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Abstract Coarse-Grained Reconfigurable Array (CGRA) architecturesaccelerate
the same inner loops that benefit from the high ILP support in VLIW architectures.
By executing non-loop code on other cores, however, CGRAs can focus on such
loops to execute them more efficiently. This chapter discusses the basic principles
of CGRAs, and the wide range of design options available to a CGRA designer,
covering a large number of existing CGRA designs. The impactof different options
on flexibility, performance, and power-efficiency is discussed, as well as the need
for compiler support. The ADRES CGRA design template is studied in more detail
as a use case to illustrate the need for design space exploration, for compiler support
and for the manual fine-tuning of source code.

1 Application Domain of Coarse-Grained Reconfigurable Arrays

Many embedded applications require high throughput, meaning that a large number
of computations needs to be performed every second. At the same time, the power
consumption of battery-operated devices needs to be minimized to increase their
autonomy. In general, the performance obtained on a programmable processor for a
certain application can be defined as the reciprocal of the application execution time.
Considering that most programs consist of a number of consecutive phasesP= [1, p]
with different characteristics, performance can be definedin terms of the operating
frequenciesfp, the instructions executed per cycleIPCp and the instruction counts
ICp of each phase, and in terms of the time overhead involved in switching between
the phasestp→p+1 as follows:
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1
performance

= execution time= ∑
p∈P

ICp

IPCp∗ fp
+ tp→p+1. (1)

The operating frequenciesfp cannot be increased infinitely because of power-
efficiency reasons. Alternatively, a designer can increasethe performance by de-
signing or selecting a system that can execute code at higherIPCs. In a power-
efficient architecture, a high IPC is reached for the most important phasesl ∈ L ⊂P,
while limiting their instruction countICl and reaching a sufficiently high, but still
power-efficient frequencyfl . Furthermore, the time overheadtp→p+1 as well as the
corresponding energy overhead of switching between the execution modes of con-
secutive phases should be minimized if such switching happens frequently. Note that
such switching only happens on hardware that supports multiple execution modes
in support of phases with different characteristics.

Course-Grained Reconfigurable Array (CGRA) accelerators aim for these goals
for the inner loops found in many digital signal processing (DSP) domains, includ-
ing multimedia and Software-Defined Radio (SDR) applications. Such applications
have traditionally employed Very Long Instruction Word (VLIW) architectures such
as the TriMedia 3270 [60] and the TI C64 [58], Application-Specific Integrated Cir-
cuits (ASICs), and Application-Specific Instruction Processors (ASIPs). To a large
degree, the reasons for running these applications on VLIW processors also ap-
ply for CGRAs. First of all, a large fraction of the computation time is spent in
manifest nested loops that perform computations on arrays of data and that can,
possibly through compiler transformations, provide a lot of Instruction-Level Par-
allelism (ILP). Secondly, most of those inner loops are relatively simple. When the
loops include conditional statements, this can be implement by means of predi-
cation [36] instead of with complex control flow. Furthermore, none or very few
loops contain multiple exits or continuation points in the form of, e.g.,break or
continue statements as in the C-language. Moreover, after inlining the loops are
free of function calls. Finally, the loops are not regular orhomogeneous enough
to benefit from vector computing, like on the EVP [59] or on Ardbeg [62]. When
there is enough regularity and Data-Level Parallelism (DLP) in the loops of an ap-
plication, vector computing can typically exploit it more efficiently than what can
be achieved by converting the DLP into ILP and exploiting that on a CGRA. So
in short, CGRAs (with limited DLP support) are ideally suited for applications of
which time-consuming parts have manifest behavior, large amounts of ILP and lim-
ited amounts of DLP.

In the remainder of this chapter, Section 2 presents the fundamental properties
of CGRAs. Section 3 gives an overview of the design options for CGRAs. This
overview help designers in evaluating whether or not CGRAs are suited for their
applications and their design requirements, and if so, which CGRA designs are most
suited. After the overview, Section 4 presents a case study on the ADRES CGRA
architecture. This study serves two purposes. First, it illustrates the extent to which
source code needs to be tuned to map well onto CGRA architectures. As we will
show, this is an important aspect of using CGRAs, even when good compiler sup-
port is available and when a very flexible CGRA is targeted, i.e., one that puts very
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Fig. 1 An example clustered VLIW architecture with two RFs and eight ISs. Solid directed edges
denote physical connections. Black and white small boxes denote input and output ports, respec-
tively. There is a one-to-one mapping between input and output ports and physical connections.

few restrictions on the loop bodies that it can accelerate. Secondly, our use case il-
lustrates how Design Space Exploration (DSE) is necessary to instantiate optimized
designs from parameterizable and customizable architecture templates such as the
ADRES architecture template. Some conclusions are drawn inSection 5.

2 CGRA Basics

CGRAs focus on the efficient execution of the type of loops discussed in the previ-
ous section. By neglecting non-loop code or outer-loop codethat is assumed to be
executed on other cores, CGRAs can take the VLIW principles for exploiting ILP in
loops a step further to consume less energy and deliver higher performance, without
compromising on available compiler support. Figures 1 and 2illustrate this.

Higher performance for high-ILP loops is obtained through two main fea-
tures that separate CGRA architectures from VLIW architectures. First, CGRA
architectures typically provide more Issue Slots (ISs) than typical VLIWs do.
In the CGRA literature some other commonly used terms to denote CGRA ISs
are Arithmetic-Logic Units (ALUs), Functional Units (FUs), or Processing El-
ements (PEs). Conceptually, these terms all denote the same: logic on which
an instruction can be executed, typically one per cycle. Forexample, a typical
ADRES [5, 6, 7, 15, 37, 39, 40, 41] CGRA consists of 16 ISs, whereas the TI C64
features 8 slots, and the NXP TriMedia features only 5 slots.The higher number
of ISs directly allows to reach higher IPCs, and hence higherperformance, as indi-
cated by Equation (1). To support these higher IPCs, the bandwidth to memory is
increased by having more load/store ISs than on a typical VLIW, and special mem-
ory hierarchies as found on ASIPs, ASICs, and other DSPs. These include FIFOs,
stream buffers, scratch-pad memories, etc. Secondly, CGRAarchitectures typically
provide a number of direct connections between the ISs that allow data to “flow”
from one IS to another without needing to pass data through a Register File (RF).
As a result, less register copy operations need to be executed in the ISs, which re-
duces the IC term in Equation (1) and frees ISs for more usefulcomputations.

Higher energy efficiency is obtained through several features. Because of the di-
rect connections between ISs, less data needs to be transferred into and out of RFs.
This saves considerable energy. Also, because the ISs are arranged into a 2D matrix,
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Fig. 2 Part (a) shows an example CGRA with 16 ISs and 4 RFs, in which dotted edges denote
conceptual connections that are implemented by physical connections and muxes as in part (b).

small RFs with few ports can be distributed in between the ISsas depicted in Fig-
ure 2. This contrasts with the many-ported RFs in (clustered) VLIW architectures,
which basically feature a one-dimensional design as depicted in Figure 1. The dis-
tributed CGRA RFs consume considerably less energy. Finally, by not supporting
control flow, the instruction memory organization can be simplified. In statically re-
configurable CGRAs, this memory is nothing more than a set of configuration bits
that remain fixed for the whole execution of a loop. Clearly this is very energy-
efficient. Other CGRAs, called dynamically reconfigurable CGRAs, feature a form
of distributed level-0 loop buffers [34] or other small controllers that fetch new
configurations every cycle from simple configuration buffers. To support loops that
include control flow and conditional operations, the compiler then replaces that con-
trol flow by data flow by means of predication [36] or other mechanisms. In this way
CGRAs differ from VLIW processors that typically feature a power-hungry com-
bination of an instruction cache, instruction decompression and decoding pipeline
stages and a non-trivial update mechanism of the program counter.

There are two main drawbacks to CGRA architectures. Firstly, because they can
only execute loops, they need to be coupled to other cores on which all other parts
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of the program are executed. In some designs, this coupling introduces run-time and
design-time overhead. Secondly, as clearly visible in the example CGRA of Fig-
ure 2, the interconnect structure of a CGRA is vastly more complex than that of
a VLIW. On a VLIW, scheduling an instruction in some IS automatically implies
the reservation of connections between the RF and the IS and of the corresponding
ports. On CGRAs, this is not the case. Because there is no one-to-one mapping be-
tween connections and input/output ports of ISs and RFs, connections need to be
reserved explicitly by the compiler or programmer togetherwith ISs, and the data
flow needs to be routed explicitly over the available connections. This can be done,
for example, by programming switches and multiplexors (a.k.a. muxes) explicitly,
like the ones depicted in Figure 2(b). Consequently more complex compiler technol-
ogy than that of VLIW compilers is needed to automate the mapping of code onto
a CGRA. Moreover, writing assembly code for CGRAs ranges from being very dif-
ficult to virtually impossible, depending on the type of reconfigurability and on the
form of processor control.

Having explained these fundamental concepts that differentiate CGRAs from
VLIWs, we can now also differentiate them from Field-Programmable Gate Arrays
(FPGAs), where the name CGRA actually comes from. Whereas FPGAs feature
bitwise logic in the form of Look-Up Tables (LUTs) and switches, CGRAs feature
more energy-efficient and area-conscious word-wide ISs, RFs and interconnections.
Hence the namecoarse-grained arrayarchitecture. As there are much fewer ISs on
a CGRA than there are LUTs on an FPGA, the number of bits required to configure
the CGRA ISs, muxes, and RF ports is typically orders of magnitude smaller than
on FPGAs. If this number becomes small enough, dynamic reconfiguration can be
possible every cycle. So in short, CGRAs can be seen as statically or dynamically
reconfigurable coarse-grained FPGAs, or as 2D, highly-clustered loop-only VLIWs
with direct interconnections between ISs that need to be programmed explicitly.

3 CGRA Design Space

The large design space of CGRA architectures features many design options. These
include the way in which the CGRA is coupled to a main processor, the type of
interconnections and computation resources used, the reconfigurability of the array,
the way in which the execution of the array is controlled, support for different forms
of parallelism, etc. This section discusses the most important design options and the
influence of the different options on important aspects suchas performance, power
efficiency, compiler friendliness and flexibility. In this context, higher flexibility
equals placing fewer restrictions on loop bodies that can bemapped onto a CGRA.

Our overview of design options is not exhaustive. Its scope is limited to the most
important features of CGRA architectures that feature a 2D array of ISs. However,
the distinction between 1D VLIWs and 2D CGRAs is anything butwell-defined.
The reason is that this distinction is not simply a layout issue, but one that also
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concerns the topology of the interconnects. Interestingly, this topology is precisely
one of the CGRA design options with a large design freedom.

3.1 Tight versus Loose Coupling

Some CGRA designs are coupled loosely to main processors. For example, Figure 3
depicts how the MorphoSys CGRA [35] is connected as an external accelerator to
a TinyRISC Central Processing Unit (CPU). The CPU is responsible for executing
non-loop code, for initiating DMA data transfers to and fromthe CGRA and the
buffers, and for initiating the operation of the CGRA itselfby means of special
instructions added to the TinyRISC ISA.

This type of design offers the advantage that the CGRA and themain CPU can be
designed independently, and that both can execute code concurrently, thus delivering
higher parallelism and higher performance. For example, using the double frame
buffers [35] depicted in Figure 3, the MorphoSys CGRA can be operating on data
in one buffer while the main CPU initiates the necessary DMA transfers to the other
buffer for the next loop or for the next set of loop iterations. One drawback is that
any data that needs to be transferred from non-loop code to loop code needs to
be transferred by means of DMA transfers. This can result in alarge overhead,
e.g., when frequent switching between non-loop code and loops with few iterations
occurs and when the loops consume scalar values computed by non-loop code.

By contrast, an ADRES CGRA is coupled tightly to its main CPU.A simplified
ADRES is depicted in Figure 4. Its main CPU is a VLIW consisting of the shared
RF and the top row of CGRA ISs. In the main CPU mode, this VLIW executes
instructions that are fetched from a VLIW instruction cacheand that operate on
data in the shared RF. The idle parts of the CGRA are then disabled by clock-gating
to save energy. By executing astart CGRA instruction, the processor switches to
CGRA mode in which the whole array, including the shared RF and the top row
of ISs, executes a loop for which it gets its configuration bits from a configuration
memory. This memory is omitted from the figure for the sake of simplicity.

The drawback of this tight coupling is that because the CGRA and the main pro-
cessor mode share resources, they cannot execute code concurrently. However, this
tight coupling also has advantages. Scalar values that havebeen computed in non-
loop code, can be passed from the main CPU to the CGRA without any overhead
because those values are already present in the shared RFs orin the shared memory
banks. Furthermore, using shared memories and an executionmodel of exclusive
execution in either main CPU or CGRA mode significantly easesthe automated
co-generation of main CPU code and of CGRA code in a compiler,and it avoids
the run-time overhead of transferring data. Finally, on theADRES CGRA, switch-
ing between the two modes takes only two cycles. Thus, the run-time overhead is
minimal.

Silicon Hive CGRAs [8, 9] do not feature a clear separation between the CGRA
accelerator and the main processor. Instead there is just a single processor that can
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Fig. 3 A TinyRISC main processor loosely coupled to a MorphoSys CGRA array. Note that the
main data memory (cache) is not shared and that no IS hardwareor registers is are shared between
the main processor and the CGRA. Thus, both can run concurrent threads.
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Fig. 4 A simplified picture of an ADRES architecture. In the main processor mode, the top row
of ISs operates like a VLIW on the data in the shared RF and in the data memories, fetching
instructions from an instruction cache. When the CGRA mode is initiated with a special instruction
in the main VLIW ISA, the whole array starts operating on datain the distributed RFs, in the shared
RF and in the data memories. The memory port in IS 0 is also shared between the two operating
modes. Because of the resource sharing, only one mode can be active at any point in time.

be programmed at different levels of ILP, i.e., at differentinstruction word widths.
This allows for a very simple programming model, with all theprogramming and
performance advantages of the tight coupling of ADRES. Compared to ADRES,
however, the lack of two distinctive modes makes it more difficult to implement
coarse-grained clock-gating or power-gating, i.e., gating of whole sets of ISs com-
bined instead of separate gating of individual ISs.

Somewhere in between loose and tight coupling is the PACT XPPdesign [44],
in which the array consist of simpler ISs that can operate like a true CGRA, as well
as of more complex ISs that are in fact full-featured small RISC processors that can
run independent threads in parallel with the CGRA.

As a general rule, looser coupling potentially enables moreThread-Level Paral-
lelism (TLP) and it allows for a larger design freedom. Tighter coupling can mini-
mize the per-thread run-time overhead as well as the compile-time overhead. This
is in fact no different from other multi-core or accelerator-based platforms.
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3.2 CGRA Control

There exist many different mechanisms to control how code gets executed on
CGRAs, i.e., to control which operation is issued on which ISat which time and
how data values are transferred from producing operations to consuming ones. Two
important aspects of CGRAs that drive different methods forcontrol are reconfig-
urability and scheduling. Both can be static or dynamic.

3.2.1 Reconfigurability

Some CGRAs, like ADRES, Silicon Hive, and MorphoSys are fully dynamically
reconfigurable: exactly one full reconfiguration takes place for every execution cy-
cle. Of course no reconfiguration takes places in cycles in which the whole array is
stalled. Such stalls can happen, e.g., because memory accesses take longer than ex-
pected in the schedule as a result of a cache miss or a memory bank access conflict.
This cycle-by-cycle reconfiguration is similar to the fetching of one VLIW instruc-
tion per cycle, but on these CGRAs the fetching is simpler as it only iterates through
a loop body existing of straight-line CGRA configurations without control flow.
Other CGRAs like the KressArray [24, 25, 26] are fully statically reconfigurable,
meaning that the CGRA is configured before a loop is entered, and no reconfigu-
ration takes place during the loop at all. Still other architectures feature a hybrid
reconfigurability. The RaPiD [14, 18] architecture features partial dynamic recon-
figurability, in which part of the bits are statically reconfigurable and another part
is dynamically reconfigurable and controlled by a small sequencer. Yet another ex-
ample is the PACT architecture, in which the CGRA itself can initiate events that
invoke (partial) reconfiguration. This reconfiguration consumes a significant amount
of time, however, so it is advised to avoid it if possible, andto use the CGRA as a
statically reconfigurable CGRA.

In statically reconfigured CGRAs, each resource performs a single task for the
whole duration of the loop. In that case, the mapping of software onto hardware
becomes purely spatial, as illustrated in Figure 5(a). In other words, the mapping
problem becomes one of placement and routing, in which instructions and data de-
pendencies between instructions have to mapped on a 2D arrayof resources. For
these CGRAs, compiler techniques similar to hardware synthesis techniques can be
used, as those used in FPGA placement and routing [3].

By contrast, dynamic reconfigurability enables the programmer to use hardware
resources for multiple different tasks during the execution of a loop or even during
the execution of a single loop iteration. In that case, the software mapping problem
becomes a spatial and temporal mapping problem, in which theoperations and data
transfers not only need to be placed and routed on and over thehardware resources,
but in which they also need to be scheduled. A contrived example of a temporal
mapping is depicted in Figure 5(b). Most compiler techniques [15, 17, 20, 39, 43,
45, 46] for these architectures also originate from the FPGAplacement and routing
world. For CGRAs, the array of resources is not treated as a 2Dspatial array, but as
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Fig. 5 Part (a) shows a spatial mapping of a sequence of four instructions on a statically reconfig-
urable 2x2 CGRA. Edges denote dependencies, with the edge from instruction 3 to instruction 0
denoting that instruction 0 from iterationi depends on instruction 3 from iterationi −1. So only
one out of four ISs is utilized per cycle. Part (b) shows a temporal mapping of the same code on a
dynamically reconfigurable CGRA with only one IS. The utilization is higher here, at 100%.

a 3D spatial-temporal array, in which the third dimension models time in the form
of execution cycles. Scheduling in this dimension is often based on techniques that
combine VLIW scheduling techniques such as modulo scheduling [31, 49], with
FPGA synthesis-based techniques [3]. Still other compilertechniques exist that are
based on constraint solving [55], or on integer-linear programming [1, 64].

The most important advantage of static reconfigurability isthe lack of reconfigu-
ration overhead, in particular in terms of power consumption. For that reason, large
arrays can be used that are still power-efficient. The disadvantage is that even in the
large arrays the amount of resources constrains which loopscan be mapped.

Dynamically reconfigurable CGRAs can overcome this problemby spreading
the computations of a loop iteration over multiple configurations. Thus a small dy-
namically reconfigurable array can execute larger loops. The loop size is then not
limited by the array size, but by the array size times the depth of the reconfiguration
memories. For reasons of power efficiency, this depth is alsolimited, typically to
tens or hundreds of configurations, which suffices for most ifnot all inner loops.

A potential disadvantage of dynamically reconfigurable CGRAs is the power
consumption of the configuration memories, even for small arrays, and of the con-
figuration fetching mechanism. The disadvantage can be tackled in different ways.
ADRES and MorphoSys tackle it by not allowing control flow in the loop bodies,
thus enabling the use of very simple, power-efficient configuration fetching tech-
niques similar to level-0 loop buffering [34]. Whenever control flow is found in
loop bodies, such as for conditional statements, this control flow then first needs to
be converted into data flow, for example by means of predication and hyperblock
formation [36]. While these techniques can introduce some initial overhead in the
code, this overhead typically will be more than compensatedby the fact that a more
efficient CGRA design can be used.

The MorphoSys design takes this reduction of the reconfiguration fetching logic
even further by limiting the supported code to Single Instruction Multiple Data
(SIMD) code. In the two supported SIMD modes, all ISs in a row or all ISs in a
column perform identical operations. As such only one IS configuration needs to
be fetched per row or column. As already mentioned, the RaPiDarchitecture limits
the number of configuration bits to be fetched by making only asmall part of the
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configuration dynamically reconfigurable. Kim et al. provide yet another solution
in which the configuration bits of one column in one cycle are reused for the next
column in the next cycle [30]. Furthermore, they also propose to reduce the power
consumption in the configuration memories by compressing the configurations [29].

Still, dynamically reconfigurable designs exist that put norestrictions on the code
to be executed, and that even allow control flow in the inner loops. The Silicon Hive
design is one such design. Unfortunately, no numbers on the power consumption
overhead of this design choice are publicly available.

A general rule is that a limited reconfigurability puts more constraints on the
types and sizes of loops that can be mapped. Which design provides the highest per-
formance or the highest energy efficiency depends, amongst others, on the variation
in loop complexity and loop size present in the applicationsto be mapped onto the
CGRA. With large statically reconfigurable CGRAs, it is onlypossible to achieve
high utilization for all loops in an application if all thoseloops have similar com-
plexity and size, or if they can be made so with loop transformations, and if the
iterations are not dependent on each other through long-latency dependency cycles
(as was the case in Figure 5). Dynamically reconfigurable CGRAs, by contrast, can
also achieve high average utilization over loops of varyingsizes and complexities,
and with inter-iteration dependencies. That way dynamically reconfigurable CGRAs
can achieve higher energy efficiency in the data path, at the expense of higher en-
ergy consumption in the control path. Which design option isbest thus also depends
on the process technology used, and in particular on the ability to perform clock or
power gating and on the ratio between active and passive power (a.k.a. leakage).

3.2.2 Scheduling and Issuing

Both with dynamic and with static reconfigurability, the execution of operations and
of data transfers needs to be controlled. This can be done statically in a compiler,
similar to the way in which operations from static code schedules are scheduled and
issued on VLIW processors [19], or dynamically, similar to the way in which out-
of-order processors issue instructions when their operands become available [54].
Many possible combinations of static and dynamic reconfiguration and of static and
dynamic scheduling exist.

A first class consists of dynamically scheduled, dynamically reconfigurable
CGRAs like the TRIPS architecture [23, 51]. For this architecture, the compiler de-
termines on which IS each operation is to be executed and overwhich connections
data is to be transferred from one IS to another. So the compiler performs placement
and routing. All scheduling (including the reconfiguration) is dynamic, however, as
in regular out-of-order superscalar processors [54]. TRIPS mainly targets general-
purpose applications, in which unpredictable control flow makes the generation of
high-quality static schedules difficult if not impossible.Such applications most of-
ten provide relatively limited ILP, for which large arrays of computational resources
are not efficient. So instead a small, dynamically reconfigurable array is used, for
which the run-time cost of dynamic reconfiguration and scheduling is acceptable.
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A second class of dynamically reconfigurable architecturesavoids the overhead
of dynamic scheduling by supporting VLIW-like static scheduling [19]. Instead of
doing the scheduling in hardware where the scheduling logicthen burns power, the
scheduling for ADRES, MorphoSys and Silicon Hive architectures is done by a
compiler. Compilers can do this efficiently for loops with regular, predictable be-
havior and high ILP, as found in many DSP applications. As forVLIW architec-
tures, software pipelining [31, 49] is a very important to expose the ILP in software
kernels, so most compiler techniques [15, 17, 20, 39, 43, 45,46] for statically
scheduled CGRAs implement some form of software pipelining.

A final class of CGRAs are the statically reconfigurable, dynamically scheduled
architectures, such as KressArray or PACT (neglecting the time-consuming partial
reconfigurability of the PACT). The compiler performs placement and routing, and
the code execution progress is guided by tokens or event signals that are passed
along with data. Thus the control is dynamic, and it is distributed over the token or
event path, similar to the way in which transport-triggeredarchitectures [13] oper-
ate. These statically reconfigurable CGRAs do not require software pipelining tech-
niques because there is no temporal mapping. Instead the spatial mapping and the
control implemented in the tokens or event signals implement a hardware pipeline.

We can conclude by noting that, as in other architecture paradigms such as VLIW
processing or superscalar out-of-order execution, dynamically scheduled CGRAs
can deliver higher performance than statically scheduled ones for control-intensive
code with unpredictable behavior. On dynamically scheduled CGRAs the code path
that gets executed in an iteration determines the executiontime of that iteration,
whereas on statically scheduled CGRAs, the combination of all possible execution
paths (including the slowest path which might be executed infrequently) determines
the execution time. Thus, dynamically scheduled CGRAs can provide higher per-
formance for some applications. However, the power efficiency will then typically
also be poor because more power will be consumed in the control path. Again, the
application domain determines which design option is most appropriate.

3.2.3 Thread-level and Data-level Parallelism

Another important aspect of control is the possibility to support different forms
of parallelism. Obviously, loosely-coupled CGRAs can operate in parallel with the
main CPU, but one can also try to use the CGRA resources to implement SIMD or
to run multiple threads concurrently within the CGRA.

When dynamic scheduling is implemented via distributed event-based control, as
in KressArray or PACT, implementing TLP is relatively simple and cheap. For small
enough loops of which the combined resource use fits on the CGRA, it suffices to
map independent thread controllers on different parts of the distributed control.

For architectures with centralized control, the only option to run threads in paral-
lel is to provide additional controllers or to extend the central controller, for example
to support parallel execution modes. While such extensionswill increase the power
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consumption of the controller, the newly supported modes might suit certain code
fragments better, thus saving in data path energy and configuration fetch energy.

The TRIPS controller supports four operation modes [51]. Inthe first mode, all
ISs cooperate for executing one thread. In the second mode, the four rows execute
four independent threads. In the third mode, fine-grained multi-threading [54] is
supported by time-multiplexing all ISs over multiple threads. Finally, in the fourth
mode each row executes the same operation on each of its ISs, thus implementing
SIMD in a similar, fetch-power-efficient manner as is done inthe two modes of the
MorphoSys design. Thus, for each loop or combination of loops in an application,
the TRIPS compiler can exploit the most suited form of parallelism.

The Raw architecture [57] is a hybrid between a many-core architecture and a
CGRA architecture in the sense that it does not feature a 2D array of ISs, but rather
a 2D array of tiles that each consist of a simple RISC processor. The tiles are con-
nected to each other via a mesh interconnect, and transporting data over this inter-
connect to neighboring tiles does not consume more time thanretrieving data from
the RF in the tile. Moreover, the control of the tiles is such that they can operate in-
dependently or synchronized in a lock-step mode. Thus, multiple tiles can cooperate
to form a dynamically reconfigurable CGRA. A programmer can hence partition the
2D array of tiles into several, potentially differently sized, CGRAs that each run an
independent thread. This provides very high flexibility to balance the available ILP
inside threads with the TLP of the combined threads.

Other architectures do not support (hardware) multi-threading within one CGRA
core at all, like the current ADRES and Silicon Hive. The firstsolution to run multi-
ple threads with these designs is to incorporate multiple CGRA accelerator cores in
a System-on-Chip (SoC). The advantage is then that each accelerator can be cus-
tomized for a certain class of loop kernels. Also, ADRES and Silicon Hive are
architecture templates, which enables CGRA designers to customize their CGRA
cores for the appropriate amount of DLP for each class of loopkernels, in the form
of SIMD or subwordparallelism.

Alternatively, TLP can be converted into ILP and DLP by combining, at compile-
time, kernels of multiple threads and by scheduling them together as one kernel, and
by selecting the appropriate combination of scheduled kernels at run time [52].

3.3 Interconnects and Register Files

3.3.1 Connections

A wide range of connections can connect the ISs of a CGRA with each other, and
with the RFs, other memories and IO ports. Buses, point-to-point connections, and
crossbars are all used in various combinations and in different topologies.

For example, some designs like MorphoSys and the most commonADRES
and Silicon Hive designs feature a densely connected mesh-network of point-to-
point interconnects in combination with sparser buses thatconnect ISs further apart.



Coarse-Grained Reconfigurable Array Architectures 13

Thus the number of long power-hungry connections is limited. Multiple studies of
point-to-point mesh-like interconnects as in Figure 10 have been published in the
past [7, 28, 32, 38]. Other designs like RaPiD feature a densenetwork of segmented
buses. Typically the use of crossbars is limited to very small instances because large
ones are too power-hungry. Fortunately, large crossbars are most often not needed,
because many application kernels can be implemented as systolic algorithms, which
map well onto mesh-like interconnects as found in systolic arrays [47].

Unlike crossbars and even busses, mesh-like networks of point-to-point connec-
tions scale better to large arrays without introducing too much delay or power con-
sumption. For statically reconfigurable CGRAs, this is beneficial. Buses and other
long interconnects connect whole rows or columns to complement short-distance
mesh-like interconnects. The negative effects that such long interconnects can have
on power consumption or on obtainable clock frequency can beavoided by segmen-
tation or by pipelining. In the latter case, pipelining latches are added along the con-
nections or in between muxes and ISs. Our experience, as presented in Section 4.2.2
is that this pipelining will not necessarily lead to lower IPCs in CGRAs. This is dif-
ferent from out-of-order or VLIW architectures, where deeper pipelining increases
the branch misprediction latency [54]. Instead at least some CGRA compilers suc-
ceed in exploiting the pipelining latches as temporary storage, rather than being
hampered by them. This is the case in compiler techniques like [15, 39] that are
based on FPGA synthesis methods in which RFs and pipelining latches are treated
as interconnection resources that span multiple cycles instead of as explicit storage
resources. This treatment naturally fits the 3D array modeling of resources along
two spatial dimensions and one temporal dimension. Consequently, those compiler
techniques can exploit pipelining latches naturally and similarly to using storage
space in distributed RFs.

3.3.2 Register Files

Compilers for CGRA architectures place operations in ISs, thus also scheduling
them, and route the data flow over the connections between theISs. Those connec-
tions may be direct connections, or latched connections, oreven connections that go
through RFs. Therefore most CGRA compilers treat RFs not as temporary storage,
but as interconnects that can span multiple cycles. Thus theRFs can be treated uni-
formly with the connections during routing. A direct consequence of this compiler
approach is that the design space freedom of interconnects extends to the placement
of RFs in between ISs. During the DSE for a specific CGRA instance in a CGRA
design template such as the ADRES or Silicon Hive templates,both the real con-
nections and the RFs have to be explored, and that has to be done together. Just like
the number of real interconnect wires and their topology, the size of RFs, their lo-
cation and their number of ports then contribute to the interconnectivity of the ISs.
We refer to [7, 38] for DSEs that study both RFs and interconnects.

Besides their size and ports, another important aspect is that RFs can be rotat-
ing [50]. The power and delay overhead of rotation is very small in distributed RFs,
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simply because these RFs are small themselves. Still they can provide an impor-
tant functionality. Consider a dynamically reconfigurableCGRA on which a loop is
executed that iterates overx configurations, i.e., each iteration takesx cycles. That
means that for a write port of an RF, everyx cycles the same address bits get fetched
from the configuration memory to configure the address set at that port. In other
words, everyx cycles a new value is being written into the register specified by that
same address. This implies that values can stay in the same register for at mostx
cycles; then they are overwritten by a new value from the nextiteration. In many
loops, however, some values have a life time that spans more thanx cycles, because
it spans multiple loop iterations. To avoid having to insertadditional data transfers
in the loop schedules, rotating registers can be used. At theend of every iteration of
the loop, all values in rotating registers rotate into another register to make sure that
old values are copied to where they are not overwritten by newer values.

3.3.3 Predicates, Events and Tokens

To complete this overview on CGRA interconnects, we want to point out that it can
be very useful to have interconnects of different widths. The data path width can be
as small as 8 bits or as wide as 64 or 128 bits. The latter widthsare typically used to
pass SIMD data. However, as not all data is SIMD data, not all paths need to have the
full width. Moreover, most CGRA designs and the code mapped onto them feature
signals that are only one or a few bits wide, such as predicates or events or tokens.
Using the full-width datapath for these narrow signals wastes resources. Hence it is
often useful to add a second, narrow datapath for control signals like tokens or events
and for predicates. How dense that narrow datapath has to be,depends on the type of
loops one wants to run on the CGRA. For example, multimedia coding and decoding
typically includes more conditional code than SDR basebandprocessing. Hence the
design of, e.g., different ADRES architectures for multimedia and for SDR resulted
in different predicate data paths being used, as illustrated in Section 4.2.1.

At this point, it should be noted that the use of predicates isfundamentally not
that different from the use of events or tokens. In KressArray or PACT, events and
tokens are used, amongst others, to determine at run time which data is selected to
be used later in the loop. For example, for a C expression likex + (a>b) ? y
+ z : y - z one IS will first compute the additiony+z, one IS will compute
the subtractiony-z, and one IS will compute the greater-than conditiona>b. The
result of the latter computation generates an event that will be fed to a multiplexor
to select which of the two other computer valuesy+z andy-z is transferred to
yet another IS on which the addition tox will be performed. Unlike the muxes in
Figure 2(b) that are controlled by bits fetched from the configuration memory, those
event-controlled multiplexors are controlled by the data path.

In the ADRES architecture, the predicates guard the operations in ISs, and they
serve as enable signals for RF write ports. Furthermore, they are also used to con-
trol specialselect operations that pass one of two input operands to the output
port of an IS. Fundamentally, an event-controlled multiplexor performs exactly the
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Fig. 6 Four different structures of ISs proposed in the literature. Part (a) displays a fixed Mor-
phoSys IS, including its local RF. Part (b) displays the fully customizable ADRES IS, that can
connect to shared or non-shared local RFs. Part (c) depicts the IS structure proposed by Galanis et
al. [22], and (d) depicts a row of four ISs that share a multiplier [27].

same function as theselect operation. So the difference between events or to-
kens and predicates is really only that the former term and implementation are used
in dynamically scheduled designs, while the latter term is used in static schedules.

3.4 Computational Resources

Issue slots are the computational resources of CGRAs. Over the last decade, nu-
merous designs of such issue slots have been proposed, underdifferent names, that
include PEs, FUs, ALUs, and flexible computation components. Figure 6 depicts
some of them. For all of the possible designs, it is importantto know the context
in which these ISs have to operate, such as the interconnectsconnecting them, the
control type of the CGRA, etc.

Figure 6(a) depicts the IS of a MorphoSys CGRA. All 64 ISs in this homoge-
neous CGRA are identical and include their own local RF. Thisis no surprise, as the
two MorphoSys SIMD modes (see Section 3.2.1) require that all ISs of a row or of
a column execute the same instruction, which clearly implies homogeneous ISs.
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In contrast, almost all features of an ADRES IS, as depicted in Figure 6(b), can
be chosen at design time, and can be different for each IS in a CGRA that then be-
comes heterogeneous: the number of ports, whether or not there are latches between
the multiplexors and the combinatorial logic that implements the operations, the set
of operations supported by each IS, how the local registers file are connected to ISs
and possibly shared between ISs, etc. As long as the design instantiates the ADRES
template, the ADRES tool flow will be able to synthesize the architecture and to gen-
erate code for it. A similar design philosophy is followed bythe Silicon Hive tools.
Of course this requires more generic compiler techniques than those that generate
code for the predetermined homogeneous ISs of, e.g., the MorphoSys CGRA. Given
the state of the art in compiler technology for this type of architecture, the advan-
tages of this freedom are (1) the possibility to design different instances optimized
for certain application domains, (2) the knowledge that thefeatures of those de-
signs will be exploited, and (3) the ability to compile loopsthat feature other forms
of ILP than DLP. DLP can still be supported, of course, by simply incorporating
SIMD-capable (a.k.a. subwordparallel) ISs of, e.g., 4x16 bits wide. The drawback
is this design freedom is that, at least with the current compiler techniques, these
techniques are so generic that they miss optimization opportunities because they
do not exploit regularity in the designed architectures. They do not exploit it for
speeding up the compilation, nor do they for producing better schedules.

Figure 6(c) depicts the IS proposed by Galanis et al. [22]. Again, all ISs are iden-
tical. In contrast to the MorphoSys design, however, these ISs consist of several
ALUs and multipliers with direct connections between them and their local RFs.
These direct connections within each IS can take care of a lotof data transfers, thus
freeing time on the shared bus-based interconnect that connects all ISs. Thus, the
local interconnect within each IS compensates for the lack of a scaling global inter-
connect. One advantage of this approach is that the compilercan be tuned specif-
ically for this combination of local and global connectionsand for the fact that it
does not need to support heterogeneous ISs. Whether or not this type of design is
more power-efficient than that of CGRAs with more design freedom and potentially
more heterogeneity is unclear at this point in time. At least, we know of no studies
from which, e.g., utilization numbers can be derived that allow us to compare the
two approaches.

With respect to utilization, it is clear that the designs of Figure 6(a) and 6(b) will
only be utilized well if a lot of multiplications need to be performed. Otherwise,
the area-consuming multipliers remain unused. To work around this problem, the
sharing of large resources such as multipliers between ISs has been proposed in the
RSPA CGRA design [27]. Figure 6(d) depicts one row of ISs thatdo not contain
multipliers internally, but that are connected to a shared multiplier through switches
and a shared bus. The advantage of this design, compared to anADRES design
in which each row features 3 pure ALU ISs and 1 ALU+MULT IS, is that this
design allows the compiler to schedule multiplications in all ISs (albeit only one
per cycle), whereas this scheduling freedom would be limited to one IS slot in the
ADRES design. To allow this schedule freedom, however, a significant amount of
resources in the form of switches and a special-purpose bus need to be added to the
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row. While we lack experimental data to back up this claim, wefirmly believe that
a similar increase in schedule freedom can be obtained in theaforementioned 3+1
ADRES design by simply extending an existing ADRES interconnect with a similar
amount of additional resources. In the ADRES design, that extension would then
also be beneficial to operations other than multiplications.

The optimal number of ISs for a CGRA depends on the application domain, on
the reconfigurability, as well as on the IS functionality andon the DLP available in
the form of subwordparallelism. As illustrated in section 4.2.2, a typical ADRES
would consist of 4x4 ISs [6, 37]. TRIPS also features 4x4 ISs.MorphoSys provides
8x8 ISs, but that is because the DLP is implemented as SIMD over multiple ISs,
rather than as subwordparallelism within ISs. In our experience, scaling dynamically
reconfigurable CGRA architectures such as ADRES to very large arrays (8x8 or
larger) does not make sense even with scalable interconnects like mesh or mesh-
plus interconnects. Even in loops with high ILP, utilization drops significantly on
such large arrays [42]. It is not yet clear what is causing this lower utilization, and
there might be several reasons. These include a lack of memory bandwidth, the
possibility that the compiler techniques [15, 39] simply donot scale to such large
arrays, or the fact that the relative connectivity in such large arrays is lower. Simply
stated, when a mesh interconnects all ISs to their neighbors, each IS not on the side
of the array is connected to 4 other ISs out of 16 in a 4x4 array,i.e., to 25% of all
ISs, while it is connected to 4 out of 64 ISs on an 8x8 array, i.e., to 6.25% of all ISs.

To finalize this section, we want to mention that, just like inany other type of
processor, it makes sense to pipeline complex combinatorial logic, e.g., as found
in multipliers. There are no fundamental problems to do this, and it can lead to
significant increases in utilization and clock frequency.

3.5 Memory Hierarchies

CGRAs have a large number of ISs that need to be fed with data from the memory.
Therefore the data memory sub-system is a crucial part of theCGRA design. Many
reconfigurable architectures feature multiple independent memory banks or blocks
to achieve high data bandwidth. Exploiting those automatically in a compiler has
not yet been fully solved.

The RAW architecture features an independent memory block in each tile for
which Barua developed a method called modulo unrolling to disambiguate and as-
sign data to different banks [2]. However, this technique can only handle array ref-
erences through affine index expression on loop induction variables.

MorphoSys has a 256-bit wide frame buffer between the main memory and a
reconfigurable array to feed data to the ISs operating in SIMDmode [35]. The ef-
ficient use of such a wide memory depends by and large on manualdata placement
and operation scheduling. Similar techniques for wide loads and stores have also
been proposed in regular VLIW architectures for reducing power [48]. However,
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this requires the programmer or compiler to perform the datalayout in memory in
order to exploit the large bandwidth between the level-1 memory and the datapath.

Both Silicon Hive and PACT feature distributed memory blocks without a cross-
bar. A Silicon Hive programmer has to specify the allocationof data to the memory
for the compiler to bind the appropriate load/store operations to the corresponding
memories. Silicon Hive also supports the possibility of interfacing the memory or
system bus using FIFO interfaces. This is efficient for streaming processing but is
difficult to interface when the data needs to be buffered on incase of data reuse.

The ADRES architecture template provides a parameterizable Data Memory
Queue (DMQ) interface to each of the different single-ported, interleaved level-
1 scratch-pad memory banks [6]. The DMQ interface is responsible for resolving
bank access conflicts, i.e., when multiple load/store ISs would want to access the
same bank at the same time. Connecting all load/store ISs to all banks through a
conflict resolution mechanism allows maximal freedom for data access patterns and
also maximal freedom on the data layout in memory. The potential disadvantage of
such conflict resolution is that it increases the latency of load operations. In soft-
ware pipelined code, however, increasing the individual latency of instructions most
often does not have a negative effect on the schedule quality, because the compiler
can hide those latencies in the software pipeline. In the main processor VLIW mode
of an ADRES, that accesses the same memories in code not software-pipelined, the
conflict resolution is disabled to obtain shorter access latencies.

3.6 Compiler Support

Apart from the specific algorithms used to compile code, the major distinctions be-
tween the different existing compiler techniques relate towhether or not they sup-
port static scheduling, whether or not they support dynamicreconfiguration, whether
or not they rely on special programming languages, and whether or not they are lim-
ited to specific hardware properties. Because most compilerresearch has been done
to generate static schedules for CGRAs, we focus on those in this section. As al-
ready indicated in Sections 3.2.1 and 3.2.2, many algorithms are based on FPGA
placement and routing techniques [3] in combination with VLIW code generation
techniques like modulo scheduling [31, 49] and hyperblock formation [36].

Whether or not compiler techniques rely on specific hardwareproperties is not al-
ways obvious in the literature, as not enough details are available in the descriptions
of the techniques, and few techniques have been tried on a wide range of CGRA ar-
chitectures. For that reason, it is very difficult to comparethe efficiency (compilation
time) and effectiveness (quality of generated code) of the different techniques.

The most widely applicable static scheduling techniques use different forms of
Modulo Resource Routing Graphs (MRRGs). RRGs are time-space graphs, in which
all resources (space dimension) are modeled with vertices.There is one such ver-
tex per resource per cycle (time dimension) in the schedule being generated. Di-
rected edges model the connections over which data values can flow from resource
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to resource. The schedule, placement and routing problem than becomes a problem
of mapping the Data Dependence Graph (DDG) of some loop body on the RRG.
Scheduling refers to finding the right cycle to perform an operation in the schedule,
placement refers to finding the right IS in that cycle, and routing refers to finding
connections to transfer data from producing operations to consuming operations. In
the case of a modulo scheduler, the modulo constraint is enforced by modeling all
resource usage in the modulo time domain. This is done by modeling the appropriate
modulo reservation tables [49] on top of the RRG, hence the name MRRG.

The granularity of its vertices depends on the precise compiler algorithm. One
modulo graph embedding algorithm [45] models whole ISs or whole RFs with
single vertices, whereas the simulated-annealing technique in the DRESC [15, 39]
compiler that targets ADRES instances models individual ports to ISs and RFs as
separate vertices. Typically, fewer nodes that model larger components lead to faster
compilation because the graph mapping problem operates on asmaller graph, but
also to lower code quality because some combinations of resource usage cannot be
modeled precisely. Some techniques, such as DRESC, are built on the central idea of
finding the best routes to steer the placement and scheduling, thus exploring many
possible routings, while others [20, 43, 45, 46] use heuristics to place and sched-
ule the code, using routability as a constraint during the scheduling. The latter are
typically much more efficient, but less effective.

MRRG-based compiler techniques are easily retargetable toa wide range of ar-
chitectures, such as those of the ADRES template, and they can support many pro-
gramming languages. Different architectures can simply bemodeled with different
MRRGs. To support different programming languages like C and Fortran, the tech-
niques only require a compiler front-end that is able to generate DDGs for the loop
bodies. Obviously, the appropriate loop transformations need to be applied before
generating the DDG in order to generate one that maps well onto the MRRG of the
architecture. Such loop transformations are discussed in detail in Section 4.1.

Many other CGRA compiler techniques have been proposed, most of which are
restricted to specific architectures. Static reconfigurable architectures like RaPiD
and PACT have been targeted by compiler algorithms [10, 17, 63] based on place-
ment and routing techniques that also map DDGs on RRGs. Thesetechniques sup-
port subsets of the C programming language (no pointers, no structs, ...) and require
the use of special C functions to program the IO in the loop bodies to be mapped
onto the CGRA. The latter requirement follows from the specific IO support in the
architectures and the modeling thereof in the RRGs.

For the MorphoSys architecture, with its emphasis on SIMD across ISs, compiler
techniques have been developed for the SA-C language [61]. In this language the
supported types of available parallelism are specified by means of loop language
constructs. These constructs are translated into control code for the CGRA, which
are mapped onto the ISs together with the DDGs of the loop bodies.

CGRA code generation techniques based on integer-linear programming have
been proposed for the RSPA architecture, both for spatial [1] and for temporal map-
ping [64]. Basically, the ILP formulation consists of all the requirements or con-
straints that must be met by a valid schedule. This formulation is built from a DDG
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and a hardware description, and can hence be used to compile many source lan-
guages. It is unclear, however, to what extent the ILP formulation and its solution
rely on specific architecture features, and hence to which extent it would be possi-
ble to retarget the ILP-formulation to different CGRA designs. A similar situation
occurs for the constraint-based compilation method developed for the Silicon Hive
architecture template [55], of which no detailed information is public.

Code generation techniques for CGRAs based on instruction-selection pattern
matching and list-scheduling techniques have also been proposed [21, 22]. It is un-
clear to what extent these techniques rely a on specific architecture because we
know of no trial to use them for different CGRAs, but these techniques seem to
rely heavily on the existence of a single shared-bus that connects ISs as depicted
in Figure 6(c). Similarly, the static reconfiguration code generation technique by
Lee et al. relies on CGRA rows consisting of identical ISs [33]. Because of this
assumption, a two-step code generation approach can be usedin which individual
placements within rows are neglected in the first step, and only taken care of in the
second step. The first step then instead focuses on optimizing the memory traffic.

Finally, compilation techniques have been developed that are really specialized
for the TRIPS array layout and for its out-of-order execution [12].

One rule-of-thumbcovers all the mentioned techniques: more generic techniques,
i.e., techniques that are more flexible in targeting different architectures or different
instances of an architecture template, are less efficient and often less effective in
exploiting special architecture features. In other words techniques that rely on spe-
cific hardware features, such as interconnect regularitiesor specific forms of ISs
clustering, while being less flexible, will generally be able to target those hardware
features more efficiently, and often also more effectively.Vice versa, architectures
with such features usually need specialized compiler techniques. This is similar to
the situation of more traditional DSP or VLIW architectures.

4 Case Study: ADRES

This section presents a case study on one specific CGRA designtemplate. The pur-
pose of this study is to illustrate that it is non-trivial to compile and optimize code
for CGRA targets, and to illustrate that within a design template, there is a need
for hardware design exploration. This illustrates how bothhardware and software
designers targeting CGRAs need a deep understanding of the interaction between
the architecture features and the used compiler techniques.

ADRES [5, 6, 7, 15, 37, 39, 40, 41] is an architecture design template from
which dynamically reconfigurable, statically scheduled CGRAs can be instantiated.
In each instance, an ADRES CGRA is coupled tightly to a VLIW processor. This
processor shares data and predicate RFs with the CGRA, as well as memory ports
to a multi-banked scratch-pad memory as described in Section 3.1. The compiler-
supported ISA of the design template provides instructionsthat are typically found
in a load/store VLIW or RISC architecture, including arithmetic operations, logic
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operations, load/store operations, and predicate computing instructions. Additional
domain-specific instructions, such as SIMD operations, aresupported in the pro-
gramming tools by means of intrinsics [56]. Local rotating and non-rotating, shared
and private local RFs can be added to the CGRA as described in the previous
sections, and connected through an interconnect consisting of muxes, buses and
point-to-point connections that are specified completely by the designer. Thus, the
ADRES architecture template is very flexible: it offers a high degree of design free-
dom, and it can be used to accelerate a wide range of loops.

4.1 Mapping Loops onto ADRES CGRAs

The first part of this case study concerns the mapping of loopsonto ADRES CGRAs,
which are one of the most flexible CGRAs supporting a wide range of loops. This
study illustrates that many loop transformations need to beapplied carefully be-
fore mapping code onto ADRES CGRAs. We discuss the most important compiler
transformations and, lacking a full-fledged loop-optimizing compiler, manual loop
transformations that need to be applied to source code in order to obtain high per-
formance and high efficiency. For other, less flexible CGRAs,the need for such
transformations will even be higher because there will be more constraints on the
loops to be mapped in the first place. Hence many of the discussed issues not only
apply to ADRES CGRAs, but also to other CGRA architectures. We will conclude
from this study that programming CGRAs with the existing compiler technology is
not compatible with high programmer productivity.

4.1.1 Modulo Scheduling Algorithms for CGRAs

To exploit ILP in inner loops on VLIW architectures, compilers typically apply
software pipelining by means of modulo scheduling [31, 49].This is no different
for ADRES CGRAs. In this section, we will not discuss the inner working of mod-
ulo scheduling algorithms. What we do discuss, are the consequences of using that
technique for programming ADRES CGRAs.

After a loop has been modulo-scheduled, it consists of threephases: the prologue,
the kernel and the epilogue. During the prologue, stages of the software-pipelined
loop gradually become active. Then the loop executes the kernel in a steady-state
mode in which all software pipeline stages are active, and afterwards the stages are
gradually disabled during the epilogue. In the steady-state mode, a new iteration
is started after everyII cycles, which stands for Initiation Interval. Fundamentally,
every software pipeline stage isII cycles long. The total cycle count of a loop with
iter iterations that is scheduled overpssoftware pipeline stages is then given by

cyclesprologue+ II · (iter− (ps−1))+cyclesepilogue. (2)



22 Bjorn De Sutter, Praveen Raghavan, Andy Lambrechts

In this formula, we neglect processor stalls because of, e.g., memory access conflicts
or cache misses.

For loops with a high number of iterations, the termII · iter dominates this cy-
cle count, and that is why modulo scheduling algorithms try to minimize II , thus
increasing the IPC terms in Equation (1).

The minimalII that modulo scheduling algorithms can reach is bound byminII =
max(RecMII,ResMII). The first term, called resource-minimalII (ResMII) is de-
termined by the resources required by a loop and by the resources provided by the
architecture. For example, if a loop body contains 9 multiplications, and there are
only two ISs that can execute multiplications, then at least⌈9/2⌉ = 5 cycles will
be needed per iteration. The second term, called recurrence-minimal II (RecMII)
depends on recurrent data dependencies in a loop and on instruction latencies. Fun-
damentally, if an iteration of a loop depends on the previousiteration through a
dependency chain with accumulated latencyRecMII, it is impossible to start that
iteration before at leastRecMIIcycles of the previous iteration have been executed.

The next section uses this knowledge to apply transformations that optimize per-
formance according to Equation (1). To do so successfully, it is important to know
that ADRES CGRAs support only one thread, for which the processor has to switch
from a non-CGRA operating mode to CGRA mode and back for each inner loop.
So besides minimizing the cycle count of Equation (2) to obtain higher IPCs in
Equation (1), it is also important to consider the termstp→p+1 in Equation (1).

4.1.2 Loop Transformations

Loop Unrolling

Loop unrolling and the induction variable optimizations that it enables can be used
to minimize the number of iterations of a loop. When a loop body is unrolledx times,
iter decreases with a factorx, andResMIItypically grows with a factor slightly less
thanx because of the induction variable optimizations and because of the ceiling
operation in the computation ofResMII. By contrast,RecMII typically remains
unchanged or increases only a little bit as a result of the induction variable opti-
mizations that are enabled after loop unrolling.

In resource-bound loops,ResMII> RecMII. Unrolling will then typically have
little impact on the dominating termII · iter in Equation (2). However, the prologue
and the epilogue will typically become longer because of loop unrolling. Moreover,
an unrolled loop will consume more space in the instruction memory, which might
also have a negative impact on the total execution time of thewhole application. So
in general, unrolling resource-bound loops is unlikely to be very effective.

In recurrence-bound loops,RecMII· iter > ResMII· iter. The right hand side of
this inequality will not increase by unrolling, while the left hand side will be di-
vided by the unrolling factorx. As this improvement typically compensates for the
longer prologue and epilogue, we can conclude that unrolling can be an effective
optimization technique for recurrence-bound loops if the recurrences can be opti-
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mized with induction variable optimizations. This is no different for CGRAs than
it is for VLIWs. However, for CGRAs with their larger number of ISs, it is more
important because more loops are recurrence-bound.

Loop Fusion, Loop Interchange, Loop Combination and Data Context Switching

Fusing adjacent loops with the same number of iterations into one loop can also be
useful, because fusing multiple recurrence-bound loops can result in one resource-
bound loop, which will result in a lower overall execution time. Furthermore, less
switching between operating modes takes place with fused loops, and hence the
termstp→p+1 are minimized. Furthermore, less prologues and epilogues need to be
executed, which might also improve performance. This improvement will usually
be limited, however, because the fused prologues and epilogues will rarely be much
shorter than the sum of the original ones. Moreover, loop fusion does result in a
loop that is bigger than any of the original loops, so it can only be applied if the
configuration memory is big enough the fit the fused loop. If this is the case, less
loop configurations need to be stored and possibly reloaded into the memory.

Interchanging an inner and outer loop serves largely the same purpose as loop
fusion. As loop interchange does not necessarily result in larger prologues and epi-
logues, it can be even more useful, as can be the combining of nested loops into a
single loop. Data-context switching [4] is a very similar technique that serves the
same purpose. That technique has been used by Lee et al. for statically reconfig-
urable CGRAs as well [33], and in fact most of the loop transformations mentioned
in this section can be used to target such CGRAs, as well as anyother type of CGRA.

Live-in Variables

In our experience, there is only one caveat with the above transformations. The
reason to be careful when applying them is that they can increase the number of
live-in variables. A live-in variable is a variable that gets assigned a value before the
loop, which is consequently used in the loop. Live-in variables can be manifest in the
original source code, but they can also result from compileroptimizations that are
enabled by the above loop transformations, such as induction variable optimizations
and loop-invariant code motion. When the number of live-in variables increases,
more data needs to be passed from the non-loop code to the loopcode, which might
have a negative effect ontp→p+1. The existence and the scale of this effect will
usually depend on the hardware mechanism that couples the CGRA accelerator to
the main core. Possible such mechanisms are discussed in Section 3.1. In tightly-
coupled designs like that of ADRES or Silicon Hive, passing alimited amount of
values from the main CPU mode to the CGRA mode does not involveany overhead:
the values are already present in the shared RF. However, if their number grows too
big, there will not be enough room in the shared RF, which willresult in much less
efficient passing of data through memory. We have experienced this several times
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with loops in multimedia and SDR applications that were mapped onto our ADRES
designs. So, even for tightly-coupled CGRA designs, the above loop transformations
and the enabled optimizations need to be applied with great care.

Predication

Modulo scheduling techniques for CGRAs [15, 17, 20, 39, 45, 46] only schedule
loops that are free of control flow transfers. Hence any loop body that contains
conditional statements first needs to be if-converted into hyperblocks by means of
predication [36]. For this reason, many CGRAs, including ADRES CGRAs, support
predication.

Hyperblock formation can result in very inefficient code if aloop body contains
code paths that are executed rarely. All those paths contribute toResMII and po-
tentially toRecMII. Hence even paths that get executed very infrequently can slow
down a whole modulo-scheduled loop. Such loops can be detected with profiling,
and if the data dependencies allow this, it can be useful to split these loops into
multiple loops. For example, a first loop can contain the codeof the frequently ex-
ecuted paths only, with a lowerII than the original loop. If it turns out during the
execution of this loop that in some iteration the infrequently executed code needs to
be executed, the first loop is exited, and for the remaining iterations a second loop is
entered that includes both the frequently and the infrequently executed code paths.

Alternatively, for some loops it is beneficial to have a so-called inspector loop
with very smallII to perform only the checks for all iterations. If none of the checks
are positive, a second so-called executor loop is executed that includes all the com-
putations except the checks and the infrequently executed paths. If some checks
were positive, the original loop is executed.

One caveat with this loop splitting is that it causes code size expansion in the
CGRA instruction memories. For power consumption reasons,these memories are
kept as small as possible. This means that the local improvements obtained with the
loop splitting need to be balanced with the total code size ofall loops that need to
share these memories.

Kernel-Only Loops

Predication can also be used to generate so-called kernel-only loop code. This is
loop code that does not have separate prologue and epilogue code fragments. Instead
the prologues and epilogues are included in the kernel itself, where predication is
now used to guard whole software pipeline stages and to ensure that only the appro-
priate software pipeline stages are activated at each pointin time. A traditional loop
with a separate prologue and epilogue is compared to a kernel-only loop in Figure 7.
Three observations need to be made here.

The first observation is that kernel-only code is usually faster because the pipeline
stages of the prologue and epilogue now get executed on the CGRA accelerator,
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Fig. 7 On the left a traditional modulo-scheduled loop, on the right a kernel-only one. Each num-
bered box denotes one of four software pipeline stages, and each row denotes the concurrent ex-
ecution of different stages of different iterations. Grayed boxes denote stages that actually get
executed. On the left, the dark grayed boxes get executed on the CGRA accelerator, in which ex-
actly the same code is executed everyII cycles. The light grayed boxes are pipeline stages that get
executed outside of the loop, in separate code that runs on the main processor. On the right, kernel-
only code is shown. Again, the dark grey boxes are executed onthe CGRA accelerator. So are the
white boxes, but these get deactivated during the prologue and epilogue by means of predication.

which typically can do so at much higher IPCs than the main core. This is a major
difference between (ADRES) CGRAs and VLIWs. On the latter, kernel-only loops
are much less useful because all code runs on the same number of ISs anyway.

Secondly, while kernel-only code will be faster on CGRAs, more time is spent in
the CGRA mode, as can be seen in Figure 7. During the epilogue and prologue, the
whole CGRA is active and thus consuming energy, but many ISs are not performing
useful computations because they execute operations from inactive pipeline stages.
Thus, kernel-only is not necessarily optimal in terms of energy consumption.

The third observation is that for loops where predication isused heavily to cre-
ate hyperblocks, the use of predicates to support kernel-only code might over-stress
the predication support of the CGRA. In domains such as SDR, where the loops
typically have no or very little conditional statements, this poses no problems. For
applications that feature more complex loops, such as in many multimedia applica-
tions, this might create a bottleneck even when predicate speculation [53] is used.
This is where the ADRES template proves to be very useful, as it allowed us to
instantiate specialized CGRAs with varying predicate datapaths, as can be seen in
Table 2.

4.1.3 Data Flow Manipulations

The need for fine-tuning source code is well known in the embedded world. In
practice, each compiler can handle some loop forms better than other forms. So
when one is using a specific compiler for some specific VLIW architecture, it can



26 Bjorn De Sutter, Praveen Raghavan, Andy Lambrechts

(a) original 15-tap FIR filter

const short c[15] = {-32, ..., 1216};
for (i = 0; i < nr; i++) {
for(value = 0, j = 0; j < 15; j++)

value += x[i+j]*c[j];
r[i] = value;

}

(b) filter after loop unrolling, with hard-coded constants

const short c00 = -32, ..., c14 = 1216;
for (i = 0; i < nr; i++)
r[i] = x[i+0]*c00 + x[i+1]*c01 + ... + x[i+14]*c14;

(c) after redundant memory accesses are eliminated

int i, value, d0, ..., d14;
const short c00 = -32, ..., c14 = 1216;
for (i = 0; i < nr+15; i++) {
d0 = d1; d1 = d2; ... ; d13 = d14; d14 = x[i];
value = c00 * d0 + c01 * d1 + ... + c14 * d14;
if (i >= 14) r[i - 14 ] = value;

}

Fig. 8 Three C versions of a FIR filter.

be very beneficial to bring loops in the appropriate shape or form. This is no different
when one is programming for CGRAs, including ADRES CGRAs.

Apart from the above transformations that relate to the modulo scheduling of
loops, there are important transformations that can increase the “data flow” charac-
ter of a loop, and thus contribute to the efficiency of a loop. The three C implemen-
tations of a Finite Impulse Response (FIR) filter in Figure 8 provide an excellent
example.

Figure 8(a) depicts a FIR implementation that is efficient for architectures with
few registers. For architectures with more registers, the implementation depicted
in Figure 8(b) will usually be more efficient, as many memory accesses have been
eliminated. Finally, the equivalent code in Figure 8(c) contains only one load per
outer loop iteration. To remove the redundant memory accesses, a lot of temporary
variables had to be inserted, together with a lot of copy operations that implement
a delay line. On regular VLIW architectures, this version would result in high reg-
ister pressure and many copy operations to implement the data flow of those copy
operations. Table 1 presents the compilation results for a 16-issue CGRA and for an
8-issue clustered TI C64+ VLIW. From the results, it is clearthat the TI compiler
could not handle the latter code version: its software-pipelining fails completely due
to the high register pressure. When comparing the minimal cycle times obtained for
the TI C64+ with those obtained for the CGRA, please note thatthe TI compiler
applied SIMDization as much as it could, which is fairly orthogonal to scheduling
and register allocation, but which the experimental CGRA compiler used for this
experiment did not yet perform. By contrast, the CGRA compiler could optimize
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program cycle count memory accesses
CGRA TI C64+ CGRA TI C64+

FIR (a) 11828 1054 6221 1618
FIR (b) 1247 1638 3203 2799
FIR (c) 664 10062 422 416

Table 1 Number of execution cycles and memory accesses (obtained through simulation) for the
FIR-filter versions compiled for the multimedia CGRA, and for the TI C64+ DSP.

the code of Figure 8(c) by routing the data of the copy operations over direct con-
nections between the CGRA ISs. As a result, the CGRA implementation becomes
both fast and power-efficient at the same time.

This is a clear illustration of the fact that, lacking fully automated compiler opti-
mizations, heavy performance-tuning of the source code canbe necessary. The fact
that writing efficient source code requires a deep understanding of the compiler in-
ternals and of the underlying architecture, and the fact that it frequently includes
experimentation with various loop shapes, severely limitsthe programming produc-
tivity. This has to be considered a severe drawback of CGRAs architectures.

Moreover, as the FIR filter shows, the optimal source code fora CGRA target can
be radically different than that for, e.g., a VLIW target. Consequently, the cost of
porting code from other targets to CGRAs or vice versa, or of maintaining code ver-
sions for different targets (such as the main processor and the CGRA accelerator),
can be high. This puts an additional limitation on programmer productivity.

4.2 ADRES Design Space Exploration

In this part of our case study, we discuss the importance and the opportunities for
DSE within the ADRES template. First, we discuss some concrete ADRES in-
stances that have been used for extensive experimentation,including the fabrication
of working silicon samples. These examples demonstrate that very power-efficient
CGRAs can be designed for specific application domains.

Afterwards, we will show some examples of DSE results with respect to some of
the specific design options that were discussed in Section 3.

4.2.1 Example ADRES Instances

During the development of the ADRES tool chain and design, two main ADRES
instances have been worked out. One was designed for multimedia applications [37]
and one for SDR baseband processing [5, 6]. Their main differences are presented in
Table 2. Both architectures have a 64-entry data RF (half rotating, half non-rotating)
that is shared with a unified three-issue VLIW processor thatexecutes non-loop
code. Thus this shared RF has six read ports and three write ports. Both CGRAs
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multimedia CGRA SDR CGRA
# issue slots (FUs) 4x4 4x4
# load/store units 4 4
ld/st/mul latency 6/6/2 cycles 7/7/3 cycles
# local data RFs 12 (8 single-ported) of size 8 12 (8 single-ported) of size 4

data width 32 64
config. word width 896 bits 736 bits

ISA extensions 2-way SIMD, clipping, min/max 4-way SIMD, saturating arithm.
interconnect Nearest Neighbor (NN) NN + next-hop

+ 8 predicate buses + 8 data buses

pipelining
power, clock, and area91 mW at 300 MHz for 4mm2 310mW at 400 MHz for 5.79mm2

Table 2 Main differences between two studied ADRES CGRAs. Power, clock and area include
the CGRA and its configuration memory, the VLIW processor fornon-loop code, including its
32K L1 I-cache, and the 32K 4-bank L1 data memory. These numbers are gate-level estimates.

feature 16 FUs, of which four can access the memory (that consists of four single-
ported banks) through a queue mechanism that can resolve bank conflicts. Most
operations have latency one, with the exception of loads, stores, and multiplications.
One important difference between the two CGRAs relates to their pipeline schemes,
as depicted for a single IS (local RF and FU) in Table 2. As the local RFs are
only buffered at their input, pipelining registers need to be inserted in the paths to
and from the FUs in order to obtain the desired frequency targets as indicated in
the table. The pipeline latches shown in Table 2 hence directly contribute in the
maximization of the factorfp in Equation (1). Because the instruction sets and the
target frequencies are different in both application domains, the SDR CGRA has one
more pipeline register than the multimedia CGRA, and they are located at different
places in the design.

Traditionally, in VLIWs or in out-of-ordersuperscalar processors, deeper pipelin-
ing results in higher frequencies but also in lower IPCs because of larger branch mis-
sprediction penalties. Following Equation (1), this can result in lower performance.
In CGRAs, however, this is not necessarily the case, as explained in Section 3.3.1.
To illustrate this, Table 3 includes IPCs obtained when generating code for both
CGRAs with and without the pipelining latches.

The benchmarks mapped onto the multimedia ADRES CGRA are a H.264AVC
video decoder, a wavelet-based video decoder, an MPEG4 video coder, a black-and-
white TIFF image filter, and a SHA-2 encryption algorithm. For each application
at most the 10 hottest inner loops are included in the table. For the SDR ADRES
CGRA, we selected two baseband modem benchmarks: one WLAN MIMO Channel
Estimation and one that implements the remainder of a WLAN SISO receiver. All
applications are implemented in standard ANSI C using all language features such
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pipelined non-pipelined
Benchmark CGRA Loop #ops ResMII RecMII II IPC RecMII II IPC

MBFilter1 70 5 2 6 11.7 1 6 11.7
MBFilter2 89 6 7 9 9.9 6 8 11.1
MBFilter3 40 3 3 4 10.0 2 3 13.3
MBFilter4 105 7 2 9 11.7 1 9 11.7

AVC decoder multimedia MotionComp 109 7 3 10 10.9 2 10 10.9
FindFrameEnd 27 4 7 7 3.9 6 6 4.5
IDCT1 60 4 2 5 12.0 1 5 12.0
MBFilter5 87 6 3 7 12.4 2 7 12.4
Memset 10 2 2 2 5.0 1 2 5.0
IDCT2 38 3 2 3 12.7 1 3 12.7
Average 10.0 10.5
Forward1 67 5 5 6 11.2 5 5 13.4

Wavelet multimedia Forward2 77 5 5 6 12.8 5 6 12.8
Reverse1 73 5 2 6 12.2 1 6 12.2
Reverse2 37 3 2 3 12.3 1 3 12.3
Average 12.1 12.7
MotionEst1 75 5 2 6 12.5 1 6 12.5
MotionEst2 72 5 3 6 12.0 2 6 12.0
TextureCod1 73 5 7 7 10.4 6 6 12.2
CalcMBSAD 60 4 2 5 12.0 1 5 12.0
TextureCod2 9 1 2 2 4.5 1 2 4.5

MPEG-4 encoder multimedia TextureCod3 91 6 2 7 13.0 1 7 13.0
TextureCod4 91 6 2 7 13.0 1 7 13.0
TextureCod5 82 6 2 6 13.7 1 6 13.7
TextureCod6 91 6 2 7 13.0 1 7 13.0
MotionEst3 52 4 3 4 13.0 2 5 10.4
Average 11.7 11.6

Tiff2BW multimedia main loop 35 3 2 3 11.7 1 3 11.7
SHA-2 multimedia main loop 111 7 8 9 12.3 8 9 12.3

Channel2 166 11 3 14 11.9 1 14 10.4
MIMO SDR Channel1 83 6 3 8 10.4 1 8 10.7

SNR 75 5 4 6 12.5 2 6 12.5
Average 11.6 11.2
DemapQAM64 55 4 3 6 9.2 1 6 9.2
64-point FFT 123 8 4 10 12.3 2 12 10.3

WLAN SDR Radix8 FFT 122 8 3 10 12.2 1 12 10.2
Compensate 54 4 4 5 10.8 2 5 10.8
DataShuffle 153 14 3 14 10.9 1 16 9.6
Average 11.1 10.0

Table 3 Results for the benchmark loops. First, the target-version-independent number of opera-
tions (#ops) and the ResMII. Then for each target version theRecMII, the actually achieved II and
IPC (counting SIMD operations as only one operation), and the compile time.

as pointers, structures, different loop constructs (while, for, do-while), but not using
dynamic memory management functions likemalloc or free.

The general conclusions to be taken from the mapping resultsin Table 3 are as
follows. (1) Very high IPCs are obtained at low power consumption levels of 91 and
310 mW and at relatively high frequencies of 300 and 400 MHz, given the standard
cell 90nm design. (2) Pipelining seems to be bad for performance only where the
initiation interval is bound byRecMII, which changes with pipelining. (3) In some
cases pipelining even improves the IPC.

Synthesizable VHDL is generated for both processors by a VHDL generator that
generates VHDL code starting from the same XML architecturespecification used
to retarget the ANSI C compiler to different CGRA instances.A TSMC 90 nm stan-
dard cell GP CMOS (i.e. the General-Purpose technology version that is optimized
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Fig. 9 Average power consumption distribution of the ADRES SDR CGRA in CGRA mode.

for performance and active power, not for leakage power) technology was used to
obtain the gate-level post-layout estimates for frequency, power and area in Table 2.
More detailed results of these experiments are available inthe literature [5, 6] for
this SDR ADRES instance, as well as for the multimedia instance [37]. The SDR
ADRES instance has also been produced in silicon in samples of a full SoC SDR
chip [16]. The two ADRES cores on this SoC proved to be fully functional at 400
MHz, and the power consumption estimates have been validated.

One of the most interesting results is depicted in Figure 9, which displays the
average power consumption distribution over the ADRES SDR CGRA when the
CGRA mode is active in the above SDR applications. Compared to VLIW proces-
sor designs, a much larger fraction of the power is consumed in the interconnects and
in the FUs, while the configuration memory (which corresponds to an L1 VLIW in-
struction cache), the RFs and the data memory consume relatively little energy. This
is particularly the case for the local RFs. This clearly illustrates that by focusing on
regular loops and their specific properties, CGRAs can achieve higher performance
and a higher power-efficiency than VLIWs. On the CGRA, most ofthe power is
spent in the FUs and in the interconnects, i.e., on the actualcomputations and on
the transfers of values from computation to computation. The latter two aspects are
really the fundamental parts of the computation to be performed, unlike the fetch-
ing of data or the fetching of code, which are merely side-effects of the fact that
processors consist of control paths, data paths and memories.

4.2.2 Design Space Exploration Example

Many DSEs have been performed within the ADRES template [7, 11, 32, 37, 42].
We present one experimental result [32] here, not to presentabsolute numbers but
to demonstrate the large impact on performance and on energyconsumption that
some design choices can have. In this experiment, a number ofdifferent intercon-
nects have been explored for four microbenchmarks (each consisting of several in-
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Fig. 10 Basic interconnects that can be combined. All bidirectional edges between two ISs denote
that all outputs of one IS are connected to the inputs of the other IS and vice versa. Buses that
connect all connected IS outputs to all connected IS inputs are shown as edges without arrows.

ner loops): a MIMO SDR channel estimation, a Viterbi decoder, an Advanced Video
Codec (AVC) motion estimation, and an AVC half-pixel interpolation filter. All of
them have been compiled with the DRESC compiler for different architectures of
which the interconnects are combinations of the four basic interconnects of Fig-
ure 10, in which distributed RFs have been omitted for the sake of clarity.

Figure 11 depicts the relative performance and (estimated)energy consumption
for different combinations of these basic interconnects. The names of the different
architectures indicate which basic interconnects are included in its interconnect. For
example, the architectureb nn ex includes the buses, nearest neighbor intercon-
nects and extra connections to the shared RF. The lines connecting architectures
in the charts of Figure 11 connect the architectures on the Pareto fronts: these are
the architectures that have an optimal combination of cyclecount and energy con-
sumption. Depending on the trade-off made by a designer between performance and
energy consumption, he will select one architecture on thatPareto front.

The lesson to learn from these Pareto fronts is that relatively small architectural
changes, in this case involving only the interconnect but not the ISs or the distributed
RFs, can span a wide range of architectures in terms of performance and energy-
efficiency. When designing a new CGRA or choosing for an existing one, it is hence
absolutely necessary to perform a good DSE that covers ISA, ISs, interconnect and
RFs. Because of the large design space, this is far from trivial.
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(a) MIMO (b) AVC interpolation

(c) Viterbi (d) AVC motion estimation

Fig. 11 DSE results for four microbenchmarks on 4x4 CGRAs with fixed ISs and fixed RFs, but
with varying interconnects.

5 Conclusions

This chapter on CGRA architectures presented a discussion of the CGRA proces-
sor design space as an accelerator for inner loops of DSP-like applications such as
software-defined radios and multimedia processing. A rangeof options for many
design features and design parameters has been related to power consumption, per-
formance, and flexibility. In a use case, the need for design space exploration and
for advanced compiler support and manual high-level code tuning have been demon-
strated. The above discussions and demonstration support the following main con-
clusions. Firstly, CGRAs can provide an excellent alternative for VLIWs, providing
better performance and better energy efficiency. Secondly,design space exploration
is needed to achieve those goals. Finally, existing compiler support needs to be im-
proved, and until that happens, programmers need to have a deep understanding of
the targeted CGRA architectures and their compilers in order to manually tune their
source code. This can significantly limit programmer productivity.
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