeller design for go aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING FLOW Characteristics of turbulent wakes behind re rotor blades P PAMEL PLUTTER Investigation of the stressed state of panel	a76-33305 speeds a76-31969 eneral a76-31970 otating a76-33852
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle config [AD-A019646/9] FAA JT3D quiet nacelle retrofit feasibilit program. Volume 2, addendum A: Model a scale plug nozzle tests	niques - A76-31961 ach A76-32200 roach A76-34661 olse M76-24211 tions ojet ed M76-24233 tions ojet urations N76-24234 y	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peasibility study of propeller design for generation by numerical optimization [SAE PAPER 760-478] OSCILLATING FLOW Characteristics of turbulent wakes behind reprotor blades P PAMEL FLUTTER Investigation of the stressed state of panel subjected to wide-band acoustic loads	a76-33305 speeds a76-31969 eneral a76-31970 otating a76-33852
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying Without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configurations.	niques - A76-31961 ach A76-32200 roach A76-34661 olse N76-24211 tions ojet ed W76-24233 tions ojet urations N76-24234 y nd full	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peasibility study of propeller design for go aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING FLOW Characteristics of turbulent wakes behind re rotor blades P PAMEL PLUTTER Investigation of the stressed state of panel subjected to wide-band acoustic loads resonant vibration of aircraft structures	a76-33305 speeds a76-31969 eneral a76-31970 otating a76-33852
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle config [AD-A019646/9] FAA JT3D quiet nacelle retrofit feasibilit program. Volume 2, addendum A: Model a scale plug nozzle tests [AD-A023037/5] Engine noise conference proceedings [ESA-TT-244]	niques - A76-31961 ach A76-32200 roach A76-34661 olse N76-24211 tions ojet ed W76-24233 tions ojet urations N76-24234 y nd full	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peasibility study of propeller design for go aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING FLOW Characteristics of turbulent wakes behind re rotor blades P PAMEL PLUTTER Investigation of the stressed state of panel subjected to wide-band acoustic loads resonant vibration of aircraft structures	a76-33305 speeds a76-31969 eneral a76-31970 obtating a76-33852 ls
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying Without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle config [AD-A019646/9] FAA JT3D quiet nacelle retrofit feasibilit program. Volume 2, addendum A: Model a scale plug nozzle tests [AD-A023037/5] Engine noise conference proceedings	niques - A76-31961 ach A76-32200 roach A76-34661 oise N76-24211 tions ojet ed M76-24233 tions ojet urations N76-24234 y nd full	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peasibility study of propeller design for go aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING FLOW Characteristics of turbulent wakes behind re rotor blades P PAMEL FLUTTER Investigation of the stressed state of panel subjected to wide-band acoustic loads resonant vibration of aircraft structures Structural optimization in aeroelastic conditions.	a76-33305 speeds a76-31969 eneral a76-31970 obtating a76-33852 ls
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying Without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle config [AD-A019646/9] FAA JT3D quiet nacelle retrofit feasibilit program. Volume 2, addendum A: Model a scale plug nozzle tests [AD-A023037/5] Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications	niques - A76-31961 ach A76-32200 roach A76-34661 oise N76-24211 tions ojet ed #76-24233 tions ojet urations N76-24234 y nd full #76-24243 N76-24244	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peasibility study of propeller design for go aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING PLOW Characteristics of turbulent wakes behind re rotor blades P PAMEL FLUTTER Investigation of the stressed state of panel subjected to wide-band acoustic loads resonant vibration of aircraft structures Structural optimization in aeroelastic conditional parameters.	a76-33305 speeds a76-31969 eneral a76-31970 otating a76-33852 ls a76-33516 attions a76-34486
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle config [AD-A019646/9] FAA JT3D quiet nacelle retrofit feasibilit program. Volume 2, addendum A: Model a scale plug nozzle tests [AD-A023037/5] Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications Aircraft noise limits regulations in G	niques - A76-31961 ach A76-32200 roach A76-34661 oise N76-24211 tions ojet ed #76-24233 tions ojet urations N76-24234 y nd full #76-24243 N76-24244	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peasibility study of propeller design for generalization by numerical optimization [SAE PAPER 760-478] OSCILLATING FLOW Characteristics of turbulent wakes behind reproduced by the stressed state of panel subjected to wide-band acoustic loads resonant vibration of aircraft structures Structural optimization in aeroelastic conditions PAWELS On the response of an aircraft to random gustices.	a76-33305 speeds a76-31969 eneral a76-31970 otating a76-33852 ls a76-33516 ations a76-34486
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying Without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle config [AD-A019646/9] FAA JT3D quiet nacelle retrofit feasibilit program. Volume 2, addendum A: Model a scale plug nozzle tests [AD-A023037/5] Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications	niques - A76-31961 ach A76-32200 roach A76-34661 olse N76-24211 tions ojet ed N76-24233 tions ojet urations N76-24234 y nd full N76-24239 N76-24244 ermany	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peasibility study of propeller design for go aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING FLOW Characteristics of turbulent wakes behind re rotor blades P PAWEL FLUTTER Investigation of the stressed state of panel subjected to wide-band acoustic loads resonant vibration of aircraft structures Structural optimization in aeroelastic conditions PAWELS On the response of an aircraft to random gus	a76-33305 speeds a76-31969 eneral a76-31970 otating a76-33852 ls a76-33516 itions a76-34486 st a76-32337
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying Without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configurations reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configurations reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configurations reduction in Cale plug nozzle tests [AD-A023037/5] Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications Aircraft noise limits regulations in Grelating to design measures	niques - A76-31961 ach A76-32200 roach A76-34661 oise N76-24211 tions ojet ed #76-24233 tions ojet urations N76-24234 y nd full #76-24243 N76-24244 ermany N76-24247	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peasibility study of propeller design for general aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING PLOW Characteristics of turbulent wakes behind recorded by the stressed state of panel subjected to wide-band acoustic loads resonant vibration of aircraft structures Structural optimization in aeroelastic conditions PAWELS On the response of an aircraft to random guaranteer development of the panel method. Page of the stressed section of the panel method.	a76-33305 speeds a76-31969 eneral a76-31970 obtating a76-33852 ls a76-33516 itions a76-34486 st a76-32337 art 1:
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle config [AD-A019646/9] FAA JT3D quiet nacelle retrofit feasibilit program. Volume 2, addendum A: Model a scale plug nozzle tests [AD-A023037/5] Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications Aircraft noise limits regulations in G relating to design measures On the calculation of fan noise high b	niques - A76-31961 ach A76-32200 roach A76-34661 oise N76-24211 tions ojet ed #76-24233 tions ojet urations N76-24234 y nd full #76-24243 N76-24244 ermany N76-24247	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peasibility study of propeller design for general aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING FLOW Characteristics of turbulent wakes behind reproduced by the stressed state of panel subjected to wide-band acoustic loads resonant vibration of aircraft structures Structural optimization in aeroelastic conditions PAWELS On the response of an aircraft to random gus Purther development of the panel method. Parel Monlinear panel method considering discret	a76-33305 speeds a76-31969 eneral a76-31970 otating a76-33852 ls a76-33516 ations a76-34486 st a76-3237 arc-32337 arc-32337
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying Without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configurations reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configurations reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configurations reduction in Cale plug nozzle tests [AD-A023037/5] Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications Aircraft noise limits regulations in Grelating to design measures	niques - A76-31961 ach A76-32200 roach A76-34661 olse N76-24211 tions ojet ed W76-24233 tions ojet urations N76-24234 y nd full W76-24243 N76-24244 ermany N76-24247 ypass	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peasibility study of propeller design for go aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING FLOW Characteristics of turbulent wakes behind re rotor blades PAMEL FLUTTER Investigation of the stressed state of panel subjected to wide-band acoustic loads resonant vibration of aircraft structures Structural optimization in aeroelastic conduction of the response of an aircraft to random gus Further development of the panel method. Per Nonlinear panel method considering discrete separated vortex sheets on swept slender in separated vortex she	a76-33305 speeds a76-31969 eneral a76-31970 otating a76-33852 ls a76-33516 ations a76-34486 st a76-3237 arc-32337 arc-32337
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying Without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle config [AD-A019646/9] FAA JT3D quiet nacelle retrofit feasibilit program. Volume 2, addendum A: Model a scale plug nozzle tests [AD-A023037/5] Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications Aircraft noise limits regulations in G relating to design measures On the calculation of fan noise high b ratio aircraft turbines	niques - A76-31961 ach A76-32200 roach A76-34661 olse N76-24211 tions ojet ed #76-24233 tions ojet urations M76-24234 y nd full #76-24249 ermany N76-24247 ypass N76-24248	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peasibility study of propeller design for general aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING PLOW Characteristics of turbulent wakes behind recorded by the study of propeller design for general aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING PLOW Characteristics of turbulent wakes behind recorded by the study of the stressed state of panel subjected to wide-band acoustic loads resonant vibration of aircraft structures Structural optimization in aeroelastic conditional parts of the panel method. Parts of the panel method of the panel method of the panel method of shapes	a76-33305 speeds a76-31969 eneral a76-31970 obtating a76-33852 ls a76-33516 itions a76-34486 st a76-32337 art 1: te ying
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle config [AD-A019646/9] FAA JT3D quiet nacelle retrofit feasibilit program. Volume 2, addendum A: Model a scale plug nozzle tests [AD-A023037/5] Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications Aircraft noise limits regulations in G relating to design measures On the calculation of fan noise high b	niques - A76-31961 ach A76-32200 roach A76-34661 olse N76-24211 tlons ojet ed N76-24233 tions ojet urations N76-24234 y nd full N76-24239 N76-24244 ermany N76-24244 ermany N76-24247 ypass N76-24248 technology	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peasibility study of propeller design for generation by numerical optimization [SAE PAPER 760-478] OSCILLATING FLOW Characteristics of turbulent wakes behind reproduced by the study of the stressed state of panel subjected to wide-band acoustic loads resonant vibration of aircraft structures Structural optimization in aeroelastic conditions on the response of an aircraft to random gus Purther development of the panel method. Paper shapes [MBB-UFE-1070-0]	a76-33305 speeds a76-31969 eneral a76-31970 otating a76-33852 ls a76-33516 ations a76-34486 st a76-32337 art 1: te wing
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying Without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle config [AD-A019646/9] FAA JT3D quiet nacelle retrofit feasibilit program. Volume 2, addendum A: Model a scale plug nozzle tests [AD-A023037/5] Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications Aircraft noise limits regulations in G relating to design measures On the calculation of fan noise high b ratio aircraft turbines	niques - A76-31961 ach A76-32200 roach A76-34661 olse N76-24211 tions ojet ed #76-24233 tions ojet urations N76-24234 y nd full M76-24243 N76-24244 ermany N76-24247 ypass N76-24248 technology N76-24249	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peasibility study of propeller design for general aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING PLOW Characteristics of turbulent wakes behind recorded by the study of propeller design for general aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING PLOW Characteristics of turbulent wakes behind recorded by the study of the stressed state of panel subjected to wide-band acoustic loads resonant vibration of aircraft structures Structural optimization in aeroelastic conditional parts of the panel method. Parts of the panel method of the panel method of the panel method of shapes	a76-33305 speeds a76-31969 eneral a76-31970 otating a76-33852 ls a76-33516 itions a76-34486 st a76-32337 art 1: te wing
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying Without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle config [AD-A019646/9] FAA JTJD quiet nacelle retrofit feasibilit program. Volume 2, addendum A: Hodel a scale plug nozzle tests [AD-A023037/5] Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications Aircraft noise limits regulations in G relating to design measures On the calculation of fan noise high b ratio aircraft turbines Some technical problems of quiet aircraft	niques - A76-31961 ach A76-32200 roach A76-34661 olse N76-24211 tions ojet ed #76-24233 tions ojet urations N76-24234 y nd full M76-24243 N76-24244 ermany N76-24247 ypass N76-24248 technology N76-24249	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peasibility study of propeller design for general aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING PLOW Characteristics of turbulent wakes behind reproduced by the stressed state of panel subjected to wide-band acoustic loads resonant vibration of aircraft structures Structural optimization in aeroelastic conditions on the response of an aircraft to random gus Parther development of the panel method. Paper shapes [MBB-UPE-1070-0] Application of the MBB panel method to calculor of wing-body configurations with external loads	a76-33305 speeds a76-31969 eneral a76-31970 otating a76-33852 ls a76-33516 itions a76-34486 st a76-32337 art 1: te wing
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying Without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle config [AD-A019645/9] FAA JT3D quiet nacelle retrofit feasibilit program. Volume 2, addendum A: Model a scale plug nozzle tests [AD-A023037/5] Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications Aircraft noise limits regulations in G relating to design measures On the calculation of fan noise high b ratio aircraft turbines Some technical problems of quiet aircraft On the reduction of compressor noise by me helical detuners	niques - A76-31961 ach A76-32200 roach A76-34661 olse N76-24211 tions ojet ed #76-24233 tions ojet urations N76-24234 y nd full M76-24249 ermany N76-24247 ypass N76-24249 ans of N76-24250	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peasibility study of propeller design for go aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING FLOW Characteristics of turbulent wakes behind recorded to wide-band acoustic loads resonant vibration of aircraft structures Structural optimization in aeroelastic conditions PAWELS On the response of an aircraft to random gus Further development of the panel method. Properties of the panel method of the paper separated vortex sheets on swept slender is shapes [MBB-UFE-1070-0] Application of the MBB panel method to calculated of wing-body configurations with external loads [MBB-UFE-1073-0]	a76-33305 speeds a76-31969 eneral a76-31970 otating a76-33852 ls a76-33516 itions a76-34486 st a76-32337 art 1: te wing
Business jet approach noise abatement tech	niques - A76-31961 ach A76-32200 roach A76-34661 olse N76-24211 tions ojet ed #76-24233 tions ojet urations N76-24234 y nd full M76-24249 ermany N76-24247 ypass N76-24249 ans of N76-24250	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peasibility study of propeller design for get aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING PLOW Characteristics of turbulent wakes behind recorded by the stressed state of panel subjected to wide-band acoustic loads resonant vibration of aircraft structures Structural optimization in aeroelastic conditional optimization in aeroelastic conditions of the panel method. Paper development of the panel method. Paper separated vortex sheets on swept slender is shapes [MBB-UFE-1070-0] Application of the MBB panel method to calculation of the MBB panel method to calculation of the MBB panel method to calculation. [MBB-UFE-1073-0] PARABOLIC DIFFERENTIAL EQUATIONS	a76-33305 speeds a76-31969 eneral a76-31970 obtating a76-33852 ls a76-33852 ls a76-33516 attions a76-32337 art 1: te wing a76-24175 slation store
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying Without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle config [AD-A019645/9] FAA JT3D quiet nacelle retrofit feasibilit program. Volume 2, addendum A: Model a scale plug nozzle tests [AD-A023037/5] Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications Aircraft noise limits regulations in G relating to design measures On the calculation of fan noise high b ratio aircraft turbines Some technical problems of quiet aircraft On the reduction of compressor noise by me helical detuners	niques - A76-31961 ach A76-32200 roach A76-34661 olse N76-24211 tions ojet ed W76-24233 tions ojet urations N76-24234 y nd full W76-24239 N76-24244 ermany N76-24247 ypass N76-24247 ypass technology N76-24249 ans of N76-24250 ngines	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peasibility study of propeller design for general aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING PLOW Characteristics of turbulent wakes behind reproduced by the stressed state of panel subjected to wide-band acoustic loads resonant vibration of aircraft structures Structural optimization in aeroelastic conditions on the response of an aircraft to random gus PAWELS On the response of an aircraft to random gus Purther development of the panel method. Panel separated vortex sheets on swept slender is shapes [MBB-UFE-1070-0] Application of the MBB panel method to calcus of wing-body configurations with external loads [MBB-UFE-1073-0] PARABOLIC DIPPERENTIAL EQUATIONS On the parabolic method and the method of loads	a76-33305 speeds a76-31969 eneral a76-31970 obtating a76-33852 ls a76-33852 ls a76-33516 attions a76-32337 art 1: te wing a76-24175 slation store
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] Energy management - The delayed flap appro Flying Without doing harm aircraft app and takeoff noise abatement techniques Possibilities and problems of helicopter n reduction Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select multinozzle configurations [AD-A019645/1] Investigation of feasible nozzle configura for noise reduction in turbofan and turb aircraft. Volume 2: Slot nozzle configurations [AD-A019646/9] FAA JT3D quiet nacelle retrofit feasibilit program. Volume 2, addendum A: Model a scale plug nozzle tests [AD-A023037/5] Engine noise conference proceedings [ESA-TT-244] Optimised engines for QSTOL applications Aircraft noise limits regulations in G relating to design measures On the calculation of fan noise high b ratio aircraft turbines Some technical problems of quiet aircraft On the reduction of compressor noise by me helical detuners Possibilities of noise reduction for fan e by means of controls	niques - A76-31961 ach A76-32200 roach A76-34661 olse N76-24211 tions ojet ed #76-24233 tions ojet urations N76-24234 y nd full M76-24243 N76-24244 ermany N76-24244 ermany N76-24247 ypass N76-24249 ans of N76-24250 ngines N76-24251	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peasibility study of propeller design for go aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING FLOW Characteristics of turbulent wakes behind recorded to wide-band acoustic loads resonant vibration of aircraft structures Structural optimization in aeroelastic conditions PANELS On the response of an aircraft to random gus Further development of the panel method. Property of the panel method of the separated vortex sheets on swept slender is shapes [MBB-UFE-1070-0] Application of the MBB panel method to calculate of wing-body configurations with external loads [MBB-UFE-1073-0] PARABOLIC DIFFERENTIAL EQUATIONS On the parabolic method and the method of loads of the parabolic method and the loads of the p	a76-33305 speeds a76-31969 eneral a76-31970 obtating a76-33852 ls a76-33852 ls a76-33516 attions a76-32486 st attions a76-24175 store a76-24176 occal
Business jet approach noise abatement tech	niques - A76-31961 ach A76-32200 roach A76-34661 olse N76-24211 tions ojet ed #76-24233 tions ojet urations N76-24234 y nd full M76-24243 N76-24244 ermany N76-24244 ermany N76-24247 ypass N76-24249 ans of N76-24250 ngines N76-24251	OPTIMAL CONTROL Singular perturbation methods for variations problems in aircraft flight OPTIMIZATION Airfoil section drag reduction at transonic by numerical optimization [SAE PAPER 760-477] Peasibility study of propeller design for go aviation by numerical optimization [SAE PAPER 760-478] OSCILLATING FLOW Characteristics of turbulent wakes behind recorded to wide-band acoustic loads resonant vibration of aircraft structures Structural optimization in aeroelastic conditions PANELS On the response of an aircraft to random gus Further development of the panel method. Property of the panel method of the separated vortex sheets on swept slender is shapes [MBB-UFE-1070-0] Application of the MBB panel method to calculate of wing-body configurations with external loads [MBB-UFE-1073-0] PARABOLIC DIFFERENTIAL EQUATIONS On the parabolic method and the method of loads of the parabolic method and the loads of the p	a76-33305 speeds a76-31969 eneral a76-31970 obtating a76-33852 ls a76-33852 ls a76-33516 attions a76-32337 art 1: te wing a76-24175 slation store

PASSEBGER AIRCRAFT	PREDICTION ANALYSIS TECHNIQUES
The impact of interior cabin noise on passenger	A method for predicting the drag of airfoils
acceptance	[SAE PAPER 760-479] A76-31971
[SAE PAPER 760-466] A76-31962	
PASSENGERS	impact response
Video tape presentation of passenger safety	A76-34156
information	Modeling and analysis techniques for vehicle crash
A76-32232	
PERFORMANCE PREDICTION Realistic evaluation of landing gear shimmy	A76-34158
stabilization by test and analysis	Unsteady aerodynamic prediction methods applied in aeroelasticity
[SAE PAPER 760-496] A76-31975	
The prediction of the behaviour of axial	Theoretical analysis and prediction methods for a
compressors near surge three dimensional	three-dimensional turbulent boundary layer
flow and rotating stall	exemplified for infinite swept wings
N76-25203	
Experience in predicting subsonic aircraft	An approach to the estimation of life cycle costs
characteristics from wind tunnel analysis	of a fiber-optic application in military aircraft
N76-25289	
Analysis of the comparison between flight tests	[AD-A019379] N76-25017
results and wind tunnel tests predictions for	Transmission of circumferential inlet distortion
subsonic and supersonic transport aircraft N76-25303	through a rotor
PERFORMANCE TESTS	Hultiple segment parallel compressor model for
Design, development and flight test of the Cessna	circumferential flow distortion
Citation thrust reverser	¥76-25189
[SAE PAPER 760-468] A76-31963	
Aerodynamic performance of 0.4066-scale model to	a cascade of airfoils
JT8D refan stage	N76-25199
[NASA-TH-X-3356] N76-24153	Comments on mathematical modelling of external
PERIPHERAL JET PLOW	store release trajectories including comparison
Flow around wings with inclined lateral jets	with flight data (prediction analysis
A76-32596	
PERTURBATION THEORY	¥76-25301
Singular perturbation methods for variational	PREDICTIONS
problems in aircraft flight A76-33305	Weight prediction methods - GRUGEW program 5 [MBB-UFE-1072-0] N76-24215
The effect of turbulent mixing on the decay of	PRESSURE DISTRIBUTION
sinusoidal inlet distortions in axial flow	Supersonic flow past a slender delta wing - An
compressors	experimental investigation covering the
N76-25190	
PILOT ERROR	A76-32543
Pilot error and other accident enabling factors	The far field of high frequency convected
A76-32230	
'Controlled flight into terrain /CPIT/' accidents	application to jet-noise prediction
- System-induced errors	A76-32545
A76-3223	
PILOT PERFORMANCE Effect on pilot performance with refined	The structure of jets from notched nozzles A76-33361
helicopter displays	PRESSURE MEASUREMENTS
A76-34241	
PILOT TRAINING	axial-flow compressor
Navy jet trainer (VTX) conceptual design studies	N76-25201
[AD-A018779] N76-24222	
PIPER AIRCRAPT	The passage of a distorted velocity field through
Preliminary flight-test results of an advanced	a cascade of airfoils
technology light twin-engine airplane /ATLIT/	N76-25199
[SAE PAPER 760-497] A76-31976	
PISTON BHGINES New potentials for conventional aircraft when	The U.S.A.F./Rockwell B-1 flight test program
powered by hydrogen-enriched gasoline	progress report - Relationship of test objectives to operational requirements
[SAE PAPER 760-469] A76-31964	
Minimum time flight profile optimization for	PROJECT PLANNING
piston-engine-powered airplanes	The F-16 flight test program
[SAE PAPER 760-474] A76-31967	
	10-34230
PITOT TUBES	Characteristic jet engine parameters for project
The structure of jets from notched nozzles	Characteristic jet engine parameters for project comparisons
The structure of jets from notched nozzles A76-3336	Characteristic jet engine parameters for project comparisons [DLR-IB-555-74/13] 876-24258
The structure of jets from notched nozzles A76-3336 PLASTIC AIRCRAFT STRUCTURES	Characteristic jet engine parameters for project comparisons [DIR-IB-555-74/13] 876-24258 PROPELIER BLADES
The structure of jets from notched nozzles A76-3336* PLASTIC AIRCRAFT STRUCTURES Glass fiber reinforced plastics for small aircraft	Characteristic jet engine parameters for project comparisons [DLR-IB-555-74/13] 876-24258 PROPELLER BLADES Progress report on propeller aircraft flyover
The structure of jets from notched nozzles A76-3336* PLASTIC AIRCRAFT STRUCTURES Glass fiber reinforced plastics for small aircraft structures. Activaties over the years 1956 to	Characteristic jet engine parameters for project comparisons [DIR-IB-555-74/13] 876-24258 PROPELLER BLADES Progress report on propeller aircraft flyover noise research
The structure of jets from notched nozzles A76-3336* PLASTIC AIRCRAFT STRUCTURES Glass fiber reinforced plastics for small aircraft structures. Activaties over the years 1956 to 1971 in the Light Aircraft Division	Characteristic jet engine parameters for project comparisons [DLE-IB-555-74/13] 876-24258 PROPELLER BLADES Progress report on propeller aircraft flyover noise research [SAE PAPER 760-454] A76-31954
The structure of jets from notched nozzles A76-3336* PLASTIC AIRCRAFT STRUCTURES Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [BBB-UFE-1067-0] N76-24368	Characteristic jet engine parameters for project comparisons [DLR-IB-555-74/13] 876-24258 PROPELLER BLADES Progress report on propeller aircraft flyover noise research [SAE PAPER 760-454] A76-31954 Peasibility study of propeller design for general
The structure of jets from notched nozzles A76-3336* PLASTIC AIRCRAFT STRUCTURES Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [BBB-UFE-1067-0] H76-24368 PLUG BOZZLES	Characteristic jet engine parameters for project comparisons [DLR-IB-555-74/13] 876-24258 PROPELIER BLADES Progress report on propeller aircraft flyover noise research [SAE PAPER 760-454] A76-31954 Peasibility study of propeller design for general aviation by numerical optimization
The structure of jets from notched nozzles A76-3336* PLASTIC AIRCRAFT STRUCTURES Glass fiber reinforced plastics for small aircraft structures. Activaties over the years 1956 to 1971 in the Light Aircraft Division [BBB-UFE-1067-0] PLUG BOZZLES FAA JT3D quiet nacelle retrofit feasibility	Characteristic jet engine parameters for project comparisons [DLF-IB-555-74/13] 876-24258 PROPELLER BLADES Progress report on propeller aircraft flyover noise research [SAE PAPER 760-454] A76-31954 Peasibility study of propeller design for general aviation by numerical optimization [SAE PAPER 760-478] A76-31970
The structure of jets from notched nozzles A76-3336* PLASTIC AIRCRAFT STRUCTURES Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [BBB-UFE-1067-0] H76-24368 PLUG BOZZLES	Characteristic jet engine parameters for project comparisons [DLR-IB-555-74/13] 876-24258 PROPELIER BLADES Progress report on propeller aircraft flyover noise research [SAE PAPER 760-454] A76-31954 Peasibility study of propeller design for general aviation by numerical optimization [SAE PAPER 760-478] A76-31970 PROPELIERS
The structure of jets from notched nozzles A76-3336* PLASTIC AIRCHAFT STRUCTURES Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] BOZZLES FAA JT3D quiet nacelle retrofit feasibility program. Volume 2, addendum A: Model and full	Characteristic jet engine parameters for project comparisons [DLR-IB-555-74/13] 876-24258 PROPELIER BLADES Progress report on propeller aircraft flyover noise research [SAE PAPER 760-454] A76-31954 Peasibility study of propeller design for general aviation by numerical optimization [SAE PAPER 760-478] A76-31970 PROPELIERS Investigation into the noise propagation by
The structure of jets from notched nozzles A76-3336* PLASTIC AIRCHAFT STRUCTURES Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] PLUG BOZZLES FAA JT3D quiet nacelle retrofit feasibility program. Volume 2, addendum A: Model and full scale plug nozzle tests [AD-A023037/5] H76-24239 PLUMES	Characteristic jet engine parameters for project comparisons [DLR-IB-555-74/13] 876-24258 PROPELIER BLADES Progress report on propeller aircraft flyover noise research [SAE PAPER 760-454] A76-31954 Peasibility study of propeller design for general aviation by numerical optimization [SAE PAPER 760-478] A76-31970 PROPELLERS Investigation into the noise propagation by propeller aircraft in general aviation [876-24254]
The structure of jets from notched nozzles A76-3336* PLASTIC AIRCRAPT STRUCTURES Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [HBB-UFE-1067-0] PLUG HOZZLES FAA JT3D quiet nacelle retrofit feasibility program. Volume 2, addendum A: Hodel and full scale plug nozzle tests [AD-A023037/5] PLUMES Performance and handling qualities: AH-16	Characteristic jet engine parameters for project comparisons [DIR-IB-555-74/13] 876-24258 PROPELLER BLADES Progress report on propeller aircraft flyover noise research [SAE PAPER 760-454] A76-31954 Peasibility study of propeller design for general aviation by numerical optimization [SAE PAPER 760-478] A76-31970 PROPELLERS Investigation into the noise propagation by propeller aircraft in general aviation Quieter propellers for general aviation: Present
The structure of jets from notched nozzles A76-3336* PLASTIC AIRCRAFT STRUCTURBS Glass fiber reinforced plastics for small aircraft structures. Activaties over the years 1956 to 1971 in the Light Aircraft Division [BBB-UFE-1067-0] PLUG BOZZLES FAA JT3D quiet nacelle retrofit feasibility program. Volume 2, addendum A: Hodel and full scale plug nozzle tests [AD-A023037/5] PLUBES Performance and handling qualities: AH-16 helicopter equipped with three hot metal/plume	Characteristic jet engine parameters for project comparisons [DLF-IB-555-74/13] 876-24258 PROPELLER BLADES Progress report on propeller aircraft flyover noise research [SAE PAPER 760-454] A76-31954 Peasibility study of propeller design for general aviation by numerical optimization [SAE PAPER 760-478] A76-31970 PROPELLERS Investigation into the noise propagation by propeller aircraft in general aviation Quieter propellers for general aviation: Present position. Future expectations
The structure of jets from notched nozzles A76-3336 PLASTIC AIRCHAFT STRUCTURES Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFB-1067-0] PLUG BOXZLES FAA JT3D quiet nacelle retrofit feasibility program. Volume 2, addendum A: Hodel and full scale plug nozzle tests [AD-A023037/5] PLUMES Performance and handling qualities: AH-16 helicopter equipped with three hot metal/plume infrared suppressors	Characteristic jet engine parameters for project comparisons [DLR-IB-555-74/13] 876-24258 PROPELLER BLADES Progress report on propeller aircraft flyover noise research [SAE PAPER 760-454] A76-31954 Peasibility study of propeller design for general aviation by numerical optimization [SAE PAPER 760-478] A76-31970 PROPELLERS Investigation into the noise propagation by propeller aircraft in general aviation W76-24254 Quieter propellers for general aviation: Present position. Puture expectations
The structure of jets from notched nozzles A76-3336* PLASTIC AIRCRAFT STRUCTURES Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [BBB-UFE-1067-0] PLUG BOZZLES FAA JT3D quiet nacelle retrofit feasibility program. Volume 2, addendum A: Model and full scale plug nozzle tests [AD-A023037/5] PLUBES Performance and handling qualities: AH-16 helicopter equipped with three hot metal/plume infrared suppressors [AD-A019482] E76-24277	Characteristic jet engine parameters for project comparisons [DIR-IB-555-74/13] 876-24258 PROPELLER BLADES Progress report on propeller aircraft flyover noise research [SAE PAPER 760-454] A76-31954 Peasibility study of propeller design for general aviation by numerical optimization [SAE PAPER 760-478] A76-31970 PROPELLERS Investigation into the noise propagation by propeller aircraft in general aviation Quieter propellers for general aviation: Present position. Future expectations 876-24255 PROPULSION SYSTEE COMPIGURATIONS
The structure of jets from notched nozzles A76-3336* PLASTIC AIRCHAFT STRUCTURES Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] H76-24368 PLUG BOXZLES FAA JT3D quiet nacelle retrofit feasibility program. Volume 2, addendum A: Hodel and full scale plug nozzle tests [AD-A023037/5] H76-24239 PLUMES Performance and handling qualities: AH-16 helicopter equipped with three hot metal/plume infrared suppressors [AD-A019482] H76-24277 POLYMERS	Characteristic jet engine parameters for project comparisons [DLR-IB-555-74/13] 876-24258 PROPELLER BLADES Progress report on propeller aircraft flyover noise research [SAE PAPER 760-454] A76-31954 Peasibility study of propeller design for general aviation by numerical optimization [SAE PAPER 760-478] A76-31970 PROPELLERS Investigation into the noise propagation by propeller aircraft in general aviation W76-24254 Quieter propellers for general aviation: Present position. Future expectations M76-24255 PROPULSION SISTEM COMPIGURATIONS Advanced side-by-side concept helicopter rotor
The structure of jets from notched nozzles A76-3336* PLASTIC AIRCHAFT STRUCTURES Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFB-1067-0] PLUG BOXZLES FAA JT3D quiet nacelle retrofit feasibility program. Volume 2, addendum A: Hodel and full scale plug nozzle tests [AD-A023037/5] PLUMES Performance and handling qualities: AH-16 helicopter equipped with three hot metal/plume infrared suppressors [AD-A019482] POLYMERS A composite system approach to aircraft cabin fire	Characteristic jet engine parameters for project comparisons [DLR-IB-555-74/13] 876-24258 PROPELLER BLADES Progress report on propeller aircraft flyover noise research [SAE PAPER 760-454] A76-31954 Peasibility study of propeller design for general aviation by numerical optimization [SAE PAPER 760-478] A76-31970 PROPELLERS Investigation into the noise propagation by propeller aircraft in general aviation Quieter propellers for general aviation: Present position. Puture expectations **P76-24255* **PROPULSION SYSTEM COMPIGURATIONS** Advanced side-by-side concept helicopter rotor configurations
The structure of jets from notched nozzles A76-3336* PLASTIC AIRCHAFT STRUCTURES Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] H76-24368 PLUG BOXZLES FAA JT3D quiet nacelle retrofit feasibility program. Volume 2, addendum A: Hodel and full scale plug nozzle tests [AD-A023037/5] H76-24239 PLUMES Performance and handling qualities: AH-16 helicopter equipped with three hot metal/plume infrared suppressors [AD-A019482] H76-24277 POLYMERS	Characteristic jet engine parameters for project comparisons [DIR-IB-555-74/13] 876-24258 PROPELLER BLADES Progress report on propeller aircraft flyover noise research [SAE PAPER 760-454] A76-31954 Peasibility study of propeller design for general aviation by numerical optimization [SAE PAPER 760-478] A76-31970 PROPELLERS Investigation into the noise propagation by propeller aircraft in general aviation Quieter propellers for general aviation: Present position. Future expectations PROPULSION SYSTEM COMPIGURATIONS Advanced side-by-side concept helicopter rotor configurations

PROPULSION SYSTEM PERFORMANCE Aerodynamic performance of 0.4066-scale model to	Comparison of model and flight test data for an augmentor-wing STOL research aircraft
JT8D refan stage	N76-25292
[NASA-TM-X-3356] N76-24153	RESEARCH AND DEVELOPMENT
PROTECTIVE COATINGS Applied high temperature technology program.	An overview of aircraft crashworthiness research and development
Volume 2: Evaluation of coated columbian alloys for advanced turbine airfoils	Research and development of modified fuels for
[AD-A018638] N76-24263 PROTOTYPES Rellability and maintainability testing of	reduction of the postcrash fire hazard A76-34166 The T&E simulator - A comparison with flight test
prototype aircraft A76-34237	results F-14A aircraft application A76-34243
PSTCHOLOGICAL FACTORS	Development of the United Technologies Research
'Controlled flight into terrain /CFIT/' accidents - System-induced errors	Center acoustic research tunnel and associated test techniques
A76-32231	N76-25279 A new experimental flight research technique: The
R	remotely piloted airplane N76-25287
RADIO RECEPTION	RESEARCH PACILITIES
Rotor effects on L-band signals received by helicopter antennas. Part 3: Measurements of	Some informal comments about the research aircraft in the DFVLR N76-25285
the amplitude and phase distortions of CW signals (signal distortion during radio reception)	RESEARCH PROJECTS
[AD-A019506] N76-24455 RANDOM PROCESSES	A review of some tilt-rotor aeroelastic research at NASA-Langley
On the response of an aircraft to random gust	176-33795
RANDOM VIBRATION	RESEARCH VEHICLES High altitude applications of the Gates Learjet
Random vibrations of a cylindrical shell due to an excitation with uniformly varying frequency	(SAE PAPER 760-491) A76-31973 RIGID ROTORS
A76-32869 RECTANGULAR PLANFORMS	Aeroelastic stability of trimmed helicopter blades in forward flight
Wind tunnel measurements at H=1.6 of the aerodynamic effects of a root gap on a control	A76-32849 ROTARY WING AIRCRAPT
surface of square planform mounted on a body	Contributions to helicopter technology
[RAE-TH-AERO-1641] N76-24173 RECTANGULAR WINGS	conference proceedings [DLR-MITT-75-24] N76-24209
Flow around wings with inclined lateral jets A76-32596	Static vibration tests for resolving aeroelastic problems of V/STOL rotary wing aircraft
REINFORCED PLASTICS Static and fatigue tests of P-111B boron wing tip	ROTARY WINGS
[AD-A018751] N76-24370 RELIABILITY AWALYSIS	Aeroelastic stability of trimmed helicopter blades in forward flight
Joint aircraft loading/structure response statistics of time to service crack initiation	A76-32849 Unsteady aerodynamics of helicopter blades
A76-33117	N76-24149
Reliability and maintainability testing of prototype aircraft	Contributions to helicopter technology conference proceedings
RELIABILITY ENGINEERING	[DLR-MITT-75-24] N76-24209 Transonic problems in rotor aerodynamics
System complexity - Its conception and measurement	N76-24210
in the design of engineering systems A76-33100	Conception and flight mechanics of a \ ship-supported unmanned rotor platform
REMOTELY PILOTED VEHICLES	N76-24213
The Boeing Compass Cope Program RPV system A76-32632	Advanced side-by-side concept helicopter rotor configurations N76-24214
Antiship cruise missile threat simulation utilizing a RPV A76-34239	Noise phenomena with helicopter rotors and possibilities of noise reduction
Small, low-cost, expendable turbojet engine. 1:	N76-24256
Design, fabrication, and preliminary testing	Rotor effects on L-band signals received by
[NASA-TM-X-3392] N76-24242 An investigation of RPV control criteria Via the	helicopter antennas. Part 3: Measurements of the amplitude and phase distortions of CW signals
optimal regulator performance index	(signal distortion during radio reception)
[AD-A019846] N76-25209	[AD-A019506] N76-24455
A new experimental flight research technique: The remotely piloted airplane	Flight measurements of helicopter rotor aerofoil characteristics and some comparisons with
BESCUE OPERATIONS	two-dimensional wind tunnel results N76-25284
Crashworthiness and postcrash hazards from the airline flight attendant's point of view	Rotor Systems Research Aircraft (RSRA) 876-25286
RESEARCE	The art and science of rotary wing data correlation N76-25291
Current research on the simulation of flight effects on the noise radiation of aircraft engines	ROTATING STALLS An on-rotor investigation of rotating stall in an
N76-25280	axial-flow compressor
RESEARCH AIRCRAFT GA/W/-2 Airfoil Flight Test Evaluation	B76-25201 Detailed flow measurements during deep stall in
[SAE PAPER 760-492] Modification of drone sailplane into a special	axial flow compressors
purpose test vehicle for atmospheric research	The prediction of the behaviour of axial
[AD-A019436] N76-24228	compressors near surge three dimensional
Some informal comments about the research aircraft in the DFVLR	flow and rotating stall #76-25203
¥76-25285	ROTOR ABRODINANICS
Rotor Systems Research Aircraft (RSRA)	Transonic problems in rotor aerodynamics

N76-25286

SUBJECT INDEX SEPARATION

Advanced side-by-side concept helicopter rotor	Results of an aerodynamic investigation of a space
configurations #76-24214	shuttle orbiter/147 carrier flight test configuration to determine separation
ROTOR BLADES Characteristics of turbulent wakes behind rotating	characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4 foot high
rotor blades	speed wind tunnel (CA26), volume 5
ROTOR BLADES (TURBOHACHIMENT)	[BASA-CR-144616] #76-25326 Results of an experimental investigation to
Effect of blade aspect ratio on the properties of an axial compressor stage	determine separation characteristics for the Orbiter/747 using a 0.0125-scale model (48-0
[K-TRAMS-77] W76-24257 Unsteady airloads on a cascade of staggered blades	AX1318I-1 747) in the Ames Research center 14-foot wind tunnel (CA23B), volume 1
in subsonic flow	[MASA-CR-144603] W76-25333 Results of an experimental investigation to
	determine separation characteristics for the
\$	Orbiter/747 using a 0.0125-scale model (48-0 AX1318I-1 747) in the Ames Research Center
SAAB 37 AIRCRAFT Swedish experience on correlations of flight	14-foot wind tunnel (CA23B) [HASA-CR-144604] #76-25334
results with ground test predictions for the SAAB 37 aircraft	SCREEN EFFECT Aircraft noise reduction by means of acoustic
SAFBTY DEVICES	screening and engine controls #76-24252
Video tape presentation of passenger safety	SCREENING
information A76-32232	Systematic investigations in the field of acoustic screening of aircraft engine noise by Wings
SAFETY FACTORS Jet fuel handling and safety	and tail surfaces
A76-35222 SAFETY HANAGENERT	SBATS Development of design criteria for crashworthy
General aviation crashworthiness	armored aircrew seats
SANDWICE STRUCTURES	SEPARATED FLOW
Laminar flow rethink - Using composite structure in Bellanca Skyrocket II design	Hydrodynamic visualization study of various procedures for controlling separated flows
[SAE PAPER 760-473] A76-31966 Design of an advanced composites aileron for	A76-33745 On mathematical simulation of separated flow past
commercial aircraft A76-32651	a wing and breakup of a vortex sheet in an ideal fluid
SCALE HODELS	A76-34693
Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity	Calculation method for separated flow of slender arrow wings accounting for leading edge
and aero-acoustics feasibility analysis of feedback control of flutter using scale models	separation [ILR-5-1975] #76-24170
of a B-52 aircraft N76-24151	SEPARATION Special wind tunnel test techniques used at AEDC
Aerodynamic performance of 0.4066-scale model to JT8D refan stage	N76-25270 Results of an aerodynamic investigation of a space
[NASA-TH-I-3356] N76-24153 Purther evidence and thoughts on scale effects at	shuttle orbiter/747 carrier flight test configuration to determine separation
high subsonic speeds	characteristics utilizing 0.0125-scale models
N76-25254 Flight simulation using free-flight laboratory	(48-0/AX1318I-1) in the LTV 4 x 4 foot high speed wind tunnel (CA26), volume 1
scale models N76-25288	[NASA-CR-144612] B76-25322 Results of an aerodynamic investigation of a space
Comparison of model and flight test data for an augmentor-wing STOL research aircraft	shuttle orbiter/747 carrier flight test configuration to determine separation
#76-25292 Results of an aerodynamic investigation of a space	characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4 foot high
shuttle orbiter/747 carrier flight test	speed wind tunnel (CA26), volume 2
configuration to determine separation characteristics utilizing 0.0125-scale models	[NASA-CR-144613] H76-25323 Results of an aerodynamic investigation of a space
(48-0/AX1318I-1) in the LTV 4 x 4 foot high speed wind tunnel (CA26), volume 1	shuttle orbiter/747 carrier flight test configuration to determine separation
[NASA-CR-144612] H76-25322 Results of an aerodynamic investigation of a space	characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4-foot high
shuttle orbiter/747 carrier flight test configuration to determine separation	speed wind tunnel (CA26), volume 3 [NASA-CR-144614] N76-25324
characteristics utilizing 0.0125-scale models	
(BB_0/RV1318T=1) in the TOV A t A feet high	Results of an aerodynamic investigation of a space
(48-0/AX1318I-1) in the LTV 4 x 4 foot high speed wind tunnel (CA26), volume 2	shuttle orbiter/747 carrier flight test configuration to determine separation
speed wind tunnel (CA26), volume 2 [NASA-CR-144613] N76-25323 Results of an aerodynamic investigation of a space	shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX13181-1) in the LTV 4 x 4 foot high
speed wind tunnel (CA26), volume 2 [NASA-CR-144613] N76-25323	shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models
speed wind tunnel (CA26), volume 2 [NASA-CR-144613] Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models	shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX13181-1) in the LTV 4 x 4 foot high speed wind tunnel (CA26), volume 4 [NASA-CR-144615] B76-25325 Results of an aerodynamic investigation of a space
speed wind tunnel (CA26), volume 2 [NASA-CR-144613] Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4-foot high speed wind tunnel (CA26), volume 3	shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318X-1) in the LTV 4 x 4 foot high speed wind tunnel (CA26), volume 4 [MSA-CR-144615] Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation
speed wind tunnel (CA26), volume 2 [NASA-CR-144613] Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4-foot high speed wind tunnel (CA26), volume 3 [NASA-CR-144614] Results of an aerodynamic investigation of a space	shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4 foot high speed wind tunnel (CA26), volume 4 [NASA-CR-144615] Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4 foot high
speed wind tunnel (CA26), volume 2 [NASA-CR-144613] Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4-foot high speed wind tunnel (CA26), volume 3 [NASA-CR-144614] Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation	shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4 foot high speed wind tunnel (CA26), volume 4 [NASA-CR-144615] 876-25325 Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318X-1) in the LTV 4 x 4 foot high speed wind tunnel (CA26), volume 5 [NASA-CR-144616]
speed wind tunnel (CA26), volume 2 [NASA-CR-144613] Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4-foot high speed wind tunnel (CA26), volume 3 [NASA-CR-144614] Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4 foot high	shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318X-1) in the LTV 4 x 4 foot high speed wind tunnel (CA26), volume 4 [MSA-CR-144615] B76-25325 Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4 foot high speed wind tunnel (CA26), volume 5 [MSA-CR-144616] Results of an experimental investigation to determine separation characteristics for the
speed wind tunnel (CA26), volume 2 [NASA-CR-144613] Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4-foot high speed wind tunnel (CA26), volume 3 [NASA-CR-144614] Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models	shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4 foot high speed wind tunnel (CA26), volume 4 [NASA-CR-144615] Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4 foot high speed wind tunnel (CA26), volume 5 [NASA-CR-144616] Results of an experimental investigation to
speed wind tunnel (CA26), volume 2 [NASA-CR-144613] Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4-foot high speed wind tunnel (CA26), volume 3 [NASA-CR-144614] Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4 foot high speed wind tunnel (CA26), volume 4	shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4 foot high speed wind tunnel (CA26), volume 4 [NASA-CR-144615] B76-25325 Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4 foot high speed wind tunnel (CA26), volume 5 [NASA-CR-144616] Results of an experimental investigation to determine separation characteristics for the Orbiter/747 using a 0.0125-scale model (48-0

SERVICE LIFE SUBJECT INDEX

SERVICE LIFE		Calculation method for separated flow of slender
T-28 service life evaluation		arrow wings accounting for leading edge
[AD-A018907]	N76~24227	separation
SHEAR PLOW		[ILR-5-1975] N76-24170
The far field of high frequency convected		Further development of the panel method. Part 1:
singularities in sheared flows, with an		Nonlinear panel method considering discrete
application to jet-noise prediction	176 20545	separated vortex sheets on swept slender wing
AREL 7 ARADY	A76-32545	shapes
SHELL STABILITY		[MBB-UPB-1070-0] W76-24175
Random vibrations of a cylindrical shell d		Ground simulation of flutter on aircraft with
excitation with uniformly varying freque		high-aspect-ratio wings [BSA-TT-263] N76-24216
SHIPS	A76-32869	[BSA-TT-263] H76-24216 SLOTTED WIND TUNNELS
Conception and flight mechanics of a		A low-correction wall configuration for airfoil
ship-supported unmanned rotor platform		testing
anth amblerced aumanmen rotor bigitors	N76-24213	N76-25234
SHOCK LAYERS	W/O 24213	The removal of wind tunnel panels to prevent flow
Supersonic flow past a slender delta wing	- An	breakdown at low speeds
experimental investigation covering the		N76-25252
incidence range from -5 to 50 deg		SOUND GENERATORS
•	A76-32543	Current research on the simulation of flight
Unsteady hypersonic flow over delta wings	with	effects on the noise radiation of aircraft engines
detached shock waves		N76-25280
	A76-33719	SOURD PRESSURE
SHORT HAUL AIRCRAFT		Investigation of the stressed state of panels
Noise level measurements on a quiet short		subjected to wide-band acoustic loads
turboprop transport de Havilland Das	sh 7 STOL	resonant vibration of aircraft structures
propulsion		176-33516
[SAE PAPER 760-455]	A76-31955	SPACE SHUTTLE ORBITERS
Minimum time flight profile optimization f	or	Results of an aerodynamic investigation of a space
piston-engine-powered airplanes	A76-31967	shuttle orbiter/747 carrier flight test
[SAE PAPER 760-474]	A/0-3130/	configuration to determine separation
The development testing of a short-haul airframe/powerplant combination, the VFW	61/1/8/150	characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4 foot high
difficulty power plant combination, the viw	A76-32633	speed wind tunnel (CA26), volume 1
SHORT TAKEOFF WIRCRAFT	A10 32033	[NASA-CR-144612] N76-25322
Noise level measurements on a quiet short	haul	Results of an aerodynamic investigation of a space
turboprop transport de Havilland Das		shuttle orbiter/747 carrier flight test
propulsion		configuration to determine separation
[SAE PAPER 760-455]	A76-31955	characteristics utilizing 0.0125-scale models
Model matching method for flight control a	nd	(48-0/AX1318I-1) in the LTV 4 x 4 foot high
stimulation for longitudinal control		speed wind tunnel (CA26), volume 2
stability augmentation systems		[NASA-CR-144613] N76-25323
	A76-32396	Results of an aerodynamic investigation of a space
Status of the Air Cushion Landing System f	light	shuttle orbiter/747 carrier flight test
test program		configuration to determine separation
	A76-34238	characteristics utilizing 0.0125-scale models
Static vibration tests for resolving aeroe	lastic	(48-0/AX1318I-1) in the LTV 4 x 4-foot high
problems of V/STOL rotary wing aircraft		speed wind tunnel (CA26), volume 3
Ontone 2 for OCMO111	N76-24212	[NASA-CR-144614] N76-25324
Optimised engines for QSTOL applications	N76-24244	Results of an aerodynamic investigation of a space
SHROUDED PROPELLERS	N/0-24244	shuttle orbiter/747 carrier flight test configuration to determine separation
A ducted propulsor demonstrator		characteristics utilizing 0.0125-scale models
[SAE PAPER 760-470]	A76-31965	(48-0/AX1318I-1) in the LTV 4 x 4 foot high
SIGNAL DISTORTION	2.0 01303	speed wind tunnel (CA26), volume 4
Rotor effects on L-band signals received b	٧	[NASA-CR-144615] N76-25325
helicopter antennas. Part 3: Measureme		Results of an aerodynamic investigation of a space
the amplitude and phase distortions of C		shuttle orbiter/747 carrier flight test
(signal distortion during radio rece		configuration to determine separation
[AD-A019506]	N76-24455	characteristics utilizing 0.0125-scale models
SIMULATORS		(48-0/AX1318I-1) in the LTV 4 x 4 foot high
Simulator study of the effectiveness of an		speed wind tunnel (CA26), volume 5
automatic control system designed to imp		[NASA-CR-144616] N76-25326
high-angle-of-attack characteristics of	a	Unsteady aerodynamic flow field analysis of the
fighter airplane		space shuttle configuration. Part 4:
[NASA-TN-D-8176]	N76-24266	747/orbiter aeroelastic stability
SINGULARITY (MATHEMATICS)		[NASA-CR-144335] N76-25331
The far field of high frequency convected		Results of an experimental investigation to
singularities in sheared flows, with an		determine separation characteristics for the
application to jet-noise prediction	176-22545	Orbiter/747 using a 0.0125-scale model (48-0
Singular perturbation methods for variation	176-32545	AX1318I-1 747) in the Ames Research center
problems in aircraft flight	nar	14-foot wind tunnel (CA23B), volume 1 [NASA-CR-144603] N76-25333
problems in allocate lilight	A76-33305	Results of an experimental investigation to
SIZE DETERMINATION	270 33303	determine separation characteristics for the
The design and development of a military c	ombat.	Orbiter/747 using a 0.0125-scale model (48-0
aircraft. II - Sizing the aircraft		AX1318I-1 747) in the Ames Research Center
	A76-32650	14-foot wind tunnel (CA23B)
SLENDER WINGS		[NASA-CR-144604] N76-25334
Supersonic flow past a slender delta wing	- An	SPACE SHUTTLES
experimental investigation covering the		Energy management - An operational outline
incidence range from -5 to 50 deg		digital flight guidance/control spinoffs from
	A76-32543	Space Shuttle
Unsteady hypersonic flow over delta wings	with	A76-32199
detached shock waves		SPIN DYNAMICS
	A76-33719	The dynamics of aircraft spin Russian book
		A76-33022

SUBJECT INDEX SUPPRESSORS

FIB STABILIZATION Recovery techniques for aircraft in spinning flight control surface deflections	Nacelle-arrframe integration model testing for nacelle simulation and measurement accuracy N76-25238
[AD-A019323] N76-24278	Experience in predicting subsonic aircraft characteristics from wind tunnel analysis
Bigh angle of attack flight tests of the P-15 A76-34245	N76-25289 Analysis of the comparison between flight tests
Stall/post-stall/spin avoidance tests of the YA-10 aircraft A76-34247	results and wind tunnel tests predictions for subsonic and supersonic transport aircraft N76-25303
TABILITY	SUBSORIC PLOW
Unsteady aerodynamic flow field analysis of the space shuttle configuration. Part 4: 747/orbiter aeroelastic stability	Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869
[NASA-CR-144335] N76-25331 STABILITY DERIVATIVES	Inlet spillage drag tests and numerical flow-field analysis at subsonic and transonic speeds of a
A technique using a nonlinear helicopter model for determining times and derivatives	1/8-scale, two-dimensional, external-compression, variable-geometry,
[NASA-TM-D-8159] STATIC TESTS Static vibration tests for resolving aeroelastic	supersonic inlet configuration [NASA-CE-2680] N76-24240 Application of advanced aerodynamic concepts to
problems of V/STOL rotary wing aircraft N76-24212	large subsonic transport airplanes [AD-A019956] #76-25159
STATISTICAL ANALYSIS	SUBSONIC WIND TUNNELS
Crashworthiness observations in general aviation	Inlets for high angles of attack
accident investigations - A statistical overview A76-34135	A76-33121 Plow investigation on wings with kinked leading
On the conception and measurement of trade-off in engineering systems - A case study of the	edges and swept outer wings at moderate subsonic speed
aircraft design process	[DLR-IB-151-74/11] B76-24178
A76-34313 On the conception and measurement of technology -	Further evidence and thoughts on scale effects at high subsonic speeds
A case study of the aircraft design process	N76-25254
A76-34314 STATISTICAL DISTRIBUTIONS Joint aircraft loading/structure response	SUPERCAVITATING FLOW Lift and drag characteristics of a supercavitating cambered hydrofoil with a jet flap beneath a
statistics of time to service crack initiation A76-33117	free surface A76-34926
TOCHASTIC PROCESSES	SUPERCRITICAL WINGS
The stochastic control of the F-8C aircraft using the Multiple Model Adaptive Control (MMAC) method	Calculation of buffet onset for supercritical airfoils
[NASA-CR-148100] N76-25211	[DLR-IB-151-75/12] N76-24181 SUPERSORIC FLOW
Development of flight-by-flight fatigue test data from statistical distributions of aircraft stress data, volume 1	Supersonic flow past a slender delta wing - An experimental investigation covering the incidence range from -5 to 50 deg
[AD-A016406] #76-24218 Development of flight-by-flight fatigue test data	A76-32543 An experimental investigation of supersonic flow
from statistical distributions of aircraft stress data. Volume 2: Documentation of the	past a wedge-cylinder configuration [NASA-CR-147741] N76-25148
B-58 and P-106 fatigue spectra simulation program [AD-A016407] N76-24219	Calculation of three-dimensional supersonic flow fields about aircraft fuselages and wings at
STRESS-STRAIN-TIME RELATIONS Nonlinear finite element techniques for aircraft	general angle of attack [AD-A018715] #76-25151
crash analysis	SUPERSONIC FLUTTER Structural optimization in aeroelastic conditions
STRUCTURAL DESIGN	A76-34486
Techniques for predicting vehicle structure crash impact response A76-34156	On the analysis of supersonic flow past oscillating cascades N76-25197
Single stage, low noise, advanced technology fan.	SUPERSONIC INLETS
Volume 2: Structural design [NASA-CR-134802] N76-24237	Inlet spillage drag tests and numerical flow-field analysis at subsonic and transonic speeds of a
FRUCTURAL DESIGN CRITERIA Development of design criteria for crashworthy	1/8-scale, two-dimensional, external-compression, variable-geometry,
armored aircrew seats A76-34154 Structural optimization in aeroelastic conditions	supersonic inlet configuration [NASA-CH-2680] N76-24240 SUPERSONIC JET FLOW
Design and construction of the alpha jet flutter	Sonic environment of aircraft structure immersed in a supersonic jet flow stream
model N76-25249	[NASA-CR-144996] N76-25168 SUPERSONIC TRANSPORTS
TRUCTURAL RELIABILITY Fracture in thin sections of aircraft structures	The technological case for a supersonic cruise aircraft
[SAE PAPER 760-452] A76-31953	A76-33660
STRUCTURAL STABILITY Crashworthiness and postcrash hazards from the	SUPERSORIC WIRD TURNELS Wind tunnel measurements at M=1.6 of the
airline flight attendant's point of view A76-34163	aerodynamic effects of a root gap on a control surface of square planform mounted on a body
TRUCTURAL VIBRATION Unusual pitch and structural mode testing of the B-1	[BAE-TH-AERO-1641] B76-24173
A76-32629 A note on transonic flow past a thin airfoil	Performance and handling qualities: AH-1G helicopter equipped with three hot metal/plume
oscillating in a wind tunnel	infrared suppressors [AD-A019482] 876-24277
SUBSONIC AIRCRAFT	<u> </u>
Determination of aerodynamic forces for aeroelastic analysis of lifting surfaces	
A76-34481	

SURFACES SUBJECT INDEX

SURPACES	TEST PACILITIES
Wind tunnel test techniques for the measurement of	Toward more effective testing; Proceedings of the
unsteady airloads on oscillating lifting systems and full-span models	Sixth Annual Symposium, St. Louis, Mo., August 13-16, 1975
N76-24 150	A76-34233
SWEDEN	Joint contractor - Air Force flight test programs
Swedish experience on correlations of flight	A76-34234
results with ground test predictions for the	Chronology and analysis of the development of
SAAB 37 aircraft N76-25299	altitude performance and mechanical characteristics of a turbofan engine at the
SWEPT WINGS	Arnold Engineering Development Center
Calculation of compressible turbulent boundary	[AD-A018691] H76-24261
layers on straight-tapered swept wings	Research on aircraft noise: Test methods
A76-32587	[NASA-TT-F-17090] N76-25166
A finite difference method for the calculation of	Development of the United Technologies Research Center acoustic research tunnel and associated
three-dimensional boundary layers on swept wings N76-24166	test techniques
Further development of the panel method. Part 1:	N76+25279
Nonlinear panel method considering discrete	Problems of noise testing in ground-based
separated wortex sheets on swept slender wing	facilities with forward-speed simulation
shapes	N76-25281
[MBB-UFE-1070-0] N76-24175 Flow investigation on wings with kinked leading	TEST STANDS Ground simulation of flutter on aircraft with
edges and swept outer wings at moderate subsonic	high-aspect-ratio wings
speed	[ESA-TT-263] N76-24216
[DLR-IB-151-74/11] N76-24178	THIN AIRPOILS
Theoretical analysis and prediction methods for a	A note on transonic flow past a thin airfoil
three-dimensional turbulent boundary layer	oscillating in a wind tunnel A76-33365
exemplified for infinite swept wings [ESA-TT-238] N76-24182	A cascade in unsteady flow
Aerodynamic forces on a blunt store released from	H76-25194
a swept wing	THIN BODIES
[AD-A019330] N76-24189	Practure in thin sections of aircraft structures
SWING WINGS	[SAE PAPER 760-452] A76-31953
Sukhon's swing-wing Su-17/20 Fitter C A76-33946	Law of cross sections for the three-dimensional
SYSTEM BPPECTIVENESS	boundary layer on a thin-section wing in
Crashworthy fuel systems	hypersonic flow
A76-34165	176-33854
SYSTEMS ANALYSIS	On mathematical simulation of separated flow past
NASA study of an automated Pilot Advisory System [SAE PAPER 760-460] A76-31958	a wing and breakup of a vortex sheet in an ideal fluid
SYSTEMS ENGINEERING	A76-34693
System complexity - Its conception and measurement	THREE DIMENSIONAL BOUNDARY LAYER
in the design of engineering systems	Law of cross sections for the three-dimensional
A76-33100	boundary layer on a thin-section wing in
A76-33100 On the conception and measurement of trade-off in	
A76-33100 On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process	boundary layer on a thin-section wing in hypersonic flow 176-33854 A finite difference method for the calculation of
A76-33100 On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process A76-34313	boundary layer on a thin-section wing in hypersonic flow A76-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings
A76-33100 On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process A76-34313 Status of methods for aircraft state and parameter	boundary layer on a thin-section wing in hypersonic flow A76-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166
A76-33100 On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process A76-34313 Status of methods for aircraft state and parameter identification	boundary layer on a thin-section wing in hypersonic flow A76-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a
A76-33100 On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process A76-34313 Status of methods for aircraft state and parameter identification N76-25282	boundary layer on a thin-section wing in hypersonic flow A76-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166
A76-33100 On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process A76-34313 Status of methods for aircraft state and parameter identification	boundary layer on a thin-section wing in hypersonic flow A76-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] N76-24182
A76-33100 On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process A76-34313 Status of methods for aircraft state and parameter identification N76-25282 Rotor Systems Research Aircraft (RSRA)	boundary layer on a thin-section wing in hypersonic flow A76-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW
A76-33100 On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process A76-34313 Status of methods for aircraft state and parameter identification N76-25282 Rotor Systems Research Aircraft (RSRA)	boundary layer on a thin-section wing in hypersonic flow A76-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW Visual study of the three-dimensional flow pattern
A76-33100 On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process A76-34313 Status of methods for aircraft state and parameter identification N76-25282 Rotor Systems Research Aircraft (RSRA) N76-25286	boundary layer on a thin-section wing in hypersonic flow A76-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow
On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process A76-34313 Status of methods for aircraft state and parameter identification R76-25282 Rotor Systems Research Aircraft (RSRA) T-28 AIRCRAFT T-28 service life evaluation	boundary layer on a thin-section wing in hypersonic flow A76-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 Development of a computer code for calculating the
On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process Status of methods for aircraft state and parameter identification Rotor Systems Research Aircraft (RSRA) T-28 AIRCRAFT T-28 service life evaluation [AD-A018907] N76-24227	boundary layer on a thin-section wing in hypersonic flow A76-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 Development of a computer code for calculating the steady super/hypersonic inviscid flow around
A76-33100 On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process A76-34313 Status of methods for aircraft state and parameter identification N76-25282 Rotor Systems Research Aircraft (RSRA) T T-28 AIRCRAFT T-28 service life evaluation [AD-A018907] TABLES (DATA)	boundary layer on a thin-section wing in hypersonic flow 176-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings 176-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow 176-33869 Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description
On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process A76-34313 Status of methods for aircraft state and parameter identification N76-25282 Rotor Systems Research Aircraft (RSRA) T-28 AIRCRAFT T-28 service life evaluation [AD-A018907] TABLES (DATA) Further evidence and thoughts on scale effects at	boundary layer on a thin-section wing in hypersonic flow A76-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description [NASA-CR-2676]
On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process A76-34313 Status of methods for aircraft state and parameter identification N76-25282 Rotor Systems Research Aircraft (RSRA) T-28 AIRCRAFT T-28 service life evaluation [AD-A018907] TABLES (DATA) Purther evidence and thoughts on scale effects at high subsonic speeds	boundary layer on a thin-section wing in hypersonic flow A76-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description [MASA-CR-2676] THRUST COMTROL
On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process A76-34313 Status of methods for aircraft state and parameter identification N76-25282 Rotor Systems Research Aircraft (RSRA) T-28 AIRCRAFT T-28 service life evaluation [AD-A018907] TABLES (DATA) Further evidence and thoughts on scale effects at	boundary layer on a thin-section wing in hypersonic flow A76-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description [NASA-CR-2676]
On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process Status of methods for aircraft state and parameter identification R76-25282 Rotor Systems Research Aircraft (RSRA) T-28 AIRCRAFT T-28 service life evaluation [AD-A018907] R76-24227 TABLES (DATA) Purther evidence and thoughts on scale effects at high subsonic speeds N76-25254 TACAN Antiship cruise missile threat simulation	boundary layer on a thin-section wing in hypersonic flow A76-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description [MASA-CR-2676] THRUST COMTROL Possibilities of noise reduction for fan engines by means of controls
On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process A76-34313 Status of methods for aircraft state and parameter identification N76-25282 Rotor Systems Research Aircraft (RSRA) T T-28 AIRCRAFT T-28 Service life evaluation [AD-A018907] TABLES (DATA) Further evidence and thoughts on scale effects at high subsonic speeds N76-25254 TACAN Antiship cruise missile threat simulation utilizing a RPV	boundary layer on a thin-section wing in hypersonic flow A76-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description [NASA-CR-2676] THRUST COMTROL Possibilities of noise reduction for fan engines by means of controls H76-24251 Havy evaluation F-11A in-flight thrust control
On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process Status of methods for aircraft state and parameter identification Rotor Systems Research Aircraft (RSRA) T-28 AIRCRAPT T-28 service life evaluation [AD-A018907] TABLES (DATA) Further evidence and thoughts on scale effects at high subsonic speeds Antiship cruise missile threat simulation utilizing a RPV A76-34239	boundary layer on a thin-section wing in hypersonic flow A76-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description [NASA-CR-2676] THRUST COMTROL Possibilities of noise reduction for fan engines by means of controls M76-24251 Bavy evaluation P-11A in-flight thrust control system
On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process Status of methods for aircraft state and parameter identification R76-25282 Rotor Systems Research Aircraft (RSRA) T-28 AIRCRAPT T-28 service life evaluation [AD-A018907] Further evidence and thoughts on scale effects at high subsonic speeds Antiship cruise missile threat simulation utilizing a RPV TAREOFF RUBS	boundary layer on a thin-section wing in hypersonic flow A76-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description [NASA-CR-2676] THRUST COMTROL Possibilities of noise reduction for fan engines by means of controls N76-24251 Navy evaluation F-11A in-flight thrust control system [AD-A019954] N76-25204
On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process A76-34313 Status of methods for aircraft state and parameter identification N76-25282 Rotor Systems Research Aircraft (RSRA) T-28 AIRCRAPT T-28 service life evaluation [AD-A018907] TABLES (DATA) Purther evidence and thoughts on scale effects at high subsonic speeds Antiship cruise missile threat simulation utilizing a RPV A76-34239 TAKEOFF RUBS Plying without doing harm aircraft approach and takeoff noise abatement techniques	boundary layer on a thin-section wing in hypersonic flow A76-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description [NASA-CR-2676] THRUST COMTROL Possibilities of noise reduction for fan engines by means of controls B76-24251 Bavy evaluation F-11A in-flight thrust control system [AD-A019954] THRUST REVERSAL Design, development and flight test of the Cessna
On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process Status of methods for aircraft state and parameter identification R76-25282 Rotor Systems Research Aircraft (RSRA) T-28 AIRCRAFT T-28 service life evaluation [AD-A018907] Further evidence and thoughts on scale effects at high subsonic speeds Antiship cruise missile threat simulation utilizing a RPV A76-34239 TAREOFF RUBS Flying without doing harm aircraft approach and takeoff noise abatement techniques A76-34661	boundary layer on a thin-section wing in hypersonic flow A76-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description [NASA-CR-2676] THRUST COMTROL Possibilities of noise reduction for fan engines by means of controls N76-24251 Navy evaluation F-11A in-flight thrust control system [AD-A019954] N76-25204 THRUST REVERSAL Design, development and flight test of the Cessna Citation thrust reverser
On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process A76-34313 Status of methods for aircraft state and parameter identification N76-25282 Rotor Systems Research Aircraft (RSRA) T-28 AIRCRAFT T-28 service life evaluation [AD-A018907] Further evidence and thoughts on scale effects at high subsonic speeds A76-25254 TACAN Antiship cruise missile threat simulation utilizing a RPV A76-34239 TAKROFF RUBS Flying without doing harm aircraft approach and takeoff noise abatement techniques A76-34661 TECHBOLOGICAL FORECASTIBG	boundary layer on a thin-section wing in hypersonic flow A76-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description [NASA-CR-2676] THRUST COMTROL Possibilities of noise reduction for fan engines by means of controls B76-2451 Havy evaluation F-11A in-flight thrust control system [AD-A019954] THRUST REVERSAL Design, development and flight test of the Cessna Citation thrust reverser [SAE PAPER 760-468] A76-31963
On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process A76-34313 Status of methods for aircraft state and parameter identification N76-25282 Rotor Systems Research Aircraft (RSRA) T-28 AIRCRAFT T-28 service life evaluation [AD-A018907] TABLES (DATA) Purther evidence and thoughts on scale effects at high subsonic speeds Antiship cruise missile threat simulation utilizing a RPV A76-34239 TAKEOFF BUBS Plying without doing harm aircraft approach and takeoff noise abatement techniques TECHNOLOGICAL FORECASTING Civil transport technology up to 2000 - MASA	boundary layer on a thin-section wing in hypersonic flow A76-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description [NASA-CR-2676] THRUST COMTROL Possibilities of noise reduction for fan engines by means of controls B76-24251 Bavy evaluation F-11A in-flight thrust control system [AD-A019954] THRUST REVERSAL Design, development and flight test of the Cessna Citation thrust reverser [SAE PAPER 760-468] TILT ROTOR RESEARCH AIRCRAFT PROGRAM
On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process A76-34313 Status of methods for aircraft state and parameter identification N76-25282 Rotor Systems Research Aircraft (RSRA) T-28 AIRCRAFT T-28 service life evaluation [AD-A018907] Further evidence and thoughts on scale effects at high subsonic speeds A76-25254 TACAN Antiship cruise missile threat simulation utilizing a RPV A76-34239 TAKROFF RUBS Flying without doing harm aircraft approach and takeoff noise abatement techniques A76-34661 TECHBOLOGICAL FORECASTIBG	boundary layer on a thin-section wing in hypersonic flow A76-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description [NASA-CR-2676] THRUST COMTROL Possibilities of noise reduction for fan engines by means of controls N76-24251 Havy evaluation P-11A in-flight thrust control system [AD-A019954] THRUST REVERSAL Design, development and flight test of the Cessna Citation thrust reverser [SAE PAPER 760-468] TILT ROTOR RESEARCH AIRCRAFT PROGRAM A review of some tilt-rotor aeroelastic research
On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process A76-34313 Status of methods for aircraft state and parameter identification N76-25282 Rotor Systems Research Aircraft (RSRA) T-28 AIRCRAFT T-28 service life evaluation [AD-A018907] TABLES (DATA) Purther evidence and thoughts on scale effects at high subsonic speeds Antiship cruise missile threat simulation utilizing a RPV A76-34239 TAKEOFF BUBS Plying without doing harm aircraft approach and takeoff noise abatement techniques TECHNOLOGICAL FORECASTING Civil transport technology up to 2000 - MASA believes fuel consumption is the major consideration	boundary layer on a thin-section wing in hypersonic flow A76-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description [NASA-CR-2676] THRUST COMTROL Possibilities of noise reduction for fan engines by means of controls M76-24251 Havy evaluation F-11A in-flight thrust control system [AD-A019954] THRUST REVERSAL Design, development and flight test of the Cessna Citation thrust reverser [SAE PAPER 760-468] TILT ROTOR RESEARCH AIRCRAFT PROGRAM A review of some tilt-rotor aeroelastic research at NASA-Langley A76-33795
On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process Status of methods for aircraft state and parameter identification R76-34313 Status of methods for aircraft state and parameter identification R76-25282 Rotor Systems Research Aircraft (RSRA) T-28 AIRCRAPT T-28 service life evaluation [AD-A018907] Further evidence and thoughts on scale effects at high subsonic speeds N76-25254 TACAN Antiship cruise missile threat simulation utilizing a RPV A76-34239 TAREOFF RUBS Flying without doing harm aircraft approach and takeoff noise abatement techniques A76-34661 TECHBOLOGICAL FORECASTING Civil transport technology up to 2000 - MASA believes fuel consumption is the major consideration A76-32649 TECHBOLOGY ASSESSMENT	boundary layer on a thin-section wing in hypersonic flow A76-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description [NASA-CR-2676] THRUST COMTROL Possibilities of noise reduction for fan engines by means of controls N76-24152 THRUST COMTROL Possibilities of noise reduction for fan engines by means of controls N76-24251 Navy evaluation P-11A in-flight thrust control system [AD-A019954] THRUST REVERSAL Design, development and flight test of the Cessna Citation thrust reverser [SAE PAPER 760-468] TILT ROTOR RESEARCH AIRCRAFT PROGRAM A review of some tilt-rotor aeroelastic research at NASA-Langley A76-33795 Evaluation of XV-15 tilt rotor aircraft for flying
On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process A76-34313 Status of methods for aircraft state and parameter identification N76-25282 Rotor Systems Research Aircraft (RSRA) T-28 AIRCRAFT T-28 service life evaluation [AD-A018907] Purther evidence and thoughts on scale effects at high subsonic speeds N76-25254 TACAN Antiship cruise missile threat simulation utilizing a RPV A76-34239 TAKEOFF RUBS Flying without doing harm aircraft approach and takeoff noise abatement techniques TECHNOLOGICAL FORECASTING Civil transport technology up to 2000 - MASA believes fuel consumption is the major consideration A76-32649 TECHNOLOGY ASSESSMENT On the conception and measurement of technology -	boundary layer on a thin-section wing in hypersonic flow 176-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description [NASA-CR-2676] THRUST COMTROL Possibilities of noise reduction for fan engines by means of controls H76-24-251 Eavy evaluation P-11A in-flight thrust control system [AD-A019954] H76-25-204 THRUST REVERSAL Design, development and flight test of the Cessna Citation thrust reverser [SAE PAPER 760-468] A76-31963 TILT ROTOR RESEARCH AIRCRAFT PROGRAM A review of some tilt-rotor aeroelastic research at NASA-Langley A76-33795 Evaluation of IV-15 tilt rotor aircraft for flying qualities research application
On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process A76-34313 Status of methods for aircraft state and parameter identification N76-25282 Rotor Systems Research Aircraft (RSRA) T-28 AIRCRAFT T-28 service life evaluation [AD-A018907] TABLES (DATA) Purther evidence and thoughts on scale effects at high subsonic speeds Antiship cruise missile threat simulation utilizing a RPV A76-34239 TAKEOFF BUBS Plying without doing harm aircraft approach and takeoff noise abatement techniques TECHHOLOGICAL FORECASTING Civil transport technology up to 2000 - NASA believes fuel consumption is the major consideration TECHNOLOGY ASSESSMENT On the conception and measurement of technology - A case study of the aircraft design process	boundary layer on a thin-section wing in hypersonic flow 176-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description [NASA-CR-2676] THRUST COMTROL Possibilities of noise reduction for fan engines by means of controls 876-24251 Navy evaluation F-11A in-flight thrust control system [AD-A019954] THRUST REVERSAL Design, development and flight test of the Cessna Citation thrust reverser [SAE PAPER 760-468] TILT ROTOR RESEARCH AIRCRAFT PROGRAM A review of some tilt-rotor aeroelastic research at NASA-Langley A76-33795 Evaluation of IV-15 tilt rotor aircraft for flying qualities research application [NASA-CR-137828] 876-24208
On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process A76-34313 Status of methods for aircraft state and parameter identification N76-25282 Rotor Systems Research Aircraft (RSRA) T-28 AIRCRAFT T-28 service life evaluation [AD-A018907] Purther evidence and thoughts on scale effects at high subsonic speeds N76-25254 TACAN Antiship cruise missile threat simulation utilizing a RPV A76-34239 TAKEOFF RUBS Flying without doing harm aircraft approach and takeoff noise abatement techniques TECHNOLOGICAL FORECASTING Civil transport technology up to 2000 - MASA believes fuel consumption is the major consideration A76-32649 TECHNOLOGY ASSESSMENT On the conception and measurement of technology -	boundary layer on a thin-section wing in hypersonic flow 176-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description [NASA-CR-2676] THRUST COMTROL Possibilities of noise reduction for fan engines by means of controls H76-24-251 Eavy evaluation P-11A in-flight thrust control system [AD-A019954] H76-25-204 THRUST REVERSAL Design, development and flight test of the Cessna Citation thrust reverser [SAE PAPER 760-468] A76-31963 TILT ROTOR RESEARCH AIRCRAFT PROGRAM A review of some tilt-rotor aeroelastic research at NASA-Langley A76-33795 Evaluation of IV-15 tilt rotor aircraft for flying qualities research application
On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process A76-34313 Status of methods for aircraft state and parameter identification N76-25282 Rotor Systems Research Aircraft (RSRA) T-28 AIRCRAPT T-28 service life evaluation [AD-A018907] TABLES (DATA) Purther evidence and thoughts on scale effects at high subsonic speeds N76-25254 TACAN Antiship cruise missile threat simulation utilizing a RPV A76-34239 TAKEOFF BUBS Plying without doing harm aircraft approach and takeoff noise abatement techniques TECHNOLOGICAL FORECASTING Civil transport technology up to 2000 - NASA believes fuel consumption is the major consideration TECHNOLOGY ASSESSMENT On the conception and measurement of technology - A case study of the aircraft design process A76-34314 TEST EQUIPMENT A data acquisition system for in-flight airfoil	boundary layer on a thin-section wing in hypersonic flow 176-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description [NASA-CR-2676] THRUST COMTROL Possibilities of noise reduction for fan engines by means of controls 876-24251 Navy evaluation F-11A in-flight thrust control system [AD-A019954] THRUST REVERSAL Design, development and flight test of the Cessna Citation thrust reverser [SAE PAPER 760-468] TILT ROTOR RESEARCH AIRCRAFT PROGRAM A review of some tilt-rotor aeroelastic research at NASA-Langley A76-33795 Evaluation of IV-15 tilt rotor aircraft for flying qualities research application [NASA-CR-137828] TIME OPTIMAL COMTROL Hinimum time flight profile optimization for piston-engine-powered airplanes
On the conception and measurement of trade-off in engineering systems - A case study of the aircraft design process A76-34313 Status of methods for aircraft state and parameter identification N76-25282 Rotor Systems Research Aircraft (RSRA) T-28 AIRCRAFT T-28 service life evaluation [AD-A018907] Purther evidence and thoughts on scale effects at high subsonic speeds N76-25254 TACAN Antiship cruise missile threat simulation utilizing a RPV A76-34239 TAKEOFF RUBS Flying without doing harm aircraft approach and takeoff noise abatement techniques TECHNOLOGICAL FORECASTING Civil transport technology up to 2000 - MASA believes fuel consumption is the major consideration TECHNOLOGY ASSESSMENT On the conception and measurement of technology - A case study of the aircraft design process A76-34314	boundary layer on a thin-section wing in hypersonic flow 176-33854 A finite difference method for the calculation of three-dimensional boundary layers on swept wings N76-24166 Theoretical analysis and prediction methods for a three-dimensional turbulent boundary layer exemplified for infinite swept wings [ESA-TT-238] THREE DIMENSIONAL FLOW Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description [NASA-CR-2676] THRUST COMTROL Possibilities of noise reduction for fan engines by means of controls A76-24251 Havy evaluation P-11A in-flight thrust control system [AD-A019954] A76-25204 THRUST REVERSAL Design, development and flight test of the Cessna Citation thrust reverser [SAE PAPER 760-468] TILT ROTOR RESEARCH AIRCRAFT PROGRAM A review of some tilt-rotor aeroelastic research at NASA-Langley A76-33795 Evaluation of IV-15 tilt rotor aircraft for flying qualities research application [NASA-CR-137828] THE OPTIMAL CONTROL Hinimum time flight profile optimization for

SUBJECT INDEX TURBOFAUS

TRADEOFFS On the conception and measurement of trade- engineering systems - A case study of the		Study of the application of advanced technolo to laminar-flow control systems for subsonitransports. Volume 2: Analyses	С
aircraft design process	A76-34313	[BASA-CR-144949] N7 Single stage, low noise, advanced technology:	6-24145 fan.
TRAINING AIRCRAPT		Volume 2: Structural design	6-24237
Hawker Siddeley Hawk T Hk 1 two-seat ground attack/trainer aircraft		[MASA-CR-134802] B7 Single stage, low noise advanced technology f	
	A76-32634	Volume 3: Acoustic design	6-24238
Hawker Siddeley Hawk T Hk 1 two-seat ground attack/trainer aircraft	L	[HASA-CR-134803] H7 Application of advanced aerodynamic concepts	
TRAINING SINULATORS	A76-33772	large subsonic transport airplanes	6-25159
Simulation - A flight test complement		[AD-A019956] H7 Comment on results obtained with three OBERA	0-23139
	A76-34240	airplane calibration models in PFA transoni	c
TRAJECTORY ABALTSIS Comments on mathematical modelling of exter	nal	wind tunnels	6-25268
store release trajectories including comp with flight data (preduction analysis		TROPICAL REGIONS Environmental tests of the P-15 in the Air Fo	T.C.O.
techniques for jettisoning of external st	ores)	Climatic Laboratory	
TRANSMISSION LINES	N76-25301	TURBINE BLADES	6-34244
Eight-terminal, bidirectional, fiber optic	trunk	Applied high temperature technology program,	
data bus [AD-A019429]	N76-24483	volume 1 niobium alloys for turbine bla [AD-A018637] N7	des 6-24262
TRANSORIC PLOW		Applied high temperature technology program.	
Airfoil section drag reduction at transonic by numerical optimization	speeds	Volume 2: Evaluation of coated columbian a for advanced turbine airfolls	Iloys
[SAE PAPER 760-477]	A76-31969	[AD-A018638] H7	6-24263
On the parabolic method and the method of l linearization in transonic flow	.ocal	TURBINE RUGINES Development of emissions measurement technique	es
	A76-33778	for afterburning turbine engines	
Some remarks on unsteady transonic flow unsteady aerodynamics	•	[AD-A019094] N7 TURBOCOMPRESSORS	6-24260
	N76-24148	On the reduction of compressor noise by means	of
Calculation of aerodynamic derivatives in u two-dimensional transonic flow using Dowe		helical detuners	6-24250
linearization method	N74 - 24 15 4	Transmission of circumferential inlet distort	ion
[AMS-1238-T] Airfoil design for a prescribed velocity	N76-24154	through a rotor	6-25188
distribution in transonic flow by an inte	_	Multiple segment parallel compressor model for circumferential flow distortion	
[DLR-IB-151-75/8] Transonic problems in rotor aerodynamics	N76-24180	The effect of turbulent mixing on the decay o	6-25189 £
	N76-24210 enomena	sinusordal inlet distortions in axial flow compressors	6-25190
-	N76-25298	An on-rotor investigation of rotating stall i	
TRANSONIC FLUTTER A note on transonic flow past a thin airfoi	.1	axial-flow compressor	6-25201
oscillating in a wind tunnel	A76-33365	Detailed flow measurements during deep stall axial flow compressors	ın
TRANSONIC SPEED		N7	6-25202
Comparative two and three dimensional trans testing in various tunnels	onic	The prediction of the behaviour of axial compressors near surge three dimensiona	1
TRANSONIC WIND TUNNELS	N76-25267	flow and rotating stall	6-25203
The computation of transonic flows past aer	ofoils	TURBOFAH AIRCRAFT	0 23203
in solid, porous or slotted wind tunnels	N76-25232	Ground proximity warning system testing	6-34242
Model systems and their implications in the		Investigation of feasible nozzle configuration	ns
operation of pressurized wind tunnels	N76-25248	for noise reduction in turbofan and turboje aircraft. Volume 1: Summary and selected	t
Design and construction of the alpha jet fl		multinozzle configurations	6 2022
model	N76-25249	[AD-A019645/1] Investigation of feasible nozzle configuration	6-24233 ns
The character of flow unsteadiness and its	1	for noise reduction in turbofan and turboje	t
<pre>influence on steady state transonic wind measurements</pre>	tunner	aircraft. Volume 2: Slot nozzle configura [AD-A019646/9] N7	6-24234
	N76-25256	TURBOFAN ENGINES The development testing of a short-haul	
Comment on results obtained with three ONER airplane calibration models in PPA transo wind tunnels		airframe/powerplant combination, the VPW 61	4/M45H 6-32633
	N76-25268	Possibilities of noise reduction for fan engi	
Noise level measurements on a quiet short h	aul	by means of controls	6-24251
turboprop transport de Havilland Dash propulsion		Multiple fault gas path analysis applied to a spool, mixed flow, variable geometry, turbo	
[SAE PAPER 760-455]	A76-31955	engine	
Civil transport technology up to 2000 - NAS believes fuel consumption is the major	A	[AD-A019183] N7 Chronology and analysis of the development of	6-24259
consideration		altitude performance and mechanical	
Study of the application of advanced techno	A76-32649	characteristics of a turbofan engine at the Arnold Engineering Development Center	
to laminar flow control systems for subso		[AD-A018691] N7	6-24261
transports. Volume 1: Summary [NASA-CR-144975]	N76-24144	TURBOPANS Aerodynamic performance of 0.4066-scale model	to
•		JT8D refam stage	6-24153

TURBOJET ENGINE CONTROL SUBJECT INDEX

On the calculation of fan noise high bypass ratio aircraft tyrbines	ULTRAHIGH FREQUENCIES Rotor effects on L-band signals received by
TURBOJET ENGINE CONTROL	248 helicopter antennas. Part 3: Measurements of
Possibilities of noise reduction for fan engines	the amplitude and phase distortions of CW signals (signal distortion during radio reception)
by means of controls	[AD-A019506] H76-24455 251 UHSTRADY PLOW
TURBOJET ENGINES	Unsteady hypersonic flow over delta wings with
Jet fuel handling and safety A76-35:	detached shock waves 222 A76-33719
Small, low-cost, expendable turbojet engine. 1:	A complete second-order theory for the unsteady
Design, fabrication, and preliminary testing [NASA-TM-X-3392] N76-24:	flow about an airfoil due to a periodic gust A76-34552
TURBONACHIBERY	Unsteady aerodynamics for example, in
Influence of unsteady flow phenomena on the design and operation of aero engines	h helicopters [AGARD-R-645] #76-24146
B76~25	171 Unsteady aerodynamic prediction methods applied in
Some current research in unsteady aerodynamics: report from the Pluid Dynamics Panel	A aeroelasticity H76-24147
TURBOPROP AIRCRAFT	
Noise level measurements on a quiet short haul	unsteady aerodynamics #76-24148
turboprop transport de Havilland Dash 7 STOP propulsion	Unsteady aerodynamics of helicopter blades #76-24149
[SAE PAPER 760-455] A76-31	955 Wind tunnel test techniques for the measurement of
TURBULERT BOURDARY LAYER Calculation of compressible turbulent boundary	unsteady airloads on oscillating lifting systems and full-span models
layers on straight-tapered swept wings	E76-24150
A76-32 A finite difference method for the calculation of	587 Calculation of aerodynamic derivatives in unsteady two-dimensional transonic flow using Dowell's
three-dimensional boundary layers on swept wing: N76-24	linearization method
Theoretical analysis and prediction methods for a	Approximate method of calculating the interaction
three-dimensional turbulent boundary layer exemplified for infinite swept wings	of finite-span airfoils in unsteady motion above a solid surface
[ESA-TT-238] N76-24	182 [AD-A019222] N76-24190
TURBULENT FLOW Systematical investigations of the influence of	Influence of unsteady flow phenomena on the design and operation of aero engines
wind tunnel turbulence on the results of model force-measurements	N76-25171
N76-252	Some current research in unsteady aerodynamics: A report from the Fluid Dynamics Panel
TURBULENT MIXING The effect of turbulent mixing on the decay of	N76-25192 Some aspects on unsteady flow past airfoils and
sinusoidal inlet distortions in axial flow	cascades
compressors N76-25	N76-25193 190 A cascade in unsteady flow
TURBULENT WAKES Characteristics of turbulent wakes behind rotating	ที่ 76-25194
rotor blades	cascade to a time-variant supersonic inlet flow
TWO DIMENSIONAL PLOW	952 field N76-25195
Calculation of aerodynamic derivatives in unsteady	Preliminary results for single airfoil response to
two-dimensional transonic flow using Dowell's linearization method	large nonpotential flow disturbances considering turbocompressor inlet flow
[AMS-1238-T] N76-24 Inlet spillage drag tests and numerical flow-field	
analysis at subsonic and transonic speeds of a	axial-flow compressor
1/8-scale, two-dimensional, external-compression, variable-geometry,	N76-25201 The character of flow unsteadiness and its
supersonic inlet configuration	influence on steady state transonic wind tunnel
[NASA-CR-2680] N76-242 Two-dimensional tunnel wall interference for	N76-25256
multi-element aerofoils in incompressible flow M76-252	Unsteady aerodynamic flow field analysis of the space shuttle configuration. Part 4:
Plight measurements of helicopter rotor aerofoil	747/orbiter aeroelastic stability
characteristics and some comparisons with two-dimensional wind tunnel results	[NASA-CR-144335] N76-25331 UNSTRADY STATE
N76-252	Unsteady aerodynamic prediction methods applied in
IJ	aeroelasticity N76-24147
UH-1 HELICOPTER	UNSWEPT WINGS Technical and economic assessment of
Mechanical function and engine performance for the Army UH-1 H helicopter in the AIDAPS program	span-distributed loading cargo aircraft concepts
Automatic Inspection, Diagnostic and Prognostic	URBAN RESEARCH
Systems	Flying without doing harm aircraft approach and takeoff noise abatement techniques
The development of an advanced anti-icing/deicing	A76-34661
capability for US Army helicopters. Volume 2: Ice protection system application to the UH-1H	11
helicopter [AD-A019049] N76-242	V 230 V/STOL AIRCRAPT
UH-60A RELICOPTER	Engine and jet induced effects of a lift plus
Crashworthiness design features for advanced utility helicopters	lift-cruise V/STOL aircraft A76-32631
A76-34*	Inlets for high angles of attack
Crashworthiness of the Boeing Vertol OTTAS	A76-33121
A76-34	138

SUBJECT INDEX WIED TOHBEL TESTS

Interference problems in V/STOL testing at low speeds	VORTICITY Visual study of the three-dimensional flow pattern
N76-25251 Comparison of model and flight test data for an	at a delta wing in subsonic flow A76-33869
augmentor-wing STOL research aircraft N76-25292	Persistence and decay of wake vorticity N76-25283
Correlation of low speed wind tunnel and flight test data for V/STOL aircraft	VULHERABILITY Explosion proofing H-53 range extension tank [ND-No18353] N76-25158
N76-25293 Plight measurements of the longitudinal aerodynamic characteristics of a vectored thrust	W
aircraft (HS-P1127) throughout the transition (V/STOL aircraft)	WAKES
#76-25296 WARIATIONAL PRINCIPLES Singular perturbation methods for variational	Persistence and decay of wake vorticity N76-25283 WARNING SYSTEMS
problems in aircraft flight	Ground proximity warning system testing
VC-10 AIRCRAFT Comments on wind tunnel/flight comparisons at high	WATER LANDING Crashworthiness in emergency ditching of general
angles of attack based on BAC one-eleven and VC10 experience	aviation aircraft A76-34140
VELOCITY DISTRIBUTION	
Airfoil design for a prescribed velocity	WEDGES
distribution in transonic flow by an integral method	An experimental investigation of supersonic flow past a wedge-cylinder configuration
[DLR-IB-151-75/8] H76-24180 VERTICAL TAKEOFF AIRCRAFT	WRIGHT ANALYSIS
A review of some tilt-rotor aeroelastic research at NASA-Langley	The design and development of a military combat aircraft. II - Sizing the aircraft
A76-33795 Static vibration tests for resolving aeroelastic	Weight prediction methods ~ GRUGEW program
problems of V/STOL rotary wing aircraft 876-24212	
VIBRATION MODE Unusual pitch and structural mode testing of the B-1	
VIBRATION TESTS A76~32629	Airfoil response to an incompressible skewed gust
Investigation of the stressed state of panels subjected to wide-band acoustic loads	of small spanwise wave-number A76-33725
resonant vibration of aircraft structures A76-33516 Static vibration tests for resolving aeroelastic	airplane calibration models in FPA transonic
problems of V/STOL rotary wing aircraft N76-24212	
VIDEO COMMUNICATION Video tape presentation of passenger safety information	WIND TUBBEL MODELS The use of carbon fibre-reinforced plastics in the construction of wings for testing in wind tunnels
VISCOUS FLUIDS	N76-32655 Systematical investigations of the influence of
Law of cross sections for the three-dimensional boundary layer on a thin-section wing in hypersonic flow	wind tunnel turbulence on the results of model force-measurements N76-25259
VOICE COMMUNICATION A76~33854	
NASA study of an automated Pilot Advisory System [SAE PAPER 760-460] A76-31958	wind tunnels
VORTEX BREAKDOWN Persistence and decay of wake vorticity	Some aeroelastic distortion effects on aircraft and wind tunnel models
W76-25283	H76-25278 WIND TURNEL TESTS
On mathematical simulation of separated flow past a wing and breakup of a wortex sheet in an ideal	A note on transonic flow past a thin airfoil oscillating in a wind tunnel A76-33365
fluid A76-34693 Further development of the panel method. Part 1:	Wind tunnel test techniques for the measurement of unsteady airloads on oscillating lifting systems
NONLinear panel method considering discrete separated vortex sheets on swept slender wing shapes	and full-span models #76-24150 Wind tunnel investigation of Macelle-Airframe
[MBB-UPE-1070-0] M76-2417: Preliminary results for single airfoil response to large nonpotential flow disturbances	nterference at Mach numbers of 0.9 to 1.4-force data [NASA-TH-X-62489] N76-25143
considering turbocompressor inlet flow W76-25198	Wind tunnel design studies and technical evaluation of advanced cargo aircraft concepts
VORTICES 'Spilled' leading-edge vortex effects on dynamic stall characteristics	[MASA-CE-148149] N76-25156 A low-correction wall configuration for airfoil testing
A76-33120 On the vortex-induced loading on long bluff cylinders	
N76-24177 The relationships between a wing and its initial trailing vortices	
W76-2514! Persistence and decay of wake vorticity	
B76-25283	8 model 876-25249

WIND TUNNEL WALLS SUBJECT INDEX

Magnetic suspension techniques for large scale aerodynamic testing	WIND TUNNELS Development of the United Technologies Research
N76-25250 Interference problems in V/STOL testing at low speeds	Center acoustic research tunnel and associated test techniques N76-25279
N76-25251 The removal of wind tunnel panels to prevent flow breakdown at low speeds	Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation
N76-25252 VSTOL wind tunnel model testing: An experimental assessment of flow breakdown using a multiple fan model	characteristics utilizing 0.0125-scale models (48-0/AX1318X-1) in the LTV 4 x 4 foot high speed wind tunnel (CA26), volume 1 [NASA-CR-144612] N76-25322
N76-25253 Further evidence and thoughts on scale effects at high subsonic speeds	Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation
N76-25254 The character of flow unsteadiness and its influence on steady state transonic wind tunnel measurements	characteristics utilizing 0.0125-scale models (48-0/AX13181-1) in the LTV 4 x 4 foot high speed wind tunnel (CA26), volume 2 [NASA-CR-144613] N76-25323
N76-25256 Comparative two and three dimensional transonic testing in various tunnels	Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation
Special wind tunnel test techniques used at AEDC N76-25270	characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4-foot high speed wind tunnel (CA26), volume 3
Dynamic simulation in wind tunnels, part 1 N76-25275	[NASA-CR-144614] N76-25324 Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test
Plight measurements of helicopter rotor aerofoil characteristics and some comparisons with two-dimensional wind tunnel results	configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4 foot high
Experience in predicting subsonic aircraft characteristics from wind tunnel analysis	speed wind tunnel (CA26), volume 4 [NASA-CR-144615] N76-25325
N76-25289 Comments on wind tunnel/flight comparisons at high angles of attack based on BAC one-eleven and VC10 experience	Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models
N76-25290 Comparison of model and flight test data for an augmentor-wing STOL research aircraft N76-25292	(48-0/AX1318I-1) in the LTV 4 x 4 foot high speed wind tunnel (CA26), volume 5 [NASA-CR-144616] N76-25326 WING LOADING
Correlation of low speed wind tunnel and flight test data for V/STOL aircraft N76-25293	Technical and economic assessment of span-distributed loading cargo aircraft concepts [NASA-CR-144963] N76-25157
A brief flight-tunnel comparison for the Hunting H 126 jet flap aircraft N76-25294	WING PLANFORMS The use of carbon fibre-reinforced plastics in the construction of wings for testing in wind tunnels
Comparison of aerodynamic coefficients obtained from theoretical calculations, wind tunnel tests, and flight tests data reduction for the	WING PROFILES On the parabolic method and the method of local
Alpha Jet aircraft N76-25295 Comments on some wind tunnel and flight experience	linearization in transonic flow A76-33778 WING ROOTS
of the post-buffet behaviour of the Harrier aircraft N76-25297	Wind tunnel measurements at M=1.6 of the aerodynamic effects of a root gap on a control surface of square planform mounted on a body
Flight/tunnel comparison of the installed drag of wing mounted stores on the Buccaneer aircraft R76-25300 Comments on wind tunnel/flight correlations for	[RAE-TM-AERO-1641] N76-24173 WING SPAN Approximate method of calculating the interaction of finite-span airfoils in unsteady motion above
external stores jettison tests on the F 104 S and G 91 Y aircraft	a solid surface [AD-A019222] N76-24190
N76-25302 Analysis of the comparison between flight tests results and wind tunnel tests predictions for subsonic and supersonic transport aircraft	WING TIPS Static and fatigue tests of F-111B boron wing tip [AD-A018751] B76-24370 WINGS
N76-25303 Results of an experimental investigation to	Investigation of the mutual interference of wing/engine combinations
determine separation characteristics for the Orbiter/747 using a 0.0125-scale model (48-0 AI1318I-1 747) in the Ames Research center	[RSA-TT-217] H76-24184 The relationships between a wing and its initial trailing vortices
14-foot wind tunnel (CA23B), volume 1 [NASA-CR-144603] Results of an experimental investigation to determine separation characteristics for the	B76-25145 A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft
Orbiter/747 using a 0.0125-scale model (48-0 AX13181-1 747) in the Ames Research Center 14-foot wind tunnel (CA23B) [WASA-CR-144604] #76-25334	[MASA-CR-144950] H76-25146 Flight/tunnel comparison of the installed drag of Wing mounted stores on the Buccaneer aircraft H76-25300
WIND TUNNEL WALLS Influence function method in wind tunnel wall interference problems	WORK CAPACITY An alternative to the helicopter sidewall howercraft for shore base-offshore personnel
Two-dimensional tunnel wall interference for multi-element aerofoils in incompressible flow	transfers . A76-32198
N76-25233 A low-correction wall configuration for airfoil testing	
#76-2523U	

N76-25234

PERSONAL AUTHOR INDEX

AERONAUTICAL ENGINEERING / A Special Bibliography (Suppl 74)

SEPTEMBER 1976

N76-25267

Typical Personal Author Index Listing

PERSONAL AUTHOR

ANGLIN, B. L.

Pree-flight model investigation of a vertical-attitude VTOL fighter with twin vertical tails

[NASA-TN-D-8089]

TITLE

REPORT NUMBER

NUMBER

Listings in this index are arranged alphabetically by personal author. The title of the document provides the user with a brief description of the subject matter. The report number helps to indicate the type of document cited (e.g. NASA report translation NASA contractor report). The accession number is located beneath and to the right of the title e.g. N76, 11042. Under any one author's name the accession numbers are arranged in sequence with the IAA accession numbers appearing first.

A	
ABRAMS, R. Joint contractor - Air Porce flight test pr	ograms A76-34234
The U.S.A.F./Rockwell B-1 flight test progr progress report - Relationship of test objectives to operational requirements	
ADABCZYK, J. J.	A76-34235
The passage of a distorted velocity field t a cascade of airfoils	hrough
ADAHCZYK, T. J.	N76-25199
Crashworthy fuel systems	A76-34165
ADAMS, C. W. The relationships between a wing and its in	itial
trailing wortices	N76-25145
ADLER, D. The prediction of the behaviour of axial	
Compressors near surge	N76-25203
ADOLPH, C. A. Joint contractor - Air Porce flight test pr	ograms A76-34234
ALPARO-BOU, E. Simulation of aircraft crash and its valida	tion A76-34157
ALIC, J. A.	A/0-34 13/
Fracture in thin sections [SAE PAPER 760-452] ALLEB, A. C.	A76-31953
Design, development and flight test of the Citation thrust reverser	Cessna
	A76-31963
Reliability assessment of modified fielded aircraft using the Bayesian technique	
	N76-24225
Eight-terminal, bidirectional, fiber optic data bus	trunk
	N76-24483
Video tape presentation of passenger safety information	
	A76-32232
Airfoil response to an incompressible skewe of small spanwise wave-number	d gust
	A76-33725

ABGBL, R.	
Air driven ejector units for engine simulate wind tunnel models	tion in
	¥76-25239
APARISOV, V. A. On mathematical simulation of separated flo	nw nagt
a wing and breakup of a vortex sheet in a	
ARMEM, H., JR.	176-34693
Monlinear finite element techniques for air	craft
crash analysis	A76-34159
ARHOLD, D. B.	¥10-24 (23
Development of lightweight fire retardant,	
low-smoke, high-strength, thermally stable aircraft floor paneling	re
f WA CA_CO_107750 1	N76-24365
ARHOLD, J. R. Army preliminary evaluation YAH-IQ helicopt a flat-plate canopy [AB-2020413]	ter with
a flat-plate canopy	
[AD-A020111] ATASSI, H.	N76-25160
A complete second-order theory for the unst flow about an airfoil due to a periodic	eady
flow about an airfoil due to a periodic of	just A76-34552
ATHABS, H.	
The stochastic control of the P-8C aircraft the Multiple Model Adaptive Control (MMAC	: using :) method
[NASA-CR-148100]	N76-25211
•	
В В	
BAHR, D. W. Development of emissions measurement techni	anes
for afterburning turbine engines	_
[AD-A019094] BAINBRIDGE, R. L.	N76-24260
Crashworthiness of the Boeing Vertol UTTAS	
BALENA, P. J.	A76-34138
Sonic environment of aircraft structure imm	ersed
in a supersonic jet flow stream [NASA-CR-144996]	#76-25168
BALIS-CREBA, L.	
Structural optimization in aeroelastic cond	iitions 176-34486
BALSA, T. P.	210 51100
The far field of high frequency convected singularities in sheared flows, with an	
application to jet-noise prediction	
BARBANTINI, B.	A76-32545
Comments on wind tunnel/flight correlations	
external stores jettison tests on the P 1 and G 91 Y aircraft	104 S
and 6 31 1 afficiant	N76-25302
BARDAUD, J. Analysis of the comparison between flight t	octe
results and wind tunnel tests predictions	for
subsonic and supersonic transport aircraft	t N76-25303
BARNES, S. R.	
An investigation of RPV control criteria vi optimal regulator performance index	a the
[AD-A019846]	N76-25209
BARNETTE, D. W.	. flor
An experimental investigation of supersonic past a wedge-cylinder configuration	. 1104
[WASA-CR-147741]	N76-25148
BAZIN, M. Comparative two and three dimensional trans	onic
testing in various tunnels	

BECKER, W. E. PERSONAL AUTHOR INDEX

Signature of appercanic flow past October 1978 1	BBCKER, W. B. Havy jet trainer (VTX) conceptual design s	studies	BUCCIANTINI, G., Comments on wind tunnel/flight correlation	ns for
On Authoriting Casedoms On O	[-AD-A018779]		external stores jettison tests on the F	
BENOMERON SALE A. R. TFG-25197 On astheathcal simulation of separated flow past at algo and breakup of a vorter sheet in an ideal fluid AF6-13693 BENCER, D. P. Wind tunnel investigation of Escelle-Airframe interference at Each sumbers of 0.9 to 1.4-force [MA3-TF-1-62897] and tunnel investigation of Escelle-Airframe interference at Each sumbers of 0.9 to 1.4-force [MA3-TF-1-62898] are summer of 0.9 to 1.4-force [MA3-TF-1-62897] and tunnel investigation of Macelle-Airframe interference at Each sumbers of 0.9 to 1.4-force [MA3-TF-1-62897] are summer of	On the analysis of supersonic flow past			N76-25302
On antheastical similation of separated flow past a wing and breaking of a vorters sheet in an sheal related a vising and breaking of a vorters sheet in an sheal related to a vising and breaking of a vorters sheet in an sheal related to a vising and breaking of a vorters sheet in an sheal related to the r	-	N76-25197	Engineering evaluation JOH-58A helicopter	with an
MRCEER, D. P. Wind tunnel investigation of Sacelle-Airfrase interference at Each numbers of 0.9 to 1.4-force [MAS-TR-1-6289] First tunnel investigation of Maccelle-Airfrase interference at Each numbers of 0.9 to [MAS-TR-1-73088] First tunnel investigation of Maccelle-Airfrase interference at Each numbers of 0.9 to [MAS-TR-1-73088] First tunnel investigation of Maccelle-Airfrase interference at Each numbers of 0.9 to [MAS-TR-1-73088] First tunnel investigation of Maccelle-Airfrase interference at Each numbers of 0.9 to [MAS-TR-1-73088] First tunnel investigation of Maccelle-Airfrase interference at Each numbers of 0.9 to [MAS-TR-1-73088] First tunnel investigation of Maccelle-Airfrase interference at Each numbers of 0.9 to [MAS-TR-1-73088] First tunnel investigation of Maccelle-Airfrase interference at Each numbers of 0.9 to [MAS-TR-1-73088] First tunnel investigation of Maccelle-Airfrase interference at Each numbers of 0.9 to [MAS-TR-1-73088] First tunnel investigation of Maccelle-Airfrase interference at Each numbers of 0.9 to [MAS-TR-1-73088] First tunnel investigation of Maccelle-Airfrase interference at Each numbers of 0.9 to [MAS-TR-1-73088] First tunnel investigation of Maccelle-Airfrase interference at Each numbers of 0.9 to [MAS-TR-1-73088] First tunnel investigation of Maccelle-Airfrase interference at Each numbers of 0.9 to [MAS-TR-1-73088] First tunnel investigation of Maccelle-Airfrase interference at Each numbers of 0.9 to Investigation of Maccelle-Airfrase interference at Each numbers of 0.9 to Investigation of Maccelle-Airfrase Investigation of Macce	On mathematical simulation of separated fl		[AD-A019407]	N76-25161
Find tunnel investigation of Bacelle-Airframe Interference at Rich unders of 0.9 to 1.4-force Interference at Rich unders of 0.9 to 1.4-force INTERFERENCE AT RICHARD STREET CONTROL OF BREEZIAN AND AND AND AND AND AND AND AND AND A				ach
materference at Rich numbers of 0.9 to 1.4-force data				
BRISTIES JOINT STATES AND THE STATES	interference at Mach numbers of 0.9 to 1		purpose test vehicle for atmospheric res	search
1.4pressure data, volume 2	Wind tunnel investigation of Nacelle-Airfr		Business jet approach noise abatement tech	nniques -
DRIBBITION T. D. DRIBBITION TO A STRUCTURE BOOK testing of the B-1 DRIBBITION TO A STRUCTURE BOOK THE	1.4-pressure data, volume 2	*3 5 054**	[SAE PAPER 760-463]	A76-31961
BREETT, J. Stud of the application of advanced technologies transports. Volume 1: Summary 876-24144 Study of the application of advanced technologies transports. Volume 2: Summary 876-24144 Study of the application of advanced technologies transports. Volume 2: Amalyzing 876-24144 Study of the application of advanced technologies transports. Volume 2: Amalyzing 876-24145 SERSON, 7. P. Engineering cvaluation JOS-58A helicopter with an (MAD-1019A)71 Aircraft communications interference tests (AD-102559/2) SERSISTER, 8. J. Aircraft communications interference tests (AD-102559/2) STEMBINITY study of propeller design for general aviation by numerical optimization (AD-1019A)71 SINOS, 7. N., JR. 3pecial viaid tunnol test techniques used at AEC Notice 2: Structural design 876-25270 SINOS, 8. S., JR. Senlistic evaluation of landing gear shinny stabilization by test and analyzis (AD-20259/CAR) SINOS, S.		N76-25144		ides - A
to leanner flow control systems for subsonary (*MSA-Ch-1sw975) Study of the application of advanced technologies to leanner-flow control systems for subsonary transports. Volume 2: Manlyses BBHSSN, 7. P. Hayneser, 10 control systems for subsonary transports. Volume 2: Manlyses BBHSSN, 7. P. Hayneser, 10 control systems for subsonary transports. Volume 2: Manlyses BBHSSN, 7. P. Hayneser, 10 control systems for subsonary transports. Volume 2: Manlyses BBHSSN, 7. P. Hayneser, 10 control systems for subsonar transports. Volume 2: Manlyses BBHSSTH, 5. Progressions with an automatic relight system atomatic relight system atomati				
**Study of the application of advanced technologies to lazuanr-flow control systems for subsonic transports. Volume 2: Analyses more trans	Study of the application of advanced techn to laminar flow control systems for subs		The design and development of a military of	
[HASA-CR-134949] B76-24145 BENDEN, T. P. BEN	[NASA-CR-144975] Study of the application of advanced techn	ologies		combat and control
BRESON, 7. P. Bagineering evaluation JOB-58A helicopter with an automatic relight system (AD-A019(07) BTO-25161 BRESISTEN, J. BRESISTEN, J. COMMINICATION SINTERFERENCE tests (AD-A019(07) BTO-25161 BRESISTEN, J. Peasibility study of propeller design for general aviation by numerical optimization (SEE PAPER 760-498) A76-31970 BRINION, T. W., JR. Special vind tunnel test techniques used at ABDC Special vind tunnel test techniques used at ABDC Notice (SEE PAPER 760-498) BRINION, T. W., JR. Single stage, low noise, advanced technology fan. Volume 2: Structural design (RASA-CR-134802) 876-2237 BRINION, D. II. Video tape presentation of landing gear shimmy received and analysis A76-31975 BLOR, D. II. Video tape presentation of passenger safety information A76-32265 BLOR, J. H. D. Experience in predicting subsonic aircraft construction (ADD-2018) A76-32267 CARPENTER, J. L., JR. BYTO-25289 BOBHRER, R. V. Pland-dynasic lift: Practical information on aerodynasic and hydrodynasic lift A76-32576 BRINES, W. H. Calculation of compressible turbulent boundary layers on straight-tapered swept wings A76-32587 BRINES, W. H. Advanced fighter control techniques A76-32587 BRINES, W. H. Advanced fighter control techniques A76-3267 BRONERBOOD, P. Plaght seasurements of helicopter rotor aerofoil characteristics and some comparisons with two-dimensional wind tunnel results (APC-25151) BROWERBOOD, P. Plaght seasurements of helicopter rotor aerofoil characteristics and some comparisons with two-dimensional supersonic flow fare-cancel flow past aerofoil characteristics and some comparisons with two-dimensional supersonic flow fare-cancel flow past aerofoil characteristics and some comparisons with two-dimensional supersonic flow fare-cancel flow past aerofoil characteristics and some comparisons with the comparison of transminal supersonic flow fare-cancel flow past aerofoil characteristics and some comparisons with the comparison of transminal supersonic flow fare-cancel flow past aerofoil characteristics and some comparisons with the comp			BURNSIDE, J. V.	A/0-33945
Autonatic relight system (AD-101907] N76-25161	BENSON, T. P.		low-smoke, high-strength, thermally state	, ole
BERBSTEIN, J. Aircraft communications interference tests (AD-M022954/2) BERBSTEIN, S. Feasibility study of propeller design for general aviation by numerical optimization A76-31970 BINOR T. BI	automatic relight system			N76-24365
BRENSTRING. BRENSTRING. Feasibility study of propeller design for general aviation by numerical optimization (SAE PIPER 760-478) BINION, T. W., JR. Singular perturbation methods for variational problems in aircraft flight A76-33305 CARISER, A. J. Singular perturbation methods for variational problems in aircraft flight A76-33305 CARISER, A. J. Singular perturbation methods for variational problems in aircraft flight A76-33305 CARISER, A. J. Singular perturbation methods for variational problems in aircraft flight A76-33259 CARISER, A. J. Singular perturbation methods for variational problems in aircraft flight A76-33259 CARISER, A. J. Singular perturbation methods for variational problems in aircraft flight A76-33259 CARISER, A. J. Singular perturbation methods for variational problems in aircraft flight A76-33259 CARISER, A. J. Singular perturbation methods for variational problems in aircraft flight A76-33259 CARISER, A. J. Singular perturbation methods for variational problems in aircraft flight A76-33259 CARISER, A. J. Singular perturbation methods for variational problems in aircraft flight A76-33259 CARISER, A. J. Singular perturbation methods for variational problems in aircraft flight A76-33259 CARISER, A. J. Singular perturbation methods for variational problems in aircraft flight A76-33259 CARBOLIA, B. L. CIABROVIA, R. J. CARBOVIA, R. J. CARB		N76-25161	r	
PRESERTERY, S. Peasibility study of propeller design for general aviation by numerical optimization (SAE PAPER 760-478)	Aircraft communications interference tests		-	
A aviation by numerical optimization [SAE PAPER 760-478] BLACK, G. B. Shugle stage, low noise, advanced technology fan. Volue 2: Structural design Volue 2: Structural design Realistic evaluation of landing gear shimpy stabilization by test and analysis Shull stage presentation of passenger safety Information A76-32322 BLOK, R. J. R. D. Experience in predicting subsonic aircraft characteristics from wind tunnel analysis Practure analyses involving materials of aircraft Construction A76-32165 BOBENT, R. V. Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift: A76-3267 BRADSIMP, P. Calculation of compressible turbulent boundary layers on straight—tapered svept wings BRADSIMP, P. Calculation of compressible turbulent boundary layers on straight—tapered svept wings BRADSIMP, P. Calculation of compressible turbulent boundary layers on straight—tapered svept wings BRADSIMP, P. Calculation of compressible turbulent boundary layers on straight—tapered svept wings BRADSIMP, P. Calculation of compressible turbulent boundary layers on straight—tapered svept wings BRADSIMP, P. Calculation of compressible turbulent boundary layers on straight—tapered svept wings BRADSIMP, P. Calculation of compressible turbulent boundary layers on straight—tapered svept wings BRADSIMP, P. Calculation of compressible turbulent boundary layers on straight—tapered svept wings BRADSIMP, P. Calculation of compressible turbulent boundary layers on straight—tapered svept wings BRADSIMP, P. Calculation of compressible turbulent boundary layers on straight—tapered svept wings BRADSIMP, P. Calculation of compressible turbulent boundary layers on straight—tapered svept wings BRADSIMP, P. Calculation of compressible turbulent boundary layers on straight—tapered svept wings BRADSIMP, C. CARBENTIE, B. L. CABBOMABO, M. Interference problems in V/5701 testing at low utility helicopters CARBELL, B. L. CABBOMABO, M. Interference problems in V/5701 testing at low utility helicopters CARBELL, B. L. CARBELL, B. L.	BERNSTEIN, S.		Singular perturbation methods for variation	nal
SHIFOR, T. W., JR. Special wind tunnel test techniques used a ABDC NF6-25270 BLACK, G. R. Single stage, low noise, advanced technology fan. Volume 2: Structural design [NAS-CR-134962] NF6-2427 BLACK, R. J. Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] NF6-2427 BLOR, D. I. Video tape presentation of passenger safety information A76-32232 BOBHHER, R. Fracture analyses involving materials of aircraft construction COMPETER Construction A76-32165 BORST, R. V. Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift A76-32167 BOLHHOV, V. M. Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow 1 A76-3257 BELOHADSHAP, P. Calculation of compressible turbulent boundary layers on straight-tapered swept wings BRINENS, W. B. Advanced fighter control techniques Characteristics and some comparisons with towned results of altack towned and some comparisons with inclined lateral jets A76-32570 CARBOHADO, B. Interference problems in V/STOL testing at low speeds N76-25251 CARPENTER, B. Interference problems in V/STOL testing at low speeds N76-25251 CARPENTER, B. Interference problems in V/STOL testing at low speeds N76-25251 CARPENTER, B. Interference problems in V/STOL testing at low speeds N76-25251 CARPENTER, B. Interference problems in V/STOL testing at low speeds N76-25251 CARPENTER, B. Interference problems in V/STOL testing at low speeds N76-25251 CARPENTER, B. Interference problems in V/STOL testing at low speeds N76-25251 CARPENTER, B. Interference problems in V/STOL testing at low speeds N76-25251 CARPENTER, B. Interference problems in V/STOL testing at low speeds N76-25251 CARPENTER, B. Interference problems in V/STOL testing at low speeds N76-25251 CARPENTER, B. Interference problems in V/STOL testing at low speeds N76-25251 CARPENTER, B. Interference problems in V/STOL testing at low speeds N76-25251 CARPENTER, B. Interference problems in V/STOL testing at low speeds N76-2537		general	problems in aircraft flight	A76-33305
NATE-25270 BLACK, G. R. Single stage, low noise, advanced technology fan. Volume 2: Structural design [NASA-CR-134802] BLACK, R. J. Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAR PAPPER 760-496] BLOM, D. I. Video tape presentation of passenger safety information A76-32125 BLOM, J. H. D. Experience in predicting subsonic aircraft characteristics from wind tunnel analysis Construction A76-32165 BORST, R. V. Pluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift A76-32167 BOLHKOV, V. M. Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow 1 A76-32167 BRADSHAW, P. Calculation of compressible turbulent boundary layers on straight-tapered swept wings layers on straight-tapered swept wings RAFG-32627 BROTHERHOOD, P. Flight measurements of helicopter rotor aerofoil characteristics and some comparisons with two-dimensional wind tunnel results N76-2517 CASINDLIN, G. CASIN	[SAE PAPER 760-478]	A76-31970		ets
Single stage, low noise, advanced technology fan. Volume 2: Structural design (NASA-CR-134802) BLACK, R. J. Realistic evaluation of landing gear shimsy stabilization by test and analysis (SAP PAPER 760-496) BLOB, D. I. Video tape presentation of passenger safety information Characteristics from wind tunnel analysis Characteristics from wind tunnel analysis BOBHRER, B. Fracture analyses involving materials of aircraft construction A76-32165 BOBST, H. V. Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift A76-32167 BOEHROV, V. B. Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow 1 A76-3267 BROTHERHOOD, P. BROTHERHOOD, P. Flight measurements of helicopter rotor aerofoil characteristics and some comparisons with two-dimensional wind tunnel results INF6-2517 CARRELL, B. L. CARBENTER, J. L., JR. Hydrogen embrittlement of structural alloys. A technology survey. A76-32232 CARR, K. CARBELL, B. L. CARBELL, B. L. CARBENTER, J. L., JR. Hydrogen embrittlement of structural alloys. A technology survey. ENGAPER, R. COMMENTS on mathematical modelling of external store release trajectories including comparison with flight data STAG-32167 A76-32167 CARRELL, B. L. CARRELL B. L.	Special wind tunnel test techniques used a		CARRONARO. M.	A76-32596
Volume 2: Structural design [NASA-CR-134802] N76-24237 BLACK, R. J. Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAP PAPPR 760-496] A76-31975 BLOB, D. I. Video tape presentation of passenger safety information 176-32232 BLOB, J. H. D. Experience in predicting subsonic aircraft characteristics from wind tunnel analysis BORHER, H. Fracture analyses involving materials of aircraft construction A76-32165 BORST, H. V. Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift A76-32167 BOZHKOV, V. H. Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow past layers on straight-tapered swept wings BROTHERHOOD, P. Flight measurements of helicopter rotor aerofoil characteristics and some comparisons with two-dimensional wind tunnel results N76-2527 CARPENTER, J. L., JR. Hydrogen embrittlement of structural alloys. A technology survey [NASA-CR-134962] N76-25375 CABPENTER, J. L., JR. Hydrogen embrittlement of structural alloys. A technology survey [NASA-CR-134962] N76-25375 CARPENTER, J. L., JR. Hydrogen embrittlement of structural alloys. A technology survey [NASA-CR-134962] N76-25375 CABPENTER, J. L., JR. Hydrogen embrittlement of structural alloys. A technology survey [NASA-CR-134962] N76-25375 CARPENTER, J. L., JR. Hydrogen embrittlement of structural alloys. A technology survey [NASA-CR-134962] N76-25375 CABPENTER, J. L., JR. Hydrogen embrittlement of structural alloys. A technology survey [NASA-CR-134962] N76-25375 CABPENTER, J. L., JR. Hydrogen embrittlement of structural alloys. A technology survey [NASA-CR-134962] N76-25375 CABPENTER, J. L., JR. Hydrogen embrittlement of structural alloys. A technology survey [NASA-CR-134962] N76-25375 CABPENTER, J. L., JR. Hydrogen embrittlement of structural alloys. A technology survey [NASA-CR-134962] N76-25301 CABPENTER, J. L. A particular and			Interference problems in V/STOL testing at	: low
Realistic evaluation of landing gear shimmy stabilization by test and analysis [SAE PAPER 760-496] A76-31975 BLOH, D. I. Video tape presentation of passenger safety information A76-3232 BLOH, J. H. D. Experience in predicting subsonic aircraft characteristics from wind tunnel analysis N76-25289 BORHERR, H. Fracture analyses involving materials of aircraft construction A76-32165 BORST, H. V. Pluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift A76-32167 BOZHKOV, V. H. Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow layers on straight-tapered swept wings layers on straight-tapered swept wings at A76-3267 BRADSHAW, P. Calculation of compressible turbulent boundary layers on straight-tapered swept wings A76-3267 BROTHERHOOD, P. Plight measurements of helicopter rotor aerofoil characteristics and some comparisons with two-dimensional wind tunnel results Crashworthiness design features for advanced untility helicopters A76-34137 CAMPERTER, J. L., JR. Hydrogen embrittlement of structural alloys. A technology survey [N76-25375 CARR R. Hydrogen embrittlement of structural alloys. A technology survey [N76-25375 CARR R. Hydrogen embrittlement of structural alloys. A technology survey [N76-25375 CARR R. Hydrogen embrittlement of structural alloys. A technology survey [N76-25375 CARR R. Hydrogen embrittlement of structural alloys. A technology survey [N76-25375 CARR R. Hydrogen embrittlement of structural alloys. A technology survey [N76-25375 CARR R. Hydrogen embrittlement of structural alloys. A technology survey [N76-25375 CARR R. Hydrogen embrittlement of structural alloys. A technology survey [N76-25375 CARR R. Hydrogen embrittlement of structural alloys. A technology survey [N76-25375 CARR R. Hydrogen embrittlement of structural alloys. A technology survey [N76-25375 CARR R. Hydrogen embrittlement of structural alloys. A technology survey [N76-25301 CARR R. Hydrogen embrittlement of structural alloys. A technology sur		gy ran.	speeds	N76-25251
Realistic evaluation of landing gear shammy stabilization by test and analysis (SAE PAPER 760-496] A76-31975 BLOB, D. I. Video tape presentation of passenger safety information A76-3232 BLOB, J. H. D. Experience in predicting subsonic aircraft characteristics from wind tunnel analysis construction A76-32589 BOEHBER, H. V. Practure analyses involving materials of aircraft construction A76-32165 BOEST, H. V. Pluid-dynamic and hydrodynamic lift A76-32167 BOEKBOY, V. H. Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow at a delta wing in subsonic flow layers on straight-tapered swept wings layers on straight-tapered swept wings A76-32587 BROTHERHOOD, P. PROTHERHOOD, P. Plight measurements of helicopter rotor aerofoil characteristics and some comparisons with two-dimensional wind tunnel results A76-2517 A76-25187 CAPPENTER, J. L., JR. Hydrogen embrittlement of structural alloys. A rechology survey [NASA-CR-134962] N76-25375 CAPPENTER, J. L., JR. Hydrogen embrittlement of structural alloys. A rechology survey [NASA-CR-134962] N76-25375 CAPPENTER, J. L., JR. Hydrogen embrittlement of structural alloys. A rechology survey [NASA-CR-134962] N76-25375 CAPPENTER, J. L., JR. CARPENTER, J. L., JR. Hydrogen embrittlement of structural alloys. A rechology survey [NASA-CR-134962] N76-25375 CAPPENTER, J. L., JR. CARPENTER, J. L., JR. CARPENTER, J. L., JR. CHAPSICE (SASA-CR-134962] N76-25375 CAPPENTER, J. L., JR. CARPENTER, J. L., JR. CARPSTONERS (NASA-TT-F-174991] N76-25301 CAPPER TR. CARPENTER, J. L., JR. CARPENTER, J. L., JR. CARPENTER, J. L., JR. Lechnology survey [NASA-TT-F-174962] N76-25010 CAPPENT IN A SASTATER,		N76-24237		:eđ
CAMPRETER, J. L., JR. BLOR, D. I. Video tape presentation of passenger safety information A76-32322 BLOB, J. H. D. Experience in predicting subsonic aircraft characteristics from wind tunnel analysis BORNERR, R. Fracture analyses involving materials of aircraft construction A76-32165 BORST, H. V. Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift A76-32167 BORNEWOY, V. H. Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 BRADSHAW, P. Calculation of compressible turbulent boundary layers on straight-tapered swept wings BRADSHAW, P. Calculation of compressible turbulent boundary layers on straight-tapered swept wings BROTHERHOOD, P. Flight measurements of helicopter rotor aerofoil characteristics and some comparisons with two-dimensional wind tunnel results CAMPRITER, J. L., JR. Hydrogen embrittlement of structural alloys. A technology survey [NASA-CR-134962] N76-25375 CARR, K. COMMENTS, J. L., JR. Hydrogen embrittlement of structural alloys. A technology survey [NASA-CR-134962] N76-25375 CARR, K. COMMENTS, J. L., JR. Hydrogen embrittlement of structural alloys. A technology survey [NASA-CR-134962] N76-25375 CARR, K. COMMENTS, J. L., JR. Hydrogen embrittlement of structural alloys. A technology survey [NASA-CR-134962] N76-25375 CARR, K. COMMENTS, J. L., JR. Hydrogen embrittlement of structural alloys. A technology survey [NASA-CR-134962] N76-25375 CARR, K. COMMENTS, J. L., JR. Hydrogen embrittlement of structural alloys. A technology survey [NASA-CR-134962] N76-25375 CARR, K. COMMENTS, M. H. Hydrogen embrittlement of structural alloys. A CARR, K. COMMENTS, M. H. Hydrogen embrittlement of structural alloys. A CARR, K. COMMENTS, M. H. Hydrogen embrittlement of structural alloys. A CARR, K. COMMENTS, M. H. Hydrogen embrittlement of structural alloys. A CARR, K. COMMENTS, M. H. Hydrogen embrittlement of structural alloys. A CARR, K. COMMENTS, M. H. Hydrogen embrittlement of structural alloys. A CARR, K. CASANDIAN,	Realistic evaluation of landing gear shimm	ıy		
Video tape presentation of passenger safety information A76-32232 BLOM, J. H. D. Experience in predicting subsonic aircraft characteristics from wind tunnel analysis BORHMER, M. Practure analyses involving materials of aircraft construction A76-32165 BORST, H. V. Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift A76-32167 BOZHKOV, V. H. Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 BRADSHAW, P. Calculation of compressible turbulent boundary layers on straight-tapered swept wings BRINKS, W. H. Advanced fighter control techniques A76-32627 BROTHERHOOD, P. Flight measurements of helicopter rotor aerofoil characteristics and some comparisons with flight data N76-25301 CASHEN, K. Comments on mathematical modelling of external store release trajectories including comparison with flight data N76-25301 CASHEN, K. Comments on mathematical modelling of external store release trajectories including comparison with flight data N76-25301 CASHEN, K. Comments on mathematical modelling of external store release trajectories including comparison with flight data N76-25301 CASHEN, K. Comments on mathematical modelling of external store release trajectories including comparison with flight data N76-25301 CASHEN, K. Comments on mathematical modelling of external store release trajectories including comparison with flight data N76-25301 CASHEN, K. Comments on mathematical modelling of external store release trajectories including comparison with flight data N76-25101 CASHEN, K. Comments on mathematical modelling of external store release trajectories including comparison with flight data N76-25101 CASHEN, L. Comments on mathematical modelling of external store release trajectories including comparison with flight data N76-25101 CASHEN, L. CASHENCIA. Research on aircraft noise: Test methods [N 6-25322] C		A76-31975	CARPENTER, J. L., JR.	A76-34137
BLOH, J. H. D. Experience in predicting subsonic aircraft characteristics from wind tunnel analysis N76-25299 BOBHMER, H. Practure analyses involving materials of aircraft construction A76-32165 BORST, H. V. Pluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift N76-25167 BOZHROV, V. H. Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 BRADSHAW, P. Calculation of compressible turbulent boundary layers on straight-tapered swept wings A76-32587 BRIBKS, W. H. Advanced fighter control techniques A76-32627 BROTHERHOOD, P. Plight measurements of helicopter rotor aerofoil characteristics and some comparisons with two-dimensional wind tunnel results A76-25199 CASABDJIAW, G. Research on aircraft noise: Test methods [MNSA-TT-F-17090] N76-25166 CASABDJIAW, G. Research on aircraft noise: Test methods [MNSA-TT-F-17090] N76-25166 CATHERALL, D. The computation of transonic flow past aerofoils in solid, porous or slotted wind tunnels on mathematical modelling of external store release trajectories including comparison with flight data N76-25301 CASABDJIAW, G. Research on aircraft noise: Test methods [MNSA-TT-F-17090] N76-25166 CATBERALL, D. The computation of transonic flow past aerofoils in solid, porous or slotted wind tunnels on the analysis of supersonic flow past oscillating cascades N76-25232 CHAPWIM, H. G. Approximate changes in aircraft stability derivatives caused by battle damage [AD-A019843] [AD-A019843] N76-25207 CHU, C. W. Calculation of three-dimensional supersonic flow fields about aircraft fuselages and wings at general angle of attack [AD-A018715] N76-25166 CATBERALL, D. The computation of transonic flow past oscillating cascades N76-25232 CHAPWIM, H. G. Approximate changes in aircraft stability derivatives caused by battle damage [AD-A019843] [AD-A019843] N76-25197 CHUPLICE, W. R. On the analysis of supersonic flow past oscillating cascades N76-25197 CHAPWIM, H. G. Approximate changes in a	BLOM, D. I. Video tape presentation of passenger safet	y .	Hydrogen embrittlement of structural allog technology survey	
Experience in predicting subsonic aircraft characteristics from wind tunnel analysis N76-25289 BOBHMER, M. Fracture analyses involving materials of aircraft construction A76-32165 BORST, H. V. Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 BRADSHAW, P. Calculation of compressible turbulent boundary layers on straight-tapered swept wings A76-32627 BROTHERHOOD, P. Flight measurements of helicopter rotor aerofoil characteristics and some comparisons with flight data N76-25289 KARADJIAN, G. Research on aircraft noise: Test methods [NAS-TT-P-17090] N76-25166 CATHERALL, D. The computation of transonic flow past aerofoils in solid, porous or slotted wind tunnels socillating cascades N76-25232 CHADWICK, W. R. On the analysis of supersonic flow past oscillating cascades N76-25197 CHAPMAM, M. G. Approximate changes in aircraft stability derivatives caused by battle damage [AP-A019843] N76-25207 CHEVALIZE, H. L. A method for predicting the drag of airfoils [SAE PAPER 760-479] A76-31971 CHO, C. W. Calculation of three-dimensional supersonic flow fields about aircraft fuselages and wings at general angle of attack [AP-A01815] N76-25151	information	A76-32232		N/6-253/5
N76-25289 BOBHHER, H. Fracture analyses involving materials of aircraft construction A76-32165 BORST, H. V. Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift A76-32167 BOZHKOV, V. H. Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 BRADSHAW, P. Calculation of compressible turbulent boundary layers on straight-tapered swept wings BRIBKS, W. H. Advanced fighter control techniques A76-32627 BROTHERHOOD, P. Flight measurements of helicopter rotor aerofoil characteristics and some comparisons with two-dimensional wind tunnel results N76-25191 CASAMDJIAW, G. Research on aircraft noise: Test methods [NASA-TT-P-17090] N76-25166 CATHERHALL, D. The computation of transonic flows past aerofoils in solid, porous or slotted wind tunnels oscillating cascades N76-25232 CHADWICK, W. R. On the analysis of supersonic flow past oscillating cascades N76-25197 CHEVALIER, H. L. A method for predicting the drag of airfoils [SAE PAPER 760-479] N76-25197 CHU, C. W. Calculation of three-dimensional supersonic flow fields about aircraft fuselages and wings at general angle of attack [AD-A018715] N76-25151	Experience in predicting subsonic aircraft		store release trajectories including com	
Research on aircraft noise: Test methods (NASA-TT-F-17090) N76-25166 CATHERALL, D. BORST, H. V. Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift A76-32167 BOZHKOV, V. H. Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow PRADSHAW, P. Calculation of compressible turbulent boundary layers on straight-tapered swept wings BRIBKS, W. H. Advanced fighter control techniques A76-32627 BROTHERHOOD, P. Flight measurements of helicopter rotor aerofoil characteristics and some comparisons with two-dimensional wind tunnel results Research on aircraft noise: Test methods (NASA-TT-F-17090) N76-25166 CATHERALL, D. The computation of transonic flows past aerofoils in solid, porous or slotted wind tunnels oscillating cascades N76-25232 CHAPMAM, M. G. Approximate changes in aircraft stability derivatives caused by battle damage [AD-A018943] N76-25207 CHAPMALIER, H. L. A method for predicting the drag of airfoils [SAE PAPER 760-479] A76-31971 CHIU, C. W. Calculation of three-dimensional supersonic flow fields about aircraft fuselages and wings at general angle of attack [AD-A018715] N76-25186 CHAPMAM, M. G. Approximate changes in aircraft stability derivatives caused by battle damage [SAE PAPER 760-479] A76-31971 CHIU, C. W. Calculation of three-dimensional supersonic flow fields about aircraft fuselages and wings at general angle of attack [AD-A018715] N76-25186 CHAPMAM, M. G. Approximate changes in aircraft stability derivatives caused by battle damage [AD-A018715] N76-25186 CHAPMAM, M. G. Approximate changes in aircraft stability derivatives caused by battle damage [AD-A018715] N76-25197 CHAPMAM, M. G. Approximate changes in aircraft stability derivatives caused by battle damage [AD-A018715] N76-25197 CHAPMAM, M. G. Approximate changes in aircraft stability derivatives caused by battle damage [AD-A018715] N76-25197 CHAPMAM, M. G. Approximate changes in aircraft stability derivatives caused by battle damage [AD-A018715] N76-25197	•		-	พ76-25301
A76-32165 BORST, H. V. Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift A76-32167 BOZHKOV, V. H. Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow BRADSHAW, P. Calculation of compressible turbulent boundary layers on straight-tapered swept wings A76-32587 BRIBKS, W. H. Advanced fighter control techniques A76-32627 BROTHERHOOD, P. Flight measurements of helicopter rotor aerofoil characteristics and some comparisons with two-dimensional wind tunnel results A76-32167 A76-32167 A76-32167 CHADWICK, W. R. On the analysis of supersonic flow past oscillating cascades N76-25232 CHADWICK, W. R. On the analysis of supersonic flow past oscillating cascades N76-25197 CHAPMAN, M. G. Approximate changes in aircraft stability derivatives caused by battle damage [AD-A019843] SERVALIBR, H. L. A method for predicting the drag of airfoils [SAE PAPER 760-479] A76-31971 CELVALIBR, H. L. Calculation of three-dimensional supersonic flow fields about aircraft fuselages and wings at general angle of attack [AD-A018715] N76-25232	Fracture analyses involving materials of a	ırcraft	Research on aircraft noise: Test methods	
Fluid-dynamic lift: Practical information on aerodynamic and hydrodynamic lift A76-32167 BOZHKOV, V. M. Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 BRADSHAW, P. Calculation of compressible turbulent boundary layers on straight-tapered swept wings BRIBKS, W. H. Advanced fighter control techniques A76-32587 BROTHERHOOD, P. Flight measurements of helicopter rotor aerofoil characteristics and some comparisons with two-dimensional wind tunnel results A76-32167 CHADWICK, W. R. On the analysis of supersonic flow past oscillating cascades A76-25197 CHAPMAN, M. G. Approximate changes in aircraft stability derivatives caused by battle damage [AD-A019843] N76-25207 CHEVALIER, H. L. A method for predicting the drag of airfoils [SAE PAPER 760-479] A76-31971 CHOU, C. W. Calculation of three-dimensional supersonic flow fields about aircraft fuselages and wings at general angle of attack [AD-A018715] B76-25151		A76-32165	CATHERALL, D.	
A76-32167 BOZHKOV, V. H. Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 BRADSHAW, P. Calculation of compressible turbulent boundary layers on straight-tapered swept wings A76-32587 BRIBKS, W. H. Advanced fighter control techniques A76-32627 BROTHERHOOD, P. Flight measurements of helicopter rotor aerofoil characteristics and some comparisons with two-dimensional wind tunnel results A76-32167 CHADWICK, W. R. On the analysis of supersonic flow past oscillating cascades N76-25197 CHAPMAN, H. G. Approximate changes in aircraft stability derivatives caused by battle damage [AD-A018943] N76-25207 CHAPMAN, H. G. Approximate changes in aircraft stability derivatives caused by battle damage [AD-A018943] N76-25207 CHAPMAN, H. G. Approximate changes in aircraft stability derivatives caused by battle damage [AD-A018943] N76-25207 CHUPMAN, H. G. Approximate changes in aircraft stability derivatives caused by battle damage [AD-A018943] N76-25207 CHUPMAN, H. G. Approximate changes in aircraft stability derivatives caused by battle damage [AD-A018943] CHAPMAN, H. G. Approximate changes in aircraft stability derivatives caused by battle damage [AD-A018943] CHAPMAN, H. G. Approximate changes in aircraft stability derivatives caused by battle damage [AD-A018943] CHAPMAN, H. G. Approximate changes in aircraft stability derivatives caused by battle damage [AD-A018943] CHAPMAN, H. G. Approximate changes in aircraft stability derivatives caused by battle damage [AD-A018943] CHAPMAN, H. G. Approximate changes in aircraft stability derivatives caused by battle damage [AD-A018943] CHAPMAN, H. G. Approximate changes in aircraft stability derivatives caused by battle damage [AD-A018943] CHAPMAN, H. G. Approximate changes in aircraft stability derivatives caused by battle damage [AD-A018943] CHAPMAN, H. G. Approximate changes in aircraft stability derivatives caused by battle damage [AD-A018943] CHAPMAN, H. G.	Fluid-dynamic lift: Practical information	on		•
Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow A76-33869 BRADSHAW, P. Calculation of compressible turbulent boundary layers on straight-tapered swept wings A76-32587 BRIBKS, W. H. Advanced fighter control techniques A76-32627 BROTHERHOOD, P. Flight measurements of helicopter rotor aerofoil characteristics and some comparisons with two-dimensional wind tunnel results A76-25197 CHAPMAM, M. G. Approximate changes in aircraft stability derivatives caused by battle damage [AD-A019843] N76-25207 CHEVALIER, H. L. A method for predicting the drag of airfoils [SAE PAPER 760-479] A76-31971 CHU, C. W. Calculation of three-dimensional supersonic flow fields about aircraft fuselages and wings at general angle of attack [AD-A018715] B76-25151	•	A76-32167		
BRADSHAW, P. Calculation of compressible turbulent boundary layers on straight-tapered swept wings A76-32587 BRINKS, W. H. Advanced fighter control techniques A76-32627 BROTHERHOOD, P. Flight measurements of helicopter rotor aerofoll characteristics and some comparisons with two-dimensional wind tunnel results Approximate changes in aircraft stability derivatives caused by battle damage [AD-A019843] N76-25207 CHEVALIER, H. L. A method for predicting the drag of airfolis [SAE PAPER 760-479] A76-31971 CHU, C. W. Calculation of three-dimensional supersonic flow fields about aircraft fuselages and wings at general angle of attack [AD-A018715] B76-25151	Visual study of the three-dimensional flow	pattern		N76-25197
Calculation of compressible turbulent boundary layers on straight-tapered swept wings A76-32587 BRIBKS, W. H. Advanced fighter control techniques A76-32627 BROTHERHOOD, P. Flight measurements of helicopter rotor aerofoll characteristics and some comparisons with two-dimensional wind tunnel results A76-32627 CHU, C. W. Calculation of three-dimensional supersonic flow fields about aircraft fuselages and wings at general angle of attack [AD-A018715] B76-25207 CHEVALIBR, H. L. A method for predicting the drag of airfoils [SAE PAPER 760-479] A76-31971 CHU, C. W. Calculation of three-dimensional supersonic flow fields about aircraft fuselages and wings at general angle of attack [AD-A018715] B76-25207	•	A76-33869		
BRIBKS, W. H. Advanced fighter control techniques A76-32627 BROTHERHOOD, P. Flight measurements of helicopter rotor aerofoil characteristics and some comparisons with two-dimensional wind tunnel results A method for predicting the drag of airfoils [SAE PAPER 760-479] A76-31971 CHU, C. W. Calculation of three-dimensional supersonic flow fields about aircraft fuselages and wings at general angle of attack [AD-A018715] B76-25151	Calculation of compressible turbulent boun	-	derivatives caused by battle damage [AD-A019843]	N76-25207
Advanced fighter control techniques A76-32627 BROTHERHOOD, P. Flight measurements of helicopter rotor aerofoil characteristics and some comparisons with two-dimensional wind tunnel results A76-32627 CHU, C. W. Calculation of three-dimensional supersonic flow fields about aircraft fuselages and wings at general angle of attack [AD-A018715] B76-25151	BRINKS, W. H.	A76-32587	CREVALIER, H. L. A method for predicting the drag of airfold	.ls
BROTHERHOOD, P. Flight measurements of helicopter rotor aerofoil characteristics and some comparisons with two-dimensional wind tunnel results Calculation of three-dimensional supersonic flow fields about aircraft fuselages and wings at general angle of attack [AD-A018715] B76-25151		176-32627	[SAE PAPER 760-479]	
two-dimensional wind tunnel results [AD-A018715] N76-25151	Flight measurements of helicopter rotor ae	rofoil	Calculation of three-dimensional supersoni fields about aircraft fuselages and wing	
				N76-25151

PERSONAL AUTHOR INDEX ESPARZA, V.

CICCI, F.		DESJARDINS, S. P.	
Noise level measurements on a quiet short	haul	Development of design criteria for crashw	orthy
turboprop transport		armored aircrew seats	
[SAE PAPER 760-455]	A76-31955		A76-34154
CLARK, J. C. General aviation crashworthiness		DESLANDES, R.	lenlation
deneral aviation trashworthiness	A76-34136	Application of the MBB panel method to ca- of wing-body configurations with extern	
CLARKE, G. E.	2.0 0.,50	loads	uz beore
Determination of minimum catapult launch s	peeds	[MBB-UPE-1073-0]	N76-24176
•	∆ 76-34249	DEVRIES, O.	
COLLEY, W. C.	ā	Two-dimensional tunnel wall interference	
Development of emissions measurement techn	ıques	multi-element aerofoils in incompressib	
for afterburning turbine engines	N76-24260	nrecon a	N76-25233
[AD-A019094] COMBLEY, J. R.	870-24200	DISSEM, M. Possibilities of noise reduction for fan	on (1) n (5)
Ground proximity warning system testing		by means of controls	cugines
, , , , , , , , , , , , , , , , , , ,	A76-34242	** ************************************	N76-24251
CONDON, G. W.		DITTRICH, W.	
Rotor Systems Research Aircraft (RSRA)		Some technical problems of quiet aircraft	
4007 5 7	N76-25286	20-27-10 2 2	N76-24249
COOK, W. L.	OF 20	DOWNING, D. R.	model for
Comparison of model and flight test data f augmentor-wing STOL research aircraft	OL an	A technique using a nonlinear helicopter : determining trims and derivatives	moder for
anguated wing blob reconstant and are	N76-25292	[NASA-TH-D-8159]	N76-24265
Correlation of low speed wind tunnel and f	light	DREES, J. H.	
test data for V/STOL aircraft		The art and science of rotary wing data c	orrelation
	ม76-25293		N76-25291
COUSTRIX, J.	- 6	DUDIN, G. N.	
Theoretical analysis and prediction method		Law of cross sections for the three-dimen	
three-dimensional turbulent boundary lay [ESA-TT-238]	N76-24182	boundary layer on a thin-section wing in hypersonic flow	п
COVEY, M. W.	870 24102	niberzonić rios	A76-33854
Navy evaluation F-11A in-flight thrust con	trol	DUNE, K. P.	
system		The stochastic control of the F-8C aircra	
[AD-A019954]	N76-25204	the Multiple Model Adaptive Control (MM.	
COX, G. A.	•	[NASA-CR-148100]	₩76-25211
Comments on mathematical modelling of exte		DUNNILL, W. A.	
store release trajectories including com with flight data	harrzon	Investigation of feasible mozzle configuration for moise reduction in turbofan and tur	
with fillyht data	N76-25301	aircraft. Volume 1: Summary and selec-	
CRAME, H. L.	1170 25501	multinozzle configurations	Leu
Preliminary flight-test results of an adva	nced	[AD-A019645/1]	N76-24233
technology light twin-engine airplane /A		Investigation of feasible nozzle configur	
[SAE PAPER 760-497]	∆76-31976	for noise reduction in turbofan and tur	
CREEDEN, D. E.		aircraft. Volume 2: Slot nozzle confi	
Minimum time flight profile optimization f	or	[AD-A019646/9]	N76-24234
piston-engine-powered airplanes [SAE PAPER 760-474]	A76-31967	•	
CULL, M. J.		E	
VSTOL wind tunnel model testing: An exper	1 mental	EBERLE, A.	
assessment of flow breakdown using a mul	tiple	Application of the HBB panel method to cal	
fan model	***C 05063	of wing-body configurations with externa	al store
CEOCALL P	N76-25253	loads	N76-24176
CZOGALA, E. Random vibrations of a cylindrical shell d	ne to an	[MBB-UFE-1073-0] ENGEL, G.	M/0-241/0
excitation with uniformly varying freque		Conception and flight mechanics of a	
	A76-32869	ship-supported unmanned rotor platform	
	4,0 02003	outh published annualed total binital	N76-24213
n	1,0 31003	ENGLAND, M. N.	
0	2,0 32003	ENGLAND, M. H. Static and fatigue tests of P-111B boron	wing tip
DAT, R.		EMGLAND, M. N. Static and fatigue tests of P-111B boron [AD-A018751]	
		ENGLAND, M. N. Static and fatigue tests of P-111B boron [AD-A018751] BRICSSON, L. E.	wing tip N76-24370
DAT, R. Unsteady aerodynamics of helicopter blades		ENGLAND, M. N. Static and fatigue tests of P-111B boron [AD-A018751] BRICSSON, L. E. 'Spilled' leading-edge vortex effects on	wing tip N76-24370
DAT, R. Unsteady aerodynamics of helicopter blades DAVIS, D. G. H.		ENGLAND, M. N. Static and fatigue tests of P-111B boron [AD-A018751] BRICSSON, L. E.	wing tip N76-24370 dynamic
DAT, R. Unsteady aerodynamics of helicopter blades		ENGLAND, M. N. Static and fatigue tests of P-111B boron [AD-A018751] BRICSSON, L. E. 'Spilled' leading-edge vortex effects on	wing tip N76~24370 dynamic A76-33120
DAT, R. Unsteady aerodynamics of helicopter blades DAVIS, D. G. H. A ducted propulsor demonstrator [SAE PAPER 760-470] DAT, I. J.	N76-24149	EHGLAND, M. H. Static and fatigue tests of P-111B boron [AD-A018751] BRICSSON, L. E. 'Spilled' leading-edge vortex effects on stall characteristics Unsteady aerodynamic flow field analysis space shuttle configuration. Part 4:	wing tip N76~24370 dynamic A76-33120
DAT, R. Unsteady aerodynamics of helicopter blades DAVIS, D. G. H. A ducted propulsor demonstrator [SAE PAPER 760-470] DAY, I. J. Detailed flow measurements during deep sta	N76-24149	ENGLAND, M. H. Static and fatigue tests of P-111B boron [AD-A018751] ENICSSON, L. E. 'Spilled' leading-edge vortex effects on stall characteristics Unsteady aerodynamic flow field analysis space shuttle configuration. Part 4: 747/orbiter aeroelastic stability	wing tip H76-24370 dynamic A76-33120 of the
DAT, R. Unsteady aerodynamics of helicopter blades DAVIS, D. G. H. A ducted propulsor demonstrator [SAE PAPER 760-470] DAT, I. J.	N76-24149 A76-31965 ll in	EHGLAND, M. H. Static and fatigue tests of P-111B boron [AD-A018751] BRICSSON, L. E. 'Spilled' leading-edge vortex effects on stall characteristics Unsteady aerodynamic flow field analysis space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [NASA-CR-144335]	wing tip N76~24370 dynamic A76-33120
DAT, R. Unsteady aerodynamics of helicopter blades DAVIS, D. G. H. A ducted propulsor demonstrator [SAE PAPER 760-470] DAT, I. J. Detailed flow measurements during deep stauxial flow compressors	N76-24149	EHGLAND, M. H. Static and fatigue tests of P-111B boron [AD-A018751] BRICSSON, L. E. 'Spilled' leading-edge vortex effects on stall characteristics Unsteady aerodynamic flow field analysis space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [HASA-CR-144335] BSCH, P.	wing tip #76-24370 dynamic #76-33120 of the #76-25331
DAT, R. Unsteady aerodynamics of helicopter blades DAVIS, D. G. H. A ducted propulsor demonstrator [SAE PAPER 760-470] DAY, I. J. Detailed flow measurements during deep stational axial flow compressors DECHER, R.	N76-24149 A76-31965 11 in N76-25202	EHGLAND, M. H. Static and fatigue tests of P-111B boron [AD-A018751] BRICSSON, L. E. 'Spilled' leading-edge vortex effects on stall characteristics Unsteady aerodynamic flow field analysis space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [NASA-CR-144335]	wing tip #76-24370 dynamic #76-33120 of the #76-25331
DAT, R. Unsteady aerodynamics of helicopter blades DAVIS, D. G. H. A ducted propulsor demonstrator [SAE PAPER 760-470] DAT, I. J. Detailed flow measurements during deep stauxial flow compressors	N76-24149 A76-31965 11 in N76-25202	ENGLAND, M. H. Static and fatigue tests of P-111B boron [AD-A018751] ENICSSON, L. E. 'Spilled' leading-edge vortex effects on stall characteristics Unsteady aerodynamic flow field analysis space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [NASA-CR-144335] ESCH, P. Design and construction of the alpha jet:	wing tip #76-24370 dynamic #76-33120 of the #76-25331
DAT, R. Unsteady aerodynamics of helicopter blades DAVIS, D. G. H. A ducted propulsor demonstrator [SAE PAPER 760-470] DAT, I. J. Detailed flow measurements during deep station axial flow compressors DECHER, R. Hacelle-airframe integration model testing nacelle simulation and measurement accur	N76-24149 A76-31965 11 in N76-25202	ENGLAND, M. H. Static and fatigue tests of P-111B boron [AD-A018751] BRICSSON, L. E. 'Spilled' leading-edge vortex effects on stall characteristics Unsteady aerodynamic flow field analysis space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [NASA-CR-144335] ESCH, P. Design and construction of the alpha jet model ESPARZA, V.	wing tip 1876-24370 dynamic 176-33120 of the 1876-25331 flutter 1876-25249
DAT, R. Unsteady aerodynamics of helicopter blades DAVIS, D. G. H. A ducted propulsor demonstrator [SAE PAPER 760-470] DAY, I. J. Detailed flow measurements during deep station axial flow compressors DECHER, R. Hacelle-airframe integration model testing nacelle simulation and measurement accur	N76-24149 A76-31965 11 in N76-25202 for acy	EHGLAND, M. H. Static and fatigue tests of P-111B boron [AD-A018751] BRICSSON, L. E. 'Spilled' leading-edge vortex effects on stall characteristics Unsteady aerodynamic flow field analysis space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [NASA-CR-144335] ESCH, P. Design and construction of the alpha jet model ESPARZA, V. Results of an experimental investigation	wing tip 176-24370 dynamic 176-33120 of the 176-25331 flutter 176-25249
DAT, R. Unsteady aerodynamics of helicopter blades DAVIS, D. G. H. A ducted propulsor demonstrator [SAE PAPER 760-470] DAT, I. J. Detailed flow measurements during deep station axial flow compressors DECHER, R. Hacelle-airframe integration model testing nacelle simulation and measurement accur	N76-24149 A76-31965 11 in N76-25202 for acy N76-25238	EHGLAND, M. H. Static and fatigue tests of F-111B boron [AD-A018751] BRICSSON, L. E. 'Spilled' leading-edge vortex effects on stall characteristics Unsteady aerodynamic flow field analysis space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [HASA-CR-144335] ESCH, P. Design and construction of the alpha jet model ESPARZA, V. Results of an experimental investigation determine separation characteristics for	wing tip 1876-24370 dynamic 1876-33120 of the 1876-25331 flutter 1876-25249 to to the
DAT, R. Unsteady aerodynamics of helicopter blades DAVIS, D. G. H. A ducted propulsor demonstrator [SAE PAPER 760-470] DAT, I. J. Detailed flow measurements during deep station axial flow compressors DECHER, R. Hacelle-airframe integration model testing nacelle simulation and measurement accur DEHART, R. C. Helicopter stabilization system	N76-24149 A76-31965 11 in N76-25202 for acy	EBGLAND, M. H. Static and fatigue tests of P-111B boron [AD-A018751] BRICSSON, L. E. 'Spilled' leading-edge vortex effects on stall characteristics Unsteady aerodynamic flow field analysis space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [NASA-CR-144335] BSCH, P. Design and construction of the alpha jet model ESPARZA, V. Results of an experimental investigation determine separation characteristics for Orbiter/747 using a 0.0125-scale model	wing tip 1876-24370 dynamic 176-33120 of the 1876-25331 flutter 1876-25249 to to the 148-0.
DAT, R. Unsteady aerodynamics of helicopter blades DAVIS, D. G. H. A ducted propulsor demonstrator [SAE PAPER 760-470] DAY, I. J. Detailed flow measurements during deep station axial flow compressors DECHER, R. Hacelle-airframe integration model testing nacelle simulation and measurement accur DEHART, R. C. Helicopter stabilization system DEMGLER, R. P.	N76-24149 A76-31965 11 in N76-25202 for acy N76-25238 A76-34164	EHGLAND, M. H. Static and fatigue tests of P-111B boron [AD-A018751] BRICSSON, L. E. 'Spilled' leading-edge vortex effects on stall characteristics Unsteady aerodynamic flow field analysis space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [NASA-CR-144335] ESCH, P. Design and construction of the alpha jet model ESPARZA, V. Results of an experimental investigation determine separation characteristics for Orbiter/747 using a 0.0125-scale model AX13181-1 747) in the Ames Research cen	wing tip 1876-24370 dynamic 176-33120 of the 1876-25331 flutter 1876-25249 to to the 148-0.
DAT, R. Unsteady aerodynamics of helicopter blades DAVIS, D. G. H. A ducted propulsor demonstrator [SAE PAPER 760-470] DAT, I. J. Detailed flow measurements during deep state axial flow compressors DECHER, R. Hacelle-airframe integration model testing nacelle simulation and measurement accur DEHART, R. C. Helicopter stabilization system DEMGLER, R. P. Small, low-cost, expendable turbojet engin	N76-24149 A76-31965 11 in N76-25202 for acy N76-25238 A76-34164 e. 1:	EHGLAND, M. H. Static and fatigue tests of P-111B boron [AD-A018751] BRICSSON, L. E. 'Spilled' leading-edge vortex effects on stall characteristics Unsteady aerodynamic flow field analysis space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [NASA-CR-144335] BSCH, P. Design and construction of the alpha jet model ESPARZA, V. Results of an experimental investigation determine separation characteristics for Orbiter/747 using a 0.0125-scale model AX1318I-1 747) in the Ames Research centure of the side of the second o	wing tip 176-24370 dynamic 176-33120 of the 1876-25331 flutter 1876-25249 to 1 the 148-0. ter
DAT, R. Unsteady aerodynamics of helicopter blades DAVIS, D. G. H. A ducted propulsor demonstrator [SAE PAPER 760-470] DAY, I. J. Detailed flow measurements during deep station axial flow compressors DECHER, R. Hacelle-airframe integration model testing nacelle simulation and measurement accur DEHART, R. C. Helicopter stabilization system DEMGLER, R. P.	N76-24149 A76-31965 11 in N76-25202 for acy N76-25238 A76-34164 e. 1:	EBGLAND, M. H. Static and fatigue tests of P-111B boron [AD-A018751] BRICSSON, L. E. 'Spilled' leading-edge vortex effects on stall characteristics Unsteady aerodynamic flow field analysis space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [MASA-CR-144335] ESCH, P. Design and construction of the alpha jet model ESPARZA, V. Results of an experimental investigation determine separation characteristics for Orbiter/747 using a 0.0125-scale model AX1318I-1 747) in the Ames Research centary foot wind tunnel (CA23B), volume 1 [MASA-CR-144603]	wing tip 1876-24370 dynamic 176-33120 of the 1876-25331 flutter 1876-25249 to to the 148-0. ter
DAT, R. Unsteady aerodynamics of helicopter blades DAVIS, D. G. H. A ducted propulsor demonstrator [SAE PAPER 760-470] DAT, I. J. Detailed flow measurements during deep state axial flow compressors DECHER, R. Hacelle-airframe integration model testing nacelle simulation and measurement accur DEHART, R. C. Helicopter stabilization system DEMGLER, R. P. Small, low-cost, expendable turbojet enginesign, fabrication, and preliminary testing [MASA-TM-X-3392] DESANTIS, C. H.	N76-24149 A76-31965 11 in N76-25202 for acy N76-25238 A76-34164 e. 1: ting N76-24242	EHGLAND, M. H. Static and fatigue tests of P-111B boron [AD-A018751] BRICSSON, L. E. 'Spilled' leading-edge vortex effects on stall characteristics Unsteady aerodynamic flow field analysis space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [NASA-CR-144335] BSCH, P. Design and construction of the alpha jet model ESPARZA, V. Results of an experimental investigation determine separation characteristics for Orbiter/747 using a 0.0125-scale model AX1318I-1 747) in the Ames Research centure of the side of the second o	wing tip N76-24370 dynamic A76-33120 of the N76-25331 flutter N76-25249 to r the (48-0. ter
DAT, R. Unsteady aerodynamics of helicopter blades DAVIS, D. G. H. A ducted propulsor demonstrator [SAE PAPER 760-470] DAT, I. J. Detailed flow measurements during deep state axial flow compressors DECHER, R. Hacelle-airframe integration model testing nacelle simulation and measurement accur DEHART, R. C. Helicopter stabilization system DEMGLER, R. P. Small, low-cost, expendable turbojet enginesign, fabrication, and preliminary testing thasa-TM-X-3392] DESABTIS, C. H. Rotor effects on L-band signals received by	N76-24149 A76-31965 11 in N76-25202 for acy N76-25238 A76-34164 e. 1: ting N76-24242	EHGLAND, M. H. Static and fatigue tests of P-111B boron [AD-A018751] ERICSSON, L. E. 'Spilled' leading-edge vortex effects on stall characteristics Unsteady aerodynamic flow field analysis space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [MASA-CR-144335] ESCH, P. Design and construction of the alpha jet model ESPARZA, V. Results of an experimental investigation determine separation characteristics for Orbiter/747 using a 0.0125-scale model AX1318I-1 747) in the Ames Research centar-foot wind tunnel (CA23B), volume 1 [MASA-CR-144603] Results of an experimental investigation determine separation characteristics for Orbiter/747 using a 0.0125-scale model	#Ing tip #76-24370 dynamic A76-33120 of the #76-25331 flutter #76-25249 to to the {48-0. ter #76-25333 to to the {48-0.
DAT, R. Unsteady aerodynamics of helicopter blades DAVIS, D. G. H. A ducted propulsor demonstrator [SAE PAPER 760-470] DAY, I. J. Detailed flow measurements during deep state axial flow compressors DECHER, R. Hacelle-airframe integration model testing nacelle simulation and measurement accur DEHART, R. C. Helicopter stabilization system DEMGLER, R. P. Small, low-cost, expendable turbojet enginderign, fabrication, and preliminary testing [HASA-TM-X-3392] DESAMMIS, C. H. Rotor effects on L-band signals received be helicopter antennas. Part 3: Heasurement	N76-24149 A76-31965 11 in N76-25202 for acy N76-25238 A76-34164 e. 1: ting N76-24242 y nts of	EHGLAND, M. H. Static and fatigue tests of P-111B boron [AD-A018751] BRICSSON, L. E. 'Spilled' leading-edge vortex effects on stall characteristics Unsteady aerodynamic flow field analysis space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [NASA-CR-144335] BSCH, P. Design and construction of the alpha jet model ESPARZA, V. Results of an experimental investigation determine separation characteristics for Orbiter/747 using a 0.0125-scale model AX13181-1 747) in the Ames Research cental-foot wind tunnel (CA23B), volume 1 [NASA-CR-144603] Results of an experimental investigation determine separation characteristics for Orbiter/747 using a 0.0125-scale model AX13181-1 747) in the Ames Research Cental AX13181-1 7479 in the Ames Research Cental AX13181-1 7479 in the Ames Research Cental AX13181-1 7479 in the	#Ing tip #76-24370 dynamic A76-33120 of the #76-25331 flutter #76-25249 to to the {48-0. ter #76-25333 to to the {48-0.
DAT, R. Unsteady aerodynamics of helicopter blades DAVIS, D. G. H. A ducted propulsor demonstrator [SAE PAPER 760-470] DAT, I. J. Detailed flow measurements during deep state axial flow compressors DECHER, R. Hacelle-airframe integration model testing nacelle simulation and measurement accur DEHART, R. C. Helicopter stabilization system DEMGLER, R. P. Small, low-cost, expendable turbojet enginesign, fabrication, and preliminary testing thasa-TM-X-3392] DESABTIS, C. H. Rotor effects on L-band signals received by	N76-24149 A76-31965 11 in N76-25202 for acy N76-25238 A76-34164 e. 1: ting N76-24242 y nts of	EHGLAND, M. H. Static and fatigue tests of P-111B boron [AD-A018751] ERICSSON, L. E. 'Spilled' leading-edge vortex effects on stall characteristics Unsteady aerodynamic flow field analysis space shuttle configuration. Part 4: 747/orbiter aeroelastic stability [MASA-CR-144335] ESCH, P. Design and construction of the alpha jet model ESPARZA, V. Results of an experimental investigation determine separation characteristics for Orbiter/747 using a 0.0125-scale model AX1318I-1 747) in the Ames Research centar-food wind tunnel (CA23B), volume 1 [MASA-CR-144603] Results of an experimental investigation determine separation characteristics for Orbiter/747 using a 0.0125-scale model	#Ing tip #76-24370 dynamic A76-33120 of the #76-25331 flutter #76-25249 to to the {48-0. ter #76-25333 to to the {48-0.

		GENNEG I D	
Study of the application of advanced techn	ologies	GEDDES, J. P. Civil transport technology up to 2000 - NASA	
to laminar flow control systems for subs		believes fuel consumption is the major	
transports. Volume 1: Summary	w76 - 20 40 0	consideration	32649
[NASA-CR-144975] Study of the application of advanced techn	N76-24144 Ologies	GEGIN, A. D.	32049
to laminar-flow control systems for subs		Effect of blade aspect ratio on the properties	of
transports. Volume 2: Analyses	n76 2040E	an axial compressor stage	24257
[NASA-CR-144949]	H76-24145	[K-TRANS-77] 876- GERRITY, R. J.	24231
F		Antiship cruise missile threat simulation	
		utilizing a RPV	34239
PERRILL, R. S. Study of the application of advanced techn	ologies	GEVARRT, G.	34239
to laminar flow control systems for subs		Antiship cruise missile threat simulation	
transports. Volume 1: Summary		utilizing a RPV	34239
[NASA-CR-144975] Study of the application of advanced techn	N76-24144	GIBBONS, H. L.	34233
to laminar-flow control systems for subs		Crashworthiness in emergency ditching of general	1
transports. Volume 2: Analyses	N76-24145	aviation aircraft	34140
[NASA-CR-144949] PITREMANN, J. M.	M/0-24 145	GILBERT, G.	34 140
Current research on the simulation of flig		Noise control - Blueprint for better community	
effects on the noise radiation of aircra		relations	31956
PLANAGAN, W. A.	N76-25280	[SAE PAPER 760-456] A76- GILBERT, W. P.	31930
Recovery techniques for aircraft in spinni		Simulator study of the effectiveness of an	_
[AD-A019323]	N76-24278	automatic control system designed to improve high-angle-of-attack characteristics of a	the
FLEETER, S. The unsteady aerodynamic response of an ai	rfoil	fighter airplane	
cascade to a time-variant supersonic inl		[NASA-TN-D-8176] H76-	24266
field	N76-25195	GILLARD, T. J. Chronology and analysis of the development of	
POERSCHING, H.	n 70- 25 195	altitude performance and mechanical	
Wind tunnel test techniques for the measur		characteristics of a turbofan engine at the	
unsteady airloads on oscillating lifting and full-span models	systems	Arnold Engineering Development Center [AD-A018691] N76-	24261
and idit-span moders	N76-24150	GILLETTE, W. B.	24201
POLRY, W. M.	_	Nacelle-airframe integration model testing for	
Development of the United Technologies Res Center acoustic research tunnel and asso		nacelle simulation and measurement accuracy N76-	25238
test techniques	Clacca	GILLINS, R. L.	
	N76-25279	Results of an aerodynamic investigation of a spa	ace
FORD, J. A. Environmental tests of the F-15 in the Air	Force	shuttle orbiter/747 carrier flight test configuration to determine separation	
Climatic Laboratory	10100	characteristics utilizing 0.0125-scale models	
	A76-34244	(48-0/AX1318I-1) in the LTV 4 x 4 foot high	
FORD, S. C. Interference-fit-fastener investigation		speed wind tunnel (CA26), volume 1 [NASA-CR-144612] N76-	25322
[AD-A018804]	N76-24598	Results of an aerodynamic investigation of a sp	
POSTER, D. N. A brief flight-tunnel comparison for the R	unting H	shuttle orbiter/747 carrier flight test configuration to determine separation	
126 jet flap aircraft	duting n	characteristics utilizing 0.0125-scale models	
	N76-25294	(48-0/AX1318I-1) in the LTV 4 x 4 foot high	
POXWORTH, T. G. Energy management - An operational outline		speed wind tunnel (CA26), volume 2 [NASA-CR-144613] 876-	25323
220237	A76-32199	Results of an aerodynamic investigation of a sp	
PRANZHEYER, P. K.		shuttle orbiter/747 carrier flight test	
Aircraft noise limits	N76-24247	configuration to determine separation characteristics utilizing 0.0125-scale models	
PRIBDEANN, P.		(48-0/Ax1318I-1) in the LTV 4 x 4-foot high	
Aeroelastic stability of trimmed helicopte	r blades	speed wind tunnel (CA26), volume 3 [NASA-CR-140614] N76-	25324
in forward flight	A76-32849	Results of an aerodynamic investigation of a sp	
		shuttle orbiter/747 carrier flight test	
G		configuration to determine separation characteristics utilizing 0.0125-scale models	
GALLON, H.		(48-0/AX1318I-1) in the LTV 4 x 4 foot high	
Hydrodynamic visualization study of variou		speed wind tunnel (CA26), volume 4	
procedures for controlling separated flo	NS 176-33745	[HASA-CR-144615] B76- Results of an aerodynamic investigation of a sp	25325 ace
GALLOWAY, T. L.	2.0 33.73	shuttle orbiter/747 carrier flight test	
General aviation design synthesis utilizin	g	configuration to determine separation	
interactive computer graphics [SAE PAPER 760-476]	A76-31968	characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4 foot high	
GANN, D.		speed wind tunnel (CA26), volume 5	
Mechanical function and engine performance			25326
Army UR-1 H helicopter in the AIDAPS pro	A76-32149	GILVER, W. J., JR. A composite system approach to aircraft cabin f	ıre
GARDHER, L.		safety	
Jet fuel handling and safety	A76-35222	[HASA-TH-X-73126] B76-GOBELTE, J.	25354
GARRONE, A.	A 10- 33262	Flight simulation using free-flight laboratory	
Comments on wind tunnel/flight correlation		scale models	05000
external stores jettison tests on the F and G 91 Y aircraft	104 S	B76-	25288
	H76-25302		

PERSONAL AUTHOR INDEX HOPPHANN, R.

GORTEERT, B. H.		HAUSEN, H.
Investigation of feasible nozzle configura		Airfoil design for a prescribed velocity
for noise reduction in turbofan and turb		distribution in transonic flow by an integral
aircraft. Volume 1: Summary and select	ted	method
<pre>multinozzle configurations [AD-A019645/1]</pre>	N76-24233	[DLR-IB-151-75/8] H76-24180 HANSFORD, R. B.
Investigation of feasible nozzle configuration for noise reduction in turbofan and turb	ations	The removal of wind tunnel panels to prevent flow breakdown at low speeds
aircraft. Volume 2: Slot nozzle confi	gurations	B76-25252
[AD-A019646/9]	N76-24234	HAVKIES, J. B.
GORTOH, S. The drag and lift characteristics of a cyl	linder	Inlet spillage drag tests and numerical flow-field analysis at subsonic and transonic speeds of a
placed near a place surface	#76 OF460	1/8-scale, two-dimensional,
[AD-A019286]	N76-25152	external-compression, variable-geometry,
GOLDSTBIN, M. B. A complete second-order theory for the uns	steady	supersonic inlet configuration [NASA-CE-2680] #76-24240
flow about an airfoil due to a periodic		BAYDUK, R. J.
•	A76-34552	Simulation of aircraft crash and its validation
GOLOVANEY, IU. H.	_	A76-34157
Investigation of the stressed state of par	nels	HAYES, C. W.
subjected to wide-band acoustic loads	A76-33516	Applied high temperature technology program, volume 1
GOMSALVES, J. B.	A70-33310	[AD-A018637] B76-24262
Crashworthiness of the Boeing Vertol UTTAS	S	Applied high temperature technology program.
•	A76-34138	Volume 2: Evaluation of coated columbian alloys
GREBNE, E. S.		for advanced turbine airfoils
The stochastic control of the F-8C aircraft		[AD-A018638] B76-24263
the Multiple Model Adaptive Control (MM) [NASA-CR-148100]	N76-25211	HBINIG, K. On the calculation of fan noise
GREGOREK, G. H.	870-23211	B76-24248
A data acquisition system for in-flight an	irfoil	REMDAN, E. T.
evaluation		Unsteady hypersonic flow over delta wings with
[SAE PAPER 760-462]	A76-31960	detached shock waves
GA/W/-2 Airfoil Plight Test Evaluation	124 24024	176-33719
[SAE PAPER 760-492] GRIPPIN, S. A.	A76-31974	HETHERINGTON, R. Influence of unsteady flow phenomena on the design
Hodel systems and their implications in the	he	and operation of aero engines
operation of pressurized wind tunnels		N76-25171
	N76-25248	HEWRIT, M. D.
GRIPPITH, W.		Navy evaluation F-11A in-flight thrust control
Interference-fit-fastener investigation	W76 30500	system
[AD-A018804] GROW, R. A.	N76-24598	[AD-A019954] N76-25204 ERNATZ, J. T.
Aerodynamic forces on a blunt store releas	sed from	On the parabolic method and the method of local
a swept wing		linearization in transonic flow
[AD-A019330]	N76-24189	A76-33778
GRUEBEWALD, B. H.		BICKEY, D. H.
Aircraft noise reduction by means of acous screening and engine controls	stic	Correlation of low speed wind tunnel and flight test data for V/STOL aircraft
Soldening the daying conclus	N76-24252	N76-25293
GRUPP, J. J.		HICKS, R. M.
T-28 service life evaluation		Airfoil section drag reduction at transonic speeds
[AD-A018907]	N76-24227	by numerical optimization
GROUDY, A. J. Flight/tunnel comparison of the installed	drag of	[SAE PAPER 760-477] A76-31969 HILADO, C. J.
wing mounted stores	drag or	A composite system approach to aircraft cabin fire
	N76-25300	safety
GUDMUNDSON, S. R.		[HASA-TH-X-73126] N76-25354
Comment on results obtained with three ONE		HILL, H. C.
airplane calibration models in FFA trans wind tunnels	sonic	Development of flight-by-flight fatigue test data from statistical distributions of aircraft
wind tunners	N76-25268	stress data. Volume 2: Documentation of the
GUINN, W. A.		B-58 and F-106 fatigue spectra simulation program
Sonic environment of aircraft structure is	mersed	[AD-A016407] N76-24219
in a supersonic jet flow stream		HITE, G. C.
[NASA-CR-144996]	ห76-25 168	Status of the Air Cushion Landing System flight
GUIOT, R. Comparison of aerodynamic coefficients obt	hannad	test program A76-34238
from theoretical calculations, wind tunn		HOBLSCHER, H. H.
tests, and flight tests data reduction f		Systematic investigations in the field of acoustic
Alpha Jet aircraft		screening
	N76-25295	N76-24253
41		BORNLINGER, H. Dynamic simulation in wind tunnels, part 1
H		N76-25275
HAINES, A. B.		HOBRNER, S. P.
Purther evidence and thoughts on scale eff	fects at	Fluid-dynamic lift: Practical information on
high subsonic speeds	W76_25.05.4	aerodynamic and hydrodynamic lift
HAJARI, J. V.	N76-25254	A76-32167 BOPPMANN, M. J.
Development of lightweight fire retardant,	,	A data acquisition system for in-flight airfoil
low-smoke, high-strength, thermally stab		evaluation
aircraft floor paneling		[SAE PAPER 760-462] A76-31960
[NASA-CR-147750]	N76-24365	GA/W/-2 Airfoil Plight Test Evaluation
Status of methods for aircraft state and p	arameter	[SAE PAPEE 760-492] A76-31974 HOPPHANN, R.
identification		Quieter propellers for general aviation: Present
	N76-25282	position. Puture expectations

N76-24255

HOLHES, B. J. Preliminary flight-test results of an adv.	ancod	KING, R. R.
technology light twin-engine airplane		Airfoil section drag reduction at transonic speeds by numerical optimization
[SAE PAPER 760-497]	A76-31976	[SAE PAPER 760-477] A76-31969
HORRPF, T. G. Research and development of modified fuel:	s for	KIRKLIND, P. P. Inlet spillage drag tests and numerical flow-field
reduction of the postcrash fire hazard	5 202	analysis at subsonic and transonic speeds of a
TOTAL DA W	A76-34166	1/8-scale, two-dimensional,
HOWARD, W. H. Application of advanced aerodynamic conce	pts to	<pre>external-compression, variable-geometry, supersonic inlet configuration</pre>
large subsonic transport airplanes	-	[HASA-CR-2680] H76-24240
[AD-A019956]	N76-25159	KLBIN, D.
HSU, M. T. S. A composite system approach to aircraft c	abin fire	Weight prediction methods - GRUGEW program [MBB-UPE-1072-0] #76-24215
safety		KNOTT, P. G.
[HASA-TH-X-73126] HUBBBCKE, K.	N76-25354	Air driven ejector units for engine simulation in wind tunnel models
Calculation method for separated flow of	slender	#76-25239
arrow wings	-54 04450	KOBAYAKAWA, M.
[ILR-5-1975] HOI, W. H.	N76-24170	On the response of an aircraft to random gust A76-32337
Unsteady hypersonic flow over delta wings	with	KOBTSIER, J.
detached shock waves	A76-33719	Metal-to-metal adhesive bonded aircraft structures [FOK-K-81] 876-24411
HUSTON, R. L.	A/0-33/19	[FOK-K-81] H76-24411 KOHLMAN, D. L.
Aircraft crashworthiness; Proceedings of		Preliminary flight-test results of an advanced
Symposium, University of Cincinnati, Ci Ohio, October 6-8, 1975	ncinnati,	technology light twin-engine airplane /ATLIT/ [SAE PAPER 760-497] A76-31976
oursy outcomer o by 1979	A76-34132	KOS, J. H.
HUTCHESON, J. G.		Multiple fault gas path analysis applied to a twin
T-28 service life evaluation [AD-A018907]	N76-24227	spool, mixed flow, variable geometry, turbofan engine
([AD-A019183] H76-24259
		KOTIK, M. G. The dynamics of aircraft spin
ISEBBERG, J. \		A76-33022
The prediction of the behaviour of axial		KOURTIDES, D. A.
compressors near surge	N76-25203	A composite system approach to aircraft cabin fire safety
		[NASA-TM-X-73126] N76-25354
j		ROVICH, G. Aerodynamic performance of 0.4066-scale model to
JACKSON, J. J.		JT8D refan stage
Applied high temperature technology progra	am,	[NASA-TH-X-3356] N76-24153
volume 1 [AD-A018637]	N76-24262	KRAUS, W. Further development of the panel method. Part 1:
Applied high temperature technology progra	am.	Nonlinear panel method considering discrete
Volume 2: Evaluation of coated columbia for advanced turbine airfoils	an alloys	separated vortex sheets on swept slender wing shapes
[AD-A018638]	N76-24263	[MBB-UPE-1070-0] N76-24175
JACOBSON, I. D.		KULPAN, R. M.
The impact of interior cabin noise on pass acceptance	senger	Application of advanced aerodynamic concepts to large subsonic transport airplanes
[SAE PAPER 760-466]	A76-31962	[AD-A019956] N76-25159
JAMES, A. H. Design of an advanced composites alleron in	for	KURZKE, J. Optimised engines for QSTOL applications
commercial aircraft		N76-24244
John Harden A D	A76-32651	KVATERBIK, R. G. A review of some tilt-rotor aeroelastic research
JOHANNESEN, N. H. The structure of jets from notched nozzle:	S	at NASA-Langley
-	A76-33361	A76-33795
JOHNSON, D. A. Video tape presentation of passenger safe	t∀	1
information		L
	A76-32232	LABOSSIERE, L. A.
	2.0 32232	
JOHES, W. P. Unsteady airloads on a cascade of stagger		A composite system approach to aircraft cabin fire safety
	ed blades	A composite system approach to aircraft cabin fire safety [NASA-TM-X-73126] N76-25354
Unsteady airloads on a cascade of stagger		A composite system approach to aircraft cabin fire safety [NASA-TM-X-73126] N76-25354 LAMAR, W. B.
Unsteady airloads on a cascade of stagger in subsonic flow	ed blades	A composite system approach to aircraft cabin fire safety [NASA-TM-X-73126] N76-25354 LAMAR, W. B. Effects of buffeting and other transonic phenomena N76-25298
Unsteady airloads on a cascade of stagger in subsonic flow	ed blades	A composite system approach to aircraft cabin fire safety [NASA-TM-K-73126] N76-25354 LAMAR, W. B. Effects of buffeting and other transonic phenomena N76-25298 LAMGENBUCHER, V.
Unsteady airloads on a cascade of stagger in subsonic flow K KAZIN, S. B. Single stage, low noise advanced technology	ed blades N76-25200	A composite system approach to aircraft cabin fire safety [NASA-TM-X-73126] N76-25354 LAMAR, W. B. Effects of buffeting and other transonic phenomena N76-25298
Unsteady airloads on a cascade of stagger in subsonic flow K KAZIN, S. B. Single stage, low noise advanced technology volume 3: Acoustic design	ed blades N76-25200 gy fan.	A composite system approach to aircraft cabin fire safety [NASA-TM-X-73126] N76-25354 LAMAR, W. B. Effects of buffeting and other transonic phenomena N76-25298 LAMGENBUCHER, V. Possibilities and problems of helicopter noise reduction N76-24211
Unsteady airloads on a cascade of stagger in subsonic flow K KAZIN, S. B. Single stage, low noise advanced technology volume 3: Acoustic design [NASA-CR-134803]	ed blades N76-25200	A composite system approach to aircraft cabin fire safety [NASA-TM-X-73126] N76-25354 LAMAR, W. B. Effects of buffeting and other transonic phenomena N76-25298 LANGENBUCHER, V. Possibilities and problems of helicopter noise reduction N76-24211 Noise phenomena with helicopter rotors and
Unsteady airloads on a cascade of stagger in subsonic flow K KAZIN, S. B. Single stage, low noise advanced technology to the stage of the stage o	ed blades N76-25200 gy fan. N76-24238	A composite system approach to aircraft cabin fire safety [NASA-TM-X-73126] N76-25354 LAMAR, W. B. Effects of buffeting and other transonic phenomena N76-25298 LAMGENBUCHER, V. Possibilities and problems of helicopter noise reduction N76-24211 Noise phenomena with helicopter rotors and possibilities of noise reduction N76-24256
Unsteady airloads on a cascade of stagger in subsonic flow K KAZIN, S. B. Single stage, low noise advanced technology volume 3: Acoustic design [NASA-CR-134803] KENNORTHY, N. J. Development of emissions measurement technology afterburning turbine engines	ed blades N76-25200 gy fan. N76-24238 niques	A composite system approach to aircraft cabin fire safety [NASA-TM-X-73126] LAMAR, W. B. Effects of buffeting and other transonic phenomena N76-25298 LAMGENBUCHER, V. Possibilities and problems of helicopter noise reduction N76-24211 Noise phenomena with helicopter rotors and possibilities of noise reduction N76-24256 LASCHKA, B.
Unsteady airloads on a cascade of stagger in subsonic flow K KAZIN, S. B. Single stage, low noise advanced technology of the stage o	ed blades N76-25200 gy fan. N76-24238 niques N76-24260	A composite system approach to aircraft cabin fire safety [NASA-TM-X-73126] N76-25354 LAMAR, W. B. Effects of buffeting and other transonic phenomena N76-25298 LAMGENBUCHER, V. Possibilities and problems of helicopter noise reduction N76-24211 Noise phenomena with helicopter rotors and possibilities of noise reduction N76-24256 LASCHKA, B. Unsteady aerodynamic prediction methods applied in aeroelasticity
Unsteady airloads on a cascade of stagger in subsonic flow K KAZIN, S. B. Single stage, low noise advanced technology volume 3: Acoustic design [NASA-CR-134803] KENNORTHY, N. J. Development of emissions measurement technology afterburning turbine engines [AD-A019094] KIDA, T. Lift and drag characteristics of a supercase	ed blades N76-25200 gy fan. N76-24238 niques N76-24260 avitating	A composite system approach to aircraft cabin fire safety [NASA-TM-K-73126] N76-25354 LAMAR, W. B. Effects of buffeting and other transonic phenomena N76-25298 LAMGENBUCHER, V. Possibilities and problems of helicopter noise reduction N76-24211 Noise phenomena with helicopter rotors and possibilities of noise reduction N76-24256 LASCHKA, B. Unsteady aerodynamic prediction methods applied in aeroelasticity N76-24147
Unsteady airloads on a cascade of stagger in subsonic flow K KAZIN, S. B. Single stage, low noise advanced technology of the stage o	ed blades N76-25200 gy fan. N76-24238 niques N76-24260 avitating	A composite system approach to aircraft cabin fire safety [NASA-TM-X-73126] N76-25354 LAMAR, W. B. Effects of buffeting and other transonic phenomena N76-25298 LAMGENBUCHER, V. Possibilities and problems of helicopter noise reduction N76-24211 Noise phenomena with helicopter rotors and possibilities of noise reduction N76-24256 LASCHKA, B. Unsteady aerodynamic prediction methods applied in aeroelasticity
Unsteady airloads on a cascade of stagger in subsonic flow K KAZIN, S. B. Single stage, low noise advanced technology of the stage o	ed blades N76-25200 gy fan. N76-24238 niques N76-24260 avitating	A composite system approach to aircraft cabin fire safety [NASA-TM-X-73126] N76-25354 LAMAR, W. B. Effects of buffeting and other transonic phenomena N76-25298 LAMGENBUCHER, V. Possibilities and problems of helicopter noise reduction N76-24211 Noise phenomena with helicopter rotors and possibilities of noise reduction N76-24211 LASCHKA, B. Unsteady aerodynamic prediction methods applied in aeroelasticity N76-24147 LAUDIEM, B. Possibilities and problems of helicopter noise reduction
Unsteady airloads on a cascade of stagger in subsonic flow K KAZIN, S. B. Single stage, low noise advanced technology volume 3: Acoustic design [NASA-CR-134803] KENNORTHY, M. J. Development of emissions measurement technology afterburning turbine engines [AD-A019094] KIDA, T. Lift and drag characteristics of a supercombered hydrofoil with a jet flap benefit	ed blades N76-25200 gy fan. N76-24238 niques N76-24260 avitating ath a	A composite system approach to aircraft cabin fire safety [NASA-TM-X-73126] N76-25354 LAMAR, W. B. Effects of buffeting and other transonic phenomena N76-25298 LAMGENBUCHER, V. Possibilities and problems of helicopter noise reduction N76-24211 Noise phenomena with helicopter rotors and possibilities of noise reduction N76-24256 LASCHKA, B. Unsteady aerodynamic prediction methods applied in aeroelasticity N76-24147 LAUDIEM, E. Possibilities and problems of helicopter noise
Unsteady airloads on a cascade of stagger in subsonic flow K KAZIN, S. B. Single stage, low noise advanced technology volume 3: Acoustic design [NASA-CR-134803] KENNORTHY, M. J. Development of emissions measurement technology for afterburning turbine engines [AD-A019094] KIDA, T. Lift and drag characteristics of a supercombered hydrofoil with a jet flap benefice surface KIESSLING, F.	ed blades N76-25200 gy fan. N76-24238 niques N76-24260 avitating ath a	A composite system approach to aircraft cabin fire safety [NASA-TM-X-73126] N76-25354 LAMAR, W. B. Effects of buffeting and other transonic phenomena N76-25298 LAMGENBUCHER, V. Possibilities and problems of helicopter noise reduction N76-24211 Noise phenomena with helicopter rotors and possibilities of noise reduction N76-24211 LASCHKA, B. Unsteady aerodynamic prediction methods applied in aeroelasticity N76-24147 LAUDIEM, B. Possibilities and problems of helicopter noise reduction

PERSONAL AUTHOR INDEX HOKELKO, H.

LAYTON, G. P.		MATORESIUR, L. B.	
A new experimental flight research techniq	ue: The	Investigation of the stressed state of pan- subjected to wide-band acoustic loads	eis
remotely piloted airplage	N76-25287	Subjected to Wide-Ball acoustic loads	A76-33516
LEE, W. H.		MATTHEWS, A. W.	
The stochastic control of the P-8C aircraf	t using	Air driven ejector units for engine simulat	tion in
the Multiple Model Adaptive Control (MMA [NASA-CR-148100]	N76-25211	wind tunnel models	N76-25239
LEIS, B. H.	2.0 25211	MAUS, J. R.	270 23233
Interference-fit-fastener investigation	W34 04500	Investigation of feasible nozzle configura	
[AD-A018804] LERBER, H. R.	N76-24598	for noise reduction in turbofan and turb aircraft. Volume 1: Summary and select	
A composite system approach to aircraft ca	bin fire	multinozzle configurations	-u
safety	•	[AD-A019645/1]	N76-24233
[NASA-TH-X-73126] LETCHWORTH, B.	N76-25354	Investigation of feasible nozzle configura for noise reduction in turbofan and turb	
Rotor Systems Research Aircraft (RSRA)		aircraft. Volume 2: Slot nozzle config	
-	N76-25286	[AD-A019646/9]	N76-24234
LEVI, O. A.		MAYER, J. B.	-
YP-17 stall/post-stall testing	A76-34246	PAA JT3D quiet nacelle retrofit feasibility program. Volume 2, addendum A: Hodel a	
LEVINE, H.		scale plug nozzle tests	
Nonlinear finite element techniques for ai	rcraft	[AD-A023037/5]	N76-24239
crash analysis	A76-34159	MAZZAWY, R. S. Multiple segment parallel compressor model	for
LEWIS, J.	2.0 0.00	circumferential flow distortion	
The development testing of a short-haul	*****		พ76-25189
airframe/powerplant combination, the VPW	614/845H A76-32633	Some current research in unsteady aerodyna	mice: 1
LICKLEDERER, A.	E/0-32033	report from the Pluid Dynamics Panel	alcs. A
Characteristic jet engine parameters for p	roject		N76-25192
comparisons	N76-24258	MCGRATH, J. H. An approach to the estimation of life cycl.	o costs
[DLR-IB-555-74/13] LIBSCHEID, L. L.	870 24230	of a fiber-optic application in military	
FAA JT3D quiet nacelle retrofit feasibilit	y _	[AD-A019379]	N76-25017
program. Volume 2, addendum A: Model a	nd full	HCHERKIN, R. R.	
scale plug nozzle tests [AD-A023037/5]	N76-24239	General investigation of accidents	A76-34134
LITTLE, D. R.		MCPHERSON, R. L.	
Single stage, low noise, advanced technolo	gy fan.	The Boeing Compass Cope Program	.26 22622
Volume 1: Aerodynamic design [NASA-CR-134801]	N76-24236	HEADE, L. E.	A76-32632
LLEWELYN-DAVIES, D. I. T. P.		Study of the application of advanced technology	ologies
The use of carbon fibre-reinforced plastic		to laminar flow control systems for subs	Onic
construction of wings for testing in win	d tunneis 1176-32655	transports. Volume 1: Summary [NASA-CR-144975]	N76-24144
LORHAME, D.	2.0 32033	Study of the application of advanced technique	
On the reduction of compressor noise by me	ans of	to laminar-flow control systems for subs	onic
helical detuners	N76-24250	transports. Volume 2: Analyses [HASA-CR-144949]	N76-24145
LUMLEY, J. L.	270 27230	MENARD, W. A.	2.0 2
Characteristics of turbulent wakes behind	rotating	New potentials for conventional aircraft w	hen
rotor blades	A76-33852	powered by hydrogen-enriched gasoline [SAE PAPER 760-469]	A76-31964
LYOU, T. F.		HETZGER, P. B.	
Development of emissions measurement techn	iques	Progress report on propeller aircraft flyo	ver
for afterburning turbing engines [AD-A019094]	N76-24260	noise research [SAE PAPER 760-454]	A76-31954
LYSTAD, H. D.		MEYER, H. L.	_
Catapult launch fatigue investigation of t B-1B/C-1 airplane	he model	Some informal comments about the research in the DPVLR	aircraft
[AD-A019519]	N76-24223	In the prope	N76-25285
•		HICHNA, K. R.	
M		An approach to the estimation of life cyclor of a fiber-optic application in military	e custs alrcraft
MACIOCE, L. B.		[AD-A019379]	N76-25017
Small, low-cost, expendable turbojet engin		HILLRE, B. A.	
Design, fabrication, and preliminary tes [NASA-TH-X-3392]	ting 1176-24242	Inlets for high angles of attack	A76-33121
MAGLIOZZI, B.	870 24242	MINCER, P. H.	270 33121
Progress report on propeller allcraft flyo	ver	Interference-fit-fastener investigation	
noise research	A76-31954	[AD-A018804] MISHLER, R. B.	N76-24598
[SAE PAPER 760-454] HANTEGAZZA, P.	A/0-31934	Single stage, low noise advanced technolog	y fan.
Determination of aerodynamic forces for		Volume 3: Acoustic design	
aeroelastic analysis of lifting surfaces		[WASA-CR-134803]	N76-24238
MARCOWI, P.	A76-34481	HITTAG, C. P. Engineering evaluation JOH-58A helicopter	with an
Development of a computer code for calcula	ting the	automatic relight system	
steady super/hypersonic inviscid flow ar	ound	[AD-A019407]	B76-25161
real configurations. Volume 2: Code de [NASA-CE-2676]	scription N76-24152	Calculation of compressible turbulent boun	darv
HARTIN, T. A.		layers on straight-tapered swept wings	
Stall/post-stall/spin avoidance tests of t	he YA-10	MAPPERA	A76-32587
aircraft	A76-34247	HOKELKO, H. The effect of turbulent mixing on the deca	v of
	. 2**	sinusoidal inlet distortions in axial fl compressors	

B76-25190

HOKRY, M.	HIBERG, S. E.
Influence function method in wind tunnel wall interference problems N76-25228	Comment on results obtained with three ONERA airplane calibration models in PPA transonic wind tunnels
HOORE, C. B.	N76-25268
Modification of drone sailplane into a special purpose test webicle for atmospheric research	O
[AD-A019436] N76-24228 MOORE, R. D.	OBERMEIER, L.
Aerodynamic performance of 0.4066-scale model to JT8D refan stage	<pre>Engine and jet induced effects of a lift plus lift-cruise V/STOL aircraft</pre>
[NASA-TM-X-3356] N76-24153	A76-32631
MORITZ, R. R. Influence of unsteady flow phenomena on the design	OBRIEN, W. P., JR. An on-rotor investigation of rotating stall in an
and operation of aero engines	axial-flow compressor
N76-25171	N76-25201
MOSES, H. L. An on-rotor investigation of rotating stall in an	OHTA, H. Model matching method for flight control and
axial-flow compressor	stimulation
M76-25201 HOSS, G. F.	A76-32396
Some aeroelastic distortion effects on aircraft	OLSON, B. C. Experimental determination of improved aerodynamic
and wind tunnel models	characteristics utilizing biplane wing
N76-25278	configurations A76-33116
EOTT, D. R. Crashworthiness and postcrash hazards from the	ORNER, H.
airline flight attendant's point of view	The prediction of the behaviour of axial
A76-34163	compressors near surge
MOYNIHAM, P. I. New potentials for conventional aircraft when	OSTDIEK, P. R.
powered by hydrogen-enriched gasoline	A cascade in unsteady flow
[SAE PAPER 760-469] A76-31964	N76-25194
MOZOLKOV, A. S. Visual study of the three-dimensional flow pattern	OSTROFF, A. J. A technique using a nonlinear helicopter model for
at a delta wing in subsonic flow	determining trims and derivatives
A76-33869	[NASA-TH-D-8159] N76-24265
MUBBLBAUER, G. Quieter propellers for general aviation: Present	OTTO, H. Systematical investigations of the influence of
position. Future expectations	wind tunnel turbulence on the results of model
N76-24255	force-measurements
MURMAN, B. M. Airfoil section drag reduction at transonic speeds	N76-25259
by numerical optimization .	P
[SAE PAPER 760-477] A76-31969	r
MYKYTOW, W. J. Brief Overview of some hir Porce Plight Dynamics	PALMER, D. P. Navy evaluation P-11% in-flight thrust control
Brief overview of some Air Force Flight Dynamics	PALMER, D. F. Navy evaluation F-11A in-flight thrust control system
Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics	Navy evaluation F-11A in-flight thrust control system [AD-A019954] N76-25204
Brief overview of some Air Porce Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151	Navy evaluation F-11A in-flight thrust control system [AD-A019954] #76-25204 PAREU, S. S.
Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics	Navy evaluation F-11A in-flight thrust control system [AD-A019954] N76-25204 PANNU, S. S. The structure of jets from notched nozzles A76-33361
Brief overview of some Air Porce Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 MYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to	Navy evaluation F-11A in-flight thrust control system [AD-A019954] N76-25204 PANNU, S. S. The structure of jets from notched nozzles A76-33361 PANYALEY, G.
Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 BYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division	Navy evaluation F-11A in-flight thrust control system [AD-A019954] N76-25204 PANNU, S. S. The structure of jets from notched nozzles A76-33361
Brief overview of some Air Porce Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 MYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to	Navy evaluation F-11A in-flight thrust control system [AD-A019954] N76-25204 PANNU, S. S. The structure of jets from notched nozzles PANYALEV, G. Sukhoi's swing-wing Su-17/20 Fitter C PARK, K. C. A76-33946
Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 BYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] N76-24368	Navy evaluation F-11A in-flight thrust control system [AD-A019954] H76-25204 PANNU, S. S. The structure of jets from notched nozzles A76-33361 PANYALBY, G. Sukhoi's swing-wing Su-17/20 Fitter C A76-33946 PARK, K. C. Hodeling and analysis techniques for vehicle crash
Brief overview of some Air Porce Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 WYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] N76-24368	Navy evaluation F-11A in-flight thrust control system [AD-A019954] N76-25204 PANNU, S. S. The structure of jets from notched nozzles PANYALEV, G. Sukhoi's swing-wing Su-17/20 Fitter C PARK, K. C. A76-33946
Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 WILIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] N WHEAL, B. D. High altitude applications of the Gates Learjet	Navy evaluation F-11A in-flight thrust control system [AD-A019954] H76-25204 PANNU, S. S. The structure of jets from notched nozzles PANYALEV, G. Sukhoi's swing-wing Su-17/20 Fitter C PARK, K. C. Modeling and analysis techniques for vehicle crash simulation A76-34158 PARK, P. E.
Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 MYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] N MBAL, R. D. High altitude applications of the Gates Learjet [SAE PAPER 760-491] A76-31973	Navy evaluation F-11A in-flight thrust control system [AD-A019954] N76-25204 PABBU, S. S. The structure of jets from notched nozzles A76-33361 PANYALEY, G. Sukhoi's swing-wing Su-17/20 Fitter C A76-33946 PARK, K. C. Modeling and analysis techniques for vehicle crash simulation A76-34158 PARK, P. H. Calculation of aerodynamic derivatives in unsteady
Brief overview of some Air Porce Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 MYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] N HEAL, R. D. High altitude applications of the Gates Learjet [SAE PAPER 760-491] BEAHTU, H.	Navy evaluation F-11A in-flight thrust control system [AD-A019954] H76-25204 PANNU, S. S. The structure of jets from notched nozzles PANYALEV, G. Sukhoi's swing-wing Su-17/20 Fitter C PARK, K. C. Modeling and analysis techniques for vehicle crash simulation A76-34158 PARK, P. E.
Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 BYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] N HEAL, B. D. High altitude applications of the Gates Learjet [SAE PAPER 760-491] BEAHTU, B. Flow around wings with inclined lateral jets A76-32596	Navy evaluation F-11A in-flight thrust control system [AD-A019954] N76-25204 PABBU, S. S. The structure of jets from notched nozzles A76-33361 PANYALEY, G. Sukhoi's swing-wing Su-17/20 Fitter C A76-33946 PARK, K. C. Modeling and analysis techniques for vehicle crash simulation A76-34158 PARK, P. H. Calculation of aerodynamic derivatives in unsteady two-dimensional transonic flow using Dowell's linearization method [AMS-1238-T] N76-24154
Brief overview of some Air Porce Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 HYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] N HEAL, R. D. High altitude applications of the Gates Learjet [SAE PAPER 760-491] ESABRUT, H. Flow around wings with inclined lateral jets A76-32596 HEILAND, V. IA.	Navy evaluation F-11A in-flight thrust control system [AD-A019954] PABU, S. S. The structure of jets from notched nozzles PABYALEV, G. Sukhoi's swing-wing Su-17/20 Fitter C PARK, K. C. Hodeling and analysis techniques for vehicle crash simulation A76-34158 PARK, P. B. Calculation of aerodynamic derivatives in unsteady two-dimensional transonic flow using Dowell's linearization method [ABS-1238-T] PARKER, J. A.
Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 BYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] N HEAL, B. D. High altitude applications of the Gates Learjet [SAE PAPER 760-491] BEAHTU, B. Flow around wings with inclined lateral jets A76-32596	Navy evaluation F-11A in-flight thrust control system [AD-A019954] N76-25204 PABBU, S. S. The structure of jets from notched nozzles A76-33361 PANYALEY, G. Sukhoi's swing-wing Su-17/20 Fitter C A76-33946 PARK, K. C. Modeling and analysis techniques for vehicle crash simulation A76-34158 PARK, P. H. Calculation of aerodynamic derivatives in unsteady two-dimensional transonic flow using Dowell's linearization method [AMS-1238-T] N76-24154
Brief overview of some Air Porce Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 MYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] N HEAL, R. D. High altitude applications of the Gates Learjet [SAE PAPER 760-491] BEAHTU, H. Flow around wings with inclined lateral jets A76-32596 HEILAND, V. IA. Law of cross sections for the three-dimensional boundary layer on a thin-section wing in hypersonic flow	Navy evaluation F-11A in-flight thrust control system [AD-A019954] PAHBU, S. S. The structure of jets from notched nozzles A76-33361 PAHYALEV, G. Sukhoi's swing-wing Su-17/20 Fitter C A76-33946 PARK, K. C. Hodeling and analysis techniques for vehicle crash simulation A76-34158 PARK, P. B. Calculation of aerodynamic derivatives in unsteady two-dimensional transonic flow using Dowell's linearization method [AMS-1238-T] PARKER, J. A. A composite system approach to aircraft cabin fire safety [NASA-TH-I-73126] H76-25354
Brief overview of some Air Porce Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 HYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UPE-1067-0] N WEAL, R. D. High altitude applications of the Gates Learjet [SAE PAPER 760-491] BAHTU, H. Plow around wings with inclined lateral jets A76-32596 HEILAHD, V. IA. Law of cross sections for the three-dimensional boundary layer on a thin-section wing in hypersonic flow A76-33854	Navy evaluation F-11A in-flight thrust control system [AD-A019954] N76-25204 PANNU, S. S. The structure of jets from notched nozzles A76-33361 PANYALEV, G. Sukhoi's swing-wing Su-17/20 Fitter C A76-33946 PARK, K. C. Hodeling and analysis techniques for vehicle crash simulation A76-34158 PARK, P. B. Calculation of aerodynamic derivatives in unsteady two-dimensional transonic flow using Dowell's linearization method [ANS-1238-T] N76-24154 PARKER, J. A. A composite system approach to aircraft cabin fire safety [NASA-TH-I-73126] N76-25354 PARKER, L. C.
Brief overview of some Air Porce Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 MYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] N HEAL, R. D. High altitude applications of the Gates Learjet [SAE PAPER 760-491] BEAHTU, H. Flow around wings with inclined lateral jets A76-32596 HEILAND, V. IA. Law of cross sections for the three-dimensional boundary layer on a thin-section wing in hypersonic flow	Navy evaluation F-11A in-flight thrust control system [AD-A019954] PAHBU, S. S. The structure of jets from notched nozzles A76-33361 PAHYALEV, G. Sukhoi's swing-wing Su-17/20 Fitter C A76-33946 PARK, K. C. Hodeling and analysis techniques for vehicle crash simulation A76-34158 PARK, P. B. Calculation of aerodynamic derivatives in unsteady two-dimensional transonic flow using Dowell's linearization method [AMS-1238-T] PARKER, J. A. A composite system approach to aircraft cabin fire safety [NASA-TH-I-73126] H76-25354
Brief overview of some Air Porce Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 HYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] N HEAL, R. D. High altitude applications of the Gates Learjet [SAE PAPER 760-491] Flow around wings with inclined lateral jets A76-31973 HEBLAND, V. IA. Law of cross sections for the three-dimensional boundary layer on a thin-section wing in hypersonic flow A76-33854 HGUYEM, L. T. Simulator study of the effectiveness of an automatic control system designed to improve the	Navy evaluation F-11A in-flight thrust control system [AD-A019954] PABU, S. S. The structure of jets from notched nozzles A76-33361 PABYALEV, G. Sukhoi's swing-wing Su-17/20 Fitter C A76-33946 PARK, K. C. Hodeling and analysis techniques for vehicle crash simulation A76-34158 PARK, P. B. Calculation of aerodynamic derivatives in unsteady two-dimensional transonic flow using Dowell's linearization method [ABS-1238-T] PARKER, J. A. A composite system approach to aircraft cabin fire safety [HASA-TH-I-73126] PARKER, L. C. NASA study of an automated Pilot Advisory System [SAE PAPER 760-460] PARKENSON, G. V.
Brief overview of some Air Porce Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 BYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] N HEAL, B. D. High altitude applications of the Gates Learjet [SAE PAPER 760-491] BANTI, H. Plow around wings with inclined lateral jets A76-32596 HEILAND, V. IA. Law of cross sections for the three-dimensional boundary layer on a thin-section wing in hypersonic flow A76-33854 HEGUYEH, L. T. Simulator study of the effectiveness of an automatic control system designed to improve the high-angle-of-attack characteristics of a	Navy evaluation F-11A in-flight thrust control system [AD-A019954] PABBU, S. S. The structure of jets from notched nozzles A76-33361 PANYALEY, G. Sukhoi's swing-wing Su-17/20 Fitter C A76-33946 PARK, K. C. Modeling and analysis techniques for vehicle crash simulation A76-34158 PARK, P. H. Calculation of aerodynamic derivatives in unsteady two-dimensional transonic flow using Dowell's linearization method [ANS-1238-T] PARKER, J. A. A composite system approach to aircraft cabin fire safety [NASA-TH-I-73126] PARKER, L. C. NASA study of an automated Pilot Advisory System [SAE PAPER 760-460] PARKINSON, G. V. A low-correction wall configuration for airfoil
Brief overview of some Air Porce Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 HYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] N HEAL, R. D. High altitude applications of the Gates Learjet [SAE PAPER 760-491] Flow around wings with inclined lateral jets A76-31973 HEBLAND, V. IA. Law of cross sections for the three-dimensional boundary layer on a thin-section wing in hypersonic flow A76-33854 HGUYEM, L. T. Simulator study of the effectiveness of an automatic control system designed to improve the	Navy evaluation F-11A in-flight thrust control system [AD-A019954] PABU, S. S. The structure of jets from notched nozzles A76-33361 PABYALEV, G. Sukhoi's swing-wing Su-17/20 Fitter C A76-33946 PARK, K. C. Hodeling and analysis techniques for vehicle crash simulation A76-34158 PARK, P. B. Calculation of aerodynamic derivatives in unsteady two-dimensional transonic flow using Dowell's linearization method [ABS-1238-T] PARKER, J. A. A composite system approach to aircraft cabin fire safety [HASA-TH-I-73126] PARKER, L. C. NASA study of an automated Pilot Advisory System [SAE PAPER 760-460] PARKENSON, G. V.
Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 BYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] N WHAL, R. D. High altitude applications of the Gates Learjet [SAE PAPER 760-491] BEANTU, H. Flow around wings with inclined lateral jets A76-32596 BEILAND, V. IA. Law of cross sections for the three-dimensional boundary layer on a thin-section wing in hypersonic flow A76-33854 BGUYEN, L. T. Simulator study of the effectiveness of an automatic control system designed to improve the high-angle-of-attack characteristics of a fighter airplane [HASA-TH-D-8176] BIELSEN, L.	Navy evaluation F-11A in-flight thrust control system [AD-A019954] PABBU, S. S. The structure of jets from notched nozzles A76-33361 PANYALEY, G. Sukhoi's swing-wing Su-17/20 Fitter C A76-33946 PARK, K. C. Modeling and analysis techniques for vehicle crash simulation A76-34158 PARK, P. H. Calculation of aerodynamic derivatives in unsteady two-dimensional transonic flow using Dowell's linearization method [AMS-1238-T] PARKER, J. A. A composite system approach to aircraft cabin fire safety [NASA-TH-I-73126] PARKER, L. C. NASA study of an automated Pilot Advisory System [SAE PAPER 760-460] PARKINSON, G. V. A low-correction wall configuration for airfoll testing PASSBORE, H.
Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 BYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] N WEAL, R. D. High altitude applications of the Gates Learjet [SAE PAPER 760-491] BEANTU, H. Flow around wings with inclined lateral jets A76-31973 BELLAND, V. IA. Law of cross sections for the three-dimensional boundary layer on a thin-section wing in hypersonic flow A76-33854 BGUYEN, L. T. Simulator study of the effectiveness of an automatic control system designed to improve the high-angle-of-attack characteristics of a fighter airplane [MASA-TN-D-8176] BT6-24266 BIELSEN, L. The development testing of a short-haul	Navy evaluation F-11A in-flight thrust control system [AD-A019954] PAHBU, S. S. The structure of jets from notched nozzles A76-33361 PANYALEV, G. Sukhon's swing-wing Su-17/20 Fitter C A76-33946 PARK, K. C. Hodeling and analysis techniques for vehicle crash simulation A76-34158 PARK, P. H. Calculation of aerodynamic derivatives in unsteady two-dimensional transonic flow using Dowell's linearization method [AMS-1238-T] PARKER, J. A. A composite system approach to aircraft cabin fire safety [NASA-TH-I-73126] PARKER, L. C. NASA study of an automated Pilot Advisory System [SAE PAPER 760-460] PARKINSON, G. V. A low-correction wall configuration for airfoil testing PASSHORE, H. Simulation - A flight test complement
Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 BYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] N WHAL, R. D. High altitude applications of the Gates Learjet [SAE PAPER 760-491] BEANTU, H. Flow around wings with inclined lateral jets A76-32596 BEILAND, V. IA. Law of cross sections for the three-dimensional boundary layer on a thin-section wing in hypersonic flow A76-33854 BGUYEN, L. T. Simulator study of the effectiveness of an automatic control system designed to improve the high-angle-of-attack characteristics of a fighter airplane [HASA-TH-D-8176] BIELSEN, L.	Navy evaluation F-11A in-flight thrust control system [AD-A019954] PABBU, S. S. The structure of jets from notched nozzles A76-33361 PANYALEY, G. Sukhoi's swing-wing Su-17/20 Fitter C A76-33946 PARK, K. C. Modeling and analysis techniques for vehicle crash simulation A76-34158 PARK, P. H. Calculation of aerodynamic derivatives in unsteady two-dimensional transonic flow using Dowell's linearization method [AMS-1238-T] PARKER, J. A. A composite system approach to aircraft cabin fire safety [NASA-TH-I-73126] PARKER, L. C. NASA study of an automated Pilot Advisory System [SAE PAPER 760-460] PARKINSON, G. V. A low-correction wall configuration for airfoll testing PASSBORE, H.
Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 BYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] N HEAL, R. D. High altitude applications of the Gates Learjet [SAE PAPER 760-491] BEAHTU, H. Flow around wings with inclined lateral jets A76-31973 BELLAND, V. IA. Law of cross sections for the three-dimensional boundary layer on a thin-section wing in hypersonic flow A76-33854 BGUYEB, L. T. Simulator study of the effectiveness of an automatic control system designed to improve the high-angle-of-attack characteristics of a fighter airplane [MASA-TN-D-8176] F76-24266 BIELSEB, L. The development testing of a short-haul airframe/powerplant combination, the VFW 614/M45B A76-32633	Navy evaluation F-11A in-flight thrust control system [AD-A019954] PABUL, S. S. The structure of jets from notched nozzles A76-33361 PANYALEV, G. Sukhoi's swing-wing Su-17/20 Fitter C A76-33946 PARK, K. C. Hodeling and analysis techniques for vehicle crash simulation A76-34158 PARK, P. H. Calculation of aerodynamic derivatives in unsteady two-dimensional transonic flow using Dowell's linearization method [AMS-1238-T] PARKER, J. A. A composite system approach to aircraft cabin fire safety [NASA-TH-I-73126] PARKER, L. C. NASA study of an automated Pilot Advisory System [SAE PAPER 760-460] PARKINSON, G. V. A low-correction wall configuration for airfoil testing PASSHORE, H. Simulation - A flight test complement A76-34240 PATERSON, R. W. Development of the United Technologies Research
Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 MYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] N WEAL, R. D. High altitude applications of the Gates Learjet [SAE PAPER 760-491] Flow around wings with inclined lateral jets A76-31973 BEANTI, H. Flow around wings with inclined lateral jets A76-32596 WEILAND, V. IA. Law of cross sections for the three-dimensional boundary layer on a thin-section wing in hypersonic flow A76-33854 WGUYEM, L. T. Simulator study of the effectiveness of an automatic control system designed to improve the high-angle-of-attack characteristics of a fighter airplane [MASA-TM-D-8176] WIELSEM, L. The development testing of a short-haul airframe/powerplant combination, the VFW 614/M45B A76-32633 WISHT, M. I. On mathematical simulation of separated flow past	Navy evaluation F-11A in-flight thrust control system [AD-A019954] PANHU, S. S. The structure of jets from notched nozzles A76-33361 PANYALEV, G. Sukhol's swing-wing Su-17/20 Fitter C A76-33946 PARK, K. C. Hodeling and analysis techniques for vehicle crash simulation A76-34158 PARK, P. H. Calculation of aerodynamic derivatives in unsteady two-dimensional transonic flow using Dowell's linearization method [AMS-1238-T] PARKER, J. A. A composite system approach to aircraft cabin fire safety [NASA-TH-X-73126] PARKER, L. C. NASA study of an automated Pilot Advisory System [SAE PAPER 760-460] PARKINSON, G. V. A low-correction wall configuration for airfoll testing PASSHORE, H. Simulation - A flight test complement A76-34240 PATERSON, R. W. Development of the United Technologies Research Center accoustic research tunnel and associated
Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 BYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] N HEAL, R. D. High altitude applications of the Gates Learjet [SAE PAPER 760-491] BEAHTU, H. Flow around wings with inclined lateral jets A76-31973 BELLAND, V. IA. Law of cross sections for the three-dimensional boundary layer on a thin-section wing in hypersonic flow A76-33854 BGUYEB, L. T. Simulator study of the effectiveness of an automatic control system designed to improve the high-angle-of-attack characteristics of a fighter airplane [MASA-TN-D-8176] F76-24266 BIELSEB, L. The development testing of a short-haul airframe/powerplant combination, the VFW 614/M45B A76-32633	Navy evaluation F-11A in-flight thrust control system [AD-A019954] PABUL, S. S. The structure of jets from notched nozzles A76-33361 PANYALEV, G. Sukhoi's swing-wing Su-17/20 Fitter C A76-33946 PARK, K. C. Hodeling and analysis techniques for vehicle crash simulation A76-34158 PARK, P. H. Calculation of aerodynamic derivatives in unsteady two-dimensional transonic flow using Dowell's linearization method [AMS-1238-T] PARKER, J. A. A composite system approach to aircraft cabin fire safety [NASA-TH-I-73126] PARKER, L. C. NASA study of an automated Pilot Advisory System [SAE PAPER 760-460] PARKINSON, G. V. A low-correction wall configuration for airfoil testing PASSHORE, H. Simulation - A flight test complement A76-34240 PATERSON, R. W. Development of the United Technologies Research
Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 MYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] N WHAL, R. D. High altitude applications of the Gates Learjet [SAE PAPER 760-491] Flow around wings with inclined lateral jets A76-31973 BEAHTT, H. Flow around wings with inclined lateral jets A76-32596 BEILAND, V. IA. Law of cross sections for the three-dimensional boundary layer on a thin-section wing in hypersonic flow A76-33854 MGUYEM, L. T. Simulator study of the effectiveness of an automatic control system designed to improve the high-angle-of-attack characteristics of a fighter airplane [MASA-Th-D-8176] FIELSEN, L. The development testing of a short-haul airframe/powerplant combination, the VFW 614/M45H A76-32633 MISHT, M. I. On mathematical simulation of separated flow past a wing and breakup of a vortex sheet in an ideal fluid	Navy evaluation F-11A in-flight thrust control system [AD-A019954] PABBU, S. S. The structure of jets from notched nozzles A76-33361 PANYALEY, G. Sukhoi's swing-wing Su-17/20 Fitter C A76-33946 PARK, K. C. Modeling and analysis techniques for vehicle crash simulation A76-34158 PARK, P. H. Calculation of aerodynamic derivatives in unsteady two-dimensional transonic flow using Dowell's linearization method [ABS-1238-T] PARKER, J. A. A composite system approach to aircraft cabin fire safety [NASA-TH-I-73126] PARKER, L. C. NASA study of an automated Pilot Advisory System [SAE PAPER 760-460] PARKINSOM, G. V. A low-correction wall configuration for airfoil testing PASSHORE, H. Simulation - A flight test complement A76-34240 PATERSOM, R. W. Development of the United Technologies Research Center acoustic research tunnel and associated test techniques B76-25279 PATEE, H. E.
Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 BYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] N WHAL, R. D. High altitude applications of the Gates Learjet [SAE PAPER 760-491] BEANTU, H. Flow around wings with inclined lateral jets A76-32596 BEILAND, V. IA. Law of cross sections for the three-dimensional boundary layer on a thin-section wing in hypersonic flow A76-33854 BGUYEN, L. T. Simulator study of the effectiveness of an automatic control system designed to improve the high-angle-of-attack characteristics of a fighter airplane [HASA-TH-D-8176] BIELSEN, L. The development testing of a short-haul airframe/powerplant combination, the VFW 614/M45H A76-32633 BISHT, M. I. On mathematical simulation of separated flow past a wing and breakup of a vortex sheet in an ideal fluid A76-34693 BOVICE, A. S.	Navy evaluation F-11A in-flight thrust control system [AD-A019954] PABBU, S. S. The structure of jets from notched nozzles A76-33361 PANYALEY, G. Sukhol's swing-wing Su-17/20 Fitter C A76-33946 PARK, K. C. Modeling and analysis techniques for vehicle crash simulation A76-34158 PARK, P. H. Calculation of aerodynamic derivatives in unsteady two-dimensional transonic flow using Dowell's linearization method [ANS-1238-T] PARKER, J. A. A composite system approach to aircraft cabin fire safety [NASA-TH-I-73126] PARKER, L. C. NASA study of an automated Pilot Advisory System [SAE PAPER 760-460] PARKISON, G. V. A low-correction wall configuration for airfoll testing PASSHORE, H. Simulation - A flight test complement PATERSON, R. W. Development of the United Technologies Research Center accoustic research tunnel and associated test techniques N76-25279 PAYBE, H. E. Laminar flow rethink - Using composite structure
Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 BYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] N WHAL, R. D. High altitude applications of the Gates Learjet [SAE PAPER 760-491] Flow around wings with inclined lateral jets A76-31973 BEAHTI, H. Flow around wings with inclined lateral jets A76-32596 BEILAND, V. IA. Law of cross sections for the three-dimensional boundary layer on a thin-section wing in hypersonic flow A76-33854 BGUYEM, L. T. Simulator study of the effectiveness of an automatic control system designed to improve the high-angle-of-attack characteristics of a fighter airplane [MASA-Th-D-8176] HIELSEN, L. The development testing of a short-haul airframe/powerplant combination, the VFW 614/M45E A76-32633 BISHT, H. I. On mathematical simulation of separated flow past a wing and breakup of a vortex sheet in an ideal fluid A76-34693 BOVICE, A. S. The unsteady aerodynamic response of an airfoil cascade to a time-variant supersonic inlet flow	Navy evaluation F-11A in-flight thrust control system [AD-A019954] PANBU, S. S. The structure of jets from notched nozzles A76-33361 PANYALEY, G. Sukhoi's swing-wing Su-17/20 Fitter C A76-33946 PARK, K. C. Hodeling and analysis techniques for vehicle crash simulation A76-34158 PARK, P. H. Calculation of aerodynamic derivatives in unsteady two-dimensional transonic flow using Dowell's linearization method [AMS-1238-T] PARKER, J. A. A composite system approach to aircraft cabin fire safety [NASA-TH-I-73126] PARKER, L. C. NASA study of an automated Pilot Advisory System [SAE PAPER 760-460] PARKISON, G. V. A low-correction wall configuration for airfoil testing PASSHORE, B. Simulation - A flight test complement A76-34240 PATERSON, R. W. Development of the United Technologies Research Center acoustic research tunnel and associated test techniques PATES H. E. Laminar flow rethink - Using composite structure [SAE PAPER 760-473] PEGG, R. J.
Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 BYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] N WHAL, R. D. High altitude applications of the Gates Learjet [SAE PAPER 760-491] BEANTU, H. Flow around wings with inclined lateral jets A76-32596 BEILAND, V. IA. Law of cross sections for the three-dimensional boundary layer on a thin-section wing in hypersonic flow A76-33854 BGUYEN, L. T. Simulator study of the effectiveness of an automatic control system designed to improve the high-angle-of-attack characteristics of a fighter airplane [HASA-TH-D-8176] BIELSEN, L. The development testing of a short-haul airframe/powerplant combination, the VFW 614/M45H A76-32633 BISHT, H. I. On mathematical simulation of separated flow past a wing and breakup of a vortex sheet in an ideal fluid A76-34693 BOVICE, A. S. The unsteady aerodynamic response of an airfoil cascade to a time-variant supersonic inlet flow field	Navy evaluation F-11A in-flight thrust control system [AD-A019954] PABBU, S. S. The structure of jets from notched nozzles A76-33361 PANYALEY, G. Sukhol's swing-wing Su-17/20 Fitter C A76-33946 PARK, K. C. Modeling and analysis techniques for vehicle crash simulation A76-34158 PARK, P. H. Calculation of aerodynamic derivatives in unsteady two-dimensional transonic flow using Dowell's linearization method [ANS-1238-T] PARKER, J. A. A composite system approach to aircraft cabin fire safety [NASA-TH-I-73126] PARKER, L. C. NASA study of an automated Pilot Advisory System [SAE PAPER 760-460] PARKISON, G. V. A low-correction wall configuration for airfoll testing PASSHORE, H. Simulation - A flight test complement A76-34240 PATERSON, R. W. Development of the United Technologies Research Center acoustic research tunnel and associated test techniques 876-25279 PAYME, H. E. Laminar flow rethink - Using composite structure [SAE PAPER 760-473] PEGG, R. J. Progress report on propeller aircraft flyover
Brief overview of some Air Force Flight Dynamics Laboratory research efforts in aeroelasticity and aero-acoustics N76-24151 BYLIUS, A. Glass fiber reinforced plastics for small aircraft structures. Activities over the years 1956 to 1971 in the Light Aircraft Division [MBB-UFE-1067-0] N WHAL, R. D. High altitude applications of the Gates Learjet [SAE PAPER 760-491] Flow around wings with inclined lateral jets A76-31973 BEAHTI, H. Flow around wings with inclined lateral jets A76-32596 BEILAND, V. IA. Law of cross sections for the three-dimensional boundary layer on a thin-section wing in hypersonic flow A76-33854 BGUYEM, L. T. Simulator study of the effectiveness of an automatic control system designed to improve the high-angle-of-attack characteristics of a fighter airplane [MASA-Th-D-8176] HIELSEN, L. The development testing of a short-haul airframe/powerplant combination, the VFW 614/M45E A76-32633 BISHT, H. I. On mathematical simulation of separated flow past a wing and breakup of a vortex sheet in an ideal fluid A76-34693 BOVICE, A. S. The unsteady aerodynamic response of an airfoil cascade to a time-variant supersonic inlet flow	Navy evaluation F-11A in-flight thrust control system [AD-A019954] PANBU, S. S. The structure of jets from notched nozzles A76-33361 PANYALEY, G. Sukhoi's swing-wing Su-17/20 Fitter C A76-33946 PARK, K. C. Hodeling and analysis techniques for vehicle crash simulation A76-34158 PARK, P. H. Calculation of aerodynamic derivatives in unsteady two-dimensional transonic flow using Dowell's linearization method [AMS-1238-T] PARKER, J. A. A composite system approach to aircraft cabin fire safety [NASA-TH-I-73126] PARKER, L. C. NASA study of an automated Pilot Advisory System [SAE PAPER 760-460] PARKISON, G. V. A low-correction wall configuration for airfoil testing PASSHORE, B. Simulation - A flight test complement A76-34240 PATERSON, R. W. Development of the United Technologies Research Center acoustic research tunnel and associated test techniques PATES H. E. Laminar flow rethink - Using composite structure [SAE PAPER 760-473] PEGG, R. J.

PEGRAM, B. V.	_	REDEKER, G.	_
Comments on some wind tunnel and flight ex of the post-buffet behaviour of the Harr.		Calculation of buffet onset for supercriti	cal
aircraft		[DLR-IB-151-75/12]	#76-24181
PELIGATTI, C.	N76-25297	REDIEG, J. P. 'Spilled' leading-edge vortex effects on d	
Analysis of the comparison between flight	tests	stall characteristics	Angerc
results and wind tunnel tests prediction	s for	·	A76-33120
subsonic and supersonic transport aircra	#76-25303	Unsteady aerodynamic flow field analysis o space shuttle configuration. Part 4:	I the
PERONI, I.		747/orbiter aeroelastic stability	
Structural optimization in aeroelastic con	41t10BS A76-34486	[BASA-CR-144335] REXLLY, H. J.	N76-25331
PERROWE, U.		Crashworthiness of the Boeing Vertol UTTAS	
An overview of aircraft crashworthiness reand development	search	RICHARDS, I. C.	A76-34138
•	A76-34133	Supersonic flow past a slender delta wing	- An
PERULLI, E. Current research on the simulation of flig	ht	experimental investigation covering the incidence range from -5 to 50 deg	
effects on the noise radiation of aircra	ft engines	·	A76-32543
PERUHAL, P. V. K.	N76-25280	RIFFEL, R. E. The unsteady aerodynamic response of an ai	rfoil
Preliminary results for single airfoil res	ponse to	cascade to a time-variant supersonic inl	
large nonpotential flow disturbances	N76-25198	field	N76-25195
PIERCE, D.		ROBERTS, L.	
Some aeroelastic distortion effects on air and wind tunnel models	craft	Persistence and decay of wake vorticity	N76-25283
•	N76-25278	ROBERTSON, S. H.	
PIPKO, A. Nonlinear finite element techniques for ai	rcraft	Crashworthy fuel systems	A76-34165
crash analysis		ROBINSON, D. W.	
PILKEY, W. D.	A76-34159	The assessment of noise, with particular r to aircraft	eference
Aircraft crashworthiness; Proceedings of t			A76-33771
Symposium, University of Cincinnati, Cin Ohio, October 6-8, 1975	cinnati,	ROHNE, P. B. The character of flow unsteadiness and its	
	A76-34132	influence on steady state transonic wind	
Techniques for predicting vehicle structur	e crash	measurements	N76-25256
Impact lesponse	A76-34156	ROOD, W. J.	u/0 13130
PILON, J. C. Analysis of the comparison between flight	t ost s	A technique using a nonlinear helicopter m determining trims and derivatives	odel for
results and wind tunnel tests prediction		[NASA-TH-D-8159]	N76-24265
subsonic and supersonic transport aircra	ft N76-25303	ROSS, R. The character of flow unsteadiness and its	
PLATZER, H. F.	870-25505	influence on steady state transonic wind	
On the analysis of supersonic flow past oscillating cascades		measurements	N76-25256
-	N76-25197	ROTE, G. J.	
PLOG, L. Mechanical function and engine performance	for the	Development of flight-by-flight fatigue te from statistical distributions of aircra	
Army UH-1 H helicopter in the AIDAPS pro	gram	stress data, volume 1	
POLITO, L.	A76-32149	[AD-A016406] ROTH, R. H.	N76-24218
On the aerodynamic design of airfoil casca		Single stage, low noise, advanced technological	gy fan.
new exact method based on conformal mapp	ing	Volume 2: Structural design	
		F NA SA - CR - 134802 1	
POTNAM, T. W.	A76-34484	[NASA-CR-134802] RUDRAPATHA, A. W.	N76-24237
Business jet approach noise abatement tech	A76-34484	RUDRAPATEA, A. W. The impact of interior cabin noise on pass	N76-24237
	A76-34484	RUDRAPATHA, A. W. The impact of interior cabin noise on pass acceptance [SAE PAPER 760-466]	N76-24237
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463]	176-34484 niques -	RUDRAPATHA, A. W. The impact of interior cabin noise on pass acceptance [SAE PAPER 760-466] RUPE, J. H.	#76-24237 enger #76-31962
Business jet approach noise abatement tech Flight test results (SAE PAPER 760-463)	176-34484 niques -	RUDRAPATHA, A. W. The impact of interior cabin noise on pass acceptance [SAE PAPER 760-466] RUPE, J. H. New potentials for conventional aircraft we powered by hydrogen-enriched gasoline	876-24237 enger A76-31962 hen
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463]	A76-34484 nigues - A76-31961	RUDRAPATHA, A. W. The impact of interior cabin noise on pass acceptance [SAR PAPER 760-466] RUPE, J. H. New potentials for conventional aircraft w	#76-24237 enger #76-31962
Business jet approach noise abatement tech Flight test results (SAE PAPER 760-463) RADFORD, R. C. Evaluation of XV-15 tilt rotor aircraft fo qualities research application	176-34484 nigues - 176-31961 r flying	RUDRAPATHA, A. W. The impact of interior cabin noise on pass acceptance [SAR PAPER 760-466] RUPE, J. H. New potentials for conventional aircraft w powered by hydrogen-enriched gasoline [SAR PAPER 760-469]	876-24237 enger A76-31962 hen
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] R RADFORD, R. C. Evaluation of XV-15 tilt rotor aircraft fo qualities research application [NASA-CR-137828]	A76-34484 nigues - A76-31961	RUDRAPATHA, A. H. The impact of interior cabin noise on pass acceptance [SAE PAPER 760-466] RUPE, J. H. New potentials for conventional aircraft w powered by hydrogen-enriched gasoline [SAE PAPER 760-469]	876-24237 enger A76-31962 hen
Business jet approach noise abatement tech Flight test results (SAE PAPER 760-463) RADFORD, R. C. Evaluation of XV-15 tilt rotor aircraft fo qualities research application (NASA-CR-137828) RAJ, R. Characteristics of turbulent wakes behind	A76-34484 nigues - A76-31961 r flying M76-24208	RUDRAPATHA, A. W. The impact of interior cabin noise on pass acceptance [SAE PAPER 760-466] RUPE, J. H. New potentials for conventional aircraft w powered by hydrogen-enriched gasoline [SAE PAPER 760-469] SACSALSKI, K. Aircraft crashworthiness; Proceedings of the same conventions of the same capacity of the same capaci	876-24237 enger A76-31962 hen A76-31964 he
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] R RADFORD, R. C. Evaluation of XV-15 tilt rotor aircraft fo qualities research application [NASA-CR-137828] RAJ, R.	A76-34484 niques - A76-31961 r flying M76-24208 rotating	RUDRAPATHA, A. H. The impact of interior cabin noise on pass acceptance [SAE PAPER 760-466] RUPE, J. H. New potentials for conventional aircraft was powered by hydrogen-enriched gasoline [SAE PAPER 760-469] SACZALSKI, K. Aircraft crashworthiness; Proceedings of the Symposium, University of Cincinnati, Cin	876-24237 enger A76-31962 hen A76-31964 he
Business jet approach noise abatement tech Flight test results [SAE PAPER 760-463] RADFORD, R. C. Evaluation of XV-15 tilt rotor aircraft fo qualities research application [NASA-CR-137828] RAJ, R. Characteristics of turbulent wakes behind rotor blades RAJAGOPAL, P.	A76-34484 niques - A76-31961 r flying M76-24208 rotating A76-33852	RUDRAPATHA, A. W. The impact of interior cabin noise on pass acceptance [SAE PAPER 760-466] RUPE, J. H. New potentials for conventional aircraft was powered by hydrogen-enriched gasoline [SAE PAPER 760-469] SACSALSKI, K. Aircraft crashworthiness: Proceedings of the Symposium, University of Cincinnati, Cincinno, October 6-8, 1975	876-24237 enger A76-31962 hen A76-31964 he
Business jet approach noise abatement tech. Flight test results [SAE PAPER 760-463] RADPORD, R. C. Evaluation of XV-15 tilt rotor aircraft fo qualities research application [NASA-CR-137828] RAJ, R. Characteristics of turbulent wakes behind rotor blades RAJAGOPAL, P. Ground simulation of flutter on aircraft w	A76-34484 niques - A76-31961 r flying M76-24208 rotating A76-33852	RUDRAPATHA, A. H. The impact of interior cabin noise on pass acceptance [SAE PAPER 760-466] RUPE, J. H. New potentials for conventional aircraft we powered by hydrogen-enriched gasoline [SAE PAPER 760-469] SACZALSKI, K. Aircraft crashworthiness; Proceedings of the Symposium, University of Cincinnati, Cincinno, October 6-8, 1975 SACZALSKI, K. J.	876-24237 enger A76-31962 hen A76-31964 he cinnati, A76-34132
Business jet approach noise abatement tech. Flight test results [SAE PAPER 760-463] RADPORD, R. C. Evaluation of XV-15 tilt rotor aircraft fo qualities research application [NASA-CR-137828] RAJ, R. Characteristics of turbulent wakes behind rotor blades RAJAGOPAL, P. Ground simulation of flutter on aircraft whigh-aspect-ratio wings [ESA-TT-263]	A76-34484 niques - A76-31961 r flying M76-24208 rotating A76-33852	RUDRAPATHA, A. W. The impact of interior cabin noise on pass acceptance [SAE PAPER 760-466] RUPE, J. H. New potentials for conventional aircraft was powered by hydrogen-enriched gasoline [SAE PAPER 760-469] SACSALSKI, K. Aircraft crashworthiness: Proceedings of the Symposium, University of Cincinnati, Cincinno, October 6-8, 1975	876-24237 enger A76-31962 hen A76-31964 he cinnati, A76-34132
Business jet approach noise abatement tech. Flight test results [SAE PAPER 760-463] R RADFORD, R. C. Evaluation of XV-15 tilt rotor aircraft fo qualities research application [NASA-CR-137828] RAJ, R. Characteristics of turbulent wakes behind rotor blades RAJAGOPAL, P. Ground simulation of flutter on aircraft whigh-aspect-ratio wings [ESA-TT-263] BAO, B. B.	A76-34484 niques - A76-31961 r flying H76-24208 rotating A76-33852 ith	RUDRAPATNA, A. N. The impact of interior cabin noise on pass acceptance [SAE PAPER 760-466] RUPE, J. H. New potentials for conventional aircraft w powered by hydrogen-enriched gasoline [SAE PAPER 760-469] SACZALSKI, K. Aircraft crashworthiness; Proceedings of t Symposium, University of Cincinnati, Cincinnati, October 6-8, 1975 SACZALSKI, K. J. Techniques for predicting vehicle structure impact response	876-24237 enger A76-31962 hen A76-31964 he cinnati, A76-34132
Business jet approach noise abatement tech. Flight test results [SAE PAPER 760-463] RADPORD, R. C. Evaluation of XV-15 tilt rotor aircraft fo qualities research application [NASA-CR-137828] RAJ, R. Characteristics of turbulent wakes behind rotor blades RAJAGOPAL, P. Ground simulation of flutter on aircraft whigh-aspect-ratio wings [ESA-TT-263]	A76-34484 nigues - A76-31961 r flying H76-24208 rotating A76-33852 ith H76-24216 d blades	RUDRAPATMA, A. W. The impact of interior cabin noise on pass acceptance [SAE PAPER 760-466] RUPE, J. H. New potentials for conventional aircraft w powered by hydrogen-enriched gasoline [SAE PAPER 760-469] SACSALSKI, K. Aircraft crashworthiness; Proceedings of t Symposium, University of Cincinnati, Cincinnois, Cincinnati, Cincinnati, K. Techniques for predicting vehicle structur impact response SAEAL, D. System complexity - Its conception and meaning the system complexity - Its conception and meaning the structure of the system complexity - Its conception and meaning the system conception and meaning the system conception and meaning the system conception conception conception and meaning the system conception	#76-24237 enger A76-31962 hen A76-31964 he cinnati, A76-34132 e crash A76-34156
Business jet approach noise abatement tech. Flight test results [SAE PAPER 760-463] R RADFORD, R. C. Evaluation of XV-15 tilt rotor aircraft fo qualities research application [NASA-CR-137828] RAJ, R. Characteristics of turbulent wakes behind rotor blades RAJAGOPAL, P. Ground simulation of flutter on aircraft whigh-aspect-ratio wings [ESA-TT-263] RAO, B. B. Unsteady airloads on a cascade of staggere in subsonic flow	A76-34484 niques - A76-31961 r flying H76-24208 rotating A76-33852 ith	RUDRAPATMA, A. W. The impact of interior cabin noise on pass acceptance [SAR PAPER 760-466] RUPE, J. H. Hew potentials for conventional aircraft wearened by hydrogen-enriched gasoline [SAR PAPER 760-469] SACZALSKI, K. Aircraft crashworthiness; Proceedings of the Symposium, University of Cincinnati, Cincinno, October 6-8, 1975 SACZALSKI, K. J. Techniques for predicting vehicle structure impact response SAHAL, D.	#76-24237 enger A76-31962 hen A76-31964 he cinnati, A76-34132 e crash A76-34156 surement
Business jet approach noise abatement tech. Flight test results [SAE PAPER 760-463] RADPORD, R. C. Evaluation of XV-15 tilt rotor aircraft for qualities research application [NASA-CR-137828] RAJ, R. Characteristics of turbulent wakes behind rotor blades RAJAGOPAL, P. Ground simulation of flutter on aircraft whigh-aspect-ratio wings [ESA-TT-263] RAO, B. M. Unsteady airloads on a cascade of staggered in subsonic flow RAO, D. M. Wind tunnel design studies and technical	A76-34484 niques - A76-31961 r flying W76-24208 rotating A76-33852 ith W76-24216 d blades W76-25200	RUDRAPATMA, A. W. The impact of interior cabin noise on pass acceptance [SAE PAPER 760-466] RUPE, J. H. New potentials for conventional aircraft we powered by hydrogen-enriched gasoline [SAE PAPER 760-469] SACSALSKI, K. Aircraft crashworthiness; Proceedings of the Symposium, University of Cincinnati,	#76-24237 enger A76-31962 hen A76-31964 he cinnati, A76-34132 e crash A76-34156 surement A76-33100 coff in
Business jet approach noise abatement tech. Flight test results [SAE PAPER 760-463] RADFORD, R. C. Evaluation of XV-15 tilt rotor aircraft fo qualities research application [NASA-CR-137828] RAJ, R. Characteristics of turbulent wakes behind rotor blades RAJAGOPAL, P. Ground simulation of flutter on aircraft w high-aspect-ratio wings [ESA-TT-263] RAO, B. H. Unsteady airloads on a cascade of staggere in subsonic flow RAO, D. M. Wind tunnel design studies and technical evaluation of advanced cargo aircraft co	A76-34484 niques - A76-31961 r flying W76-24208 rotating A76-33852 ith W76-24216 d blades W76-25200	RUDRAPATMA, A. W. The impact of interior cabin noise on pass acceptance [SAE PAPER 760-466] RUPE, J. H. New potentials for conventional aircraft we powered by hydrogen-enriched gasoline [SAE PAPER 760-469] SACSALSKI, K. Aircraft crashworthiness; Proceedings of the Symposium, University of Cincinnati, Cincinnati, Cincinnati, Cincinnatic,	#76-24237 enger A76-31962 hen A76-31964 he cinnati, A76-34132 e crash A76-34156 surement A76-33100 coff in
Business jet approach noise abatement tech. Flight test results [SAE PAPER 760-463] RADPORD, R. C. Evaluation of XV-15 tilt rotor aircraft for qualities research application [NASA-CR-137828] RAJ, R. Characteristics of turbulent wakes behind rotor blades RAJAGOPAL, P. Ground simulation of flutter on aircraft whigh-aspect-ratio wings [ESA-TT-263] RAO, B. M. Unsteady airloads on a cascade of staggered in subsonic flow RAO, D. M. Wind tunnel design studies and technical evaluation of advanced cargo aircraft co [NASA-CR-148149] REBEL, J. M.	A76-34484 niques - A76-31961 r flying B76-24208 rotating A76-33852 ith B76-24216 d blades E76-25200 ncepts B76-25156	RUDRAPATMA, A. W. The impact of interior cabin noise on pass acceptance [SAE PAPER 760-466] RUPE, J. H. New potentials for conventional aircraft powered by hydrogen-enriched gasoline [SAE PAPER 760-469] SACSALSKI, K. Aircraft crashworthiness; Proceedings of to Symposium, University of Cincinnati, Cincinnois, October 6-8, 1975 SACSALSKI, K. J. Techniques for predicting vehicle structure impact response SAHAL, D. System complexity - Its conception and meaning the design of engineering systems On the conception and measurement of trade engineering systems - A case study of the aircraft design process	#76-24237 enger A76-31962 hen A76-31964 he cinnati, A76-34132 e crash A76-34156 surement A76-33100 enff in e
Business jet approach noise abatement tech. Flight test results [SAE PAPER 760-463] R RADPORD, R. C. Evaluation of XV-15 tilt rotor aircraft fo qualities research application [NASA-CR-137828] RAJ, R. Characteristics of turbulent wakes behind rotor blades RAJAGOPAL, P. Ground simulation of flutter on aircraft w high-aspect-ratio wings [ESA-TT-263] RAO, B. M. Unsteady airloads on a cascade of staggered in subsonic flow RAO, D. M. Wind tunnel design studies and technical evaluation of advanced cargo aircraft co [NASA-CR-148149]	A76-34484 niques - A76-31961 r flying B76-24208 rotating A76-33852 ith B76-24216 d blades E76-25200 ncepts B76-25156	RUDRAPATMA, A. W. The impact of interior cabin noise on pass acceptance [SAE PAPER 760-466] RUPE, J. H. New potentials for conventional aircraft we powered by hydrogen-enriched gasoline [SAE PAPER 760-469] SACSALSKI, K. Aircraft crashworthiness; Proceedings of the Symposium, University of Cincinnati, Cincinnati, Cincinnati, Cincinnatic,	#76-24237 enger A76-31962 hen A76-31964 he cinnati, A76-34132 e crash A76-34156 surement A76-33100 eff in e

SALISBURY, M. W. PERSONAL AUTHOR INDEX

SALISBURY, M. W.	SHAW, J.
Comments on wind tunnel/flight comparisons at his angles of attack based on BAC one-eleven and	
VC10 experience	[SAE PAPER 760-486] A76-31972 SHERHAN, R.
H76-2	25290 Helicopter stabilization system
SAMPATH, S. G. Interference-fit-fastener investigation	A76-34164
	SIMEINS, A. E. 24598 Explosion proofing H-53 range extension tank
SANDEL, W. R., JR.	[AD-A018353] N76-25158
The stochastic control of the F-8C aircraft usin	
the Hultiple Model Adaptive Control (MMAC) met [NASA-CR-148100] N76-2	thod Hawker Siddeley Hawk T Hk 1 two-seat ground 25211 attack/trainer aircraft
SANTINI, P.	176-32634
Structural optimization in aeroelastic condition	
	34486 attack/trainer aircraft
SATYABARAYABA, B. Some aspects on unsteady flow past airfoils and	A76-33772 SIMPSOM, W. R.
cascades	Havy evaluation F-11A in-flight thrust control
	25193 system
SAVELL, C. J. Transmission of circumferential inlet distortion	[AD-A019954] N76-25204 SINGLEY, G. T., III
through a rotor	Aircraft crashworthiness; Proceedings of the
N76-2	25188 Symposium, University of Cincinnati, Cincinnati,
SAVKAR, S. D.	Ohio, October 6-8, 1975 A76-34132
A note on transonic flow past a thin airfoil oscillating in a wind tunnel	Development of design criteria for crashworthy
	33365 armored aircrew seats
SCHAUB, U. W.	A76-34154
The response of a lifting fan to crossflow-induc spatial flow distortions	ced SIRACUSE, R. J. Evaluation of XV-15 tilt rotor aircraft for flying
	25191 qualities research application
SCHELHORN, A. E.	[NASA-CR-137828] N76-24208
Evaluation of XV-15 tilt rotor aircraft for flyi qualities research application	
	Preliminary results for single airfoil response to large nonpotential flow disturbances
SCHIPHOLT, G. J. L.	¥76-25198
Two-dimensional tunnel wall interference for	SHITH, A. A.
multi-element aerofoils in incompressible flow N76-2	
SCHLEGEL, H. O.	SHITH, H. C.
Stall/post-stall/spin avoidance tests of the YA-	
aircraft A76-3	piston-engine-powered airplanes 34247 [SAE PAPER 760-474] A76-31967
SCHHIDT, E.	SHITH, H. B.
Investigation into the noise propagation by	General aviation design synthesis utilizing
propeller aircraft in general aviation	interactive computer graphics [SAE PAPER 760-476] A76-31968
SCHWEIDER, G. R.	SHYDER, R. G.
A finite difference method for the calculation of	of Crashworthiness in emergency ditching of general
three-dimensional boundary layers on swept win	
N76-2 SCHOENER, J. L.	SOKOLOVA, O. H.
Single stage, low noise, advanced technology far	on mathematical simulation of separated flow past
Volume 2: Structural design	a wing and breakup of a vortex sheet in an ideal
[NASA-CR-134802] N76-2 SCHOBOWSKI, J.	24237 fluid A76-34693
Application of designs to improve aircraft fligh	
control survivability	Purther development of the panel method. Part 1:
[AD-A018733] N76-2 SCHROEDER, W.	24279 Wonlinear panel method considering discrete separated vortex sheets on swept slender wing
Plow investigation on wings with kinked leading	shapes
edges and swept outer wings at moderate subsor	
speed [DLR-IB-151-74/11] #76-2	SOOVERE, J. 24178 Sonic environment of aircraft structure immersed
SCHWERING, F.	in a supersonic jet flow stream
Rotor effects on L-band signals received by	[NASA-CR-144996] N76-25168
helicopter antennas. Part 3: Measurements of	
	STARKE, K. R.
the amplitude and phase distortions of CW sign [AD-A019506] N76-2	STARKE, R. E. als Swedish experience on correlations of flight
[AD-A019506] N76-2 SELBERG, B. P.	STABRE, K. E. Nals Swedish experience on correlations of flight 24455 results with ground test predictions 876-25299
[AD-A019506] N76-2 SELBERG, B. P. Experimental determination of improved aerodynam	STABRE, R. E. Swedish experience on correlations of flight 24455 results with ground test predictions 876-25299 arc STAPLETOR, S. F.
[AD-A019506] N76-2 SELBERG, B. p. Experimental determination of improved aerodynamic characteristics utilizing biplane wing	STABRE, K. E. Nals Swedish experience on correlations of flight 24455 results with ground test predictions 876-25299
[AD-A019506] N76-2 SELBERG, B. P. Experimental determination of improved aerodynamic characteristics utilizing biplane wing configurations A76-3	STARKE, K. R. Svedish experience on correlations of flight results with ground test predictions 876-25299 STAPLETON, S. P. Comments on some wind tunnel and flight experience of the post-buffet behaviour of the Harrier aircraft
[AD-A019506] N76-2 SELBERG, B. P. Experimental determination of improved aerodynamic characteristics utilizing biplane wing configurations A76-3 SEMSBURG, O.	STARKE, K. E. Swedish experience on correlations of flight results with ground test predictions 176-25299 STAPLETOH, S. F. Comments on some wind tunnel and flight experience of the post-buffet behaviour of the Harrier aircraft N76-25297
[AD-A019506] N76-2 SELBERG, B. P. Experimental determination of improved aerodyname characteristics utilizing biplane wing configurations A76-3 SENSBURG, O. Dynamic simulation in wind tunnels, part 1	STARKE, K. R. Swedish experience on correlations of flight results with ground test predictions 176-25299 nc STAPLETOH, S. F. Comments on some wind tunnel and flight experience of the post-buffet behaviour of the Harrier aircraft N76-25297 STEWART, D. J.
[AD-A019506] N76-2 SELBERG, B. p. Experimental determination of improved aerodynamic characteristics utilizing biplane wing configurations A76-3 SEMSBURG, O. Dynamic simulation in wind tunnels, part 1 SEXTOB, H. R.	STARKE, K. R. Svedish experience on correlations of flight results with ground test predictions 876-25299 Alc STAPLETON, S. P. Comments on some wind tunnel and flight experience of the post-buffet behaviour of the Harrier aircraft 876-25297 STEWART, D. J. Air driven ejector units for engine simulation in wind tunnel models
[AD-A019506] N76-2 SELBERG, B. P. Experimental determination of improved aerodynamic characteristics utilizing biplane wing configurations A76-3 SEMSBURG, O. Dynamic simulation in wind tunnels, part 1 SEXTOB, M. B. An on-rotor investigation of rotating stall in a	STARKE, K. R. Swedish experience on correlations of flight results with ground test predictions N76-25299 STAPLETON, S. F. Comments on some wind tunnel and flight experience of the post-buffet behaviour of the Harrier aircraft N76-25297 STEWART, D. J. Air driven ejector units for engine simulation in wind tunnel models N76-25239
[AD-A019506] N76-2 SELBERG, B. P. Experimental determination of improved aerodynamic characteristics utilizing biplane wing configurations A76-3 SENSBURG, O. Dynamic simulation in wind tunnels, part 1 SEXTON, M. B. An on-rotor investigation of rotating stall in a axial-flow compressor	STARKE, K. R. Swedish experience on correlations of flight results with ground test predictions N76-25299 ALC STAPLETON, S. F. Comments on some wind tunnel and flight experience of the post-buffet behaviour of the Harrier aircraft N76-25297 STEVART, D. J. Air driven ejector units for engine simulation in wind tunnel models N76-25239 STEVART, R. L.
[AD-A019506] N76-2 SELBERG, B. P. Experimental determination of improved aerodynamic characteristics utilizing biplane wing configurations A76-3 SEMSBURG, O. Dynamic simulation in wind tunnels, part 1 SEXTOB, M. B. An on-rotor investigation of rotating stall in a	STARKE, K. R. Swedish experience on correlations of flight results with ground test predictions N76-25299 ALC STAPLETON, S. F. Comments on some wind tunnel and flight experience of the post-buffet behaviour of the Harrier aircraft N76-25297 STEVART, D. J. Air driven ejector units for engine simulation in wind tunnel models N76-25239 STEVART, R. L.
[AD-A019506] N76-2 SELBERG, B. P. Experimental determination of improved aerodynamic characteristics utilizing biplane wing configurations A76-3 SENSBURG, O. Dynamic simulation in wind tunnels, part 1 SEXTOH, M. B. An on-rotor investigation of rotating stall in a axial-flow compressor SHALAEV, V. I. Visual study of the three-dimensional flow patterns.	STARKE, K. R. Swedish experience on correlations of flight results with ground test predictions 176-25299 11C STAPLETON, S. F. Comments on some wind tunnel and flight experience of the post-buffet behaviour of the Harrier aircraft 176-25297 STEVARY, D. J. 25275 Air driven ejector units for engine simulation in wind tunnel models 176-25239 STEVARY, R. L. Performance and handling qualities: AH-16 helicopter equipped with three hot metal/plume infrared suppressors
[AD-A019506] N76-2 SELBERG, B. P. Experimental determination of improved aerodynamy characteristics utilizing biplane wing configurations A76-3 SEMSBURG, O. Dynamic simulation in wind tunnels, part 1 SEXTON, H. R. An on-rotor investigation of rotating stall in a axial-flow compressor SHALAEV, V. I. Visual study of the three-dimensional flow pattern at a delta wing in subsonic flow	STARKE, K. E. Swedish experience on correlations of flight results with ground test predictions N76-25299 STAPLETOH, S. F. Comments on some wind tunnel and flight experience of the post-buffet behaviour of the Harrier aircraft N76-25297 STEVART, D. J. Air driven ejector units for engine simulation in wind tunnel models STEVART, R. L. Performance and handling qualities: AH-1G helicopter equipped with three hot metal/plume infrared suppressors [AD-A019482] N76-24277
[AD-A019506] N76-2 SELBERG, B. P. Experimental determination of improved aerodynamic characteristics utilizing biplane wing configurations A76-3 SENSBURG, O. Dynamic simulation in wind tunnels, part 1 SEXTOH, M. B. An on-rotor investigation of rotating stall in a axial-flow compressor SHALAEV, V. I. Visual study of the three-dimensional flow patter at a delta wing in subsonic flow SHAMIE, J.	STARKE, K. R. Swedish experience on correlations of flight results with ground test predictions 876-25299 Alc STAPLETON, S. F. Comments on some wind tunnel and flight experience of the post-buffet behaviour of the Harrier aircraft 876-25297 STEWART, D. J. Air driven ejector units for engine simulation in wind tunnel models 876-25239 STEWART, R. L. Performance and handling qualities: AH-16 helicopter equipped with three hot metal/plume infrared suppressors [AD-A019482] 876-24277 STOWE, R. B. Pilot error and other accident enabling factors
[AD-A019506] N76-2 SELBERG, B. P. Experimental determination of improved aerodynamy characteristics utilizing biplane wing configurations A76-3 SEMSBURG, O. Dynamic simulation in wind tunnels, part 1 SEXTON, H. R. An on-rotor investigation of rotating stall in a axial-flow compressor SHALAEV, V. I. Visual study of the three-dimensional flow patter at a delta wing in subsonic flow A76-3	STARKE, K. R. Swedish experience on correlations of flight results with ground test predictions 876-25299 Alc STAPLETON, S. F. Comments on some wind tunnel and flight experience of the post-buffet behaviour of the Harrier aircraft 876-25297 STEWART, D. J. Air driven ejector units for engine simulation in wind tunnel models 876-25239 STEWART, R. L. Performance and handling qualities: AH-16 helicopter equipped with three hot metal/plume infrared suppressors [AD-A019482] 876-24277 STOWE, R. B. Pilot error and other accident enabling factors

A76-32849

PERSONAL AUTHOR INDEX WALHOUT, G. J.

STRAENG, G.		TIMPSON, K. G.	
Swedish experience on correlations of flig	ht	The P-16 flight test program	A76-34236
results with ground test predictions	N76-25299	TOPLIS, A. P.	_
STUBBS, R. E. Reliability and maintainability testing of prototype aircraft		Noise level measurements on a quiet short turboprop transport	
brocotype aircraft	A76-34237	[SAE PAPER 760-455] TRAPP, W. J.	A76-31955
STUHRKE, W. P.	_	Joint aircraft loading/structure response	
<pre># ## ## ## ## ## ## ## ## ## ## ## ## #</pre>	S. A	statistics of time to service crack init	1ation A76-33117
[NASA-CR-134962]	N76-25375	TRESEROV, V. K.	270 33117
STURGEON, R. P. Study of the application of advanced techno	-1	Approximate method of calculating the inte	
to laminar flow control systems for subs		of finite-span airfolls in unsteady moti a solid surface	on above
transports. Volume 1: Summary		[AD-A019222]	B76-24190
[NASA-CR-144975] Study of the application of advanced techn	876-24144	TURNER, R. L. Inlet spillage drag tests and numerical fl	ov-fiold
to laminar-flow control systems for subs		analysis at subsonic and transonic speed	s of a
transports. Volume 2: Analyses [NASA-CR-144949]	N76-24145	1/8-scale, two-dimensional,	
TRESH-CR-144949]	810-24145	external-compression, variable-geometry, supersonic inlet configuration	
B-1 flight test progress report		[NASA-CR-2680]	N76-24240
SULLIVAH, T. J.	A76-32628	TYSL, B. B. Aerodynamic performance of 0.4066-scale mo	đel to
Single stage, low hoise, advanced technology	gy fan.	JT8D refam stage	
Volume 1: Aerodynamic design {NASA-CR-134801}	R76-24236	[NASA-TM-X-3356]	N76-24153
SWISPORD, G. R.	810-24230	U	
A preliminary design study of a laminar flo		_	
control wing of composite materials for i range transport aircraft	long	ULSAMBR, B. The technological case for a supersonic cr	uise
[NASA-CR-144950]	N76-25146	aircraft	
•		UNSWORTH, K.	A76-33660
1		Calculation of compressible turbulent boun	dary
TABAKOPP, W. Transmission of circumferential inlet dist	OF#10B	layers on straight-tapered swept wings	A76-32587
through a rotor	01(101	UTAH, D. A.	270-32307
51 F 2 M	N76-25188	Interference-fit-fastener investigation	776 24500
PARS, T. Lift and drag characteristics of a superca	Vitating	[AD-A018804]	N76-24598
cambered hydrofoll with a jet flap beneat	th a	V	
free surface	A76-34926	VANDERPLANTS, G. H.	
PATE, J. T.		Airfoil section drag reduction at transoni	c speeds
Chronology and analysis of the development altitude performance and mechanical	of	by numerical optimization [SAE PAPER 760-477]	A76-31969
characteristics of a turbofan engine at	the	VANGUEST, R. W.	A70-31303
Arnold Engineering Development Center	N76-20261	Simulator study of the effectiveness of an	
[AD-A018691] PAYLOR, F. R.	N76-24261	automatic control system designed to imp high-angle-of-attack characteristics of	
application of designs to improve aircraft	flight	fighter airplane	
control survivability [AD-A018733]	N76-24279	[NASA-TH-D-8176] VARLOUD, P.	N76-24266
regeler, D. C.		Flying without doing harm	
Macelle-airframe integration model testing nacelle simulation and measurement accura		VAUCHERET, X.	A76-34661
	N76-25238	Comparative two and three dimensional trans	sonic
PRIGE, S. Swedish experience on correlations of fligh	h	testing in Various tunnels	N76-25267
results with ground test predictions	u c	VAUGHAN, V. L., JR.	M76-23267
TOWAS D	N76-25299	Simulation of aircraft crash and its valid	
RHOMAS, D. Initial flight test phase of the		VAUGHN, R. L.	A76-34157
Dassault-Breguet/Dornier Alpha-Jet	176 20604	Design of an advanced composites aileron f	or
HOMOMPOULOS, H.	A76-32626	conmercial aircraft	A76-32651
Reliability assessment of modified fielded		VELDMAN, H. P.	
aircraft using the Bayesian technique [AD-A018890]	N76-24225	FAN JT3D quiet nacelle retrofit feasibilit program. Volume 2, addendum A: Model a	
HOMPSON, G. L.	2.0 2.220	scale plug nozzle tests	
General aviation crashworthiness	A76-34136	[AD-A023037/5]	N76-24239
FEOMSON, R. G.		VIDEAH, D. An alternative to the helicopter	
Simulation of aircraft crash and its valida			A76-32198
THORPE, C. J.	176-34157	W	
plight measurements of the longitudinal			
aerodynamic characteristics of a vectored aircraft (HS-P1127) throughout the transi		WAGNER, S. Transonic problems in rotor aerodynamics	
	N76-25296	•	N76-24210
IJDENAN, H. Some remarks on unsteady transonic flow		WAIBEL, G. Special problems in the flight testing of	sailplanes
-	N76-24148		A76-32630
PILL, R. D. Evaluation of XV-15 tilt rotor aircraft for	r fl vi na	WALEGUT, G. J. Crashworthiness observations in general av	istion
qualities research application		accident investigations - A statistical	
[NASA-CR-137828]	N76-24208		A76-34135

WALKER, D. H. PERSONAL AUTHOR INDEX

WALKER, D. H.
High angle of attack flight tests of the P-15
A76-34245
WASSERMAN, R. Evaluation of XV-15 tilt rotor aircraft for flying
qualities research application
[NASA-CR-137828] N76-24208
WRISLOGEL, S.
A data acquisition system for in-flight airfoil
evaluation [SAB PAPER 760-462] A76-31960
[SAE PAPER 760-462] A76-31960 GA/W/-2 Airfoll Plight Test Evaluation
[SAE PAPER 760-492] A76-31974
WRLLS, W. R.
Transmission of circumferential inlet distortion
through a rotor N76-25188
WERLE, H.
Hydrodynamic visualization study of various
procedures for controlling separated flows
A76-33745
WRREER, J. B. The development of an advanced anti-scing/descing
capability for US Army helicopters. Volume 1:
Design criteria and technology considerations
[AD-A019044] N76-24229
The development of an advanced anti-icing/deicing capability for US Army helicopters. Volume 2:
Ice protection system application to the UH-1H
helicopter
[AD-A019049] N76-24230
WRSTPALL, J. A.
NASA general aviation research overview - 1976 [SAE PAPER 760-458] A76-31957
WRITAKER, R.
Air driven ejector units for engine simulation in
wind tunnel models
WHITLOW, D. H.
Technical and economic assessment of
span-distributed loading cargo aircraft concepts
[NASA-CR-144963] N76-25157
WRITHER, P. C.
Technical and economic assessment of span-distributed loading cargo aircraft concepts
[NASA-CR-144963] N76-25157
WHITTLEY, D. C.
Comparison of model and flight test data for an
augmentor-wing STOL research aircraft N76-25292
WICKLINE, R. J.
Design, development and flight test of the Cessna
Citation thrust reverser
[SAE PAPER 760-468] A76-31963
VIENER, E. L. 'Controlled flight into terrain /CFIT/' accidents
- System-induced errors
A76-32231
WILKINSON, R. H.
On the vortex-induced loading on long bluff
cylinders N76-24177
WILLIAMS, C. D.
A low-correction wall configuration for airfoil
testing
WILLIAMS, J.
Problems of noise testing in ground-based
facilities with forward-speed simulation
H76-25281
WIMBLIDE, R. L. Wash general aviation research overview - 1976
WINDLADE, R. L. HASA general aviation research overview - 1976 [SAE PAPER 760-458] A76-31957
HASA general aviation research overview - 1976 [SAE PAPER 760-458] A76-31957 WINDECK, T.
HASA general aviation research overview - 1976 [SAE PAPER 760-458] A76-31957 WINDECK, T. Design and construction of the alpha jet flutter
HASA general aviation research overview - 1976 [SAE PAPER 760-458] A76-31957 WINDECK, T. Design and construction of the alpha jet flutter model
HASA general aviation research overview - 1976 [SAE PAPER 760-458] A76-31957 WINDECK, T. Design and construction of the alpha jet flutter model N76-25249
HASA general aviation research overview - 1976 [SAE PAPER 760-458] A76-31957 WINDECK, T. Design and construction of the alpha jet flutter model N76-25249 WIND, A. L. Performance and handling qualities: AH-16
HASA general aviation research overview - 1976 [SAE PAPER 760-458] A76-31957 WINDECK, T. Design and construction of the alpha jet flutter model N76-25249 WIND, A. L. Performance and handling qualities: AH-1G helicopter equipped with three hot metal/plume
WIND, A. L. Performance and handling qualities: AH-1G helicopter equipped with three hot metal/plume infrared suppressors
HASA general aviation research overview - 1976 [SAE PAPER 760-458] A76-31957 WINDECK, T. Design and construction of the alpha jet flutter model N76-25249 WINN, A. L. Performance and handling qualities: AH-1G helicopter equipped with three hot metal/plume infrared suppressors [AD-A019482] N76-24277
HASA general aviation research overview - 1976 [SAE PAPER 760-458] A76-31957 WINDECK, T. Design and construction of the alpha jet flutter model N76-25249 WIND, A. L. Performance and handling qualities: AH-1G helicopter equipped with three hot metal/plume infrared suppressors [AD-A019482] N76-24277 WINTER, F. J., JR.
HASA general aviation research overview - 1976 [SAE PAPER 760-458] A76-31957 WINDECK, T. Design and construction of the alpha jet flutter model N76-25249 WINN, A. L. Performance and handling qualities: AH-1G helicopter equipped with three hot metal/plume infrared suppressors [AD-A019482] N76-24277

WINTER, K. G.
Wind tunnel measurements at M=1.6 of the
aerodynamic effects of a root gap on a control
surface of square planform mounted on a body
[RAR-TM-AERO-1641] H76-24173 WITTHANN, E. Investigation of the mutual interference of wing/engine combinations [ESA-TT-217] WOODFIELD, A. A.
Flight measurements of the longitudinal aerodynamic characteristics of a vectored thrust aircraft (HS-P1127) throughout the transition N76-25296 WUNNERBERG, H.
Comparison of aerodynamic coefficients obtained from theoretical calculations, wind tunnel tests, and flight tests data reduction for the Alpha Jet aircraft N76-25295 YABGER, L.

Development of a computer code for calculating the steady super/hypersonic inviscid flow around real configurations. Volume 2: Code description [NASA-CR-2676] N76-24152 N76-24152 YANG, J.-B. Joint aircraft loading/structure response statistics of time to service crack initiation A76-33117 YOUNGHANS, J. L. Single stage, low noise, advanced technology fan.
Volume 1: Aerodynamic design
[MASA-CR-134801] #76-24 N76-24236 Z ZAPATA, R. N. Magnetic suspension techniques for large scale aerodynamic testing

Fracture analyses involving materials of aircraft

A76-32165

ZIEGLER, G.


construction

CONTRACT NUMBER INDEX

AERONAUTICAL ENGINEERING / A Special Bibliography (Suppl 74)

SEPTEMBER 1976

Typical Contract Number Index Listing

Listings in this index are arranged alphanumenically by contract number. Under each contract number the accession numbers denoting documents that have been produced as a result of research done under that contract are arranged in ascending order with the IAA accession numbers appearing first. The accession number denotes the number by which the citation is identified in either the IAA or STAR section.

10 pper ((0)	-7 C 01020
AF PROJ. 668A	N76-24238
N76-24262	WAS3-19530 B76-25375
B76-24263	NAS7-100 A76-31964
AP PROJ. 698CW	NAS8-30652 N76-25331
N76-24370	NAS9-13247 N76-25322
AP PROJ. 1467	N76-25323
N76-24598	N76-25324
AP PROJ. 1476	¥76-25325
N76-25159	N76-25326
AP PROJ. 1900	N76-25333
N76-24260	N76-25334
AF PROJ. 7233	NAS9-13707 N76-25148
N76-25209	NAS9-14753 N76-24365
AP-APOSR-2273-72	NGL-22-009-124
N76-25211	N76-25211
ARO PROJ. B434.08A	WGR-05-007-414
N76-24261	A76-32849
DA PROJ. 1P2-62209-AH-76	NR PROJ. 094-393
N76-24229	N76-25198
N76-24230	NR PROJ. 098-038
DA PROJ. 1T1-61102-B-31A	N76-25201
N76-24455	NR PROJ. 211-194
DAAJ01-75-C-0307	N76-24228
N76-24225	NSG-1010 N76-25250
DAAJ02-73-C-0107	NSG-1099 A76-33117
N76-24229	NSG-1135 N76-25156
N76-24230	NSG-1180 A76-31962
DOT-FA71WA-2628	N00014-67-A-0202-0016
N76-24239	N76-25198
DOT-PA72WA-3053	N00014-67-A-0226-0005
N76-24233	N76-25201
N76-24234	N00014-67-A-0267-0009
F08635-72-C-0191	N76-24228
A76-33305	N00014-67-C-0357
P33615-73-C-2047	A76-32167
N76-24260	N00014-70-C-0265
P33615-73-C-3007	
	A76-34164
N76-24218	N00014-73-C-0354
H76-24219	A76-32167
P33615-73-C-3121	N00014-74-C-0355
N76-24598	∆ 76−34158
P33615-75-C-3013	N00140-75-C-0449
N76-25159	N76-24259
P33657-70-C-0800	N000156-73-C-0152
A76-31975	N76-24227
P33657-71-C-0789	N062269-74-C-0718
N76-24262	N76-24227
N76-24263	PRON PROJ. EJ-4-H0044-00-EJ-EJ
F40600-75-C-0001	N76-25161
N76-25270	PRON PROJ. 21-5-R0124-01-21-BC
P44620-74-C-0065	N76-25160
N76-25195	RF54545002 N76-24483
HF136703 N76-24218	RR0330301 N76-24228
MOD-AT/2037/0133	T-0250-12510-11059
A76-32587	N76-24175
NASW-2790 N76-25166	505-04 N76-24153
NAS1-11525 N76-24152	N76-24242
NAS1-13694 N76-24144	505-06-95-01 N76-24266
N76-24145	
	505-07-41-02 N76-24265
	505-11-12 876-25143
NAS1-13963 N76-25157	N76-25144
NAS1-13978 N76-25168	505-26-10-07 N76-24152
NAS2-7210 H76-24240	510-56-01 N76-25354
NAS2-8855 N76-24208	
NAS3-16813 N76-24236	
N76-24237	
· · · ·	

1 Report No NASA SP-7037 (74)	2 Government Access	ion No	3 Recipient's Catalog	No
4 Title and Subtitle			5 Report Date	
AERONAUTICAL ENGINEERING			September	1976
		,	6 Performing Organiz	
A Special Bibliography (Supplement /4	'	o renorming organic	ation code
7 Author(s)			8 Performing Organiza	ation Report No.
			10 Work Unit No	
9 Performing Organization Name and Address				
National Aeronautics and	Space Admini	stration		
Washington, D. C. 20546	Washington, D. C. 20546		11 Contract or Grant	No
, , , , , , , , , , , , , , , , , , , ,				
	······································		13 Type of Report an	d Period Covered
12 Sponsoring Agency Name and Address		į		
				0.1
		1	14 Sponsoring Agency	Code
15 Supplementary Notes				
15 Supplementary Notes				
16 Abstract				
In Appliant				
т	his bibliogra	phy lists 295 re	enorts	
		other documents		
		NASA scientifi		
		rmation system	in	
j A	ugust 1976.			
17 Key Words (Suggested by Author(s))		18 Distribution Statement		
Aerodynamics				
Aeronautical Engineering				
		l		
Aeronautics		Unclassified - Unlimited		In 1 im i e - J
0:61:66661		Unc	lassified - U	Unlimited
Bibliographies		Unc	lassified - U	Unlimited
Bibliographies 19 Security Classif (of this report)	20 Security Classif to			
	20 Security Classif (c	f this page)	lassified - U 21 No of Pages 94	Inlimited 22. Price* \$4.00 HC

PUBLIC COLLECTIONS OF NASA DOCUMENTS

DOMESTIC

NASA distributes its technical documents and bibliographic tools to ten special libraries located in the organizations listed below. Each library is prepared to furnish the public such services as reference assistance, interlibrary loans, photocopy service, and assistance in obtaining copies of NASA documents for retention.

CALIFORNIA

University of California, Berkeley

COLORADO

University of Colorado, Boulder

DISTRICT OF COLUMBIA

Library of Congress

GEORGIA

Georgia Institute of Technology, Atlanta

ILLINOIS

The John Crerar Library, Chicago

MASSACHUSETTS

Massachusetts Institute of Technology, Cambridge

MISSOURI

Linda Hall Library, Kansas City

NEW YORK

Columbia University, New York

PENNSYLVANIA

Carnegie Library of Pittsburgh

WASHINGTON

University of Washington, Seattle

NASA publications (those indicated by an "*" following the accession number) are also received by the following public and free libraries

CALIFORNIA

Los Angeles Public Library San Diego Public Library

COLORADO

Denver Public Library

CONNECTICUT

Hartford Public Library

MARYLAND

Enoch Pratt Free Library, Baltimore

MASSACHUSETTS

Boston Public Library

MICHIGAN

Detroit Public Library

MINNESOTA

Minneapolis Public Library

MISSOURI

Kansas City Public Library St Louis Public Library

NEW JERSEY

Trenton Public Library

NEW YORK

Brooklyn Public Library

Buffalo and Erie County Public Library

Rochester Public Library

New York Public Library

OHIO

Akron Public Library

Cincinnati Public Library

Cleveland Public Library

Dayton Public Library
Toledo Public Library

OKLAHOMA

Oklahoma County Libraries, Oklahoma City

TENNESSEE

Memphis Public Library

TEXAS

Dallas Public Library

Fort Worth Public Library

WASHINGTON

Seattle Public Library

WISCONSIN

Milwaukee Public Library

An extensive collection of NASA and NASA-sponsored documents and aerospace publications available to the public for reference purposes is maintained by the American Institute of Aeronautics and Astronautics, Technical Information Service, 750 Third Avenue, New York, New York, 10017

EUROPEAN

An extensive collection of NASA and NASA-sponsored publications is maintained by the British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England By virtue of arrangements other than with NASA, the British Library Lending Division also has available many of the non-NASA publications cited in STAR European requesters may purchase facsimile copy or microfiche of NASA and NASA-sponsored documents, those identified by both the symbols "#" and "*", from ESRO/ELDO Space Documentation Service, European Space Research Organization, 114, av Charles de Gaulle, 92-Neuilly-sur-Seine, France

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON DC 20546

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

SPECIAL FOURTH CLASS MAIL Book

POSTMASTER

If Undeliverable (Section 158 Postal Manual) Do Not Return

NASA CONTINUING BIBLIOGRAPHY SERIES

FREQUENCY	TITLE	NUMBER
Monthly	AEROSPACE MEDICINE AND BIOLOGY	NASA SP7011
	Aviation medicine, space medicine, and space biology	
Monthly	AERONAUTICAL ENGINEERING	NASA SP -7037
	Engineering, design, and operation of aircraft and aircraft components	
Semiannually	NASA PATENT ABSTRACTS BIBLIOGRAPHY	NASA SP -7039
	NASA patents and applications for patent	
Quarterly	EARTH RESOURCES	NASA SP-7041
	Remote sensing of earth resources by aircraft and spacecraft	
Quarterly	ENERGY	NASA SP-7043
	Energy sources, solar energy, energy conversion, transport, and storage	
Annually	MANAGEMENT	NASA SP-7500
	Program, contract, and personnel management, and management techniques	

Details on the availability of these publications may be obtained from SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546