
Universiteit Gent
Faculteit Ingenieurswetenschappen

en Architectuur
Vakgroep Elektronica en Informatiesystemen

Automated Design of Domain-Specific Custom
Instructions

Geautomatiseerd ontwerp van domeinspecifieke gespecialiseerde
instructies

Cecilia González-Álvarez

Promotoren: Prof. Dr. Ir. Lieven Eeckhout
Prof. Dr. Daniel Jiménez-González
Prof. Dr. Carlos Álvarez

Proefschrift tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen
Academiejaar 2015-2016

Departament d’Arquitectura de Computadors

Automated Design of Domain-Specific Custom
Instructions

Diseño automatizado de instrucciones especializadas para un
dominio específico

Cecilia González-Álvarez

Directores: Prof. Dr. Lieven Eeckhout
Prof. Dr. Daniel Jiménez-González
Prof. Dr. Carlos Álvarez

Tesis presentada para obtener el título de
Doctora por la Universitat Politècnica de Catalunya
Programa de Doctorado: Arquitectura de Computadores
Año académico 2015-2016

Acknowledgements

It has been a long way from the beginning of my journey as PhD student
in Barcelona to this moment. Some years ago I had never thought that
I would be writing the last words of this thesis on a sunny morning of
November in Ghent. Like in every other PhD there have been great times
combined with a good dose of frustration, and unexpected life lessons that
made the process much more interesting. These lines are for all the people
that walked this way with me.

First, I would like to thank my advisors: Daniel Jiménez-González and
Carlos Álvarez at UPC, and Lieven Eeckhout at UGent. They have guided
me with expertise and understanding, and without them this thesis would
have never been written. I thank Daniel for believing in me when I first
showed interest in pursuing a PhD. Later, Carlos joined as coadvisor and his
technical insights have been always very instructional. And I really want
to thank Lieven for this last period in Ghent; without his support this joint
PhD would have never been possible.

I would like to thank the members of my examination committee for
all the comments that helped to improve this document, and for the ques-
tions that led to engaging discussions during the internal defense. Special
thanks for Christophe Dubach and Xavier Martorell who, despite their busy
schedules, traveled to Ghent to serve in my defense.

I would also like to thank all the people I met at each step of my PhD
journey. First, I thank all my colleagues at BSC and UPC for all the great
moments shared. Also, special thanks goes to Hironori Kasahara, profes-
sor at Waseda University, for all the encouragement during the year and a
half that I spent in Japan. At last, I also would like to thank all my col-
leagues at UGent, specially Sander and Sam for their time spent reviewing
my (mediocre) attempts of Dutch writing. And a very special thanks to Jen-
nifer Sartor for all her help and insights into communicating science better,
I keep trying!

ii

Of course, I would like to thank my family and friends in Spain, Japan
and Belgium for all the best moments shared that lighted up the darkest
times. Special thanks to the Millet family, and particularly thanks to Hilde.
Quiero agradecer a mis padres por, sin saberlo, ser en gran medida respon-
sables de cada letra aquí impresa. Gracias por animarme hacia la ruta de lo
imposible, de lo que de verdad tiene valor. And finally, thanks to Klaas for
his loving encouragement and moral support; he is also responsible for this
thesis’ outcome. . .Dank je!

This research would not have been possible without the financial assis-
tance of the following agencies: Severo Ochoa program (SEV-2011-00067),
the Spanish Ministry of Science and Technology (TIN2012-34557), the Gen-
eralitat de Catalunya (MPEXPAR, 2009-SGR-980), HiPEAC3 Network of Ex-
cellence (FP7/ICT 287759), the European Research Council under the Euro-
pean Community’s Seventh Framework Programme (FP7/2007-2013) / ERC
Grant agreement no. 259295, the Xilinx University Program, and the Japa-
nese Ministry of Education.

Ghent, 3/11/2015
Cecilia González Álvarez

Examination Committee

Prof. Luc Taerwe, voorzitter
Prodecaan Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Koen de Bosschere, secretaris
Vakgroep ELIS, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Lieven Eeckhout, promotor
Vakgroep ELIS, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Christophe Dubach
School of Informatics, University of Edinburgh
UK

Prof. Jan Fostier
Vakgroep INTEC, Faculteit Ingenieurswetenschappen en Architectuur
Univesiteit Gent

Dr. Wim Heirman
Intel ExaScience Lab
Leuven

Prof. Xavier Martorell
Computer Architecture Department, Universitat Politècnica de Catalunya
Spain

Dr. Jennifer Sartor
Vakgroep ELIS, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent
Vakgroep Computerwetenschappen, Faculteit Wetenschappen en Bio-

ingenieurswetenschappen
Vrije Universiteit Brussel

Reading Committee

Prof. Koen de Bosschere
Vakgroep ELIS
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Christophe Dubach
School of Informatics
University of Edinburgh
UK

Prof. Jan Fostier
Vakgroep INTEC
Faculteit Ingenieurswetenschappen en Architectuur
Univesiteit Gent

Prof. Xavier Martorell
Computer Architecture Department
Universitat Politècnica de Catalunya
Spain

Summary

Power limitations in modern microprocessors restrict the chip utiliza-
tion, since under certain circumstances only some parts of the circuit can be
active. We can solve this problem with specialized accelerators that com-
plement the main processor, which are only switched on to execute a spe-
cific task. However, specialization adds complexity to the design process
and limits flexibility in circuit reutilization. Application-Specific Instruc-
tion Processors (ASIPs) balance performance and flexibility, augmenting a
general-purpose processor with instructions that are customized for a parti-
cular application, implemented in Specialized Functional Units (SFUs). The
design process can be simplified with automated techniques that identify,
select and implement those custom instructions (CIs). However, time-to-
market is a major issue with application-specific designs because, if CIs are
not frequently executed, the acceleration benefits will not compensate for
the overall design cost. Domain-specific acceleration increases the applica-
bility of ASIPs, as they can target several applications that run on the same
hardware close in time. In this dissertation, we explore different approaches
to the design of CIs that extend a baseline processor for domain-specific ac-
celeration to increase reutilization, and to improve both performance and
energy efficiency.

First, we develop automated techniques to identify code sequences that
can be accelerated among different applications within a domain. Each in-
dependent sequence is a new CI candidate that can be executed on an SFU.
CIs that target a whole domain are a promising option due to their potential
reusability. However, the disparity among coding styles of different pro-
grams makes it difficult to identify patterns of code that can be represented
by a single CI across applications. Therefore, we propose an analysis at the
basic block level that identifies equivalent CIs within the same program and
across different programs. We use the Taylor Expansion Diagram (TED),
a canonical representation, to find not only structurally equivalent pieces
of code, but also functionally similar ones, as opposed to the commonly
applied directed acyclic graph (DAG) isomorphism detection. We also com-

viii Summary

bine both methods into a new Hybrid DAG/TED technique, which helps us
to identify more sequences across applications that are mapped to the same
CI, thus achieving higher speedups with smaller chip area.

Next, in order to obtain higher speedups, we target CIs that cover larger
sections of code than a single basic block. Because the available area for im-
plementation is limited, hardware reusability across applications becomes
a critical factor. However, if we are not able to find enough equivalences
across applications, CIs cannot be generalized for a domain. Therefore, we
aim to share partially common operations among CIs to expand the amount
of code that can be accelerated, especially across basic blocks, and to reduce
the hardware area needed for specialization. Hence, we create a new cano-
nical representation of CIs across basic blocks: the Merging Diagram. This
new representation facilitates similarity detection and improves code cove-
rage with respect to previous methods. We also introduce clustering-based
partial matching to identify partially-similar domain-specific CIs, which are
combined into merged CIs to save implementation area. Partially-merged
domain-specific CIs generally lead to better performance than application-
specific ones. Yet, at small areas, merging two CIs induces high additional
overhead that could penalize energy-efficiency. Thus, we also detect frag-
ments of CIs that include only parts of full-sized CIs. We join the fragments
of CIs with the existing merged clusters resulting in less area overhead than
merging full CIs. These techniques expand the acceleration opportunities of
CIs, because we cover more code while reducing the needed area for the CI
implementation.

In the last step of the CI design, the selection chooses a subset of CIs that
fits in the available SFU area. The complexity of the problem and the large
CI design space of a whole application domain make the selection compu-
tationally challenging. Thus, we propose four scoring heuristics to quickly
and effectively reduce the design space of CI candidates. The heuristics rely
on the expected sharing of CIs within and across different programs, with
the objective of smoothing the potential performance speedup across appli-
cations, making them suitable for domain-specific acceleration. However,
using speedup as the deciding factor for CI selection may not be optimal
for devices with limited power budgets. For that reason, we also introduce
energy efficiency as a new parameter to take into account. We propose a se-
lection mechanism based on mixed integer linear programming (MILP) that
balances performance and energy consumption to select a high-performance
low-power CI configuration.

We build the exploration framework FuSInG (Functionally Similar Ins-

Summary ix

tructions Generator) to extract code sequences that we analyze with DAG,
TED and Hybrid identification methods, and then rank using the scoring
heuristics. The overall performance is estimated with hardware models
across the spectrum of application-specific and domain-specific acceleration
in hardware, on a set of media benchmarks. We evaluate canonical repre-
sentations for the design of domain-specific CIs, and we demonstrate that
they are key to find more equivalences across applications than structural
representations such as DAGs. We also explore the trade-offs of different
SFU configurations to optimize full-system performance across applications
subject to area constraints. Results show that, when limiting core area de-
voted to specialization, the SFU customization with the largest speedups
includes a mix of application and domain-specific custom instructions. In
addition, we cross-validate the results to demonstrate that the identified CIs
are effective for previously unseen applications within the same domain,
making specialization more generally applicable.

We also create MInGLE (Merged Instructions Generator for Large Effi-
ciency), an automated framework that identifies preliminary CIs, transforms
them to Merging Diagrams and merges them depending on their similarity
score. The framework selects, with the MILP-based mechanism, CI config-
urations that efficiently exploit the available area for specialization. Experi-
mental results with a set of media benchmarks show that, on average, acce-
leration across basic blocks achieves better speedup and energy-delay prod-
uct (EDP) improvement than over a single basic block (speedup of 1.98×
versus 1.48×, EDP improvement of 3.35× versus 1.67×). Also across ba-
sic blocks, partial matching achieves, on average, larger speedups and EDP
improvements as compared to exact matching, given the same area (e.g., for
1.8% of the area speedup of 1.88× versus 1.73× and EDP improvement
of 3.04× versus 2.53×). Furthermore, the MInGLE+ extended framework
identifies, extracts and selects fragments of CIs. Adding matching with frag-
ments we use area more effectively than using only partial matching (e.g.,
for 1% of the area, 2× versus 1.63× and EDP improvement of 3.65× ver-
sus 2.35× on average). The selected CIs significantly improve the EDP and
performance of applications from the media domain, demonstrating that
we can efficiently accelerate a domain with partially-matched CIs and CI
fragments.

Samenvatting

Hedendaagse microprocessors zijn zeer sterk vermogengelimiteerd waar-
door in sommige omstandigheden slechts een deel van de chip gebruikt
kan worden. Hardwarespecialisatie biedt hier een oplossing door gespe-
cialiseerde acceleratoren toe te voegen aan de processor die enkel aange-
schakeld worden bij het uitvoeren van specifieke taken. Een belangrijk
nadeel van hardwarespecialisatie is echter de toegenomen hardwarecom-
plexiteit alsook de beperkte flexibiliteit — de functionaliteit van de speciali-
satiehardware ligt echter vast. Applicatie-Specifieke Instructieset Processors
(ASIPs) streven naar een balans tussen prestatie en flexibiliteit. Een ASIP
breidt een standaard processor uit met aangepaste instructies voor specifieke
bewerkingen geïmplementeerd in Specialized Functional Units (SFUs). Het
ontwerpproces kan vereenvoudigd worden m.b.v. geautomatiseerde tech-
nieken die gespecialiseerde instructies (Eng: Custom Instructions – CIs)
identificeren, selecteren en implementeren. Omwille van de kost dient het
aantal CIs echter beperkt te worden. De moeilijkheid bestaat erin maximale
prestatiewinst te boeken met een beperkt aantal CIs. Door CIs in te zetten
om een aantal computerapplicaties uit een ruim domein te versnellen wordt
de toepasbaarheid verhoogd. In dit doctoraatswerk onderzoeken we geau-
tomatiseerde manieren om domeinspecifieke CIs te ontwerpen teneinde de
prestatie en energie-efficiëntie te verbeteren.

In deze doctoraatsthesis ontwikkelen we geautomatiseerde technieken
om potentiële CIs te identificeren over verschillende toepassingen binnen
een applicatiedomein. Het verschil in codeerstijlen van verschillende pro-
gramma’s maakt het echter moeilijk om codesequenties te identificeren die
door een unieke CI vervangen kunnen worden. Bijgevolg stellen we een
analyse voor op het niveau van een basisblok om CIs binnen eenzelfde
programma alsook over verschillende programma’s te herkennen. We ge-
bruiken hiervoor het Taylor Expansion Diagram (TED) om niet alleen struc-
tureel maar ook functioneel equivalente CIs te vinden, in tegenstelling tot de
vaak toegepaste isomorfismedetectie m.b.v. Direct Acyclic Graphs (DAG).
We combineren ook beide methodes in een nieuwe hybride DAG/TED-

xii Samenvatting

techniek, wat ons helpt meer codesequenties te identificeren uit meerdere
programma’s die door eenzelfde CI versneld kunnen worden. We stellen ook
heuristieken voor om de beste CIs te identificeren. Om de herbruikbaarheid
van CIs te verbeteren, introduceren we vervolgens een canonieke represen-
tatie over verschillende basisblokken, het Merging Diagram, en stellen we
een mechanisme voor dat CIs identificeert die slechts deels gelijkaardig zijn.
Voor kleine chipoppervlaktes stelt dit ons in staat de prestatie en energie-
efficiëntie te verbeteren voor een applicatiedomein. Teneinde de herbruik-
baarheid van hardwarespecialisatie nog verder te verhogen, identificeren en
hergebruiken we ook nog fragmenten van CIs.

Wij ontwikkelen het exploratieraamwerk FuSInG (Functionally Similar
Instructions Generator) om codesequenties te extraheren en te analyseren
met DAGs, TEDs en hybride DAG/TEDs, en om hen te ordenen met score-
heuristieken. De prestatie wordt geschat op basis van hardwaremodellen;
verder beschouwen we multimedia als het applicatiedomein. We evalueren
onze canonieke representaties voor het ontwerp van domein-specifieke CIs,
en we tonen dat TEDs essentieel zijn om meer CIs te identificeren i.v.m.
DAGs. Resultaten tonen aan dat, wanneer de beschikbare chipoppervlakte
voor specialisatie beperkt is, de beste prestatie wordt bereikt door een mix
van applicatie- en domeinspecifieke CIs.

Ook creëren weMInGLE (Merged Instructions Generator for Large Effi-
ciency), een geautomatiseerd raamwerk dat CIs identificeert en deze tot
Merging Diagrams transformeert. Dit raamwerk identificeert CIs over meer-
dere basisblokken en laat ook deels gelijkaardige CIs toe. Experimentele
resultaten met een set van mediabenchmarks tonen aan dat CIs over ba-
sisblokken de prestatie verbeteren met een factor 1.98× versus 1.48× voor
CIs binnen een basisblok. De energie-efficiëntie verbetert met een factor
3.35× voor CIs over basisblokken versus 1.67× binnen een basisblok. De
prestatie en energie-efficiëntie wordt nog verder verbeterd d.m.v. gedeel-
telijke CIs; b.v. een SFU met 1.8% chipoppervlakte verbetert de prestatie met
1.88× voor gedeeltelijke CIs versus 1.73× voor volledige CIs; en verbetert
de energie-efficiëntie met 3.04× versus 2.53×.

Tenslotte laat het uitgebreide MInGLE+ raamwerk toe fragmenten van
CIs te identificeren teneinde hergebruik te verhogen. Dit verbetert de pres-
tatie van een SFU met 1% chipoppervlakte met een factor 2× versus 1.63×
zonder fragmenten, en de energie-efficiëntie met een factor 3.65× versus
2.35×.

De eindconclusie van de doctoraatsthesis is dat het mogelijk is de pres-
tatie en energie-efficiëntie aanzienlijk te verbeteren voor toepassingen uit

Summary in Dutch xiii

een applicatiedomein m.b.v. gespecialiseerde instructies, en dit mits een
beperkte chipoppervlakte om een gespecialiseerde functionele eenheid te
implementeren. Daarbij is het cruciaal (i) over een canonische represen-
tatie te beschikken teneinde functioneel equivalente codesequenties te iden-
tificeren over verschillende toepassingen; (ii) gespecialiseerde instructies
te identificeren over meerdere basisblokken; (iii) deels gelijkaardige gespe-
cialiseerde instructies te identificeren teneinde hergebruik van de speciali-
satiehardware te bevorderen.

Resumen

La especialización de hardware ha recibido renovado interés debido
al utilization wall, ya que transistores infrautilizados pueden implementar
hardware a medida que complemente el procesador principal. Sin embargo,
su proceso de diseño se complica y se reduce su reutilización. Procesadores
de instrucciones para aplicaciones específicas (ASIPs) equilibran rendimien-
to y reuso, extendiendo un procesador con instruciones especializadas (cus-
tom instructions – CIs) para una aplicación, implementadas en unidades
funcionales especializadas (SFUs). No obstante, los plazos de comercializa-
ción suponen un obstáculo en diseños específicos; si las CIs no se ejecutan
con frecuencia, los beneficios de la aceleración no compensan los costes de
diseño. La aceleración de un dominio específico incrementa la aplicabili-
dad de los ASIPs, acelerando diferentes aplicaciones en el mismo hardware,
mientras que una SFU reconfigurable y un diseño automatizado pueden re-
solver los problemas mencionados. En esta tesis, exploramos diferentes al-
ternativas al diseño de CIs que extienden un procesador para acelerar un
dominio, mejorando el rendimiento y la eficiencia energética.

Proponemos primero técnicas automatizadas para identificar código ace-
lerable en un dominio. Sin embargo, esta identificación se complica debido
a la diversidad de estilos entre diferentes programas. Por tanto, proponemos
identificar en el bloque básico CIs equivalentes utilizando la representación
canónica Taylor Expansion Diagram (TED). Con TEDs encontramos no só-
lo código estructuralmente equivalente, sino también con similitud fun-
cional, en contraposición a la detección isomórfica de grafos acíclicos di-
rigidos (DAG). Combinamos ambos métodos en una nueva técnica híbrida
DAG/TED, que identifica en varias aplicaciones más secuencias represen-
tadas por la misma CI. Tras esto, seleccionamos un subconjunto de CIs que
puede ser contenido en el área de la SFU. Por la complejidad del proble-
ma, proponemos cuatro heurísticas de selección para reducir el espacio de
búsqueda y homogeneizar el rendimiento de las aplicaciones. Incluimos es-
tas técnicas en la infraestructura FuSInG y estimamos el rendimiento para
un conjunto de benchmarks multimedia. Los resultados muestran que, al

xvi Resumen

limitar el área de especialización, la configuración de la SFU con las mayo-
res ganancias combina CIs específicas tanto para una aplicación como para
todo el dominio.

Si nos centramos en CIs más grandes para obtener mayores ganancias,
la reutilización se vuelve crítica; sin suficientes equivalencias las CIs no
pueden ser generalizadas. Nuestro objetivo es que las CIs compartan par-
cialmente operaciones, especialmente a través de bloques básicos, y reducir
el área de especialización. Por ello, creamos una representación canónica
de CIs que cubre varios bloques básicos, Merging Diagram, para mejorar
el alcance de la aceleración y facilitar la detección de similitud. Además,
proponemos una búsqueda de coincidencias parciales basadas en clustering
para identificar CIs de dominio específico parcialmente similares, las cuales
derivan generalmente mejor rendimiento. Pero en áreas reducidas, la fusión
de CIs induce un coste adicional que penalizaría la eficiencia energética. Así,
detectamos fragmentos de CIs y los unimos con grupos de CIs previamente
fusionadas con un coste extra mínimo. Por otra parte, usar el rendimiento
como el factor decisivo en la selección puede no ser óptimo para disposivos
con consumo de energía limitado. Por eso, proponemos un mecanismo de se-
lección basado en programación lineal que equilibra rendimiento y consumo
energético. Implementamos estas técnicas en la infraestructura MInGLE y
las evaluamos con benchmarks multimedia. Las CIs seleccionadas mejoran
notablemente la eficiencia energética y el rendimiento, demostrando que
podemos acelerar un dominio cubriendo más código a la vez que reducimos
el área de implementación.

Table of Contents

English Summary vii

Nederlandse Samenvatting xi

Resumen en Español xv

1. Introduction 1
1.1. Motivation and Context . 1
1.2. Custom Instruction Design 3
1.3. Key Challenges . 4
1.4. Key Contributions . 6
1.5. Key Results . 9
1.6. Publications . 11
1.7. Overview . 12

2. Background 13
2.1. Introduction . 13
2.2. Datapath Specialization: State-of-the-Art 14

2.2.1. Custom Instruction Design 14
2.2.2. Datapath Accelerators 16

2.3. Hardware Setup: Domain Acceleration 18
2.3.1. Acceleration on OpenSPARC 18
2.3.2. Acceleration on Intel Atom 19

2.3.2.1. DSFU Design 20
2.3.2.2. Base Processor Integration 21

2.4. Software Setup: Intermediate Code Representations 26
2.4.1. Structural Representations 26

2.4.1.1. IR and SelectionDAG in LLVM 26
2.4.2. Canonical Diagrams 27

2.4.2.1. Binary Decision Diagrams 28
2.4.2.2. Taylor Expansion Diagrams 30

xviii Table of Contents

3. Functionally Equivalent Domain-Specific Instructions 33

3.1. Introduction . 33
3.2. Context . 34
3.3. FuSInG Framework . 35
3.4. Identification of CI Candidates with DFG Exploration 37
3.5. Instruction Clustering to Discover Equivalences 38

3.5.1. Clustering with DAG Isomorphism 38
3.5.2. Clustering with TED isomorphism 40
3.5.3. Hybrid TED-DAG clustering 41

3.6. Heuristic Selection . 42
3.6.1. Application-Specific Scoring 42
3.6.2. Domain-Specific Scoring 42

3.6.2.1. Scoring 1: Normalized Application-Specific 43
3.6.2.2. Scoring 2: Scaled by Sharing 43
3.6.2.3. Scoring 3: Geometric Mean of Sharing . . 44
3.6.2.4. Scoring 4: Random-Scaled Sharing 44

3.7. Estimating Performance and Area 44
3.8. Experimental Setup . 46
3.9. Results . 47

3.9.1. DAG vs TED vs Hybrid 49
3.9.2. Domain-Specific Scoring 55
3.9.3. Application-Specific vs Domain-Specific Configu-

rations . 56
3.9.4. Custom Instruction Analysis 60
3.9.5. Cross-Validation . 61

3.10. Summary . 63

4. Partially Similar Domain-Specific Instructions 65

4.1. Introduction . 65
4.2. Context and Motivation . 66
4.3. MInGLE Framework . 68
4.4. Candidate Extraction: From Application Code to Hardware

Acceleration . 68
4.5. Canonicalization of Custom Instructions using Merging Di-

agrams . 70
4.5.1. Merging Diagram Construction 72
4.5.2. Global Diagram of Variants 72

4.6. Generation of Merged Custom Instructions 74
4.6.1. Distance Calculation 74

Table of Contents xix

4.6.2. Clustering Custom Instruction Variants 75
4.6.3. Merging Estimation and Modeling 76

4.7. Custom Instruction Selection for an Area Constrained Con-
figuration . 77

4.8. Complexity . 79
4.9. Evaluation . 79

4.9.1. Experimental Setup 80
4.9.2. Results and Discussion 81

4.10. Summary . 85

5. Fragments of Domain-Specific Instructions 87
5.1. Introduction . 87
5.2. Motivation . 88
5.3. MInGLE+ Framework . 90
5.4. Generation of Custom Instruction Fragments 92
5.5. Distance and Matching Calculation 94
5.6. Custom Instruction Selection with Fragments 95
5.7. Evaluation . 96

5.7.1. Experimental Setup 96
5.7.2. Results . 97

5.7.2.1. Speedup and EDP Improvement 98
5.7.2.2. Threshold Analysis 101
5.7.2.3. Sharing Characterization 103

5.8. Summary . 105

6. Conclusion 107
6.1. Overview . 107
6.2. Future work . 110

List of Figures

1.1. Automated process for CI generation and key contributions . 6

2.1. Generic target architecture with SFU 19
2.2. Implementation of a merged CI that executes on a DSFU . . 20
2.3. DSFU with a configuration manager to reprogram CIs . . . 21
2.4. Intel Atom processor pipeline with a tightly-coupled DSFU . 22
2.5. Chronogram of instructions on a pipeline with a tightly-

coupled DSFU . 25
2.6. Example of a reduced and ordered BDD construction 28
2.7. Example of a canonical TED construction 30

3.1. Schematic overview of the CI selection and evaluation frame-
work FuSInG . 36

3.2. Examples of the usage of TEDs for instruction clustering . . 39
3.3. Results of benchmark speedup versus CI area for DAG, TED

and Hybrid methods with domain-specific CIs (part 1/2) . . 50
3.4. Results of benchmark speedup versus CI area for DAG, TED

and Hybrid methods with domain-specific CIs (part 2/2) . . 51
3.5. Results of benchmark speedup versus SFU area for scoring

techniques with domain-specific CIs (part 1/2) 53
3.6. Results of benchmark speedup versus SFU area for scoring

techniques with domain-specific CIs (part 2/2) 54
3.7. Results of benchmark speedup versus SFU area using only

application-specific, application and domain-specific, or only
domain-specific CIs (part 1/2) 57

3.8. Results of benchmark speedup versus SFU area using only
application-specific, application and domain-specific, or only
domain-specific CIs (part 2/2) 58

3.9. Results of benchmark speedup versus SFU area for cross-
validation per application using domain-specific CIs (part
1/2) . 62

xxii List of Figures

3.10. Results of benchmark speedup versus SFU area for cross-
validation per application using domain-specific CIs (part
2/2) . 63

4.1. MInGLE framework for the implementation and generation
of partially-merged CIs . 69

4.2. Example of Merging Diagram construction 71
4.3. Hierarchical clustering of CIs 75
4.4. Average speedup versus percentage of area occupancy of

the DSFU for exact and partial matching methods 82
4.5. Average EDP improvement versus percentage of area occu-

pancy of the DSFU for exact and partial matching methods . 82
4.6. Speedup for each benchmark at a limited implementation area 84
4.7. EDP improvement for each benchmark at a limited imple-

mentation area . 84

5.1. Example of partial merging without and with CI fragments . 89
5.2. MInGLE+ automated framework for the generation of CIs

with fragments . 91
5.3. Average speedups against increasing area percentages for

exact and partial matching and matching with fragments . . 98
5.4. Average EDP improvements against increasing area percen-

tages for exact and partial matching and matching with
fragments . 99

5.5. EDP improvement for each benchmark with CIs selected
across basic blocks with fragments, partial matching and
exact matching . 100

5.6. Percentage of area versus average EDP improvement for the
matching with fragments for different thresholds 102

5.7. Characterization of shared FPGA hardware for different area
utilizations with partial matching 104

5.8. Characterization of shared FPGA hardware for different area
utilizations with fragments 104

List of Tables

2.1. Extensions to the base ISA to operate the DSFU 24

3.1. Description of the evaluated application benchmarks and
their input files . 47

3.2. Number of code sequences and CIs found in each applica-
tion with DAG, TED and Hybrid methods, and the percen-
tage of dynamic instructions covered by them 48

3.3. Classification of CIs in a full-system configuration of 5%,
10% and 15% of the SPARC area 59

4.1. Percentages of area occupancy and EDP improvement for
different CI implementations 67

4.2. List of the evaluated applications and benchmarks suites . . 80

5.1. For each application, number of CIs and CI variants con-
sidered, the percentage of dynamic instructions covered by
them, and the number of candidates found 97

5.2. Number of candidates in the selection step and time to solve
the selection problem for different thresholds using mat-
ching with fragments . 103

List of Acronyms

ARM Advanced RISC Machines
ASIP Application-Specific Instruction Processor
ASIC Application-Specific Integrated Circuit

BDD Binary Decision Diagram

CFG Control Flow Graph
CI Custom Instruction
CMOS Complementary Metal-Oxide-Semiconductor

DAG Directed Acyclic Graph
DFG Data Flow Graph
DMA Direct Memory Access
DSFU Domain-Specific Functional Unit

EDP Energy-Delay Product

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

HLS High Level Synthesis

INF If-then-else Normal Form
IR Intermediate Representation
ISA Instruction Set Architecture

xxvi Acronyms

ISEF Instruction Set Extension Fabric
ITE If Then Else (operator)

MILP Mixed Integer Linear Programming
MISO Multiple Input Single Output
MIMO Multiple Input Multiple Output

RISC Reduced Instruction Set Computing
ROBDD Reduced Ordered Binary Decision Diagram

SFU Specialized Functional Unit
SMT Simultaneous Multithreading
SRAM Static Random-Access Memory
SSA Static Single Assignment

TED Taylor Expansion Diagram

VLIW Very Long Instruction Word

1
Introduction

1.1. Motivation and Context

The steady increase of processor speed that Moore’s law had been pre-
dicting since 1965 [48] was jeopardized when the limits of dimensional sca-
ling started to raise concern among chip makers. The doubling in the num-
ber of transistors per chip every one and a half to two years that Moore fore-
casted, and that yields to higher performing circuits at lower cost, was con-
ceptualized by Dennard [20]. His scaling law establishes that, keeping the
electrical field constant, if the chip dimensions scale down, the integration
density of transistors on a chip increases, causing circuits to be faster and
to reduce power consumption. The constant field scaling paradigm gover-
ned the microelectronics industry due to its continuous delivery of higher
performance with lower power consumption at lower costs in each semi-
conductor process generation. However, since the beginning of this century,
there has been a slowdown of the energy per transistor switch scaling due
to technology limitations. This has been marked as the end of Dennard
scaling: voltage scaling cannot keep up with transistor scaling. Now, at
each new process generation, integration density increases, but so does the
static power leakage. All the transistors on a chip are not powered at the
same time to avoid thermal runaway, resulting in an under-utilization of the
chip [22, 34, 59], also known as dark silicon. Seeing that the times of Den-
nard scaling are over, we cannot count anymore on power or performance

2 Introduction

improvements based on traditional technology advances.
Meanwhile, nowadays market trends require, more than ever, low-power

processors that do not sacrifice performance. Society demands a technolo-
gical future with energy-efficient intelligent systems integrated in any con-
ceivable gadget. Devices will become increasingly sophisticated, with richer
functionalities compared to existing ones, and demanding more optimized
solutions. By way of example, smartphone production overtook that of
client PCs in 2011 [14]; in that year, there were 73 million more smartphones
shipped than PCs and tablets together. Also, in May 2015 Google announced
that searches on mobile devices surpassed PCs in the US for the first time1,
and in the UK, mobile handsets now account for 56% of time spent on the
Internet [51]. In view of this unstoppable takeover of size-constrained ma-
chines, we ask whether the market can keep up with the demand of high
functionality with low-power budgets in the advent of dark silicon.

Ultimately, we should look for a downscaled technology that can be
efficiently used in modern application domains. The benefits of Moore’s
shrinking rates could continue without Dennard’s rules; with equivalent
scaling [3] we could use other means than dimensional scaling to maintain
improvements in speed and energy. For instance, we can propose new archi-
tectures that provide special-purpose functionalities and that are heteroge-
neously integrated with current processors. Specialized or custom compu-
ters are not novel; since the first specialized computer, over 50 years ago [23],
the implementation of specific computing units has been extensively stu-
died. But it is now when their benefits over traditional, general-purpose
architectures, are becoming more popular. Specialization is seen as a way to
cope with the dark silicon problem, by increasing the energy efficiency that
a low-power budget imposes.

Consequently, custom computing using off-core accelerators, GPUs or
in-core functional units is a hot topic. The current generation of mobile pro-
cessors already integrate heterogeneous chips combined with accelerators,
which are also becoming more common in server and desktops. Even su-
percomputer engineers now pay attention to accelerator-based systems; the
first three supercomputers in the June 2015 Green500 list2 rely on special-
purpose acceleration with their PEZY-SC cores to provide high energy effi-
ciency. Also, customized computing is in the spotlight of European public
funds for research and innovation. The European Commission, under the
Horizon 2020 program3 and the Joint Technology Initiative on Electronic

1http://adwords.blogspot.be/2015/05/building-for-next-moment.html
2http://www.green500.org/lists/green201506
3http://ec.europa.eu/research/participants/portal/desktop/en/

opportunities/h2020/topics/9080-ict-04-2015.html

Introduction 3

Components and Systems4, has granted more than e100 million in 2015 for
the development of the next generation of CPUs together with customized
and low-power computing. New custom architectures across several appli-
cation domains are key targets for the European Commission to reinforce
Europe’s technological competitiveness.

Approaches to custom computing are diverse, therefore accelerating
systems may vary depending on the target application domain. Focusing
on mobile devices, we find a plethora of different types of applications
that demand performance within constrained power budgets, from com-
mon multimedia tasks to voice or facial recognition. Embedded systems
equipped with specialized hardware can improve performance and reduce
energy consumption, but it is hard to decide on the implementation details
of the customized section. For instance, we can obtain high performance by
accelerating critical parts of an application with Application-Specific Inte-
grated Circuits (ASICs); however, their design cost is high, as they lack the
flexibility of being programmable. Options that allow hardware reutiliza-
tion, such as reconfigurable technologies, still require a considerable effort
from the designer, which may compromise the total cost and time-to-market
of the final product.

Ideally, specialization in embedded systems should yield performance
and energy gains close to those of an ASIC, while being flexible and reusable
with minimum overhead. New micro-architectural approaches that use pre-
built building blocks are our proposal: extensible processors, also known
as Application-Specific Instruction Processors (ASIPs) [39], balance perfor-
mance and flexibility, and yet maintain the energy efficiency gains of specia-
lization. As they reuse a pre-verified and pre-optimized base processor, the
design process is less complex and time-to-market is shorter. The classical
ASIP design process augments a general-purpose processor with specialized
functional units (SFUs) that execute instructions customized for a particular
application. This design process can be automated to identify, select and im-
plement those custom instructions (CIs), and the focus of this dissertation
lays, precisely, in those automated methods for CI design.

1.2. Custom Instruction Design

Extending processors with SFUs not only diminish the design costs of
acceleration. Other benefits of using CIs include the reduction of the cycles
spent in the prediction, fetch, decode, scheduling and commit stages of a
processor. For each data and instruction fetch, they can perform from tens to

4http://www.ecsel-ju.eu/web/index.php

4 Introduction

hundreds of operations, cutting down the processor’s energy consumption.
Also, the deployment of CIs is more effective than specializing a complete
processor as they are easier to program than bigger off-core accelerators.

SFU customization is the process of discovering new CIs that accelerate
the target applications. Within a small and controlled application domain,
CIs can be manually detected by studying limited benchmark code, combi-
ning frequently executed bundles of operations into one CI. However, with
real applications, manual exploration is not an option; the benefits of CIs
would not compensate the time and effort required to design them. There-
fore, SFU customization is normally an automated process integrated as an
alternative path of an application’s compilation flow. Automatic CI disco-
very has attracted extensive attention as a research topic since it is far from
trivial.

The design of CIs can be broken down into three different phases: the
discovery or generation of CIs, the implementation of CIs, and the substi-
tution of generic code by CIs. Out of those three, CI generation is the most
important and difficult phase and hence it is our focus here; it is also the
focus for most of the related work. CI generation examines the application
code’s data-flow graph (DFG) and identifies subgraphs of operations as spe-
cial instructions. Typically within a single basic block, these subgraphs join
tens of operations into a single CI to maximize the overall speedup. Their
reusability is commonly very limited; a CI is found at a concrete point of a
single application, making them essentially application-specific. CI genera-
tion is done in two steps: candidate identification and final selection. First,
during candidate identification, subgraphs are identified under architectural
constraints. This exploration can be exponential in time, thus algorithms to
tackle this problem are a recurring topic in the literature. Then, the final se-
lection finds the best set of CIs that maximizes the performance in a limited
area. How this problem is attacked is also relevant, since it is NP-complete.
Therefore, the complete CI design process has substantial research interest,
as the acceleration benefits of SFUs can be hard to obtain.

1.3. Key Challenges

To accelerate a processor with SFUs, we are compelled to provide sim-
ple and fast design methods of CIs that improve performance. However, the
general adoption of such a customizing technology depends on a variety of
factors: how suitable CIs are in a broad context, how efficient the design
methods are, or how energy and performance trade-offs are taken into con-
sideration. These challenges complicate the CI design process and must be
adequately addressed.

Introduction 5

First, note that the increasing market demand in consumer electronics
imposes strict time-to-market constraints. Also, systems with accelerators
are in constant change, since the software that runs on them is regularly
modified; therefore, users may want to accelerate applications that were
not considered at design time. ASIPs allow programmability to a certain
extent to amortize chip design costs, but the common trend is to design
CIs for an individual application. As application-specific CIs are not highly
reusable, they are sentenced to a short life span at the expense of high de-
sign costs. In addition, if CIs are not frequently executed, the acceleration
benefits will not compensate for the overall energy consumption. Thus, ex-
tending the CIs usage to a whole domain of applications can increase the
suitability of ASIPs for acceleration. We can then find similar CIs in diffe-
rent programs that can be implemented as only one instruction, improving
reusability and economizing hardware resources. But although applications
within the same domain often perform similar computations that require
the same hardware, we are confronted with two issues: first, exploring se-
veral applications at once results in a design space explosion, and second,
non-uniform programming styles of different codes may hide their under-
lying similarities.

Over the past few years, advances in automatic high-level synthesis
(HLS) have enabled rapid prototyping of accelerators, which results in an-
other important issue: varying the optimization options, we can obtain
many configurations of the same CI resulting from customizable choices
such as the degree of parallelism. Therefore, we can have another design
space explosion. Exploration of the different architectural configurations
then becomes a sensible task, and automated ways for curbing the design
space are key to be able to find a configuration solution that delivers good
performance.

While performance speedup is the key metric that traditionally drives
CI design, if we only look at performance we may downplay other equally
important aspects. Embedded processors have a constrained power bud-
get; therefore, CI design should attempt to balance performance gains with
energy efficiency. Furthermore, although the SFU hardware area is limited,
the expected speedup partially depends on the code coverage of the CI; big-
ger CIs may deliver better speedups, but all may not fit in the available area.
Thus, when several applications are competing for the same resources, we
need to be able to prioritize CIs without penalizing overall efficiency. Also,
code coverage is subject to the kind of operations executed on the SFU; if
branch or predication instructions are left out, as is commonly the case, CIs’
span is only within a basic block. Small CIs can be counter-productive for
performance, but they also have a strong advantage over bigger ones: their

6 Introduction

Identification of
CI candidates

Selection of
CI candidates

SFU

1A
Functionally

Equivalent CIs

2A
Domain-specific
Heuristic-based

1B
Partially

Similar CIs

2B
Domain-specific
Constraint-based

1C
Fragments of CIs

Automatic Custom Instruction Generation

Contributions Frameworks

ConfigurationApplication

within
basic

blocks

+ across
basic

blocks

+ reuse
& area

efficiency

optimize
performance

+ optimize
energy

FuSInG

MInGLE

MInGLE+

Figure 1.1: The automated process for CI generation and the key contributions of
this dissertation.

sharing across applications may be higher and, on average, they yield a
more balanced improvement over all the applications they target. All these
trade-offs have to be carefully weighed to achieve performance and energy
efficiency.

1.4. Key Contributions

In this dissertation, we explore different approaches for CI generation,
focusing on domain-specific acceleration. Figure 1.1 shows, on the top, a
high-level schema of the CI generation process; an application is analyzed
to identify CI candidates, and a subset of the best candidates is selected to
configure the SFU. The figure also shows, on the bottom, our key contri-
butions; we expand and improve the identification in contributions 1A, B
and C, and we provide alternatives to the candidate selection problem in
contributions 2A and B. The contributions are implemented within these
frameworks: FuSInG (Functionally Similar Instructions Generator), which
implements 1A and 2A; MInGLE (Merged Instructions Generator for Large
Efficiency), which implements 1B and 2B, and MInGLE+, which is MInGLE
expanded with 1C.

Introduction 7

Contribution 1A:
Identification of functionally equivalent custom instructions

Limiting ASIPs to application-specific acceleration makes them feasible
for only big-volume markets with high returns. Therefore, creating CIs that
target a whole domain is an economically viable solution. However, the
disparity among coding styles of different programs makes it difficult to
identify distinct code patterns that can be represented by the same CI across
applications.

We therefore propose an analysis at the basic block level, complemen-
tary to the identification of CI candidates, that identifies equivalent CIs
within the same program and across different programs. We use the Tay-
lor Expansion Diagram (TED) canonical representation to identify common
sections of code that can be accelerated by specialized hardware. As TEDs
are canonical, we can find not only structurally identical pieces of code,
but also functionally equivalent ones. Functional equivalence reveals if CIs
perform the same mathematical function, which cannot be deduced with
a DFG-based representation. We compare them to a straightforward tech-
nique of directed acyclic graph (DAG) isomorphism detection, which essen-
tially reveals whether graphs are similar in shape. We also introduce a new
Hybrid DAG/TED technique that combines the best of the traditional graph
isomorphism with TEDs. With any of the three techniques, we can iden-
tify CI candidates that are specific for either an application or a domain. We
find that, with the canonical representation, we can identify more sequences
across applications that are mapped to the same CI, thus achieving higher
speedups for smaller chip area than the traditionally used DAGs.

Contribution 1B:
Identification of partially similar custom instructions

Hardware reusability across applications is a critical factor to achieve
high and balanced speedups with CIs, yet if there are not enough equiva-
lences, CIs cannot be generalized for a domain. When we target larger code
sections to obtain higher performance this issue arises more frequently.

Consequently, we introduce a new canonical representation of CIs across
basic blocks, the Merging Diagram, to facilitate similarity detection and im-
prove the code coverage of our CIs. It builds upon the previous Hybrid
DAG/TEG representation to provide a more compact representation with
predication, spanning CIs across basic blocks. We also propose clustering-
based partial matching of code sequences to identify not only those CIs that
are functionally equivalent, but also those with partial similarities. Clus-
tered CIs are merged and we quantify their potential improvement of cove-

8 Introduction

ring more code while reducing the needed area for the CI implementation.
These techniques expand the opportunity for CIs with a limited area budget
inside simple processors to accelerate numerous applications from a domain,
improving the system’s energy efficiency.

Contribution 1C:
Identification of custom instruction fragments

We have observed that partially-similar domain-specific CIs outperform
application-specific ones when the area for implementation is over a given
threshold. However, at small areas, we have to rely on application-specific
CIs, since the potential gains of merging two CIs do not compensate for the
involved overhead.

To solve this, we extend CI merging with an analysis step that detects
parts of CIs that can use the existing merged clusters with minimal extra
overhead. We call those parts of CIs ‘fragments’, since they do not include
the full original CI as in the partially similar CIs, but only sections of it.
With CI fragments we can improve reutilization of hardware at the most
limited areas, because we partially reuse an already merged CI cluster, with
minimum additional overhead.

Contribution 2A:
Domain-specific heuristic-based selection

At the last step of any CI generation process, the final selection tries
to choose a subset of CIs that fits within the available area. The objective
of getting an optimal CI group is an NP-complete problem, and thus there
exists no known fast solution for it. Also, the CI design space of a whole
application domain is big enough to make the task computationally challen-
ging. Typically, approximate algorithms or heuristics are used to solve the
selection fast. The main drawback of existing methods is that they target
speedup for individual applications. Therefore, their suitability for a whole
domain is rather limited, since the gains must be balanced to be fair across
applications.

To bridge this gap, we propose four scoring heuristics to quickly and
effectively cull the huge CI design space. These heuristics rank potential CIs
under the premise that we aim to distribute fairly the obtained gains across
applications. We evaluate them and give insight about their suitability for
domain-specific acceleration.

Introduction 9

Contribution 2B:
Domain-specific energy-efficient selection

Having proved that the CI selection is appropriate for a domain of appli-
cations, we go a step further by introducing energy efficiency into the equa-
tion. Speedup is an excellent metric to select a set of CIs that accelerate the
applications, hence it has been extensively used in the literature. However,
for devices with limited power budgets, focusing only on performance can
be detrimental for the design, since we may be introducing power-hungry
CIs as well.

This last contribution proposes a selection mechanism based on linear
programming that, with a novel objective function, balances speedup and
energy consumption to fulfill the goal of an energy-efficient design with
good performance. We then solve the problem of choosing an energy-
efficient set of CIs to fit in a limited area while accelerating a domain har-
moniously.

1.5. Key Results

We summarize here the key results obtained with the frameworks that
implement the contributions: FuSInG, MInGLE andMInGLE+.

FuSInG

We combine the techniques for the identification of functional equi-
valences and the scoring heuristics in our automated framework FuSInG,
which also estimates the performance and area of new CI designs. With
the framework and a set of media benchmarks, we explore the trade-offs
between application-specific and domain-specific hardware specialization.
Results expose the following insights:

TED and Hybrid DAG/TED representations identify more hardware
acceleration opportunities across applications that are mapped to the
same CI, which results in higher speedups for lower area than the
traditionally used DAGs.

While using only application-specific CIs results in the highest possi-
ble speedups at unbounded core areas, it is ineffective at small areas.
Instead, including domain-specific CIs in the configuration produces
the highest possible speedup at small, more realistic core areas, which
underlines the importance of identifying CIs that can be shared across
applications.

10 Introduction

New applications inside a domain can also benefit from CIs already
designed for that domain. This suggests that processors with domain-
specific functional units can extend their lifetime, making specializa-
tion more generally applicable.

MInGLE

Partial matching of Merging Diagrams, which represent code across ba-
sic blocks, expands the acceleration opportunities for domain-specific CIs
with a limited area budget, improving the system’s energy efficiency. We
implement these techniques in our automated framework MInGLE, and we
evaluate themwith applications from the media domain on a Virtex 7 FPGA.
We obtain the following key results:

CIs that cover code beyond the basic block level expand the accelera-
tion opportunities, achieving a maximum average speedup of 1.98×
and an energy-delay product (EDP) improvement of 3.35×, a signifi-
cant gain over CIs within a single basic block (speedup of 1.48× and
EDP improvement of 1.67×).

Partial matching and merging of CIs is crucial for achieving larger
speedup and EDP improvement for a limited hardware area. For ins-
tance, for 1.8% of the FPGA area, the average EDP improvement
of partial matching reaches 3.04×, higher than a exact matching CI
configuration (2.53×).

MInGLE+

We extend the analysis inMInGLE+ to detect fragments of CIs that can
use the existing merged clusters with minimal area overhead. These are the
outcomes of this extension:

CI fragments increase the sharing of the circuit components on an
SFU at a better rate than partial matching, which results in more im-
plementation area available. This means that we achieve a particular
energy efficiency at considerably reduced hardware area.

CI fragments are key to get high performance and energy efficiency
at the smallest areas. For example, for 1% of the FPGA area, CIs
with fragments achieve, on average, a speedup of 2× and an EDP
improvement of 3.6×, significantly higher than results for partially
matched CIs (speedup of 1.6× and EDP improvement of 3.6×)

Introduction 11

1.6. Publications

The above contributions and results are gathered in several international
journals and conference proceedings.

Contributions 1A and 2A, with focus on the identification and selection
of functionally equivalent CIs for an application domain, were published in:

C. González-Álvarez, J. B. Sartor, C. Álvarez, D. Jiménez-González,
and L. Eeckhout. “Accelerating an application domain with specia-
lized functional units”. ACM Transactions on Architecture and Code
Optimization (TACO), Vol 10, No 4, January 2014.

Contributions 1B and 2B, that go a step further identifying and selecting
domain-specific partially-similar energy-efficient CIs, were published in:

C. González-Álvarez, J. B. Sartor, C. Álvarez, D. Jiménez-González,
and L. Eeckhout. “Automatic Design of Domain-Specific Instructions
for Low-Power Processors”. Proceedings of the 26th IEEE Interna-
tional Conference on Application-specific Systems, Architectures and
Processors (ASAP), 2015. Best student paper award.

Contribution 1C, that extends previous contributions to allowmaximum
efficiency at small hardware areas, will be published in:

C. González-Álvarez, J. B. Sartor, C. Álvarez, D. Jiménez-González,
and L. Eeckhout. “MInGLE: An Efficient Framework for Domain
Acceleration using Low-Power Specialized Functional Units”. ACM
Transactions on Architecture and Code Optimization (TACO), 2015.
Under review.

Other research activities

In addition to the publications above, we list here other research ac-
tivities that are not included in this dissertation. These include studies of
automatic parallelization for heterogeneous multicores, as well as the inte-
gration of automatically generated accelerators in multicore systems, using
the OSCAR source-to-source compiler and runtime. We refer to the original
articles for more information:

C. González-Álvarez, Y. Kanehagi, K. Takemoto, Y. Kishimoto, K.
Muto, H. Mikami, A. Hayashi, K. Kimura, H. Kasahara. “Automatic
parallelization with OSCAR API Analyzer: a cross-platform perfor-
mance evaluation”. IPSJ SIG Notes, Dec 2012. Information Processing
Society of Japan (IPSJ).

12 Introduction

C. González-Álvarez, H. Ishikawa, A. Hayashi, D. Jiménez-González,
C. Álvarez, K. Kimura and H. Kasahara. “Automatic design explo-
ration framework for multicores with reconfigurable accelerators”.
7th HiPEAC Workshop on Reconfigurable Computing (WRC 2013).

K. Kimura, C. González-Álvarez, A. Hayashi, H. Mikami, M. Shi-
maoka, J. Shirako, H. Kasahara, “OSCAR API v2.1: Extensions for an
advanced accelerator control scheme to a low-power multicore API”,
17thWorkshop on Compilers for Parallel Computing (CPC 2013), Lyon,
France, Jul. 2013.

1.7. Overview

This dissertation is organized as follows.
In Chapter 2, we present the necessary background information on hard-

ware acceleration. We give an overview of relevant design techniques and
accelerator architectures found in the literature, narrowing the research fo-
cus to processors with SFUs that execute CIs. We provide the design details
of an extended processor that we use in our experiments, and we close the
chapter with additional background information on code representations.

We present two key contributions in Chapter 3. First, we introduce the
techniques to identify equivalent CIs that can be fused together as a domain
CI. Then, we explain a set of heuristics developed for domain-specific selec-
tion. Lastly, we evaluate the presented methodologies for a concrete appli-
cation domain and present insights on the trade-offs between application-
specific and domain-specific acceleration.

In Chapter 4, we introduce two more key contributions. We firstly des-
cribe the methodology behind the identification of partially-similar CIs, and
secondly, the selection mechanism to choose the most energy efficient con-
figuration of CIs.

We introduce in Chapter 5 our last contribution. We explain the concept
of fragments of CIs, presenting the techniques to extract and implement
them, and we demonstrate their effectiveness comparing the results against
previously proposed methods.

Finally, we present the conclusions of this dissertation and discuss future
research directions in Chapter 6.

2
Background

2.1. Introduction

Hardware acceleration, in its many forms, has emerged as a solution to
the demands of high performance and low power in the embedded market.
A cost-effective approach is to extend a baseline processor with specialized
hardware and its ISA with new custom instructions. The hardware is aug-
mented with functional units, tightly-coupled to the processor’s datapath, or
coprocessors, inner or outer-core, working as a slave to the main processor.

In this chapter, we first review the state-of-the-art work on datapath
specialization, a problem that can be approached from different perspec-
tives. From the top-down point of view of creating hardware starting from
a set of target applications, we can consider automatically designed CIs,
also known as instruction set extensions. Generally, methods explore the
target applications’ bottlenecks and translate them to hardware under some
constraints. We review those exploration techniques in Section 2.2.1. From
another angle, a bottom-up process involves creating the configurable ac-
celerator design based on architectural expertise. The focus is on creating
specialized hardware, possibly configurable, in a less automated way, and
then mapping applications onto the hardware to accelerate them. Those ar-
chitectural proposals are surveyed in Section 2.2.2, with a specific focus on
tightly-coupled accelerators.

Independently from the perspective, hardware acceleration is a com-

14 Background

plex process that involves more than exploration and architectural design.
Once the design is ready, the actual circuit implementation is a necessary
step to prove the suitability of the accelerator. In the latest years, high level
synthesis (HLS) programs, such as Vivado HLS [62], have sped up the im-
plementation step. Different compilation phases are also involved, such as
instruction selection once the hardware is created. We do not cover that step
in this dissertation, assuming that we can annotate code to substitute lines
of code by the accelerating CI. However, we discuss in Sections 2.3 and 2.4
relevant background information concerning other aspects of the experi-
mental methodology used in this work. Section 2.3 focuses on our hardware
platforms for domain-specific acceleration, and Section 2.4 presents infor-
mation about the compiler’s intermediate representations (IRs) and other
coding models that we consider important in this dissertation.

2.2. Datapath Specialization: State-of-the-Art

2.2.1. Custom Instruction Design

There are many techniques for CI design from the ISA extension pers-
pective that target different objectives and architectures. We provide here a
comprehensive survey of the evolution of the field through the most impor-
tant works found in the literature.

The first work on the topic [38] proposes partitioning the main problem
of instruction generation into regularity extraction and template matching,
which we have previously introduced as the generation of CIs, and the subs-
titution of generic code by CIs. They do not provide any implementation of
their ideas, neither in hardware nor in simulation, but quantitatively es-
timate the gains depending on the instruction types. In the first descrip-
tion [47] of CI operation types MISO (Multiple Input Single Output) and
MIMO (Multiple Input Multiple Output), the authors discuss architectural
constraints, such as register ports, in their identification of new instructions
within the VLIW compiler Trimaran. Later work [64, 65] formally establi-
shed the design analysis using Data Flow Graphs (DFG), and the importance
of preserving graph convexity. The research focus on CI design shifted to
the design process problem and clearly separates identification and selec-
tion phases.

Reducing the algorithmic complexity of the design methods is a priority
to make the process tractable. Some works rely on heuristics [19] to pre-
dict a CI’s gain as a function of the instruction’s frequency of execution and
latency, and on dynamic programming to optimize area usage. In our contri-
bution 2A (Domain-specific heuristic-based selection), we propose the adap-

Chapter 2 15

tation of the selection methods for a domain, also focusing in performance
improvement. Pipelining techniques [53] allow CIs with more inputs and
outputs than ports in the register file. A later work by the same authors [52]
couple the identification and selection phases, which results in relaxing the
constraints and opens up the possibility of approximate techniques and ge-
netic algorithms that are computationally less expensive. Their CIs have
any number of outputs, and are evaluated with a software latency model
using the hardware measurements of CMOS operators. In this dissertation,
we also consider unlimited number of inputs and outputs, although they
are limited by architectural constraints due to the connections to memory.
Others [60] assume that the core processor must be a RISC, which implies
a limited number of inputs and outputs. This prunes the results in order to
minimize the number of registers that the CIs use.

A different work for the application-specific embedded market [11] as-
sumes additional storage inside an ARM-based ASIP that allows direct me-
mory access (DMA) for some arrays. They select CIs with a merit function
based on a latency estimation of memory accesses. In their experiments
with decoder, filter and encryption applications the CIs are simulated in
Simplescalar. In contrast, our work assumes that all the memory transfers
are done through the main processor’s register file. Therefore, memory la-
tency is not a metric that we need to take into account in our CI design
process.

Breaking with the application-specific CI design trends, the generation
of domain-specific CIs [18] involves a pattern-matching approach on the
data-flow graph using heuristics. They define guide functions for a greedy
search that prune the exploration space, using the criticality of the data-
path, latency and area as metrics. Most notably, they combine instruction
candidates to generalize the accelerators for a simulated VLIW architecture
within Trimaran. Alternatively, other authors [5] apply a predefined set of
rules, in a specific order, to obtain a DAG representation of code functiona-
lity instead of focusing on the structure of CI subgraphs, which is related to
the techniques we see in this dissertation. In our contribution 1A (Identi-
fication of functionally equivalent custom instructions), we detect domain-
specific CIs using a canonical representation to find functional similarities,
which we prove more effective than graph matching. Then, with contri-
butions 1B (Identification of partially similar custom instructions) and 1C
(Identification of custom instruction fragments) we target CIs generalized
for the domain that cover code across basic blocks.

Another work integrated in Trimaran proposes ASIP extensions for mul-
timedia and cryptography applications based on identification of maximal
convex subgraphs within a basic block [6], could be adapted for domain-

16 Background

specific acceleration, since they group graphs that can be implemented with
the same hardware and estimate their gain to choose the most promising
one. The concept of maximal convex subgraph, or the maximum code cove-
rage that we can get in a basic block without violating any constraint, is fur-
ther studied [44]. We adapt the proposed CI identification algorithm based
on binary search for our domain-specific framework described in Chapter 3.

Other approaches to solve the CI design problem include applying in-
teger linear programming [7, 50] or constraint programming [46] at only
the CI identification, or at any of the CI design steps. In our contribution
2B (Domain-specific energy-efficient selection) we use linear programming
methods. Novelly, we define an objective function that optimizes for both
performance and energy.

2.2.2. Datapath Accelerators

A common accelerator classification [45] categorizes architectures ac-
cording to their size and proximity to the CPU. On one hand, loosely-
coupled systems, or coprocessors, accelerate coarse-grained tasks with
low interaction with the rest of the program, and imply a manual approach
to hardware/software partitioning. An example of such a loosely-coupled
system is GARP [35], in which a MIPS processor invokes special instruc-
tions that run on a custom coprocessor, outside the main core. On the other
hand, tightly-coupled systems, or specialized functional units (SFUs),
accelerate finer-grained tasks and interact directly with the processor flow.
Their programming approach is more automated and targets a wider range
of applications. The target architecture in this dissertation falls in the lat-
ter category, as it executes the CIs on an SFU that is tightly integrated in
the datapath of an in-order general-purpose processor. Benefits of such a
design include a system that maintains precise interrupts, the reduction of
instructions in the execution pipeline of the processor core, and the incre-
ment of operational and data-level parallelism in the SFU. Those benefits
have been studied in the literature, and there are numerous works that im-
plement tightly-coupled accelerating systems.

We find the first proposals of customizable processors with tightly-cou-
pled accelerators [16, 54, 55] at the end of the 20th century. PRISC [55] is a
RISC processor extended with a programmable functional unit. In this ar-
chitecture, the specialized unit is placed as an additional functional unit in
the RISC pipeline and performs combinatorial operations using the proces-
sor register file for data transfers. The hardware is responsible for updating
the configuration of the programmable unit when a CI requests it. CIs are
implemented using a preamble of the RISC instruction format. OneChip [16,

Chapter 2 17

54] also proposes an integrated reconfigurable architecture on a MIPS-like
processor. It extends the PRISC concept to allow pipelining in the pro-
grammable functional unit. The first OneChip version [54] is implemented
on a prototyping board to test the feasibility of the design. A later work [16]
extends OneChip as a RISC superscalar processor allowing dynamic sche-
duling and reconfiguration, and it is simulated. Chimaera [63] is another
example of a tightly-coupled reconfigurable unit that extends a superscalar
processor. It is able to perform 9-input 1-output integer operations with the
support of a compilation chain that identifies groups of instructions that
can run in their reconfigurable functional unit. They provide also subword-
parallelism as an attempt to introduce data-level parallelism to their system.

Tensilica’s Xtensa processor [27], based on a single-issue RISC and from
the late 90’s, fills the lack of commercial customizable processors. Designers
could choose different configurations adding new instructions, functional
units, register files, peripherals and memory interfaces, but any customiza-
tion had to be done before manufacturing. Xtensa is used as the implemen-
tation base for other customizable architectures, such as Stretch’s software-
configurable processor [26]. It combines a RISC core with an instruction-
set extension fabric (ISEF) that interchanges operands through the register
file. To program it, the compiler identifies functions that are annotated with
pragmas and generates the code to load and execute predefined bitstreams
for the ISEF. Nios II from Altera [1] is another example of a commercial
customizable processor. It is a soft processor that allows up to 256 cus-
tom instructions [2] and virtually unlimited hardware accelerators. While
custom instructions are integrated within the processor pipeline, hardware
accelerators work as coprocessors.

XiRisc [45] is a load/store architecture with a pipelined run-time confi-
gurable datapath called PiCoGa (Pipelined Configurable Gate Array). The
PiCoGa is integrated in the processor pipeline, and is connected to the re-
gister file, with the possibility of 4-input 2-output registers. The configu-
ration of the PiCoGa can be dynamically scheduled at run time, and some
configurations may be already stored inside to avoid configuration over-
head times. Another project with a tightly-coupled RISC-based processor
is CUSTARD [21]. It features a customizable multithreaded processor with
different parameterizations beyond CIs, such as the number of threads, the
threading type or the datapath bitwidth. They provide a cycle-accurate sim-
ulator to evaluate the application-specific optimizations applied with their
compiler CoSy.

DySER [28] accelerates applications by extracting computation that is
then run on an accelerating functional unit network, tightly coupled with
the processor of choice, such as OpenSPARC [10]. They aim to improve

18 Background

both performance and energy efficiency specializing for concrete applica-
tions, providing basic control flow inside the special units, and applying
vectorization.

Broadening the definition of tightly-coupled systems, Beret [29], al-
though not completely integrated in the datapath of an ARM processor,
presents an execution engine that is still inside the core. Their Trimaran-
derived toolchain extracts execution pipelines from small loop bodies based
on application trace analysis. They aim to accelerate wider code sections
than the above works, and focus on reducing energy consumption in general-
purpose computing.

Despite the fact that there exist CIs with memory support [31], the SFU
of our target architecture is connected to the processor’s register file to sim-
plify the design and to not increase energy consumption beyond the pro-
cessor’s baseline, as many other works also do [10, 21, 45, 54, 55]. In this
dissertation, we also do not consider runtime configuration issues [8, 9],
since the main problem we solve is centered on the CI design process for
an application domain. We do not consider other adaptable parts in the mi-
croarchitecture [21] except the SFUs. Instead of annotating the code to be
accelerated with pragmas [16, 26], we use, as other works do [10, 21, 54, 55,
63], a compilation chain that automatically identifies the CIs that run on the
SFU. In our case, this exploration is focused on accelerating an application
domain, while keeping the power consumption of the design low.

2.3. Hardware Setup: Domain Acceleration

In this section, we explain the details of the target architectures that we
use for our experiments in this dissertation. First, we describe the platform
for Chapter 3, base on an OpenSPARC processor. Then, we present an Intel
Atom-based architecture for domain acceleration in great detail.

2.3.1. Acceleration on OpenSPARC

OpenSPARC T1 [58] is a single-issue in-order pipelined RISC processor
implementing the Sparc v9 ISA. Our target architecture extends this proces-
sor with a configurable pipeline to execute CIs, such as in Figure 2.1.

Each CI runs inside one specialized execution (SE) pipeline of the SFU
and takes a variable number of cycles (c). The SFU is multi-cycle and reads
and writes data from and to the register file of the core. We do not con-
sider parallel execution of the SFU with the processor’s functional units
because it has been proven that the performance improvement is not signi-
ficant enough [16].

Chapter 2 19

D-Cache

Decode

Register
file

Figure 2.1: Target architecture. The specialized functional unit (SFU) is part of the
execution pipeline of an in-order processor core.

The register file that both the ALU and the SFU access consists of 32
64-bit registers with three read, two write and one transport ports. The
instruction encoding allows moving two input operands to the SFU with no
additional cost. Any extra inputs are sent in groups of three, with a cost of
one cycle per transfer, before the CI execution starts. When the instruction
ends, outputs are packed together in groups of two and moved back to the
register file, with a cost of one cycle per transfer.

2.3.2. Acceleration on Intel Atom

We have seen that the design of an ASIP involves augmenting a general-
purpose processor with instructions customized for a particular application.
However, if CIs are not frequently executed, the acceleration benefits will
not compensate the overall cost and energy consumption of adding new
hardware. Domain-specific acceleration increases the applicability of ASIPs,
as they can accelerate several applications that run on the same hardware
close in time. Therefore, in this section we present an accelerator model that
is reusable across a domain to increase its utilization, thereby improving
both performance and energy efficiency.

We focus on the embedded market, where both performance and energy
consumption are important factors. Thus, the baseline processor is in-order
and low-power. The accelerator, or Domain-Specific Functional Unit (DSFU),
is tightly coupled within the general-purpose processor pipeline. This would
be technically feasible with the last generation of FPGAs, connecting a pro-
cessor core to a reconfigurable array seamlessly [8]. We extend the basic ISA

20 Background

Input
registers

a

b
c
...

config

MUL

ADD ADDse
l

Output
registers

o1
enable

enable

...

Figure 2.2: Implementation of a merged CI that executes on a DSFU.

with CIs, such as in the traditional ASIP design. These instructions accele-
rate the programs by executing a bundle of predicated arithmetic operations
in the DSFU.

The rest of this section presents the specification of the DSFU design
and its integration in an Intel Atom processor’s pipeline.

2.3.2.1. DSFU Design

The DSFU processes CIs that execute intermittently at different points of
varied programs. We consider a loop body, made up of one or several basic
blocks, to be the basic portion of code that defines our CIs. They use few
inputs, not necessarily consecutive in memory, to produce few outputs. As
they access data through the processor’s register files, input and output data
is always within established limits. Typically, CIs are calculation intensive,
branch speculative. They exploit sub-word parallelism as SIMD instructions
do, also executing operations of different kinds in parallel (instruction-level
parallelism).

The direct benefit of a tightly-coupled, loop-body based DSFU is the
performance speedup expected from more parallelism. Additionally, we
can obtain a reduction of resource contention in different pipeline stages,
due to collapsing several instructions into just one, including branch ins-
tructions that may fall into expensive branch mispredictions, or a reduction
of instruction cache misses.

In the context of domain-specific acceleration, reusing hardware is cri-
tical for an efficient design. Of course, we can completely reuse CIs used
in different programs if they are computing exactly the same functionality.
However, in the case of unequal instructions, instead of maintaining sepa-
rate hardware for each one, they can share the common parts of the circuit,
taking up less hardware area. Thus, we introduce partial merges of CIs as in
Figure 2.2. Consider the polynomials F1 = a+b+c and F2 = a ∗b+c. They

Chapter 2 21

custom instruction 1

...

enable / select

Configuration manager

config

Output
registers

custom instruction N
enable / select

Figure 2.3: DSFU with a configuration manager to assist in the reprogramming of
the implemented CIs.

can be collapsed into the represented circuit, where a config signal activates
the non-common part of the circuit and selects the operands of the common
part. The config signal is encoded in the instruction.

Figure 2.3 shows the DSFU architecture template with several CIs that
share two arrays of input and output registers, private to the DSFU, that are
disjoint in order to overlap load and store operations. The CIs’ connections
to those registers are also controlled by the config signal. This architecture
template can be adapted to different configurations with the configuration
manager shown in the figure. Although we can still have a part of the design
fixed at design time, such as the size of the input and output registers, we
can reconfigure the CIs’ implementation area at boot-up and/or run time.

Thus, CIs executing on the DSFU and their connections to the input and
output registers are controlled by the config signal, encoded in the instruc-
tion. The configuration manager is connected to memory, where it can read
a new configuration with a different implementation of CIs and modify the
whole reconfigurable area (shadowed in the figure).

2.3.2.2. Base Processor Integration

The DSFU is integrated into an in-order processor pipeline and aug-
ments the processor’s functionality, neither replacing nor duplicating any
existing functional units. A DSFU reads data using the processor’s register
files, and writes data back to them, with the precondition of always writing
it back to memory. If the number of inputs exceeds the amount of the regis-
ter file’s outputs, the execution of the CI requires a pre/post execute stage
for extra data transfers. We count on the same data bandwidth as for other
processor instructions using the processor’s memory hierarchy.

2
2

B
ackgro

un
d

Instruction Fetch Instruction Decode Instruction Issue Data Access Execute Write Back

Branch
prediction

L1
Instruction cache

Instr.
TLB

Prefetch buffers

Microcode
sequencer

2-wide instruction
length decoder

XLAT/FL

XLAT/FL

Instruction
queues

Integer
Register

Files

FP/SIMD
Register

Files

DSFU inst

Memory Execution Cluster

Fault/
Retire

Integer
Execution
Cluster

FP/SIMD
Execution
Cluster

DSFU

Input
Registers

Output
Registers

...

L1 Data
Cache

L2 Cache

Reconfiguration
Manager

Fill + Write
Combining

Buffers

DSFU inst

Front End Cluster

Figure 2.4: Block diagram of a modified Intel Atom processor pipeline that includes a DSFU.

Chapter 2 23

We take the Intel Atom processor [33] as a concrete implementation
example for the DSFU integration. The Atom processor is in-order and low-
power, with one or two cores, each one running up to two threads. For sim-
plicity, we do not consider its simultaneous multithreading (SMT) features
at the moment. Although Atom processors implement the x86 instruction
set, some versions support the x86-64 instruction set as well, which we take
as the baseline ISA here.

Microarchitecture details

Figure 2.4 shows a diagram of an Atom processor extended with an em-
bedded DSFU. The pipeline stages are also depicted at the top of the Figure.
Concretely, the pipeline has sixteen stages: three for instruction fetch, three
for decoding, three for issue, three for data access, one for execution and
three for exception handling and write-back.

We modify the instruction decode stage of the baseline processor to sup-
port CIs. The lookup table for the translation of instructions (XLAT) is ex-
tended with the additional instructions needed for the DSFU.

The DSFU’s 16 128-bit input registers are directly connected for reading
from both the integer (64-bit) and SIMD/XMM (128-bit) register files. A load
from memory to an integer register (cache read) takes 1 or 3 cycles, while a
load to a XMM register takes 4 cycles. Depending on the situation, we will
read from one or another register file to minimize latency. The 32 64-bit
output registers are only connected to the integer register file, since a store
always takes 1 cycle, while a XMM store is set into 5 cycles.

The DSFU’s input and output registers operate at the same clock fre-
quency as the main processor. However, the reconfigurable part of the
DSFU where the CIs execute may operate at a different frequency than
the main processor, depending on the reconfigurable hardware technology.
Thus, there is a DSFU clock that is isochronous to the core clock; in other
words, DSFU’s period is a multiple of the core’s period (for instance, there
is a 1:4 ratio for an Atom core operating at 1.6 GHz and an FPGA set at
400 MHz). To keep the clocks synchronized, at the beginning of a DSFU
execution, the decoding stage sends a reset signal to the DSFU clock before
executing the requested CI.

The configuration manager, responsible for reprogramming the DSFU
CIs, is directly connected to main memory to load the configuration data.

ISA extensions

We extend the x86-64 base ISA with the instructions in Table 2.1, whose
encodings are compatible with those of the Atom processor. The first two

24 Background

Instruction Operands Latency Description

RF2DSFU_i dsfu_in, r 1 Moves 64-bit of data from an in-
teger register to a DSFU input
register.

RF2DSFU_x dsfu_in, x 1 Moves 128-bit of data from an
XMM register to a DSFU input
register.

DSFU2RF r, dsfu_out 1 Moves 64-bit of data from a
DSFU output register to an in-
teger register.

DSFU_exec config, i/r/x 4×C Resets DSFU internal clock and
starts execution of the CI deter-
mined by config. The second
operand may be used to trans-
fer data to a determined input
register.

DSFU_config m, i F(i) Reads i number of bytes from
m memory location and recon-
figures the CI implementation
space of the DSFU with that
configuration.

Table 2.1: Extensions to the base ISA to operate the DSFU. Conventions: i =
immediate data, r = integer register, x = 128 bit xmm register, dsfu_in = DSFU’s
input register, dsfu_out = DSFU’s output register, C = number of DSFU internal

cycles. Operands are determined in Intel syntax (destination, source).

instructions, RF2DSFU_i and RF2DSFU_x, move data from the register files
to the DSFU input registers. When we need a memory access of at least 128-
bit data whose address was recently calculated, it is better to use an XMM
register (4 cycles versus 3 × 2 cycles to load). In all other cases we prefer
to use the integer registers. The third instruction sends the data from the
output registers to the integer register file, ready for write back.

A single instruction DSFU_exec is added to execute CIs. The config sig-
nal that chooses the CI configuration is passed as the first operand, allowing
up to 256 different configurations. The second operand is data needed in

Chapter 2 25

0 1 2 3 4 5 6 7 8 9

clk core

decoder inst core RF2DSFU DSFUexec DSFU2RF inst core inst core

FU exec exec

regs move RF>Input Output>RF

DSFU exec

ready

reset

clk DSFU

Figure 2.5: Chronogram of a sequence of instructions executing on a pipeline with
an integrated DSFU.

the DSFU execution, which in the best case can save one cycle of a transfer
instruction. When we try to execute a non-configured CI, an exception is
triggered and the equivalent code in the non-extended ISA will be executed.
The latency is determined for a DSFU that runs 4× slower than the Atom
core. Therefore, the latency of the DSFU_exec instruction is the number of
internal cycles C that the CI takes in the DSFU, scaled to the core clock.

Finally, the DSFU_config instruction loads from the specified memory
address a whole new configuration of the specified size. The latency of
this instruction depends on the number of bytes to read and the memory
bandwidth.

Chronogram

Figure 2.5 shows an example of the execution of a CI, displayed as a
chronogram with different pipeline stages and signals involved.

We have two clocks: the core clock in the first row, and the DSFU clock
in the last one. Cycles in the upper part are counted as part of the core
clock. After the core clock signal, we show the instructions being decoded
(decoder), execution in normal functional units (FU), data moving between
register files and DSFU registers (regs move), execution on the DSFU (DSFU),
and the ready and reset signals. For simplicity, in this figure we assume that
the instruction decode stage takes 1 cycle, though in the Atom extended
with a DSFU it would take 3 cycles. Also, the gap between decoding and
execution would be wider in a real setting.

In cycle 1, the decoder processes a data transfer instruction that results
in a register move in cycle 2. In cycle 2, the instruction that starts the
DSFU execution is decoded, setting the reset signal until the end of the
cycle, which triggers a reset of the DSFU clock. In cycle 3, the execution of
the CI on the DSFU starts, while the decoder processes the instruction that
reads the DSFU output, and then stalls. At the end of the DSFU execution

26 Background

the ready signal is set, triggering the moves from the output registers to the
register file and resuming the stalled pipeline.

2.4. Software Setup: Intermediate Code Representa-
tions

In this section, we examine the most relevant intermediate represen-
tations (IR) for this dissertation. These code representations transform an
application’s high-level code to an abstract description, in which significant
features are highlighted. First, we discuss in Section 2.4.1 those models that
represent the code’s structure and flow, and we then review the canonical
representation alternatives in Section 2.4.2.

2.4.1. Structural Representations

A data flow graph (DFG) is a well-known and widely-used representa-
tion that exposes the data dependences of operations within a basic block.
It is built as a directed acyclic graph (DAG) G(V ,E), with V the nodes that
represent the operations, and E the edges that stand for the data depen-
dencies between nodes. Most of the CI design algorithms in Section 2.2.1
start from this representation to solve the candidate identification problem.
The main advantage of this representation is that we can expose structural
constraints naturally as the DAG imposes a strict topological order to the
operations. In CI design, not all the operations of a basic block are included
to be accelerated; the most common case is avoiding memory and branch
operations. The resulting subgraph G′ after suppressing those invalid nodes
may contain a structural hazard that makes instruction scheduling infeasi-
ble. Therefore, CI design algorithms have to ensure that G′ is convex; that
is, there does not exist any path in G from a node u ∈ G′ to another node
v ∈ G′ which involves a node w ! G′ .

Although DFGs have proved their validity for application-specific CI
design, we question the use of DAG-formed basic blocks for domain-specific
CI generation in Chapter 3.

2.4.1.1. IR and SelectionDAG in LLVM

LLVM [42] is our compiler of choice in the frameworks we develop.
Thus, we briefly describe here two representations within LLVM that are
relevant for our tools, LLVM-IR and the SelectionDAG.

LLVM-IR, produced after the first compiler’s frontend passes is the com-
mon code representation used for analysis and optimizations in LLVM. It is

Chapter 2 27

based on Static Single Assignment (SSA) and it is microarchitecture inde-
pendent, though still including type safety and low-level operations. The
IR is distinctly used in three forms: as in-memory C++ classes, as on-disk
bitcode, and as assembly-like human-readable language. The assembly is
a strongly typed RISC instruction set which abstracts away details of the
target, for instance, using unlimited virtual registers. Basic block limits are
clearly marked, as well as control flow through SSA’s φ (Phi) functions. If
auto-vectorization is activated in the frontend, the IR is also able to repre-
sent vector operations. This last form is the most commonly used one, and
we work with it at several points of our frameworks: for profiling in FuSInG
(Chapter 3), and for both profiling and HLS in MInGLE (Chapters 4 and 5).

The SelectionDAG is a code abstraction found in several backend phases
of LLVM. It passes through different transformations, starting from an IR-
close form to a more final microarchitecture specific representation. This
representation facilitates the compiler’s instruction selection phase that uses
pattern matching techniques, as well as low-level target-independent opti-
mizations. The SelectionDAG is a directed acyclic graph whose nodes are
operation codes – the operation performed and the operands involved. It
has two different kinds of edges: those to represent data flow dependencies,
and those to represent control flow ones. We isolate and work on the DFG
of the SelectionDAG of individual basic blocks just before the instruction
selection phase in LLVM’s backend. We use it for the DFG Explorer step
that extracts the CI candidates in the FuSInG framework of Chapter 3.

2.4.2. Canonical Diagrams

A canonical representation presents a unique description for a given
mathematical object, such as a graph, as a mathematical expression. With
a canonical form we can test, for instance, if two graphs are equal. This is
different to the graph isomorphism commonly applied to DFGs where we
check the structural equivalence of two graphs. In the case of canonical
representations, we aim to test the semantic equality of the mathematical
expressions that the graphs represent, or in other words, if they are functio-
nally equivalent.

Although there is vast work in graph-based canonical representations,
here we focus on the relevant ones for this dissertation: Binary Decision
Diagrams (BDDs), that represent binary functions, in Section 2.4.2.1, and
Taylor Expansion Diagrams (TEDs), that can express work-level functions,
in Section 2.4.2.2.

28 Background

Edge representation: out-edge 0 (then) out-edge 1 (else)

x1

x2 x2

x3 x3 x3 x3

0 1 0 1 0 1 0 1

x1

x2 x2

x3 x3 x3 x3

10

x1

x2 x2

x3 x3 x3

10

x1

x2 x2

x3

10

x1

x2

x3

10
Recursive

Shannon expansion Collapse leaf nodes Remove redundant
tests

Isomorphic
subgraphs

Remove
redundant

ROBDD

0 0 0 0 0 111

Figure 2.6: Example of a reduced and ordered BDD construction for Boolean
functions f1 = (x1 ∧ x3)∨ (x2 ∧ x3) and f2 = (x1 ∨ x2)∧ x3, with variable order

[x1,x2,x3].

2.4.2.1. Binary Decision Diagrams

A binary decision diagram (BDD) [13] represents a binary function as
a rooted graph, based on a recursive Shannon decomposition, which com-
bined with a set of reduction rules, makes the BDD minimal and canonical
for a given ordering of variables. BDDs have been applied in formal verifi-
cation problems, such as correctness checking of circuit implementations.

BDDs represent Boolean functions that determine Boolean values from
logical calculations on Boolean inputs. The representation is a rooted DAG
with several decision and terminal nodes, all connected by decision edges.
The initial node stands for the top Boolean formula. Non-terminal, decision,
or internal nodes are labeled as a Boolean variable w and have one out-edge
0 (then) and one out-edge 1 (else). Each non-terminal node represents the
Boolean function corresponding to its 1 edge if w evaluates to 1, or to its 0
edge if w evaluates to 0, building up the top formula down to the terminals.
Terminal nodes are labeled as 0 or 1, representing the Boolean functions 0
and 1. Figure 2.6 shows and example of BDD construction, explained in
detail later. The rightmost graph is the final BDD of the Boolean function
f1 = (x1∧x3)∨(x2∧x3). Each node represents one of the Boolean variables
⟨x1,x2,x3⟩, and in this graphical representation, edges labeled with 0 are
dashed and with 1 are solid.

The if-then-else normal form (INF) represents a Boolean function using
the if-then-else (ITE) operator. For inputs {x,y,z}, ITE computes if x then y
else z, which is equivalent to:

ITE(x,y,z) = (x∧ y)∨ (x̄∧ z), (2.1)

with variable x evaluating to 1 or to 0.
Multivariate boolean functions can be expressed by recursive decompo-

Chapter 2 29

sition as a Shannon expansion using the ITE operator:

f (x0, . . . ,xn) = ITE(xn, f1(x0, . . . ,xn−1), f0(x0, . . . ,xn−1). (2.2)

Thus, the BDD is built applying the ITE logical function at each node,
operating in time proportional to the size of the resulting function graph.
A BDD composed of INF expressions, with all equal ITE nodes shared,
and with variables appearing in the same order and at most once in any
path from root to leaf, is called a reduced ordered binary decision diagram
(ROBDD). Such BDDs are canonical since each derivation of a particular
Boolean function leads to the same representation.

The variables in the ROBDD must have a specific order, which is used
to build the diagram recursively. Therefore, in ordered BDDs different vari-
ables appear in the same order from root to leaf in each expression path. For
an ordered list of variables L = [v1, . . . , vn] without duplicates, a BDD B has
an ordering [v1, . . . , vn] if all the variable labels of B occur in [v1, . . . , vn],
and if vj follows vi on a path in B, then j > i . The orderings of two BDDs B
and B′ are compatible if there are no variables ⟨v,w⟩ such that v is before w
in the ordering for B, and w is before v in the ordering for B′ . The example
of Figure 2.6 follows the variable ordering [x1,x2,x3] to apply the required
recursive Shannon expansion in step 1.

To reach a fully reduced BDD, reduction operations are applied to sim-
plify the diagram to its maximum. First, duplicated terminals are removed;
if there is more than one 0 terminal node, all edges pointing to them are
redirected to just one 0 node. The same applies to 1 terminal nodes. Then,
redundant tests are also removed; if the two outgoing edges of a node v
point to the same node w, v is removed and its incoming edges are redi-
rected to w. And finally, duplicated non-terminals are removed as well; if
two different nodes v and w are the roots of identical sub-BDDs, eliminate
v and redirect its incoming edges to w. In the example of Figure 2.6, du-
plicated terminals are removed and collapsed in step 2. Then, a redundant
test with variable x3 is also removed in step 3, while step 4 detects and col-
lapses all the identical x3 sub-BDDs. Finally, the reduced and ordered BDD
is obtained in the last step by removing redundant tests once again.

The reduced and ordered BDD is a canonical form of a logic func-
tion. This means that two functions with compatible variable orderings
are equivalent if the ROBDDs for each function are isomorphic. For ins-
tance, the ROBDD of Figure 2.6 represents not only Boolean function f1 =
(x1∧x3)∨(x2∧x3), but also the function f2 = (x1∨x2)∧x3. This property
makes it useful in functional equivalence checking of Boolean functions, and
we make use of this feature in the MInGLE framework (Chapters 4 and 5).

30 Background

x

0 2

First variable
expansion

-y^2
-1

Reduction

x

2

y

-2

Normalization

x

y

ONE

Second variable
expansion

x

0 2y

0 -20
v

f(0) f'(0) f''(0)/2

Node
decomposition
representation

TED3.2.1.

Figure 2.7: Example of a TED construction for the polynomials f1 = (x + y)(x − y)
and f2 = x2 − y2, with variable order [x,y].

2.4.2.2. Taylor Expansion Diagrams

A Taylor Expansion Diagram (TED) [17] is a canonical, graph-based
representation like BDDs, but whose decomposition is non-binary. Such a
representation raises the level of abstraction to allow word-level algebraic
symbols with lower memory requirements than binary-based representa-
tions.

TEDs are based on the Taylor series expansion which, for a multivariate
algebraic expression f (x,y, . . .), is represented as follows:

f (x,y, . . .) = f (0, y, z, . . .)+xf ′(0, y, z, . . .)+
1

2
x2f ′′(0, y, z, . . .)+ . . . , (2.3)

where the origin is set to x = 0 and with f ′(x = 0) and f ′′(x = 0) as the
successive derivatives of f (x = 0). The individual terms of the expression
are then decomposed with respect to the remaining variables on which they
depend (y, . . . , etc.),

This decomposition, applied recursively for each algebraic function de-
rived, is stored in a directed acyclic graph, the Taylor Expansion Diagram.
A TED is composed of a root ρ, a set of nodes V , a set of edges E, and ter-
minals T . The root represents the multivariate polynomial φ that the TED
expresses. Each node v ∈ V has an index that identifies an input variable
and it is related to a specific decomposing order. For a node v, the function it
represents is determined by the Taylor series expansion of all variables with
indexes lower than index(v). An edge e is directed from v to the derivative
of the function with respect to the variable index(v). Graphically, there
are three different types of edges: dashed for the constant Taylor expansion,
plain lined for the expansion of the first derivative, and double-lined for the
expansion of the second derivative. The function computed at the terminals
is an integer constant. On the leftmost diagram of Figure 2.7 we can find a
key of that representation. In step 1 and 2 of the same figure, we show the
Taylor expansions of polynomial f1 = (x+y)(x−y)with respect to variables
x and y.

Chapter 2 31

The order in which the variables are expanded affects the size and shape
of the final canonical representation. Following certain rules to find an ini-
tial variable ordering [25] to optimize the size of TEDs:

1. Variables that never appear in the same monomial on a single-output
TED can be treated as outputs of a temporary multiple output TED.

2. Variables that appear in most terms of the monomial with the same
exponent should be placed at the top of the TED.

3. Variables that appear in most terms of the monomial and have several
exponents should be placed right after any variable identified in rule
1.

4. In the case of TEDs with multiple outputs: we place the node in rule 2
at the bottom instead of the top, and we put the node in rule 3 before
instead of after.

A TED is reduced if it contains no redundant nodes and has no distinct
nodes v and v′ , such that the subgraphs rooted at v and v′ are isomorphic.
A node in a TED is redundant if all of its non-0 edges are connected to
terminal 0. We can reduce redundant nodes by removing them and merging
isomorphic subgraphs. Figure 2.7 shows, in step 3, the reduction of a TED
with redundant nodes and edges removed.

The normalization of a TED consists of propagating the weights at the
terminal edges, or the common factor of all k edges from node v to the ter-
minal node, and storing them as edge weights in the upper edges, enabling
the extraction of common subTEDs. By applying this to all terminal nodes,
only the terminal node 1, also represented as ONE, remains in the graph.
Last step of Figure 2.7 shows a reduced and normalized TED.

For any multivariate polynomial phi with integer coefficients, there is
a unique ordered, reduced and normalized TED denoting phi , that is, an
ordered, reduced and normalized TED is minimal and canonical.

TEDs can also represent operators for Boolean logic:

not : x′ = (1− x)

and : x∧ y = x · y

or : x∨ y = x + y − x · y

xor : x⊕ y = x + y − 2 · x · y

32 Background

with x and y as Boolean variables represented by binary variables. The
resulting functions are 0,1 integer functions.

TEDs are limited to represent only those functions that have a finite
Taylor expansion, therefore functions with an infinite Taylor series such as
ax (a is a constant) are excluded from the representation. Also, TEDs cannot
represent relational operators (such as comparators, A ≥ B) in symbolic
form, since relations are characterized by discontinuities over their domain
and are not differentiable. For the same reason, modular arithmetic is also
restricted.

TEDs have been commonly used for circuit verification. We use the re-
presentation for another purpose in this dissertation: to find common parts
of the code that cannot be found with pattern matching techniques using
DAGs. For instance, the example TED from Figure 2.7 represents two diffe-
rent polynomials that perform the same functionality: f1 = (x + y)(x − y)
and f2 = x2 − y2. These ideas are further developed in Chapters 3 to 5.

3
Functionally Equivalent

Domain-Specific Instructions

3.1. Introduction

In the introduction of this dissertation, hardware specialization was
presented as a promising paradigm to improve performance and energy-
efficiency in the dark silicon times. We discussed how an application-
specific processor, while costly to manufacture, is limited to deliver high
performance for a single application. We considered the alternative of cus-
tomized processors that target an entire application domain, which may
deliver better overall system performance when different applications run
on the device, and may be more economically viable by targeting a larger
market.

In this chapter, we focus on designing CIs that extend the ISA of a base
architecture and accelerate sequences of operations in different applications.
We explore the design space of CIs that are implemented in an SFU in hard-
ware, from those designed for a particular application versus those target-
ing many applications within a domain. With this in mind, we introduce a
new technique to extract common sequences of computations from several
applications within a domain, which become CIs. We use the canonical re-
presentation TED, traditionally used in the areas of compiler optimization
and design verification, to identify common computations. We compare the

34 Chapter 3

effectiveness of DAG, TED, and a Hybrid technique at finding common code
sequences to target for acceleration in hardware. Our study shows that a
canonical representation is key to identifying sequences that are mapped to
the same CI across applications. We also evaluate four new scoring heuris-
tics that prune the huge search space of the potential CIs without a detailed
evaluation, selecting those that maximize the speedup of our application
domain.

We build the exploration framework FuSInG (Functionally Similar Ins-
tructions Generator) to estimate the speedup of new CIs, across the spec-
trum of application-specific and domain-specific acceleration. We use 9 me-
dia benchmarks, and extend the LLVM compiler framework to identify code
sequences amenable for acceleration. We extract sets of reusable CIs, both
within and across benchmarks, which we subsequently analyze and rank
using our scoring heuristics. We then use the Xilinx design software to syn-
thesize a hardware implementation of a potential CI. Given an instruction’s
hardware datapath, we use estimation models to approximate its core area
and number of cycles, and thus speedup. We show that, while DAG, TED
and Hybrid perform similarly when finding CIs for a particular application,
using the TED and Hybrid techniques to identify CIs across a domain leads
to much higher speedups than when using the DAG technique alone. Our
analysis reveals that when the SFU occupies a small, realistic core area, it
obtains the highest speedups when including both CIs obtained across all
applications in a domain and some specific to one application. We study
a few machine design points in detail: given a particular area, we present
the characteristics of the SFU that obtains the highest speedup. Finally, we
study how well CIs identified for a set of benchmarks perform for other,
previously unseen workloads.

This chapter is organized as follows. Section 3.2 sets the context and
main challenges. Section 3.3 gives a high-level description of the develo-
ped framework, whose details are elaborated in Sections 3.4 to 3.7. The
experimental setup is explained in Section 3.8 and the results presented in
Section 3.9. We close this chapter with the summary in Section 3.10.

3.2. Context

We assume that the CIs execute on an SFU that is tightly integrated
within the datapath of a general-purpose processor, as presented in Chap-
ter 2, Section 2.3.1. Figure 2.1 shows a high-level diagram of such an archi-
tecture.

Previous research has used automated tools to identify repeated pat-
terns of instructions and propose them as extensions to the ISA. Initial de-

Functionally Equivalent Domain-Specific Instructions 35

velopments established the grounds for the field using exhaustive identi-
fication of patterns [6] and approximate techniques [52]. Other works [4,
18] have used pattern matching-based approaches on the data flow of pro-
grams, represented as directed acyclic graphs (DAG), to identify CIs across
a domain. However, pattern matching cannot always find similarities be-
tween sequences of code in order to map different functionality to the same
CI, inherently limiting specialized hardware opportunities.

Consequently, we explore the trade-off between application-specific ver-
sus domain-specific hardware specialization. Given a defined set of appli-
cations, our main objective is to design the hardware to maximize the plat-
form’s performance. We focus on maximizing speedup, or boosting system
performance and application execution time, given a particular core area
dedicated to the SFU. Exploring the application-specific versus domain-
specific specialization trade-off involves a number of challenges. For one,
we need a framework to identify code sequences within and across appli-
cations that are amenable to hardware acceleration. Finding common code
sequences across applications is particularly challenging because of the huge
search space, i.e., one needs to keep track of all code sequences of all applica-
tions to be able to find commonalities, and one needs to find the best way to
represent these code sequences to maximize the likelihood of finding com-
monalities both within and across applications. Further, to be able to quickly
explore the CI design space and keep exploration time reasonable, we need
heuristics to rank the effectiveness of potential specialized hardware with-
out relying on detailed evaluation of each possible CI. We have to use tools
to estimate the speedup an application would achieve when using a par-
ticular set of CIs, and optimize not only for speedup across the domain of
applications, but also for minimizing the SFU’s area. In order to perform this
study, we have built an accelerator exploration framework, which we des-
cribe next and which includes several novel contributions over prior work
to identify and rank potential CIs that accelerate computation.

3.3. FuSInG Framework

Figure 3.1 shows an outline of our CI selection and evaluation frame-
work FuSInG (Functionally Similar Instructions Generator), which we detail
in the following sections. We first analyze application code to identify po-
tential code sequences for CI design (Step 1). We then take steps to find com-
monalities among these identified code sequences, both within and across
applications (Step 2), and then evaluate which CIs are most effective using
newly proposed scoring heuristics (Step 3). Using these heuristics, we plug
our chosen CIs into a low-level model that estimates both the speedup and

3
6

C
h
apter

3

!"#$%&#'()*+,-./+0

1"#203.,45./+0#5*43.6,/07

8"#964,/3./5#36*65./+0

:"#';-*4-./+0

-))*/5-./+0#!

-))*/5-./+0#!

-))*/5-./+0#<

!"#$%&'&()*&+,

-../01(20$)&

3$4#15

6).42&

*(2(

-../01(20$)&

7021$*5

8#$"0/5&$"&

5951420$)

347:;<&

1()*0*(253

=/4325#5*&

:-<&1()*0*(253

=/4325#5*&

>?:&1()*0*(253
=()*0*(253&

0)&>?:&"$#%

=/4325#5*&@A7#0*&1()*0*(253

8#$"0/5&$"&

5951420$)

B()C0)D

!(..E3.510"01,

B()C0)D

!*$%(0)E3.510"01,

F.55*4.&()*

-#5(&$"

F;G

@(#*H(#5&

0%./5%5)2(20$)

E(#5(

E/(25)1A&1A1/53

@:I&2#()3"$#%(20$)

8#$"0/5&$"&

5951420$)

-../01(20$)

3$4#15

F.55*4.

5320%(20$)

:$%(0)E3.510"01&

31$#0)D

-..E3.510"01

31$#0)D

@A7#0*&1/4325#0)D

:-<&.(225#)&

%(21J0)D

>?:&.(225#)&

%(21J0)D

>?:&2#()3"$#%(20$)

=$%.0/5#&

"#$)25)*

IIKL&

0)25#.#525#

:;<&?9./$#5#

=/4325#5*&@A7#0*&1()*0*(253

!"!

!"#

!"$

#"#

#"!

#"$

#"%

$"!

$"#

%"#

%"!

MMM

MMM

Figure 3.1: Schematic overview of our CI selection and evaluation framework FuSInG.

Functionally Equivalent Domain-Specific Instructions 37

the area of each (Step 4), so we can evaluate the potential of new computer
designs with hardware acceleration.

3.4. Identification of CI Candidates with DFG Explo-
ration

Step 1 of Figure 3.1 shows how we identify code sequences amenable
for acceleration in hardware. We use the compiler (label 1.1 in the figure) to
transform the source code of the application into its IR to expose the DFG
and CFG of the program. We use the SelectionDAG representation discussed
in Section 2.4.1.1, which is close to the assembly language, to find sequences
of code that could be turned into specific CIs in hardware. Because identi-
fying sequences of code to accelerate could blow up to a huge state space
search, we apply certain constraints to lower the space exploration.

Static program analysis, implemented in the DFG Explorer (label 1.3),
identifies a list of candidates that could be new CIs. Each candidate must
be a maximal convex subgraph [6] of a DFG for a given basic block, that is,
the biggest disconnected subgraph of a basic block that preserves the conve-
xity constraint [65]. These subDFGs exclude invalid instructions that cannot
be executed in the SFU. In this chapter, we assume that the SFU executes
neither memory nor branch instructions to keep the unit highly integrated
in the processor’s pipeline. Instead, that kind of instructions are executed
in the core’s ALU, thus we mark them as invalid in the exploration step.
However, to support other kinds of acceleration hardware that target code
beyond the basic block level, and include memory instructions, we could
extend this step of the framework as well as Step 2, which clusters instruc-
tions using TEDs. Therefore, our exploration framework FuSInG was built
to be general and broad enough to study a variety of acceleration designs.

The DFG exploration is done with a fast implementation of the algo-
rithm presented by Li et al. [44] using binary structures. The algorithm per-
forms a binary search for each basic block in the application, first enumera-
ting the invalid instructions of the graphs, which turn into the cutting nodes
of the subtrees to be explored recursively in the search. The exploration
result is a list of candidate code sequences, represented as subDFGs, that
satisfy the criteria above in non-exponential asymptotic time complexity
(bounded by the number of invalid instructions, as they define the amount
of recursive calls).

In order to cut down on the number of candidates, we define a few
rules to limit subDFG candidates. Groups of instructions are selected to
preserve the consistency of scheduling, which means that all the inputs of

38 Chapter 3

the set are ready at issue time. In our exploration, we allow unlimited inputs
and outputs to the CI, because more complex CIs will potentially achieve a
higher speedup. We also limit the exploration space by only considering
executed parts of the code, using a previously-gathered execution profile of
the application (label 1.2 in Figure 3.1). At the end of Step 1, we have a list of
candidates that are then passed to the next step which clusters the potential
code sequences to help select CIs.

3.5. Instruction Clustering to Discover Equivalences

In Step 2 of Figure 3.1, we analyze the code sequences found in Step 1 in
order to group them to propose CIs that apply to several sequences of code.
This clustering step can be performed on code sequences identified from the
same application (targeting application-specific CIs), and/or sequences from
different applications (targeting domain-specific CIs). Clustering serves se-
veral functions: to enhance reusability, to minimize implementation area in
hardware, and to reduce the search space in the selection step.

In the following sections, we describe three methodologies for the clus-
tering: DAG, TED and Hybrid.

3.5.1. Clustering with DAG Isomorphism

The first technique clusters the code sequences using directed acyclic
graphs (DAGs). For each pair of subDFGs obtained in Step 1, we perform
a one-to-one isomorphism detection (label 2.1 in Figure 3.1). Those graphs
that are isomorphically exact are clustered under the same label, to be po-
tentially transformed into a single CI candidate.

Previous works [4, 18] approached the problem by starting from small
graphs, building them up to arrive at relatively large-sized accelerators —
a bottom-up approach. In our work, we employ a top-down approach and
start from maximal subgraphs extracted from a basic block, ideally covering
as large code sequences as possible, and exploiting as much instruction-level
parallelism as possible.

Relatively larger CIs are more likely to yield better overall performance,
but the identification of big patterns of functionally identical computation is
a complex problem. Consider the three examples of subDFGs in Figure 3.2,
identified in different benchmarks and their equivalent algebraic expres-
sions. Example 1 shows two portions of code of the aacenc application
from different basic blocks in their DAG representations. They differ in
the number and types of instructions they contain. Simple DAG pattern

Fun
ctio

n
ally

Eq
uivalen

t
D
o
m
ain

-Specific
In
structio

n
s

3
9

!"#$%&'() !"#$%&'(* !"#$%&'(+

!"#"$$%"&"'"("%)'*)+*)%
,"#"%)%)"+"("%)%)+)'"&"')+)%"

!"#"$$$%"("'*"&"-*"&".*"&"/
,"#"$%"("$'(-**"&"$."&"/*

0"#"$$$%"("'*"&"-*"&".*"&"/
1"#"%"("$$'(-*"("$."&"/**

!23"#"$%"&"'*"&"%
!2+"#"'"&"-
!24"#"."("3

,23"#"$%")"+"*"&"'
,2+"#"'"&"-
,24"#"."("3

!""56'789":;9<;:";%=6>:<8>"

8?"$!@",*"6A"%#BC

$B@"+'@"(+'&+*

+'C"$B@"+@"B*

(+'&+C"$+@"(+@"B*

!

" "

DEF

++

(3

!

#" $#"%#

&

#

!

" "

& $#

$('&-&.&/@"3@"B*

!

$"%'
($-&.&/@"(3@"B*

"

!

'%)%* $((

+)%*,-(,-&. +/,-(,-&.

+&,-(,-&.

"

!

)%* $((

'

"

!

$((

'

)

*

"

!

$((

'

)

*

&

+",-#,-&. +&,-(,-&.
"

!

#

"

!

#& (

+',-(,-&. +&,-(,-&.'

"

(

'

"

& (

+',-(,-&. $(

)

(

"

!

'

")
$(#

! "

(!"

##

!

!

0

! !

!

(

(" ! "

') (

01(

!

" ') (

(

!!""56'789":;9<;:";%=6>:<8>"

8?"$+'*"6>G"$(+'&+*"6A"'#BC

!""56'789":;9<;:";%=H"

8?"$!@",@"0@"1*"6A"%#BC

!!""56'789":;9<;:";%=H"

8?"$('&-&.&/*"

6A"'#BC

!!!"-23"456-786987-8!:;-

5<-+'%)%*.-3/-'=&>

!#"-23"456-786987-8!:;

5<-+)%*.-3/-)=&>

#"-23"456-786987-8!:;-

5<-+*.-3/-*=&>

$%!"-23"456-786987-8!:;-

5<-+01(,-?1(.-

3/-!=&>

$%!!"-23"456-786987

8!:;-5<-+".-

3/-"=&>

&%!"-23"456-786987-8!:;-

5<-+01#,-?1#.-

3/-"=&>

&%!!"-23"456-786987

8!:;-5<-+'.-

3/-'=&>

'%!"-23"456-786987-

8!:3@795@-

5<-+01A,-?1A.-

3/-'=&>

!!"#$"
! "

'

)

%&#'()#"

!

" '

) *

!!"#$"
! "

'

)

*

%&#'(#$"

" ') *

!

*!"#+)#,#", *!"#+)#,#", ,%$)#"

!

*-./ *0-./ *00-./1(

I;'C">8G;"

G;J8K=8:<A<8>

8?"6>";%=9;::<8>#$2

34'#56!7"8#9&6#::7;$: 34'#56!7"8#9&6#::7;$: 34'#56!7"8#9&6#::7;$:

<=>8";$:,6?",7;$ <=>8";$:,6?",7;$ <=>8";$:,6?",7;$

@;6%!47A#)8<=> @;6%!47A#)8<=> @;6%!47A#)8<=>

"

!

'

)

*
$(

!
"

!
##

##

#

"

#

#

#

"

" #

#

"

#

#

#

#"

"

"

#

" # # "

##

/

01A01# ?1(?1A?1#

? 0 BC?

&.&/

DEF
DEF

Figure 3.2: Three examples of the usage of TEDs for instruction clustering. From top to bottom: DAGs, Algebraic expressions, TED
construction process and final normalized TEDs.

40 Chapter 3

matching would not cluster these two DAGs, although their algebraic func-
tions are equivalent. In Example 2, we extend the problem to a domain
of applications. We show DAGs of basic blocks from different benchmarks
(mpeg2dec, aacenc,mpeg2enc and face_detect) that perform the same com-
putation, but with different operators. The DAGs of two of them (mpeg2dec,
mpeg2enc) are isomorphically the same, therefore they could be clustered
with DAG pattern matching. However, DAG pattern matching is not able
to cluster all four of them. In Example 3 we show two DAGs of face_de-
tect and tmndec with multiple outputs. In this case, although we can have
a partial match with DAGs for outputs 2 and 3, the full match for identi-
cal computation cannot be found. Summarizing, in the three motivational
examples, pattern matching using DAGs is missing opportunities to find
commonalities among code sequences.

3.5.2. Clustering with TED isomorphism

Because of the limitations of using DAG pattern matching, we introduce
a second clustering technique based on a canonical representation of por-
tions of the application’s code. We gather insights from works on TEDs (see
Chapter 2, Section 2.4.2.2), adapting them here to find common parts of the
code that cannot be found with a simple pattern matching technique using
DAGs. We match code from applications using TEDs at compile time (at an
intermediate code level), and thus the shape of a TED does not influence the
final implementation of a CI at the circuit-level.

Although TEDs were described in Chapter 2 in great detail, we briefly
introduce the basics of the representation to understand how the TED tech-
nique works for cases such as the one depicted in the examples of Figure 3.2.
Starting with a multivariate algebraic expression, we recursively apply the
Taylor series expansion and we store this decomposition, into a directed
acyclic graph, the Taylor Expansion Diagram (label 2.2 in Figure 3.1). Each
node of the graph represents an input variable, and three different types of
edges can be linked to a node: constant Taylor expansion, the expansion of
the first derivative, and the expansion of the second derivative. Following
a set of rules, we obtain a normalized and canonical representation of the
TED from the starting algebraic expression.

We start with the computations expressed as subDFGs or DAGs from
Step 1 in Figure 3.2. Then, in order to build a TED, we execute the following
steps:

1. Convert the subDFG into an algebraic expression. Note that boolean
logic can be expressed as an algebraic expression as well: for example,
the logical ‘or’ operation can be represented as x∨ y = x + y − xy.

Functionally Equivalent Domain-Specific Instructions 41

2. Establish the order in which the variables are expanded, as it affects
the size and shape final canonical representation.

3. Recursively calculate the values of the Taylor expansion for the cons-
tant, first and second derivative for every term in the algebraic ex-
pression, following the order from point 2.

4. Apply reduction and normalization rules to ensure that the TED is
canonical.

We explain the TED construction with three examples in Figure 3.2. In
Example 1, the first step converts the DAGs into the algebraic expressions
A and B written under the graphs. Note the expansion of the ‘or’ operation
into its counterpart algebraic expression. In the second step, we decide the
ordering of the variables, which is important to arrive at a canonical repre-
sentation. In this case, the order is [x,y]. In the third step we construct the
TED, which will be unique for both A and B, as their Taylor series expan-
sions yield the same values. Step (i) in the TED construction builds a partial
TED performing the Taylor series expansion on variable x first. Then, Step
(ii) expands on variable y. The resulting TED, after applying normalization
and reduction, leads to the reduced version in the bottom of the example.
For Example 2, the four algebraic expressions are expanded in the same
way, as shown in steps (i) to (v). In Example 3, with multiple output DAGs,
we will have an algebraic expression for each one of the outputs. Each ex-
pression is transformed into the corresponding TED, with as many steps as
input variables. At the end, the generated TEDs, separately, are reduced and
normalized, but also merged into a single normalized TED.

Finally, as TEDs are also directed acyclic graphs, we perform a one-to-
one isomorphism detection with the normalized TED — like the ones at the
bottom of Figure 3.2 – as we do with the DAG representation (label 2.3 in
Figure 3.1).

3.5.3. Hybrid TED-DAG clustering

The final clustering technique is a hybrid TED-DAG technique. Not all
computations in their directed acyclic graphs can be converted to a polyno-
mial expression, and only polynomials with a finite Taylor expansion can be
modeled as TEDs. This excludes modular arithmetic, relational operations,
and exponentiation of constants as a base, whereas a DAG can represent
all types of computations as they are expressed structurally in the DFG.
Due to these restrictions, we propose a hybrid technique that uses the TED
representation when it can be created, and otherwise uses the DAG repre-
sentation of subDFGs to cluster computation (label 2.4 in Figure 3.1). Using

42 Chapter 3

this hybrid approach, we should be able to cluster more code sequences to
target the same hardware, identifying the most efficient CIs for our set of
applications.

3.6. Heuristic Selection

After clustering code sequences, we have many CI candidates. In order
to select the most promising ones for our applications, we introduce four
novel scoring heuristics in Step 3 of Figure 3.1. Our scoring techniques use
dynamic execution data from the applications in order to prioritize CIs, ei-
ther focusing on application-specific or domain-specific CIs, that maximize
speedup. They score based on the number of regular instructions covered
by each CI, the frequency of execution of the basic blocks that contain the
subDFG that maps to that CI, and (for domain-specific) the number of appli-
cations that can use each CI.

3.6.1. Application-Specific Scoring

We first focus on a scoring heuristic that prioritizes CIs targeted at just
one application (label 3.1 in Figure 3.1). Our heuristic ranks CIs based on
the potential speedup they can offer, using the following terms: K is a CI
for which n code sequences are found in an application, i.e., n code se-
quences can be accelerated using CI K . ninsti is the number of regular
instructions and freqi is the frequency of execution of the code sequence to
be accelerated wtih a CI. The latter is gathered through profiling (label 1.2
in Figure 3.1).

Our application-specific scoring heuristic for CI K is then defined as:

scoringK =
n

∑

i=1

ninsti × freqi, (3.1)

and essentially weights all code sequences with their instruction counts and
execution frequencies to have a measure of the speedup of the application
as a whole.

3.6.2. Domain-Specific Scoring

To identify CIs that are most efficient across a domain of applications,
we must use different heuristics that take into account the reusability of the
hardware (label 3.2 in Figure 3.1). We still take into account a CI’s execu-
tion frequency, however with a slight change. Because we are considering

Functionally Equivalent Domain-Specific Instructions 43

different applications, we must normalize the execution frequencies to the
application’s total dynamic instruction count. For any given application, the
normalization is done by scaling the frequency of execution to the percen-
tage of the application’s total number of instructions executed.

We first define the following variables:

K is a CI with n code sequences found across all applications (1 ≤ n).

ninst is the number of regular instructions of a given code sequence
amenable to the given CI.

nfreq is the normalized frequency of execution of the given code se-
quence.

napp is the number of applications that can use the CI.

Each of these napp applications can use the CI at m different points
in the code (1 ≤m ≤ n), and thus (n =

∑napp
i=1 mi).

We now detail four new scoring heuristics that prioritize CIs differently,
and we compare them later in the experimental results section.

3.6.2.1. Scoring 1: Normalized Application-Specific

scoringK =
n

∑

i=1

ninsti ×nfreqi (3.2)

Equation 3.2 shows the first scoring, which is similar to the application-
specific scoring, though it uses normalized frequency values. It maximizes
the ranking of frequently used CIs targeting high numbers of instructions.
A CI’s sharing across applications is not taken into account with this scoring
heuristic.

3.6.2.2. Scoring 2: Scaled by Sharing

scoringK = (
n

∑

i=1

ninsti ×nfreqi)×napp (3.3)

Our second scoring technique, in Equation 3.3, does take into conside-
ration a CI’s ability to be reused or shared across applications. The napp
factor prioritizes CIs that have a high sharing factor, when the scoring has
to discriminate among CIs with similar numbers of normalized dynamic
instructions. Application-specific CIs that are very frequently used are still
highly ranked, since nfreqi≫ napp.

44 Chapter 3

3.6.2.3. Scoring 3: Geometric Mean of Sharing

scoringK = napp

√

√

√napp
∏

i=1

(

mi
∑

j=1

ninstj ×nfreqj) (3.4)

Equation 3.4 shows our third scoring heuristic that calculates the geo-
metric mean of the mi application-specific scores, where i is an index that
iterates over the applications involved. Since application-specific scores for
a given CI can vary by several orders of magnitude, we propose this scoring
to smooth out the spikes in the scores due to a single application (when
napp > 1). CIs that accelerate many applications but get a high score from
only one application, are penalized. This heuristic thus introduces fairness
for CIs targeting several applications. However, CIs used by one application
are not penalized.

3.6.2.4. Scoring 4: Random-Scaled Sharing

scoringK =

napp−1
∑

i=0

(

mi
∑

j=1

ninstj ×nfreqj)×
napp

napp− i
(3.5)

In the final scoring heuristic, in Equation 3.5, we introduce a random-
ness factor controlled by the number of applications that the CI targets.
The application-specific scoring is weighted by napp

napp−i . The assignment of
i is random, but napp still influences the final result, thus the higher the
sharing factor, the higher the score. Note that the value of i assigned to a
particular application is non-deterministic, so the applications are weighted
differently for each code sequence. The reason for introducing some con-
trolled randomness is to distribute scores in a more flexible way, since there
are other factors that we do not consider in our current heuristics, such as
the area that a CI occupies.

3.7. Estimating Performance and Area

Finally, in Step 4 from Figure 3.1, we evaluate the effectiveness of the CIs
identified by the previous three steps. Informed by the ranking of CIs pro-
duced by the scoring heuristics in Step 3, we feed top CIs into a hardware
description language conversion tool that creates a preliminary hardware
implementation (label 4.1 in Figure 3.1). This implementation verifies that
the identified sequences of code can be implemented as hardware structures,

Functionally Equivalent Domain-Specific Instructions 45

and double-checks the scoring techniques. The hardware implementation,
using information from the application profile, is fed into a model that es-
timates the achievable speedup and area occupied by each CI (label 4.2 in
Figure 3.1). Area estimates are obtained through hardware synthesis as we
will explain in Section 3.8.

We estimate the speedup each CI can achieve for each identified se-
quence of code as follows. Consider a CI that would be invoked at n diffe-
rent locations in the code of a particular application, that covers ninst nor-
mal instructions, and is executed nfreq times at a particular location. Fur-
thermore, assume that hardware synthesis estimates the CI to take hw_cycles
to execute. Consider also a cost of Cin cycles to move input data from the
register file to the SFU before the CI starts and a Cout cost to move outputs
back to the register file at the end of the accelerated execution. Both costs
depend on the number of input and output parameters of a particular CI
and the available register ports in the baseline processor. We first estimate
the execution time in cycles of all uses of the CI (on the SFU) as:

Tw/ ci =
n

∑

i=1

nfreqi × (hw_cycles+Cini +Couti), (3.6)

or the number of times the CI is invoked multiplied by its execution time in
cycles. Then, we estimate the number of cycles that the same sequences of
code would take on the non-customized processor (without using the CI):

Tw/o ci =
n

∑

i=1

ninsti ×nfreqi ×CPI, (3.7)

with CPI as the cycles per instruction of the application on the target pro-
cessor.

We define T as the total application execution time in cycles on the
target processor (without using the CI). We then can find the difference
between the number of cycles our candidate sequences take on the non-
customized processor versus using CIs, and subtract this from T to approxi-
mate the accelerated performance. Formally, the estimated total application
time when using CIs is:

T − (Tw/o ci −Tw/ ci). (3.8)

We then divide T by that estimated time to calculate the SFU’s achie-
vable speedup. This is a conservative estimate since we do not take into
account the potential instruction-level parallelism between regular and CI
execution, which would result in higher speedups.

46 Chapter 3

With this evaluation step, we are able to compare the potential perfor-
mance improvements that a set of CIs, whether including just application-
specific CIs, domain-specific, or both, can provide to an application or set of
applications.

3.8. Experimental Setup

We describe the implementation details of our specialized functional
unit design exploration framework FuSInG, including the software and hard-
ware tools used, and our benchmarks.

We use the LLVM compiler infrastructure [42] as the front-end to our CI
design exploration framework FuSInG. We modify the LLVM code genera-
tion module to find maximum valid subDFGs for DFG exploration (Step 1 in
FuSInG). Using the NetworkX library [32], we perform graph isomorphism
detection, and construct the TED representations using the symbolic alge-
bra and calculus part of Sage [57]. We obtain an execution profile for each
of our applications using the LLVM binary interpreter. The profile indicates
the frequency of execution for each basic block, and is used in Steps 2 to 4
of FuSInG.

We assume that the target architecture has spare core area tightly-cou-
pled to the processor core to implement the configurable SFU, as shown in
Figure 2.1 (Chapter 2). We consider a single-core single-thread OpenSPARC
T1 as the baseline architecture, which has been adapted previously for re-
search on embedded applications [56].

To evaluate the selected CIs, we first translate their functionality to C
code. For a given application, CIs that are functionally equivalent are trans-
lated to one common piece of code. Across applications, for a given set of
sections of code identified as functionally equivalent, we provide an imple-
mentation of the CI execution path for each application involved. Later, we
choose the best among them for the performance model. We use the Vi-
vado HLS suite to perform C to HDL conversion on those C code segments.
For feasibility reasons, our automated toolchain uses the default optimiza-
tions of Vivado HLS [62]. Any further improvements to the hardware imple-
mentation with specifically-set optimizations would result in better overall
speedups. The Xilinx ISE tool performs the synthesis of the design, using
the Virtex 5 FPGA as a target, which estimates the new hardware’s area
(per CI) as a number of look-up tables (LUTs) and slices. We report area
estimates relative to the OpenSPARC T1 core area, which is also mapped
onto a Xilinx Virtex 5 FPGA for apples-to-apples comparison. We also use
the Xilinx ISE report files to estimate the number of cycles per CI, which
we use to estimate performance speedup through acceleration as previously

Functionally Equivalent Domain-Specific Instructions 47

Benchmark Description Input

aacenc AAC audio compression encoder 33.9MB WAV

cjpeg JPEG image format compressor 1.2MB PPM (Mediabench)

djpeg JPEG image format decoder 12.8 kB JPEG (Mediabench)

face Face detection on bitmap files 734.5 kB bitmap

tmndec H263 video format decoder (TMN) 114 kB H263 (Mediabench)

tmnenc H263 video format encoder (TMN) 5.5MB YUV (Mediabench)

mpeg2dec MPEG2 video format decoder 34.9 kB (Mediabench)

mpeg2enc MPEG2 video format encoder 506.9 kB (Mediabench)

optflow Optical flow for motion estimation 884 kB images

Table 3.1: Description of the evaluated application benchmarks and their input
files.

explained.
Table 3.1 shows the list of benchmarks that we use for our experiments,

with their descriptions and input files. All the applications belong to the
media domain. The optical flow kernel and the face detection benchmark
are part of the OpenCV library [12]. The AAC (audio compression) encoder
is based on a program provided by Renesas Technology and Hitachi Ltd.
The rest of the applications and their input files belong to the Mediabench
II benchmark suite [24].

3.9. Results

In this section we present the experimental results obtained using the
FuSInG framework presented in Section 3.3. We first compare the speedup
that we can achieve using the DAG, TED, and Hybrid clustering techniques
described in Section 3.5, showing in Section 3.9.1 that TED and Hybrid tech-
niques by far out-perform DAG for identifying CIs across a domain. We
then show differences between our four new scoring heuristics (from Sec-
tion 3.6) across benchmarks, demonstrating in Section 3.9.2 that on average
the random-scaled sharing heuristic works best for our applications. In con-
trast to Sections 3.9.1 and 3.9.2, which focus only on domain-specific CIs,
we then evaluate the differences in speedup that can be achieved using only
domain-specific, only application-specific, or a mix of both kinds of CIs in

4
8

C
h
apter

3

Benchmark
Num. identified sequences Num. selected CIs % dynamic instr.

DAG TED Hybrid DAG TED Hybrid DAG TED Hybrid

aacenc 81 73 72 29 32 27 10.5 6.1 4.9

cjpeg 126 138 140 53 41 41 3.5 10.8 10.9

djpeg 115 119 119 52 43 43 2.0 16.9 16.9

face 165 211 211 45 66 66 0.9 9.3 9.4

tmnenc 89 116 121 29 37 38 0.5 0.9 0.8

tmndec 51 68 70 31 43 45 2.8 6.6 6.6

mpeg2dec 75 83 86 44 40 43 24.1 16.6 21.2

mpeg2enc 106 164 172 51 68 72 2.1 9.0 9.7

optflow 1 7 7 1 6 6 0.0 27.2 27.2

Table 3.2: Number of code sequences and CIs found in each application with DAG, TED and Hybrid methods, and the percentage of
dynamic instructions covered by them. These results use the random-scaled sharing heuristic, and are for unlimited core area.

Functionally Equivalent Domain-Specific Instructions 49

Section 3.9.3. With the whole core area at our disposal, application-specific
CIs achieve the highest speedup; however, at lower core areas, domain-
specific CIs performwell, but always benefit from the addition of application-
specific CIs. Using both kinds of CIs, we achieve the highest speedups.
In Section 3.9.4, we perform a detailed analysis of the CIs included at a
particular percentage of core area for application-specific, domain-specific,
and mixed configurations. We reveal insights about the number of small,
medium, and large CIs, the average number of inputs and outputs, and
the number of applications each configuration can target. Finally, in Sec-
tion 3.9.5, we evaluate a more realistic setting using cross-validation, evalu-
ating how a set of CIs identified as useful for a group of applications perform
for another, previously unseen, application.

3.9.1. DAG vs TED vs Hybrid

We first evaluate the effectiveness of using a directed-acyclic graph to
guide pattern matching between code sequences (DAG), versus using a ca-
nonical approach to cluster code sequences (TED). We compare their effec-
tiveness considering all applications from the domain. Table 3.2 compares
the three techniques for each benchmark regarding the number of code se-
quences they identified, number of CIs selected, and percent of total dy-
namic instructions that can be converted to CIs. These numbers were ga-
thered using the random-scaled sharing heuristic to rank candidates, and
devoting an unlimited core area to the SFU. We select a CI if it can accele-
rate two or more code sequences from different benchmarks. For all but one
benchmark (aacenc), the TED and Hybrid techniques find a larger num-
ber of code sequences than DAG. For all but two benchmarks (cjpeg and
djpeg), TED and Hybrid also select about the same or a larger number of
CIs. Even with cjpeg and djpeg, TED and Hybrid cover significantly more
dynamic instructions than DAG, which is also the case for all other bench-
marks except aacenc and mpeg2dec. As the heuristic discards instructions
that might cover more execution time, TED and Hybrid perform slightly
worse for aacenc and mpeg2dec.

Figures 3.3 and 3.4 present graphs with a range of core areas dedicated
to the SFU on the x-axis, and speedup on the y-axis. Individual benchmarks
are shown from (a) to (i). These results use the best performing scoring
heuristic (random-scaled sharing), which we discuss in detail in the next
section. Each point on the graph represents a group of domain-specific CIs
that can be used by that benchmark and that fit inside that core area (x-axis),
which together can achieve that speedup (y-axis) for a given benchmark.
Note that each benchmark has a different x-axis scale because these are

50 Chapter 3

(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Results of benchmark speedup versus CI area for DAG, TED and Hybrid
methods, with domain-specific CIs using random-scaled sharing scoring (part 1/2).

Functionally Equivalent Domain-Specific Instructions 51

(g) (h)

(i) (j)

(k)

Figure 3.4: Results of benchmark speedup versus CI area for DAG, TED and Hybrid
methods, with domain-specific CIs using random-scaled sharing scoring (part 2/2).

Graphs (j) and (k) show averages.

52 Chapter 3

the area percentages used per benchmark, not for the whole SFU. In all
following sections, we consider the entire SFU design when discussing area.
The average of all applications (using total SFU area) is shown in (j). The
last graph (k) shows the average speedup numbers for the three clustering
techniques when we only include application-specific CIs. In this graph, the
area percentage represents the average of the area for all the applications.

On average, the Hybrid technique, which uses the TED representation
when it is able and otherwise uses DAG, is the most effective technique at
finding domain-specific CIs (Figure 3.4 (j)). The Hybrid technique achieves
higher speedups at smaller areas (left hand side on the graphs in Figures 3.3
and 3.4), always increasing the speedup faster than the other two tech-
niques. All but two benchmarks show the best speedups with TED and
Hybrid techniques regardless of area, and for tmnenc (i), DAG performs
best only between 6% and 12% core area. When given unbounded core
area, only one benchmark, mpeg2dec (e), performs better with the DAG
clustering technique than with Hybrid. This happens because the Hybrid
technique first tries to identify CIs using TED, and when it cannot find any
more, it complements with DAG. If part of an application’s code is repre-
sented by TEDs, and creates a less efficient CI than a DAG design would,
then the Hybrid technique would not be able to take advantage of the better
DAG implementation. We also see that for most benchmarks, Hybrid and
TED techniques perform very similarly. However, for mpeg2dec, which
reveals a large opportunity with the DAG technique, Hybrid can achieve
higher speedups than the TED technique alone because it can benefit from
the code sequences that can only be represented in a DAG.

Figure 3.4 (j) shows that on average across our benchmarks, TED and
Hybrid achieve around 12% and 13% speedup, respectively, when using
only 20% of the core area for domain-specific CIs, while DAG obtains only
4% speedup. We contrast this with Figure 3.4 (k), which shows the ave-
rage when we only include application-specific CIs. While TED’s canonical
representation does not make a large difference when clustering code se-
quences within the same application, we see that it is very important to
achieve higher speedups when generating domain-specific CIs. The key in-
sight here is that individual applications are coded following the same style,
so the benefit of a canonical representation is not so clear. However, as we
move across applications, we find that different code styles and a canonical
representation are key to identifying acceleration opportunities.

Functionally Equivalent Domain-Specific Instructions 53

(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Results of benchmark speedup versus SFU area for scoring techniques,
with domain-specific CIs created with the Hybrid technique (part 1/2).

54 Chapter 3

(g) (h)

(i) (j)

(k)

Figure 3.6: Results of benchmark speedup versus SFU area for scoring techniques,
with domain-specific CIs created with the Hybrid technique (part 2/2). Graph (j)
shows the average for 100% of the SPARC core area, and (k) zooms the average in

for 20% of the area.

Functionally Equivalent Domain-Specific Instructions 55

3.9.2. Domain-Specific Scoring

We next compare the four new scoring heuristics that we explain in
Section 3.6. Figures 3.5 and 3.6 from (a) to (i) present a graph for each
benchmark of the speedup that each heuristic predicts for a given SFU area.
For these graphs, we use the Hybrid clustering technique, and include only
domain-specific CIs. Note that in these and all following sections, we con-
sider the entire SFU design and its area, not only those CIs useful per appli-
cation. Thus, area always ranges between 0 and 100% of the core. The
average across all benchmarks is presented in Figure 3.6 (j) for 100% of the
area and on Figure 3.6 (k) we zoom in on smaller, more realistic areas of 0
to 20%.

Across all benchmarks, we see that the fourth scoring technique, or
random-scaled sharing, performs best on average. In Figure 3.6 (j) and (k),
it achieves higher speedups quicker at lower areas, and at unlimited area,
it performs the best. At 20% area, shown in (k), this technique achieves
similar speedups as scaled-by-sharing. There are some variations across
benchmarks in Figures 3.5 and 3.6. For face (d), the geometric mean scoring
takes more area to achieve similar speedups, probably because it dampens
the importance of a domain-specific CI that only performs well for one
application. For djpeg (c), the geometric scoring heuristic cannot achieve
the speedups the other three techniques achieve, and for tmndec (h), we see
random-scaled sharing more than doubling the speedup of any other heuris-
tic at any given area. For mpeg2dec (e), and to a lesser extent, mpeg2enc (f)
and tmnenc (i), the geometric mean heuristic that averages the benefit each
application can receive, does rise to higher speedups at lower areas. Only
for mpeg2dec does the geometric mean technique get larger speedups than
the random-scaled sharing heuristic at high areas. In this particular case, the
geometric mean heuristic ranks a pair of CIs with low re-utilization higher
compared to the other scoring heuristics. The other heuristics did not rank
these CIs as high because of previously identified, partially overlapping CIs.
For aacenc (a), random-scaled maximizes the speedup at smaller areas. In
particular, a CI that causes a 6% speedup improvement is selected with
that scoring three positions earlier than with scaled-by-sharing. However,
for cjpeg (b), the scaled-by-sharing heuristic is the one that raises to high
speedup values at lower areas. We find here a counter-example: scaled-by-
sharing selects a CI that contributes 5% to the speedup improvement five
positions earlier than random-scaled. A closer look at the groups of code
sequences that are clustered into those CIs tell us that in both cases the
coverage across applications is maximized. However, random-scaled priori-
tizes less aggressively, and CIs with a medium number of applications but
good overall performance will still rank high. Therefore, we use that scoring

56 Chapter 3

as our default in the other experiments reported in the chapter.

3.9.3. Application-Specific vs Domain-Specific Configurations

Up until now, we have analyzed the potential of only domain-specific
CIs. But our framework allows us to compare the performance of po-
tential application-specific CIs as well. In this section, we compare the
speedups that can be achieved using a part of the core area dedicated to only
application-specific, only domain-specific, or a mixture of both kinds of CIs.
Our goal here is to understand how to best configure an SFU to optimize
full-system performance across applications subject to area constraints. Or
in other words, for a given core area, are we better off choosing application-
specific only, domain-specific only, or both application- and domain-specific
CIs for the SFU?

Figures 3.7 and 3.8 present the speedup for each benchmark across a
range of areas, including only application-specific, only domain-specific,
and both kinds of CIs. We analyze performance when the SFU takes zero
to 100% of the core area. Figure 3.8 (j) and (k) show the averages across all
benchmarks, using up to 100% of the core’s area, and zooming in on small,
more realistic areas from zero to 20%. For all of these graphs, we use the
Hybrid clustering technique, and we use the application-specific scoring for
application-specific CIs, and the random-scaled sharing scoring for domain-
specific.

Our results reveal that, if given unlimited area, using only application-
specific CIs can achieve the maximum speedup (34% on average) for our
benchmarks. However, a potentially surprising result is that using both
application- and domain-specific CIs together approaches the performance
of using only application-specific CIs (29%), and obtains higher speedups
at lower areas as compared to only application-specific. While using only
domain-specific CIs limits maximal speedup to around 13%, we see that this
technique is more effective than application-specific at obtaining speedups
at very small areas. Given a 20% of the area, application-specific achieves
8% speedup, while domain-specific achieves 10% and both together achieve
23%. Furthermore, for several benchmarks, namely aacenc (a), face (d),
mpeg2dec (e), and optflow (g), using only domain-specific CIs performs
close to the best of the other two techniques.

The key insight here is that, while using only application-specific CIs
results in the highest possible speedups at large or unbounded core areas,
considering domain-specific CIs next to application-specific CIs yields the
highest possible speedup at realistic, smaller core areas. The reason is that
the domain-specific CIs benefit several applications, which is more area-

Functionally Equivalent Domain-Specific Instructions 57

(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Results of benchmark speedup versus SFU area using only
application-specific, application and domain-specific, or only domain-specific CIs

(part 1/2). Results gathered using the Hybrid technique.

58 Chapter 3

(g) (h)

(i) (j)

(k)

Figure 3.8: Results of benchmark speedup versus SFU area using only
application-specific, application and domain-specific, or only domain-specific CIs

(part 2/2). Results gathered using the Hybrid technique. Graph (j) shows the
average for 100% of the SPARC core area, and (k) zooms the average in for 20% of

the area.

Fun
ctio

n
ally

Eq
uivalen

t
D
o
m
ain

-Specific
In
structio

n
s

5
9

%area Config
small-sized medium-sized large-sized

#app Speedup

CI in out # CI in out # CI in out

5%

only AS 2 2.5 2 0 − − 2 38 2.5 4 1.07×

AS/DS 6(0/6) 5.3 2.2 2(0/2) 10 5 6(6/0) 26.5 8.2 9 1.22×

only DS 7 4.8 2 1 9 5 0 − − 9 1.07×

10%

only AS 4 2.7 1.5 0 − − 2 38 2.5 6 1.07×

AS/DS 8(0/8) 5.4 2.3 4(2/2) 11.25 5.25 6(6/0) 26.5 8.2 9 1.24×

only DS 11 4.6 1.8 3 11.33 5.33 0 − − 9 1.10×

15%

only AS 15 4.9 2.3 1 9 5 3 31.6 7 9 1.13×

AS/DS 9(0/9) 4.7 1.8 4(2/2) 11.25 5.25 6(6/0) 26.5 8.2 9 1.24×

only DS 13 4.8 2 4 12 6.5 0 − − 9 1.10×

Table 3.3: Classification of CIs in a full-system configuration of 5%, 10% and 15% of the SPARC area. (AS = application-specific, DS =
domain-specific. Small = 1-5 regular instructions; Medium = 6-15 instructions; Large = >15 instructions.)

60 Chapter 3

efficient compared to application-specific CIs which benefit a single applica-
tion only, and therefore have limited contribution to overall system perfor-
mance. A corollary of this finding is that, in order for hardware acceleration
to deliver substantial speedups, some notion of application-specific hard-
ware acceleration is needed, this even at small areas. Application-specific
acceleration requires knowing the target domain and its applications at SFU
configuration time so that some application-specific CIs can be included.
Alternatively, one could devote a fraction of the SFU die area to domain-
specific and application-specific CIs that are known to perform well given
the applications known at design time.

3.9.4. Custom Instruction Analysis

In order to reveal further insight about how to build future specialized
computing units, and which CIs offer the most benefit inside an application
domain, we present an analysis of the CIs identified as the most effective at
a few particular core areas. We compare the details of the SFU for designs
with application-specific, domain-specific, and a mixture of both kinds of
CIs. We show CI statistics for core area percentages 5, 10 and 15% in
Table 3.3, taking the best configurations as shown in Figures 3.7 and 3.8.

Table 3.3 shows three configurations: using only application-specific CIs
(only AS), using only domain-specific CIs (only DS), and using both (AS/DS,
with the specific AS and DS portions in parentheses). We define three sizes
of CIs, depending on the number of instructions that each CI implements. A
small-sized CI has 1 to 5 instructions, a medium-sized one has 6 to 15, and
a large-sized one has more than 15. We also present the average number
of inputs and outputs for each size-class; however, these do not affect the
size-class (i.e., small CIs could have many inputs or outputs). Finally, we
show the number of applications that each configuration can cover in the
second-to-last column, and the speedup it achieves.

We can draw a few interesting conclusions from the best-performing
CI configuration statistics. First, using both application and domain-specific
CIs already achieves speedup of 22% using only 5% of the SPARC core’s area.
At the same area, using only application-specific CIs targets only 4 applica-
tions and can get only a speedup of 7%, which raises to 13% when using 15%
of the core (while covering all 9 applications). Interestingly, application-
specific CI configurations usually include small and large-sized CIs, but few
medium-sized ones; in comparison, domain-specific CI configurations in-
clude no large-sized CIs, instead prioritizing CIs with fewer than 15 base
ISA instructions. Using both kinds of CIs (AS/DS), we find more domain-
specific small-sized CIs, but more application-specific ones of the large size.

Functionally Equivalent Domain-Specific Instructions 61

We also see that, though the average input and output sizes are independent
of the number of regular instructions per CI, in general, the numbers of in-
puts and outputs grow as we go from small to medium to large-sized CIs.
Interestingly, the mixed application and domain configurations include CIs
from each size-class, and achieve the highest speedup. This suggests that
the best-performing machine should include both application and domain-
specific CIs.

3.9.5. Cross-Validation

In all previous experiments, we generated candidate domain-specific CIs
from code sequences using the entire set of benchmarks. In this final sec-
tion, we evaluate a realistic setting where the machine is configured with
a set of CIs for a particular application domain, but then an as-yet-unseen
application runs upon it and tries to take advantage of the flexibility of the
domain-specific CIs (generally known as cross-validation). In Step 3 of our
methodology, shown in Figure 3.1, we cluster code sequences from N −1 of
our benchmarks, prioritize using our random-scaled scoring heuristic, and
then in Step 4, we evaluate the effectiveness of those CIs on a different, the
N th, application.

Figures 3.9 and 3.10 show our cross-validation results for each bench-
mark from (a) to (i), and the average across benchmarks (j). When given
the total core area, all but two benchmarks can reach the maximal speedup
(obtained using domain-specific CIs identified over all benchmarks, as in
Section 3.9.3, when given unlimited area). Benchmarks optflow (g) and
tmnenc (i) cannot achieve their maximum speedup using our cross-valida-
tion approach; optflow achieves its speedup when using only one CI; in
addition, as shown in Figure 3.8 (g), optflow does achieve its maximum
speedup when we include domain-specific CIs identified from all bench-
marks, whereas in Figure 3.8 (i), tmnenc can only benefit from application-
specific CIs (achieving very limited speedup overall). The other seven bench-
marks can take advantage of CIs deemed useful for the domain, and espe-
cially aacenc in Figure 3.9 (a), djpeg (c), face (d), mpeg2dec (e) and tmndec
in Figure 3.10 (h) achieve high speedups at very low core area percentages.
On average, at only 20% of the core area shown in Figure 3.10 (j), our appli-
cations achieve over 7% speedup, which is a significant percentage of the
maximum of 10%.

62 Chapter 3

(a) (b)

(c) (d)

(e) (f)

Figure 3.9: Results of benchmark speedup versus SFU area for cross-validation per
application using domain-specific CIs (part 1/2). Results gathered using the

random-scaled sharing scoring and the Hybrid technique.

Functionally Equivalent Domain-Specific Instructions 63

(g) (h)

(i) (j)

Figure 3.10: Second part of results of benchmark speedup versus SFU area for
cross-validation per application using domain-specific CIs (part 2/2). Results

gathered using the Hybrid technique. Graph (j) shows the average for 100% of the
SPARC core area.

3.10. Summary

This chapter explores the trade-off between application-specific versus
domain-specific hardware specialization, with new methods to generate CIs
to accelerate an application domain. We present contributions 1A (Identi-
fication of functionally equivalent CIs) and 2A (Domain-specific heuristic-
based selection). First, we propose the use of Taylor Expansion Diagrams
(TED), canonical representations of code, to identify CI opportunities. TEDs

64 Chapter 3

are more effective at identifying functionally equivalent code sequences
across applications than the commonly used Directed Acyclic Graph (DAG)
representation. We also propose a new hybrid representation that combines
TEDs with DAGs and is even more effective at finding CIs to accelerate
the application domain. To be able to quickly select the potentially best
domain-specific CIs during exploration, we propose scoring heuristics that
take into account the frequency of CI use both within and across applica-
tions. We use the canonical representations and our scoring heuristics in
our CI design framework FuSInG (Functionally Similar Instructions Gene-
rator), along with performance and area estimations. We find that while
application-specific CIs result in the highest possible performance at large
or unbounded core areas, including domain-specific CIs yields the highest
possible speedup at small, more realistic core areas. This finding underlines
the need for domain-specific instructions for practical and flexible hardware
specialization, that we explore further in the coming chapters. In addition,
we demonstrate that the identified CIs using our exploration framework are
effective for previously unseen applications within the same domain, mak-
ing specialization more generally applicable.

4
Partially Similar Domain-Specific

Instructions

4.1. Introduction

In the previous chapter, we studied the trade-offs between application-
specific and domain-specific CIs. We showed that application-specific CIs
had the highest performance at large or unbounded core areas; however, in-
cluding domain-specific CIs results in the highest possible speedup at small,
more realistic core areas. But code sequences analyzed in the previous chap-
ter were limited to a single basic block, which leads to moderate speedups.
CI exploration both across applications and beyond the basic block level
is challenged by the difficulty of finding exact matches of code sequences.
Therefore, in this chapter, we explore specialization for a domain of applica-
tions in greater depth, still focusing on identifying CIs that are accelerated
in hardware in a domain-specialized functional unit (DSFU) that extends a
general-purpose processor, but also extending the acceleration opportunities
across basic blocks through partial matching of different implementations of
code sequences.

Also, in the previous chapter, CIs are selected using domain-specific
heuristics based on performance indicators. While speedup is a well-known
metric used in CI design, a configuration that extends a low-power processor
must try to balance energy as well. Hence, the CI selection proposed in this

66 Chapter 4

chapter focuses not only on high performance, but also on energy efficiency.
We build the automated framework MInGLE (Merged Instructions Ge-

nerator for Large Efficiency) to identify useful CIs across a set of appli-
cations from a domain. While this search space can grow exponentially,
we develop steps to tractably generate a set of potential CIs by preferably
merging those with high similarity. We first use profiling to extract hot
loops from the applications, and then we use high-level synthesis to gather
execution time and hardware area measurements for several implementa-
tion versions of the potential CIs. Next, MInGLE transforms the sequences
into a Merging Diagram, a canonical representation to facilitate similarity
identification, and merges CIs that could be executed in the same DSFU
pipeline to reduce specialized area. We cluster CIs to identify not only those
that have exact functional similarity but also those with partial similarities,
which could cover more code while reducing the needed area for the DSFU.
Finally, MInGLE selects a set of CIs that fit into a particular hardware area,
maximizing energy efficiency and performance speedup across the applica-
tions. We demonstrate the effectiveness of the framework using 11 media
benchmarks in the context of a superscalar in-order processor.

The outline of this chapter follows. Section 4.2 illustrates the context
and motivation of this work. The framework is presented in Section 4.3, and
following sections describe each one of the main parts of the framework: CI
identification and implementation (4.4), Merging Diagram definitions and
construction (4.5), partial merging of CIs (4.6), and selection (4.7). Compu-
tational complexity is discussed in Section 4.8, and results on the evaluation
of the framework are in Section 4.9. We close this chapter with Section 4.10.

4.2. Context and Motivation

The CIs we target in this chapter are executed on a domain-specialized
functional unit (DSFU) to accelerate a domain of applications. The DSFU is
integrated within the low-power processor core’s datapath, as in the model
of Section 2.3.2 in Chapter 2.

With a limited hardware area for implementation, we want to maximize
the CIs’ utilization. We can achieve this by targeting regions of code beyond
basic blocks, although we must keep the number of data transfers from and
to the DSFU limited to avoid high transfer overhead. Going beyond the
basic block level is key to achieving higher performance and justifying the
design effort of CIs, especially if the prototyping platform is an FPGA, which
is reported to run a circuit implementation up to 4.6x slower than its ASIC
equivalent [41].

Identification of CIs for a domain is challenging, because we must find

Partially Similar Domain-Specific Instructions 67

Benchmark ID Implementation % area
% EDP improv.

cjpeg gsmdec

cjpeg
ci1.1 no unroll 0.0020 +5.3 −1.0

ci1.2 unroll 4 0.0080 +7.1 −1.0

gsmdec
ci2.1 unroll 4 0.0013 −1.0 +218.7

ci2.2 unroll 8 0.0027 −1.0 +290.6

cjpeg+gsmdec
mci1 ci1.1 + ci2.1 0.0029 +4.5 +217.0

mci2 ci1.2 + ci2.2 0.0087 +6.2 +227.0

Table 4.1: Percentages of area occupancy and EDP improvement for different CI
implementations.

similar code patterns that repeat across applications to improve hardware
reusability. We have seen that while commonly used DAGs hold the exact
structure of a program, a canonical diagram represents the program’s func-
tionality, thus exposing more common functions across applications that
can become the same CI. In this chapter, we also use a canonical representa-
tion, but we extend the CI utilization beyond the basic block and add partial
matching to improve reusability.

We aim to share common operations of sequences of instructions in
order to take up less hardware area. For instance, the functions F1 = a+b+c
and F2 = a ∗ b + c can be collapsed into a single instruction that shares the
circuit of one addition, and selects between an addition and a multiplication.
This sharing greatly expands the amount of code that can be accelerated,
and greatly reduces the hardware area needed for specialization.

We want to consider several implementations of each CI as part of the
CI exploration as well; i.e., several unrolling factors with and without vecto-
rization, since they offer divergent trade-offs and benefits. Consider, for ins-
tance, the CIs listed in Table 4.1. For each CI, we show the benchmark where
it was extracted, the ID, implementation details, the percentage of area it
takes on a Virtex 7 FPGA and the energy-delay product (EDP) improve-
ment (higher is better) of each application when that CI is implemented in
the DSFU. The first four rows are application-specific CIs, while the last
two ones merge the previous CIs into domain-specific ones. By exploring
different implementations, we can vary the choice of which one to include
depending on the available area and potential EDP gains. Note that different

68 Chapter 4

implementations present the additional challenge of a bigger search space.
We try to avoid exponential search algorithms, keeping the execution time
of the framework linear with the size of the search space.

4.3. MInGLE Framework

Figure 4.1 shows a high-level diagram of our automated framework
MInGLE, which is throughly explained in the coming sections. Starting
with a set of applications from a domain, we first detect and enumerate
potential CI candidates based on profile information (Step 1, Candidate Ex-
traction). This chapter’s contributions are implemented in subsequent steps,
with the double objective of generating energy-efficient CIs across a do-
main of applications, while making the exponential search space tractable.
In the next step (Canonicalization), we transform CI variants expressed in
the compiler’s Intermediate Representation (IR) into a new canonical repre-
sentation: the Merging Diagram. Then, in Step 3 Merged CI Generation, we
first calculate the pairwise distances used in the identification of similari-
ties between CIs. Because we use a canonical representation and create a
global ordering of variables, this step is computed quickly and efficiently.
After this, the clustering allows the framework to do both exact and partial
matching of CI variants, the latter enhancing CI reutilization across applica-
tions. The Merging Estimation, together with the Performance and Energy
models, quantify the advantages of the generated CIs, estimating the new
area, energy and speedup of each clustered group of variants. Finally, Step 4
(CI Selection) solves the optimization problem of fitting the best group of
candidates, that save the most energy across the domain, into a limited area.

4.4. Candidate Extraction: From Application Code to
Hardware Acceleration

In the Candidate Extraction step of MInGLE (upper part of Figure 4.1),
we first profile each of the input applications, identifying their hot loops in
step Profiling (1.1). We extract those hot loops’ bodies as isolated code that
we can execute as new CIs in step Extraction/Slicing (1.2). As our target CIs
operate on data transferred from and to the register file, there is a transfer
time before the execution starts and when it ends. Thus, memory operations
are sliced and placed before and after the loop body computation. In step
Simulation (1.4), we simulate the applications with the identified high-level
CIs to measure cycles and energy consumption in the baseline processor. In
step High Level Synthesis (1.3), we implement CIs in hardware, obtaining

Partially
Sim

ilar
D
o
m
ain

-Specific
In
structio

n
s

6
9

Application Domain
 1
Candidate
Extraction

 2
Canonicalization

 3
Merged CI
Generation

 4
CI Selection Custom instructions

1.1 1.2

1.3 1.4

3.43.33.23.1

Figure 4.1: MInGLE framework for the implementation and generation of partially-merged CIs.

70 Chapter 4

their area occupancy, execution cycles and energy, and their Intermediate
Representation used in subsequent steps. We apply different unrolling and
vectorization factors in the HLS transformation. Therefore, besides the im-
plicit instruction-level parallelism of the CIs, we also have potential data-
level parallelism from the HLS optimizations. From now on, we talk about
a CI as the high-level representation of a loop body or inline function that
can be accelerated in hardware, and we talk about CI variants or only vari-
ants to specify distinct implementations of a CI (for example, with different
unrolling factors). Thus, depending on the optimizations applied, we can
obtain several variants of the same CI. The Candidates Extraction step pro-
duces application-specific CI variants with their implementation details.

4.5. Canonicalization of Custom Instructions using
Merging Diagrams

Identifying similarities between CI variants in a non-unified represen-
tation is difficult due to the amount of unnecessary information a modern
compiler IR includes. Also, a representation such as a DFG, which expresses
structural relations between operators, does not expose functional similari-
ties, since different coding styles among applications may hide them. There-
fore, in step Canonicalization of Figure 4.1, we transform the codes of the
CI variants expressed initially in a compiler IR, into an abstract, canonical
representation: the Merging Diagram (MD), which is a key component of
this dissertation’s contribution 1B.

The MD represents arithmetic and logic operations (within the basic
block), and predicate information (at the loop level), both with unrestricted
number of inputs and outputs. Its representation is partially based on Bi-
nary Decision Diagrams (BDDs) and Taylor Expansion Diagrams (TEDs),
surveyed in Sections 2.4.2.1 and 2.4.2.2, respectively. We have successfully
used TEDs for CI similarity detection within a basic block in Chapter 3, but
extending CIs beyond the basic block level requires a new representation
that includes predication. Also, the codes we process include operations
that cannot be expressed as polynomial functions, which are the base of the
TED representation. The following definitions explain the details of our new
representation, which include both modified versions of TEDs and BDDs.

Definition 1. An Augmented TED (AugTED), is a directed acyclic graph
based on linearized and reduced TEDs. It is composed of a labeled set of
nodes V , a weighted set of edges E, and the terminal node 1. In normal
TEDs, V represents variable names and E are additions/subtractions or mul-
tiplications. AugTEDs expand TED nodes to represent any kind of compu-

Partially Similar Domain-Specific Instructions 71

IR

Merging Diagram (MD)

...
 %sub = sub nsw i32 %q11, %q21
 %shl = shl i32 %sub, %c
 %cmp = icmp slt i32 %shl, 0
 %sub1 = sub nsw i32 0, %shl
 %cond = select i1 %cmp, i32 %sub1, i32 %shl
...

PM1

PM2 PM3

0 1 0 1

SA(slt) PM3
M1

M2

M3

1

%cmp
%sub1
%shl
icmp slt
%q11
%q21
2^(%c)

-1
-1

Add edge
Mul edge
Link edge

Variable renaming

PM1
PM2
PM3
SA(slt)
M1
M2
M3

vn vn'

PolyAugTED
%shl = (%q11 - %q21) * 2^%c
%cmp = icmp slt (%shl, 0) // special
%sub1 = 0 - %shl

PolyLinBDD
%cond = %cmp * %sub1 + %cmp * %shl

AllPolynomials

operator

(a) (b)

(c) (d)

Figure 4.2: Example of Merging Diagram construction. For the IR on the top left
(a), polynomials are extracted (b), variables renamed (c), and an MD is created (d).

tation, using variable renaming. Here, labels in V can be integer, float or
special. Integer and float labels represent variable types, and special labels
a function that cannot be represented by a Taylor expansion.

Definition 2. A Linking BDD (LinBDD) is a directed acyclic graph based
on reduced and ordered BDDs. It consists of a labeled set of nodes V ′ , a
set of edges E′ and terminal nodes 0 and 1. LinBDDs nodes have BDDs’ 0-1
decision edges, and additionally a third edge Link that references an outside
diagram, namely an AugTED. A LinBDD is constructed with the Shannon
expansion of boolean functions created with the if-then-else (ITE) operator:
ITE (I ,T ,E) = I ·T + Ī ·E.

Definition 3. A Merging Diagram is a data structure that provides a ca-
nonical representation of a predicated code region. It consists of a set A of
AugTEDs that represent computations and a set L of LinBDDs that repre-
sent control flow execution. Link edges from the nodes in each member of L
reference a member in A.

Figure 4.2 (d) shows an example of an MD for a given code sequence.
The left part of the MD is a LinBDD and its nodes are linked to AugTEDs
on the right by Link edges. There is a special label (SA(slt)) that stands

72 Chapter 4

for a relational operator that cannot be expressed by Taylor expansions.
Details on the construction of the MD, with an explanation of the example
in Figure 4.2, follow.

4.5.1. Merging Diagram Construction

To build all the canonical MDs of a group of CI variants, we follow the
steps of Algorithm 1. In lines 3 − 7 we start processing the set of IRs of
all the CI variants’ code regions. Figure 4.2 (a) shows an example of an
IR with arithmetic, relational and conditional selection instructions. For
each one of the IRs, we extract the polynomial representation of the com-
putations (PolyAugTED) and the branch predication (PolyLinBDD) of the
code, as illustrated in Figure 4.2 (b). With those base polynomials, we es-
tablish a precise renaming of variables that unifies their name space in lines
8 − 22, which facilitates fast similarity identification in Section 4.6.1. We
decompose each polynomial into its monomials, and we rename each vari-
able based on the type of monomial where it is found. We find primarily
adding and multiplying types of monomials, but also cover floating-point
and predicated types. For instance, in Figure 4.2 (c), variables are renamed
asA (adding) andM (multiplying) preceded by P (predicated) or S (special).

Then, in lines 23 − 25 we define a strict variable ordering to perform
the expansions, common to all variables implicated. As we have multiple
polynomials that expand with the same group of variables, we first set vari-
ables in ascending order based on the number of times they occur. This
ensures that we will have a minimum number of expansions, resulting in a
more compacted MD. For the same reason, in the case of a tie in the num-
ber of instances between multiplying and adding variables, we prioritize the
former ones.

Finally, in lines 27 − 31, for each rewritten polynomial, we create an
MD structure with a condensed matrix Diagram that contains all the nodes
and edges from the AugTEDs and LinBDD; it is thus of size s× s, with s the
precomputed size of all the variables involved. Link edges are kept apart
in a two dimensional array. Following the variable ordering, we build the
MD expanding each term recursively as it is done regularly with TEDs and
BDDs. We show in Figure 4.2 (d) the resulting representation, which is still
canonical for the assumed variable order, as is the case for regular TEDs and
BDDs.

4.5.2. Global Diagram of Variants

In order to cut down computation cost in later steps it is required to have
a diagram that represents the entire design space of CI variants. To do so, we

Partially Similar Domain-Specific Instructions 73

Algorithm 1: Merging Diagram construction
input : Array of CIs’ IR codes AllIRs
output: Merging Diagrams AllMDs

1 Array AllPolynomials,RewrittenPolynomials←− ∅
2 2D array RenamedMap←− ∅
3 for IR ∈ AllIRs do
4 PolyAugTED← ComputationPolynomials(IR)
5 PolyLinBDD← PredicationPolynomials(IR)
6 add (PolyAugTED ∪PolyLinBDD) to AllPolynomials
7 end
8 for p ∈ AllPolynomials do
9 M← GetMonomials(p)
10 for m ∈M do
11 MonomialT ype← GetMonomialT ype(m)
12 VarNames← GetV ariablesNames(m)
13 for vn ∈ VarNames do
14 if vn ! RenamedMap then
15 vn′ ← renameVar(vn,MonomialT ype)
16 add < vn,vn′ > to RenamedMap
17 end

18 end

19 end
20 p′ ← replaceV ars(p,RenamedMap)
21 add p′ to RewrittenPolynomials
22 end
23 VarsOccurrences←

countOccurrencesV ars(RewrittenPolynomials)
24 OrderedV ars← ascendingOrderV ars(VarsOccurrences)
25 s← size of OrderedV ars +1
26 Array AllMDs←− ∅
27 for p′ ∈ RewrittenPolynomials do
28 MD← < Diagram: s × s array, Link: 2D array>
29 MD.Link← linkT oAugTEDVars(p′ ,RenamedMap)
30 diagramExpansions(p′ ,MD.Diagram,OrderedV ars) add

MD to AllMDs
31 end
32 return AllMDs

74 Chapter 4

combine all the AugTED and LinBDD polynomials to obtain a global MD
unified representation. For each variant, we locally rename its polynomial
variables, saving the naming convention and number of instances in a global
structure. Then, based on that locally collected information, we produce a
global variable ordering that is fixed for the design space. Finally, MDs are
produced individually for each variant with the global ordering.

4.6. Generation of Merged Custom Instructions

In this section, we present the components of the third step of the frame-
work (Merged CI Generation): first we calculate pairwise distances CIs, then
we perform a hierarchical clustering, and finally we estimate the merging
of CIs and calculate their performance and energy efficiency with models.

4.6.1. Distance Calculation

In step Distance Calculation of Merged CIs Generation (step 3.1 in Fi-
gure 4.1), we need to establish a concrete metric that measures similarities
among CIs to guide the subsequent clustering step of the MInGLE frame-
work. We therefore develop a new way to measure how different two CI
variants are in terms of their functionality, using the MD.

We perform a distance calculation for pairs of MDs of variants that do
not implement the same loop body, CIX and CIY . We use the previously
built global diagrams to speed up this calculation. If we would not have
the global, uniform variable space that we described in Section 4.5.2, we
would have to build a pair of diagrams for each pair of CIs being compared,
which would be computationally very expensive. Thus, based on the pre-
built global diagrams, we obtain the number of AugTED-operations and
LinBDD-branches that in CIX do not match with those in CIY , namely
nMX , and vice versa, nMY . An MD node vx matches another MD node vy
if their labels and out edges also match. The matching information is kept
for the merging step explained below in Section 4.6.3. We also count the
number of total AugTED and LinBDD nodes that each MD variant has –
TotX and TotY . Then, we compute the distance δ as:

δ (CIX,CIY) = average

(

nMX

TotX
,
nMY

TotY

)

. (4.1)

One-to-one distances are saved in a condensed distance matrix.

Partially Similar Domain-Specific Instructions 75

exact matching

partial matching

m
or

e

 s
im

ila
rit

y

 le

ss
 CI00_v1, CI00_v2,

CI01_v1, CI01_v2,
CI02_v1

CI00_v1, CI00_v2,
CI01_v1

level 0

level 1

level 2

level 3

Figure 4.3: Hierarchical clustering of CIs. Exact matching instructions are found at
the bottom, while nodes closer to the root group are increasingly less similar CIs.

CIXX_vy: CI with identifier XX and implementation variant y.

4.6.2. Clustering Custom Instruction Variants

For domain-specific acceleration, merging CIs reduces energy consump-
tion because we need less implementation area; to put it another way, it
improves performance since we can allocate more CIs in a constrained area.
We have to merge circuits of CIs that have more in common to maximize
area reduction, as well as minimize the implementation overhead due to
circuit multiplexing. However, with the huge set of CI variants that we ob-
tain when we work with multiple applications, it is prohibitive to try all the
possible combinations of CIs that could be grouped together. Therefore, in
step CI variants Clustering, we group CIs based on a hierarchical clustering
that organizes groups by more to less functional similarity, cutting down the
search space to avoid those groups that are not similar enough to be worth
implementing together.

Distances between variants help to quickly decide which ones are better
to merge together to reduce energy consumption. Using the distance ma-
trix computed in the previous step, we create clusters of CI variants. We
perform hierarchical, agglomerative clustering of CI variants, obtaining a
dendrogram, a tree-like structure, as shown in Figure 4.3, where tree leaves
represent exact matches and internal nodes denote partial matches. Star-

76 Chapter 4

ting from the baseline CI variants, we form exact-matching clusters based
on the distance matrix (leaves – level 0 in the figure). Then, to calculate
the agglomerative distances between the newly formed clusters, we use the
completemethod, that is, the maximal distance between any two variants in
the cluster (levels 1 to 3, to the root). From leaves to root, we find different
versions of merged variants, ordered from more to less similar.

Some obtained clusters may include variants that target the same CI.
In Figure 4.3, level 0 includes two variants of the same CI: CI00_v1 and
CI00_v2; a variant of CI01, and {CI01_v2,CI02_v1}, that is the exact
matching of two different implementations of two different CIs. Level 1
has the cluster {CI00_v2,CI01_v1}, which has the maximum similarity for
partial matching. Variant CI00_v1 from level 0 is clustered at level 2 with
{CI00_v2,CI01_v1} from level 1. However, as a merged variant cannot
implement a concrete CI more than once, we produce different merged ver-
sions that do not duplicate the code covered (CI00 or CI01) within the clus-
ters where this problem occurs. Thus, at level 2 we generate two solutions:
{CI00_v1,CI01_v1} and {CI00_v2,CI01_v1}. Since the latter already ex-
ists at level 1, we will eventually discard it, although its information is still
used to generate the cluster at level 3. Note that this can induce an explo-
sion in the number of solution clusters for a given level. In case of many
cluster versions, we select a reduced group chosen heuristically based on an
approximation of expected EDP improvement.

4.6.3. Merging Estimation and Modeling

With the clustering formation, we obtain a bigger set of CI variants,
some of which are merged to save area. In step Merging Estimation, we es-
timate the new hardware area occupancy, performance and energy gains of
merged variants in order to run the selection step with accurate information.

Based on the information from the distance calculation (Section 4.6.1)
of non-common matches between each pair of variants, we obtain the area
consumption of operators that are shared (shared) and of those that are not
(non_shared). For sharing logic, we need to introduce multiplexers that will
incur an extra area cost, overhead.

Therefore, we calculate the area ai of a merged CI variant i as:

ai = overheadi + sharedi +
N
∑

j=1

non_sharedij . (4.2)

Then, in step Performance and Energy Model, we first model the perfor-
mance of an accelerated application. We start obtaining the cycles c_l_SW

Partially Similar Domain-Specific Instructions 77

that a hot loop iteration takes to execute in the baseline processor, exclu-
ding memory operations, from simulation. We also obtain the number of
iterations N_it of that loop for a given execution of the benchmark. From
hardware synthesis, we get the number of cycles c_HW that a CI variant
takes. We calculate the cycles c_T to transfer data to and from the DSFU
local memory as a function of the input and output data size.

With the previous data we obtain the cycles we save executing a CI
variant as:

c_saved = (c_l_SW − (c_HW + c_T))×N_it. (4.3)

We calculate the new number of application cycles as:

App_cycles = c_total_SW − c_saved, (4.4)

with c_total_SW as the application cycles without CIs.
Finally, the modeled energy consumption of an application that uses CIs

is calculated as:
Eapp = Ebaseline +ECI, (4.5)

with Ebaseline the baseline processor’s energy model and ECI the CI energy
consumption.

The latter is modeled as the sum of its dynamic and static components:

ECI = Pdynamic ×TCI +Pstatic ×Ttotal, (4.6)

where Pdynamic and Pstatic are, respectively, the dynamic and static power of
the hardware components that implement the CI variant, TCI is the time that
the CI is active, and Ttotal is the execution time of the application calculated
from App_cycles.

4.7. Custom Instruction Selection for an Area Cons-
trained Configuration

Implementation area is an expensive commodity in our low-power tar-
get hardware that largely influences the energy consumption of the final
design. However, performance gains also play an important role, because a
faster running application would generally consume less energy. Therefore,
in the last step of the framework (CI Selection), we address the performance
and energy trade-off when choosing the best fitting set of CI variants for a
given hardware area. We model this optimization as a Knapsack problem,
in which we try to fit a subset S of a collection of objects C – each object

78 Chapter 4

oi with an intrinsic value vi and weight wi – within limited mass M so
that the sum of the values of the final subset is maximized and the sum of
the weights does not exceed M . In our case, we try to fit the n CI vari-
ants, merged and not merged, within a limited hardware area A. Each ci
candidate has a value vi that we describe later, and a hardware occupancy,
hwi . We have an additional requirement in our problem: as each CI can
be selected only once, though it can be implemented by different variants –
with distinct unrolling factors, or merged with other instructions – once we
select one CI variant, all other variants of the same CI are invalidated for
the following selection steps.

Wemodel our problemwith Mixed Integer Linear Programming (MILP).
We define the following constraints:

n
∑

i=0

ci × hwi ≤ A, (4.7)

n
∑

i=0

lbi ≤ 1, (4.8)

with lbi as a loop body that can be implemented by (n) CI variants. There-
fore, for a given loop body, only one of its CI variants will be selected.

As our main goal is to accelerate execution and save energy, our objec-
tive function tries to maximize the EDP improvement. However, the total
EDP value changes depending on the area occupancy, and thus, it cannot
be deterministically precomputed before the selection starts. Though, for
each potential CI we can calculate an approximated value of the EDP diffe-
rence with respect to the baseline processor without the CI. Also, the static
energy component of the EDP is subject to the known value of the ma-
ximum area A, which is an approximation for the value that we want to
maximize. Therefore, we define the objective function as:

n
∑

i=1

ci ×σ_EDPi →max. (4.9)

The metric σ_EDPi of a concrete CI variant is the value vi in the origi-
nal Knapsack problem and we calculate it as:

σ_EDPi =
B

∑

j

∥σ_EDPij∥ × (1 +σ_Ai ×Ai), (4.10)

where B is the number of applications that the current variant targets;
∥σ_EDPij∥ is the original application j’s EDP minus the EDP with the

Partially Similar Domain-Specific Instructions 79

variant, normalized to the observed maximum for that application; σ_Ai
is applicable only to merged variants, since it is the percentage of area we
save by merging and Ai is the percentage of the total area that the variant
takes. We find that this metric selects more medium-sized variants that help
to save area occupancy, and have lower overhead and lower static power
than larger variants. From experimentation, we confirm that this objective
gives stable results and maximizes EDP fairly among all applications.

4.8. Complexity

While the overall complexity of the framework varies in each step, our
methodology reduces the search space to keep the exploration tractable and
fast. We establish bounds based on the number of total CI variants. Se-
lection is the most critical step and could be exponential in the worst-case.
Therefore, we try to always keep a reduced number of CI variants candi-
dates, while maintaining energy and performance efficiency.

For each input application from the set of B benchmarks we have a num-
ber of CIs C , and each CI is implemented as a variant numVariants times.
The total number of variants CV processed to build MDs by Algorithm 1 is
determined as:

CV =
B

∑

i=1

Ci
∑

j=1

numVariantsj . (4.11)

The complexity Kdis of calculating distances between pairs of MDs (Sec-
tion 4.6.1) is:

Kdis =O(CV × (CV −C − 1)). (4.12)

However, the key design decision here is to have a global MD, which
obviates the need for a new MD to be computed to compare each pair of
variants, speeding up the calculation. Finally, by performing the hierarchi-
cal clustering step explained in Section 4.6.2, and using a heuristic to limit
the number of cluster versions per level, the final number of generated so-
lutions that the selection of Section 4.7 processes is within the bounds of
O(CV). We thus retain the most promising CI candidates, in terms of area,
performance and energy efficiency, while making sure the selection step’s
complexity does not explode exponentially.

4.9. Evaluation

In this section we describe the experimental setup ofMInGLE, followed
by an evaluation of the results.

80 Chapter 4

Benchmark Suite Max. bits input Max. bits output

cjpeg MediaBench II 2048 2048

djpeg MediaBench II 1168 192

gsmdec MiBench 176 160

gsmenc MiBench 1312 128

mpeg2enc MediaBench II 256 128

optflow OpenCV 512 128

rawcaudio MiBench 256 192

rawdaudio MiBench 192 256

susan MiBench 192 64

tmndec MediaBench II 368 192

tmnenc MediaBench II 2048 256

Table 4.2: List of the evaluated applications and benchmarks suites, with the
maximum size needed for the DSFU’s input and output registers.

4.9.1. Experimental Setup

We now describe the setup and experimental evaluation of our auto-
mated exploration frameworkMInGLE.

We evaluate the framework with eleven applications from the media
domain, listed in Table 4.2. The applications are extracted from the bench-
mark suites OpenCV [12], Mediabench II [24] and MiBench [30]. The two
rightmost columns list the maximum bits needed for input and output data.

The target architecture is an in-order Intel Atom with a tightly-coupled
DSFU, as described in Section 2.3.2 (Chapter 2). The DSFU accesses both
the integer and SIMD/XMM register files with a latency that depends on the
access type and operation. This specialized unit also has private registers:
16 128-bit for input data and 32 64-bit for output. We determine the size
of the register files with the maximum size needed among the benchmarks
in Table 4.2, which in this case is 2048 bits for both input and output data.
Before starting any CI computation, data is moved into the input registers
from the core’s register files, and once the computation is completed the
results are written back. Note that, for any CI, the extra cycles required to
reading and writing its data are considered as part of the total latency for

Partially Similar Domain-Specific Instructions 81

calculating speedup values.
In the Candidates Extraction step of the framework, we first identify hot

regions of code with the LLVM profiler [42] and extract the CI functiona-
lity in C code. We synthesize high-level CI descriptions with Vivado HLS
2013.3 [62] to obtain the circuit design cycles and area consumption. To
be able to examine the area and speedup trade-offs illustrated in Table 4.1,
we apply different unrolling factors to the CIs: none, 2, 4, and 8. The tar-
get FPGA is a Xilinx Virtex 7 (XC7VX690T) that runs at 400 MHz. DSFU
power estimations are obtained with the Xilinx Power Estimator (XPE). We
compile the target applications with LLVM-Clang with an unrolling factor
of 8, automatic vectorization, and optimization −O2 as the baseline. Soft-
ware cycles are measured with the Sniper simulator [15], with changes to
accurately simulate an Intel Atom processor running at 1.6 GHz. Thus, the
DSFU runs 4× slower than the baseline processor. Power measurements on
Sniper are obtained with McPAT [43]. We run two different versions of the
code on Sniper: the original application for baseline comparison, and the
application with the code accelerated by the CIs marked in assembly code
for functional simulation. Unrolled, non-vectorized code sequences in the
LLVM IR are analyzed in step Canonicalization to generate the polynomials
for the Merging Diagrams, which are built with the support of the symbolic
algebra and calculus part of Sage [57]. In stepMerged CI Generation, we use
the Fastcluster library [49] for hierarchical clustering, and feed cycles and
power data into the models of Section 4.6.3 to obtain results. The interface
for the CPLEX optimizer [36] in the Selection step is OpenOpt [40].

4.9.2. Results and Discussion

We now present experiments and results to assess how well our frame-
work can identify CIs to be accelerated by a DSFU in hardware, measuring
both speedup and improvement in EDP across various areas.

Figure 4.4 presents a comparison of the different configurations of our
framework, with DSFU area on the x-axis expressed as a percentage of the
Virtex 7’s area, and the average performance speedup across the domain
on the y-axis. Figure 4.5 shows the same comparison, but this time with
average EDP improvement on the y-axis. Dashed lines show improvements
achieved when we use CIs targeting code within basic blocks. At the larger
areas, performance improvement reaches a maximum of 1.48× and EDP
improvement goes up to 1.67× the baseline. We compare this to the solid
lines in the figures, which target code regions across basic blocks. In this
case, speedup reaches a maximum of 1.98× and EDP improvement goes up
to 3.35×. Considering regions with multiple basic blocks gives us a signifi-

82 Chapter 4

Figure 4.4: Average speedup versus percentage of area occupancy of the DSFU for
exact and partial matching methods, targeting one or many basic blocks.

Figure 4.5: Average EDP improvement versus percentage of area occupancy of the
DSFU for exact and partial matching methods, targeting one or many basic blocks.

Partially Similar Domain-Specific Instructions 83

cant boost in both performance and energy efficiency, because we are able
to accelerate 31%more statically counted body loops than within one basic
block. Also, CIs across basic blocks cover 41% more dynamic instructions
on average than CIs generated for within basic blocks. Exploring CIs across
basic blocks covers more code, expands the acceleration opportunities, and
thus achieves higher speedups.

In the same figures, we analyze the efficacy of exact versus partial mat-
ching by comparing blue and orange lines, respectively. Note that partial
matching choices include all those CIs matched with exact, and then addi-
tional CIs that could be partially matched. We start seeing a difference
around 0.5% of the area across basic blocks, noting that partial matching
achieves larger speedups and EDP improvements as compared to exact mat-
ching, given the same area. For instance, with a limited area budget (1.8%),
we observe a speedup of 1.88× and an EDP improvement of 3.04× when
using partially matched CIs, while with exact matching we obtain a speedup
of 1.73× and an EDP improvement of 2.53×. At 2.2% of the area, the EDP
improvement difference is more noticeable, 2.57× against 3.25×. Alterna-
tively, we see that for a given EDP improvement, partial matching saves
area. For an EDP improvement of 3×, exact matching takes 4% of the area,
whereas partial matching takes only 1.8% of the area: a savings of 55% of
the chip’s reconfigurable area. This is important as the area available for the
reconfigurable DSFU in a low-end processor like the one evaluated would
be much less than the area available in a Virtex 7.

Figures 4.6 and 4.7 show results for speedup and EDP improvement, res-
pectively, for each benchmark at the limited area (1.8%) discussed above,
comparing exact and partial matching across basic blocks. As our selec-
tion optimizes for EDP, we see larger EDP gains than speedup gains, when
going from exact to partial matching. The speedup difference is moderate
because of our selection objective; for instance, a power-hungry CI with
high speedup but low energy efficiency will not be selected. Looking at the
EDP of particular benchmarks, only two benchmarks marginally suffer a
speedup and energy efficiency reduction: djpeg and optflow. In this case, a
CI variant with lower speedup than the one for exact is selected; the perfor-
mance of optflow slightly decreases to have place to allocate a different CI
for another benchmark. However, most benchmarks have a significant im-
provement in their performance and EDP. For instance, the energy efficiency
of cjpeg improves from 1.06× to 2.38×, for susan, it goes from 8.88× to
10.42×, and rawdaudio gets 4.76× with exact matching and 6.28× with
partial matching. The average of all EDP improvements with partial mat-
ching is positive and therefore fair to all applications. Partial similarities
shrink the area needed for the DSFU, which is key to energy efficiency. For

84 Chapter 4

Figure 4.6: Speedup for each benchmark at a limited implementation area (1.8%)
across basic blocks.

Figure 4.7: EDP improvement for each benchmark at a limited implementation
area (1.8%) across basic blocks.

Partially Similar Domain-Specific Instructions 85

example, at this discussed area percentage, using partial matching we select
a CI that targets hot regions in seven different benchmarks, which results in
an area reduction of 80% compared to using exact matching.

4.10. Summary

This chapter presents contributions 1B (Identification of partially simi-
lar custom instructions) and 2B (Domain-specific energy-efficient selection).
We describe a methodology and framework to automatically extract CIs to
accelerate a domain of applications, ultimately selecting those that achieve
the highest performance improvements and energy efficiency when acce-
lerated. To do so, we explore the design space of tightly-integrated confi-
gurable functional units of limited size that accelerate applications across
a domain. The presented MInGLE framework converts code sequences at
the loop body level into CIs, considering several implementations for each
of them. CIs are further transformed into a canonical representation, the
Merging Diagram, which facilitates fast similarity detection keeping search
space tractable. We then cluster CIs to be able to find partially-matching
sequences to minimize specialized area. Our experimental results with 11
media benchmarks show that looking across basic blocks achieves a speedup
of 1.98× and an EDP improvement of 3.35×, a significant gain over look-
ing within a single basic block (speedup of 1.48× and EDP improvement
of 1.67×). Across basic blocks, partial matching compared against exact
matching is crucial for achieving larger performance (1.88× versus 1.73×)
and EDP improvements (3.04× versus 2.53×) for a limited hardware area
(1.8%). At very low areas, however, the gains are not noticeable. We ex-
plore new techniques that deal with that issue in the next chapter.

5
Fragments of Domain-Specific

Instructions

5.1. Introduction

In the last two chapters, we explored the design of CIs that augment a
general-purpose processor to accelerate an application domain. We found
that domain-specific CIs deliver higher speedup than application-specific
ones at realistic implementation areas. In order to expand the accelera-
ting opportunities and to minimize specialized area, we identified partially-
matching CIs across basic blocks, and integrated energy-efficiency into our
selection method. However, when the area available to implement the CIs
on is very small, domain-specialized CI gains are limited.

We are interested in exploiting these small areas, since the implemen-
tation space for DSFUs has to be treated as an expensive commodity; it is
not only reusability that drives domain-specific specialization, but also the
optimal use of the available area. With a shrunk circuit we can either decide
to add more functionality, or to benefit from a lower-power design.

Therefore, in this chapter, we extend previous techniques to expand the
CIs’ usage and gains with minimal extra overhead. To do so, we add a
new analysis step that detects fragments of CIs. The technique is critical
to improve reutilization of hardware at the most limited areas, because we
partially reuse an already merged CI cluster, with minimal additional over-

88 Chapter 5

head.
We integrate the new CI fragment analysis within the automated frame-

work MInGLE+, to strengthen the design of CIs across applications from a
domain. Our techniques still tractably generate a non-exponential search
space with merging and fragments generation. The framework selects CIs
that have been exact-matched, partially-matched and matched with frag-
ments that fit into a particular hardware area, maximizing energy efficiency
and speedup across the applications. We compare the effectiveness of all
matching configurations across and within basic blocks across areas, and
we evaluate different design parameters of the framework.

The rest of this chapter is organized as follows: Section 5.2 explains
the motivation behind the main contribution of this chapter. Section 5.3
introduces the framework in which the CIs are created. Section 5.4 presents
a new matching technique with CI fragments, Section 5.5 explains the new
distance calculation, and Section 5.6 includes the new selection strategy. For
the evaluation, Section 5.7 presents results with several applications of the
media domain, and Section 5.8 closes this chapter with the summary.

5.2. Motivation

Partially-matched CIs may have enough operators to implement small
parts of other CIs without a substantial increase in logic components. How-
ever, the clustering strategy that we use do not directly expose this potential
improvement.

Consider the clustering dendrogram of Figure 5.1 that organizes a hie-
rarchy of CI similarities. Baseline CIs are located at level 0, while merged
CIs start from level 1 and go upwards from more to less similarity degree.
At each new level, two CIs from lower levels are merged. In the merging
process, the distance (dist) between CIs is evaluated to determine which
pair of CIs merge in the next upper level. Each one of the merged CIs has
an overhead from multiplexer switches represented as MUX, and a number
of saved cycles and new area placed in adjacent boxes.

Each one of the N baseline CIs is composed of one or several fragments,
that we define as computation blocks that can be separated from the CI
without incurring structural problems. Although those computation blocks
can overlap, in this example, the internal CI operations covered by each
fragment are fixed for illustrative purposes. Also, to simplify the example,
we consider that each CI has only one variant. For instance, the only variant
of CI_1, at level 0, is composed of fragments F1_A and F1_B. The partial
merging explained in Chapter 4 merges whole CIs, based on increasing dis-
tance. With that method, we first obtain a new merged CI_2+ 3 at level 1

Fragm
en

ts
o
f
D
o
m
ain

-Specific
In
structio

n
s

8
9

m
or

e

 s
im
ila
rit
y

 l
es

s

. . .

+

CI_1 CI_2 CI_3 CI_N

CI_2+3

F1_A F2_A F3_A FN_A

CI_1+2+3

CI_2+3+F1_B

saved cycles{2,3,1_B}
merged area{2,3,1_B,MUX}

saved cycles{2,3}
merged area{2,3,MUX}

saved cycles{1,2,3}
merged area{1,2,3,MUX}

Merged CI with
fragments

level 2

level 1

level 0

dist = 0.125

dist = 0.325

Merged CIs without fragments

Figure 5.1: Motivational example of partial merging without and with CI fragments.

90 Chapter 5

and then CI_1+ 2+ 3 at level 2. With each new merged CI, we obtain a
speedup based on the combined saved cycles, and a new area that includes
non-common operations, merged common computations, and the switching
logic overhead (MUX).

However, consider CI_1+ 2+ 3 and its fragments at level 2, product
of merging CI_1 with CI_2+ 3. Fragment F1_B from CI_1 is completely
merged with CI_2+ 3, avoiding a significant area increase. In contrast,
fragment F1_A, also from CI_1, is fully incorporated at a substantial area
increase. Consequently, we can argue that if we merge only one of the
fragments, we could obtain savings in cycles at a low area cost. This is
what CI_2+ 3+F1_B on the right of the figure illustrates (Merged CI with
fragments). If we merge only fragment F1_B from CI_1 with CI_2+ 3,
the area increase from additional switching logic (extra) will be negligible,
while performance will improve due to being able to accelerate more code
(F1_B).

5.3. MInGLE+ Framework

We adopt the same baseline processor as in Chapter 4: an in-order Intel
Atom modified accordingly to Figure 2.4. CIs execute on a DSFU that reads
and writes data from the processor’s register files. Data transfers are there-
fore completely decoupled from the CIs’ execution, which is multi-cycle,
with variable latency, and not parallel with the processor’s functional units.

We follow the same naming conventions as in Chapter 4, thus a CI
is the high-level representation of a loop body or inline function that can
be accelerated in hardware, and CI variants or only variants are distinct
implementations of a CI. Additionally, variants with fragments are also
different implementations of a CI that also include fragments.

Figure 5.2 shows the high-level representation of the MInGLE+ auto-
mated framework, composed of five steps. The framework follows a similar
flow as the framework described in Section 4.3. However, a new component
is added after the Merged CIs Generation, which is the main contribution
of this chapter. The new Step 4, CI Fragment Generation, implements a
new method to obtain larger improvements in performance and energy effi-
ciency given the small hardware areas available, which we explain in the
following section.

To adapt the CIs to the fragment recognition step, we modified the Dis-
tance calculation, step 3.1, that obtains the pairwise distances that measure
similarities between CIs (Section 5.5). We also changed the objective func-
tion of the relabeled Step 5, CI Selection (Section 5.6), to fit the best CI con-
figuration that includes fragments into a limited area to save energy and

Fragm
en

ts
o
f
D
o
m
ain

-Specific
In
structio

n
s

9
1

Figure 5.2: MInGLE+ automated framework for the implementation and generation of partially-merged CIs with fragments.

92 Chapter 5

improve performance across the domain.

5.4. Generation of Custom Instruction Fragments

We call CI fragments a variation of partially matched CIs that will not
include the full original CI, but parts (fragments) of it. This kind of matching
is aimed at improving reutilization of hardware at the most limited areas.
With CI fragments we can partially reuse an already merged CI cluster for
CIs that were initially not included in that cluster, with minimum additional
overhead. We obtain CI fragments in the CI Fragments Generation step of
the MInGLE+ framework.

There are some conditions to specify how suitable CI fragments are
found:

The size of a CI fragment is at most the same as the CI that matches,
which is generally much bigger. Therefore, for a given merged CI, we
can have several fragments from different applications matching.

Operations included in a fragment do not depend on excluded ones,
to avoid a convexity violation [37], or circular dependency between
operations that could result in wrong scheduling.

CI fragments should not add logic to perform computations, but they
can add some additional overhead for switching circuits. They also
may have extra cycles to transfer data and the total number of saved
cycles are probably less than if the full CI was included. All this addi-
tional overhead and reduced gains are carefully weighed to determine
if a CI fragment is worth including.

We can create CI fragments using CIs from any level of the dendro-
gram, either with exact or with partial similarities.

Starting the fragment search from a CI configuration, merged or not
merged, that implements a set of CIs C , we will only consider adding
fragments from variants not included in C .

Under these conditions, note that fragments of a given CI differ depen-
ding on the matching target, therefore their area coverage and saved cycles
vary across solutions.

Algorithm 2 lists the pseudo-code that detects fruitful fragments to aug-
ment the initial set of solutions generated after the hierarchical clustering.
We evaluate against each solution the possible matches of any CI variant,
represented as an MD, that is not yet part of the solution. We start with

Fragments of Domain-Specific Instructions 93

Algorithm 2: Fragment Matching
input : Merged DiagramsMDs, merged clustering solutionsMS ,

threshold
output: SolutionsMSF

1 Array MSF←−MS
2 for Sol ∈MS do
3 Candidates←− ∅
4 for md ∈MDs do
5 if CI(md) ! Sol then
6 FM←− ∅
7 for WholeFrag ∈md do
8 FM←

FM ∪GetMatchesOneWay(WholeFrag,Sol)
9 end
10 if matches(FM) > threshold then
11 EDPImprov← GetEDPImprovement(FM)
12 Candidates← Candidates ∪ < FM ,

EDPImprov >
13 end

14 end

15 end
16 BestCandidates← FilterCIV ariant(Candidates)
17 NewSols← CreateSolutions(BestCandidates)
18 MSF←MSF ∪NewSols
19 end
20 return MSF

the clustering solutions MS, that are the base to the new solution set in-
cluding fragments (MSF). For each MD evaluated, we obtain the fragment
matches (FM) separately evaluating the sequence of solutions that lead to
each output (lines 6 − 9). Then, we can easily limit the fragment matches
to the boundaries of a certain output to control the convexity of the se-
lected operations. With the function GetMatchesOneWay, we perform a
matching as explained in Section 5.5. In this case, we are only interested in
knowing the coverage of each valid, whole fragment (WholeFrag) within
sol. In lines 10 − 13, we evaluate if the normalized amount of matching
between a fragment and a CI reaches a user-defined threshold. If it does,
an estimation of the expected EDP improvement is calculated, and the frag-

94 Chapter 5

ments of that CI variant are considered to be included. As several variants
of the same CI could be in the set of candidates, we filter them based on
the best estimated EDP improvement in line 16. Finally, in the next line,
we create a new solution structure with updated information about the area
and the CI fragments that it includes, again applying the Performance and
Energy Model step.

5.5. Distance and Matching Calculation

We modify the Distance Calculation step of Merged CIs Generation (3.1
in Figure 5.2), to measure the similarities among CIs and to also use the
calculation for finding CI fragments.

For each pair of MDs of variants that do not implement the same CI,
CIX and CIY , we compare them using the previously built global diagrams
(explained in Section 4.5.2) to still compute distances fast. Thus, based on
the pre-built global diagrams, we obtain the number of AugTED-operations
and LinBDD-branches in CIX that do not match with those in CIY , namely
nMX , and vice versa, nMY .

However, looking at how fragments could match, we identify three
different types of matches with MDs, which are perfect, hidden and with
overhead:

Within MDs, a subdiagram S with nodes < v1, . . . , vn > and edges
< e1, . . . , en > has a perfect match with another MD subdiagram S ′

with nodes < v′1, . . . , v
′
n > and edges < e′1, . . . , e

′
n > if their labels and

edge types match exactly.

A hidden match is identified if the types of the outgoing edges of
nodes vz and v

′
z match and are connected to subdiagrams with a per-

fect match.

A match with overhead identifies only nodes that represent the same
operations, but that do not share the same computational structure
and would need a multiplexer to be shared. MoX and MoY are then
the number of nodes of CIX and CIY , respectively, with the same
operations but with that extra overhead.

As matches with overhead incur on area cost, we count them in the dis-
similarity metric. We also count the number of total AugTED and LinBDD
nodes that each MD variant has: TotX and TotY . Then, we compute the

Fragments of Domain-Specific Instructions 95

distance δ as:

δ (CIX,CIY) = average

⎛

⎜

⎜

⎜

⎜

⎝

MoX
2 +nMX

TotX
,
MoY
2 +nMY)

TotY

⎞

⎟

⎟

⎟

⎟

⎠

. (5.1)

We use the same methodology for the function GetMatchesOneWay of
Algorithm 2. In this case, we define a base MD Sol, and the potential MD
fragment f and we obtain the matching information as described above.
However, the distance value δ′ in this case will be:

δ′ (Sol, f) =

Mof
2 +nMf

Totf
, (5.2)

withMof matches of f with overhead, nMf the non-matching subdiagram
nodes, and Totf the total nodes of f . Apart from the distance δ′ , the mat-
ching information is also passed along to the CI fragments generation.

5.6. Custom Instruction Selection with Fragments

In the last CI Selection step ofMInGLE+, we again choose the best fitting
CI configuration for a given hardware area. As explained in Section 4.7, we
model this step as a Knapsack problem, trying to fit n CI variants, merged
and not merged, with fragments included and not included, within a limited
hardware area A. Each ci candidate still has a value vi , and a hardware
occupancy hwi .

Using MILP to solve the problem, the area constraint is:

n
∑

i=0

ci × hwi ≤ A. (5.3)

The additional requirement of each CI being selected only once still
holds, but it is expanded with fragments. Now we not only have different
variant implementations for each CI due to distinct HLS compiler optimiza-
tions or to merging, but we also include CIs with partially added fragments.
Thus, we have to follow the same rule of invalidating a CI for further selec-
tion once a variant or only a fragment of that CI are selected. We do so by
defining the constraint:

m
∑

i=0

vf i ≤ 1, (5.4)

with vf i as the high-level CI that can be implemented by m CI variants and
variants with fragments.

96 Chapter 5

The objective function, related to the overall energy-efficiency is:

n
∑

i=1

ci ×σ_EDPi →max. (5.5)

The metric σ_EDPi is computed as:

σ_EDPi =
B

∑

j

∥σ_EDPij∥, (5.6)

where B is the number of applications that the currently considered variant
targets, and ∥σ_EDPij∥ is the original application j’s EDP minus the EDP
with the variant, normalized to the observed maximum for that application.
In this new definition of σ_EDPi , we have simplified the equation with res-
pect to that in Section 4.7, eliminating the part that involved area savings. If
the area is involved, partially-matched fragments are prioritized because the
area portion is larger, and those with fragments, with less area impact, are
not selected. Thus, with the new metric we aim to select CIs with fragments
when it is possible to maximize area savings with a low overhead.

5.7. Evaluation

5.7.1. Experimental Setup

The setup information of MInGLE+ is the same as in Chapter 4. We
refer to Section 4.9.1 for details about the tools and platforms used.

We evaluate the framework with eleven applications from the media do-
main, that are listed in Table 5.1. For each one of the benchmarks in the first
column, in the second column we show the number of CIs that can accele-
rate hot loops found across basic blocks. The third column lists the number
of CI variants or distinct implementations, for several unrolling factors; only
those implementations that yield some performance improvement are con-
sidered. The fourth column shows the percentage of dynamic instructions
covered if all the CIs were selected. For all benchmarks we cover more than
45% of dynamic instructions. Such a large code coverage is key for perfor-
mance improvement, and achieved easier with CIs that cover regions across
basic blocks. Benchmark cjpeg has the highest number of CIs and variants;
however, the highest coverage of dynamic instructions corresponds to su-
san. The two rightmost columns list the number of merged CIs generated
with partial matching and matching with fragments, respectively. All CIs
obtained with exact matching are contained in the partial matching results,

Fragments of Domain-Specific Instructions 97

Benchmark #CIs #variants % dyn. ins. Partial Fragments

cjpeg 4 16 81.6% 461 2890

djpeg 3 12 45.3% 434 1756

gsmdec 1 4 70.8% 399 2281

gsmenc 2 7 56.5% 406 1788

mpeg2enc 3 6 45.4% 364 2084

optflow 2 7 49.5% 440 2130

rawcaudio 1 4 87.0% 402 2078

rawdaudio 1 4 85.2% 410 2841

susan 1 4 95.4% 427 2825

tmndec 3 4 87.2% 401 2282

tmnenc 2 6 50.6% 385 2632

Table 5.1: For each application, number of CIs and CI variants considered, the
percentage of dynamic instructions covered by them, and the number of candidates
found with partial matching and matching with fragments for regions across basic

blocks.

and partial matching is a subset of matching with fragments. The threshold
of similarity matching with fragments is set at 50%, as we discuss in more
detail in Section 5.7.2.2.

5.7.2. Results

We first compare different techniques implemented in the framework to
identify CIs across and inside basic blocks to be accelerated by a DSFU in
hardware, measuring both speedup and improvement in EDP across vari-
ous area settings. We subsequently evaluate the effect of different threshold
values on fragment matching. Finally, we present results of the shared hard-
ware area characterization when we use different matching techniques.

98 Chapter 5

Figure 5.3: Average speedups (y-axis), against increasing area percentages (x-axis),
for exact and partial matching, and matching with fragments, across and within

the basic block level.

5.7.2.1. Speedup and EDP Improvement

Figures 5.3 and 5.4 present a comparison of different configurations that
the framework generates for the benchmarks in Table 5.1, with DSFU area
on the x-axis expressed as a percentage of the Virtex 7’s area. Figure 5.3
shows the average performance speedup and Figure 5.4 the average EDP
improvement across the domain on the y-axis. Speedup and EDP improve-
ment are calculated with respect to the baseline processor. Lines marked
with 1 BB show improvements achieved when we use CIs targeting code
within basic blocks. At the largest areas, performance improvement reaches
a maximum of 1.48× and EDP improvement goes up to 1.74× the baseline.
We compare this to the lines marked with Region in the figures, which target
code regions across basic blocks. In this case, speedup reaches a maximum
of 2.09× and EDP improvement goes up to 3.84×, which reassures that
considering regions with multiple basic blocks gives us a significant boost
in both performance and energy efficiency.

In the same figures, we analyze the efficacy of exact matching, partial
matching and matching with fragments by comparing those lines marked
as Region. Note that partial matching choices include all those CIs matched

Fragments of Domain-Specific Instructions 99

Figure 5.4: Average EDP improvements (y-axis), against increasing area
percentages (x-axis), for exact and partial matching, and matching with

fragments, across and within the basic block level.

with exact, and then additional CIs that could be partially matched. The
same case applies for matching with fragments, with partial matching choi-
ces included among newly generated ones. In the case of partial matching,
we start seeing a difference around 0.5% of the area across basic blocks, no-
ting that partial matching achieves larger speedups and EDP improvements
as compared to exact matching, given the same area. For instance, with a
limited area budget (1.8%), we observe a speedup of 1.88× and an EDP
improvement of 3.04× when using partially matched CIs, while with exact
matching we obtain a speedup of 1.73× and an EDP improvement of 2.53×.
At 2.2% of the area, the EDP improvement difference is more noticeable,
2.57× against 3.25×. Alternatively, for a given EDP improvement, partial
matching saves area. For instance, for an EDP improvement of 3×, exact
matching takes 4% of the area, whereas partial matching takes only 1.8%
of the area: a savings of 55% of the chip’s reconfigurable area. Matching
with fragments, though, outperforms previous techniques from very limited
areas. With only 1% of the Virtex 7’s area, we have a speedup of 2× and
EDP improvement of 3.65×, clearly higher than the same values for partial
matching, 1.63× and 2.35×, respectively. Matching with fragments for CIs

100 Chapter 5

Figure 5.5: EDP improvement for each benchmark, up to the 5% of the area, with
CIs selected across basic blocks with fragments, partial matching and exact

matching.

across basic blocks helps to reach the best speedup and energy efficiency at
larger areas. However, the most important feature of matching with frag-
ments is to enable high performance at smaller areas either within or across
basic blocks. Hence, matching with fragments uses area more effectively; a
speedup of 1.96× is achieved with fragments at 0.75% of the area, in con-
trast with the 2.5% area needed with partial matching to achieve the same
speedup. This is important as the area available for the reconfigurable DSFU
in a low-end processor like the one evaluated would be much less than the
area available in a Virtex 7. As a rule of thumb, an Atom FPGA implemen-
tation [61] takes about 85% of the Virtex 5 LX330 that has roughly 25% of
the capacity of the Virtex 7.

Figure 5.5 presents a graph for each benchmark with a range of area
percentages dedicated to the CIs on the x-axis, and EDP improvement on
the y-axis. Here, we only include CIs across basic blocks. The results of

Fragments of Domain-Specific Instructions 101

matching with fragments use a threshold of 50%, which we discuss in detail
in the next section. Each point on the graphs represents a group of selected
CIs that uses a particular area. Only some area values are displayed, with
a stride of 0.5%. Note that each benchmark has a different y-axis scale for
readability. The average of all applications is shown in the top left graph.

As we pointed out before, matching with fragments is, on average, the
most effective technique at finding domain-specific CIs. This technique
achieves higher EDP improvement at smaller areas, always increasing the
speedup faster than the other two techniques. All but three benchmarks
show the best efficiency with fragments regardless of the area. We can ob-
serve, though, that for djpeg, gsmenc and susan, between 0.5% and 1.5%
of the area, solutions with fragments yield lower efficiency than with partial
matching. In the case of djpeg, even at higher areas, the EDP improvement
of the three methods overlaps. This is due to the benchmark’s great depen-
dency on application-specific CIs, with very low sharing rates in all the CIs
generated. Regarding gsmenc and susan, although the selected fragments
at low area improve the EDP, they cannot reach the gains of CIs that cover
the full body loop, and not only parts of it. However, for the other eight
benchmarks, matching with fragments is clearly the best choice, since we
are able to cover more code with less area. For instance, CIs that could
give more than 10× EDP improvement to cjpeg are not selected with par-
tial matching because of unavailable area resources. With fragments, there
is virtually more area available from the low overhead costs of including a
new fragment, hence better performing CI variants can be selected.

5.7.2.2. Threshold Analysis

We recall the user-defined threshold for fragment matching from Sec-
tion 5.4 as the value that establishes the minimum percentage of matching
operations of a fragment with respect to the evaluated CI, in order to gene-
rate a new CI that includes both the evaluated CI and the fragment. Figure
5.6 presents a comparison of solutions with different threshold values, with
area percentage on the x-axis up to 2% and the average EDP improvement
across the domain on the y-axis. The legend shows the thresholds that go
from 90% to 10% of matching. A higher threshold corresponds to a higher
similarity. The CI candidates with a given threshold include all those CIs
from higher thresholds. For instance, a threshold of 70% also includes the
CIs of thresholds 80% and 90%. We observe that up to 0.8% of the area,
10% threshold obtains the highest EDP improvement. However, from that
area onwards, thresholds up to 50% yield the same EDP improvement and,
from 1.3% of the area, thresholds 60% and 70% join the efficiency ceiling.

102 Chapter 5

Figure 5.6: Percentage of area (x-axis) versus average EDP improvement (y-axis)
for the matching with fragments for different thresholds.

The EDP improvement with a threshold of 90% at 2% of the area equals
the one achieved with partial matching (no fragments). At larger areas, we
have room to choose bigger variants that provide the full CI acceleration
instead of fragments that do not give the maximum efficiency. Also, frag-
ments with 90% similarity matching are more difficult to find than those
with lower thresholds and therefore scarcer.

The threshold level has an immediate effect on the number of CI candi-
dates in the selection pool and the runtime of the selection process, which
is shown in Table 5.2. Data in the table refer to the selection step for 1%
of the area. For each threshold percentage (T), we first list the number of
candidates considered for selection and the percentage increase with respect
to the previous row. We also list the time in seconds to solve the selection
problem with the pool of candidates and, again, percentage increases. In the
last column we list the EDP improvement achieved. Note that, for different
areas, the number of CI candidates varies because some CIs are pre-filtered
by area occupancy; if their area is greater than the maximum area targeted,
they will not be considered. Also note that, as the number of candidates
of a given threshold includes those of higher ones, the amount of candi-
dates increases as the threshold value decreases. The time to solve increases
linearly with the number of candidates; the largest difference in both the

Fragments of Domain-Specific Instructions 103

T
Candidates Time to solve EDP

improvementnum. % inc. secs. % inc.

90 363 – 24.4 – 2.64×

80 390 +7.4 26.5 +8.6 2.94×

70 456 +16.9 27.4 +3.4 2.94×

60 581 +27.4 33.7 +22.9 3.19×

50 633 +8.9 35.9 +6.5 3.64×

40 923 +45.8 52.4 +45.9 3.67×

30 1056 +14.4 59.3 +13.2 3.67×

20 2117 +100.4 125.5 +111.6 3.67×

10 2263 +6.9 135.3 +7.8 3.67×

Table 5.2: Number of candidates in the selection step and time to solve the selection
problem for different thresholds (T) using matching with fragments, for 1% of the

area.

amount of CIs considered and seconds to solve happens when changing the
threshold from 30% to 20%, showing that smaller fragments are more fre-
quent than larger ones. However, the EDP at those low thresholds is not
better than thresholds of 40−50% because larger fragments achieve better
EDP, and the threshold is related to the size of the fragment. Thus, com-
paring the problem size and time to solve of a 50%-threshold against the
lowest thresholds, we can conclude that the problem complexity increase of
the latter has no advantage because similar CIs are chosen.

5.7.2.3. Sharing Characterization

In this last analysis, we evaluate how area is shared among CIs to un-
derstand the high gains that matching with fragments provides. Figures 5.7
and 5.8 show two graphs that display the increasing percentage of the Vir-
tex 7 occupancy (up to 5%) of different CI configurations on the x-axis
versus the normalized percentage of LUTs on the y-axis, broken down by
non-shared operators, shared operators and multiplexer overhead for cir-
cuit sharing. The CI configurations target all the applications in Table 5.1.

104 Chapter 5

Figure 5.7: Characterization of shared FPGA hardware for different area
utilizations with partial matching.

Figure 5.8: Characterization of shared FPGA hardware for different area
utilizations with fragments.

Fragments of Domain-Specific Instructions 105

The graph in Figure 5.7 shows the characterization for partial matching,
whereas the graph on Figure 5.8 shows that of matching with fragments.

First, we observe that, for partial matching, the CI configuration with
the smallest area (0.2%) does not share any of the CIs included. At that
small area, the cost for merging CI variants is too high to compete against
lighter application-specific CIs. In contrast, matching with fragments de-
votes 80% of the LUTs of the smallest configuration to shared resources.
We find the maximum percentage of shared circuits at the smallest areas,
which explains why the configurations with CI fragments are more effi-
cient than those without. The percentage of overhead due to multiplexers is
more noticeable at lower areas also, correlated with the amount of shared
resources. Although at larger area utilizations the sharing levels decrease,
they are steadily higher than those for partial matching, where the sharing
percentages are around 30% on average.

5.8. Summary

This chapter presents our last contribution 1C (Identification of custom
instruction fragments), which we implement within MInGLE+, an auto-
mated framework that extracts CIs from a domain of applications that are
executed on a DSFU. We aim to select CIs that improve performance and
energy efficiency for all the target applications, without substantially com-
promising any of them. Hence, we propose techniques to perform partial
matching of CIs based on their similarity. Our techniques here build on top
of the work of the previous chapter, now focusing on getting large bene-
fits for DSFUs with very limited areas. Therefore, we introduce an analysis
step that detects fragments of CIs that can use the existing merged clus-
ters with minimal extra overhead. Our experimental results with eleven
media benchmarks show that the new matching technique with fragments
achieves a speedup of 2.1× and an EDP improvement of 3.8×, on average,
across basic blocks, while within a basic block we obtain a speedup of 1.5×
and EDP improvement of 1.7×. Compared to partially matched CIs, CIs
with fragments are key for achieving larger performance (2× versus 1.6×)
and EDP improvements (3.6× versus 2.4×) for a limited hardware area
(1%). This means that we achieve a particular energy efficiency with a
greatly reduced hardware area. The work presented in this chapter, com-
plemented with the analysis and techniques from Chapters 3 and 4, shows
the applicability of introducing configurable accelerators with limited area
inside embedded processors. We demonstrate the viability of accelerating
many applications from a domain, improving the system’s performance and
energy efficiency.

6
Conclusion

6.1. Overview

Hardware specialization has gained attention over the past few years
in an effort to improve performance and energy-efficiency at the end of
Dennard scaling. However, an application-specific processor delivers high
performance for that specific application only, and is costly to manufacture.
In contrast, domain-specific acceleration may deliver better overall system
performance when different applications run on the custom device, and may
be more economically viable by targeting a larger market. In addition, the
design of custom instructions (CIs) enables a fast way of creating specialized
hardware from the extension of a general-purpose processor. CIs run on
specialized functional units, which are an area-efficient sort of hardware
specialization, extending a processor with minimal impact on the existing
design. The memory hierarchy is maintained, and although the amount
of data that can be processed at once is limited, hardware extensions are
more easily managed, and energy consumption can be controlled to not be
increased over the original baseline.

Although domain-specific CIs stand as a plausible option for accelera-
tion design, the differences among coding styles across applications compli-
cate the task of finding patterns that can be executed by a single CI. There-
fore, we propose using a canonical representation, the Taylor Expansion
Diagram (TED), to identify CIs that are functionally similar. Compared to

108 Conclusion

the commonly used Directed Acyclic Graph (DAG) representation, TEDs
are more effective at identifying those functional equivalences among se-
quences of code within and across applications. We also propose a Hybrid
representation, which uses TEDs when it is possible, based on the nature of
the computation, and otherwise uses DAG.

Additionally, we propose four scoring heuristics to quickly compare and
rank CIs in the selection phase, which is known to be an NP-complete
problem. These heuristics rank potential configurations of groups of CIs
to smooth the gains obtained across applications, making them suitable for
domain-specific acceleration.

We combine the functional equivalence identification and the scoring
heuristics in our framework FuSInG, which allows a design space explo-
ration of new acceleration designs through performance and area estima-
tion. With the framework, we evaluate the proposed methodologies using a
set of application benchmarks from the media domain. We first explore the
effectiveness of a canonical representation for the design of domain-specific
CIs. While TED’s canonical representation does not lead to better results
than DAG with code sequences within the same application, it is key to
achieving higher speedups when generating domain-specific CIs. As indi-
vidual applications are coded following the same style, the benefit of a ca-
nonical representation is unnoticeable, as opposed to CIs across applications
with different code styles. In the domain-specific case, we find that Hybrid
and TED techniques perform very similarly. Hybrid is, though, the most ef-
fective technique, achieving higher speedups at smaller areas and increasing
the speedup faster as area increases than only TED or DAG. The main ad-
vantage of the Hybrid technique is that it tries to identify identical CIs using
TED first, and when it cannot find any more, it complements the identifi-
cation using DAG. Furthermore, we evaluate the behavior of the heuristic
selection techniques. We observe that, from all four, the random-scaled
sharing technique performs best on average, since it maximizes the overall
performance across applications. Also, we explore the trade-offs of different
SFU configurations to optimize full-system performance across applications
subject to area constraints. We compare configurations with application-
specific only, domain-specific only, or both application- and domain-specific
CIs. We find that, while application-specific CIs result in the highest pos-
sible performance at large or unbounded core areas, considering domain-
specific CIs next to application-specific CIs yields the highest speedup at
realistic, smaller core areas. In addition, we cross-validate the results by
looking at the performance of non-analyzed applications that run upon a
machine configured with a set of CIs for a particular application domain.
We demonstrate that the identified CIs are effective for previously unseen

Conclusion 109

applications within the same domain, making specialization more generally
applicable. These findings underline the need for domain-specific instruc-
tions for practical and flexible hardware specialization.

In order to achieve high and balanced speedups with domain-specific
CIs, reusability across applications is a critical factor. However, targeting
code sections beyond the basic block level to achieve higher speedups re-
sults in not enough exact equivalences to target several applications with a
single CI. Therefore, to improve the code coverage, we propose a new ca-
nonical representation of code sequences across basic blocks, the Merging
Diagram. This representation is partly based on the TED-DAG Hybrid tech-
nique, and its structure facilitates the identification of partial similarities.
We also introduce a clustering-based partial matching of CIs, that we merge,
calculating their potential performance and energy improvement.

Also, having confirmed the suitability of the CI selection in an appli-
cation domain, we introduce energy efficiency as a new parameter to take
into account, since in the context of devices with limited power-budgets,
focusing only on performance could introduce power-hungry CIs. We then
propose a constraint-based selection mechanism that, with a novel objec-
tive function, balances speedup and energy efficiency across an application
domain.

These techniques expand the opportunity for CIs with a limited area
budget inside embedded processors to accelerate several applications from a
domain, improving the system’s energy efficiency. We evaluate our claims
with MInGLE, an automated framework that converts code sequences at
the loop body level into CIs, considering several implementations for each
of them. CIs are further transformed into Merging Diagrams, and clustered
to find partially-matching sequences to minimize specialized area.

Experimental results with a set of media benchmarks show that looking
across basic blocks achieves a speedup of 1.98× and an EDP improvement of
3.35×, a significant gain over looking within a single basic block (speedup
of 1.48× and EDP improvement of 1.67×). Improvements in both perfor-
mance and EDP across basic blocks are due to the ability to cover 41%more
dynamic instructions on average, which expands the acceleration opportu-
nities. Furthermore, across basic blocks, partial matching achieves larger
speedups and EDP improvements as compared to exact matching, given the
same area. For example, for a limited hardware area (1.8%), partial mat-
ching achieves better speedup than exact matching (1.88× versus 1.73×)
and EDP improvements (3.04× versus 2.53×). Alternatively, for a given
EDP improvement, partial matching saves area, which is important as the
area available to implement the CIs in a low-power processor is very lim-
ited.

110 Conclusion

Our previous results show that partially-similar domain-specific CIs out-
perform application-specific ones when the area for implementation is over
a given threshold. However, at small areas, application-specific CIs are still
dominant, since the overhead added when two CIs are merged overrides
the potential gains. Consequently, we extend the CI merging of MInGLE
with an analysis step that detects fragments of CIs that can use the exis-
ting merged clusters with minimal extra overhead. With CI fragments we
can improve reutilization of hardware at the most limited areas, because we
partially reuse an already merged CI cluster. Experimental results show that
the newmatching technique with fragments achieves a speedup of 2.1× and
an EDP improvement of 3.8×, on average, across basic blocks, while within
a basic block we obtain a speedup of 1.5× and EDP improvement of 1.7×.
Comparing matching techniques across basic blocks, matching with frag-
ments outperforms previously proposed techniques, at very limited areas.
With only 1% of the area, we see a speedup of 2× and EDP improvement of
3.65×, clearly higher than the same values for partial matching, 1.63× and
2.35×, respectively. Matching with fragments uses area more effectively;
a speedup of 1.96× is achieved with fragments at 0.75% of the area, in
contrast with the 2.5% area needed with partial matching. As there is vir-
tually more area available from the low overhead costs of including a new
fragment, better performing CIs can be selected.

The results presented in this dissertation show the applicability of in-
troducing configurable accelerators within limited area inside low-power
processors to accelerate many applications from a domain, improving the
system’s performance and energy efficiency.

6.2. Future work

The techniques for domain-specific acceleration proposed in this disser-
tation could be extended and adapted to new environments.

In order to improve performance, we could broaden the coverage of CIs
beyond the loop body level. For example, the analysis phase might try to
identify a coarser type of CI than body loops, possibly at the function level.
However, finding similarities across larger sequences of code might pose a
problem, once again due to the disparities of coding strategies across appli-
cations. That said, a new canonical representation at the algorithmic level,
conscious of data structures, and acting as a functional intermediate repre-
sentation, could help with the similarity identification. With a beyond-loop-
level type of CI, memory transfers should be included, which might imply
architectural changes to allow more direct memory connections to the SFU.
To improve the similarity matching, we could also consider approximate

Conclusion 111

computing approaches, such as relaxing type constraints to be able to gene-
ralize more CIs across applications.

To extend the applicability of the techniques presented in this disserta-
tion, instead of an off-line analysis and generation of CIs, we could do both
the identification of CIs and configuration of SFUs at runtime. Runtime
configuration would need architectural support to raise an exception and
stop the program, flushing and updating the SFU. Identification at runtime
is a more interesting and difficult problem. We could approach it, for ins-
tance, by establishing an initial baseline of CIs that could evolve and change
depending on real workload dynamics.

Additionally, we could extrapolate the domain-specific design methods
to other, not yet explored, architectures. For instance, the design and im-
plementation of non-tightly-coupled accelerator types would be of interest,
because off-core accelerators would achieve better performance gains. This
direction would be related to the expansion of CIs beyond the loop body,
since full functions could be offloaded onto accelerators to minimize com-
munication with the main processor. However, without changing the granu-
larity of the CIs, we could start extending the current work for out-of-order
processors, which in the latest years are growing as the default choice in
embedded devices. Also, we could evaluate our techniques in other high-
performance environments, like multiprocessors. Using an Intel Atom pro-
totype with 2-way SMT, we can have up to 4 simultaneous threads with a
dual-core machine. We could study the architectural possibilities on such
a platform, and the possible impact of introducing CIs in the system. For
example, in a scenario of two applications running concurrently on the same
chip, we could design exact duplicates of the DSFUs as it is done in Atom
for the rest of the FUs. Alternatively, we could design different kinds of
DSFUs in each processor, and a scheduler would choose on which one of
them a process that uses CIs would run.

Bibliography

[1] Altera Corporation. “Altera Nios II Processor”. 2015. url: https :
//www.altera.com/products/processors/overview.html.

[2] Altera Corporation. “Nios II custom instruction user guide”. Tech. rep.
2011.

[3] W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing, and R. Mahn-
kopf. “More-than-Moore white paper”. In: International Technical
Roadmap for Semiconductors (2010).

[4] M. Arnold and H. Corporaal. “Designing domain-specific processors”.
In: Proceedings of the 9th International Symposium on Hardware/-
Software Codesign. ACM, 2001, pp. 61–66.

[5] N. Arora, K. Chandramohan, N. Pothineni, and A. Kumar. “Instruc-
tion selection in ASIP synthesis using functional matching”. In: Inter-
national Conference on VLSI Design (2010), pp. 146–151.

[6] K. Atasu, O. Mencer, W. Luk, C. Ozturan, and G. Dundar. “Fast
custom instruction identification by convex subgraph enumeration”.
In: Proceedings of the 2008 International Conference on Application-
Specific Systems, Architectures and Processors. ASAP ’08. IEEE Com-
puter Society, 2008, pp. 1–6.

[7] K. Atasu, W. Luk, O. Mencer, C. Ozturan, and G. Dundar. “FISH: Fast
Instruction SyntHesis for Custom Processors”. In: IEEE Transactions
on Very Large Scale Integration (VLSI) Systems (2012), pp. 52–65.

[8] L. Bauer, M. Shafique, and J. Henkel. “Concepts, architectures, and
run-time systems for efficient and adaptive reconfigurable proce-
ssors”. In: Adaptive Hardware and Systems (AHS). IEEE. 2011, pp. 80–
87.

[9] L. Bauer, M. Shafique, and J. Henkel. “Run-time instruction set selec-
tion in a transmutable embedded processor”. In: Proceedings of the
45th annual Design Automation Conference. ACM. 2008, pp. 56–61.

114 Bibliography

[10] J. Benson, R. Cofell, C. Frericks, C.-H. Ho, V. Govindaraju, T.
Nowatzki, and K. Sankaralingam. “Design, integration and imple-
mentation of the DySER hardware accelerator into OpenSPARC”. In:
Proceedings of the 2012 IEEE 18th International Symposium on High-
Performance Computer Architecture. HPCA ’12. IEEE Computer So-
ciety, 2012, pp. 1–12.

[11] P. Biswas, N. Dutt, P. Ienne, and L. Pozzi. “Automatic identification of
application-specific functional units with architecturally visible sto-
rage”. In: Design, Automation, and Test in Europe (2006).

[12] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software
Tools (2000).

[13] R. Bryant. “Graph-based algorithms for boolean function manipula-
tion”. In: IEEE Transactions on Computers C-35.8 (1986), pp. 677–691.

[14] Canalys. “Smartphones overtake client PCs in 2011”. 2012. url: http:
//www.canalys.com/newsroom/smart- phones- overtake-

client-pcs-2011.

[15] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout. “An
evaluation of high-level mechanistic core models”. In: ACM Transac-
tions on Architecture and Code Optimization (TACO) (2014).

[16] J. E. Carrillo and P. Chow. “The effect of reconfigurable units in su-
perscalar processors”. In: Proceedings of the 2001 ACM/SIGDA Ninth
International Symposium on Field Programmable Gate Arrays. FPGA
’01. Monterey, California, USA: ACM, 2001, pp. 141–150.

[17] M. Ciesielski, P. Kalla, and S. Askar. “Taylor expansion diagrams:
a canonical representation for verification of data flow designs”. In:
IEEE Transactions on Computers 55.6 (2006), pp. 1188–1201.

[18] N. T. Clark, H. Zhong, and S. A. Mahlke. “Automated custom instruc-
tion generation for domain-specific processor acceleration”. In: IEEE
Transactions on Computers 54 (2005), pp. 1258 –1270.

[19] J. Cong, Y. Fan, G. Han, and Z. Zhang. “Application-specific instruc-
tion generation for configurable processor architectures”. In: Procee-
dings of the 2004 ACM/SIGDA 12th International Symposium on Field
Programmable Gate Arrays. FPGA ’04. Monterey, California, USA:
ACM, 2004, pp. 183–189.

Bibliography 115

[20] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and
A. R. LeBlanc. “Design of ion-implanted MOSFET’s with very small
physical dimensions”. In: IEEE Journal of Solid-State Circuits 9 (5 Oct.
1974), pp. 256–268.

[21] R Dimond, O Mencer, and W Luk. “Application-specific customisa-
tion of multi-threaded soft processors”. In: IEE Proceedings - Compu-
ters and Digital Techniques 153.3 (2006), pp. 173–180.

[22] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D.
Burger. “Dark silicon and the end of multicore scaling”. In: Procee-
dings of the 38th Annual International Symposium on Computer ar-
chitecture. ISCA ’11. San Jose, California, USA: ACM, 2011, pp. 365–
376.

[23] G. Estrin. “Organization of computer systems: the fixed plus variable
structure computer”. In: Papers Presented at the May 3-5, 1960, West-
ern Joint IRE-AIEE-ACM Computer Conference. IRE-AIEE-ACM ’60
(Western). San Francisco, California: ACM, 1960, pp. 33–40.

[24] J. E. Fritts, F. W. Steiling, J. A. Tucek, and W. Wolf. “MediaBench II
video: expediting the next generation of video systems research”. In:
Microprocessor and Microsystems 33.4 (June 2009), pp. 301–318.

[25] D. Gomez-Prado, Q. Ren, S. Askar, M. Ciesielski, and E. Boutillon.
“Variable ordering for taylor expansion diagrams”. In: Proceedings
of the High-Level Design Validation and Test Workshop, 2004. Ninth
IEEE International. HLDVT ’04. IEEE Computer Society, 2004, pp. 55–
59.

[26] R. Gonzalez. “A software-configurable processor architecture”. In:
IEEE Micro (2006), pp. 42–51.

[27] R. Gonzalez. “Xtensa: a configurable and extensible processor”. In:
IEEE Micro 20.2 (2000), pp. 60–70.

[28] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish, K.
Sankaralingam, and C. Kim. “Dyser: unifying functionality and para-
llelism specialization for energy-efficient computing”. In:Micro, IEEE
32.5 (2012), pp. 38–51.

[29] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August. “Bundled exe-
cution of recurring traces for energy-efficient general purpose pro-
cessing”. In: Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture. MICRO-44. Porto Alegre, Brazil,
2011, pp. 12–23.

116 Bibliography

[30] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. “MiBench: a free, commercially representative embed-
ded benchmark suite”. In: Proceedings of the Workload Characteri-
zation, 2001. WWC-4. 2001 IEEE International Workshop. WWC ’01.
IEEE Computer Society, 2001, pp. 3–14.

[31] M. Haaß, L. Bauer, and J. Henkel. “Automatic custom instruction
identification in memory streaming algorithms”. In: Proceedings of
the 2014 International Conference on Compilers, Architecture and
Synthesis for Embedded Systems. CASES ’14. New Delhi, India: ACM,
2014, 6:1–6:9.

[32] A. A. Hagberg, D. A. Schult, and P. J. Swart. “Exploring network
structure, dynamics, and function using NetworkX”. In: Proceedings
of the 7th Python in Science Conference (SciPy2008). Aug. 2008, pp. 11–
15.

[33] T. Halfhill. “Intel’s tiny Atom”. In: Microprocessor Report 22 (2008).

[34] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C.
Lee, S. Richardson, C. Kozyrakis, and M. Horowitz. “Understanding
sources of inefficiency in general-purpose chips”. In: Proceedings of
the 37th Annual International Symposium on Computer Architecture.
ISCA ’10. Saint-Malo, France: ACM, 2010, pp. 37–47.

[35] J. Hauser and J. Wawrzynek. “Garp: a MIPS processor with a recon-
figurable coprocessor”. In: Proceedings of the 5th Annual IEEE Sym-
posium on Field-Programmable Custom Computing Machines). IEEE
Computer Society, 1997, pp. 12–21.

[36] IBM. “ILOG CPLEX Optimizer”. 2015. url: http://www-01.ibm.
com/software/commerce/optimization/cplex- optimizer/

index.html.

[37] K. Karuri and R. Leupers. “A primer on ISA customization”. In: Appli-
cation Analysis Tools for ASIP Design. Springer New York, 2011,
pp. 93–109.

[38] R. Kastner, a. Kaplan, S. O. Memik, and E. Bozorgzadeh. “Instruction
generation for hybrid reconfigurable systems”. In: ACM Transactions
on Design Automation of Electronic Systems 7.4 (Oct. 2002), pp. 605–
627.

[39] K. Keutzer, S. Malik, and A. R. Newton. “From ASIC to ASIP: the next
design discontinuity”. In: Computer Design: VLSI in Computers and
Processors. IEEE. 2002, pp. 84–90.

Bibliography 117

[40] D. Kroshko. “OpenOpt: Free scientific-engineering software for ma-
thematical modeling and optimization”. 2007–2015. url: http://
www.openopt.org/.

[41] I. Kuon and J. Rose. “Measuring the gap between FPGAs and ASICs”.
In: IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 26 (2007), pp. 203–215.

[42] C. Lattner and V. Adve. “LLVM: a compilation framework for lifelong
program analysis & transformation”. In: Proceedings of the Interna-
tional Symposium on Code Generation and Optimization. CGO ’04.
Palo Alto, California: IEEE Computer Society, 2004, pp. 75–86.

[43] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi. “McPAT: an integrated power, area, and timing model-
ing framework for multicore and manycore architectures”. In: Pro-
ceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture. MICRO 42. New York, New York: ACM, 2009,
pp. 469–480.

[44] T. Li, Z. Sun, W. Jigang, and X. Lu. “Fast enumeration of maxi-
mal valid subgraphs for custom-instruction identification”. In: Pro-
ceedings of the 2009 International Conference on Compilers, Archi-
tecture, and Synthesis for Embedded Systems. CASES ’09. Grenoble,
France: ACM, 2009, pp. 29–36.

[45] a. Lodi, M. Toma, F. Campi, a. Cappelli, R. Canegallo, and R. Guer-
rieri. “A VLIW processor with reconfigurable instruction set for em-
bedded applications”. In: IEEE Journal of Solid-State Circuits 38.11
(Nov. 2003), pp. 1876–1886.

[46] K. Martin, C. Wolinski, K. Kuchcinski, A. Floch, and F. Charot. “Con-
straint Programming Approach to Reconfigurable Processor Exten-
sion Generation and Application Compilation”. In:ACM Transactions
on Reconfigurable Technology and Systems 5.2 (June 2012), pp. 1–38.

[47] B. Middha, A. Kumar, V. Raj, M. Balakrishnan, P. Ienne, and A. Gang-
war. “A Trimaran Based Framework for Exploring the Design Space
of VLIW ASIPs with Coarse Grain Functional Units”. In: In Procee-
dings of the 15th International Symposium on System Synthesis. 2002,
pp. 2–7.

[48] G. Moore. “Cramming more components onto integrated circuits”. In:
Electronics 38.8 (Apr. 1965), pp. 114–117.

118 Bibliography

[49] D. Müllner. “FASTCLUSTER: fast hierarchical, agglomerative clus-
tering routines for R and Python”. In: Journal of Statistical Software
53.9 (2013), pp. 1–18. url: http://www.jstatsoft.org/v53/i09/.

[50] A. C. Murray, R. V. Bennett, B. Franke, and N. Topham. “Code trans-
formation and instruction set extension”. In: ACM Transactions on
Embedded Computing Systems 8.4 (July 2009), pp. 1–31.

[51] Ofcom. “The Communications Market 2015: The market in context”.
2015. url: http://stakeholders.ofcom.org.uk/binaries/
research/cmr/cmr15/UK_1.pdf.

[52] L. Pozzi, K. Atasu, and P. Ienne. “Exact and approximate algorithms
for the extension of embedded processor instruction sets”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems 25.7 (July 2006), pp. 1209–1229.

[53] L. Pozzi and P. Ienne. “Exploiting pipelining to relax register-file port
constraints of instruction-set extensions”. In: Proceedings of the 2005
International Conference on Compilers, Architectures and Synthesis
for Embedded Systems. CASES ’05. San Francisco, California, USA:
ACM, 2005, pp. 2–10.

[54] C. Ralph and R. D. Wittig. “OneChip: An FPGA Processor With Re-
configurable Logic”. In: In IEEE Symposium on FPGAs for Custom
Computing Machines. 1995, pp. 126–135.

[55] R. Razdan and M. D. Smith. “A high-performance microarchitecture
with hardware-programmable functional units”. In: Proceedings of
the 27th Annual International Symposium on Microarchitecture - MI-
CRO 27 November (1994), pp. 172–180.

[56] SRISC. “Simply RISC S1 Core”. 2012. url: http : / / www .

simplyrisc.com/.

[57] W. Stein et al. “Sage Mathematics Software (Version 5.8)”. The Sage
Development Team. 2013. url: http://www.sagemath.org.

[58] Sun Microsystems. “OpenSPARC T1 Microarchitecture Specifica-
tion”. Tech. rep. 2008.

[59] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor. “Conservation cores: redu-
cing the energy of mature computations”. In: Proceedings of the Fif-
teenth Edition of ASPLOS on Architectural Support for Programming
Languages and Operating Systems. ASPLOS XV. Pittsburgh, Penn-
sylvania, USA: ACM, 2010, pp. 205–218.

Bibliography 119

[60] A. K. Verma, P. Brisk, and P. Ienne. “Rethinking custom ise iden-
tification: a new processor-agnostic method”. In: Proceedings of the
2007 International Conference on Compilers, Architecture, and Syn-
thesis for Embedded Systems. CASES ’07. Salzburg, Austria: ACM,
2007, pp. 125–134.

[61] P. H. Wang, J. D. Collins, C. T. Weaver, B. Kuttanna, S. Salamian,
G. N. Chinya, E. Schuchman, O. Schilling, T. Doil, S. Steibl, and H.
Wang. “Intel Atom processor core made FPGA-synthesizable”. In:
Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays. FPGA ’09. Monterey, California, USA:
ACM, 2009, pp. 209–218.

[62] Xilinx. “Accelerating Integration – Vivado High-Level Synthesis”.
2015. url: http://www.xilinx.com/products/design-tools/
vivado/integration.html.

[63] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee. “CHIMAERA:
A High-Performance Architecture with a Tightly-Coupled Recon-
figurable Functional Unit”. In: Proceedings of the 27th Annual In-
ternational Symposium on Computer Architecture. ACM Press, 2000,
pp. 225–235.

[64] P. Yu and T. Mitra. “Disjoint Pattern Enumeration for Custom Ins-
tructions Identification”. In: International Conference on Field Pro-
grammable Logic and Applications, 2007. FPL 2007. (2007), pp. 273 –
278.

[65] P. Yu and T. Mitra. “Scalable custom instructions identification for
instruction-set extensible processors”. In: Proceedings of the 2004 In-
ternational Conference on Compilers, Architecture, and Synthesis for
Embedded Systems. CASES ’04. Washington DC, USA: ACM, 2004,
pp. 69–78.

