
TIMO VIITANEN
FLOATING-POINT ARITHMETIC IN
TRANSPORT TRIGGERED ARCHITECTURES
Master of Science Thesis

Examiners: Prof. Jarmo Takala and
Pekka Jääskeläinen, M.Sc.
Examiners and topic approved in the
Computing and Electrical Engineering
Faculty Council meeting 7.11.2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250163657?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
TIMO VIITANEN: Floating-Point Arithmetic in Transport Triggered
Architectures
Master of Science Thesis, 48 pages, 2 Appendix pages
December 2012
Major: Embedded Systems
Examiner: Prof. Jarmo Takala and Pekka Jääskeläinen, M.Sc.
Keywords: floating-point unit, application-specific instruction set processor, FPGA

Many computational applications have high performance and energy-efficiency re-
quirements which "off-the-shelf" general-purpose processors cannot meet. On the
other hand, designing special-purpose hardware accelerators can be prohibitively
expensive in terms of development time. One approach to the problem is to design
an Application-Specific Instruction set Processor (ASIP), which is programmable,
but tailored for the task at hand. The process of customizing an ASIP requires
heavy automation to be cost-effective.

The TTA-based Codesign Environment (TCE) is an ASIP design toolset based on
the highly flexible Transport Triggered Architecture (TTA) processor model, which
scales from simple low-power cores up to high performance Very Long Instruction
Word (VLIW) processors. Hardware accelerated support for floating-point arith-
metic is necessary for many applications in the fields of scientific computation and
digital signal processing, which would especially benefit from the scalability and
instruction-level parallelism of TTA.

This thesis introduces a comprehensive suite of Register Transfer Level (RTL)
implementations of floating-point units designed and implemented for the TCE
project. The main design requirements were portability and performance on Field-
Programmable Gate Array (FPGA) platforms even at the cost of reduced standards
compliance. The suite includes an option for half-precision arithmetic. In addition,
this thesis proposes fast software floating-point division and square root algorithms
based on special instructions.

The implemented units were verified on the register transfer level using an au-
tomated test bench. When benchmarked on an Altera Stratix-II FPGA, the units
exhibited performance close to the highly optimized units supplied by Altera, while
retaining platform independence. On more recent FPGAs such as the Xilinx Virtex-
6, finer-grained pipelining is required for maximum performance.

III

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Tietotekniikan koulutusohjelma
TIMO VIITANEN: Floating-Point Arithmetic in Transport Triggered
Architectures
Diplomityö, 48 sivua, 2 liitesivua
Joulukuu 2012
Pääaine: Sulautetut järjestelmät
Tarkastajat: prof. Jarmo Takala, DI Pekka Jääskeläinen
Avainsanat: liukulukuyksikkö, sovelluskohtainen käskykantaprosessori, FPGA

Laskentajärjestelmiin kohdistuu usein suorituskyky- ja virrankulutusvaatimuksia,
joita ei pystytä saavuttamaan yleiskäyttöisellä prosessorilla. Toistaalta laitteis-
tokiihdyttimien suunnittelu voi vaatia kohtuuttoman paljon työaikaa. Ongelmaa
voidaan lähestyä käyttämällä sovellusta varten räätälöityä sovelluskohtaista käskykan-
taprosessoria (Application-Specific Instruction set Processor, ASIP), joka on kuitenkin
ohjelmoitava. Prosessorin räätälöinnin täytyy olla pitkälle automatisoitua säästääk-
seen kustannuksia.

TTA-based Codesign Environment (TCE) on siirtoliipaistuun prosessoriarkkite-
htuuriin (Transport Triggered Architecture, TTA) perustuva ASIP-kehitysympäristö.
TTA on arkkitehtuurina helposti räätälöitävä ja joustaa pienistä ytimistä suurite-
hoisiin pitkän käskysanan suorittimiin. Useat tieteellisen laskennan ja signaalinkäsit-
telyn sovellukset, joissa TTA:n skaalautuvuudesta ja käskytason rinnakkaisuudesta
olisi erityistä hyötyä, vaativat tuen laitteistokiihdytetylle liukulukulaskennalle.

Tässä diplomityössä suunniteltiin ja toteutettiin TCE-projektia varten sarja liuku-
lukuyksiköitä. Yksiköiden suunnittelussa pyrittiin alustariippumattomuuteen sekä
korkeaan suorituskykyyn Field Programmable Gate Array-alustoilla (FPGA) jopa
tinkimällä tuetusta liukulukustandardista. Yksiköt sisältävät työkalut puolen tarkku-
uden liukulukulaskentaan. Lisäksi työssä esitetään erikoiskäskyihin perustuvat no-
peat algoritmit liukulukujakolaskun ja -neliöjuuren laskentaan.

Yksiköiden toiminta varmistettiin automaattisella rekisterisiirtotason (Register
Transfer Level, RTL) testipenkillä. Vertailussa Altera Stratix-II-FPGA:lla yksiköt
pääsivät lähelle Alteran omien liukulukuyksiköiden suorituskykyä. Uudemmalla Xil-
inx Virtex-6-FPGA:lla korkein mahdollinen suorituskyky vaatisi tiheämpää liukuhi-
hnoitusta.

IV

PREFACE

The work for this M. Sc. thesis was carried out at the Department of Computer
Systems at Tampere University of Technology as part of the Scalable Parallel Energy
Efficient Exposed Datapath Accelerators (SPEEED) project.

I would like to thank Professor Jarmo Takala for letting me work on this inter-
esting and challenging project, and for his ideas on how to improve my work. I am
most grateful for Pekka Jääskeläinen for constant feedback and guidance throughout
the project. I would also like to thank my colleagues in the TCE project for creating
a fun and relaxed atmosphere at work, and giving me a helping hand whenever it
was needed. Finally, I would like to thank my friends and family for supporting me
all the way.

Tampere, October 15, 2012

Timo Viitanen

V

CONTENTS

1. Introduction . 1
2. Application-Specific Processors . 3
2.1 Transport Triggered Architectures . 4
2.2 TTA-Based Codesign Environment . 6
2.2.1 TCE Function Unit Interface . 8
2.2.2 OpenCL Support in TCE . 9

3. Floating-Point Arithmetic . 10
3.1 Floating-Point Number Representation 10
3.2 IEEE Standard for Floating-Point Arithmetic 11
3.2.1 Subnormal Numbers . 12
3.2.2 Rounding Modes . 12
3.2.3 Exception Handling . 13
3.2.4 Half-Precision . 14

3.3 OpenCL Embedded Profile . 14
3.4 Fused Multiply-Adder Unit . 16

4. Floating-Point Unit Implementations . 17
4.1 Floating-Point Units in Commercial Processors 17
4.1.1 Intel Itanium . 17
4.1.2 IBM Cell Broadband Engine . 18
4.1.3 AMD Bulldozer . 19
4.1.4 Intel Ivy Bridge . 19

4.2 Open Source Floating-Point Units . 19
4.2.1 FloPoCo . 20
4.2.2 VHDL-2008 Support Library . 20
4.2.3 Sabrewing . 21
4.2.4 OpenCores . 21

4.3 Floating-Point Libraries for FPGAs 23
4.3.1 Xilinx . 23
4.3.2 Altera . 23

5. Design and Implementation . 25
5.1 Requirements . 25
5.2 Single-Precision Components . 26
5.2.1 Adder-Subtractor . 27
5.2.2 Multiplier . 27
5.2.3 Divider . 27
5.2.4 Square Root . 27
5.2.5 Comparator . 28

VI

5.2.6 Integer-Float Converter . 29
5.2.7 Fused Multiply-Adder . 29

5.3 Sabrewing Wrapper . 30
5.4 Half-Precision Components . 30
5.4.1 Software Integration . 30
5.4.2 Miscellaneous Units . 31
5.4.3 Float-Half Converter . 31
5.4.4 Comparator . 32
5.4.5 Fused Multiply-Adder . 32

6. FMA Accelerated Software Operations . 35
6.1 Division . 36
6.2 Square Root . 39
6.3 Accelerator Component . 39

7. Verification and Benchmarking . 41
7.1 Instruction-Level Simulator Test . 41
7.2 VHDL Simulator Tests . 41
7.3 Hardware Synthesis Benchmark . 42
7.3.1 Altera Stratix-II FPGA . 42
7.3.2 Xilinx Virtex-6 FPGA . 43

8. Conclusions . 47
Bibliography . 49
A.Floating-Point Unit Specifications . 54

VII

LIST OF ABBREVIATIONS

ADF Architecture Definition File

ALU Arithmetic-Logical Unit

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction Set Processor

CPU Central Processing Unit

FPGA Field-Programmable Gate Array

FPU Floating-Point Unit

FU Function Unit

GPP General-Purpose Processor

GPU Graphical Processing Unit

HDL Hardware Description Language

HPC High Performance Computing

IDF Implementation Definition File

ILP Instruction-Level Parallelism

LSU Load-Store Unit

LUT Look-Up Table

NaN Not a Number

OSAL Operation Set Abstraction Layer

RF Register File

TCE TTA-based Codesign Environment

TTA Transport Triggered Architectures

VLIW Very Long Instruction Word

1

1. INTRODUCTION

Many computational systems are intended for a specific application, and have strict
requirements on cost, power economy or performance. General-Purpose Processors
(GPP) which can be programmed to run many different applications with reason-
able efficiency, may not be able to meet these requirements. A common approach
is to augment a GPP with digital signal processors, application-specific fixed func-
tion units, etc. A system designed in this way may be difficult to program and
inefficient, since the off-the-shelf components have unnecessary functionality. More-
over, if there are no directly applicable off-the-shelf components, designing a suitable
fixed-function unit may be prohibitively expensive.

One approach to the problem is replace the GPP with an Application-Specific
Instruction set Processor (ASIP) whose architecture is tailored for the specific ap-
plication at hand. Fixed function units may be integrated at the instruction set
level, reducing the programming effort necessary to interact with them. In order to
be useful, the process of codesigning ASIPs and the corresponding software has to
be highly automatized. The TTA-based Codesign Environment (TCE), developed
in the Tampere University of Technology since 2002, is an ASIP design toolset that
attempts to provide such automatization. TCE is mature enough to be used in
real-world applications. For example, in [1], TCE was used to build an application-
specific processor to accelerate video decoding. In terms of area, power consumption
and performance, the ASIP lost to dedicated accelerator blocks, but significantly
outperformed a general-purpose ARM processor on all counts.

Several potential applications of TCE would benefit from hardware-accelerated
floating-point arithmetic. For instance, there is growing interest in High Perfor-
mance Computing (HPC) applications. Emphasis on power consumption is turning
FPGAs into an attractive alternative to Graphical Processing Units (GPUs) [2].
TCE might be a good fit for HPC due to its scalable processor template and its
support for the OpenCL language. Many HPC applications, e.g., physics modeling,
require large amounts of floating-point operations. On a similar note, a potential
future application for TCE is GPU implementation. Simulation results show that
TTA processors might scale better than the existing GPU architectures [3]. This
TTAGPU concept would also require massively parallel floating-point computation.

A common belief is that low-power applications should use fixed-point rather than

1. Introduction 2

floating-point arithmetic for signal processing. However, studies suggest that this is
not always the case. For instance in [4, 5], TCE was used to design a FPGA-based
wireless sensor platform, an application which calls for very high power efficiency. In
a signal processing task within the low-power environment, reduced-precision 12-bit
floating-point operations were found to save area and power consumption compared
to 16-bit fixed-point arithmetic without increasing the signal-to-noise ratio.

Previously, TCE lacked hardware accelerators for floating-point operations, which
are necessary in these application domains. Floating-point processors could be sim-
ulated at the instruction set level, but could not be synthesized for the lack of said
accelerators. In this thesis, this problem was addressed by designing and imple-
menting a set of Floating-Point Units (FPU) for TCE, based on the open source
VHDL-2008 Support Library [6]. Particular effort was taken to improve performance
on FPGA platforms, even by relaxing standard compliance. In addition, the FPUs
are customizable for nonstandard floating-point formats such as the aforementioned
12-bit format. In particular, instruction-level support and customized FPUs were
implemented for a 16-bit floating-point representation.

This thesis is structured as follows. Chapter 2 describes the TTA processor archi-
tecture and the TCE toolset. Chapter 3 discusses common floating-point standards.
Chapter 4 is a review of existing floating-point unit implementations, both to evalu-
ate candidates for inclusion into TCE, and to provide points of comparison. Chapter
5 describes the implementation process and the produced FPUs. Chapter 6 discusses
a software-leaning approach for implementing complex floating-point operations. In
chapter 7, the FPUs are verified and benchmarked. Finally, conclusions and future
work are presented in Chapter 8.

3

2. APPLICATION-SPECIFIC PROCESSORS

It is well known that ASIPs tailored for the application at hand can produce major
performance, area and power improvements over GPPs. Usage of ASIPs has been
limited by a long and expensive design cycle, which may even deliver a processor
based on outdated technology, as the performance of commodity hardware will have
improved at a rapid pace while the ASIP was being developed. Therefore, there is
continuing interest in tools that automate the design process [7].

The main technologies for realizing ASIPs are the Application-Specific Integrated
Circuit (ASIC) and the Field-Programmble Gate Array (FPGA). An FPGA is an
integrated circuit which can be reconfigured in the field, by developers or end users,
to emulate different arrangements of logic gates. It consists of many small, pro-
grammable logic cells, typically built around Look-Up Tables (LUT) which are
rewritten during the reconfiguration process. Newer FPGAs include fast acceler-
ator components for common operations, such as barrel shifters and multipliers.
The major FPGA vendors at the moment are Xilinx and Altera.

In an ASIC, the logic gates are fixed on the silicon and cannot be changed. An
ASIC outperforms an FPGA implementation of the same logic by a wide margin
in terms of performance, area and power efficiency, when both circuits are pro-
duced using the same process technology. A 2006 study found that over several test
cases, the FPGA implementation using the same process technology is on average
three times slower, twenty times larger, and consumes nine times as much dynamic
power [8]. On the other hand, ASICs are characterized by very high up-front and
low unit costs. That is, FPGAs are cheaper for prototyping and small production
runs, but ASICs break even when the application justifies mass-production on a
sufficient scale.

Altera claims that recent developments in Complementary Metal Oxide Semicon-
ductor (CMOS) technology have been advantageous for the FPGA [9]. The up-front
costs of high-end process technology are growing extremely high, limiting its use to a
handful of large vendors such as Intel and AMD, and to markets measured in billions
of dollars, such as commodity Central Processing Units (CPU) and Graphical Pro-
cessing Units (GPU). For many applications, an affordable ASIC realization will be
based on much older technology than the corresponding FPGA, which bridges some
of the aforementioned performance gap. Consequently, the number of FPGA-based

2. Application-Specific Processors 4

projects is increasing rapidly.

2.1 Transport Triggered Architectures

Transport Triggered Architectures (TTA) are a class of processor architectures first
proposed by Lipovski in [10] as an efficient microcontroller design, and elaborated
by Corporaal et al for the purpose of ASIP design [7]. Since the long design cycle is
an obstacle for the use of ASIPs, the architectures should be suitable for automatic
processor generation, and cover a wide range of possible applications with differing
functional and performance requirements [7].

A TTA processor is made up of a set of Function Units (FU) joined by an in-
terconnection network, which is made up of several Buses. Typical FUs ínclude
Arithmetic-Logical Units (ALU), Load-Store Units (LSU) and Register Files (RF).
An sample TTA processor is shown in Figure 2.1. Corporaal argues that TTA is
highly flexible since an ASIP designer can customize the FUs and the interconnection
network independently of each other: performance can be improved either by insert-
ing more function units, pipelining the existing FUs to increase clock rate, or adding
more data transfer capacity [7]. An early demonstration of the TTA architecture
is the MOVE32INT processor [11], which showed a remarkably high performance
compared to a simple RISC processor synthesized with the same process.

Most processors can be described as Operation Triggered Architecture proces-
sors, where instructions specify operations. Data transfers are implied that gather
together the necessary inputs for the operation, and dispose of the output. By con-
trast, in TTA processors the interconnections are visible to the programmer at the
Instruction Set Architecture (ISA) level, and instructions define data transfers along
those interconnections. Operations are implicitly triggered by transferring data to
the special triggering port of a function unit. One advantage to this approach is
that the output of an operation can be used directly as an input to another, with-
out having to access a register file. According to a benchmark, commonly 50% of
register file accesses can be eliminated with this approach [7].

TTA is similar to traditional Very Long Instruction Word (VLIW) processors
in that the burden of scheduling operations to exploit instruction-level parallelism
(ILP) rests on the compiler. A drawback of TTA is that it is expensive to make the
processor interruptable, since in addition to the register files, the hidden internal
state of each pipelined function unit must be saved. In addition, instruction words
in TTA processors tend to grow very long with large interconnection networks,
even compared to VLIW processors. In practice, variable-length coding or lossy
instruction compression may be necessary. [12]

2. Application-Specific Processors 5

F
ig
ur
e
2.
1:

A
n
ex
am

pl
e
of

a
T
TA

pr
oc
es
so
r
w
it
h
se
ve
ra
lf
un

ct
io
n
un

it
s,

re
gi
st
er

fil
es

an
d
a
cu
st
om

iz
ed

in
te
rc
on

ne
ct
io
n
ne
tw

or
k.

A
n

ex
am

pl
e
in
st
ru
ct
io
n
sh
ow

n
on

th
e
ri
gh

t
de
fin

es
da

ta
tr
an

sp
or
ts

or
m
ov
es

fo
r
th
re
e
bu

se
s
ou

t
of

fiv
e,

pe
rf
or
m
in
g
an

in
te
ge
r
su
m
m
at
io
n

of
a
va
lu
e
lo
ad

ed
fr
om

m
em

or
y
an

d
a
co
ns
ta
nt
.
T
he

th
ir
d
m
ov
e
st
or
es

a
re
gi
st
er

to
m
em

or
y
in

pa
ra
lle
l.
T
he

re
m
ai
ni
ng

bu
se
s
ar
e
id
le
.

T
he

co
nn

ec
ti
on

s
en
ab

le
d
by

th
e
m
ov
es

ar
e
hi
gh

lig
ht
ed

w
it
h
sq
ua

re
s.

2. Application-Specific Processors 6

Function
units, HDL

Program
source code,
CPP

Hardware
Database Edi-
tor, HBEditor

Processor De-
signer, ProDe

Retargetable
Compiler,
tcecc

Operation
Set Editor,
OSEd

Hardware
database,
HDB

Processor ar-
chitecture and
implementation,
ADF, IDF

Program
assembly,
TPEF

Operation set
abstraction
layer, OPP,
CPP

Processor
Generator,
ProGe

Program Im-
age Genera-
tor, PIG

Instruction
Set Simulator,
ttasim/Proxim

Processor
description,
HDL

Machine code
program im-
age

Figure 2.2: Software architecture of the TCE toolset. Sharp grey rectangles indicate
utilities. Rounded white rectangles indicate data formats. The main work in this
thesis relates to the dashed regions.

2.2 TTA-Based Codesign Environment

The TTA-based Codesign Environment (TCE) is a toolset for developing TTA-based
ASIPs, developed in the Tampere University of Technology and released as an open-
source project [12]. A coarse software architecture of TCE is shown in Figure 2.2.
It is divided into a number of interconnected command line and graphical utility
programs. A developer using TCE to create a custom processor from existing FUs
will mainly use the utilities ProDe, ProGe, tcecc, PIG and ttasim.

The Processor Designer (ProDe) is a graphical processor design tool, where the
developer builds an Architecture Definition File (ADF) which specifies the inter-
connections and function units of his ASIP, and an Implementation Definition File
(IDF), which references implementations for each function unit in the Hardware
Database (HDB). The HDB may contain several function units that satisfy the same
architectural interface, e.g., low-power units or ones tailored for a specific synthesis

2. Application-Specific Processors 7

target. The processor architecture so described is turned into a HDL description
using the Processor Generator (ProGe) [13]. ProGe may be configured either to
integrate the processor to a target FPGA, or to prepare scripts for simulating the
processor using the open-source VHDL simulator GHDL [14], the commercial Mod-
elsim simulator, etc.

Programs in the C and C++ languages can be compiled for the designed architec-
ture with the retargetable LLVM-based compiler tcecc [15], which gives an assembly
language program object in the TTA Program Exchange Format (TPEF) as output.
The Program Image Generator (PIG) converts such an object into an instruction
memory image ready for deployment. In addition, it can simulated using the in-
struction set simulator ttasim [16], or its graphical wrapper proxim. The simulator
is exact on the instruction cycle level. To be more precise, a TTA processor usually
performs an instruction cycle, i.e. the process of fetching and executing an instruc-
tion, during a single clock cycle but, e.g., a cache miss may cause the processor to
stall, which the simulator does not take into account.

In addition these utilities, a developer who implements his own custom opera-
tions and hardware accelerators will require the OSEd and HDBEditor programs.
The Operation Set Editor (OSEd) is used to make changes to the Operation Set
Abstraction Layer (OSAL), which stores the operation set used in TTA processors.
The OSAL lists, e.g., the name and operand count of each operation, and can be
used to define trigger semantics, i.e. legal replacements of an operation with a com-
bination of other operations. For example, a less-than-or-equal operation could be
computed as not greater-than, or a+ b as b+ a when it is convenient. Furthermore,
the simulator behavior of each operation is defined by writing a C++ function that
performs the operation.

The Hardware Database Editor (HDBEditor) is used to modify SQL-based Hard-
ware Databases (HDB), which represent the function unit implementations available
for the processor architecture. Each entry in the HDB refers to a Hardware Descrip-
tion Language (HDL) description which implements the corresponding unit. Infor-
mation about the HDL entity needs to be filled in, such as the entity name and the
names of each input, output and clock signal, so as to allow ProGe to automatically
generate a HDL description of the interconnection network which incorporates the
unit.

This thesis is mainly concerned with developing new function units and inserting
them into a hardware database. This involved writing a HDL descriptions of each
function unit, ensuring that they meet the TCE function unit semantics, and writ-
ing corresponding hardware database entries with HDBEditor. The default OSAL
supplied with TCE already included floating-point operations, but some new oper-
ations were added during the course of this work, as well as an operand datatype

2. Application-Specific Processors 8

Figure 2.3: An example implementation of the TCE function unit interface with
three inputs and two outputs.

for a 16-bit floating-point format.

2.2.1 TCE Function Unit Interface

Since the input and output registers of each FU are visible to the programmer at
every cycle, it is important to specify an interface that defines, e.g., what values will
appear in the output register of a pipelined function unit at each cycle, with the
given instructions. Corporaal discusses several alternative function unit semantics
with varying benefits and drawbacks [7]. For instance hybrid latching FUs, used in
MOVE32INT, stall the internal pipeline until the previous result has been read from
the register.

Function units in TCE are expected to start operating only when data is trans-
ferred to a triggering port, and then deposit the results of the operation to an output
register, where the program can access it until rewritten by a later operation. Con-
versely, the unit should remain idle as long as it is not triggered. Data transfers are
signaled to the target FU through by raising the load signal of the target port. The
data signals carrying the actual operands may be shared with other users of the bus
and thus should be ignored when the load signal is inactive. [17]

Figure 2.3 shows a possible way to implement the TCE function unit interface.
Note the shadow registers which ensure that the operation logic input only changes
when triggered by tload, the load signal of the triggering port. The output regis-
ters r1reg and r2reg could be removed without violating the interface, but are often

2. Application-Specific Processors 9

included in order to reduce the critical path of the processor. Alternatively, the
function unit interface could be implemented without the shadow registers by prop-
agating the trigger signal through a pipeline to the output register. The arrangement
shown here is larger, but exhibits a lower dynamic power consumption.

2.2.2 OpenCL Support in TCE

In addition to C and C++, processors developed with TCE can be programmed
with the Open Computing Language (OpenCL) [18]. OpenCL is a product of earlier
General-Purpose GPU (GPGPU) activity, where programmable GPUs were used for
non-graphics computation. It aims to provide a framework for parallel computation
where programs can be run both on CPUs and GPUs, and benefit from the parallel
processing capabilities of both, instead of the using shader languages which are
highly graphics-specific and limited to GPUs. Due to the emphasis on portability
and concurrency, OpenCL is a useful language for exploiting the instruction-level
parallelism of TTA processors. Recent research proposes TTA-based ASIPs used as
OpenCL-controlled accelerators. [19]

10

3. FLOATING-POINT ARITHMETIC

This chapter discusses some theoretical aspects of floating-point arithmetic that
are involved in the design of a floating-point unit. The first section introduces the
concept of floating-point representation. The following section discusses the ubiq-
uitous IEEE-754 standard for floating-point computation, and its design tradeoffs
and special features from a hardware implementation perspective. The next section
introduces the OpenCL Embedded Profile, which provides a floating-point standard
for embedded devices which is less rigorous and simpler to implement. The final
section discusses the fused multiply-add operation, a development in floating-point
unit architecture which is recently becoming prevalent in high-end computation
hardware.

3.1 Floating-Point Number Representation

The most widely used representation for real numbers is the floating-point represen-
tation [20]. In general, floating-point numbers, often referred to as floats, are of the
form

x = s×m× be (3.1)

where s is the sign, m is called the mantissa, fraction or significand, and e is the
exponent, which causes a binary point to move, or float, relative to the significand.
The variable b is the base of the floating-point system and in digital systems it is
usually two. [21]

An alternative to the floating-point representation often seen in embedded digital
signal processors is the fixed-point representation, where a binary point is implied in
a fixed position. A hardware implementation of fixed-point arithmetic is inherently
cheaper and faster than floating-point arithmetic of equal bit width. However, it is
often implemented in software without a native fixed-point datatype, and the re-
quired shifts may reverse the speed advantage. Moreover, the much greater dynamic
range of the floating-point representation is necessary for many algorithms. [22]

3. Floating-Point Arithmetic 11

s exponent e significand m
30..23 22..0

Figure 3.1: The IEEE-754 single-precision representation.

3.2 IEEE Standard for Floating-Point Arithmetic

In early stages of microcomputing, each computer vendor typically had their own
implementation of floating-point arithmetic, which sometimes changed between suc-
cessive computer models by the same vendor. This made it difficult to write nu-
merical software that was portable between vendors [20]. The IEEE Standard for
Floating-Point Arithmetic (IEEE 754) [23] defines rules for floating-point compu-
tation in order to address this issue. Since its publication in 1985, it has become
prevalent, and most of modern computation hardware complies to the standard.

IEEE 754 defines:

• computational types such as single-, double- and quadruple-precision numbers,
including special values such as INF (infinity) and NaN (not-a-number,

• representations that encode floating-point data in a compact form,

• arithmetic operations between floating-point numbers, and

• exception handling for e.g division by zero.

The latest revision to the standard, IEEE 754-2008, adds a fused multiply-add
operation, and half-precision and decimal computational types.

An IEEE-compliant single-precision number is made up of a sign bit, a 8-bit
exponent, and a 23-bit significand, as shown in Figure 3.1. The exponent is a
number between -127 and 128, with the two extreme values reserved for special
cases. Instead of using two’s complement numbers, the exponent is encoded by
adding a bias of 127, e.g., an exponent of 0 would be encoded as 127, -1 as 126,
and so on. This has the advantage that the floating-point zero resembles the integer
zero, and simplifies magnitude comparison between floats.

The significand is a fixed-point number in the range 1 < m ≤ 2. Since the
most significant digit of such a number is always 1, it need not be encoded, saving
one bit of space in the representation. Numbers encoded in this way are called
normal. Since intermediate results of floating-point arithmetic may be outside this
range, they need to be normalized. In a hardware context, normalization involves a
leading-zero counter and a left-shifter.

Special values are encoded using the two reserved exponent encodings 00 and ff,
which correspond to -127 and 128, as shown in Table 3.1. Zero cannot be represented

3. Floating-Point Arithmetic 12

as a normalized number, therefore, it is represented with a special value. In many
early floating-point systems, overflow and division by zero were considered errors
that should immediately abort the program. The IEEE standard attempts to be
more robust by producing a positive or negative infinity, which behave as very
large numbers, thereby allowing some algorithms to succesfully complete even in
the presence of overflows. [24]

Table 3.1: Special cases in the IEEE-754 single-precision format

Exponent Zero Significand Nonzero Significand
255 ± Infinity Not a Number (NaN)

1 ... 254 Normalized value
0 Zero Subnormal number

Computations that have no clearly defined result even when extended to infinity,
such as

√
−1, 0/0 and∞−∞, produce a Not a Number (NaN) special value. If any

arithmetic operand is NaN, the result is also NaN. This allows an error condition
to be detected at the end of a long series of computations without compromising
performance. [24]

3.2.1 Subnormal Numbers

Numbers with a 0 exponent and a nonzero significand are called subnormals. The
significand in such numbers is not assumed to have an implicit high bit, so they
can represent progressively smaller numbers with shrinking accuracy, in a process
called gradual underflow. Subnormals are expensive to implement in hardware, as
they need to be checked for in the unpacking stage, and then normalized using a
leading-zero counter and a right-shifter.

Gradual underflow was a source of controversy during the standardization process.
Counterproposals to the standard argued that it was unintuitive and difficult to
implement, and called for a more traditional truncation to zero in the event of
underflow [25]. One argument for subnormals is that they ensure that the identity
a− b = 0⇔ a = b holds. Otherwise, subtracting nearby but inequal numbers close
to the underflow boundary would result in 0 [21]. Several numerical algorithms can
be found that rely on gradual underflow. [24]

3.2.2 Rounding Modes

The IEEE-754 specifies five rounding modes, of which a compliant implementation
must support at least four:

Round ties to Even (RtE): Returns the floating-point number closest to the in-
finitely precise result. In the case of a tie, round to the even number.

3. Floating-Point Arithmetic 13

Round ties to Away (RtA): Same as RtE, except in the case of a tie, round to
the number with the greater magnitude. Support for RtA is optional.

Round toward Positive (RtP): Round to the closest floating-point number that
is no smaller than the exact result.

Round toward Negative (RtN): Round to the closest floating-point that is no
greater than the exact result.

Round toward Zero (RtZ): Round to the closest floating-point with magnitude
no greater to the exact result.

The final three rounding modes are called directed roundings. To comply with the
standard, an implementation should use RtE by default, and allow the programmer
to select any of the directed roundings at will. A rationale for including them in the
standard is that they enable estimation of roundoff error with interval arithmetic,
where each computation is performed twice with different rounding modes, to obtain
an upper and lower bound for the exact value. [21]

Since the absolute value of a floating-point error can vary considerably between
different exponents, errors are measured using units in the last place (ulp). The
difference in ulp between floats with equal exponents is obtained by interpreting their
significands as integers and subtracting them. An important distinction between
rounding modes is that RtE and RtA are guaranteed to incur rounding errors of
at most ±0.5ulp, while the directed roundings are simpler to implement, but have
errors of up to ±1ulp. [21]

3.2.3 Exception Handling

In the IEEE-754 standard, typical behavior in the presence of error conditions is
to produce a result and continue. In the event that this does not suffice, IEEE-
754 provides two forms of exception handling, flags and traps. By default the five
exceptional situations defined in the standard raise status flags which may be in-
spected later in the program. In addition, the programmer should be able to specify
a custom trap handler for each exception. One application for such trap handlers
is to provide backward compatibility for code designed for archaic computers that
interrupted on errors [21]. The five exceptions are [23]:

Invalid operation: Coincides with the operations that produce a NaN result,
such as 0/0 and ∞−∞.

Division by zero: Raised when the divisor in a division operation is zero.

3. Floating-Point Arithmetic 14

s exponent e significand m
14..10 9..0

Figure 3.2: The IEEE single-precision representation.

Overflow: Raised when the exact result of a computation would have been finite,
but out of the dynamic range of the floating-point format at hand, and so
overflowed to infinity. That is, infinities produced by division by zero, or
arithmetic with infinite inputs, do not signal this exception.

Underflow: Raised when a result is very small. The implementation may decide
if this means that

Inexact: Raised when an operation incurs a roundoff error, that is, the result is
not exact.

3.2.4 Half-Precision

Reduced-precision floating-point formats are useful in some low-power signal-processing
applications [4]. The most well-known reduced-precision format is the half-precision
format defined in the IEEE-754 standard, which is composed of a sign bit, a 5-bit
biased exponent, and a 10-bit significand, as shown in Figure 3.2.

Half-precision floating-point numbers or half-floats are widely used in high dy-
namic range photography, which stores and displays images using half-floats for color
components in place of the traditional 8-bit integers. This allows the computer to
display scenes that have detail both in very bright and very dim areas. [26]

IEEE 754-describes half-floats as a storage format, which has to be converted to,
e.g., single-precision before arithmetic operations can be performed [23]. The latest
1.2 revision of OpenCL defines an optional extension for half aritmetic, but hardware
support is rare as of this writing. Recent commodity CPUs and GPUs often provide
accelerated conversion from half-precision to single-precision and vice versa. On
these platforms, some applications, for instance [27] derive significant performance
gains by storing data in memory in half-precision, but performing arithmetic in
single-precision, thereby reducing the usage of memory bandwith, which is often the
bottleneck in high performance computing.

3.3 OpenCL Embedded Profile

Some features of the IEEE standard require complex hardware and produce little
practical benefit in many applications. In particular, subnormal numbers and the

3. Floating-Point Arithmetic 15

various rounding modes require costly hardware to implement. The impact is es-
pecially large in the FPGA environment, where accelerator blocks are provided for,
e.g., significand multiplication which would dominate the hardware cost in ASIC,
making denormalization and rounding logic more expensive by comparison. Fur-
thermore, the standard exception handling system is nontrivial to implement on a
TTA architecture. The custom trap handlers required by the standard would require
interrupt support, which is expensive to implement on a TTA processor [12].

Developers using TCE for, e.g., high performance computing or low-power sys-
tems often prefer faster, more power-efficient hardware at the cost of some simplifi-
cation, and to work around the corner cases where these features become significant.
When designing application-specific hardware, often enough is known of the appli-
cation domain for numerical error analysis that ensures that computation proceeds
correctly on the given hardware. In fact, similar analysis is routinely performed
in fixed-point DSP, and automated tools exist for this purpose [28]. It can be ar-
gued that the IEEE standard is better suited for general-purpose hardware whose
specific application is not know at design time. It would, therefore, be desirable to
have a looser standard which still describes floating-point behavior, but imposes less
hardware cost. One such standard is the OpenCL Embedded Profile (EP).

OpenCL requires full IEEE 754 compliance by default but includes an optional
"embedded profile" with the following relaxed rules for floating-point accuracy [18]:

• Round to Zero may be used as the default rounding mode instead of Round
to Nearest. The other three rounding modes need not be supported.

• Subnormal inputs may be treated as zero, and subnormal outputs may be
forced to zero.

• Special case handling, i.e. correct treatment of INFs and NaNs, is optional. If
the inputs or the correct output of an arithmetic operation would be a special
case, the result is implementation-defined.

• Addition and multiplication must be correctly rounded. Complex operations
such as division, square root and transcendental functions have error bounds
instead, for instance division must be within ±3ulp of the exact result, and
square root within ±3.5ulp.

The OpenCL specification characterizes these relaxations of the standard as unde-
sirable. However, fairly recent desktop GPUs like the NVIDIA GTX 280 disregarded
IEEE requirements, and were regardless used for, e.g., high performance computing.
ATI released an IEEE-compliant GPU only in late 2009, and NVIDIA in 2010. [29]

3. Floating-Point Arithmetic 16

3.4 Fused Multiply-Adder Unit

A fused multiply-add (FMA) instruction performs the operation a + bc without
rounding the intermediate result bc. Many applications involve accumulation of
products and therefore benefit from a hardware accelerated FMA instruction. Ex-
amples include Newton’s iteration, matrix multiplication, polynomial evaluation, the
dot product, and the Fast Fourier Transform. The fused operation can be faster than
the separate operations because the intermediate result need not be rounded. [30]

An FMA unit can also compute addition and multiplication, for example by
adding zero (in case of multiplication), or multiplying by one (in case of addition).
Therefore, it can replace separate adder and multiplier components. In e.g. [30]
it is proposed that the entire floating-point unit should be built around a fused
multiply-adder, listing several advantages:

• Rounding and normalization logic is shared between addition and multiplica-
tion, resulting in an efficient use of area.

• As discussed above, an FMA instruction speeds up a variety of computations.
It also improves their accuracy by introducing only one roundoff error, where
separate operations would suffer from two.

• The FMA instruction enables fast software algorithms for complex operations
such as division and square root, which may perform well enough to replace
separate hardware accelerators for these instructions. These algorithms are
discussed in detail in chapter 6.

As a disadvantage, separate addition and multiplication may suffer from a slightly
higher latency and power consumption. Furthermore, indiscriminate use of an FMA
operation may damage the accuracy of some rare algorithms. For instance, an
algorithm may rely on the fact that a×a−a×a is not negative; however, if an FMA
operation is used, the unrounded intermediate a×amay be greater than the rounded-
off a × a on the left side, producing a negative result [31]. Still, several notable
processors have FPUs built around this concept, including the Intel Itanium [32],
the IBM Cell Broadband Engine [33], and the recent AMD Bulldozer [34]. The 2008
revision of the IEEE-754 standard defines an FMA operation [23].

17

4. FLOATING-POINT UNIT

IMPLEMENTATIONS

This chapter is a review of various existing floating-point unit implementations.
The following section describes the floating-point capabilities of modern off-the-self
computing hardware. Points of particular interest are standard relaxations and the
prevalence of the FMA unit, as well as engineering solutions related to it. The second
section reviews floating-point units that are freely available as Hardware Description
Language (HDL) descriptions, the main goal being to find suitable FPUs to form
the basis of floating-point support in TCE, as developing them from scratch would
be needlessly time-consuming and error-prone. Finally, the third section describes
the platform-specific floating-point solutions supplied by the major FPGA vendor,
which will be used as points of comparison.

4.1 Floating-Point Units in Commercial Processors

This section is an overview of the floating-point capabilities of some commodity
computation devices. Such devices can reach very high performance due to the
fine-grained process technology they are synthesized with, made possible by the
scale of their market. A particularly interesting device is the IBM Cell processor,
which employs an FMA unit and reduced standard compliance. The findings are
summarized in Table 4.1.

4.1.1 Intel Itanium

The Itanium is a processor family by Intel targeted for the server and HPC markets.
It breaks instruction-set compatibility with the x86 ISA to achieve this goal. The
Itanium is interesting as an early example of the FMA unit. Its FPU is built around
two parallel FMA units, and later dual-core Itaniums have a total of four. [32]

The newest Itanium processor for which detailed information is available is the
Montecito, released in 2005. At 1.66 GHz, and considering FMA to count as two
floating-point operations, the theoretical peak performance of a Montecito is 13.28
billions of floating-point operations per second (GFLOPS).

The Itanium does not have a built-in divider. Instead, the Itanium Instruction-Set
Architecture (ISA) provides instructions for fast approximation of e.g. reciprocals

4. Floating-Point Unit Implementations 18

Table 4.1: Comparison of off-the-shelf computation hardware. The reported floating-
point performance is a theoretical maximum.

Intel IBM AMD Intel
Itanium Cell Bulldozer Ivy Bridge

FMA based yes yes yes no
Process 90nm 65nm 32nm 22nm

Clock frequency 1.66GHz 3.20GHz 3.60GHz 3.50GHz
Cores 2 6 8 4

FP perf. per core (GFLOPS) 6.64 25.6 33.6 56.0
FP perf. total (GFLOPS) 13.28 153.6 268.8 224.0

and square roots by table lookup, which can be then be refined into correctly rounded
results using the FMA instruction. Intel provides fast algorithms for this purpose,
along with mathematical proofs of their correctness [32]. The Itanium was widely
used in supercomputing, appearing in 84 machines in the Top500 supercomputer
list of 2004 [35].

4.1.2 IBM Cell Broadband Engine

The IBM Cell Broadband Engine processor [33] is well known for its application
in the Playstation 3 video game console. The Cell is made up of eight Synergistic
Processing Elements (SPE) coordinated by a single PowerPC core. One SPE is
disabled to increase chip yield, and one reserved for the operating system, so six
SPEs are available for the developer.

Each SPE has a fully pipelined vector floating-point unit capable of completing
four single-precision operations on every cycle. The vector FPU is based on an FMA
datapath, but engineered so that separate addition and multiplication operations
do not suffer a latency penalty. When adding, the multiplication pipeline stage
is skipped, and vice versa for multiplication, which works out to a latency of six
cycles for the FMA operation, and five cycles for each separate operation. The FPU
hardware can also be used for 16-bit integer arithmetic.

Counting every FMA operation as two floating-point operations, a single SPE has
a theoretical maximum performance of 25.6 GFLOPS, and the entire Broadband
Engine reaches 153.6 GFLOPS. The single-precision unit in the Cell FPU makes
heavy use of relaxed standard compliance in order to "place emphasis on real-time
graphics requirements that are typical of multimedia processing". The FPU only
supports the Round toward Zero rounding mode, subnormal operands are treated
as zero and subnormal results forced to zero, and the ’all-ones’ exponent is treated
as a normal exponent instead of a special case. Overflows are saturated to the
maximum representable value. These relaxations coincide closely with the OpenCL

4. Floating-Point Unit Implementations 19

EP; therefore the OpenCL EP may have been designed in part to accommodate the
Cell.

As with the Itanium, complex operations are performed in software, with the
help of special instructions that provide reciprocal and square root estimates. The
complex operations fall short of correct IEEE rounding, likely due to the standard
relaxations above [36].

The double-precision unit in the original Cell is IEEE-compliant but is engi-
neered to minimize chip area at the cost of performance. IBM has since released
a HPC-oriented revision of Cell named the PowerXCell 8i, with a total of eight
developer-visible SPEs and improved double-precision performance, only slower than
single-precision by a factor of two. The PowerXCell was used in IBM’s Roadrunner
supercomputer, which was the first computer to reach a sustained floating-point
performance of one petaflop. [35]

4.1.3 AMD Bulldozer

The Bulldozer is AMD’s latest desktop processor microarchitecture, released in 2011.
The most high-end Bulldozer model in the market has a theoretical peak floating-
point performance of 268.8 GFLOPS. The Bulldozer is divided into ’modules’ of
two cores. Each module has a single FPU shared between its constituent cores. The
FPU is built around two 128-bit FMA units, each of which is capable of completing
either four single-precision operations or two double-precision operations every cycle.
Instead of emulating complex operations such as division and square root on the
software level, they are performed by an internal state machine within the FPU. [34]

4.1.4 Intel Ivy Bridge

Intel’s latest desktop processor microarchitecture is codenamed Ivy Bridge. The first
Ivy Bridge processors entered production in 2011. The Ivy Bridge does not use an
FMA-based datapath, but instead reaches similar performance as the Bulldozer by
employing both a 256-bit vector adder and a 256-bit vector multiplier for each core.
Ivy Bridge’s successor Haswell is slated to replace these with FMA units [37]. Con-
sequently, unlike the aforementioned devices, the Ivy Bridge has a built-in divider,
shared between the integer and floating-point datapaths. The microarchitecture
also includes an on-chip GPU which is OpenCL programmable, which could add
significant floating-point performance if properly used. [38]

4.2 Open Source Floating-Point Units

This section is a review of FPUs for which HDL descriptions have been made avail-
able without charge. Such FPUs are interesting as points of comparison and also as

4. Floating-Point Unit Implementations 20

candidates for integration into TCE, if they have a sufficiently liberal license to be
compatible with the MIT license used by TCE.

4.2.1 FloPoCo

FloPoCo is a FPGA-based floating-point arithmetic system developed in the French
National Institute for Research in Computer Science and Control (INRIA), applica-
ble also for fixed-point arithmetic and ASIC platforms. Its basic idea is to generate
fused complex operation units which are faster, more accurate and require less hard-
ware than if they were implemented with elementary operations. One example given
is a custom datapath for x2 + y2 + z2. Compared to an implementation pieced to-
gether from vendor-provided elementary operations, a fused datapath generated by
FloPoCo requires one-third of the cycles and chip area. [39]

Though its focus is on complex custom operations, FloPoCo includes a large
variety of elementary floating-point operations which can be used by themselves or as
building blocks for the aforementioned exotic operations. In addition to those shown
in Table 4.2, the operations include three-input addition, squaring, multiplication
by constant, division by constant, exponential, natural logarithm, and raising to
a power. The operations are reported competitive with FPUs supplied by FPGA
vendors. Multiple architectures are provided for, e.g., addition and square root
with varying tradeoffs between area, latency and clock rate. There is emphasis on
pipelining for performance: the developer can specify a target frequency, and the
system attempts to meet it by automatically inserting pipeline stages. [40]

Instead of using the IEEE-754 representation, FloPoCo stores information on
special cases in three additional bits, which simplifies decoding logic. While this
would be impractical with standard memory built around 32-bit words, the devel-
opers reason that due to the flexibility of FPGAs it is feasible to support internal
use of 35-bit memory. In addition, support for subnormal numbers was left out of
FloPoCo, arguing that they can be replaced by adding one bit of precision to the
exponent field. [40]

There is also a commercial fork of FloPoCo’s predecessor FPlibrary, named lib-
HDLfltp. Unfortunately, FPlibrary and libHDLfltp each fall under a GPL-based
license, which is incompatible with integration into TCE, and since the copyright
owners of FloPoCo itself have not yet decided on terms of distribution, it is dis-
tributed "all rights reserved".

4.2.2 VHDL-2008 Support Library

The VHDL-2008 revision of the VHDL language specifies a mathematics library with
native floating-point types and arithmetic operations. At this time neither Altera

4. Floating-Point Unit Implementations 21

nor Xilinx synthesis tools implement this part of the standard, but the public-
domain VHDL-2008 Support Library [6] implements synthesizable versions of these
types using VHDL-1993.

The Support Library is flexible, with options for different significand and expo-
nent widths, rounding modes, as well as parameters to turn off special case and
denormal number support. As a downside, all the functions are combinatorial, and
need to be pipelined by hand.

4.2.3 Sabrewing

The Sabrewing is an FPU aimed for embedded applications. It uses the FMA
datapath to minimize area, and also implements hardware pipeline resource sharing
between integer and floating-point operations, possibly eliminating the need for
a separate integer ALU. To achieve this, the Sabrewing internally uses a 32-bit
significand suitable for integer arithmetic, and allows computation both with single-
precision numbers and extended 46-bit floats. The FPU supports floating-point
and integer multiply-addition, multiplication, addition and comparison, as well as
integer left-shift and right-shift operations. [30]

The Sabrewing performs well in a 65 nm technology ASIC prototype, reaching a
clock speed of 1.35GHz with a latency of three cycles. It outperforms the VHDL-
2008 Support Library in terms of maximum frequency, power consumption and
area, while producing more standard-compliant results. However, being optimized
for ASIC synthesis, it may be suboptimal in FPGA use.

4.2.4 OpenCores

The OpenCores project is a repository for open-source hardware IP cores. It hosts
many arithmetic cores, a small fraction of which are characterized as floating-point.

The fpu100 unit developed in the Vienna University of Technology appears to be
the most mature floating-point IP in OpenCores. The monolithic FPU is capable
of addition, multiplication, division and square root. Since square root and division
are rare operations, they were implemented digit-serially in order to save area, with
a latency of 35 cycles. Addition and multiplication are fully pipelined at 7 and 12
cycles, respectively. The entire unit reaches a clock rate of 100MHz on a Cyclone
EP1C6 FPGA. It is tested with a comprehensive test suite and verified on hardware.

The fpu unit was used as a point of comparison in the fpu100 documentation.
Similarly to fpu100, it is a monolithic FPU comprehensively tested to be IEEE-754
compliant, but less effort has gone to performance optimization. Each operation has
a latency of 4 cycles, including division, resulting in a clock rate of only 6.17MHz.

The fpuvhdl project contains an adder and a multiplier. The units are fully

4. Floating-Point Unit Implementations 22

Table 4.2: Comparison of available FPUs. The FloPoCo operations marked as (yes)
are not supplied as elementary operators, but could be trivially synthesized using
the FloPoCo system. The OpenCores column includes the fpu100 and fp_log units.
free licenses permit all use and redistribution, but may require the reproduction of
a copyright notice when redistributing.

FPU Bishop Sabre- Xilinx Altera Open- FloPoCo
wing Cores

Operations:
add, sub yes yes yes yes yes yes
multiply yes yes yes yes yes yes
FMA yes yes (yes)
divide yes yes yes yes yes

compare yes yes yes yes yes
sqrt(x) yes yes yes yes yes
1/x yes yes yes

1/sqrt(x) yes yes (yes)
log(x) yes yes yes yes

Features:
subnormals optional yes no no yes no

rounding modes all all nearest nearest all nearest
INF, NaN optional optional yes yes yes yes
precision all single, all single, single all

46b double
pipelined no yes yes yes yes yes

param. latency no no yes yes no yes
integer operations no yes no no no no

portable yes yes no no yes yes
license free free comm. comm. free no

pipelined at latencies of 6 and 4 cycles, respectively, and reach clock rates of approx-
imately 90MHz on a Xilinx Virtex-II XC2V3000 FPGA. Judging by the operation
latencies, the fpu100 multiplier was designed for an old FPGA without embedded
multiplier blocks, while the fpuvhdl multiplier may be better suited for modern
FPGAs which include such blocks.

The remaining single-precision units in OpenCores are the multiplier cf_fp_mul
which is based on the discontinued high-level HDL Confluence, and the logarithm-
taking unit fp_log which implements the ICSILog algorithm. In addition, Open-
Cores contains three double-precision units named fpu_double, double_fpu and
openfpu64. These are of less interest since the main focus of this thesis is on single-
and reduced-precision arithmetic.

4. Floating-Point Unit Implementations 23

4.3 Floating-Point Libraries for FPGAs

This section is a review of the floating-point units supplied by major FPGA vendors
for use on their FPGA platforms. Due to their high level of platform-specific opti-
mization, they can be considered as representative of the maximum floating-point
performance reachable on a given platform. These units are summarized in Table
4.2 together with the open-source FPUs from the previous section.

4.3.1 Xilinx

Xilinx provides a floating-point IP with its ISE design environment, called the Log-
icCore IP Floating-Point Operator. The component may be configured to perform
the following operations: basic arithmetic (addition/subtraction, multiplication, di-
vision, square root) and other functions (conversions, comparison). [41]

The IP is highly generic. The user can specify the significand and exponent
widths, specify a latency between zero and an operation-specific maximum value,
and specify whether special DSP blocks are used in synthesis.

As a downside, only one of the operations can be selected. Therefore, the IP
cannot synthesize, e.g., an FPU that shares rounding and normalization logic across
operations. The IP also does not include a fused multiply-adder. It complies with
IEEE-754 partially, but for instance supports only the default rounding mode, round-
to-nearest-even. Xilinx also does not support subnormals, arguing that they do not
contribute to the result in most practical calculations, since they are very small. [41]

Also, Xilinx provides a larger monolithic floating-point unit, LogicCore IP Virtex-
5 APU Floating-Point Unit, intended for use in its Embedded Development Kit
(EDK) system-on-chip design flow as a coprocessor to a PowerPC CPU. As such,
it decodes standard PowerPC floating-point instructions. The APU has several at-
tractive qualities, such as full IEEE-754 support and an FMA operation. However,
the unit is closely linked to the EDK system, and may be difficult to extract for
general use. As a point of technical interest, the unit is designed to run at either
one-half or one-third the clock rate of the host PowerPC core. [42]

4.3.2 Altera

The synthesis toolset for Altera FPGAs includes a large palette of megafunctions
for floating-point computation, divided into: basic arithmetic (addition/subtraction,
multiplication, division, square root), algebraic functions (exponential, inverse, in-
verse square root, natural logarithm), trigonometric functions (sine, cosine, arc-
tangent), other functions (absolute value, conversion, comparison), and complex
functions (matrix inverse, matrix multiplication). [43]

Most functions may be configured to use single-precision, double-precision, or

4. Floating-Point Unit Implementations 24

"single extended precision" which can vary between 43 and 64 bits. Furthermore,
most functions have two latency options. The basic arithmetic functions also have a
low-latency option with more granularity. Some complex functions offer less choice,
for instance the sine-cosine function has no parameters except that either a sine or
a cosine unit can be synthesized.

As with Xilinx, the Altera components flush denormal inputs to zero, and sup-
port only the default round-to-nearest-even rounding mode. In summary, Altera
supplies a larger arsenal of FPUs than Xilinx, but they support a lesser degree of
customization.

25

5. DESIGN AND IMPLEMENTATION

This chapter describes the implemented floating-point units. The following section
describes the design requirements, and the process of selecting a freely available
FPU library as a basis for implementation. Subsequently, each of the implemented
function units is described, beginning with the single-precision units and followed
by the half-precision units. The descriptions are not intended to be exhaustive,
but instead to lay out the interface of each FU necessary for their use, including
supported operations, generic parameters and latencies, and to elucidate points of
technical interest in their implementation.

5.1 Requirements

Several considerations had to be taken into account when designing the FPUs:

• The FPUs should provide the elementary operations necessary for writing
floating-point programs. These include basic arithmetic, comparison, conver-
sion between floats and integers, and the square root operation.

• The FPUs should reach high clock speeds on multiple FPGAs. Additional
pipeline stages should be inserted as necessary to reach this goal.

• Standard compliance can be sacrificed for performance if possible. To keep
some measure of well-defined behavior, the OpenCL EP is complied to instead
of the full IEEE 745.

• Even though the EP does not require special case handling, all operations
should properly generate and preserve INFs and NaNs, so that error conditions
can be detected at the end of a long series of calculations.

• The FPUs should be customizable for various floating-point formats through
the use of parameters. In particular, half-precision floats should be supported.

• The FPUs should be synthesizable on both Altera and Xilinx FPGAs, and
simulable with GHDL [14]. That is, they should not use vendor-specific IP
cores.

• The FPUs should use no third-party code that cannot be integrated into the
TCE project and distributed under TCE’s MIT license.

5. Design and Implementation 26

As shown in the previous chapter, there is an abundance of freely available
floating-point units. Consequently, it would make little sense to write the FPUs
from scratch. None of the discussed FPUs fit all of the requirements as they are,
so some modification is necessary. The VHDL-2008 Support Library was chosen as
the basis for FPU implementation since it is written in easily modifiable high-level
VHDL, well tested, used in several scientific publications, and flexible in terms of
parameters. Due to the parametrization, it is simple to convert a Support Library-
based FPU to use e.g. reduced-precision formats, to select the rounding mode, and
to remove subnormal number support.

Furthermore, the floating-point operations are divided into separate functions.
In TTA, it is desirable to have separate function units for different operations, so
that the processor’s hardware operations can be customized more easily for the
application at hand. If the implementation were based on a monolithic FPU, it
would take significant effort to produce these separate units.

A major disadvantage of the Support Library is that the units need to be pipelined
by hand. As seen later in their corresponding sections, the division and square
root functions use algorithms unsuitable for synthesis, and need to be partially
rewritten. Furthermore, the high-level VHDL code is not highly optimized for any
single platform, and cannot be expected to attain maximal performance.

In addition to the main Support Library-based FPUs, the Sabrewing FPU was
provided as an alternative optimized for ASIC performance. The FloPoCo system
has attractive properties, such as a high performance competitive with FPGA vendor
FPUs, and support for exotic operations such as logarithms and exponentials. Its
idea of automatically generating custom operations would be a good match to the
ASIP concept. Unfortunately it could not be integrated into TCE due to licensing
issues. Another issue is its exotic 36-bit wide single-precision format which would
need to be converted at some point into the conventional 32-bit format in order to
reconcile it with commodity memory. However this would involve less effort than
the manual pipelining required by the Support Library. In addition, since FloPoCo
is designed ground-up without subnormal support, it would be difficult to make
IEEE-compliant on demand, as opposed to the Support Library where a parameter
change suffices.

5.2 Single-Precision Components

The components were implemented by taking a VHDL-2008 Support Library func-
tion, parametrizing it to comply to OpenCL EP, inserting sufficient pipeline stages
to achieve the required clock speed, and wrapping the result in a TCE Function Unit.
The square root and divider components required algorithm-level performance opti-
mization. Technical specifications of each unit are shown in Appendix A, including

5. Design and Implementation 27

parameters and latencies.

5.2.1 Adder-Subtractor

The implemented adder block is shown in Figure 5.1a. Dashed lines indicate pipelin-
ing. Some adder designs, e.g. the Sabrewing [30] handle negative results by negating
them in two’s complement. In contrast, the Support Library adder ensures that the
lower significand is always subtracted from the higher and the result is guaranteed
to be positive. This involves a full floating-point comparison, and swapping the
significands if necessary.

5.2.2 Multiplier

The implemented multiplier block is shown in Figure 5.1b. The ’truncation’ stage of
the multiplier appears superfluous, especially when using the RtZ rounding mode.
It is required in order to give the synthesis tools room for register retiming around
the expensive integer multiplication. Removing the stage reduces performance.

5.2.3 Divider

The Support Library divider uses the simple base-2 shift-and-subtract algorithm for
integer division. In order to compute each bit of the quotient, the divisor is shifted
and subtracted from the dividend, and the result is sign-checked. The algorithm
produced a reasonable clock rate, but required one pipeline stage per significand
bit; packing two iterations to one pipeline stage damaged the clock rate.

For the purpose of improving latency, the divider was reworked to divide base-4
instead of base-2. The unit initally precomputes multiplication of the divisor by
two and three. Subsequently in each iteration, the unit generates two bits of the
quotient on every iteration by attempting to subtract three multiples of the divisor
in parallel. This redesign retained a high clock rate while almost halving latency. A
block diagram of the redesigned divider is shown in Figure 5.2a.

5.2.4 Square Root

The Support Library includes a square root function, however, it is implemented
with a simple Newton’s iteration:

5. Design and Implementation 28

f(x) = x2 − n (5.1)

f ′(x) = 2x (5.2)

xi+1 = xi −
f(xi)

f ′(xi)
= xi −

x2
i − n

2xi

=
1

2

(
xi +

n

xi

)
(5.3)

where xi approaches the square root of n as f(xi) approaches 0. When synthesized
on hardware and fully pipelined, the function requires an integer divider for each
iteration step. It is therefore useful mainly for simulation, and unreasonably large
and slow for synthesis.

To produce a more useful component, the core integer square rooter was rewritten
using Hain’s algorithm [44], keeping the exponent computation, unpacking, packing
and normalization logic of the original Support Library function. Hain’s algorithm
determines the output bit by bit, starting from the MSB. In each iteration, the
algorithm adds a trial offset b to the intermediate result a. If then (a+b)2 < n, where
n is the input, the corresponding output bit must be 1. After further optimization
by keeping track of two auxiliary variables, the critical path of an iteration step
involves only a subtractor, a multiplexer and an incrementor. The optimized Hain’s
algorithm is shown in the block diagram of the unit in Figure 5.2b.

Even so improved, the unit is large and has a long latency of 26. The Newton’s it-
eration requires only O(log n) iterations as opposed to the O(n) of Hain’s algorithm,
but this is more than offset by the cost of each iteration.

5.2.5 Comparator

The Support Library provides separate function calls for various comparisons. Since
the comparator should support all six comparison operations (equal, not-equal, less-
than, less-than-or-equal, greater-than, greater-than-or-equal), it was implemented
by hand without referring to the Support Library. An alternative would be to
remove, e.g., the greater-than and greater-than-or-equal operations since they can
be restated using other operations by swapping the parameters. This would save one
instruction word bit at the cost of a minor performance hit when the interconnection
network is better suited for one parameter ordering.

As discussed in Section 3.2, the IEEE Single-Precision format is designed such
that the low 31 bits can be treated as integers for the purpose of comparing mag-
nitudes. After comparing magnitudes, the results of each comparison operation can
be generated with cheap boolean logic. The very cheap negation and absolute value
operations were added since they did not appear to justify an FU of their own.
Negation is implemented simply by flipping the sign bit of the input operand, and

5. Design and Implementation 29

absolute value by setting it to zero.

5.2.6 Integer-Float Converter

Conversion between integers and floats was a surprisingly complex operation, re-
quiring four clock cycles to complete. The bottleneck is the signed integer-float
conversion operation, CIF , which is similar to the normalization stages of the pre-
vious units. Adding to the complexity, the number being normalized is 10 bits
longer than usual, and needs to be sign-checked and negated in two’s complement if
negative, which involves a full carry-propagation. The OpenCL EP specifies that all
conversions should comply exactly to IEEE-754, but since the RTZ rounding mode is
still allowed, and denormal numbers never affect the result, there is no performance
impact.

5.2.7 Fused Multiply-Adder

As described in Section 3.4, a fused multiply-adder computes the operation a + bc,
which speeds up a variety of computations that require accumulation of products,
such as matrix multiplication. The FMA component implemented in this thesis
provides multiplication, addition and subtraction instructions using the simple tech-
nique discussed in Section 3.4.

Moreover, a multiply-subtract operation was added, which computes a− bc. The
operation has a minimal hardware cost, as it is sufficient to flip the sign bit of b or
c. Multiply-subtract improves the performance of, e.g., the fast Fourier transform
and any other computations that involve complex multiplication, which is defined
as (a, b)× (c, d) = (ac− bd, ad+ bc).

A block diagram of the implemented FMA is shown in Figure 5.1c. The FMA
has six pipeline stages, four of which can be bypassed using generic parameter flags,
named bypass_2, bypass_3, etc. Each flags has the effect of turning the related
D-flipflops into wires. The latency of the entire unit is therefore parametric and can
be set between 2 and 6. These parameters were used to specify a palette of FMA
units with different latencies into the hardware database. Since a given latency is
reached with multiple combinations of flags, optimal combinations were determined
by synthesizing each possible unit.

Relaxed standard compliance was very effective when implementing the FMA
component. The original implementation requires an expensive inital normalization
stage to handle denormal numbers. When both inputs to the multiplier stage are
normal, the result can have at most one leading zero, making normalization of the
intermediate result trivial. Initially, a component was experimented with that was
otherwise identical, but did not implement the subtraction or addition operations.

5. Design and Implementation 30

Benchmarking showed no meaningful difference in area or frequency.

5.3 Sabrewing Wrapper

The Sabrewing FPU [30] described in section 4.2.3 was thought useful to include as
a TCE function unit, since it has no license restrictions and performs well on 90nm
ASIC. It is also highly IEEE 754-compliant. As a drawback, having been designed
for ASIC synthesis it may not perform well on FPGA.

The original unit has a latency of three cycles. Pipeline registers were added
to the beginning and end of the unit. In addition, an optional pipeline register
bank was inserted after the logic that translates TCE input data and operation
codes into the format expected by the Sabrewing. Enabling this optional register
improved performance significanly on the Xilinx Virtex-6. The total latency of the
unit can, therefore, be set to five or six cycles.

Some of the Sabrewing’s functionality had to be ignored in writing the function
unit wrapper. In particular, neither rounding mode selection nor the extended 41-bit
floating-point format appeared important enough to warrant addition to the default
TCE instruction set. Therefore the function unit only supports single-precision
numbers and the Round to Zero rounding mode, so as to make it a fair point of
comparison. Changing the default rounding mode to e.g. Round to Nearest would
be trivial.

5.4 Half-Precision Components

This section first discusses the software issues related to integrating half-float arith-
metic into TCE, and subsequently describes each implemented half-precision floating-
point unit. Most of these are slightly modified single-precision FPUs with different
parameters.

5.4.1 Software Integration

Single-precision floats were already well integrated into the software side of TCE
at the outset of this thesis work, so that language constructs from all high-level
languages using floats were properly converted into operations by the compiler, and
even replaced with emulation code if hardware acceleration was unavailable. Only
the actual function unit implementations were absent. Half-precision floats did not
yet have equivalent support.

In order to integrate halfs into TCE, a HALF_WORD datatype was added as
a possible argument type for operations in the Operation Set Abstraction Layer
(OSAL), and corresponding half-precision operations were added to the default op-
eration set for each existing single-precision operation. The simulation behavior of

5. Design and Implementation 31

the operations is to perform computation in single-precision and truncate the results
to half-precision.

A major remaining obstacle is that TCE relies on LLVM code-generation to
convert floating-point calculations in high-level language into machine code instruc-
tions. At this time, LLVM only supports half-floats as a storage format without
arithmetic operations, as defined by IEEE-754. Code-generation support for half-
float arithmetic is planned, but not yet operational as of this writing. Consequently,
accelerated half-float operations need to be invoked as custom operations.

So as to facilitate easier use of halfs, a C++ utility class named half was included
in the test suite. The class has overloaded arithmetic operators that invoke the half-
float operations. However, this method is inferior to full LLVM-level support. For
instance, the compiler cannot replace custom operations called in this way with
equivalent operations. If a program uses halfs, it therefore cannot be compiled on a
processor without hardware acceleration.

5.4.2 Miscellaneous Units

Some half-precision units have emerged from earlier research in collaboration with
researchers from the University of Oulu. As part of this thesis, they were integrated
into the TCE codebase. These include an adder, a multiplier and an inverse square
root unit.

The adder and multiplier components are based on a light version of the VHDL-
2008 Support Library with unused library infrastructure removed. The inverse
square root unit computes an approximation of the inverse square root with a single
Newton’s iteration.

The components are designed for low-power applications with a low clock fre-
quency. Though half-precision arithmetic is much more simple than single-precision,
the latencies are insufficient for e.g. ≈ 200MHz on Stratix II. For high performance
arithmetic, either the multiply-adder should be used, or the single-precision adder
and multiplier should be parametrized for half-precision.

5.4.3 Float-Half Converter

This unit implements conversion operations between singles and halfs. Computation
of exponents required special care, since the special case exponents remain all-ones or
all-zeros after conversion, but all other exponents need to be rebiased. Significands
can simply be truncated when converting to half-precision, and zero-padded when
converting to single-precision.

5. Design and Implementation 32

5.4.4 Comparator

The half-precision comparator is identical to the single-precision comparator, except
that operation codes had to be reordered. TCE specifies that the operation codes
must be in alphabetic order. Usually this does not require changes between single-
and half-precision units, however in this unit the negation and not-equal operations
(NEF and NEGF in the single-precision case, NEH and NEGH in the half-precision
case) had to be swapped.

5.4.5 Fused Multiply-Adder

The half-precision fused multiply-adder is identical to the single-precision component
described above, except for the operation codes. The exponent width and mantissa
width were specified using generic parameters.

Of course, given the lower hardware complexity of half-precision operations, the
unit is smaller than its single-precision cousin, and may achieve the same clock speed
with fewer pipeline stages.

5. Design and Implementation 33

Stage 1 Stage 2 Stage 3 Stage 4

Unpack

a

b

instr

Select
Align

+/−

Normalize

Pack c

Sign and control logic

siga
sigb

expa
expb

siglow

exphigh
explow

signa

signb

sighigh
siglow

sigunnormal

expunnormal

sig

exp

sign

(a) Block diagram of the implemented single-precision adder.
Stage 1 Stage 2 Stage 3 Stage 4

Unpack

a

binstr

∗

+

Truncate

Normalize

Pack c c

Sign and control logic

siglong sigunnormal

expunnormal

siga
sigb

expa
expb

signa

signb

sig

exp

sign

(b) Block diagram of the multiplier component.
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

∗

+Unpack

a

b

c

instr

Select
and
Align

+/−

Normalize

Pack c

Sign and control logic

sigc

expc

sigtemp

exptemp

siga
sigb

expa
expb

signa

signb

sighigh

siglow
sigunnormal

expunnormal

sig

exp

sign

(c) Block diagram of the implemented floating-point fused multiply-adder.

Figure 5.1: Block diagrams of the implemented floating-point accelerators for basic
arithmetic. Dashed lines indicate pipeline stages.

5. Design and Implementation 34

Stage 1 Stage 2 Stage 3-13 Stage 14

abc

×2

×3

−

−

−

− −1

MUX

Detect signs

Unpack

a

b

Normalize
and
Pack

c

Sign and control logic

sig2i, sig2i+1 sig

expa
expb

exp

siga partial0

sigb

partiali

signa

signb
sign

(a) Block diagram of the floating-point divider. The second stage is repeated 11 times
for a single-precision float; each iteration computes two bits of the significand.

Stage 1 Stage 2 Stage 3-24 Stage 25

abc

+1 /2

s← s� 2 + n� 23
n← n� 2
if s < t then
t← t− 1
a← a� 1
else
s← s− t
t← t+ 1
a← a� 1 + 1
endif
t← t� 1 + 1

Unpacka
Normalize

and
Pack

c

Sign and control logic

expa exp

n0

siga

s0

siga(23)

t0
5

a0
1

n1

s1

t1

a1
sig

an

signa

signb
sign

(b) Block diagram of the implemented square root unit. The second stage is repeated 23
times for a single precision float; each iteration computes one bit of the significand.

Figure 5.2: Block diagrams of the implemented floating-point accelerators for com-
plex operations. Dashed lines indicate pipeline stages.

35

6. FMA ACCELERATED SOFTWARE

OPERATIONS

As discussed in section 3.4, an IEEE-compliant FMA unit allows fast software al-
gorithms for correctly rounded division and square root. Therefore, an FPU built
around a FMA unit often does not include separate dividers or square root accelera-
tors. For instance, the Intel Itanium processor family takes this approach. Itanium
software developers are expected to implement division and square root using the
algorithms described in [45] and [32].

It would be desirable to have the same option in TCE, given that dedicated divider
and square root units are expensive. In most applications, division and square
root are relatively rare operations and may not warrant dedicated hardware. The
default behavior in TCE of integer-based emulation with softfloat [46], a floating-
point emulation library, is extremely slow. In contrast to dedicated units which
are inactive ’dark silicon’ when not in use, performance of special operations could
be increased by adding fused multiply-adders which are useful for many types of
computation.

However, the algorithms are derived with an IEEE-compliant, round-to-nearest
FMA operation in mind, and it is questionable whether they work at all on our
relaxed FMA unit. It is at least difficult to attain correctly rounded results. This
chapter investigates the matter and proposes reasonably fast software algorithms
which, with the help of some cheap special instructions, stay within the OpenCL
EP accuracy bounds: ±2.5ulp for division and ±3ulp for square root [18]. In the
future, the same approach may be extended to computing, e.g., trigonometric or
exponential functions that can be approximated with power series. The algorithms
in this chapter are designed for single-precision floats, but may be extended for
half-precision in the future.

The IBM Cell processor uses similar reduced standard compliance, and therefore
has to deal with the same accuracy issues. The SIMDmath arithmetic library sup-
plied with the Cell computes a less accurate square root than the algorithm proposed
below. Its division appears to be more accurate, though it was tested with fewer
numbers over a more limited range. [36]

6. FMA Accelerated Software Operations 36

6.1 Division

The division algorithms in [45] are derived for double-precision arithmetic. Some
paraphrasing produces three promising single-precision algorithms. The first one,
labeled DivideFast, starts with a fast approximation y of the reciprocal of b; com-
putes a rough estimate of the quotient by multiplying q0 = ay; and then refines the
estimate with two Goldschmidt’s iterations, a variation on Newton-Raphson itera-
tion. Since Goldschmidt’s method does not refer back to the original input data,
rounding errors accumulate with each intermediate step. Correctly rounded results
are attained in [45] only by performing the last iteration with double accuracy. The
initial approximation is computed with a special hardware instruction, which can
be implemented using a small lookup table [47].

Algorithm 1: DivideFast
Data: Single-precision float dividend a and divisor b
Result: The quotient a/b
begin

a′, b′, c←− InitializeDivision(a, b)
y ←− ReciprocalApproximation(b)
q0 ←− a′ · y; e←− 1− b′ · y
q1 ←− q0 · e+ q0; e1 ←− e · e
q2 ←− q1 · e1 + q1
q′2 ←− MultiplyByPowerOfTwo(q2, c)
return q′2

The second algorithm, labeled DivideMedium is identical except that the final
Goldschmidt iteration is replaced with a Newton-Raphson iteration meant to elim-
inate the accumulated rounding errors. The drawback is that the Newton-Raphson
does not parallelize as well, growing the critical path by one FMA latency.

Algorithm 2: DivideMedium
Data: Single-precision float dividend a and divisor b
Result: The quotient a/b
begin

a′, b′, c←− InitializeDivision(a, b)
y ←− ReciprocalApproximation(b)
q0 ←− a′ · y; e←− 1− b′ · y
q1 ←− q0 · e+ q0
r ←− a′ − b′ · q1
Q←− r · y + q1
Q′ ←− MultiplyByPowerOfTwo(Q, c)
return Q′

6. FMA Accelerated Software Operations 37

The last algorithm, labeled DivideSlow, takes a different approach of first esti-
mating an accurate reciprocal of b with Goldschmidt iterations and then using it
to estimate a

b
through a Newton-Raphson iteration. An interesting feature is that

the algorithm could be used to accelerate repeated divisions with the same divisor,
by performing only the Newton-Raphson iteration for each successive division. In
addition, the first half of the algorithm could be used when computing reciprocals
instead of full division, saving one operation compared to DivideFast.

Algorithm 3: DivideSlow
Data: Single-precision float dividend a and divisor b
Result: The quotient a/b
begin

a′, b′, c←− InitializeDivision(a, b)
y0 ←− ReciprocalApproximation(b)
e←− 1− b′ · y0
y1 ←− y0 · e+ y0; e1 ←− e · e
y2 ←− y1 · e1 + y1
q ←− a′ · y2
r ←− b′ · q + a′

Q←− r · y2 + q
Q′ ←− MultiplyByPowerOfTwo(Q, c)
return Q′

Each algorithm often produced large errors when confronted with very large or
very small inputs, due to over- and underflows. In particular, the quotient of two
large numbers was often flushed to zero. The Itanium documentation advises de-
velopers to use extended-precision ’register floats’, so this may be a feature of the
algorithms, but the lack of subnormal number support probably contributes to the
problem.

The problem was worked around by introducing a preprocessing step before the
computation which sets the exponents of each input to zero, and a postprocessing
step which restores the correct scale. This is possible because the significand in divi-
sion can be computed independently of the exponent. Both operations are simple to
implement in hardware as one-cycle special instructions, since they mostly involve
exponent manipulation. The postprocesssing step can be formulated as a multiply-
by-power-of-two instruction which may have more general use. The preprocessing
step could in principle be fused with the reciprocal-approximation operation, pos-
sibly saving one cycle, but for the sake of clarity they are assumed to be separate
instructions.

The accuracy of each algorithm was investigated using a simulated FMA that has
the same relaxations as the hardware FMA, that is, results are rounded to zero, and

6. FMA Accelerated Software Operations 38

Table 6.1: Accuracy and performance characteristics of each division algorithm,
compared to a hardware divider. Accuracy is measured with 10,000,000 random
float pairs except for the HW divider. DFMA is assumed to be 6 cycles.

Procedure DivideFast DivideMedium DivideSlow HW Divider
Avg. Error (ulp) 0.58 0.21 0.22 -
Max. Error (ulp) 4 2 2 1

OpenCL EP compliant no yes yes yes
FMA count 5 5 7 -
FMA latency 3 4 6 -

Latency 21 27 39 16
Throughput w/ 2 FMA 0.4 0.4 0.29 1

Min. LUT size 6x6 8x8 6x6 -

subnormal inputs and outputs are flushed to zero. 10,000,000 randomly generated
pairs of floats were divided, and the results compared to native IEEE-compliant
division. Since the native division is within ±0.5ulp of the correct result, the goal is
a maximum observed error of 2ulp. The results are shown in Table 6.1. As expected,
DivideFast is not OpenCL EP compliant even with preprocessing. However, the
preprocessing step eliminates a class of potentially harmful errors, where the quotient
of two large numbers is flushed to zero. DivideMedium and DivideSlow both appear
EP compliant. Surprisingly DivideMedium requires a larger, 8x8 lookup table to
produce sane results, while a 6x6 table suffices for DivideSlow and DivideFast.

Since exhaustive search is impossible, an airtight verification of DivideMedium
and DivideSlow would require involved theoretical work similar to [45], which is
outside the scope of this thesis. However, the algorithms are more exhaustively
tested than the hardware components described in this chapter, owing to the slow
speed of RTL simulation. In terms of performance, the operations are slower than
the hardware divider, but in the same order of magnitude. Therefore, it appears
reasonable to use either DivideSlow or DivideMedium as the default TCE division
algorithm when no hardware divider is available, and to provide DivideFast as a lossy
optimization, for instance with a compiler flag or as a custom operation. Notably,
the IEEE-compliant division procedure in [32] requires ten FMA operations, twice
as many as DivideMedium.

Moreover, OpenCL provides an interface for even broader approximation with the
half_div, half_sqrt, etc. functions, which have very loose error bounds of ±8192ulp.
These functions might be implemented with just one Goldschmidt iteration of two
or three FMA operations, respectively.

6. FMA Accelerated Software Operations 39

6.2 Square Root

For square root, [45] provides a double-precision square root algorithm, which was
modified into a single-precision operation by reducing the amount of iterations:

Algorithm 4: SquareRoot
Data: A single-precision float a
Result: The square root of a
begin

b′, c←− InitializeSquareRoot(b)
y0 ←− InverseSquareRootApproximation(b)
g ←− b · y; h←− 1/2 · y
r ←− 1/2− h · g
g1 ←− g · r + g; h1 ←− h · r + h
d←− g1 · g1 + b
g2 ←− h1 · d+ g1
g′2 ←− MultiplyByPowerOfTwo(g2, c)

return g′2

As with division, the square root procedure often fails when given inputs near the
edges of the single-precision dynamic range. Again, a cheap workaround is possible.
A crucial difference is that while significand computation is completely independent
of the exponent when dividing, in the square root operation it depends on the LSB of
the exponent. That is, multiplying the input by a power of four preserves the output
significand, but multiplying by a power of two may change it. For this reason the
inverse-square-root-approximation operation also requires separate tables for even
and odd exponents.

For the correction steps, the input is multiplied by a suitable power of four 2−2n

that sets the exponent to 0 or 1, the square root is taken, and finally the result
is multiplied by 2n. The postprocessing step can be implemented with the same
"multiply by power of two" function that was used for division.

Since the square root operation has only one input, it was easily verified by
iterating through all single-precision floats. As shown in Table 6.2, the algorithm
has a maximum error of 1ULP compared to an IEEE-compliant native square root,
which is well within the OpenCL EP accuracy bounds. The performance is similar
to DivideSlow in the previous chapter. Given that the dedicated square root unit
has a latency of 26, the software implementation appears very competitive.

6.3 Accelerator Component

The division and square root functions presented in this chapter depend on five
custom operations, which are:

6. FMA Accelerated Software Operations 40

Table 6.2: Accuracy and performance information on the Square Root algorithm,
based on exhaustive search of all single-precision floats.

Procedure Software Hardware
Avg. Error (ulp) 0.26 -
Max. Error (ulp) 1 1

OpenCL EP compliant yes yes
FMA count 7 -
FMA latency 5 -

Latency 33 26
Throughput w/ 2 FMA 0.29 1

Min. LUT size 7x7 -

initialize-division: Performs the preprocessing step used in the division algorithms.

initialize-square-root: Performs the preprocessing step of the square root algo-
rithm.

reciprocal-approximation: Computes a fast LUT-based approximation of the re-
ciprocal of the input.

inverse-square-root-approximation: Computes a fast LUT-based approxima-
tion of the inverse square root of the input.

multiply-by-power-of-two: Takes two floating-point inputs, a and b, and per-
forms a correct multiplication with the assumption that b is either a power
of two, 0, ∞ or NaN. That is, the significand of b is only used to differenti-
ate between ∞ and NaN, and otherwise ignored. The operation is used for
the postprocessing steps described above, and may have general use in other
applications.

Ideally, these operations would be provided in a function unit which would add
support for both software operations in a single convenient package. Since each
individual operation is simple to implement, the FU could be expected to perform
well with a latency of one cycle.

41

7. VERIFICATION AND BENCHMARKING

This chapter describes how the implemented function units were evaluated. The
next section lays out the process by which the correct operation of the function
units was verified. The following sections investigate the hardware characteristics of
the function units as synthesized on two FPGA platforms.

TCE includes an automated system-level test suite called systemtest. It is in-
tended to act as a "smoke test" for regressions by stressing various aspects of TCE
functionality. As a guideline, before any changes are committed to the project’s
version control repository, systemtest should be run without errors. It therefore is
a natural site for a set of automated tests that verify the correct operation of the
functionality implemented in this thesis.

7.1 Instruction-Level Simulator Test

As discussed in Chapter 2, TCE includes an instruction-level simulator named
ttasim [16] and the TCE OSAL contains C++ simulation models for each oper-
ation. A test in the systemtest suite called BaseOperations verifies that the simula-
tion models of the operations in the base operation set supplied with TCE function
correctly with a number of test inputs. Since this thesis made additions into the base
operation set, including a fused multiply-add operation and half-precision arithmetic
operations, corresponding trials had to be inserted into BaseOperations. This test
offers no insight into the correct function of the implemented hardware units, only
the corresponding simulation models.

7.2 VHDL Simulator Tests

The TCE Processor Generator can automatically generate shell scripts for simulating
the processor on the open source VHDL simulator, GHDL [14]. Some test cases
verify correct behavior by printing a log of bus values at each timestep and checking
that the result is equal to ttasim simulation. Since the ttasim simulation models
have IEEE compliant floating-points, results of various FP operations are instead
checked in the program and printed to a text file.

The final single-precision and half-precision tests include separate test cases for
the FMA components, since if they were to be tested in the same processor with the
adder and the multiplier, any given test could be scheduled in either component.

7. Verification and Benchmarking 42

The Sabrewing wrapper was tested separately for the same reason. In total, five test
cases were implemented: three single-precision tests (separate accelerators, FMA
unit, and Sabrewing) and two half-precision tests (separate accelerators and FMA
unit).

Each test case is a shell script that generates a processor with floating-point
units, compiles a test program for the processor, and simulates the processor the
processor at RTL level, running the test program, using GHDL. Different areas of
functionality are tested with trials that involve both typical inputs and corner cases.
The output of the program has one character for each trial, ’O’ for successes and ’N’
for failures. More verbose error messages would be expensive to simulate; therefore
any errors are better debugged by e.g. by examining wire activity logged by GHDL.
The output is divided into lines by test caregory, which are as follows:

• robust tests which should pass even with nonstandard floating-point precisions,

• addition and subtraction,

• multiplication,

• division (skipped for half-precision tests),

• square root (skipped for half-precision tests),

• conversion, and

• pipeline behavior.

To ensure that the test checks for correct pipeline behavior, the test processor is
configured with a four-bus interconnection network that is sufficient to feed an FPU
with its full set of inputs and read its output on every cycle.

7.3 Hardware Synthesis Benchmark

In this section, the floating-point units are benchmarked based on their area and per-
formance when synthesized on two FPGA platforms. Floating-point units supplied
by the vendors of each FPGA are shown as references.

7.3.1 Altera Stratix-II FPGA

The Stratix-II EP2S180F1020C3 is included in the benchmark as an example of an
older high performance FPGA by the major vendor Altera. TCE also has a Platform
Integrator to facilitate processor integration to it [17]. Synthesis flags were selected
to favor clock speed.

7. Verification and Benchmarking 43

Synthesis results on the Stratix-II are shown in Table 7.1. All 32-bit operations
achieve a clock rate of around 180MHz, which is close to the clock rate of a minimal
FPU-less processor and was, therefore, considered a success.

Since the latency of the FMA component is parametrized with flags that sepa-
rately disable any of four pipeline stages, the best possible flags for each latency had
to be determined by synthesizing the component with each possible combination.
The reported values are those with the highest attained clock rate. The FMA com-
ponent is clearly smaller than separate adders and multipliers in terms of LUTs, but
requires one more pipeline stage to reach equivalent clock rate. It is larger in terms
of registers, but they appear to be a less scarce resource. Consequently, lower power
consumption could be expected. The half-precision units require less than half the
area of their single-precision counterparts, and achieve the same clock speed at lower
latencies.

Altera’s adder and multiplier megafunctions [43] are shown as points of compar-
ison. The implemented FPUs come reasonably close to Altera’s units in terms of
performance, given that Altera’s units are carefully optimized for the specific plat-
form. Notably, the FMA unit can complete a multiply-add operation approximately
40% faster than a combination of Altera’s units using roughly the same area. Sur-
prisingly, the divider unit shows a clear improvement over Altera’s unit, producing
results at a halved latency without sacrificing nearly any clock rate or area economy.

The divider and square root units are very large compared to the other com-
ponents, which lends credibility to the software-based approach described in the
previous chapter. Together the components displace as many logic cells as five fused
multiply-accumulators, which could in principle match the division throughput of
the dedicated divider, and nearly match the square root throughput of the dedicated
unit, while greatly increasing the processing power available for floating-point arith-
metic in general. Of course, this analysis disregards the cost of interconnecting the
FMA units so that they actually reach the theoretical throughput. As expected, the
FPUs implemented in this thesis significantly outperform the wrapped Sabrewing
FPU, which has been developed for ASIC technologies.

7.3.2 Xilinx Virtex-6 FPGA

The Xilinx Virtex-6 XC6VSX315T-2FF1759 is included as an example of a more
modern, high-end FPGA and to represent both major FPGA vendors. It is also a
platform of interest for prototyping future TCE applications.

As with Stratix-2, reasonably simple synthesis flags that favor clock speed were
selected. These included a high speed rating of "-3", setting the "Design Goal" to
"Timing Performance", and selecting a "Performance without IOB Packing" strat-
egy, which assumes that the synthesized component is for on-chip use, and will not

7. Verification and Benchmarking 44

Unit Latency Frequency(MHz) Registers ALUTs DSP
General information
Total resources - - 143,520 143,520 768

Minimal - 196.31 883 1040 0
Altera floating-point units

add [48] 7 260.00 347 613 0
mul [49] 5 228.00 148 126 ?
div [50] 33 231.00 1854 1442 0

32-bit units
add 5 180.73 419 652 0
mul 5 180.08 324 339 8
div 15 190.99 1303 1526 0
sqrt 26 194.74 1585 3201 0
conv 4 185.39 81 460 0
cmp 1 187.65 188 169 0
fma 4 127.63 452 868 8
fma 5 157.33 618 879 8
fma 6 179.21 727 854 8

sabrewing 4 70.55 937 2724 16
sabrewing 5 72.25 1015 2672 16

16-bit units
add 2 71.06 82 267 0
mul 2 71.60 122 183 2
fma 3 131.41 204 321 2
fma 4 182.92 209 307 2

Table 7.1: Synthesis results on an Altera Stratix-2 FPGA. LUT and register counts
were obtained by synthesizing each FPU connected to a minimal processor, and
subtracting the size of that processor, which is shown as "Minimal". Note that
the selected model of Stratix-II has very large resources; most practical applications
would opt for a smaller, less-expensive Stratix-II. This overprovisioning has no effect
on the figures shown here.

7. Verification and Benchmarking 45

be connected to IO pins.
Synthesis results are shown in Table 7.2. The results reflect that the newer

Xilinx has otherwise much faster logic than the Stratix-2 but operations that involve
multiplication are surprisingly slow. While all other operations reach clock speeds
of 240MHz or higher, the multiplier and FMA units cut off at 180MHz. Moreover,
the FMA unit reaches this clock speed with a latency of 4, and does not improve
with the addition of two more pipeline stages. This suggests that the automatically
instantaniated hardware multiplier is the bottleneck. The synthesis tool fails to
either pipeline the operation or break it into smaller multiplications for register
retiming. Platform-specific optimization may be necessary in order to attain a higher
clock rate.

The half-precision units are once more smaller and faster than the correspond-
ing single-precision units. They also are less affected by the multiplier bottleneck,
as they require only a 22-bit integer multiplication compared to 48 bits for single-
precision. Interestingly, the low-power half-precision adder and multiplier units,
which had severely limited clock rates on the Altera, are here faster than the corre-
sponding single-precision operations.

Xilinx’s own vendor-supplied floating-point IP is shown as a reference. It reaches
a much higher clock frequency, by more than doubling the number of pipeline
stages. Fine-grained pipelining appears to be necessary in order to attain maxi-
mum throughput on this platform. Considering the difference in latency, all the
FPUs implemented in this thesis appear to perform well, except for the square root
unit, which Xilinx manages to implement in a much smaller area. The Sabrewing
has a more competitive performance on the Xilinx than on the Altera, but is still
very large in terms of area.

7. Verification and Benchmarking 46

Unit Latency Frequency(MHz) Registers ALUTs DSP
General information
Total resources - - 393,600 196,800 1,344
Xilinx floating-point units

add [41] 12 476.00 ? 498 0
mul [41] 11 408.00 ? 160 2
div [41] 28 429.00 ? 929 0
sqrt [41] 28 384.00 ? 645 0

32-bit units
add 5 244.14 527 634 0
mul 5 187.62 286 247 2
div 15 239.46 1339 1280 0
sqrt 26 245.04 993 2723 0
conv 4 298.77 371 513 0
cmp 1 260.01 132 94 0
fma 3 155.11 481 711 2
fma 4 188.61 671 671 2
fma 5 186.36 688 688 2
fma 6 187.51 682 682 2

sabrewing 4 123.42 1023 2751 4
sabrewing 5 151.37 1221 2662 4

16-bit units
add 2 252.21 124 344 0
mul 2 227.69 88 113 1
fma 3 200.72 301 392 1
fma 4 231.11 230 304 1

Table 7.2: Synthesis results on a Virtex-6 FPGA. Note that the selected model
of Virtex-6 has very large resources; most practical applications would opt for a
smaller, cheaper Virtex-6. This overprovisioning has no effect on the figures shown
here.

47

8. CONCLUSIONS

A set of floating-point function units was designed and implemented for the TCE
toolset, which cover the basic operations needed for floating-point computation.
They are based on the VHDL-2008 Support Library and described in high-level
VHDL that is readily extensible to e.g. IEEE-compliant or non-standard precision
arithmetic. The FUs are optimized for performance by complying to the looser
OpenCL EP standard instead of the ubiquitous IEEE 754. The freely available
Sabrewing FPU [30] was included as an alternative geared for ASIC performance.

An automated test suite was written and integrated into TCE’s systemtest facility.
The suite verifies the correct behavior of the simulation models for each floating-
point operation using instruction-level simulation and the hardware units themselves
using register transfer level simulation.

The implemented FUs can be divided into a set of separate accelerators for each
arithmetic operation and a fused multiply-add unit, which shares hardware between
addition and multiplication. The common algorithms for correctly-rounded FMA-
accelerated division and square root assume the default IEEE-754 rounding and con-
sequently malfunction on the Round-to-Zero FPUs described in this thesis. Modified
procedures were proposed that are not quite correctly rounded, but at least OpenCL
EP-compliant, with the help of cheap special instructions. Dedicated divider and
square root units were found to be large enough to justify their replacement with
software emulation in most cases. An interesting result is that the proposed OpenCL
EP-compliant division requires only five multiply-add operations, as opposed to ten
for IEEE-compliant division [32]. Hence, the benefits of relaxed standard compliance
appear to be more pronounced in software operations than in hardware units.

The FUs were found to attain reasonably high performance when synthesized
on an Altera Stratix-2 FPGA, being not much larger and slower than Altera’s own
platform-specific floating-point units. On a Xilinx Virtex-6 FPGA, the vendor-
provided FPUs reached a much higher clock rate using fine-grained pipelining. How-
ever, the new FPUs may be worth considering even on the Virtex-6 in applications
that benefit from an FMA instruction, if the clock rate is limited by other consid-
erations.

Separate function units and instruction-level support was included for IEEE half-
precision arithmetic. However, the half operations currently lack high-level language

8. Conclusions 48

support pending additions to LLVM, and can only be used as assembly instructions.
Half-precision units were found to require less than half the area of single-precision
units, and obtain the same clock speed at a more favorable latency. A part of the
floating-point functionality described in this thesis was included in the 1.6 release
of TCE. The rest, including half-precision components, can be found in the version
control repository at tce.cs.tut.fi, and will be included in TCE 1.7.

In conclusion, this thesis successfully added hardware accelerated floating-point
support to the TCE toolset. It is questionable whether the main design requirement
of FPGA performance was met even by relaxing standards compliance. Especially
the Virtex-6, and by extension other recent FPGAs require an amount of pipelining
that was not anticipated. Inserting further pipeline stages would be a difficult
engineering task. The original choice to base the units on the Support Library
may have been suspect, since the library is not designed for high performance. In
retrospect pipelining and optimizing the units required a design effort comparable
to designing new FPUs from the ground up.

However, the existing implementations reviewed in Chapter 4 did not include
many feasible alternatives, and it is uncertain whether a more thorough review
would have helped. Many FPU architectures have been proposed in the literature,
but few have public HDL implementations. The OpenCores single-precision units
are optimized for old hardware, and likely have similar performance characteristics.
The FloPoCo system is reported to be clearly superior in terms of performance and
flexibility but due to licensing issues, it cannot address the main issue in this thesis,
namely the lack of floating-point units in TCE.

One alternative would have been to wrap the vendor-supplied FPUs and include,
e.g., the fpu100 unit from OpenCores as a slow, platform-independent alternative.
This approach is attractive in terms of performance and design effort, but the lack
of an FMA unit would remove the option of using the software-based divider and
square root operations described in Chapter 6. In addition, nonstandard floating-
point formats would have been difficult to support across the board. For these
reasons, this thesis seems to be have addressed the issue of floating-point support
in TCE in an effective way.

Short-term future work will include further evaluation of accelerated software
operations and implementation of the accelerator block proposed in Chapter 6. A
point of interest is whether even faster algorithms are possible for reduced-precision
arithmetic. Another interesting direction of study would be to automatically wrap
custom operators generated with the FloPoCo system into TCE function units, even
though processors so produced would be restricted by licensing issues. In the future,
the implemented FPUs will be used to investigate the feasibility of using FPGA-
based TTA processors for low power high performance floating-point computing.

49

BIBLIOGRAPHY

[1] L. Nurmi, P. Salmela, P. Kellomäki, P. Jääskelainen, and J. Takala, “Reconfig-
urable video decoder with transform acceleration,” in Proc. IEEE Signal Pro-
cessing Systems Workshop, Tampere, Finland, Oct. 7–9 2009, pp. 081–086.

[2] P. Pereira and K. Savio, “Characterization of FPGA-based high performance
computers,” Master’s thesis, Virginia Tech, USA, 2011.

[3] C. de La Lama, P. Jääskeläinen, and J. Takala, “Programmable and scalable
architecture for graphics processing units,” in Embedded Computer Systems:
Architectures, Modeling, and Simulation, ser. Lecture Notes in Computer Sci-
ence. Springer Berlin / Heidelberg, vol. 5657, pp. 2–11.

[4] J. Janhunen, P. Salmela, O. Silvén, and M. Juntti, “Fixed- versus floating-
point implementation of MIMO-OFDM detector,” in Proc. IEEE Int. Conf.
Acoustics, Speech and Signal Processing, Prague, Czech Republic, May 22–27
2011, pp. 3276–3279.

[5] T. Nyländen, J. Janhunen, J. Hannuksela, and O. Silvén, “FPGA based ap-
plication specific processing for sensor nodes,” in Proc. Int. Conf. Embedded
Computer Systems: Architectures, Modeling, and Simulation, Samos, Greece,
July 18–21 2011, pp. 118–123.

[6] D. W. Bishop, “VHDL-2008 support library,” 2011. [Online]. Available:
http://www.eda.org/fphdl/

[7] H. Corporaal, “Transport triggered architectures; design and evaluation,” Doc-
toral dissertation, Delft Univ. of Technology, Netherlands, 1993.

[8] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 26,
no. 2, pp. 203–215, Feb. 2007.

[9] V. Betz, “FPGA challenges and opportunities at 40nm and beyond,” in Proc.
Int. Conf. Field Programmable Logic and Applications, Prague, Czech Republic,
Aug. 31 – Sept. 2 2009, p. 4.

[10] G. J. Lipovski, “The architecture of a simple, effective, control processor,” in
Second Annual Euromicro Symposium, 1976.

[11] H. Corporaal and P. Arend, “Move32int, a sea of gates realization of a high
performance transport triggered architecture,” Microprocessing and Micropro-
gramming, vol. 38, pp. 53–60, 1993.

http://www.eda.org/fphdl/

BIBLIOGRAPHY 50

[12] P. Jääskeläinen, V. Guzma, A. Cilio, and J. Takala, “Codesign toolset for
application-specific instruction-set processors,” in Proc. SPIE Multimedia on
Mobile Devices, San Jose, CA, USA, Jan. 29–30 2007, pp. 65 070X–1 – 65 070X–
11.

[13] L. Laasonen, “Program image and processor generator for transport triggered
architectures,” Master’s thesis, Tampere University of Technology, Finland,
2007.

[14] T. Gringold, “GHDL,” 2011. [Online]. Available: ghdl.free.fr

[15] V.-P. Jääskeläinen, “Retargetable compiler backend for transport triggered ar-
chitectures,” Master’s thesis, Tampere University of Technology, Finland, 2011.

[16] P. Jääskeläinen, “Instruction set simulator for transport triggered architec-
tures,” Master’s thesis, Tampere University of Technology, Finland, 2005.

[17] O. Esko, “ASIP integration and verification flow,” Master’s thesis, Tampere
University of Technology, Finland, 2011.

[18] A. Munshi, “The OpenCL specification version: 1.2 document revision: 15,”
Khronos, 2011.

[19] P. Jääskeläinen, C. S. de La Lama, P. Huerta, and J. Takala, “OpenCL-based
design methodology for application-specific processors.” in Proc. Int. Conf. Em-
bedded Computer Systems: Architectures, Modeling, and Simulation, Samos,
Greece, July 19–22, pp. 223–230.

[20] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,
G. Melquiond, N. Revol, D. Stehlé, and S. Torres, Handbook of Floating-Point
Arithmetic, 1st ed. New York, NY, USA: Birkhäuser Boston, 2009.

[21] D. Goldberg, “What every computer scientist should know about floating point
arithmetic,” ACM Computing Surveys, vol. 23, no. 1, pp. 5–48, 1991.

[22] C. Inacio and D. Ombres, “The DSP decision: Fixed point or floating?” Spec-
trum, IEEE, vol. 33, no. 9, pp. 72–74, Sept. 1996.

[23] Standard for Floating-Point Arithmetic, IEEE Std. 754, 2008.

[24] W. Kahan and J. Palmer, “On a proposed floating-point standard,” SIGNUM
Newsl., vol. 14, no. si-2, pp. 13–21, Oct. 1979. [Online]. Available:
http://doi.acm.org/10.1145/1057520.1057522

ghdl.free.fr
http://doi.acm.org/10.1145/1057520.1057522

BIBLIOGRAPHY 51

[25] W. Cody, “Analysis of proposals for the floating-point standard,” Computer,
vol. 14, no. 3, pp. 63–68, 1981.

[26] H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead,
M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display
systems,” ACM Trans. Graph., vol. 23, no. 3, pp. 760–768, Aug. 2004. [Online].
Available: http://doi.acm.org/10.1145/1015706.1015797

[27] C. Maass, M. Baer, and M. Kachelriess, “CT image reconstruction with half
precision floating-point values,” Medical Physics, vol. 38, no. S1, pp. S95–S105,
2011.

[28] C. F. Fang, R. A. Rutenbar, and T. Chen, “Fast, accurate static analysis for
fixed-point finite-precision effects in DSP designs,” in Proc. IEEE/ACM Int.
Conf. Computer-aided design. San Jose, CA, USA: IEEE Computer Society,
Nov. 9–13 2003, pp. 275–.

[29] N. Whitehead and A. Fit-Florea, “Precision & performance: Floating point
and IEEE 754 compliance for NVIDIA GPUs,” Technical report, 2011.
[Online]. Available: http://developer.download.nvidia.com/assets/cuda/files/
NVIDIA-CUDA-Floating-Point.pdf

[30] T. M. Bruintjes, K. H. G. Walters, S. H. Gerez, B. Molenkamp, and G. J. M.
Smit, “Sabrewing: A lightweight architecture for combined floating-point and
integer arithmetic,” ACM Trans. Archit. Code Optim., vol. 8, no. 4, pp. 41:1–
41:22, Jan. 2012.

[31] W. Kahan, “Lecture notes on the status of IEEE standard 754 for
binary floating-point arithmetic,” World-Wide Web document, p. 30, Oct.
1997. [Online]. Available: http://www.cs.berkeley.edu/~wkahan/ieee754status/
IEEE754.PDF

[32] M. Cornea, J. Harrison, and P. T. P. Tang, Scientific Computing on Itanium-
Based Systems. Hillsboro, OR, USA: Intel Press, 2002.

[33] S. Mueller, C. Jacobi, H.-J. Oh, K. Tran, S. Cottier, B. Michael, H. Nishikawa,
Y. Totsuka, T. Namatame, N. Yano, T. Machida, and S. Dhong, “The vector
floating-point unit in a synergistic processor element of a CELL processor,” in
Proc. IEE Int. Symp. Comput. Arithmetic, Cape Cod, MA, USA, June 27–29
2005, pp. 59–67.

[34] M. Butler, L. Barnes, D. Sarma, and B. Gelinas, “Bulldozer: An approach to
multithreaded compute performance,” Micro, IEEE, vol. 31, no. 2, pp. 6–15,
March-April 2011.

http://doi.acm.org/10.1145/1015706.1015797
http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
http://developer.download.nvidia.com/assets/cuda/files/NVIDIA-CUDA-Floating-Point.pdf
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF

BIBLIOGRAPHY 52

[35] E. Strohmaier and J. D. Meuer, “Top500 supercomputer sites,” University of
Tennessee, Knoxville, TN, USA, Tech. Rep., 1997.

[36] “Accuracy information for the MASS libraries for Cell/B.E. SPU,” Tech. Rep.,
2009. [Online]. Available: http://www-01.ibm.com/support/docview.wss?uid=
swg27009549

[37] J. Jean and S. Graillat, “A parallel algorithm for dot product over word-size
finite field using floating-point arithmetic,” in Int. Symp. Symbolic and Numeric
Algorithms for Scientific Computing, Timisoara, Romania, Sept. 23–26 2010,
pp. 80–87.

[38] S. Damaraju, V. George, S. Jahagirdar, T. Khondker, R. Milstrey, S. Sarkar,
S. Siers, I. Stolero, and A. Subbiah, “A 22nm IA multi-CPU and GPU system-
on-chip,” in IEEE Int. Solid-State Circ. Conf. Digest of Technical Papers, San
Francisco, CA, USA, Feb. 19–23 2012, pp. 56–57.

[39] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths with
FloPoCo,” IEEE Design Test of Computers, vol. 28, no. 4, pp. 18–27, July-
Aug. 2011.

[40] FloPoCo User Manual, INRIA. [Online]. Available: http://flopoco.gforge.inria.
fr/flopoco_user_manual.html

[41] LogiCORE IP Floating-Point Operator v6.0 Product Specification, Xilinx, 2012.

[42] LogiCORE IP Virtex-5 APU Floating-Point Unit v1.01a Product Specification,
Xilinx, 2011.

[43] Floating Point Megafunctions User Guide, Altera, 2011.

[44] T. Hain and D. Mercer, “Fast floating point square root,” in Proc. Int. Conf.
Algorithmic Mathematics and Computer Science, Las Vegas, Nevada, USA,
June 20–23.

[45] P. Markstein, “Software division and square root using Goldschmidt’s algo-
rithms,” in Conf. Real Numbers and Computers, Schloß Dagstuhl, Germany,
Nov. 15–17 2004, pp. 146–157.

[46] J. Hauser, “Softfloat release 2b,” 2002. [Online]. Available: http://www.
jhauser.us/arithmetic/SoftFloat.html

[47] E. Schwarz and M. Flynn, “Hardware starting approximation for the square
root operation,” in Proc. Int. Symp. Comput. Arithmetic, Windsor, Canada,
June 29 – July 2 1993.

http://www-01.ibm.com/support/docview.wss?uid=swg27009549
http://www-01.ibm.com/support/docview.wss?uid=swg27009549
http://flopoco.gforge.inria.fr/flopoco_user_manual.html
http://flopoco.gforge.inria.fr/flopoco_user_manual.html
http://www.jhauser.us/arithmetic/SoftFloat.html
http://www.jhauser.us/arithmetic/SoftFloat.html

BIBLIOGRAPHY 53

[48] Floating Point Adder/Subtractor (ALTFP_ADD_SUB) Megafunction User
Guide, Altera, 2007.

[49] Floating Point Multiplier (ALTFP_MULT) Megafunction User Guide, Altera,
2008.

[50] Floating Point Divider (ALTFP_DIV) Megafunction User Guide, Altera, 2008.

54

A. FLOATING-POINT UNIT SPECIFICATIONS

Table A.1: List of floating-point units. The latencies of fpu_sp_div and
fpu_sp_sqrt depend on the parameters mw and ew which are defined in Table A.2.
The fpu_sp_sabrewing supports the listed operations on both floats and integers.

Entity name Latency Supported operations
Single-precision units, fpu_embedded.hdb:
fpu_sp_add_sub 5 Add, Subtract

fpu_sp_mul 5 Multiply
fpu_sp_div mw

2
+ 3 = 15 Multiply

fpu_sp_sqrt mw + 3 = 26 Square Root
fpu_sp_compare 1 Absolute Value, Negation, Comparisons
fpu_sp_convert 4 Convert Float ↔ Signed/Unsigned Int
fpu_sp_mac_v2 2− 6 Multiply-Add, Multiply-Subtract,

Add, Subtract, Multiply
fpu_sp_sabrewing 5− 6 Multiply-Add, Add, Multiply,

Comparisons, Shift Left, Shift Right
Half-precision units, fpu_half.hdb:

fpadd_fpsub 2 Add, Subtract
fpmul 2 Multiply

invsqrth 5 Inverse Square Root
fpu_chf_cfh 1 Convert Single ↔ Half

fpu_hp_compare 1 Absolute Value, Negation, Comparisons
fpmac_v2 2− 6 Multiply-Add, Multiply-Subtract,

Add, Subtract, Multiply

A. Floating-Point Unit Specifications 55

Table A.2: List of generic parameters used to customize floating-point units. In
addition, the single-half converter unit has parameters smw, sew, hmw and hew
which replace mw and ew for single- and half-precision floats, respectively.

Parameter Type Description Appears in
mw Integer Significand width All units
ew Integer Exponent width All units

dataw Integer Input data signal width, All units
at least mw + ew1.

busw Integer Output data signal width, All units
at least mw + ew1.

bypass_2 Boolean Disables pipeline stage 2, FMA,
used to customize latency. Sabrewing

bypass_3 Boolean Disables pipeline stage 3. FMA
bypass_4 Boolean Disables pipeline stage 4. FMA
bypass_5 Boolean Disables pipeline stage 5. FMA

	Introduction
	Application-Specific Processors
	Transport Triggered Architectures
	TTA-Based Codesign Environment
	TCE Function Unit Interface
	OpenCL Support in TCE

	Floating-Point Arithmetic
	Floating-Point Number Representation
	IEEE Standard for Floating-Point Arithmetic
	Subnormal Numbers
	Rounding Modes
	Exception Handling
	Half-Precision

	OpenCL Embedded Profile
	Fused Multiply-Adder Unit

	Floating-Point Unit Implementations
	Floating-Point Units in Commercial Processors
	Intel Itanium
	IBM Cell Broadband Engine
	AMD Bulldozer
	Intel Ivy Bridge

	Open Source Floating-Point Units
	FloPoCo
	VHDL-2008 Support Library
	Sabrewing
	OpenCores

	Floating-Point Libraries for FPGAs
	Xilinx
	Altera

	Design and Implementation
	Requirements
	Single-Precision Components
	Adder-Subtractor
	Multiplier
	Divider
	Square Root
	Comparator
	Integer-Float Converter
	Fused Multiply-Adder

	Sabrewing Wrapper
	Half-Precision Components
	Software Integration
	Miscellaneous Units
	Float-Half Converter
	Comparator
	Fused Multiply-Adder

	FMA Accelerated Software Operations
	Division
	Square Root
	Accelerator Component

	Verification and Benchmarking
	Instruction-Level Simulator Test
	VHDL Simulator Tests
	Hardware Synthesis Benchmark
	Altera Stratix-II FPGA
	Xilinx Virtex-6 FPGA

	Conclusions
	Bibliography
	Floating-Point Unit Specifications

