79 research outputs found

    ASAM : Automatic Architecture Synthesis and Application Mapping; dl. 3.2: Instruction set synthesis

    Get PDF
    No abstract

    Coarse-grained reconfigurable array architectures

    Get PDF
    Coarse-Grained Reconfigurable Array (CGRA) architectures accelerate the same inner loops that benefit from the high ILP support in VLIW architectures. By executing non-loop code on other cores, however, CGRAs can focus on such loops to execute them more efficiently. This chapter discusses the basic principles of CGRAs, and the wide range of design options available to a CGRA designer, covering a large number of existing CGRA designs. The impact of different options on flexibility, performance, and power-efficiency is discussed, as well as the need for compiler support. The ADRES CGRA design template is studied in more detail as a use case to illustrate the need for design space exploration, for compiler support and for the manual fine-tuning of source code

    Automatic synthesis of reconfigurable instruction set accelerators

    Get PDF

    MURAC: A unified machine model for heterogeneous computers

    Get PDF
    Includes bibliographical referencesHeterogeneous computing enables the performance and energy advantages of multiple distinct processing architectures to be efficiently exploited within a single machine. These systems are capable of delivering large performance increases by matching the applications to architectures that are most suited to them. The Multiple Runtime-reconfigurable Architecture Computer (MURAC) model has been proposed to tackle the problems commonly found in the design and usage of these machines. This model presents a system-level approach that creates a clear separation of concerns between the system implementer and the application developer. The three key concepts that make up the MURAC model are a unified machine model, a unified instruction stream and a unified memory space. A simple programming model built upon these abstractions provides a consistent interface for interacting with the underlying machine to the user application. This programming model simplifies application partitioning between hardware and software and allows the easy integration of different execution models within the single control ow of a mixed-architecture application. The theoretical and practical trade-offs of the proposed model have been explored through the design of several systems. An instruction-accurate system simulator has been developed that supports the simulated execution of mixed-architecture applications. An embedded System-on-Chip implementation has been used to measure the overhead in hardware resources required to support the model, which was found to be minimal. An implementation of the model within an operating system on a tightly-coupled reconfigurable processor platform has been created. This implementation is used to extend the software scheduler to allow for the full support of mixed-architecture applications in a multitasking environment. Different scheduling strategies have been tested using this scheduler for mixed-architecture applications. The design and implementation of these systems has shown that a unified abstraction model for heterogeneous computers provides important usability benefits to system and application designers. These benefits are achieved through a consistent view of the multiple different architectures to the operating system and user applications. This allows them to focus on achieving their performance and efficiency goals by gaining the benefits of different execution models during runtime without the complex implementation details of the system-level synchronisation and coordination

    Automated design of domain-specific custom instructions

    Get PDF

    RISPP: A Run-time Adaptive Reconfigurable Embedded Processor

    Get PDF
    This Ph.D. thesis describes a new approach for adaptive processors using a reconfigurable fabric (embedded FPGA) to implement application-specific accelerators. A novel modular Special Instruction composition is presented along with a run-time system that exploits the provided adaptivity. The approach was simulated and prototyped using and FPGA. Comparisons with state-of-the-art appl.-specific and reconf. processors demonstrate significant improvements according the performance and efficiency

    Floating Point Arithmetic for Transport Triggered Architectures

    Get PDF
    Laskentajärjestelmiin kohdistuu usein suorituskyky- ja virrankulutusvaatimuksia, joita ei pystytä saavuttamaan yleiskäyttöisellä prosessorilla. Toistaalta laitteistokiihdyttimien suunnittelu voi vaatia kohtuuttoman paljon työaikaa. Ongelmaa voidaan lähestyä käyttämällä sovellusta varten räätälöityä sovelluskohtaista käskykantaprosessoria (Application-Specific Instruction set Processor, ASIP), joka on kuitenkin ohjelmoitava. Prosessorin räätälöinnin täytyy olla pitkälle automatisoitua säästääkseen kustannuksia. TTA-based Codesign Environment (TCE) on siirtoliipaistuun prosessoriarkkitehtuuriin (Transport Triggered Architecture, TTA) perustuva ASIP-kehitysympäristö. TTA on arkkitehtuurina helposti räätälöitävä ja joustaa pienistä ytimistä suuritehoisiin pitkän käskysanan suorittimiin. Useat tieteellisen laskennan ja signaalinkäsittelyn sovellukset, joissa TTA:n skaalautuvuudesta ja käskytason rinnakkaisuudesta olisi erityistä hyötyä, vaativat tuen laitteistokiihdytetylle liukulukulaskennalle. Tässä diplomityössä suunniteltiin ja toteutettiin TCE-projektia varten sarja liukulukuyksiköitä. Yksiköiden suunnittelussa pyrittiin alustariippumattomuuteen sekä korkeaan suorituskykyyn Field Programmable Gate Array alustoilla (FPGA) jopa tinkimällä tuetusta liukulukustandardista. Yksiköt sisältävät työkalut puolen tarkkuuden liukulukulaskentaan. Lisäksi työssä esitetään erikoiskäskyihin perustuvat nopeat algoritmit liukulukujakolaskun ja -neliöjuuren laskentaan. Yksiköiden toiminta varmistettiin automaattisella rekisterisiirtotason (Register Transfer Level, RTL) testipenkillä. Vertailussa Altera Stratix-II-FPGA:lla yksiköt pääsivät lähelle Alteran omien liukulukuyksiköiden suorituskykyä. Uudemmalla Xilinx Virtex-6-FPGA:lla korkein mahdollinen suorituskyky vaatisi tiheämpää liukuhihnoitusta

    RNN-Based Radio Resource Management on Multicore RISC-V Accelerator Architectures

    Get PDF
    Radio resource management (RRM) is critical in 5G mobile communications due to its ubiquity on every radio device and its low latency constraints. The rapidly evolving RRM algorithms with low latency requirements combined with the dense and massive 5G base station deployment ask for an on-the-edge RRM acceleration system with a tradeoff between flexibility, efficiency, and cost-making application-specific instruction-set processors (ASIPs) an optimal choice. In this work, we start from a baseline, simple RISC-V core and introduce instruction extensions coupled with software optimizations for maximizing the throughput of a selected set of recently proposed RRM algorithms based on models using multilayer perceptrons (MLPs) and recurrent neural networks (RNNs). Furthermore, we scale from a single-ASIP to a multi-ASIP acceleration system to further improve RRM throughput. For the single-ASIP system, we demonstrate an energy efficiency of 218 GMAC/s/W and a throughput of 566 MMAC/s corresponding to an improvement of 10x and 10.6x, respectively, over the single-core system with a baseline RV32IMC core. For the multi-ASIP system, we analyze the parallel speedup dependency on the input and output feature map (FM) size for fully connected and LSTM layers, achieving up to 10.2x speedup with 16 cores over a single extended RI5CY core for single LSTM layers and a speedup of 13.8x for a single fully connected layer. On the full RRM benchmark suite, we achieve an average overall speedup of 16.4x, 25.2x, 31.9x, and 38.8x on two, four, eight, and 16 cores, respectively, compared to our single-core RV32IMC baseline implementation

    Extensible microprocessor without interlocked pipeline stages (emips), the reconfigurable microprocessor

    Get PDF
    In this thesis we propose to realize the performance benefits of applicationspecific hardware optimizations in a general-purpose, multi-user system environment using a dynamically extensible microprocessor architecture. We have called our dynamically extensible microprocessor design the Extensible Microprocessor without Interlocked Pipeline Stages, or eMIPS. The eMIPS architecture uses the interaction of fixed and configurable logic available in modern Field Programmable Gate Array (FPGA). This interaction is used to address the limitations of current microprocessor architectures based solely on Application Specific Integrated Circuits (ASIC). These limitations include inflexibility, size, and application specific performance optimization. The eMIPS system allows multiple secure extensions to load dynamically and to plug into the stages of a pipelined central processing unit (CPU) data path, thereby extending the core instruction set of the microprocessor. Extensions can also be used to realize on-chip peripherals, and if area permits, even multiple cores. Extension instructions reduce dramatically the execution time of frequently executed instruction patterns. These new functionalities we have developed can be exploited by patching the binaries of existing applications, without any changes to the compilers. A FPGA based workstation prototype and a flexible simulation system implementating this design demonstrates speedups of 2x-3x on a set of applications that include video games, real-time programs and the SPEC2000 integer benchmarks. eMIPS is the first realized workstation based entirely on a dynamically extensible microprocessor that is safe for general purpose, multi-user applications. By exposing the individual stages of the data path, eMIPS allows optimizations not previously possible. This includes permitting safe and coherent accesses to memory from within an extension, optimizing multi-branched blocks, and throwing precise and restart able exceptions from within an extension. This work describes a simplified implementation of an extensible microprocessor architecture based on the Microprocessor without Interlocked Pipeline Stages (MIPS) Reduced Instruction Set Computer (RISC) architecture. The concepts and methods contained within this thesis may be applied to other similar architectures. Given this simplified prototype we look forward to propose how this architecture will be expanded as it matures
    corecore