View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Ghent University Academic Bibliography

Coarse-Grained Reconfigurable Array
Architectures

Bjorn De Sutter, Praveen Raghavan, Andy Lambrechts

Abstract Coarse-Grained Reconfigurable Array (CGRA) architectaislerate
the same inner loops that benefit from the high ILP supportlin/Warchitectures.
By executing non-loop code on other cores, however, CGRAsfaeus on such
loops to execute them more efficiently. This chapter disesiise basic principles
of CGRAs, and the wide range of design options available ta@G&RE& designer,
covering a large number of existing CGRA designs. The imp#different options
on flexibility, performance, and power-efficiency is dissed, as well as the need
for compiler support. The ADRES CGRA design template isigtiith more detail
as a use case to illustrate the need for design space expigfat compiler support
and for the manual fine-tuning of source code.

1 Application Domain of Coarse-Grained Reconfigurable Arrays

Many embedded applications require high throughput, nmegihiat a large number
of computations needs to be performed every second. At the siane, the power
consumption of battery-operated devices needs to be nmaadnio increase their
autonomy. In general, the performance obtained on a pragedte processor for a
certain application can be defined as the reciprocal of théagtion execution time.
Considering that most programs consist of a number of cotisehase® = [1, p]
with different characteristics, performance can be defingdrms of the operating
frequenciedp, the instructions executed per cy¢RC, and the instruction counts
IC, of each phase, and in terms of the time overhead involveditcising between
the phaseg, .1 as follows:

Bjorn De Sultter
Ghent University, Sint-Pietersnieuwstraat 41, 9000 GBelgium and Vrije Universiteit Brussel,
Pleinlaan 2, 1050 Brussel, Belgium, e-mail: bjorn.des@telis.ugent.be

Praveen Raghavan, Andy Lambrechts
IMEC, Kapeldreef 75, 3001 Heverlee, Belgium e-méiagha,lambreca@imec.be

https://core.ac.uk/display/55806094?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Bjorn De Sutter, Praveen Raghavan, Andy Lambrechts

= = execution time= Co ¢ (1)
performance prIP wfp PP

Cp

The operating frequencief, cannot be increased infinitely because of power-
efficiency reasons. Alternatively, a designer can incréhseperformance by de-
signing or selecting a system that can execute code at hl§i@s. In a power-
efficient architecture, a high IPC is reached for the mosbirtgnt phaseke L C P,
while limiting their instruction countC, and reaching a sufficiently high, but still
power-efficient frequencyj. Furthermore, the time overheggd. 1 as well as the
corresponding energy overhead of switching between theutioe modes of con-
secutive phases should be minimized if such switching hapfsequently. Note that
such switching only happens on hardware that supports preikixecution modes
in support of phases with different characteristics.

Course-Grained Reconfigurable Array (CGRA) acceleratonsfar these goals
for the inner loops found in many digital signal processiD&P) domains, includ-
ing multimedia and Software-Defined Radio (SDR) applic&id&such applications
have traditionally employed Very Long Instruction Word (W) architectures such
as the TriMedia 3270 [60] and the TI C64 [58], Applicatione8ic Integrated Cir-
cuits (ASICs), and Application-Specific Instruction Presers (ASIPs). To a large
degree, the reasons for running these applications on VL0Ligé¢gssors also ap-
ply for CGRAs. First of all, a large fraction of the computatitime is spent in
manifest nested loops that perform computations on arraylata and that can,
possibly through compiler transformations, provide a loinstruction-Level Par-
allelism (ILP). Secondly, most of those inner loops aretiadty simple. When the
loops include conditional statements, this can be implérbgnmeans of predi-
cation [36] instead of with complex control flow. Furtherrapnone or very few
loops contain multiple exits or continuation points in tleeni of, e.g.,br eak or
cont i nue statements as in the C-language. Moreover, after inliriegdops are
free of function calls. Finally, the loops are not regularh@mmogeneous enough
to benefit from vector computing, like on the EVP [59] or on Beg [62]. When
there is enough regularity and Data-Level Parallelism (PibRhe loops of an ap-
plication, vector computing can typically exploit it mor#ieently than what can
be achieved by converting the DLP into ILP and exploitingt tha a CGRA. So
in short, CGRASs (with limited DLP support) are ideally suitlor applications of
which time-consuming parts have manifest behavior, langeumts of ILP and lim-
ited amounts of DLP.

In the remainder of this chapter, Section 2 presents theafuedital properties
of CGRAs. Section 3 gives an overview of the design optiomsdGRAs. This
overview help designers in evaluating whether or not CGRissaiited for their
applications and their design requirements, and if so, WGIGRA designs are most
suited. After the overview, Section 4 presents a case stadhp® ADRES CGRA
architecture. This study serves two purposes. Firstypisttates the extent to which
source code needs to be tuned to map well onto CGRA archigsctas we will
show, this is an important aspect of using CGRAs, even whed gompiler sup-
port is available and when a very flexible CGRA is targeted, one that puts very

Coarse-Grained Reconfigurable Array Architectures 3

RF 0 RF 1

nn nn nn nn nn nn
A A

y y

IS6 IS7

|ISO IS 1 |ISS

I82||ISS| |IS4

Fig. 1 An example clustered VLIW architecture with two RFs and ei§s. Solid directed edges
denote physical connections. Black and white small boxest@enput and output ports, respec-
tively. There is a one-to-one mapping between input andutytprts and physical connections.

few restrictions on the loop bodies that it can accelerageo8dly, our use case il-
lustrates how Design Space Exploration (DSE) is necessangtantiate optimized

designs from parameterizable and customizable archieettmplates such as the
ADRES architecture template. Some conclusions are dravBeation 5.

2 CGRA Basics

CGRAs focus on the efficient execution of the type of loopswsed in the previ-
ous section. By neglecting non-loop code or outer-loop d¢bdeis assumed to be
executed on other cores, CGRAs can take the VLIW princigesxXploiting ILP in
loops a step further to consume less energy and deliver hignBormance, without
compromising on available compiler support. Figures 1 aiid&rate this.

Higher performance for high-ILP loops is obtained througio tmain fea-
tures that separate CGRA architectures from VLIW architexs. First, CGRA
architectures typically provide more Issue Slots (ISs)ntiygpical VLIWSs do.
In the CGRA literature some other commonly used terms to @e@&GRA ISs
are Arithmetic-Logic Units (ALUs), Functional Units (FUsdr Processing El-
ements (PEs). Conceptually, these terms all denote the:dagie on which
an instruction can be executed, typically one per cycle. &@mple, a typical
ADRES [5, 6, 7, 15, 37, 39, 40, 41] CGRA consists of 16 ISs, wheithe TI C64
features 8 slots, and the NXP TriMedia features only 5 sibie higher number
of ISs directly allows to reach higher IPCs, and hence higleeformance, as indi-
cated by Equation (1). To support these higher IPCs, thewaialtidto memory is
increased by having more load/store I1Ss than on a typical/land special mem-
ory hierarchies as found on ASIPs, ASICs, and other DSPsseltmelude FIFOs,
stream buffers, scratch-pad memories, etc. Secondly, C&Blitectures typically
provide a number of direct connections between the ISs et @ata to “flow”
from one IS to another without needing to pass data througbgskr File (RF).
As a result, less register copy operations need to be exkouthe ISs, which re-
duces the IC term in Equation (1) and frees ISs for more useimlputations.

Higher energy efficiency is obtained through several festuBecause of the di-
rect connections between ISs, less data needs to be tneukiieto and out of RFs.
This saves considerable energy. Also, because the ISsrargyad into a 2D matrix,

4 Bjorn De Sutter, Praveen Raghavan, Andy Lambrechts

(a) CGRA organization

connections from
register files outputs
and issue slot outputs

bl b

connections to
issue slot inputs

RFA

connections to
connections from register file inputs and
issue slot outputs issue slot inputs

(b) Connectivity of register files and issue slots

Fig. 2 Part (a) shows an example CGRA with 16 ISs and 4 RFs, in whittedl@dges denote
conceptual connections that are implemented by physicalaxiions and muxes as in part (b).

small RFs with few ports can be distributed in between theakSdepicted in Fig-
ure 2. This contrasts with the many-ported RFs in (clusievidW architectures,
which basically feature a one-dimensional design as degbict Figure 1. The dis-
tributed CGRA RFs consume considerably less energy. Firtafl not supporting
control flow, the instruction memory organization can begified. In statically re-
configurable CGRASs, this memory is nothing more than a sebofiguration bits
that remain fixed for the whole execution of a loop. Clearlig tls very energy-
efficient. Other CGRAs, called dynamically reconfigurab{@RAs, feature a form
of distributed level-0 loop buffers [34] or other small cmiters that fetch new
configurations every cycle from simple configuration bugfélfo support loops that
include control flow and conditional operations, the comptihen replaces that con-
trol flow by data flow by means of predication [36] or other magisms. In this way
CGRAs differ from VLIW processors that typically feature awer-hungry com-
bination of an instruction cache, instruction decompissind decoding pipeline
stages and a non-trivial update mechanism of the programteou

There are two main drawbacks to CGRA architectures. Fjrisdgause they can
only execute loops, they need to be coupled to other coreshashvall other parts

Coarse-Grained Reconfigurable Array Architectures 5

of the program are executed. In some designs, this coupitnaduces run-time and
design-time overhead. Secondly, as clearly visible in tkeargle CGRA of Fig-
ure 2, the interconnect structure of a CGRA is vastly moremerthan that of
a VLIW. On a VLIW, scheduling an instruction in some IS autdicelly implies
the reservation of connections between the RF and the 1Sfahé corresponding
ports. On CGRAS, this is not the case. Because there is néosoee mapping be-
tween connections and input/output ports of ISs and RFsjexdions need to be
reserved explicitly by the compiler or programmer togethih 1Ss, and the data
flow needs to be routed explicitly over the available conioest This can be done,
for example, by programming switches and multiplexors.éa.kuxes) explicitly,
like the ones depicted in Figure 2(b). Consequently moreaexcompiler technol-
ogy than that of VLIW compilers is needed to automate the rimgppf code onto
a CGRA. Moreover, writing assembly code for CGRAs rangesfb@ing very dif-
ficult to virtually impossible, depending on the type of refigurability and on the
form of processor control.

Having explained these fundamental concepts that diffetenCGRAs from
VLIWSs, we can now also differentiate them from Field-Pragraable Gate Arrays
(FPGAS), where the name CGRA actually comes from. Where&ABHeature
bitwise logic in the form of Look-Up Tables (LUTs) and switd) CGRAs feature
more energy-efficient and area-conscious word-wide 1Ss,dRld interconnections.
Hence the nameoarse-grained arraarchitecture. As there are much fewer ISs on
a CGRA than there are LUTs on an FPGA, the number of bits requa configure
the CGRA ISs, muxes, and RF ports is typically orders of magie smaller than
on FPGAs. If this number becomes small enough, dynamic fegoation can be
possible every cycle. So in short, CGRAs can be seen asalpiic dynamically
reconfigurable coarse-grained FPGAS, or as 2D, highlytetad loop-only VLIWS
with direct interconnections between ISs that need to bgrpramed explicitly.

3 CGRA Design Space

The large design space of CGRA architectures features mesigrdoptions. These
include the way in which the CGRA is coupled to a main procegbe type of
interconnections and computation resources used, thafigacability of the array,
the way in which the execution of the array is controlled mupfor different forms
of parallelism, etc. This section discusses the most inapbtesign options and the
influence of the different options on important aspects acherformance, power
efficiency, compiler friendliness and flexibility. In thioetext, higher flexibility
equals placing fewer restrictions on loop bodies that camagped onto a CGRA.
Our overview of design options is not exhaustive. Its scepiriited to the most
important features of CGRA architectures that feature a 28yeof 1Ss. However,
the distinction between 1D VLIWs and 2D CGRAs is anything Wetl-defined.
The reason is that this distinction is not simply a layoutigssbut one that also

6 Bjorn De Sutter, Praveen Raghavan, Andy Lambrechts

concerns the topology of the interconnects. Interestjriglg topology is precisely
one of the CGRA design options with a large design freedom.

3.1 Tight versus Loose Coupling

Some CGRA designs are coupled loosely to main processarexemple, Figure 3
depicts how the MorphoSys CGRA [35] is connected as an exttewtelerator to
a TinyRISC Central Processing Unit (CPU). The CPU is resipda$or executing
non-loop code, for initiating DMA data transfers to and freime CGRA and the
buffers, and for initiating the operation of the CGRA itsblf means of special
instructions added to the TinyRISC ISA.

This type of design offers the advantage that the CGRA anohdier CPU can be
designed independently, and that both can execute codarenty, thus delivering
higher parallelism and higher performance. For exampleguthe double frame
buffers [35] depicted in Figure 3, the MorphoSys CGRA can perating on data
in one buffer while the main CPU initiates the necessary Dkéhsfers to the other
buffer for the next loop or for the next set of loop iteratio®sme drawback is that
any data that needs to be transferred from non-loop codeo dode needs to
be transferred by means of DMA transfers. This can result large overhead,
e.g., when frequent switching between non-loop code anasl@adth few iterations
occurs and when the loops consume scalar values computezhblpop code.

By contrast, an ADRES CGRA is coupled tightly to its main CRsimplified
ADRES is depicted in Figure 4. Its main CPU is a VLIW consigtof the shared
RF and the top row of CGRA ISs. In the main CPU mode, this VLIVé@xres
instructions that are fetched from a VLIW instruction cacma that operate on
data in the shared RF. The idle parts of the CGRA are thenléid&ly clock-gating
to save energy. By executingséd ar t _CGRA instruction, the processor switches to
CGRA mode in which the whole array, including the shared Ré& the top row
of ISs, executes a loop for which it gets its configuratios fibom a configuration
memory. This memory is omitted from the figure for the sakemfdicity.

The drawback of this tight coupling is that because the CGRd\the main pro-
cessor mode share resources, they cannot execute coderemtiguHowever, this
tight coupling also has advantages. Scalar values thatlhese computed in non-
loop code, can be passed from the main CPU to the CGRA withoubgerhead
because those values are already present in the shared RRe@shared memory
banks. Furthermore, using shared memories and an execntidel of exclusive
execution in either main CPU or CGRA mode significantly eabesautomated
co-generation of main CPU code and of CGRA code in a compaled, it avoids
the run-time overhead of transferring data. Finally, onAIRRRES CGRA, switch-
ing between the two modes takes only two cycles. Thus, thdimm overhead is
minimal.

Silicon Hive CGRAs [8, 9] do not feature a clear separatiotwieen the CGRA
accelerator and the main processor. Instead there is jusgle processor that can

Coarse-Grained Reconfigurable Array Architectures 7

TinyRISC
Loty [o
Processor
8x8
L) A Morphosys
L / v CGRA
Double <D
Caches Frame Buffer | =
A A
\J v
x| Configuration
DMA Controller [« Memory

Fig. 3 A TinyRISC main processor loosely coupled to a MorphoSys BGRay. Note that the
main data memory (cache) is not shared and that no IS hardw~aggisters is are shared between
the main processor and the CGRA. Thus, both can run conc¢ulmesads.

shared RF

Data I i i Teri [|
Memory ' -- - ! ! = - !
i ' I 1 |
Controller 1 L - .
1S4 [-========-~ -4 186 f-=========-~ 1S7
e L I L S I
Memories ! " — ' ' ! ! i
(caches or \ RF 2 1 1 RF3| I
scratch-pads) ' - -3 ! ! - -4 !
L ") [
R AR

Fig. 4 A simplified picture of an ADRES architecture. In the maingessor mode, the top row
of ISs operates like a VLIW on the data in the shared RF and éndéita memories, fetching
instructions from an instruction cache. When the CGRA madiifiated with a special instruction
in the main VLIW ISA, the whole array starts operating on datiée distributed RFs, in the shared
RF and in the data memories. The memory port in IS 0 is alsedHagtween the two operating
modes. Because of the resource sharing, only one mode caiveeat any point in time.

be programmed at different levels of ILP, i.e., at differgrstruction word widths.

This allows for a very simple programming model, with all fr@gramming and
performance advantages of the tight coupling of ADRES. Camaxgh to ADRES,

however, the lack of two distinctive modes makes it more diffito implement

coarse-grained clock-gating or power-gating, i.e., gatihwhole sets of ISs com-
bined instead of separate gating of individual ISs.

Somewhere in between loose and tight coupling is the PACT aé&dgn [44],
in which the array consist of simpler ISs that can operatedikrue CGRA, as well
as of more complex ISs that are in fact full-featured smaB®processors that can
run independent threads in parallel with the CGRA.

As a general rule, looser coupling potentially enables nidnead-Level Paral-
lelism (TLP) and it allows for a larger design freedom. Teghtoupling can mini-
mize the per-thread run-time overhead as well as the cortipile overhead. This
is in fact no different from other multi-core or accelerabased platforms.

8 Bjorn De Sutter, Praveen Raghavan, Andy Lambrechts

3.2 CGRA Control

There exist many different mechanisms to control how cods gzecuted on
CGRAs, i.e., to control which operation is issued on whichatSvhich time and

how data values are transferred from producing operatmostisuming ones. Two
important aspects of CGRAs that drive different methodsctotrol are reconfig-
urability and scheduling. Both can be static or dynamic.

3.2.1 Reconfigurability

Some CGRAs, like ADRES, Silicon Hive, and MorphoSys areyfalynamically
reconfigurable: exactly one full reconfiguration takes elfar every execution cy-
cle. Of course no reconfiguration takes places in cycles iichwvine whole array is
stalled. Such stalls can happen, e.g., because memorysasdake longer than ex-
pected in the schedule as a result of a cache miss or a memuabeess conflict.
This cycle-by-cycle reconfiguration is similar to the fétanof one VLIW instruc-
tion per cycle, but on these CGRAs the fetching is simplet asly iterates through
a loop body existing of straight-line CGRA configurationgheiut control flow.
Other CGRAs like the KressArray [24, 25, 26] are fully statig reconfigurable,
meaning that the CGRA is configured before a loop is entemrad n@ reconfigu-
ration takes place during the loop at all. Still other aretiitires feature a hybrid
reconfigurability. The RaPiD [14, 18] architecture featupartial dynamic recon-
figurability, in which part of the bits are statically recanirable and another part
is dynamically reconfigurable and controlled by a small seqer. Yet another ex-
ample is the PACT architecture, in which the CGRA itself caitiate events that
invoke (partial) reconfiguration. This reconfiguration somes a significant amount
of time, however, so it is advised to avoid it if possible, aodise the CGRA as a
statically reconfigurable CGRA.

In statically reconfigured CGRAS, each resource perforniaglestask for the
whole duration of the loop. In that case, the mapping of saftnonto hardware
becomes purely spatial, as illustrated in Figure 5(a). heotvords, the mapping
problem becomes one of placement and routing, in whichuiostns and data de-
pendencies between instructions have to mapped on a 2D @frragources. For
these CGRAs, compiler techniques similar to hardware ggightechniques can be
used, as those used in FPGA placement and routing [3].

By contrast, dynamic reconfigurability enables the progremto use hardware
resources for multiple different tasks during the executiba loop or even during
the execution of a single loop iteration. In that case, ttisvswe mapping problem
becomes a spatial and temporal mapping problem, in whicbpgkeations and data
transfers not only need to be placed and routed on and oveatidevare resources,
but in which they also need to be scheduled. A contrived exampa temporal
mapping is depicted in Figure 5(b). Most compiler technglie, 17, 20, 39, 43,
45, 46] for these architectures also originate from the Fp@a&ement and routing
world. For CGRAs, the array of resources is not treated as sgaiial array, but as

Coarse-Grained Reconfigurable Array Architectures 9

Fig. 5 Part (a) shows a spatial mapping of a sequence of four irigingcon a statically reconfig-
urable 2x2 CGRA. Edges denote dependencies, with the edgeifistruction 3 to instruction 0
denoting that instruction O from iteratiardepends on instruction 3 from iteratior- 1. So only
one out of four ISs is utilized per cycle. Part (b) shows a terapmapping of the same code on a
dynamically reconfigurable CGRA with only one IS. The utlion is higher here, at 100%.

y-axis

a 3D spatial-temporal array, in which the third dimensiordels time in the form
of execution cycles. Scheduling in this dimension is oftasda on techniques that
combine VLIW scheduling techniques such as modulo schegyi81, 49], with
FPGA synthesis-based techniques [3]. Still other compéleinniques exist that are
based on constraint solving [55], or on integer-linear paogming [1, 64].

The most important advantage of static reconfigurabilithéslack of reconfigu-
ration overhead, in particular in terms of power consumptieor that reason, large
arrays can be used that are still power-efficient. The dmsaidge is that even in the
large arrays the amount of resources constrains which lcaps®e mapped.

Dynamically reconfigurable CGRAs can overcome this problsnspreading
the computations of a loop iteration over multiple configiores. Thus a small dy-
namically reconfigurable array can execute larger loops. [dbp size is then not
limited by the array size, but by the array size times theldepthe reconfiguration
memories. For reasons of power efficiency, this depth is laisited, typically to
tens or hundreds of configurations, which suffices for masbifall inner loops.

A potential disadvantage of dynamically reconfigurable @GRs the power
consumption of the configuration memories, even for smadlya;, and of the con-
figuration fetching mechanism. The disadvantage can béedak different ways.
ADRES and MorphoSys tackle it by not allowing control flow fretloop bodies,
thus enabling the use of very simple, power-efficient coméiian fetching tech-
niques similar to level-0 loop buffering [34]. Whenever toh flow is found in
loop bodies, such as for conditional statements, this obfibw then first needs to
be converted into data flow, for example by means of predinadind hyperblock
formation [36]. While these techniques can introduce samt&li overhead in the
code, this overhead typically will be more than compenshyetthe fact that a more
efficient CGRA design can be used.

The MorphoSys design takes this reduction of the reconfiguréetching logic
even further by limiting the supported code to Single Indian Multiple Data
(SIMD) code. In the two supported SIMD modes, all ISs in a ravalh ISs in a
column perform identical operations. As such only one ISfigomation needs to
be fetched per row or column. As already mentioned, the RalRiBitecture limits
the number of configuration bits to be fetched by making ongyrell part of the

10 Bjorn De Sutter, Praveen Raghavan, Andy Lambrechts

configuration dynamically reconfigurable. Kim et al. praiget another solution
in which the configuration bits of one column in one cycle arased for the next
column in the next cycle [30]. Furthermore, they also preposreduce the power
consumption in the configuration memories by compressiagtmfigurations [29].

Still, dynamically reconfigurable designs exist that putestirictions on the code
to be executed, and that even allow control flow in the innep$o The Silicon Hive
design is one such design. Unfortunately, no numbers on deipconsumption
overhead of this design choice are publicly available.

A general rule is that a limited reconfigurability puts momnstraints on the
types and sizes of loops that can be mapped. Which desigidpsithe highest per-
formance or the highest energy efficiency depends, amotigstsy on the variation
in loop complexity and loop size present in the applicatitanse mapped onto the
CGRA. With large statically reconfigurable CGRAs, it is omplgssible to achieve
high utilization for all loops in an application if all thoseops have similar com-
plexity and size, or if they can be made so with loop transtdroms, and if the
iterations are not dependent on each other through loegdstdependency cycles
(as was the case in Figure 5). Dynamically reconfigurable £&Ry contrast, can
also achieve high average utilization over loops of vangizgs and complexities,
and with inter-iteration dependencies. That way dynaricatonfigurable CGRAs
can achieve higher energy efficiency in the data path, atxperse of higher en-
ergy consumption in the control path. Which design optidreist thus also depends
on the process technology used, and in particular on thiyatgilperform clock or
power gating and on the ratio between active and passivergavkea. leakage).

3.2.2 Scheduling and Issuing

Both with dynamic and with static reconfigurability, the ex&on of operations and
of data transfers needs to be controlled. This can be dotieadlain a compiler,
similar to the way in which operations from static code seheslare scheduled and
issued on VLIW processors [19], or dynamically, similar ke tvay in which out-
of-order processors issue instructions when their oparbedome available [54].
Many possible combinations of static and dynamic reconégom and of static and
dynamic scheduling exist.

A first class consists of dynamically scheduled, dynamyjcadiconfigurable
CGRAs like the TRIPS architecture [23, 51]. For this arattitiee, the compiler de-
termines on which IS each operation is to be executed andwdvieh connections
data is to be transferred from one IS to another. So the cemmérforms placement
and routing. All scheduling (including the reconfiguradigmdynamic, however, as
in regular out-of-order superscalar processors [54]. BRifRainly targets general-
purpose applications, in which unpredictable control floakes the generation of
high-quality static schedules difficult if not impossib&uch applications most of-
ten provide relatively limited ILP, for which large arraysammputational resources
are not efficient. So instead a small, dynamically reconéigle array is used, for
which the run-time cost of dynamic reconfiguration and scitied is acceptable.

Coarse-Grained Reconfigurable Array Architectures 11

A second class of dynamically reconfigurable architectavesds the overhead
of dynamic scheduling by supporting VLIW-like static schidg [19]. Instead of
doing the scheduling in hardware where the scheduling litgin burns power, the
scheduling for ADRES, MorphoSys and Silicon Hive architees is done by a
compiler. Compilers can do this efficiently for loops wittgugar, predictable be-
havior and high ILP, as found in many DSP applications. As\fbhW architec-
tures, software pipelining [31, 49] is a very important tpege the ILP in software
kernels, so most compiler techniques [15, 17, 20, 39, 4348%for statically
scheduled CGRAs implement some form of software pipelining

A final class of CGRAs are the statically reconfigurable, dayitally scheduled
architectures, such as KressArray or PACT (neglectingithe-tonsuming partial
reconfigurability of the PACT). The compiler performs plamnt and routing, and
the code execution progress is guided by tokens or evenalsiginat are passed
along with data. Thus the control is dynamic, and it is distred over the token or
event path, similar to the way in which transport-triggeaechitectures [13] oper-
ate. These statically reconfigurable CGRAs do not requiitevace pipelining tech-
niques because there is no temporal mapping. Instead thialspapping and the
control implemented in the tokens or event signals impldéradrardware pipeline.

We can conclude by noting that, as in other architecturedigines such as VLIW
processing or superscalar out-of-order execution, dyeoaliyischeduled CGRAs
can deliver higher performance than statically schedultegsdor control-intensive
code with unpredictable behavior. On dynamically schedtl I&RAs the code path
that gets executed in an iteration determines the exectition of that iteration,
whereas on statically scheduled CGRASs, the combinatiofi pbasible execution
paths (including the slowest path which might be executBdguently) determines
the execution time. Thus, dynamically scheduled CGRAs cawige higher per-
formance for some applications. However, the power effmyjenill then typically
also be poor because more power will be consumed in the dqattio. Again, the
application domain determines which design option is mppt@priate.

3.2.3 Thread-level and Data-level Parallelism

Another important aspect of control is the possibility tggart different forms
of parallelism. Obviously, loosely-coupled CGRAs can @peiin parallel with the
main CPU, but one can also try to use the CGRA resources teimgit SIMD or
to run multiple threads concurrently within the CGRA.

When dynamic scheduling is implemented via distributecheased control, as
in KressArray or PACT, implementing TLP is relatively sire@nd cheap. For small
enough loops of which the combined resource use fits on theAC@Ruffices to
map independent thread controllers on different partsetiibtributed control.

For architectures with centralized control, the only optio run threads in paral-
lel is to provide additional controllers or to extend thetcalcontroller, for example
to support parallel execution modes. While such extensiglhgicrease the power

12 Bjorn De Sutter, Praveen Raghavan, Andy Lambrechts

consumption of the controller, the newly supported modeghtrsuit certain code
fragments better, thus saving in data path energy and coafigo fetch energy.

The TRIPS controller supports four operation modes [51thkfirst mode, all
ISs cooperate for executing one thread. In the second miogléotir rows execute
four independent threads. In the third mode, fine-grainettisttweading [54] is
supported by time-multiplexing all ISs over multiple thdsaFinally, in the fourth
mode each row executes the same operation on each of ithiSsiniplementing
SIMD in a similar, fetch-power-efficient manner as is dongéhi@ two modes of the
MorphoSys design. Thus, for each loop or combination of $oiopan application,
the TRIPS compiler can exploit the most suited form of patizin.

The Raw architecture [57] is a hybrid between a many-corki@ature and a
CGRA architecture in the sense that it does not feature a 24y af I1Ss, but rather
a 2D array of tiles that each consist of a simple RISC proce¥$ée tiles are con-
nected to each other via a mesh interconnect, and transgaidita over this inter-
connect to neighboring tiles does not consume more timerttaieving data from
the RF in the tile. Moreover, the control of the tiles is sutattthey can operate in-
dependently or synchronized in a lock-step mode. Thus,pheltiles can cooperate
to form a dynamically reconfigurable CGRA. A programmer cande partition the
2D array of tiles into several, potentially differently stz CGRASs that each run an
independent thread. This provides very high flexibility tdemce the available ILP
inside threads with the TLP of the combined threads.

Other architectures do not support (hardware) multi-tthirggawithin one CGRA
core at all, like the current ADRES and Silicon Hive. The faslution to run multi-
ple threads with these designs is to incorporate multipl®B@ccelerator cores in
a System-on-Chip (SoC). The advantage is then that eacleeatoe can be cus-
tomized for a certain class of loop kernels. Also, ADRES ailitéh Hive are
architecture templates, which enables CGRA designersstiize their CGRA
cores for the appropriate amount of DLP for each class of l@spels, in the form
of SIMD or subwordparallelism.

Alternatively, TLP can be converted into ILP and DLP by conibg, at compile-
time, kernels of multiple threads and by scheduling therettogr as one kernel, and
by selecting the appropriate combination of scheduledederst run time [52].

3.3 Interconnects and Register Files

3.3.1 Connections

A wide range of connections can connect the ISs of a CGRA vatthether, and
with the RFs, other memories and 10 ports. Buses, pointsiotgonnections, and
crossbars are all used in various combinations and in diftéopologies.

For example, some designs like MorphoSys and the most comhRES
and Silicon Hive designs feature a densely connected messtork of point-to-
point interconnects in combination with sparser busesdbiabect ISs further apart.

Coarse-Grained Reconfigurable Array Architectures 13

Thus the number of long power-hungry connections is limiMdltiple studies of
point-to-point mesh-like interconnects as in Figure 10ehbgen published in the
past[7, 28, 32, 38]. Other designs like RaPiD feature a deesgork of segmented
buses. Typically the use of crossbars is limited to very imstances because large
ones are too power-hungry. Fortunately, large crossbarmast often not needed,
because many application kernels can be implemented adisydgorithms, which
map well onto mesh-like interconnects as found in systatiayes [47].

Unlike crossbars and even busses, mesh-like networks of-pmipoint connec-
tions scale better to large arrays without introducing tacmdelay or power con-
sumption. For statically reconfigurable CGRAs, this is biered. Buses and other
long interconnects connect whole rows or columns to comefegrshort-distance
mesh-like interconnects. The negative effects that suef ilsterconnects can have
on power consumption or on obtainable clock frequency caavbiled by segmen-
tation or by pipelining. In the latter case, pipelining laés are added along the con-
nections or in between muxes and ISs. Our experience, asreelin Section 4.2.2
is that this pipelining will not necessarily lead to lowed®in CGRAs. This is dif-
ferent from out-of-order or VLIW architectures, where deepipelining increases
the branch misprediction latency [54]. Instead at leasts@QBRA compilers suc-
ceed in exploiting the pipelining latches as temporaryagjer rather than being
hampered by them. This is the case in compiler techniqueg[lik, 39] that are
based on FPGA synthesis methods in which RFs and pipeliaichés are treated
as interconnection resources that span multiple cyclésadof as explicit storage
resources. This treatment naturally fits the 3D array madebif resources along
two spatial dimensions and one temporal dimension. Coresgtyithose compiler
techniques can exploit pipelining latches naturally amdilairly to using storage
space in distributed RFs.

3.3.2 Register Files

Compilers for CGRA architectures place operations in I8gstalso scheduling
them, and route the data flow over the connections betwed®thdhose connec-
tions may be direct connections, or latched connectiorsy@n connections that go
through RFs. Therefore most CGRA compilers treat RFs naraporary storage,
but as interconnects that can span multiple cycles. ThuREsecan be treated uni-
formly with the connections during routing. A direct conseqce of this compiler
approach is that the design space freedom of interconneetsds to the placement
of RFs in between ISs. During the DSE for a specific CGRA instan a CGRA
design template such as the ADRES or Silicon Hive templétett the real con-
nections and the RFs have to be explored, and that has to ledagether. Just like
the number of real interconnect wires and their topology,dize of RFs, their lo-
cation and their number of ports then contribute to the auenectivity of the ISs.
We refer to [7, 38] for DSEs that study both RFs and intercetme

Besides their size and ports, another important aspecatsRfRs can be rotat-
ing [50]. The power and delay overhead of rotation is verylsmalistributed RFs,

14 Bjorn De Sutter, Praveen Raghavan, Andy Lambrechts

simply because these RFs are small themselves. Still theypvide an impor-
tant functionality. Consider a dynamically reconfiguraB@RA on which a loop is
executed that iterates oveiconfigurations, i.e., each iteration takesycles. That
means that for a write port of an RF, evergycles the same address bits get fetched
from the configuration memory to configure the address sdtatgort. In other
words, every cycles a new value is being written into the register spathigthat
same address. This implies that values can stay in the sagisterefor at mosk
cycles; then they are overwritten by a new value from the iteration. In many
loops, however, some values have a life time that spans hamxtycles, because
it spans multiple loop iterations. To avoid having to insetditional data transfers
in the loop schedules, rotating registers can be used. Adrilef every iteration of
the loop, all values in rotating registers rotate into arotiegister to make sure that
old values are copied to where they are not overwritten byeneralues.

3.3.3 Predicates, Events and Tokens

To complete this overview on CGRA interconnects, we waniafout that it can
be very useful to have interconnects of different widthse @hata path width can be
as small as 8 bits or as wide as 64 or 128 bits. The latter wattgypically used to
pass SIMD data. However, as not all data is SIMD data, notdifigneed to have the
full width. Moreover, most CGRA designs and the code mapp#d them feature
signals that are only one or a few bits wide, such as predicatevents or tokens.
Using the full-width datapath for these narrow signals essesources. Hence it is
often useful to add a second, narrow datapath for controbdsdike tokens or events
and for predicates. How dense that narrow datapath has depends on the type of
loops one wants to run on the CGRA. For example, multimediénepand decoding
typically includes more conditional code than SDR baselpaindessing. Hence the
design of, e.qg., different ADRES architectures for multitizeand for SDR resulted
in different predicate data paths being used, as illustrast&ection 4.2.1.

At this point, it should be noted that the use of predicatdarnsiamentally not
that different from the use of events or tokens. In KressAoaPACT, events and
tokens are used, amongst others, to determine at run tinehwhaita is selected to
be used later in the loop. For example, for a C expressiorxlike (a>b) ? vy
+ z . y - z onelS will first compute the additiop+z, one IS will compute
the subtractioly- z, and one IS will compute the greater-than condieb. The
result of the latter computation generates an event thabewifed to a multiplexor
to select which of the two other computer valyesz andy- z is transferred to
yet another IS on which the addition xowill be performed. Unlike the muxes in
Figure 2(b) that are controlled by bits fetched from the qguniation memory, those
event-controlled multiplexors are controlled by the datthp

In the ADRES architecture, the predicates guard the operaitn ISs, and they
serve as enable signals for RF write ports. Furthermorg,dhe also used to con-
trol specialsel ect operations that pass one of two input operands to the output
port of an IS. Fundamentally, an event-controlled multipleperforms exactly the

Coarse-Grained Reconfigurable Array Architectures 15

iy

LOCAL RF

ALU + MULT N
4 registers

|

le——

feedback
latch

i shift ;

(a) MorphoSys issue slot

L (I

ALU + MULT ALU + MULT

[[

1

I

T 1

src 0 src 1 src 0 src1
mux mux mux mux

ALU + MULT ALU + MULT

{ |

(c) a single issue slot as proposed by Galanis et al.

WL W U

pred src 0 src1 opt src
mux mux mux 3 mux

l optional l optional H optional H optional
pipe latch pipe latch pipe latch pipe latch

! ! !

any combination
of operations

optional
pipe latch

(b) ADRES issue slot

\‘\ —>| shared

(d) issue slots that share a multiplier

Fig. 6 Four different structures of ISs proposed in the literatéart (a) displays a fixed Mor-
phoSys IS, including its local RF. Part (b) displays theyfuustomizable ADRES IS, that can
connect to shared or non-shared local RFs. Part (c) depetStstructure proposed by Galanis et
al. [22], and (d) depicts a row of four ISs that share a muérdR7].

same function as theel ect operation. So the difference between events or to-
kens and predicates is really only that the former term anqmdmentation are used
in dynamically scheduled designs, while the latter termsisalin static schedules.

3.4 Computational Resources

Issue slots are the computational resources of CGRAs. Oeelast decade, nu-
merous designs of such issue slots have been proposed,difidieant names, that
include PEs, FUs, ALUs, and flexible computation compondfitpure 6 depicts
some of them. For all of the possible designs, it is importarknow the context
in which these ISs have to operate, such as the intercono@utecting them, the

control type of the CGRA, etc.

Figure 6(a) depicts the IS of a MorphoSys CGRA. All 64 ISs iis thomoge-
neous CGRA are identical and include their own local RF. i surprise, as the
two MorphoSys SIMD modes (see Section 3.2.1) require thd$alof a row or of
a column execute the same instruction, which clearly insgiiemogeneous ISs.

16 Bjorn De Sutter, Praveen Raghavan, Andy Lambrechts

In contrast, almost all features of an ADRES IS, as depiatdegure 6(b), can
be chosen at design time, and can be different for each IS BRACthat then be-
comes heterogeneous: the number of ports, whether or metahelatches between
the multiplexors and the combinatorial logic that implensehe operations, the set
of operations supported by each IS, how the local registerarf® connected to ISs
and possibly shared between ISs, etc. As long as the desigmtrates the ADRES
template, the ADRES tool flow will be able to synthesize tlehdecture and to gen-
erate code for it. A similar design philosophy is followedthg Silicon Hive tools.
Of course this requires more generic compiler techniquas those that generate
code for the predetermined homogeneous ISs of, e.g., theid&ys CGRA. Given
the state of the art in compiler technology for this type afdtecture, the advan-
tages of this freedom are (1) the possibility to design déffi instances optimized
for certain application domains, (2) the knowledge thatféetures of those de-
signs will be exploited, and (3) the ability to compile lodpat feature other forms
of ILP than DLP. DLP can still be supported, of course, by dimpcorporating
SIMD-capable (a.k.a. subwordparallel) ISs of, e.g., 4xit6 Wide. The drawback
is this design freedom is that, at least with the current demgechniques, these
techniques are so generic that they miss optimization dppities because they
do not exploit regularity in the designed architectureseydo not exploit it for
speeding up the compilation, nor do they for producing bstthedules.

Figure 6(c) depicts the IS proposed by Galanis et al. [22hiAgll ISs are iden-
tical. In contrast to the MorphoSys design, however, th&sedonsist of several
ALUs and multipliers with direct connections between themd ¢heir local RFs.
These direct connections within each IS can take care ofd kdta transfers, thus
freeing time on the shared bus-based interconnect thatectsall ISs. Thus, the
local interconnect within each IS compensates for the ldekszaling global inter-
connect. One advantage of this approach is that the congaitebe tuned specif-
ically for this combination of local and global connecticarsd for the fact that it
does not need to support heterogeneous ISs. Whether orisdyple of design is
more power-efficient than that of CGRAs with more designdia and potentially
more heterogeneity is unclear at this point in time. At leagt know of no studies
from which, e.g., utilization numbers can be derived thiivalus to compare the
two approaches.

With respect to utilization, it is clear that the designs mfufe 6(a) and 6(b) will
only be utilized well if a lot of multiplications need to be nf@med. Otherwise,
the area-consuming multipliers remain unused. To work radhis problem, the
sharing of large resources such as multipliers betweendSé&&en proposed in the
RSPA CGRA design [27]. Figure 6(d) depicts one row of ISs tmnhot contain
multipliers internally, but that are connected to a sharettiplier through switches
and a shared bus. The advantage of this design, comparedADRES design
in which each row features 3 pure ALU ISs and 1 ALU+MULT IS, st this
design allows the compiler to schedule multiplications lin%s (albeit only one
per cycle), whereas this scheduling freedom would be ldniteone IS slot in the
ADRES design. To allow this schedule freedom, however, aifsigint amount of
resources in the form of switches and a special-purposedrs to be added to the

Coarse-Grained Reconfigurable Array Architectures 17

row. While we lack experimental data to back up this claim finaly believe that
a similar increase in schedule freedom can be obtained iaftrementioned 3+1
ADRES design by simply extending an existing ADRES interegt with a similar
amount of additional resources. In the ADRES design, tharsion would then
also be beneficial to operations other than multiplications

The optimal number of ISs for a CGRA depends on the applicat@mmain, on
the reconfigurability, as well as on the IS functionality amdthe DLP available in
the form of subwordparallelism. As illustrated in sectio@.2, a typical ADRES
would consist of 4x4 ISs [6, 37]. TRIPS also features 4x4 MisrphoSys provides
8x8 ISs, but that is because the DLP is implemented as SIMD rowgtiple |ISs,
rather than as subwordparallelism within ISs. In our exg@se, scaling dynamically
reconfigurable CGRA architectures such as ADRES to veryelamgays (8x8 or
larger) does not make sense even with scalable intercanhiketmesh or mesh-
plus interconnects. Even in loops with high ILP, utilizatidrops significantly on
such large arrays [42]. It is not yet clear what is causing liver utilization, and
there might be several reasons. These include a lack of nyebzordwidth, the
possibility that the compiler techniques [15, 39] simplymut scale to such large
arrays, or the fact that the relative connectivity in suchédaarrays is lower. Simply
stated, when a mesh interconnects all ISs to their neighbach 1S not on the side
of the array is connected to 4 other ISs out of 16 in a 4x4 army,to 25% of all
ISs, while it is connected to 4 out of 64 1Ss on an 8x8 array, tioe6.25% of all ISs.

To finalize this section, we want to mention that, just likeaimy other type of
processor, it makes sense to pipeline complex combinatoge, e.g., as found
in multipliers. There are no fundamental problems to do, taigl it can lead to
significant increases in utilization and clock frequency.

3.5 Memory Hierarchies

CGRAs have a large number of ISs that need to be fed with datatihe memory.
Therefore the data memory sub-system is a crucial part dEGRA design. Many
reconfigurable architectures feature multiple indepehd@mory banks or blocks
to achieve high data bandwidth. Exploiting those autoradlyicn a compiler has
not yet been fully solved.

The RAW architecture features an independent memory bloaach tile for
which Barua developed a method called modulo unrolling saugibiguate and as-
sign data to different banks [2]. However, this technique a@aly handle array ref-
erences through affine index expression on loop inductioabies.

MorphoSys has a 256-bit wide frame buffer between the maimong and a
reconfigurable array to feed data to the I1Ss operating in Stvide [35]. The ef-
ficient use of such a wide memory depends by and large on meateaplacement
and operation scheduling. Similar techniques for wide $oadd stores have also
been proposed in regular VLIW architectures for reducingero[48]. However,

18 Bjorn De Sutter, Praveen Raghavan, Andy Lambrechts

this requires the programmer or compiler to perform the tgtaut in memory in
order to exploit the large bandwidth between the level-1 wrgrand the datapath.

Both Silicon Hive and PACT feature distributed memory blegkthout a cross-
bar. A Silicon Hive programmer has to specify the allocatibdata to the memory
for the compiler to bind the appropriate load/store operetito the corresponding
memories. Silicon Hive also supports the possibility oenfeicing the memory or
system bus using FIFO interfaces. This is efficient for shieg processing but is
difficult to interface when the data needs to be buffered arase of data reuse.

The ADRES architecture template provides a parametegzBlalta Memory
Queue (DMQ) interface to each of the different single-payriaterleaved level-
1 scratch-pad memory banks [6]. The DMQ interface is respn$or resolving
bank access conflicts, i.e., when multiple load/store ISslavavant to access the
same bank at the same time. Connecting all load/store ISk bareks through a
conflict resolution mechanism allows maximal freedom fdadeccess patterns and
also maximal freedom on the data layout in memory. The piatietisadvantage of
such conflict resolution is that it increases the latencyoafll operations. In soft-
ware pipelined code, however, increasing the individuahay of instructions most
often does not have a negative effect on the schedule guaditause the compiler
can hide those latencies in the software pipeline. In thempeicessor VLIW mode
of an ADRES, that accesses the same memories in code notsefpipelined, the
conflict resolution is disabled to obtain shorter accesslaes.

3.6 Compiler Support

Apart from the specific algorithms used to compile code, tlagomdistinctions be-
tween the different existing compiler techniques relate/b@ther or not they sup-
port static scheduling, whether or not they support dynaetonfiguration, whether
or not they rely on special programming languages, and vehethnot they are lim-
ited to specific hardware properties. Because most conmpeiarch has been done
to generate static schedules for CGRAs, we focus on thodg@srséction. As al-
ready indicated in Sections 3.2.1 and 3.2.2, many algosdthm based on FPGA
placement and routing techniques [3] in combination withiWLcode generation
techniques like modulo scheduling [31, 49] and hyperblackiation [36].

Whether or not compiler techniques rely on specific hardwesperties is not al-
ways obvious in the literature, as not enough details ariéadd@ in the descriptions
of the techniques, and few techniques have been tried onearaitje of CGRA ar-
chitectures. For that reason, it is very difficult to compeeefficiency (compilation
time) and effectiveness (quality of generated code) of tfierdnt techniques.

The most widely applicable static scheduling techniquesdifferent forms of
Modulo Resource Routing Graphs (MRRGS). RRGs are timeesgiaphs, in which
all resources (space dimension) are modeled with vertideste is one such ver-
tex per resource per cycle (time dimension) in the schedeilegbgenerated. Di-
rected edges model the connections over which data valmefogafrom resource

Coarse-Grained Reconfigurable Array Architectures 19

to resource. The schedule, placement and routing problamtibcomes a problem
of mapping the Data Dependence Graph (DDG) of some loop badh® RRG.
Scheduling refers to finding the right cycle to perform anrafien in the schedule,
placement refers to finding the right IS in that cycle, andiraurefers to finding
connections to transfer data from producing operationst@gming operations. In
the case of a modulo scheduler, the modulo constraint isesddy modeling all
resource usage in the modulo time domain. This is done by limgdee appropriate
modulo reservation tables [49] on top of the RRG, hence theendRRG.

The granularity of its vertices depends on the precise clemalgorithm. One
modulo graph embedding algorithm [45] models whole I1Ss opl@tRFs with
single vertices, whereas the simulated-annealing tedkeriigthe DRESC [15, 39]
compiler that targets ADRES instances models individualspm ISs and RFs as
separate vertices. Typically, fewer nodes that model taxgmponents lead to faster
compilation because the graph mapping problem operatessamafier graph, but
also to lower code quality because some combinations ofiresaisage cannot be
modeled precisely. Some techniques, such as DRESC, aremtiile central idea of
finding the best routes to steer the placement and schedthing exploring many
possible routings, while others [20, 43, 45, 46] use heusdb place and sched-
ule the code, using routability as a constraint during theedaling. The latter are
typically much more efficient, but less effective.

MRRG-based compiler techniques are easily retargetaldentiole range of ar-
chitectures, such as those of the ADRES template, and theeguggport many pro-
gramming languages. Different architectures can simplgnbdeled with different
MRRGs. To support different programming languages like @ Bortran, the tech-
nigues only require a compiler front-end that is able to gateeDDGs for the loop
bodies. Obviously, the appropriate loop transformatiogesdito be applied before
generating the DDG in order to generate one that maps welltbetMRRG of the
architecture. Such loop transformations are discussedtaildn Section 4.1.

Many other CGRA compiler techniques have been proposed, oh@gich are
restricted to specific architectures. Static reconfig@rathitectures like RaPiD
and PACT have been targeted by compiler algorithms [10, 37/b&sed on place-
ment and routing techniques that also map DDGs on RRGs. Thaelriques sup-
port subsets of the C programming language (no pointergruadts, ...) and require
the use of special C functions to program the 10 in the loopidmtb be mapped
onto the CGRA. The latter requirement follows from the spe¢D support in the
architectures and the modeling thereof in the RRGs.

For the MorphoSys architecture, with its emphasis on SIMDs&|Ss, compiler
techniques have been developed for the SA-C language [61hid language the
supported types of available parallelism are specified bgnaef loop language
constructs. These constructs are translated into cordd# or the CGRA, which
are mapped onto the ISs together with the DDGs of the loopesodi

CGRA code generation techniques based on integer-linegrgmming have
been proposed for the RSPA architecture, both for spafjalid for temporal map-
ping [64]. Basically, the ILP formulation consists of alletmequirements or con-
straints that must be met by a valid schedule. This formutas built from a DDG

20 Bjorn De Sutter, Praveen Raghavan, Andy Lambrechts

and a hardware description, and can hence be used to comgilg source lan-
guages. It is unclear, however, to what extent the ILP foatih and its solution
rely on specific architecture features, and hence to whitdénéx would be possi-
ble to retarget the ILP-formulation to different CGRA de®sgA similar situation
occurs for the constraint-based compilation method d@esldor the Silicon Hive
architecture template [55], of which no detailed inforroatis public.

Code generation techniques for CGRAs based on instrusgtection pattern
matching and list-scheduling techniques have also begropeal [21, 22]. It is un-
clear to what extent these techniques rely a on specific tanthre because we
know of no trial to use them for different CGRAs, but thesehtéques seem to
rely heavily on the existence of a single shared-bus thanects ISs as depicted
in Figure 6(c). Similarly, the static reconfiguration codengration technique by
Lee et al. relies on CGRA rows consisting of identical ISs][Eecause of this
assumption, a two-step code generation approach can berusédch individual
placements within rows are neglected in the first step, ahdtaken care of in the
second step. The first step then instead focuses on optiptizénmemory traffic.

Finally, compilation techniques have been developed treateally specialized
for the TRIPS array layout and for its out-of-order execuf{ib2].

One rule-of-thumb covers all the mentioned techniquesergeneric techniques,
i.e., techniques that are more flexible in targeting diffiéschitectures or different
instances of an architecture template, are less efficiathtoftien less effective in
exploiting special architecture features. In other wosthhiques that rely on spe-
cific hardware features, such as interconnect regulamtiespecific forms of ISs
clustering, while being less flexible, will generally be el target those hardware
features more efficiently, and often also more effectivlge versa, architectures
with such features usually need specialized compiler tigcies. This is similar to
the situation of more traditional DSP or VLIW architectures

4 Case Study: ADRES

This section presents a case study on one specific CGRA desigiate. The pur-
pose of this study is to illustrate that it is non-trivial torapile and optimize code
for CGRA targets, and to illustrate that within a design téatg there is a need
for hardware design exploration. This illustrates how budindware and software
designers targeting CGRAs need a deep understanding ofitdragtion between
the architecture features and the used compiler techniques
ADRES [5, 6, 7, 15, 37, 39, 40, 41] is an architecture desigmptate from

which dynamically reconfigurable, statically scheduledR2G can be instantiated.
In each instance, an ADRES CGRA is coupled tightly to a VLIVidgassor. This
processor shares data and predicate RFs with the CGRA, hasv@lemory ports
to a multi-banked scratch-pad memory as described in Se8tib The compiler-
supported ISA of the design template provides instructtbasare typically found
in a load/store VLIW or RISC architecture, including aritbtic operations, logic

Coarse-Grained Reconfigurable Array Architectures 21

operations, load/store operations, and predicate congirtstructions. Additional

domain-specific instructions, such as SIMD operations,saggorted in the pro-
gramming tools by means of intrinsics [56]. Local rotatimglanon-rotating, shared
and private local RFs can be added to the CGRA as describdueiprevious

sections, and connected through an interconnect corgsisfimuxes, buses and
point-to-point connections that are specified completglyhe designer. Thus, the
ADRES architecture template is very flexible: it offers athdggree of design free-
dom, and it can be used to accelerate a wide range of loops.

4.1 Mapping Loops onto ADRES CGRAs

The first part of this case study concerns the mapping of loapsADRES CGRAS,

which are one of the most flexible CGRAs supporting a wide easfgoops. This

study illustrates that many loop transformations need t@apyaied carefully be-
fore mapping code onto ADRES CGRAs. We discuss the most itapbcompiler

transformations and, lacking a full-fledged loop-optimgicompiler, manual loop
transformations that need to be applied to source code &r dodobtain high per-
formance and high efficiency. For other, less flexible CGRiAs, need for such
transformations will even be higher because there will beenoonstraints on the
loops to be mapped in the first place. Hence many of the disdussues not only
apply to ADRES CGRASs, but also to other CGRA architectures. Wil conclude

from this study that programming CGRAs with the existing @dler technology is

not compatible with high programmer productivity.

4.1.1 Modulo Scheduling Algorithms for CGRAs

To exploit ILP in inner loops on VLIW architectures, compgetypically apply
software pipelining by means of modulo scheduling [31, 4%iis is no different
for ADRES CGRAs. In this section, we will not discuss the inmerking of mod-
ulo scheduling algorithms. What we do discuss, are the cues®es of using that
technique for programming ADRES CGRAs.

After a loop has been modulo-scheduled, it consists of fhin@ses: the prologue,
the kernel and the epilogue. During the prologue, stageBeooftware-pipelined
loop gradually become active. Then the loop executes theekér a steady-state
mode in which all software pipeline stages are active, atehafrds the stages are
gradually disabled during the epilogue. In the steadyestabde, a new iteration
is started after ever) cycles, which stands for Initiation Interval. Fundamelgtal
every software pipeline stageliscycles long. The total cycle count of a loop with
iter iterations that is scheduled oves software pipeline stages is then given by

cyclegrologuet Il - (iter — (ps— 1)) + cyclegpiiogue (2)

22 Bjorn De Sutter, Praveen Raghavan, Andy Lambrechts

In this formula, we neglect processor stalls because af,;ragmory access conflicts
or cache misses.

For loops with a high number of iterations, the teiimiter dominates this cy-
cle count, and that is why modulo scheduling algorithms éryninimizell, thus
increasing the IPC terms in Equation (1).

The minimalll that modulo scheduling algorithms can reach is bounahioyl =
max(RecMll,ResMlII). The first term, called resource-minimal(ResMl)) is de-
termined by the resources required by a loop and by the ressyrovided by the
architecture. For example, if a loop body contains 9 muttgilons, and there are
only two ISs that can execute multiplications, then at [¢8g2] = 5 cycles will
be needed per iteration. The second term, called recurmimdenal |1 (RecMII)
depends on recurrent data dependencies in a loop and aunciistrlatencies. Fun-
damentally, if an iteration of a loop depends on the previteration through a
dependency chain with accumulated latefgcMI|, it is impossible to start that
iteration before at leaftecMIll cycles of the previous iteration have been executed.

The next section uses this knowledge to apply transformatizat optimize per-
formance according to Equation (1). To do so successftliy,important to know
that ADRES CGRAs support only one thread, for which the pgsseoehas to switch
from a non-CGRA operating mode to CGRA mode and back for eacériloop.
So besides minimizing the cycle count of Equation (2) to imbkagher IPCs in
Equation (1), it is also important to consider the tetps, 1 in Equation (1).

4.1.2 Loop Transformations
Loop Unrolling

Loop unrolling and the induction variable optimizationattit enables can be used
to minimize the number of iterations of a loop. When a loopyaisdinrolledx times,
iter decreases with a factgrandResMlltypically grows with a factor slightly less
thanx because of the induction variable optimizations and bexafishe ceiling
operation in the computation desMIL By contrast,RecMlI typically remains
unchanged or increases only a little bit as a result of thedtidn variable opti-
mizations that are enabled after loop unrolling.

In resource-bound loop&esMIl > RecMIl. Unrolling will then typically have
little impact on the dominating terh - iter in Equation (2). However, the prologue
and the epilogue will typically become longer because oploorolling. Moreover,
an unrolled loop will consume more space in the instructi@mmry, which might
also have a negative impact on the total execution time ofvti@e application. So
in general, unrolling resource-bound loops is unlikely éoviery effective.

In recurrence-bound loopRecMIl-iter > ResMI|I-iter. The right hand side of
this inequality will not increase by unrolling, while thefidnand side will be di-
vided by the unrolling factox. As this improvement typically compensates for the
longer prologue and epilogue, we can conclude that ungplien be an effective
optimization technique for recurrence-bound loops if teeurrences can be opti-

Coarse-Grained Reconfigurable Array Architectures 23

mized with induction variable optimizations. This is nofdient for CGRAs than
it is for VLIWs. However, for CGRAs with their larger numbef ISs, it is more
important because more loops are recurrence-bound.

Loop Fusion, Loop Interchange, Loop Combination and Datat€&d Switching

Fusing adjacent loops with the same number of iteratiormsane loop can also be
useful, because fusing multiple recurrence-bound loopgesult in one resource-
bound loop, which will result in a lower overall executiom8. Furthermore, less
switching between operating modes takes place with fusepsloand hence the
termstp_p,1 are minimized. Furthermore, less prologues and epilogeed to be
executed, which might also improve performance. This imeneent will usually
be limited, however, because the fused prologues and egifogill rarely be much
shorter than the sum of the original ones. Moreover, loofusloes result in a
loop that is bigger than any of the original loops, so it catydie applied if the
configuration memory is big enough the fit the fused loop. i§ tk the case, less
loop configurations need to be stored and possibly reloadedhe memory.
Interchanging an inner and outer loop serves largely theegaumpose as loop
fusion. As loop interchange does not necessarily resudiripelr prologues and epi-
logues, it can be even more useful, as can be the combiningsdéa loops into a
single loop. Data-context switching [4] is a very similachaique that serves the
same purpose. That technique has been used by Lee et alaticaky reconfig-
urable CGRAs as well [33], and in fact most of the loop transf@tions mentioned
in this section can be used to target such CGRAs, as well asthaytype of CGRA.

Live-in Variables

In our experience, there is only one caveat with the abovestoamations. The
reason to be careful when applying them is that they can aser¢he number of
live-in variables. A live-in variable is a variable that geissigned a value before the
loop, which is consequently used in the loop. Live-in valealztan be manifest in the
original source code, but they can also result from compifgimizations that are
enabled by the above loop transformations, such as indueticable optimizations
and loop-invariant code motion. When the number of live-dmiables increases,
more data needs to be passed from the non-loop code to theddepwhich might
have a negative effect dp_.p1. The existence and the scale of this effect will
usually depend on the hardware mechanism that couples tiRAGEBcelerator to
the main core. Possible such mechanisms are discussedtiorSgd. In tightly-
coupled designs like that of ADRES or Silicon Hive, passirigrited amount of
values from the main CPU mode to the CGRA mode does not inaslyeverhead:
the values are already present in the shared RF. Howeveejifitumber grows too
big, there will not be enough room in the shared RF, which reflult in much less
efficient passing of data through memory. We have experéetits several times

24 Bjorn De Sutter, Praveen Raghavan, Andy Lambrechts

with loops in multimedia and SDR applications that were negppnto our ADRES
designs. So, even for tightly-coupled CGRA designs, the@lmop transformations
and the enabled optimizations need to be applied with geeat ¢

Predication

Modulo scheduling techniques for CGRAs [15, 17, 20, 39, 43,chly schedule
loops that are free of control flow transfers. Hence any loogybthat contains
conditional statements first needs to be if-converted iyfmehblocks by means of
predication [36]. For this reason, many CGRAs, includingP¥s CGRAS, support
predication.

Hyperblock formation can result in very inefficient code ibap body contains
code paths that are executed rarely. All those paths caoitérito ResMIland po-
tentially toRecMIl. Hence even paths that get executed very infrequently can sl
down a whole modulo-scheduled loop. Such loops can be @eltedth profiling,
and if the data dependencies allow this, it can be useful libthese loops into
multiple loops. For example, a first loop can contain the cofttbe frequently ex-
ecuted paths only, with a lowér than the original loop. If it turns out during the
execution of this loop that in some iteration the infreqlieexecuted code needs to
be executed, the first loop is exited, and for the remaingrgitons a second loop is
entered that includes both the frequently and the infretiperecuted code paths.

Alternatively, for some loops it is beneficial to have a stiethinspector loop
with very smallll to perform only the checks for all iterations. If none of tliecks
are positive, a second so-called executor loop is exechgdricludes all the com-
putations except the checks and the infrequently execwétsplf some checks
were positive, the original loop is executed.

One caveat with this loop splitting is that it causes code sigpansion in the
CGRA instruction memories. For power consumption reasiiese memories are
kept as small as possible. This means that the local imprem&obtained with the
loop splitting need to be balanced with the total code sizalldbops that need to
share these memories.

Kernel-Only Loops

Predication can also be used to generate so-called kenhelemp code. This is
loop code that does not have separate prologue and epilogedragments. Instead
the prologues and epilogues are included in the kernef,itsblere predication is
now used to guard whole software pipeline stages and to etisatronly the appro-
priate software pipeline stages are activated at each jpdiimie. A traditional loop
with a separate prologue and epilogue is compared to a kergloop in Figure 7.
Three observations need to be made here.

The first observationis that kernel-only code is usuallyefialsecause the pipeline
stages of the prologue and epilogue now get executed on tHRACA&celerator,

Coarse-Grained Reconfigurable Array Architectures 25

original loop iterations original loop iterations
_— _—
1 [+]8]2]1
prologue | |21 4|3|2|1
on main core
3(2]1 4(8|12|1
4(3]2|1 4(3]2|1
413|121 413|121
kernel 418|2]|1 kernel-only 418|2]|1
on CGRA 23l2]1 on CGRA 23l2]1
4(3|2(1 4(3|2(1
" 413|2 413|2(1
epilogue
on main core 413 418|2|1
4 4|32 1]
y time

Fig. 7 On the left a traditional modulo-scheduled loop, on thetrgkernel-only one. Each num-
bered box denotes one of four software pipeline stages, actd rew denotes the concurrent ex-
ecution of different stages of different iterations. Grdy#oxes denote stages that actually get
executed. On the left, the dark grayed boxes get executeldeo8 ERA accelerator, in which ex-
actly the same code is executed evidrgycles. The light grayed boxes are pipeline stages that get
executed outside of the loop, in separate code that runseama&m processor. On the right, kernel-
only code is shown. Again, the dark grey boxes are executedeo8GRA accelerator. So are the
white boxes, but these get deactivated during the prologdespilogue by means of predication.

which typically can do so at much higher IPCs than the maie.cbhis is a major
difference between (ADRES) CGRAs and VLIWSs. On the latterplel-only loops
are much less useful because all code runs on the same nufh8sramyway.

Secondly, while kernel-only code will be faster on CGRAsrettime is spentin
the CGRA mode, as can be seen in Figure 7. During the epilogdip@logue, the
whole CGRA is active and thus consuming energy, but manyrSaat performing
useful computations because they execute operations fractive pipeline stages.
Thus, kernel-only is not necessarily optimal in terms ofrgge&onsumption.

The third observation is that for loops where predicationsed heavily to cre-
ate hyperblocks, the use of predicates to support kernglemae might over-stress
the predication support of the CGRA. In domains such as SOierevthe loops
typically have no or very little conditional statementssthoses no problems. For
applications that feature more complex loops, such as inymartimedia applica-
tions, this might create a bottleneck even when predicaeldation [53] is used.
This is where the ADRES template proves to be very usefult aBawed us to
instantiate specialized CGRAs with varying predicate gatihs, as can be seen in
Table 2.

4.1.3 Data Flow Manipulations

The need for fine-tuning source code is well known in the erdbddworld. In
practice, each compiler can handle some loop forms betser thher forms. So
when one is using a specific compiler for some specific VLIWhdecture, it can

26 Bjorn De Sutter, Praveen Raghavan, Andy Lambrechts

(a) original 15-tap FIR filter

const short c[15] = {-32, ..., 1216};
for (i =0; i <nr; i++) {
for(value = 0, j = 0; j < 15; j++)

value += x[i+j]*c[j];
r[i] = value;

(b) filter after loop unrolling, with hard-coded constants

const short c00 = -32, ..., cl14 = 1216;
for (i =0; i <nr; i++4)
r{i] = x[i+0]*c00 + x[i+1]+cO01l + ... + Xx[i+14]+*cl4,

(c) after redundant memory accesses are eliminated

int i, value, dO, ..., dl4;

const short c00 = -32, ..., cl4 = 1216;

for (i =0; i < nr+15; i++) {
do = dl; dl =4d2; ... ; d13 = d14; d14 = x[i];
value = c00 = dO + c¢cO1 » d1 + ... + cl4 = di4;

if (i >=14) r[i - 14] = val ue;
}

Fig. 8 Three C versions of a FIR filter.

be very beneficial to bring loops in the appropriate shaperonf This is no different
when one is programming for CGRASs, including ADRES CGRAs.

Apart from the above transformations that relate to the nwdoheduling of
loops, there are important transformations that can iseréae “data flow” charac-
ter of a loop, and thus contribute to the efficiency of a lodpe Three C implemen-
tations of a Finite Impulse Response (FIR) filter in Figurer8vide an excellent
example.

Figure 8(a) depicts a FIR implementation that is efficiemtdichitectures with
few registers. For architectures with more registers, theléementation depicted
in Figure 8(b) will usually be more efficient, as many memaotcgesses have been
eliminated. Finally, the equivalent code in Figure 8(c) teams only one load per
outer loop iteration. To remove the redundant memory aesesslot of temporary
variables had to be inserted, together with a lot of copy af@ns that implement
a delay line. On regular VLIW architectures, this versiorudoresult in high reg-
ister pressure and many copy operations to implement tteefidat of those copy
operations. Table 1 presents the compilation results fé-sdue CGRA and for an
8-issue clustered Tl C64+ VLIW. From the results, it is cléwat the Tl compiler
could not handle the latter code version: its softwaredpip® fails completely due
to the high register pressure. When comparing the minin@édymes obtained for
the TI C64+ with those obtained for the CGRA, please note ttiafT| compiler
applied SIMDization as much as it could, which is fairly arfonal to scheduling
and register allocation, but which the experimental CGRApiber used for this
experiment did not yet perform. By contrast, the CGRA compdould optimize

Coarse-Grained Reconfigurable Array Architectures 27

progran} cycle count [memory accessgs
CGRA|TI C64+CGRA| Tl C64+
FIR (a) | 11828 1054 | 6221| 1618
FIR (b) | 1247 | 1638 | 3203| 2799
FIR (c) | 664 | 10062 | 422 416

Table 1 Number of execution cycles and memory accesses (obtaineaigit simulation) for the
FIR-filter versions compiled for the multimedia CGRA, and floe T C64+ DSP.

the code of Figure 8(c) by routing the data of the copy openatover direct con-
nections between the CGRA ISs. As a result, the CGRA impleatien becomes
both fast and power-efficient at the same time.

This is a clear illustration of the fact that, lacking fullytamated compiler opti-
mizations, heavy performance-tuning of the source codédearecessary. The fact
that writing efficient source code requires a deep undedstgrof the compiler in-
ternals and of the underlying architecture, and the fadtitifaequently includes
experimentation with various loop shapes, severely lithiksorogramming produc-
tivity. This has to be considered a severe drawback of CGRétstactures.

Moreover, as the FIR filter shows, the optimal source codea foGRA target can
be radically different than that for, e.g., a VLIW target.rGequently, the cost of
porting code from other targets to CGRAS or vice versa, oraifwaining code ver-
sions for different targets (such as the main processorte@€GRA accelerator),
can be high. This puts an additional limitation on programpreductivity.

4.2 ADRES Design Space Exploration

In this part of our case study, we discuss the importance lem@pportunities for
DSE within the ADRES template. First, we discuss some cdacA®ORES in-
stances that have been used for extensive experimentatituding the fabrication
of working silicon samples. These examples demonstratevérg power-efficient
CGRAs can be designed for specific application domains.

Afterwards, we will show some examples of DSE results wigpeet to some of
the specific design options that were discussed in Section 3.

4.2.1 Example ADRES Instances

During the development of the ADRES tool chain and desigw, tvain ADRES
instances have been worked out. One was designed for mdlrapplications [37]
and one for SDR baseband processing [5, 6]. Their main diffegs are presented in
Table 2. Both architectures have a 64-entry data RF (halfirgj, half non-rotating)
that is shared with a unified three-issue VLIW processor éxacutes non-loop
code. Thus this shared RF has six read ports and three write. Both CGRAS

28 Bjorn De Sutter, Praveen Raghavan, Andy Lambrechts

multimedia CGRA SDR CGRA
issue slots (FUs) 4x4 ax4
load/store units 4 4
Id/st/mul latency 6/6/2 cycles 71713 cycles
#local data RFs | 12 (8 single-ported) of size § 12 (8 single-ported) of size 4
data width 32 64
config. word width 896 bhits 736 bits
ISA extensions |2-way SIMD, clipping, min/max 4-way SIMD, saturating arithm
interconnect Nearest Neighbor (NN) NN + next-hop
+ 8 predicate buses + 8 data buses
It
e |

pipelining
power, clock, and ar¢a91 mW at 300 MHz for 4mrh [310mW at 400 MHz for ¥9mnt
Table 2 Main differences between two studied ADRES CGRAs. Powegkchnd area include
the CGRA and its configuration memory, the VLIW processorrfon-loop code, including its
32K L1 I-cache, and the 32K 4-bank L1 data memory. These ntsrdre gate-level estimates.

feature 16 FUs, of which four can access the memory (thatistsnsf four single-
ported banks) through a queue mechanism that can resohkedoaflicts. Most
operations have latency one, with the exception of loadsgst and multiplications.
One important difference between the two CGRASs relatesdio ffipeline schemes,
as depicted for a single IS (local RF and FU) in Table 2. As theall RFs are
only buffered at their input, pipelining registers need &itserted in the paths to
and from the FUs in order to obtain the desired frequencyetargs indicated in
the table. The pipeline latches shown in Table 2 hence djreontribute in the
maximization of the factof, in Equation (1). Because the instruction sets and the
target frequencies are differentin both application darsaghe SDR CGRA has one
more pipeline register than the multimedia CGRA, and theyl@cated at different
places in the design.

Traditionally, in VLIWSs or in out-of-order superscalar pessors, deeper pipelin-
ing results in higher frequencies but also in lower IPCs hseaf larger branch mis-
sprediction penalties. Following Equation (1), this casutein lower performance.
In CGRAs, however, this is not necessarily the case, as imgulan Section 3.3.1.
To illustrate this, Table 3 includes IPCs obtained when gegiveg code for both
CGRAs with and without the pipelining latches.

The benchmarks mapped onto the multimedia ADRES CGRA ar@a4AvVC
video decoder, a wavelet-based video decoder, an MPEGA watter, a black-and-
white TIFF image filter, and a SHA-2 encryption algorithmreach application
at most the 10 hottest inner loops are included in the taldetite SDR ADRES
CGRA, we selected two baseband modem benchmarks: one WLANMZhannel
Estimation and one that implements the remainder of a WLASICSteceiver. All
applications are implemented in standard ANSI C using aljleage features such

Coarse-Grained Reconfigurable Array Architectures 29

pipelined non-pipelined

Benchmark CGRA Loop #ops | ResMIl [RecMIl 1l IPC[RecMIl 1l IPC
MBFilterl 70 5 2 6 11.1 1 6 11.7

MBFilter2 89 6 7 9 994 6 8 11.1

MBFilter3 40 3 3 4 10(2 3 133

MBFilter4 105 7 2 9 1171 1 9 117

AVC decoder multimedia | MotionComp 109 7 3 10 1049 2 10 109
FindFrameEnd 27 4 7 7 39 6 6 4.5

IDCT1 60 4 2 5 124(1 5 1240

MBFilter5 87 6 3 7 124 2 7 124

Memset 10 2 2 2 54 1 2 50

IDCT2 38 3 2 3 121 1 3 127

Average 10.0 10.5

Forwardl 67 5 5 6 11.7 5 5 134

Wavelet multimedia | Forward2 7 5 5 6 124 5 6 12.9
Reversel 73 5 2 6 124 1 6 1272

Reverse2 37 3 2 3 129 1 3 123

Average 12.1 12.7]

MotionEstl 75 5 2 6 124 1 6 125

MotionEst2 72 5 3 6 12(2 6 124

TextureCod1 73 5 7 7 104 6 6 12.2

CalcMBSAD 60 4 2 5 124(1 5 1240

TextureCod2 9 1 2 2 44§ 1 2 45§

MPEG-4 encoder| multimedia | TextureCod3 91 6 2 7 13(1 7 134
TextureCod4 91 6 2 7 13(1 7 134

TextureCod5 82 6 2 6 131 1 6 13.7

TextureCod6 91 6 2 7 134(1 7 1340

MotionEst3 52 4 3 4 13(2 5104

Average 11.7| 11.6)

Tiff2BW multimedia | main loop 35 3 2 3 117 1 3 11.7
SHA-2 multimedia | main loop 111 7 8 9 123 8 9 123
Channel2 166 11 3 14 114 1 14 104

MIMO SDR Channell 83 6 3 8 104 1 8 10.7
SNR 75 5 4 6 124 2 6 1295

Average 11.6 11.2

DemapQAM64 55 4 3 6 972 1 6 9.2

64-point FFT 123 8 4 10 129 2 12 10.3

WLAN SDR Radix8 FFT 122 8 3 10 121 1 12 10.9
Compensate 54 4 4 5 104 2 5 109

DataShuffle 153 14 3 14 104 1 16 9.6

Average 11.1 10.0)

Table 3 Results for the benchmark loops. First, the target-vergidependent number of opera-
tions (#ops) and the ResMII. Then for each target versioiRé@MI|, the actually achieved Il and
IPC (counting SIMD operations as only one operation), aedcctimpile time.

as pointers, structures, different loop constructs (whdle do-while), but not using
dynamic memory management functions likel | oc orfr ee.

The general conclusions to be taken from the mapping reisufiable 3 are as
follows. (1) Very high IPCs are obtained at low power constiomplevels of 91 and
310 mW and at relatively high frequencies of 300 and 400 Mz mthe standard
cell 90nm design. (2) Pipelining seems to be bad for perfacaanly where the
initiation interval is bound byrRecMI|, which changes with pipelining. (3) In some
cases pipelining even improves the IPC.

Synthesizable VHDL is generated for both processors by a VEénerator that
generates VHDL code starting from the same XML architecspecification used
to retarget the ANSI C compiler to different CGRA instand@3.SMC 90 nm stan-
dard cell GP CMOS (i.e. the General-Purpose technologyorethat is optimized

30 Bjorn De Sutter, Praveen Raghavan, Andy Lambrechts

configuration memory
14%

FUs
29% shared RFs

6%

data memory
1%

local RFs
2%

interconnect
38%

Fig. 9 Average power consumption distribution of the ADRES SDR @GGRCGRA mode.

for performance and active power, not for leakage powehrelogy was used to
obtain the gate-level post-layout estimates for frequgmayer and area in Table 2.
More detailed results of these experiments are availabileeriterature [5, 6] for
this SDR ADRES instance, as well as for the multimedia instdi37]. The SDR
ADRES instance has also been produced in silicon in samplaguwdl SoC SDR
chip [16]. The two ADRES cores on this SoC proved to be fullydiional at 400
MHz, and the power consumption estimates have been validate

One of the most interesting results is depicted in Figure icvdisplays the
average power consumption distribution over the ADRES SOFRE when the
CGRA mode is active in the above SDR applications. Compar&d.tW proces-
sor designs, a much larger fraction of the power is consumggtiinterconnects and
in the FUs, while the configuration memory (which corresptodan L1 VLIW in-
struction cache), the RFs and the data memory consumeredydiitle energy. This
is particularly the case for the local RFs. This clearlysthates that by focusing on
regular loops and their specific properties, CGRAs can aetiiggher performance
and a higher power-efficiency than VLIWs. On the CGRA, mostheaf power is
spent in the FUs and in the interconnects, i.e., on the acturaputations and on
the transfers of values from computation to computatiore [Bfter two aspects are
really the fundamental parts of the computation to be peréat, unlike the fetch-
ing of data or the fetching of code, which are merely side&§ of the fact that
processors consist of control paths, data paths and mesnorie

4.2.2 Design Space Exploration Example

Many DSEs have been performed within the ADRES template 1732, 37, 42].
We present one experimental result [32] here, not to presesdlute numbers but
to demonstrate the large impact on performance and on ererggumption that
some design choices can have. In this experiment, a numlzkiferfent intercon-
nects have been explored for four microbenchmarks (eacsistorg of several in-

Coarse-Grained Reconfigurable Array Architectures 31

SHARED RF ‘ SHARED RF |

Mﬂ

s

a) nearest neighbor (nn) b) next hop (nh)

‘ SHARED RF

@]

=]

B
B

uses (b) d) extra (ex)

o

c)

Fig. 10 Basic interconnects that can be combined. All bidirectiediges between two ISs denote
that all outputs of one IS are connected to the inputs of therdiS and vice versa. Buses that
connect all connected IS outputs to all connected IS inpetslaown as edges without arrows.

ner loops): a MIMO SDR channel estimation, a Viterbi decpderAdvanced Video
Codec (AVC) motion estimation, and an AVC half-pixel intelgtion filter. All of
them have been compiled with the DRESC compiler for diffegenhitectures of
which the interconnects are combinations of the four basierconnects of Fig-
ure 10, in which distributed RFs have been omitted for the sdikclarity.

Figure 11 depicts the relative performance and (estimaed)gy consumption
for different combinations of these basic interconnecke ames of the different
architectures indicate which basic interconnects areided in its interconnect. For
example, the architectutenn_ex includes the buses, nearest neighbor intercon-
nects and extra connections to the shared RF. The lines ctimgearchitectures
in the charts of Figure 11 connect the architectures on thet®&onts: these are
the architectures that have an optimal combination of cyolent and energy con-
sumption. Depending on the trade-off made by a designerdsstwerformance and
energy consumption, he will select one architecture onRaagto front.

The lesson to learn from these Pareto fronts is that relgtsraall architectural
changes, in this case involving only the interconnect butlmlSs or the distributed
RFs, can span a wide range of architectures in terms of peafioce and energy-
efficiency. When designing a new CGRA or choosing for an edsine, it is hence
absolutely necessary to perform a good DSE that covers IS8\ ithterconnect and
RFs. Because of the large design space, this is far fronalkrivi

32 Bjorn De Sutter, Praveen Raghavan, Andy Lambrechts

1.00 -

* *
b_nn_nh_ex b_nn_nh_ex

- 0.95 - . 0.95 ’b_nn_nh
g 0.90 g *nn_nh_ex
Soss . nn_nh_ex S 0.90 b_nn_ex i ex ’nn_nh
Bos0 - b_nn_ex h B o.8s -
N ¢ nn_n N
= + nn_ex = b_ex
®© 0.75 - g 0.80
b_nn_nh :
g 0.70 - b_ex —= § b_nn
nn r
0.65 & L b_nn 0.75 b
0.60 b 0.70
0.50 0.60 0.70 0.80 0.90 1.00 0.975 0.980 0.985 0.990 0.995 1.000
Normalized Number of Cycles Normalized Number of Cycles
(a) MIMO (b) AVC interpolation
1.00 -— 1.00 | + nn_nh_ex
+ b_nn_nh
b_nn_nh_ex b nn nh

o
©
«

°
0
o

Normalized Energy
=} =}
o2] [oe]
o w

Normalized Energy

o
N
a

o
N
=}

0.50 0.60 0.70 0.80 0.90 1.00 0.60 0.70 0.80 0.90 1.00

Normalized Number of Cycles Normalized Number of Cycles
(c) Viterbi (d) AVC motion estimation

Fig. 11 DSE results for four microbenchmarks on 4x4 CGRAs with fix8d &nd fixed RFs, but
with varying interconnects.

5 Conclusions

This chapter on CGRA architectures presented a discus$itihre CGRA proces-
sor design space as an accelerator for inner loops of D&Rxfiklications such as
software-defined radios and multimedia processing. A rariggptions for many
design features and design parameters has been relatege¢o gmsumption, per-
formance, and flexibility. In a use case, the need for degigices exploration and
for advanced compiler support and manual high-level codiaguhave been demon-
strated. The above discussions and demonstration sujpecidltowing main con-
clusions. Firstly, CGRAs can provide an excellent altéuedbr VLIWS, providing
better performance and better energy efficiency. Secoddgign space exploration
is needed to achieve those goals. Finally, existing comgilpport needs to be im-
proved, and until that happens, programmers need to havepawtelerstanding of
the targeted CGRA architectures and their compilers inrdamanually tune their
source code. This can significantly limit programmer pradijitg.

Coarse-Grained Reconfigurable Array Architectures 33

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

AHN, M., YOON, J. W., REK, Y., Kim, Y., KIEMB, M., AND CHoOI, K. A spatial mapping
algorithm for heterogeneous coarse-grained reconfigeratohitectures. IDATE '06: Pro-
ceedings of the conference on Design, automation and t&strope(3001 Leuven, Belgium,
Belgium, 2006), European Design and Automation Assoaiatp. 363—-368.

BARUA, R. Maps: a compiler-managed memory system for software-exipashitectures
PhD thesis, Massachusetss Institute of Technology, Ja2680.

BETZ, V., ROSE, J., AND MARGUARDT, A. Architecture and CAD for Deep-Submicron
FPGAs Kluwer Academic Publishers, 1999.

BONDALAPATI, K. Parallelizing DSP nested loops on reconfigurable agchires using data
context switching. IMDAC '01: Proceedings of the 38th annual Design Automationf€e
ence(New York, NY, USA, 2001), ACM, pp. 273-276.

BOUGARD, B., DE SUTTER, B., RABOU, S., Novo, D., ALLAM, O., DUPONT, S.,AND
VAN DER PERRE, L. A coarse-grained array based baseband processor fari36- soft-
ware defined radio. IDATE '08: Proceedings of the conference on Design, autamaind
test in EuropgNew York, NY, USA, 2008), ACM, pp. 716-721.

BOUGARD, B., DE SUTTER, B., VERKEST, D., VAN DER PERRE, L., AND LAUWEREINS,
R. A coarse-grained array accelerator for software-defiadib baseband processingEE
Micro 28, 4 (2008), 41-50.

BOUWENS, F., BEREKOVIC, M., GAYDADJIEV, G., AND DE SUTTER, B. Architecture
enhancements for the ADRES coarse-grained reconfiguratalg #n Proc. of HIPEAC Conf.
(2008).

BURNS, G.,AND GRUIJTERS P. Flexibility tradeoffs in SoC design for low-cost SDRro-
ceedings of SDR Forum Technical Confere(2@03).

BURNS, G., GRUJTERS P., HUISKENS, J.,AND VAN WEL, A. Reconfigurable accelerators
enabling efficient SDR for low cost consumer devicBsoceedings of SDR Forum Technical
Conferencg2003).

CARDOSO, J. M. P.,AND WEINHARDT, M. XPP-VC: A C compiler with temporal partition-
ing for the PACT-XPP architecture. FPL '02: Proceedings of the Reconfigurable Comput-
ing Is Going Mainstream, 12th International Conference aeld~Programmable Logic and
Applications(London, UK, 2002), Springer-Verlag, pp. 864-874.

CERVERO, T., KANSTEIN, A., LOPEZ S., DE SUTTER, B., SARMIENTO, R.,AND MIGNO-
LET, J.-Y. Architectural exploration of the H.264/AVC decodstto a coarse-grain recon-
figurable architecture. I®Proc. of the International Conference on Design of Circuitgl
Integrated Systen{2008).

CooNs, K. E., CHEN, X., BURGER, D., MCKINLEY, K. S.,AND KUSHWAHA, S. K. A
spatial path scheduling algorithm for edge architectuB®I&PLAN Not. 4111 (2006), 129—
140.

CORPORAAL, H. Microprocessor Architectures from VLIW to TT2ohn Wiley, 1998.
CRONQUIST, D., FRANKLIN, P., ASHER, C., HGUEROA, M., AND EBELING, C. Architec-
ture design of reconfigurable pipelined datapath&rtceedings of the Twentieth Anniversary
Conference on Advanced Research in V{19199).

DE SUTTER, B., COENE, P., VANDER AA, T., AND MEI, B. Placement-and-routing-based
register allocation for coarse-grained reconfigurablayesr INLCTES '08: Proceedings of the
2008 ACM SIGPLAN-SIGBED conference on Languages, corapéad tools for embedded
systemgNew York, NY, USA, 2008), ACM, pp. 151-160.

DERUDDER, V., BOUGARD, B., COUVREUR, A., DEWILDE, A., DUPONT, S., FOLENS, L.,
HOLLEVOET, L., NAESSENS F., Novo, D., RAGHAVAN, P., SSHUSTER T., STINKENS,
K., WEIJERS J.-W.,AND DER PERRE, L. V. A 200Mbps+ 2.14nJ/b digital baseband multi
processor system-on-chip for SDRs.Rroc of VLS| Symposudune 2009).

EBELING, C. Compiling for coarse-grained adaptable architecturesch. Rep. UW-CSE-
02-06-01, University of Washington, 2002.

34

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Bjorn De Sutter, Praveen Raghavan, Andy Lambrechts

EBELING, C. The general RaPiD architecture description. Tech. R&$-CSE-02-06-02,
University of Washington, 2002.

HSHER, J., ARABOSCHI, P.,AND YOUNG, C. Embedded Computing, A VLIW Approach to
Architecture, Compilers and Tool#lorgan Kaufmann, 2005.

FRIEDMAN, S., CARROLL, A., VAN ESSEN B., YLVISAKER, B., EBELING, C., AND
HAuck, S. SPR: an architecture-adaptive CGRA mapping tool FRGA '09: Proceed-
ing of the ACM/SIGDA international symposium on Field peogmable gate arraygNew
York, NY, USA, 2009), ACM, pp. 191-200.

GALANIS, M. D., MILIDONIS, A., THEODORIDIS, G., SOUDRIS, D., AND GouTIs, C. E.

A method for partitioning applications in hybrid reconfigbte architectureesign Automa-
tion for Embedded Systems, 10(2006), 27—47.

GALANIS, M. D., THEODORIDIS, G., TRAGOUDAS, S., AND GouTis, C. E. A recon-
figurable coarse-grain data-path for accelerating contipal intensive kernelsJournal of
Circuits, Systems and Computers (JC$2)05), 877-893.

GEBHART, M., MAHER, B. A., Coons, K. E., DIAMOND, J., &RATZ, P., MARINO,
M., RANGANATHAN, N., ROBATMILI, B., SVITH, A., BURRILL, J., KECKLER, S. W.,
BURGER, D., AND MCKINLEY, K. S. An evaluation of the trips computer system. A8-
PLOS '09: Proceeding of the 14th international conferenneochitectural support for pro-
gramming languages and operating systéhew York, NY, USA, 2009), ACM, pp. 1-12.
HARTENSTEIN, R., HERZ, M., HOFFMANN, T., AND NAGELDINGER, U. Mapping appli-
cations onto reconfigurable kressarraysPiceedings of the 9th International Workshop on
Field Programmable Logic and Applicatior($999).

HARTENSTEIN, R., HERz, M., HOFFMANN, T., AND NAGELDINGER, U. Generation of
design suggestions for coarse-grain reconfigurable aathites. InProceedings of the 10th
International Workshop on Field Programmable Logic and Kqaiions (2000).

HARTENSTEIN, R., HOFFMANN, T., AND NAGELDINGER, U. Design-space exploration of
low power coarse grained reconfigurable datapath arraytectires. InProceedings of the
International Workshop - Power and Timing Modeling, Op#ation and Simulatio2000).
Kim, Y., KIEMB, M., PARK, C., UNG, J.,AND CHoI, K. Resource sharing and pipelining
in coarse-grained reconfigurable architecture for domspieific optimization. IlDATE '05:
Proceedings of the conference on Design, Automation ardim&urope (Washington, DC,
USA, 2005), IEEE Computer Society, pp. 12-17.

KiM, Y., AND MAHAPATRA, R. A new array fabric for coarse-grained reconfigurabldiarc
tecture. InProceedings of the IEEE EuroMicro Conference on Digitalt&ysDesigr(2008),
pp. 584-591.

KiM, Y., AND MAHAPATRA, R. Dynamic context compression for low-power coarsergai
reconfigurable architecturdEEE Transactions on Very Large Scale Integration (VLSB-Sy
tems(2009). To appear.

KiM, Y., MAHAPATRA, R., RARK, I., AND CHOI, K. Low power reconfiguration technique
for coarse-grained reconfigurable architectUfeEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems 13 (2009), 593-603.

Lam, M. S. Software pipelining: an effecive scheduling teclmidor VLIW machines. In
Proc. PLDI (1988), pp. 318-327.

LAMBRECHTS, A., RAGHAVAN, P., AYAPALA, M., CATTHOOR, F., AND VERKEST, D.
Energy-aware interconnect optimization for a coarse gehireconfigurable processov.LSI
Design, International Conference on(2008), 201-207.

LEE, J.€., CHOI, K., AND DUTT, N. D. An algorithm for mapping loops onto coarse-
grained reconfigurable architectures.LI@TES '03: Proceedings of the 2003 ACM SIGPLAN
conference on Language, compiler, and tool for embedde@raggNew York, NY, USA,
2003), ACM, pp. 183-188.

LEE, L. H., MOYER, B., AND ARENDS, J. Instruction fetch energy reduction using loop
caches for embedded applications with small tight loopdSIPED '99: Proceedings of the
1999 international symposium on Low power electronics agsigh(New York, NY, USA,
1999), ACM, pp. 267—-269.

Coarse-Grained Reconfigurable Array Architectures 35

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,
45,

46.

47.
48.

49.

50.

51.

52.

LEE, M.-H., SINGH, H., LU, G., BAGHERZADEH, N., KURDAHI, F. J., FLHO, E. M. C.,
AND ALVES, V. C. Design and implementation of the MorphoSys reconéigle computing
processorJ. VLSI Signal Process. Syst.,243 (2000), 147-164.

MAHLKE, S. A., LIN, D. C., &HEN, W. Y., HANK, R. E.,AND BRINGMANN, R. A. Effec-
tive compiler support for predicated execution using thedmiglock. INnMICRO 25: Proceed-
ings of the 25th annual international symposium on Micrbéecture (Los Alamitos, CA,
USA, 1992), IEEE Computer Society Press, pp. 45-54.

MEI, B., DE SUTTER, B., VANDER AA, T., WOUTERS M., KANSTEIN, A., AND DUPONT,
S. Implementation of a coarse-grained reconfigurable meiieessor for AVC decoder.
Journal of Signal Processing Systems 312008), 225-243.

MEI, B., LAMBRECHTS, A., VERKEST, D., MIGNOLET, J.-Y.,AND LAUWEREINS, R. Ar-
chitecture exploration for a reconfigurable architectemplate. IEEE Design and Test of
Computers 222 (2005), 90-101.

MEI, B., VERNALDE, S., VERKEST, D., AND LAUWEREINS, R. Design methodology for a
tightly coupled VLIW/reconfigurable matrix architecturd:case study. IrProc. of Design,
Automation and Test in Europe (DATE004), pp. 1224-1229.

MEI, B., VERNALDE, S., VERKEST, D., MAN, H. D.,AND LAUWEREINS, R. ADRES: An
architecture with tightly coupled VLIW processor and ceagsained reconfigurable matrix.
In Proc. of Field-Programmable Logic and Applicatio(&003), pp. 61-70.

MEI, B., VERNALDE, S., VERKEST, D., MAN, H. D., AND LAUWEREINS, R. Exploiting
loop-level parallelism for coarse-grained reconfiguradniehitecture using modulo schedul-
ing. IEE Proceedings: Computer and Digital Techniques,1%@003).

Novo, D., SCHUSTER T., BOUGARD, B., LAMBRECHTS, A., VAN DER PERRE, L., AND
CATTHOOR, F. Energy-performance exploration of a CGA-based SDRgs®ar.Journal of
Signal Processing Syster{2008).

OH, T., EGGER, B., PARK, H., AND MAHLKE, S. Recurrence cycle aware modulo schedul-
ing for coarse-grained reconfigurable architecturesLGTES '09: Proceedings of the 2009
ACM SIGPLAN/SIGBED conference on Languages, compiletst@ois for embedded sys-
tems(New York, NY, USA, 2009), ACM, pp. 21-30.

PACT XPP ECHNOLOGIES XPP-IIl Processor Overview White Pap&006.

RRK, H., FAN, K., KUDLUR, M., AND MAHLKE, S. Modulo graph embedding: Mapping
applications onto coarse-grained reconfigurable ardbites. INnCASES '06: Proceedings
of the 2006 international conference on Compilers, ardattitee and synthesis for embedded
systemgNew York, NY, USA, 2006), ACM, pp. 136-146.

RRK, H., FAN, K., MAHLKE, S. A., OH, T., Kim, H., AND KiIM, H.-S. Edge-centric mod-
ulo scheduling for coarse-grained reconfigurable archites. INPACT '08: Proceedings of
the 17th international conference on Parallel architeesiand compilation techniquéslew
York, NY, USA, 2008), ACM, pp. 166-176.

PETKOV, N. Systolic Parallel ProcessingNorth Holland Publishing, 1992.

P.RGHAVAN, A.LAMBRECHTS, M.JAYAPALA , F.CATTHOOR, D.VERKEST, AND CORPO-
RAAL, H. Very wide register: An asymmetric register file orgatia for low power embed-
ded processors. IDATE '07: Proceedings of the conference on Design, Autamatnd Test
in Europe(2007).

Rau, B. R. lIterative modulo scheduling. Tech. rep., Hewlettk2ad Lab: HPL-94-115,
1995.

Rau, B. R., LEE, M., TIRUMALAI , P. P. AND SCHLANSKER, M. S. Register allocation for
software pipelined loops. IRLDI '92: Proceedings of the ACM SIGPLAN 1992 conference
on Programming language design and implementafk992), pp. 283-299.
SANKARALINGAM , K., NAGARAJAN, R., Liu, H., Kim, C., HUH, J., BURGER, D., KECK-
LER, S. W.,AND MOORE, C. R. Exploiting ILP, TLP, and DLP with the polymorphous
TRIPS architectureSIGARCH Comput. Archit. News 34 (2003), 422—-433.

SCARPAZZA, D. P., RAGHAVAN, P., Novo, D., CATTHOOR, F., AND VERKEST, D. Soft-
ware simultaneous multi-threading, a technique to expésk-level parallelism to improve
instruction- and data-level parallelism. Rioceedings of the 16th International Workshop on

36

53.

54.

55.
56.

57.

58.
59.

60.

61.

62.

63.
64.

Bjorn De Sutter, Praveen Raghavan, Andy Lambrechts

Integrated Circuit and System Design. Power and Timing ModeOptimization and Simu-
lation (PATMOS)2006), pp. 107-116.

SCHLANSKER, M., MAHLKE, S.,AND JOHNSON, R. Control CPR: a branch height reduc-
tion optimization for EPIC architectureSIGPLAN Not. 345 (1999), 155-168.

SHEN, J.,AND LIPASTI, M. Modern Processor Design: Fundamentals of Superscalar Pro-
cessors McGraw-Hill, 2005.

SLiIcoN HiVE. HiveCC Databrief 2006.

SUDARSANAM, A. Code optimization libraries for retargetable compilatiéor embedded
digital signal processorsPhD thesis, Princeton University, 1998.

TAYLOR, M., KiM, J., MILLER, J., WENTZLA, D., GHODRAT, F., GREENWALD, B., HO,
H., LEE, M., JOHNSON, P., LEE, W., MA, A., SARAF, A., SENESKI, M., SHNIDMAN, N.,
FRANK, V., AMARASINGHE, S.,AND AGARWAL, A. The Raw microprocessor: A compu-
tational fabric for software circuits and general purpossgpams.|EEE Micro 22 2 (2002),
25-35.

TEXAS INSTRUMENTS TMS320C64x Technical Overvie2001.

VAN BERKEL, K., HEINLE, F. AMD MEUWISSEN, P., MOERMAN, K., AND WEISS, M.
Vector processing as an enabler for software-defined radi@ndheld devicesEURASIP
Journal on Applied Signal Processing 200% (2005), 2613-2625.

VAN DE WAERDT, J.-W., \ASSILIADIS, S., DAS, S., MIROLO, S., YEN, C., ZHONG, B.,
BAsTO, C.,VAN ITEGEM, J.-P., AMIRTHARAJ, D., KALRA, K., RODRIGUEZ, P.,AND VAN
ANTWERPEN, H. The TM3270 media-processor. MICRO 38: Proceedings of the 38th
annual IEEE/ACM International Symposium on Microarchitee (Washington, DC, USA,
2005), IEEE Computer Society, pp. 331-342.

VENKATARAMANI , G., NAJJAR, W., KURDAHI, F., BAGHERZADEH, N., BOHM, W., AND
HAMMES, J. Automatic compilation to a coarse-grained reconfigerajzstem-on-chipACM
Trans. Embed. Comput. Syst42(2003), 560-589.

WoH, M., LIN, Y., SEO, S., MAHLKE, S., MUDGE, T., CHAKRABARTI, C., BRUCE, R.,
KERSHAW, D., REID, A., WILDER, M., AND FLAUTNER, K. From soda to scotch: The
evolution of a wireless baseband processor.MICRO '08: Proceedings of the 2008 41st
IEEE/ACM International Symposium on Microarchitecty#ashington, DC, USA, 2008),
IEEE Computer Society, pp. 152-163.

Programming XPP-IIl Processors White Pap2006.

YOON, J., AHN, M., PAEK, Y., KIM, Y., AND K., C. Temporal mapping for loop pipelin-
ing on a MIMD-style coarse-grained reconfigurable architex InProc. International SoC
Design Conferenc€006).

Index

accelerator, 6 loop interchange, 23
architecture for dynamically reconfigurable loop unrolling, 22
embedded systems (ADRES), 20
modulo routing resource graph (MRRG), 18
coarse-grained reconfigurable array (CGRA), 2nodulo scheduling, 21

compiler optimization, 21 multimedia processing, 27
data dependence graph (DDG), 19 Pareto, 31
data-level parallelism (DLP), 11 placement and routing, 18
design space exploration (DSE), 27 predication, 24
finite impulse response (FIR), 26 reconfigurable, 8
routing, 18
instruction-level parallelism (ILP), 2 routing resource graph (RRG), 18

interconnects, 12, 30
scheduling, 18

kernel-only loops, 24 single instruction multiple data (SIMD), 9, 12
software pipelining, 21
loop transformations, 22 software-defined radio (SDR), 27
loop combination, 23
loop fusion, 23 very long instruction word (VLIW), 4

37

